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Abstract: Twenty-seven commercial Californian Cabernet Sauvignon wines of different 

quality categories were analyzed with sensory and chemical methods. Correlations between 

five quality proxies—points awarded during a wine competition, wine expert scores, retail 

price, vintage, and wine region—were correlated to sensory attributes, volatile compounds, 

and elemental composition. Wine quality is a multi-faceted construct, incorporating many 

different layers. Depending on the quality proxy studied, significant correlations between 

quality and attributes, volatiles and elements were found, some of them previously reported 

in the literature.  

Keywords: wine quality; Cabernet Sauvignon; descriptive analysis; volatile analysis; 

elemental analysis; quality proxies 
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1. Introduction 

The quality of wine is difficult to define, as it is a multi-faceted construct, lacking a uniform and 

generally accepted definition. This is most certainly accredited to everyone’s different perception of 

quality. Due to this subjective layer of quality, authors such as Charters & Pettigrew [1] instead 

measure the perception of wine quality, and study how this perception differs among different 

populations. This holistic approach incorporates, therefore, all different aspects of wine quality, 

including the so-called extrinsic and intrinsic factors of quality [1,2]. For wine consumers, however, 

the question remains of how to select a bottle of quality wine? Thach [3] showed that consumers seek 

the advice of wine experts and/or other trusted sources, followed by other proxies of wine quality such 

as price, geographical origin, and age. Other wine quality proxies would be the absence of common 

wine defects (e.g., high levels of acetic acid, cork taint), and levels of the defect-causing compounds 

can be limited by governmental agencies. For example, wines from Austria can only be sold as 

Qualitätswein (quality wine) if they pass both a chemical and sensory assessment, are made from 

certain permitted varieties, and come from specified geographic regions [4]. However, these 

assessments are covering the lower end of wine quality, and leave much room for different levels of 

wine quality above this minimum level.  

Despite the different quality perceptions, a generally accepted and less subjective quality baseline 

could be established by linking sensory and chemical measurements to wine quality. In order to 

establish such a baseline, different existing quality proxies, such as retail price, geographical origin, 

wine judgment medals and expert scores should be studied through the correlation with analytical 

measurement for their stability and ability to consistently measure wine quality.  

One quality proxy is the retail price; assuming that a certain level of quality implies certain product 

costs that need to be covered by the wine price. In experiments with both wine novices and wine 

experts [5], the perceived quality of wine correlated significantly positively with the price consumers 

were willing to pay, however, the correlation between price and quality was higher for the wine 

experts than for the wine novices (0.63 vs. 0.46; both p < 0.01). Hence, higher quality wines are to a 

certain extent also higher in price. However, the final bottle price includes also distribution and retail 

costs, and cost of production is only a fraction of the total costs of a bottle of wine. Nevertheless, 

increased production costs will also be reflected in the final product costs.  

The geographical origin of wine is another quality proxy. All around the world certain regions are 

known for their wines, and are considered high in quality, making that particular region famous for its 

wines. In order to maintain their reputations, many wine regions nowadays also require certain 

production and quality standards in order to label the wine with a regional label. In this instance, wine 

quality is associated with regionality or regional typicality, although the measurement or even the 

definition of typicality is as vague as the term of quality. The challenge is how to measure typicality; 

what makes a regional product special compared to products made under identical conditions from 

other areas?  

One attempt to measure regionality is the measurement of the elemental fingerprint, i.e., the 

elemental composition. Kelly et al. summarized that such measurements are based on the assumption 

that “… the vegetation is the compositional reflection of the bioavailable and mobilized nutrients 

present in the underlying soils from which they were cultivated. […] Consequently, the range of soils 
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present and bioavailability mean that elemental composition may provide unique markers in food that 

characterise geographical origin.” [6] (p. 558). Studies on the determination of geographical origin 

based on multi-elemental fingerprint are numerous for wines, and have compared wines from different 

regions within one country and between different countries, both in the old and new wine world [7–20]. 

Lately, research is also tackling the questions of defining a baseline, assessing the product variability 

within the region compared to outside the region in combination with the impact of winemaking  

(e.g., [21]). It is accepted that elemental fingerprints could be used for determining geographical  

origin [6]; therefore, the measurement of the elemental composition of wine could also serve as 

another wine quality proxy—a proxy for regionality.  

In blind tastings (i.e., without any extrinsic factors such as brand, price etc. available) wine 

consumers decide solely based on the intrinsic tasting experience. It was shown that flavor is the 

primary proxy for overall wine quality, and the importance of flavor on wine quality is undisputed [1]. 

Flavor as a multisensorial construct that incorporates ortho- and retro-nasal aromas, taste, and 

mouthfeel sensations into one flavor perception in the human brain is shown to be the main driver for 

overall quality perception [1]. As the aroma of wines is composed of complex mixtures of volatile 

compounds, gas chromatography with mass spectrometry is the primary choice for wine aroma 

analysis, and has been applied to solve questions about wine aroma composition (e.g., the effect of 

wine blending [22], and wine storage and packaging [23,24] to name only a few). The measurement of 

wine aroma profiles therefore provides another way of assessing wine quality—are there certain 

volatiles linked to quality scores and sensory attributes associated with wine quality?  

In summary, wine quality is a multi-faceted construct, encompassing many different layers. In this 

work, we used an inter-disciplinary and cross-platform approach to further the understanding of wine 

quality. We combined descriptive sensory science with the chemical analyses of volatiles and 

elemental composition to link wine quality proxies to instrumental measurements of elemental and 

flavor composition, and sensory attributes, using a well defined set of 27 commercial Californian 

Cabernet Sauvignon wines.  

2. Results and Discussion 

2.1. Correlations of Wine Quality Parameters to Each Other 

In an initial step, the relationships among the five chosen wine quality proxies were studied. Of all 

wine quality indicators (vintage, region, bottle price, wine points from wine competition, expert 

scores), only the points from the wine competition and the expert scores correlated significantly with 

each other (r(25) = 0.41, p < 0.05). In contrast to other research (e.g., [5]), retail price did not correlate 

with the points or the expert scores. However, this could be explained by the different study design 

between our study and the work by D’Alessandro & Pecotich [5]. In the previous study, wine 

consumers (novices and experts) tasted the wines and were then asked for the bottle price they were 

willing to pay. In contrast, in our study, the retail prices were set by the producing wineries, and our 

wine consumers tasted all wines in a blind setting and had no knowledge of or influence on the retail 

price. One could speculate that in our study retail prices would have been either accepted or dismissed 

by the consumers, based on their quality assessment if prices would have been revealed after the 
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tasting. This, however, was not the purpose of our work; we were interested in the intrinsic quality 

perception, independent of any extrinsic factors such as retail price.  

