
UC Irvine
UC Irvine Previously Published Works

Title
Association analyses of 249,796 individuals reveal 18 new loci associated with body mass 
index

Permalink
https://escholarship.org/uc/item/0s07q1cw

Journal
Nature Genetics, 42(11)

ISSN
1061-4036

Authors
Speliotes, Elizabeth K
Willer, Cristen J
Berndt, Sonja I
et al.

Publication Date
2010-11-01

DOI
10.1038/ng.686

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0s07q1cw
https://escholarship.org/uc/item/0s07q1cw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Association analyses of 249,796 individuals reveal eighteen new 
loci associated with body mass index

A full list of authors and affiliations appears at the end of the article.

Abstract

Obesity is globally prevalent and highly heritable, but the underlying genetic factors remain 

largely elusive. To identify genetic loci for obesity-susceptibility, we examined associations 

between body mass index (BMI) and ~2.8 million SNPs in up to 123,865 individuals, with 

targeted follow-up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known 

obesity-susceptibility loci and identified 18 new loci associated with BMI (P<5×10−8), one of 

which includes a copy number variant near GPRC5B. Some loci (MC4R, POMC, SH2B1, BDNF) 

map near key hypothalamic regulators of energy balance, and one is near GIPR, an incretin 

receptor. Furthermore, genes in other newly-associated loci may provide novel insights into 

human body weight regulation.

Obesity is a major and increasingly prevalent risk factor for multiple disorders, including 

type 2 diabetes and cardiovascular disease1,2. While lifestyle changes have driven its 

prevalence to epidemic proportions, heritability studies provide evidence for a substantial 

genetic contribution (h2~40–70%) to obesity risk3,4. BMI is an inexpensive, non-invasive 

measure of obesity that predicts the risk of related complications5. Identifying genetic 

determinants of BMI could lead to a better understanding of the biological basis of obesity.

Genome-wide association (GWA) studies of BMI have previously identified ten loci with 

genome-wide significant (P < 5×10−8) associations in or near FTO, MC4R, TMEM18, 

GNPDA2, BDNF, NEGR1, SH2B1, ETV5, MTCH2, and KCTD156–10. Many of these genes 

are expressed or known to act in the central nervous system, highlighting a likely neuronal 

component to the predisposition to obesity9. This pattern is consistent with results in animal 

models and studies of monogenic human obesity, where neuronal genes, particularly those 

expressed in the hypothalamus and involved in regulation of appetite or energy balance, are 

known to play a major role in susceptibility to obesity11–13.
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The ten previously identified loci account for only a small fraction of the variation in BMI. 

Furthermore, power calculations based on the effect sizes of established variants have 

suggested that increasing the sample size would likely lead to the discovery of additional 

variants9. To identify more loci associated with BMI, we expanded the GIANT (Genetic 

Investigation of ANtropometric Traits) consortium GWA meta-analysis to include a total of 

249,769 individuals of European ancestry.

Results

Stage 1 GWA studies identify novel loci associated with BMI

We first conducted a meta-analysis of GWA studies of BMI and ~2.8 million imputed or 

genotyped SNPs using data from 46 studies including up to 123,865 individuals (Online 

Methods, Supplementary Fig. 1 and Supplementary Note). This stage 1 analysis revealed 19 

loci associated with BMI at P < 5×10−8 (Table 1, Fig. 1a and Supplementary Table 1). 

These 19 loci included all ten loci from previous GWA studies of BMI6–10, two loci 

previously associated with body weight10 (FAIM2 and SEC16B) and one locus previously 

associated with waist circumference14 (near TFAP2B). The remaining six loci, near 

GPRC5B, MAP2K5/LBXCOR1, TNNI3K, LRRN6C, FLJ35779/HMGCR, and PRKD1, have 

not previously been associated with BMI or other obesity-related traits.