2.2. Sensory Profiling  

Wine flavor is without a doubt a very important wine quality indicator. For the elucidation of the 

differences in wine flavor among the 27 studied wines, a trained sensory panel evaluated all the wines 

as described in [25]. The panel used 27 aroma, taste and mouthfeel attributes to describe the perceived 

sensory differences among the wines. Of these attributes, 21 differed significantly among the wines 

(17 aroma terms: overall aroma, alcohol, Brett (i.e., aromas reminiscent of medicinal, leather, horse 

sweat, or barnyard, depending on the concentration and strain of the wine spoilage yeast 

Brettanomyces bruxellensis), canned vegetable, chemical, dark fruit, dried fruit, earthy, fresh green, 

fresh vegetable, oak, red fruit, smoky, soy sauce, spicy, sulfur, sweet aroma; two taste terms: sweet, 

bitter; two mouthfeel terms: astringent, hot), using analysis of variance (ANOVA) at a significance 

level of 5%. These significantly different attributes were used in a principal component analysis (PCA) 

to display the sensory differences among the 27 wines shown in Figure 1. Using the Kaiser criterion 

(i.e., all dimensions with eigenvalues above 1) and the scree test (i.e., observation of a “knee” when 

plotting the eigenvalues over the dimensions) the first two principal components (PCs) were kept, 

explaining 53% of the total variance. Wines were separated along the first principal component (PC 1), 

explaining 34% of the total variance, due to the large differences in oak and fruit compared to 

chemical and green aromas. Wines positioned on the left of the PCA score plot (Figure 1a) were rated 

high in descriptors that are associated with microbial and/or chemical spoilage (e.g., Brett, sulfur and 

chemical), and low in oak, sweet and various fruit aromas. Wines are color-coded according to the 

quality categories assigned in the wine competition (low quality, medium quality, high quality), but no 

separation due to wine quality is apparent along PC 1, as high quality wines are located next to low quality 

wines. It seems that the wine judges did not similarly score wines with very similar flavor profiles.  

Along PC 2, explaining another 19% of the total variance, mouthfeel and taste differences together 

with some aromas contribute to the separation of the wines. Wines W17, W24, W20, and W5 scored 

higher in astringency, and lowest in fruit aromas and sweet taste. Again, no separation of the wines due 

to their quality categories is apparent.  

To study if individual sensory descriptors indicate high or low quality, correlations of each sensory 

descriptor to the various quality indicators—points awarded in the wine competition (“points”), 

geographical origin of the vineyards (“regions”), wine vintage (“vintage”), retail bottle price (“price”), 

and expert liking scores (“experts”)—were carried out.  
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Figure 1. PCA of the sensory attributes that differed significantly (p < 0.05) in the 

ANOVA among the 27 wine samples. (a) Score plot showing the sensory space of the 

wines. Wines are color-coded according to their assigned quality categories based on the 

wine judgment—red for wines low in quality, (i.e., that were awarded no medal), dark 

yellow for medium quality (i.e., either a bronze or silver medal), and green for high quality 

(i.e., a gold or double gold medal). Barplots of sensory attributes for (b) the first principal 

component (PC 1), and (c) the second principal component (PC 2). Attributes that are 

significantly correlated to either one of the first two PCs are denoted with an  

asterisk (p < 0.05).  

None of the sensory descriptors correlated significantly to the points awarded at the wine 

competition, while the wine expert ratings showed significant negative correlations to the aromas of 

soysauce (r(25) = −0.55, p < 0.05), and fresh green (r(25) = −0.41, p < 0.05). This could be explained 

two-ways. In the first explanation, judges at the wine competition did not use similar sensory 

frameworks when judging the wines and/or were not consistent in their assessment of quality, while 

the wine experts showed more agreement in their judgment. This explanation is supported by the 

studies by Hodgson [26] and Gawel et al. [27]. It is also supported by the fact that no descriptive 

framework was used in the wine competition. Judges were asked to rank tasted wines according to 

their individual criteria, and no system for judges’ alignment was used. Therefore, individual 

differences in quality perception are most certainly contributing to the final points awarded to the 

wines. The second explanation could be that (high) quality is not driven by individual sensory 

descriptors, but is the result of several descriptors acting together. This would explain that only 

negative correlations were found between sensory descriptors and the expert scores—experts have a 

common understanding of low quality, but differ in their high quality assessment. In our previous  

work [25], we found that wine experts use a quality framework that combines both descriptive terms 

and more subjective, personal preferences. Although there are personal differences among the experts, 

a common baseline exists for low-quality wines. In two open-ended questions (Which attributes do you 
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associate with a high quality wine? and Which attributes do you associate with a low quality wine?), 

experts associated low wine quality with the presence of defects and flaws, such as microbial spoilage, 

presence of atypical aromas (e.g., vegetal-green) or oxidation aromas, or an unbalanced flavor profile [25]. 

It seems that the descriptors soysauce (r(25) = −0.55, p < 0.05), fresh green (r(25) = −0.41, p < 0.05), 

and overall aroma (r(25) = −0.65, p < 0.05) fall into these categories, thus, explaining their significant 

negative correlation to the expert scores. For high quality, the experts named the presence of fruit 

aroma as an important component of wine quality, therefore, it not surprising that red fruit aroma 

showed a significant positive correlation to the experts’ scores (r(25) = 0.45, p < 0.05). 

For bottle price, six sensory attributes showed significant positive correlations. Bitter taste (r(25) = 0.53, 

p < 0.05), hot mouthfeel (r(25) = 0.59, p < 0.05), astringent mouthfeel (r(25) = 0.40, p < 0.05), 

alcoholic aroma (r(25) = 0.40, p < 0.05), and Brett aroma (r(25) = 0.48, p < 0.05), all showed a 

positive correlation to bottle price. The price of a bottle of wine reflects to a certain extent the costs of 

producing this bottle. Wines that are harvested later at higher sugar levels are typically higher in 

ethanol content, and the higher ethanol leads to higher perceivable alcoholic aroma and hot mouthfeel [28]. 

Increasing sugar content in grape berries can be accomplished by reducing competition for sugar 

allocation and improving sunlight exposure, i.e., leaving fewer berry clusters on each vine, or reducing 

the leaf cover to increase sunlight exposure. All these practices increase vineyard management costs. 

Similarly, this is true for astringency and bitterness, the sensory response to polyphenols, mainly 

tannins, present in the wine [29]. Tannins in wine come from the grape berries (seed, skin, stem 

tannins), from enological tannin additions or from oak barrels, which in turn increase again the 

production costs [30]. The correlation between bottle price and Brett aroma is less intuitive to explain, 

and might be the result of the wine set used in this study. Typically, the presence of Brett aroma is 

considered at least an unwanted, if not even faulty, aroma [31]. One possible explanation could be oak 

barrels infected with Brettanomyces strains. Due to their high costs, oak barrels are typically re-used, 

difficult to properly sanitize, and provide with a porous surface, small oxygen ingress, and available 

cellobiose ideal conditions for Brettanomyces colonization [32–34], which can lead to detectable Brett 

aromas in the stored wines.  

Red fruit aroma showed a negative correlation to bottle price (r(25) = −0.42, p < 0.05) which could 

be explained by the positive correlation to alcoholic aroma and hot mouthfeel—increasing ethanol 

content has previously been shown to decrease the perception of fruity aromas [28,35]. 

Three sensory attributes correlated significantly to vintage: astringent mouthfeel (r(25) = −0.59,  

p < 0.05), overall aroma (r(25) = −0.48, p < 0.05), and chemical aroma (r(25) = −0.45, p < 0.05) 

showed a negative association with wine age. With increasing age, polyphenols responsible for 

astringency polymerize and decreased in impact [36]. Similarly, compounds that were associated with 

chemical aroma (in this study, the verbal description was the smell of ammonia and chlorinated 

swimming pool) were not detected in older wines, either because they were never present or they 

decreased over time in the bottle.  

Lastly, two sensory attributes showed significant differences among the nine geographical wine regions 

(Table 1). Sweet taste was rated significantly higher in the Lodi/Woodbridge region (r(25) = 0.47,  

p < 0.05) compared to all other regions. Looking at the average growing degree days (GDDs) the Lodi 

area shows the second highest number of GDDs, only surpassed by the most southern wine region in 

California (region G). Fresh green aroma (r(25) = 0.56, p < 0.05) was significantly higher in the coast 
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regions E and G, and the Lodi area. The significantly higher perceived sweetness in the wines from the 

Lodi/Woodbridge region could be attributed to higher residual sugar levels or to the higher GDDs. All 

wines were considered dry (less than 1 g/L fermentable sugars), but interestingly, wines from the Lodi 

region had the highest levels of ethanol (15.4% (v/v) vs. the next highest levels of 15.1% (v/v) for 

region C (Napa County, CA, USA); data not shown).  

Table 1. Mean ratings of two sensory attributes, fresh green aroma and sweet taste, differ 

significantly among the nine wine regions in California, USA. Mean ratings in the same 

column sharing a common lowercase letter are not significantly different from each other 

(p < 0.05). Mean values are calculated from two to four different wines per region and 

three sensory replicates for each wine. 

Region Region Code Fresh Green Aroma Sweet Taste 

North Coast A 1.0 c 1.7 bc 
Sonoma County B 1.3 bc 1.3 c 

Napa County C 1.0 c 1.7 bc 
Greater Bay area D 1.0 c 1.7 bc 

North Central Coast E 1.8 ab 1.8 bc 
South Central Coast F 1.3 bc 2.0 bc 

South Coast G 2.1 ab 1.7 bc 
Sierra Foothills H 1.5 b 1.7 bc 

Lodi/Woodbridge I 1.6 ab 2.7 a 

The perception of fresh green aromas (in this study the corresponding reference standards included 

herbal, fresh cut grass and minty) could be related to the viticultural practices and growing  

conditions [34]—no correlation to GDDs is apparent as region G shows the highest number of GDDs 

while region E shows the lowest number (5621 vs. 2919, see Table 6).  

2.3. Volatile Profiling  

A total of 64 volatile compounds (Table 7) were detected in the 27 wines using the described 

headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) 

method. Of these 64 volatiles, only one compound (C31, methyl hexanoate) did not differ significantly 

among the wines (p < 0.05) as determined by ANOVA. All significant correlations (p < 0.05) between 

sensory descriptors and volatile compounds are summarized in Table 2. All significantly different 

compounds were used in the PCA to obtain the volatile space of the studied wines, shown in Figure 2. 

Again, the Kaiser criterion and the scree test were used to decide how many PCs to retain. The first 

two principal components (PCs) were kept, explaining 42% of the total variance. With the exception of 

W3 all wines of high quality (awarded either a gold or double gold medal) are positioned in the middle 

of the score plot (Figure 2a), indicating volatile profiles without any extreme concentration levels. 

Along the first PC, wines on the left hand side of the score plot (W16, W12, W14) show higher levels 

in even-numbered ethyl esters with 6 to 16 C-atoms (C35, C54, C61, C63, C64) and an unidentified 

terpene (C32) compared to wines positioned on the right hand side of the score plot (e.g., W3, W13, 

W21, W25, W26). These latter wines show higher concentration levels in 35 volatiles, including 



Molecules 2015, 20 8460 

 

 

various linear and branched aliphatic alcohols (C3, C7, C12, C13, C16, C34), phenylethanol (C50), 

acetic (C5) and 3-methylbutanoic acid (C19), butyl and acetyl esters (C6, C15, C26, C45, C56, C57), 

odd-numbered and branched ethyl esters (C10, C14, C18, C22, C23, C27, C47, C53, C62), together 

with limonene (C39), barrel-derived compounds such as oak lactone, furfural, difurfuryl ether (C20, 

C28−C30, C58−C59), aldehydes (C2, C43, C49), and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-

furanone C44). It seems that at least two underlying phenomena contribute to this separation:  

(i) some of these compounds are related to ageing and/or oxidation reactions [37–39], e.g., ethyl-3-

methyl butanoate (C23), diethyl succinate (C53), acetic acid (C5), and phenylethanol (C50) were 

reported to increase with increasing wine age, while various acetates, such as isoamyl acetate  

(3-methylbutyl acetate C25) decrease over time. 

(ii) wines were also separated by the presence of barrel-derived compounds, such as furfural (C20), 

and oak lactone (C58, C59). Depending on the type and how much new oak barrels were used in the 

production of the wines, the concentration in these volatiles can vary significantly [40]. This is further 

substantiated by significant correlations to the oak aroma descriptor for (Z)- and (E)-oak lactone (C58, 

C59), and butyrolactone (C30) (Table 2).  
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Figure 2. PCA of the volatile compounds that differed significantly among the 27 wines  

(p < 0.05). (a) Score plot showing the volatile space of the wines. Wines are color-coded 

according to their assigned quality categories based on the wine judgment—red for wines 

low in quality, (i.e., that were awarded no medal), dark yellow for medium quality (i.e., 

either a bronze or silver medal), and green for high quality (i.e., a gold or double gold 

medal). Barplots of volatile compounds that contributed significantly (p < 0.05) to the 

separation (b) along the first principal component (PC 1), and (c) along the second 

principal component (PC 2). 
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Along the second dimension PC 2, explaining an additional 10% of the total variance, wines are 

separated by their varying levels in 18 volatiles—positively correlated are hexanoic and octanoic acid 