Stage 2 follow-up leads to additional novel loci for BMI

To identify additional BMI-associated loci and to validate the loci that reached genome-

wide significance in stage 1 analyses, we examined SNPs representing 42 independent loci 

(including the 19 genome-wide significant loci) with stage 1 P < 5×10−6. Variants were 

considered to be independent if the pair-wise linkage disequilibrium (LD; r2) was less than 

0.1 and if they were separated by at least 1 Mb. In stage 2, we examined these 42 SNPs in up 

to 125,931 additional individuals (79,561 newly genotyped individuals from 16 different 

studies and 46,370 individuals from 18 additional studies for which GWA data were 

available; Table 1, Supplementary Note, and Online Methods). In a joint analysis of stage 1 

and stage 2 results, 32 of the 42 SNPs reached P < 5×10−8. Even after excluding SNPs 

within these 32 confirmed BMI loci, we still observed an excess of small P-values compared 

to the distribution expected under the null hypothesis (Fig. 1b), suggesting that more BMI 

loci remain to be uncovered.

The 32 confirmed associations included all 19 loci with P < 5×10−8 at stage 1, 12 additional 

novel loci near RBJ/ADCY3/POMC, QPCTL/GIPR, SLC39A8, TMEM160, FANCL, 

CADM2, LRP1B, PTBP2, MTIF3/GTF3A, ZNF608, RPL27A/TUB, NUDT3/HMGA1, and 

one locus (NRXN3) previously associated with waist circumference15 (Table 1, 

Supplementary Table 1, Supplementary Fig. 1 and 2). In all, our study increased the number 

of loci robustly associated with BMI from 10 to 32. Four of the 22 new loci were previously 

associated with body weight10 or waist circumference14,15, whereas 18 loci had not 

previously associated with any obesity-related trait in the general population. Whilst we 

confirmed all loci previously established by large-scale GWA studies for BMI6–10 and waist 

circumference14,15, four loci identified by GWA studies for early-onset or adult morbid 

obesity16,17 [at NPC1 (rs1805081; P = 0.0025), MAF (rs1424233; P = 0.25), PTER 
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(rs10508503; P = 0.64), and TNKS/MSRA (rs473034; P = 0.23)] showed limited or no 

evidence of association with BMI in our study.

As expected, the effect sizes of the 18 newly discovered loci are slightly smaller, for a given 

minor allele frequency, than those of the previously identified variants (Table 1 and Fig. 1c). 

The increased sample size also brought out more signals with low minor allele frequency. 

The BMI-increasing allele frequencies for the 18 newly identified variants ranged from 4% 

to 87%, covering more of the allele frequency spectrum than previous, smaller GWA studies 

of BMI (24%–83%)9,10 (Table 1 and Fig. 1c).

We tested for evidence of non-additive (dominant or recessive) effects, SNP×SNP 

interaction effects and heterogeneity by sex or study among the 32 BMI-associated SNPs 

(Online Methods). We found no evidence for any such effects (P > 0.001, no significant 

results after correcting for multiple testing) (Supplementary Tables 1 and Supplementary 

Note).

Impact of 32 confirmed loci on BMI, obesity, body size, and other metabolic traits

Together, the 32 confirmed BMI loci explained 1.45% of the inter-individual variation in 

BMI of the stage 2 samples, with the FTO SNP accounting for the largest proportion of the 

variance (0.34%) (Table 1). To estimate the cumulative effect of the 32 variants on BMI, we 

constructed a genetic-susceptibility score that sums the number of BMI-increasing alleles 

weighted by the overall stage 2 effect sizes in the ARIC study (N = 8,120), one of our 

largest population-based studies (Online Methods). For each unit increase in the genetic-

susceptibility score, approximately equivalent to one additional risk allele, BMI increased by 

0.17 kg/m2, equivalent to a 435–551 g gain in body weight in adults of 160–180 cm in 

height. The difference in average BMI between individuals with a high genetic-

susceptibility score (≥38 BMI-increasing alleles, 1.5% (n=124) of the ARIC sample) and 

those with a low genetic-susceptibility score (≤21 BMI-increasing alleles, 2.2% (n=175) of 

the ARIC sample) was 2.73 kg/m2, equivalent to a 6.99 to 8.85 kg body weight difference in 

adults 160–180 cm in height (Fig. 2a). Still, we note that the predictive value for obesity risk 

and BMI of the 32 variants combined was modest, although statistically significant (Fig. 2b, 

Supplementary Fig. 4). The area under the receiver operating characteristic (ROC) curve for 

prediction of risk of obesity (BMI ≥ 30 kg/m2) using age, age2 and sex only was 0.515 (P = 

0.023 compared to AUC of 0.50), which increased to 0.575 (P < 10−5) when also the 32 

confirmed SNPs were included in the model (Fig. 2b). The area under the ROC for the 32 

SNPs only was 0.574 (P < 10−5).