(C33, C51), linear aliphatic alcohols (C3, C24, C34), ethyl hexanoate (C41), furfural (C20), and SO2 

(C1), while various ethyl esters (C6, C17, C21-C23, C53, C64), p-cymene (C38) and 4-ethylphenol 

(C52) are negatively correlated to PC 2. Besides a separation due to different wine age, expressed by 

the various acids, alcohols and esters, another phenomenon is apparent—whether the wine was 

affected by Brettanomyces bruxellensis, a spoilage yeast that is able to produce potent aroma 

compounds such as 4-ethylphenol, leading to typical “Brett” character, also described as barnyard, 

horse sweat, and leather, depending on the concentration levels and ratios of the involved  

compounds [41,42]. The levels of 4-ethylphenol measured in the wines were high enough for the 

trained panel to quantify, leading to a significant correlation between Brett aroma and 4-ethylphenol 

concentrations (Table 2). Another significant correlation between the sensory descriptor “Brett” was 

found for ethyl hexanoate (Table 2). Although not a major contributor to the typical Brett characters, 

ethyl hexanoate was reported to be produced by various Brettanomyces strains in wine [43].  

Correlating the volatile compounds to the sensory attributes led to several significant relationships 

(Table 2): The two branched esters ethyl-2 and ethyl-3 methyl butanoate correlated significantly to 

overall aroma. The volatiles acetic acid (C5), ethyl acetate (C6), the branched alcohols C7, C12, and 

C13, the esters C15, C10, and C23, as well as 2-phenylethyl alcohol (C50), 2-phenylethyl acetate 

(C57), and phenylacetaldehyde (C43) correlated all positively to alcohol aroma. For canned vegetable 

aroma, two of three ethyl esters—ethyl pentanoate (C27) and ethyl heptanoate (C47)—showed a 

negative correlation (Table 2), indicating the absence of these compounds in wines that show high 

levels of canned vegetal aroma. On the other hand, ethyl-2-hexenoate (C42) was positively correlated 

to that sensory attribute (Table 2). Similarly for fresh green aroma, which showed a positive 

correlation to ethyl-2-hexenoate (C42), and negative correlations to the ethyl esters ethyl-9-decenoate 

(C60) and ethyl heptanoate (C47), as well as to limonene (C39) (Table 2). In the past, masking effects 

have been shown for fruity and green-vegetal attributes and compounds that are associated with these 

descriptors, such as β-damascenone and 2-methoxy-3-(2-methylpropyl)pyrazine (MIBP) [44,45].  

Dark fruit aroma showed significant positive correlations to the ethyl and acetyl esters C9, C11, 

C27, C47, and C53 (Table 2). For red fruit aroma ethyl decanoate (C61) contributed positively while 

for 4-ethyl phenol (C52) a negative correlation was found. All these correlations are in agreement to 

previous studies that found that various linear and branched ethyl esters contribute to red and black 

berry aroma [39,44,46], and that high levels of 4-ethylphenol have a masking effect on fruit aroma 

perception [47].  

For sweet aroma, described by the panel as honey, caramel, and chocolate, acetaldehyde (C5), 

various ethyl and acetyl esters (C6, C10, C27), as well as butyrolactone (C30) and acetoin (C9) all 

correlated positively, while a negative correlation between ethyl hexanoate (C41) and sweet aroma was 

found (Table 2). Similarly for spicy aroma, for which ground clove, cinnamon, nutmeg and ginger 

were used as reference standard in the DA: besides various linear and branched esters (C6, C9, C10, 

C14, C27, C56), furfural (C20), acetaldehyde (C2), phenyl acetaldehyde (C43), mesifuran (C44) and 

(E)-oak lactone (C59) all showed a positive correlation to spicy aroma. Again, ethyl hexanoate (C41) 

correlated negatively with spicy aroma (Table 2).  
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Table 2. Significant correlations (Pearson’s product-moment correlation coefficient r with df = 25, p < 0.05) between the volatile compounds 

and attributes from the DA.  

Code Overall Aroma Alcohol Brett Canned Veggie Fresh Green Dark Fruit Red Fruit Dried Fruit Sweet Aroma Spice Chemical Earthy Smoky Soy Sauce Sulfur Oak Astringent 

C2 0.39 0.46  

C5 0.42  

C6 0.58 0.48 0.47  

C7 0.52  

C8  

C9 0.41 0.62 0.4 −0.49  

C10 0.49 0.49 0.44 0.6  

C11 0.46 0.51 −0.52 −0.39  

C12 0.51  

C13 0.47  

C14 0.39  0.6 

C15 0.59  

C16 0.48  

C18 −0.41  

C20 0.45  

C22 0.42 0.51  0.61 

C23 0.38 0.45 0.5  0.56 

C24  −0.49 

C27 −0.40 0.59 0.62 0.44 0.46 −0.41  

C28 0.48  

C30 0.43 0.41 0.41 0.60

C35 −0.58  −0.51 

C39 −0.41  

C40 0.52  

C41 0.47 −0.44  

C42 0.44 0.46  



Molecules 2015, 20 8463 

 

 

Table 2. Cont. 

Code Overall Aroma Alcohol Brett Canned Veggie Fresh Green Dark Fruit Red Fruit Dried Fruit Sweet Aroma Spice Chemical Earthy Smoky Soy Sauce Sulfur Oak Astringent 

C43 0.43 0.4 0.42  

C44 0.45  

C45 0.4  

C47 −0.39 −0.75 0.55 0.49  

C49  0.61 

C50 0.47 −0.5  

C52 0.71 0.39 0.46  

C53 0.45 0.44  0.49 

C54 −0.55  

C55 0.44  

C56 0.41 0.42  

C57 0.57  

C58                0.47  

C59 0.49 0.45 0.45 0.63 

C60 −0.39  

C61 0.47 −0.61  

C64 −0.48  
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Dried fruit aroma correlated positively to known ageing compounds such as diethyl succinate (C53), to 

oak-derived compounds such as oak lactone (C59) and butyrolactone (C30), to 2,3-butanediol (C16), 

and to various esters (C47, C27, C11, C10) (Table 2). 

For chemical aroma, some higher esters showed a positive correlation (C56, C23, C22), while ethyl 

lactate (C18), and propyl acetate (C11) were significantly negatively correlated with the perceived 

chemical aroma impression.  

4-Ethylphenol (4-EP, C52) played also a significant role in the perception of earthy aroma and 

smoky aroma (Table 2). For the latter aroma attribute, butyrolactone (C30), and difurfuryl ether (C28) 

correlated significantly as well (Table 2).  

The impression of soy sauce was positively correlated to E-oak lactone (C59), octyl acetate (C55), 

isoamyl lactate (C45), phenylacetaldehyde (C43), and eucalyptol (C40). Negative correlations were 

found for higher ethyl esters with 8, 10 or 16 C-atoms (C54, C61, C64) (Table 2).  

Sulfur aroma, as described by the panel as “burnt rubber or rotten egg”, showed mostly negative 

correlations to short-chain esters (C27, C11, C9) (Table 2), however, the most likely responsible 

volatile compounds for these aromas are low molecular sulfur compounds (e.g., sulfides and thiols) [48], 

which were not detected by the used HS-SPME-GC-MS method.  

Although astringency is a mouthfeel sensation, elucidated by non-volatile polyphenols, some 

significant correlations to some volatile compounds were found (Table 2): Positive relationships were 

found for diethyl succinate (C53), nonanal (C49), and the branched ethyl esters C14, C22, and C23. San 

Juan et al. [47] reported that more expensive wines show higher concentrations of wood-related 

compounds and branched ethyl esters, but did not assess the astringency of their wines. Negative 

correlations to astringency were found for ethyl hexanoate (C41) and 1-hexanol (C24), similarly to [49]. 

The significant correlations between astringent mouthfeel and certain volatile compounds are strictly 

mathematical; in order to determine if there is a causal relationship between these parameters, this 

aspect has to be studied in future work.  

All five quality indicators—judgment points, expert scores, bottle price, vintage, region—showed 

significant correlations to individual volatile compounds, which are summarized in Table 3.  

Of all volatiles, only one single compound correlated significantly to the awarded points—limonene 

correlated negatively to awarded points (Table 3). For the wine expert scores, all significant 

correlations were negative; with increased levels of 1-butanol (C8), ethyl-2-methyl butanoate (C22), 

ethyl-3-methyl butanoate (C23), eucalyptol (C40), or 4-ethyl phenol (C52) wine experts scored the 

wines lower in quality (Table 3). This is in agreement with the correlations to the sensory  

attributes—experts agree more on low quality indicators, such as the presence of microbial spoilage 

(e.g., Brettanomyces bruxellensis) [31] or vegetal-green aromas [25]. Eucalyptol has been described as 

a major contributor to mint-like aromas [44]. 

Retail bottle price correlated positively (Table 3) to linear and branched ethyl esters (C6, C10, C14, 

C17, C55), as well as 2-methylpropyl acetate (C15), compounds that were found in higher 

concentrations in more expensive red wines in a previous study [47]. In the same study, wood-related 

compounds such as difurfuryl ether and oak lactone were present at higher levels in more expensive 

wines, an observation that is confirmed by our findings (Table 3): wood-derived compounds C28, C29, 

C58, and C59 all correlated positively to bottle price. Additional positive correlations between price 

and concentration levels were found for 4-ethyl phenol (C52), phenylacetaldehyde (C43), acetic acid 
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(C5), p-cymene (C38), and nonanal (C49), similar to reports by San Juan et al. [47] for the former two 

compounds, while the latter three were reported to increase with storage temperature [23,50].  

Table 3. Volatile compounds that showed significant correlations to the five quality 

proxies (Pearson’s product correlation coefficient r with df = 25, p < 0.05).  

Code Points Expert Price Vintage Regions

C5 0.42 
C6 0.62 
C8 −0.56 0.49 
C9 0.51 

C10 0.46 
C14 0.48 −0.66 
C15 0.41 
C17 0.49 −0.53 
C20 0.4 
C22 −0.43 −0.86 
C23 −0.43 −0.81 0.41 
C24 0.4 
C27 −0.42 
C28 0.45 
C29 0.49 
C36 0.38 
C38 0.39 −0.49 
C39 −0.4 
C40 −0.47 −0.41 
C41 0.4 
C43 0.57 
C48 −0.44 
C49 0.49 
C50 −0.45 
C52 −0.47 0.77 
C53 0.53 
C56 −0.42 0.49 
C58 0.72 
C59 0.42 
C62 −0.49 
C64 −0.38 

The linear and branched ethyl and acetyl esters are known to contribute to the fresh, fruity and floral 

aromas in red wines (e.g., [51]), hence a significant negative correlation to vintage was observed for 

volatiles C14, C17, C22, C23, C27, C48, C56, and C62 (Table 3). A negative correlation to vintage 

was also found for phenylethanol (C50), similar to the report of higher levels of this compound in 

young red wines from Australia [51]. The fate of eucalyptol during wine storage is not fully 

understood, one study [52] reports that eucalyptol levels in model wine remain unchanged after two 

years under wine-like conditions, but the same study showed that wines from the same vineyard had 
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lower eucalyptol levels for older vintages (up to 10 years old). This latter trend is suggested by our 

findings of a negative correlation to wine age for eucalyptol (C40). Three C6 compounds, namely  

1-hexanol (C24), ethyl hexanoate (C35) and hexyl acetate (C36) all show a positive correlation with 

vintage (Table 3).  

For seven volatiles, namely, 1-butanol (C8), acetoin (C9), furfural (C20), ethyl-3-methyl butanoate 

(C23), p-cymene (C38), isopentyl hexanoate (C56), and ethyl hexadecanoate (C64), significant 

regional differences were found (Tables 3 and 4). However, ester content is heavily influenced during 

winemaking by the starting grape material (e.g., sugar levels, nitrogen content) and yeast strains [47,53]. 

Furfural is an aging-related compound [47], while p-cymene was reported after heated acid hydrolysis 

of grape-derived precursors [50]. It seems that these correlations are more a result of the different 

winemaking regimes exercised by the different wineries in the different regions. Only if all other 

parameters (winemaking, grape-growing, storage, etc.) are properly controlled could differences in 

volatile composition be attributed to different geographical regions.  

Table 4. Mean concentrations in seven volatile compounds differed significantly among 

the nine wine regions in California, USA. Mean concentrations in the same column sharing 

a common lowercase letter are not significantly different from each other (p < 0.05). Mean 

values are calculated from two to four different wines per regions and three bottle 

replicates for each wine. 