All 32 confirmed BMI-increasing alleles showed directionally consistent effects on risk of 

being overweight (BMI ≥25 kg/m2) or obese (≥30 kg/m2) in stage 2 samples, with 30 of 32 

variants achieving at least nominally significant associations. The BMI-increasing alleles 

increased the odds of overweight by 1.013 to 1.138-fold, and the odds for being obese by 

1.016- to 1.203-fold (Supplementary Table 2). In addition, 30 of the 32 loci also showed 

directionally consistent effects on the risk of extreme and early-onset obesity in a meta-

analysis of seven case-control studies of adults and children (binomial sign test P = 

1.3×10−7) (Supplementary Table 3). The BMI-increasing allele observed in adults also 

increased the BMI in children and adolescents with directionally consistent effects observed 
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for 23 of the 32 SNPs (binomial sign test P = 0.01). Furthermore, in family-based studies, 

the BMI-increasing allele was over-transmitted to the obese offspring for 24 of the 32 SNPs 

(binomial sign test P = 0.004) (Supplementary Table 3). As these studies in extreme obesity 

cases, children and families were relatively small (Nrange = 354 − 15,251) compared to the 

overall meta-analyses, their power was likely insufficient to confirm association for all 32 

loci. Nevertheless, these results show that the effects are unlikely to reflect population 

stratification and that they extend to BMI differences throughout the life course.

All BMI-increasing alleles were associated with increased body weight, as expected from 

the correlation between BMI and body weight (Supplementary Table 2). To confirm an 

effect of the loci on adiposity rather than general body size, we tested association with body 

fat percentage, which was available in a subset of the stage 2 replication samples (n = 

5,359–28,425) (Supplementary Table 2). The BMI-increasing allele showed directionally 

consistent effects on body fat percentage at 31 of the 32 confirmed loci (binomial sign test P 

= 1.54×10−8) (Supplementary Table 2).

We also examined the association of the BMI loci with metabolic traits (type 2 diabetes18, 

fasting glucose, fasting insulin, indices of beta-cell function (HOMA-B) and insulin 

resistance (HOMA-IR)19, and blood lipid levels20) and with height (Supplementary Tables 2 

and 4). Although many nominal associations are expected because of known correlations 

between BMI and most of these traits and because of overlap in samples, several 

associations stand out as possible examples of pleiotropic effects of the BMI-associated 

variants. Particularly interesting is the variant in the GIPR locus where the BMI-increasing 

allele is also associated with increased fasting glucose levels and lower 2-hour glucose 

levels (Supplementary Table 4)19,21. The direction of the effect is opposite to what would be 

expected due to the correlation between obesity and glucose intolerance, but is consistent 

with the suggested roles of GIPR in glucose and energy metabolism (see below)22. Three 

loci show strong associations (P < 10−4) with height (MC4R, RBJ/ADCY3/POMC and 

MTCH2/NDUFS3). Because BMI is weakly correlated with height (and indeed, the BMI-

associated variants as a group show no consistent effect on height), these associations are 

also suggestive of pleiotropy. Interestingly, analogous to the effects of severe mutations in 

POMC and MC4R on height and weight23,24, the BMI-increasing alleles of the variants near 

these genes were associated with decreased (POMC) and increased (MC4R) height, 

respectively (Supplementary Table 2).