Region Region Code C8 (μg/L) C9 (μg/L) C20 (μg/L) C23 (μg/L) C38 (μg/L) C56 (μg/L) C64 (μg/L)

North Coast A 835.3 b 255.1 abc 76.8 b 12.2 bc 1.66 a 926.9 cd 381.6 ab 

Sonoma County B 1113.0 ab n.d. b 157.2 b 12.2 bc 1.26 ab 1659.0 bc 421.1 a 

Napa County C 1268.0 ab 85.7 b 194.4 b 17.7 abc 1.68 a 1956.0 bc 133.9 c 

Greater Bay area D 1372.0 a 294.8 ab 294.0 ab 20.6 ab 0.94 b 2256.0 ab 133.8 c 

North Central Coast E 1013.0 ab 310.2 b 110.1 b 5.9 c 1.07 ab n.d. d 288.7 abc 

South Central Coast F 1243.0 ab 407.9 b 189.4 b 10.1 c 0.97 b 1905.0 bc 215.9 bc 

South Coast G 1551.0 a 728.7 ab 367.7 ab 17.1 abc 0.83 b 2086.0 ab 133.8 c 

Sierra Foothills  H 1380.0 a 408.5 b 163.8 b 26.0 a 1.16 ab 2457.0 ab 262.3 abc 

Lodi/Woodbridge  I 1429.0 a 957.5 a 645.2 a 24.6 a 0.85 b 3301.0 a 116.3 c 

2.4. Elemental Profiling  

A total of 54 elements (Table 8) in the mass range from 9–232 m/z were detected in the 27 wines 

using the described inductively-coupled plasma-mass spectrometry (ICP-MS) method. An additional 

six elements (Ca, K, Mg, Na, Rb, Sr) were measured with the described microwave-plasma-atomic 

emission spectrometry (MP-AES) method due to their high concentration levels in the wines (Table 9). 

Of these 60 elements, all differed significantly among the wines (p < 0.05) in the ANOVA, and were 

used in the PCA to obtain the elemental space of the studied wines, shown in Figure 3. Applying the 

Kaiser criterion and the scree test, the first two principal components (PCs) were kept, explaining 48% 

of the total variance. One wine (W10) showed very high concentrations of various rare earth elements 

(REEs), leading to a strong separation in the PCA between W10 and all other wines (Figure 3b). 

Therefore, another PCA without W10 was conducted, leading to the samples separation shown in 

Figure 3a. Excluding W10, the PCA explained 35% of the total variance in the first two dimensions, 
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which were the dimensions retained due to the Kaiser criterion and scree test. In Figure 3c,d, all 

elements that correlated significantly along PC1 or PC 2 are displayed (p < 0.05). Along the first 

principal component (PC 1), wines are separated based on their levels in the REEs, Be, Tl, Cs, W, Al, 

Th, Ti and Rb on the right hand side of the plot vs. their concentration in B, Pd, Se and Re on the left 

hand side. Along the second dimension (PC 2), wines are separated based on their levels in Ti, Fe, P, 

Cd, Zn, Lu and Mo (bottom side of plot) vs. their content in Rh, Au, Ta, Nb, Ir, Pd, Zr, Hf, Ag, Th, and 

Pt (top side of plot). Although REEs were reported to be so called “natural elements” [54], present in 

the soil and taken up by the plant from the soil, several studies have shown that the REE content in wine 

can be dramatically increased by winemaking practices, such as filtration through silica, cellulose and 

bed filters [55], and clarification with bentonite [55–57], as well as during storage [55]. Based on these 

reports, we believe that wines W10 and to a lesser extent W16 were either filtered and/or clarified, 

leading to the dramatic increase in rare earth elements. Many elements can undergo changes in 

concentration during winegrowing and winemaking, including Rb, Ti, Al, W, Tl, and Be, as summarized 

in [21], while the same elements as well as Se, Cs, and the REEs have been applied in geographical 

classifications of wines all around the world [7–20]. It seems that the separation among the 27 wines is 

the combined “fingerprint” of geographical origin, viticulture, enology and storage conditions.  
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Figure 3. PCA of the elements that differed significantly among the 27 wines. (a) Score 

plot showing the elemental space of the wines, excluding wine W10. (b) Score plot 

showing the elemental space of all the wines, including wine W10. Wines are color-coded 

according to their assigned quality categories based on the wine judgment—red for wines 

low in quality, (i.e., that were awarded no medal), dark yellow for medium quality (i.e., 

either a bronze or silver medal), and green for high quality (i.e., a gold or double gold 

medal). Barplots of elements that contributed significantly (p < 0.05) to the separation of 

all wines but W10 (c) along the first principal component (PC 1), and (d) along the second 

principal component (PC 2).  
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In a second step, elemental content of the wines were correlated to the various wine quality proxies 

to study potential elemental markers for wine quality. For the points awarded in the wine competition, 

only Hf showed a significant, negative correlation (r(25) = −0.41, p < 0.05). Bentonite, used in grape 

must clarification was reported as one source of Hf, which increased from below detection limit  

(<0.75 μg/L) to 1.5 μg/L [56].  

For the expert scores, three elements all correlated positively, namely, the lighter rare earth element 

Eu (r(25) = 0.41, p < 0.05), Ba (r(25) = 0.44, p < 0.05), and Ga (r(25) = 0.41, p < 0.05). 

No correlation to vintage was found for any of the detected elements, most likely due to the fact that 

there are no known universal elemental changes in wines over time, but rather elemental changes are 

depending on the individual elemental fingerprint.  

Selenium (r(25) = −0.41, p < 0.05) and Cr (r(25) = −0.39, p < 0.05) both correlated negatively to 

retail price. While Cr was reported to be introduced into wine through the use of stainless steel 

equipment, Se was included in the classification of wines from different regions in New Zealand [14], 

Germany [11], South Africa [16], Australia [7], and Canada [9]. However, the correlation of these 

elements to retail price is most likely not causal. 

Finally, six elements showed significant differences among the nine wine regions, thus showing a 

significant correlation to region, namely, Ba (r(25) = −0.62, p < 0.05), Be (r(25) = −0.52, p < 0.05), Ca 

(r(25) = 0.46, p < 0.05), Eu (r(25) = −0.43, p < 0.05), Ga (r(25) = −0.61, p < 0.05), and Pb (r(25) = 0.40,  

p < 0.05). Table 5 summarizes the regional differences in these six elements. Highest Ba levels were 

found for the wines from the North Coast region, while in the more southern coastal regions (E–G), 

and in the Sierra Foothills and Lodi/Woodbridge, the Ba concentrations were the lowest. For Ca, the 

lowest levels were found in Napa County while highest levels were found in the wines from the North 

Central Coast. Both Ba and Ca elements have been used in studies for the determination of 

geographical origin [7–20]. Calcium is present in the mg/L range in wine, and moderate wine 

consumption can be considered an important nutritional source for this element. Its source in wines can 

be both endo- and exogenous [58] Ca is an important element for the regulation of yeast metabolism 

during fermentation, it can be added as its salt form either as calcium carbonate or calcium sulfate to 

regulate the acidity of grape must, but is also present in vineyard soil [59], partly also due to the use of 

Ca-containing agrochemicals [58].  

In contrast, Ba—present in wines between 0.01 and 0.48 mg/L [58]—was shown to differ in closely 

located vineyards, and was not significantly affected by winemaking [21]; thus, Ba differences among 

the regions could be the result of geographical differences.  

Significantly higher Be levels compared to all other regions were found in the wines from the North 

Coast; Be was used in the classification of Canadian [8], and German wines [12], and together with Eu 

and Ga was not affected by winemaking in different wineries, but only due to vineyard location [21]. 

Both Eu and Ga ranked similarly across the different regions, except for Napa County, where Eu was 

significantly lower compared to the other regions, and Ga was significantly higher. It appears that 

some of these elemental differences could be related to the different geographical origins, however, for 

validating that these correlations could indeed be causal further work is needed.  
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Table 5. Mean concentrations of six elements show significant concentration differences 

among the nine wine regions in California, USA. Mean concentrations in the same column 

sharing a common lowercase letter are not significantly different (p < 0.05). Mean values 

are calculated from two to four different wines per regions and two bottle replicates for 

each wine.  

Region Region Code Ba(μg/L) Be (μg/L) Ca (μg/L) Eu (μg/L) Ga(μg/L) Pb (μg/L) 

North Coast A 518.1 a 0.4437 a 49575 ab 0.0507 a 28.45 a 3.841 ab 

Sonoma County B 358.6 abc 0.2087 ab 51803 ab 0.0210 ab 17.84 ab 1.960 b 

Napa County C 489.9 ab 0.1498 b 46509 b 0.0187 b 27.14 a 3.365 ab 

Greater Bay area D 343.1 abc 0.1177 b 53455 ab 0.0257 ab 17.97 ab 4.294 ab 

North Central Coast E 221.4 c 0.2690 ab 72253 a 0.0155 b 11.15 b 2.473 ab 

South Central Coast F 204.0 c 0.0753 b 59701 ab 0.0098 b 10.53 b 3.680 ab 

South Coast G 284.5 bc 0.1083 b 65295 ab 0.0153 b 14.97 b 6.798 a 

Sierra Foothills H 205.3 c 0.0700 b 61273 ab 0.0148 b 10.39 b 5.245 ab 

Lodi/Woodbridge I 243.2 c 0.1115 b 69804 ab 0.0160 b 13.22 b 5.183 ab 

Lastly, lead levels differed across the regions, with highest levels in wines from the South Coast, 

and lowest in wines from Sonoma County—a more than three-fold difference. Lead is the only 

element in this group with a regulated maximum concentration limit in wine—150 μg/L in wines 

harvested in 2007 or later [60]. The origin of Pb in wine is due to environmental and wine  

production-related factors: first, Pb is present in soils, the atmosphere and the environment due to the 

prior use of leaded gasoline, but also industrial operations (e.g., mining and smelting) nearby [61], thus 

contributing about a third of the total lead content in finished wine, according to Almeida & 

Vasconcelos [62]. The same authors report that the majority of lead is introduced into wine during 

enological processes, more than tripling its initial lead content (4.1 μg/L) to 13.1 μg/L in finished red 

table wine. The use of lead as a welding alloy and in small fittings on tubes and containers were 

identified as the major sources. Based on this work we speculate that the significant higher Pb levels in 

wines from the South Coast may be the result of older winery equipment.  

3. Experimental Section  

3.1. Wine Samples 

All wines used in this study are described in [25]. In summary, 27 different commercial Californian 

Cabernet Sauvignon wines (vintages 2001–2011; retail prices $9.99–$70) were selected based on their 

performance in the 2012 California State Fair Wine Competition (Table 6). The selected 27 wines 

were classified into 3 quality categories, based on their performance in the competition, with about a 

third of these wines (7 out of 27) deemed high in quality (i.e., awarded either a Gold or a Double Gold 

medal), 11 wines considered to be of medium quality (i.e., awarded either a Silver or a Bronze medal), 

and the remaining nine wines not receiving any medals, thus, were assigned to the low quality group. 

Two cases (= 24 bottles) of each wine were obtained, and used for all analyses. Wines were stored 

upright in the dark at 15 °C until use. All analyses were conducted within six months to each other to 

ensure comparability of the obtained results.  
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Table 6. Information about the 27 wines included in this study, including the various 

quality indicators—points awarded during the wine competition, assigned quality category, 

region, vintage, retail price, and wine expert ratings determined in this study. 

Code Vintage Region a GDD b Points Quality Category c EtOH (v/v %) Closure Retail Price Expert Ratings 

W1 2008 G 5621 82 low 14.3 synthetic $26.95 49 

W2 2009 B 3606 89 medium 14.9 natural $39.00 70 

W3 2009 I 4015 95 high 14.4 natural $21.00 73 

W4 2008 G 5621 90 medium 14.7 natural $34.00 65 

W5 2006 H 3612 83 low 13.9 natural $15.00 51 

W6 2009 C 3649 90 medium 14.5 natural $55.00 97 

W7 2010 H 3612 86 medium 14.6 natural $25.00 95 

W8 2008 C 3649 98 high 14.8 natural $47.00 101 

W9 2009 D 3786 94 high 14.5 natural $25.00 94 

W10 2009 A 3380 94 high 13.5 natural $9.99 100 

W11 2007 A 3380 82 low 14.2 natural $38.00 68 

W12 2009 F 3645 89 medium 13.5 screw cap $15.00 88 

W13 2007 D 3786 88 medium 14.8 natural $34.00 66 

W14 2008 B 3606 84 low 14.1 natural $45.00 65 

W15 2009 I 4015 89 medium 14.9 natural $24.99 65 

W16 2011 E 2919 82 low 13.5 synthetic $10.00 77 

W17 2009 F 3645 95 high 14.7 natural $19.99 93 

W18 2007 G 5621 98 high 14.5 natural $70.00 66 

W19 2010 F 3645 87 medium 13.5 screw cap $22.00 80 

W20 2010 B 3606 94 high 14.5 natural $19.99 91 

W21 2007 H 3612 83 low 13.7 natural $29.00 95 

W22 2010 F 3645 83 low 13.8 natural $13.00 81 

W23 2010 E 2919 89 medium 14.5 natural $14.00 82 

W24 2009 A 3380 88 medium 14.4 natural $28.00 80 

W25 2008 D 3786 82 low 14.7 natural $32.00 59 

W26 2009 C 3649 83 low 14.6 natural $59.00 66 

W27 2001 H 3612 92 medium 13.5 natural $45.00 51 
a regions as defined in the California State Fair Wine Competition: A—North Coast; B—Sonoma County,  

C—Napa County, D—Greater Bay Area, E—North Central Coast, F—South Central Coast, G—South Coast,  

H—Sierra Foothills, I—Lodi/Woodbridge Grape Commission. b growing degree days as defined as “… a day 

on which the mean daily temperature is one degree above the base temperature-minimum temperature 

required for growth of a particular crop.” For grape, the base temperature is 50 °F/10 °C; data is given for the 

annual average and was extracted from the Western Regional Climate Center [63] for selected weather 

stations in each wine region (Lakeport for region A, Sonoma for region B, St. Helena for region C, 

Livermore for region D, Carmel Valley for region E, Paso Robles for region F, Hemet for region G, 

Placerville for region H, Lodi for region I). c quality categories were assigned by the authors based on the 

medals awarded in the wine competition. Wines were assigned to the low quality category when they did not 

receive any medals (<85 points), wines with bronze or silver medals were assigned to the medium quality 

category (85–93 points), and wines with either a gold or double gold medal were assigned to the high quality 

category (>94 points). 
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3.2. Chemicals 

For the reference standards in the descriptive analysis (DA), food materials were used, as described 

in detail in [25]. Model wine (12% aqueous ethanol (v/v) (200 proof, GoldShield, Hayward, CA, 

USA), 5 g/L potassium bitartrate (Fisher Scientific, Pittsburgh, PA, USA), pH 3.3 adjusted with 

hydrochloric acid (Fisher Scientific) [64]), was used for the standard measurements in the volatile profiling.  