Potential functional roles and pathways analyses

Although associated variants typically implicate genomic regions rather than individual 

genes, we note that some of the 32 loci include candidate genes with established connections 

to obesity. Several of the 10 previously identified loci are located in or near genes that 

encode neuronal regulators of appetite or energy balance, including MC4R12,25, BDNF26, 

and SH2B111,27. Each of these genes has been tied to obesity, not only in animal models, but 

also by rare human variants that disrupt each of these genes and lead to severe 

obesity24,28,29. Using the automated literature search programme, Snipper (Online 

Methods), we identified various genes within the novel loci with potential biological links to 

obesity-susceptibility (Supplementary Note). Among the novel loci, the location of rs713586 
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near POMC provides further support for a role of neuroendocrine circuits that regulate 

energy balance in susceptibility to obesity. POMC encodes several polypeptides including 

α-MSH, a ligand of the MC4R gene product30, and rare mutations in POMC also cause 

human obesity23,29,31.

In contrast, the locus near GIPR, which encodes a receptor of gastric inhibitory polypeptide 

(GIP), suggests a role for peripheral biology in obesity. GIP, which is expressed in the K cell 

of the duodenum and intestine, is an incretin hormone that mediates incremental insulin 

secretion in response to oral intake of glucose. The variant associated with BMI is in strong 

LD (r2 = 0.83) with a missense SNP in GIPR (rs1800437, Glu354Gln) that has recently been 

shown to influence the glucose and insulin response to an oral glucose challenge 21. 

Although no human phenotype is known to be caused by mutations in GIPR, mice with 

disruption of Gipr are resistant to diet-induced obesity32. The association of a variant in 

GIPR with BMI suggests that there may be a link between incretins/insulin secretion and 

body weight regulation in humans as well.

To systematically identify biological connections among the genes located near the 32 

confirmed SNPs, and to potentially identify new pathways associated with BMI, we 

performed pathway-based analyses using MAGENTA33. Specifically, we tested for 

enrichment of BMI genetic associations in biological processes or molecular functions that 

contain at least one gene from the 32 confirmed BMI loci (Online Methods). Using 

annotations from the KEGG, Ingenuity, PANTHER, and Gene Ontology databases, we 

found evidence of enrichment for pathways involved in the platelet-derived growth factor 

(PDGF) signaling (PANTHER, P = 0.0008, FDR = 0.0061), translation elongation 

(PANTHER, P = 0.0008, FDR = 0.0066), hormone or nuclear hormone receptor binding 

(Gene Ontology, P < 0.0005, FDR < 0.0085), homeobox transcription (PANTHER, P = 

0.0001, FDR = 0.011), regulation of cellular metabolism (Gene Ontology, P = 0.0002, FDR 

= 0.031), neurogenesis and neuron differentiation (Gene Ontology, P < 0.0002, FDR < 

0.034), protein phosphorylation (PANTHER, P = 0.0001, FDR = 0.045) and numerous other 

pathways related to growth, metabolism, immune and neuronal processes (Gene Ontology, P 

< 0.002, FDR < 0.046) (Supplementary Table 5).

Identifying possible functional variants

We used data from the 1000 Genomes Project and the HapMap Consortium to explore 

whether the 32 confirmed BMI SNPs were in LD (r2 ≥ 0.75) with common missense SNPs 

or copy number variants (CNVs) (Online Methods). Non-synonymous variants in LD with 

our signals were present in the BDNF, SLC39A8, FLJ35779/HMGCR, QPCTL/GIPR, 

MTCH2, ADCY3, and LBXCOR1 genes. In addition, the rs7359397 signal was in LD with 

coding variants in several genes including SH2B1, ATNX2L, APOB48R, SULT1A2, and 

AC138894.2 (Table 1, Fig. 3, Supplementary Table 6 and Supplementary Fig. 2). 

Furthermore, two SNPs tagged common CNVs. The first CNV was previously identified 

and is a 45-kb deletion near NEGR19. The second CNV is a 21-kb deletion that lies 50kb 

upstream of GPRC5B; the deletion allele is tagged by the T-allele of rs12444979 (r2 = 1) 

(Fig. 3). Although the correlations with potentially functional variants does not prove that 
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these variants are indeed causal, these provide first clues as to which genes and variants at 

these loci might be prioritized for fine-mapping and functional follow-up.

As many of the 32 BMI loci harbor multiple genes, we examined whether gene expression 

(eQTL) analyses could also direct us to positional candidates. Gene expression data were 

available for human brain, lymphocytes, blood, subcutaneous and visceral adipose tissue, 

and liver34–36 (Online Methods, Table 1 and Supplementary Table 7). Significant cis-

associations, defined at the tissue-specific level, were observed between 14 BMI-associated 

alleles and expression levels (Table 1 and Supplementary Table 7). In several cases, the 

BMI-associated SNP was the most significant SNP or explained a substantial proportion of 

the association with the most significant SNP for the gene transcript in conditional analyses 

(Padj>0.05). These significant associations included NEGR1, ZC3H4, TMEM160, MTCH2, 

NDUFS3, GTF3A, ADCY3, APOB48R, SH2B1, TUFM, GPRC5B, IQCK, SLC39A8, 

SULT1A1, and SULT1A2 (Table 1 and Supplementary Table 7), making these genes higher 

priority candidates within the associated loci. However, we note that some BMI-associated 

variants were correlated with the expression of multiple nearby genes, making it difficult to 

determine the most relevant gene.

Evidence for the existence of additional associated variants

Because the variants identified by this large study explain only 1.45% of the variance in 

BMI (2–4% of genetic variance based on an estimated heritability of 40–70%), we 

considered how much the explained phenotypic variance could be increased by including 

more SNPs at various degrees of significance in a polygene model using an independent 

validation set (Online Methods)37. We found that including SNPs associated with BMI at 

lower significance levels (up to P > 0.05) increased the explained phenotypic variance in 

BMI to 2.5%, or 4% to 6% of genetic variance (Fig. 4a). In a separate analysis, we estimated 

the total number of independent BMI-associated variants that are likely to exist with similar 

effect sizes to the 32 confirmed here (Online Methods)38. Based on the effect size and allele 

frequencies of the 32 replicated loci observed in stage 2 and the power to detect association 

in the combined stage 1 and stage 2, we estimated that there are 284 (95% CI: 132–510) loci 

with similar effect sizes as the currently observed ones, which together would account for 

4.5% (95% CI: 3.1–6.8%) of the variation in BMI or 6–11% of the genetic variation (based 

on an estimated heritability of 40–70%) (Supplementary Table 8). In order to detect 95% of 

these loci, a sample size of approximately 730,000 subjects would be needed (Fig. 4b). This 

method does not account for the potential of loci of smaller effect than those identified here 

to explain even more of the variance and thus provides an estimated lower bound of 

explained variance. These two analyses strongly suggest that larger GWA studies will 

continue to identify additional novel associated loci, but also indicate that even extremely 

large studies focusing on variants with allele frequencies above 5% will not account for a 

large fraction of the genetic contribution to BMI.

We examined whether selecting only a single variant from each locus for follow-up led us to 

underestimate the fraction of phenotypic variation explained by the associated loci. To 

search for additional independent loci at each of the 32 associated BMI loci, we repeated our 

GWA meta-analysis, conditioning on the 32 confirmed SNPs. Using a significance threshold 
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of 5 × 10−6 for SNPs at known loci, we identified one apparently independent signal at the 

MC4R locus; rs7227255 was associated with BMI (P = 6.56 × 10−7) even after conditioning 

for the most strongly associated variant near MC4R (rs571312) (Fig. 5). Interestingly, 

rs7227255 is in perfect LD (r2 = 1) with a relatively rare MC4R missense variant 

(rs2229616, V103I, minor allele frequency = 1.7%) that has been associated with BMI in 

two independent meta-analyses39,40. Furthermore, mutations at the MC4R locus are known 

to influence early-onset obesity24,41, supporting the notion that allelic heterogeneity may be 

a frequent phenomenon in the genetic architecture of obesity.

Discussion

Using a two-stage genome-wide association meta-analysis of up to 249,796 individuals of 

European descent, we have identified 18 additional loci that are associated with BMI at 

genome-wide significance, bringing the total number of such loci to 32. We estimate that 

more than 250 (i.e. 284 predicted loci – 32 confirmed loci) common variant loci with effects 

on BMI similar to those described here remain to be discovered, and even larger numbers of 

loci with smaller effects. A substantial proportion of these loci should be identifiable 

through larger GWA studies and/or by targeted follow-up of top signals selected from our 

stage 1 analysis. The latter approach is already being implemented through large-scale 

genotyping of samples informative for BMI using a custom array (the Metabochip) designed 

to support follow-up of thousands of promising variants in hundreds of thousands of 

individuals.

The combined effect on BMI of the associated variants at the 32 loci is modest, and even 

when we try to account for as-yet-undiscovered variants with similar properties, we estimate 

that these common variant signals account for only 6–11% of the genetic variation in BMI. 

There is a strong expectation that additional variance and biology will be explained using 

complementary approaches that capture variants not examined in the current study, such as 

lower frequency variants and short insertion-deletion polymorphisms. There is good reason 

to believe (based on our findings at MC4R and other loci – POMC, BDNF, SH2B1 – which 

feature both common and rare variant associations) that a proportion of such low-frequency 

and rare causal variation will map to the loci already identified by GWA studies.

A primary goal of human genetic discovery is to improve understanding of the biology of 

conditions such as obesity42. One particularly interesting finding in this regard is the 

association between BMI and common variants near GIPR, which may indicate a causal 

contribution of variation in postprandial insulin secretion to the development of obesity. In 

most cases, the loci identified by the present study harbor few, if any, annotated genes with 

clear connections to the biology of weight regulation. This reflects our still limited 

understanding of the biology of BMI and obesity-related traits and is in striking contrast 

with the results from equivalent studies of certain other traits (such as autoimmune diseases 

or lipid levels). Thus, these results suggest that much novel biology remains to be 

uncovered, and that GWA studies may provide an important entry point. In particular, 

further examination of the associated loci through a combination of resequencing and fine-

mapping to find causal variants, and genomic and experimental studies designed to assign 

function, could uncover novel insights into the biology of obesity.
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In conclusion, we have performed GWA studies in large samples to identify numerous 

genetic loci associated with variation in BMI, a common measure of obesity. Because 

current lifestyle interventions are largely ineffective in addressing the challenges of growing 

obesity43,44, new insights into biology are critically needed to guide the development and 

application of future therapies and interventions.

Supplementary Material
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Figure 1. Genome-wide association results for the BMI meta-analysis
(a) Manhattan plot showing the significance of association between all SNPs and BMI in the 

stage 1 meta-analysis, highlighting SNPs previously reported to show genome-wide 

significant association with BMI (blue), weight or waist circumference (green), and the 18 

new regions described here (red). The 19 SNPs that reached genome-wide significance at 

Stage 1 (13 previously reported and 6 new) are listed in Table 1). (b) Quantile-quantile (Q-

Q) plot of SNPs in stage 1 meta-analysis (black) and after removing any SNPs within 1 Mb 

of the 10 previously reported genome-wide significant hits for BMI (blue), after additionally 

excluding SNPs from the four loci for waist/weight (green) and after excluding SNPs from 

all 32 confirmed loci (red). The plot was abridged at the Y-axis (at P < 10−20) to better 

visualise the excess of small P-values after excluding the 32 confirmed loci (Supplementary 

Fig. 3 shows full-scale Q-Q plot). The shaded region is the 95% concentration band. (c) Plot 

of effect size (in inverse normally transformed units (invBMI)) versus effect allele 

frequency of newly identified and previously identified BMI variants after stage 1 + stage 2 

analysis; including the 10 previously identified BMI loci (blue), the four previously 

identified waist and weight loci (green) and the 18 newly identified BMI loci (blue). The 

dotted lines represent the minimum effect sizes that could be identified for a given effect-

allele frequency with 80% (upper line), 50% (middle line), and 10% (lower line) power, 

assuming a sample size of 123,000 individuals and a α-level of 5×10−8.
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Figure 2. Combined impact of risk alleles on BMI/obesity
(a) Combined effect of risk alleles on average BMI in the population-based Atherosclerosis 

Risk in Communities (ARIC) study (n = 8,120 individuals of European descent). For each 

individual, the number of “best guess” replicated (n = 32) risk alleles from imputed data 

(0,1,2) per SNP was weighted for their relative effect sizes estimated from the stage 2 data. 

Weighted risk alleles were summed for each individual and the overall individual sum was 

rounded to the nearest integer to represent the individual’s risk allele score (range 16–44). 

Along the x-axis, individuals in each risk allele category are shown (grouped ≤21 and ≥38 at 

the extremes), and the mean BMI (+/− SEM) is plotted (y axis on right), with the line 

representing the regression of the mean BMI values across the risk-allele scores. The 

histogram (y-axis on left) represents the number of individuals in each risk-score category. 

(b) The area under the ROC curve (AUC) of two different models predicting the risk of 

obesity (BMI = ≥30 kg/m2) in the n = 8,120 genotyped individuals of European descent in 

the ARIC Study. Model 1, represented by the solid line, includes age, age2, and sex (AUC = 

0.515, P = 0.023 for difference from AUCnull = 0.50). Model 2, represented by the dashed 

line, includes age, age2, sex, and the n = 32 confirmed BMI SNPs (AUC = 0.0575, P < 10−5 

for difference from AUCnull = 0.50). The difference between both AUCs is significant (P < 

10−4).
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Figure 3. Regional plots of selected replicating BMI loci with missense and CNV variants
SNPs are plotted by position on chromosome against association with BMI (−log10 P-

value). The SNP name shown on the plot was the most significant SNP after stage 1 meta-

analysis. Estimated recombination rates (from HapMap) are plotted in cyan to reflect the 

local LD structure. The SNPs surrounding the most significant SNP are color-coded to 

reflect their LD with this SNP (taken from pairwise r2 values from the HapMap CEU 

database, www.hapmap.org). Genes, position of exons, and direction of transcription from 

UCSC genome browser (http://genome.ucsc.edu) are noted. Hashmarks represent SNP 

positions available in the meta-analysis. (a, b, c) Missense variants noted with their amino 

acid change for the gene noted above the plot. (d) Structural haplotypes and BMI association 

signal in the GPRC5B region. A 21 kb deletion polymorphism is associated with 4 SNPs 

(r2=1.0) that comprise the best haplogroup associating with BMI. Plots were generated using 

LocusZoom (http://csg.sph.umich.edu/locuszoom).
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Figure 4. Phenotypic variance explained by common variants
(a) Variance explained is higher when SNPs not reaching genome-wide significance are 

included in the prediction model. The y-axis represents the proportion of variance explained 

at different P-value thresholds from stage 1 meta-analysis. Results are given for three 

studies (RSII, RSIII, QIMR), which were not included in the meta-analysis, after exclusion 

of all samples from The Netherlands (for RSII and RSIII) and the United Kingdom (for 

QIMR) from the discovery analysis for this sub-analysis. The dotted line represents the 

weighted average of the explained variance of three validation sets. (b) Cumulative number 

of susceptibility loci expected to be discovered, including those we have already identified 

and others that have yet to be detected, by the expected percentage of phenotypic variation 

explained and sample size required for a one-stage GWA study assuming a GC correction is 

utilized. The projections are based on loci that achieved a significance level of P < 5×10−8 

in the joint analysis of stage 1 and stage 2 and the distribution of their effect sizes in stage 2. 

The dotted red line corresponds to the expected phenotypic variance explained by the 22 loci 

that are expected to be discovered in a one-stage GWAS with the sample size of stage 1 of 

this study.
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Figure 5. Second signal at the MC4R locus contributing to BMI
SNPs are plotted by position in a 1 Mb window of chromosome 18 against association with 

BMI ( log10 P-value). Panel (a) highlights the most significant SNP in stage 1 meta-analysis, 

panel (b) the most significant SNP after conditional analysis where the model included the 

most strongly associated SNP from panel A as a covariate. Estimated recombination rates 

(from HapMap) are plotted in cyan to reflect the local LD structure. The SNPs surrounding 

the most significant SNP are color-coded to reflect their LD with this SNP (taken from 

pairwise r2 values from the HapMap CEU database, www.hapmap.org). Genes, exons, and 

direction of transcription from UCSC genome browser (genome.ucsc.edu) are noted. 

Hashmarks at the top of the figure represent positions of SNPs in the meta-analysis. 

Regional plots were generated using LocusZoom (http://csg.sph.umich.edu/locuszoom).
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