Ultrapure concentrated nitric acid was obtained from Fisher Scientific and JT Baker (Center Valley, 

PA, USA). Ultrapure water (18 MΩ·cm, EMD Millipore Bellerica, MA, USA) and 200 proof ethanol 

(GoldShield) were used for the elemental calibration standards. Multielement calibration standards and 

the internal standard mix for the ICP-MS analyses, and Rb single-element standard for the MP-AES 

analyses were purchased from SPEX CertiPrep (Metuchen, NJ, USA). Other single-element calibration 

standards for MP-AES were obtained from VHG labs (Ca, K, Mg, Na; Manchester, NH, USA). The 

ionization buffer solution (100,000 mg/L Cs) was from Agilent Technologies (Santa Clara, CA, USA). 

All volatile compounds except those described below were purchased from Sigma-Aldrich (St. Louis, 

MO, USA; purity > 90%), as were acetaldehyde (natural 50% solution in ethanol), and sodium 

chloride. Ethyl-2-methylbutyrate (SAFISIS, Soustons, France), linalool (Alfa Aesar, Ward Hill, MA, 

USA), acetic acid (EMD, Merck, Darmstadt, Germany), 2-methylbutanoic acid (TCI America, 

Portland, OR, USA), hexanoic acid (Thermo Fisher Scientific, Geel, Belgium), and propionic acid (MP 

Biomedicals, Solon, OH, USA), all with a purity of >90%, were purchased from their respective producers.  

3.3. Volatile Profiling Method 

The volatile profiles of the wines were assessed using an automated headspace Solid Phase 

Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) method, similarly to 

the methods described in [23,65]. A 2 cm mixed-phase SPME fiber (50/30 μm DVB/Carboxen/PDMS; 

Supelco, St. Louis, MO, USA) was employed for extraction and concentration of the volatile 

compounds. Five milliliters of wine, 2.0 ± 0.1 g of sodium chloride (Fisher Scientific), and 10 μL  

2-undecanone [51.3 mg/L] as internal standard (IS) were placed in amber HS glass crimp vials (20 mL, 

Agilent Technologies, Santa Clara, CA, USA), and closed with a magnetic crimp cap (Supelco). 

Volatiles were extracted at 40 °C for 30 min and 250 rpm agitation (5 min incubation prior to 

extraction with 500 rpm agitation) with an autosampler (MPS2; Gerstel US, Linthicum Heights, MD, 

USA), and thermally desorbed for 16 min at 270 °C in the hot inlet equipped with a narrow diameter 

SPME inlet liner (Supelco). Each wine was prepared and analyzed in triplicate. Six different wines 

were analyzed per day, with each sample coming from a separate bottle. Replicate samples were 

spread through the analysis within the analysis day to control for potential sample aging while sitting 

on the autosampler. 

An Agilent 7890A GC with a 5972C MS was used to separate and detect the extracted compounds, 

using an HP-5msUI column (30 m × 0.25 mm × 1 μm; Agilent Technologies), and an oven program as 

follows: 30 °C for 2 min, ramped with 5 °C/min to 180 °C, followed by a 20 °C/min ramp to 280 °C, 

with a final hold for 15 min. Separation was achieved using a constant Helium carrier gas flow 

(99.99% purity; Airgas, Sacramento, CA, USA) of 1 mL/min in split mode (20:1). Compounds were 

detected in the MS (MS source 240 °C, MS quadrupole 150 °C, MS transfer line 280 °C) using 
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electron impact ionization (EI), in simultaneous selected ion monitoring (SIM) and Scan mode, 

providing both untargeted and targeted profiling [65]. In scan mode the MS scanned between 35 and 

350 amu with 2.9 scans/sec, while in each of the 37 consecutive SIM windows between two and seven 

ions were detected with 45 of 50 ms dwell time for each ion.  

Detected compounds were analyzed and areas were integrated in MSD Chemstation (version 

E.02.02, Agilent Technologies). Compounds were identified by matching their linear retention indices 

(RIs), calculated as described in [66] and mass spectra to pure standards, if available, and to mass 

spectral libraries (NIST/EPA/NIH Mass Spectral Library NIST 05). Identified compounds are listed in 

Table 7. Relative compound concentrations were calculated assuming a response factor of 1 between 

the compound and the internal standard (IS).  

Table 7. Volatile compounds detected and quantified in this study. Shown are the mode of 

detection, as well as the calculated linear retention indices (RI) measured on a HP-5 ms 

column, the concentration ranges (minimum and maximum) expressed as μg internal 

standard equivalents (ISE) per liter wine, and the Fisher’s least significant different (LSD) 

concentrations (FDR < 0.05). 

Code Compound Detection a RI b 
Min 

(μg/L) 
Max 

(μg/L) 
LSD 

(μg/L) 

C1 sulfur dioxide c m/z 64 510 n.d. d 1005 156 
C2 acetaldehyde SIM 516 n.d. d 5.70 0.820 
C3 1-propanol SIM 572 n.d. d 5.33 0.713 
C4 2,3-butandione SIM 591 n.d. d 22.6 0.653 
C5 acetic acid m/z 60 593 533 3720 726 
C6 ethyl acetate SIM 611 309 903 113 
C7 2-methyl-1-propanol SIM 621 17.2 55.7 6.37 
C8 1-butanol SIM 653 708 2055 308 
C9 acetoin SIM 695 n.d. d 1427 214 

C10 ethyl propanoate SIM 700 3.13 8.57 0.628 
C11 n-propyl acetate SIM 703 0.470 2.00 0.166 
C12 3-methyl-1-butanol SIM 725 195 447 51.0 
C13 2-methyl-1-butanol SIM 729 75.40 241 25.0 
C14 ethyl 2-methylpropanoate SIM 753 3.77 32.1 1.52 
C15 2-methylpropyl acetate SIM 769 1.57 6.30 0.379 
C16 2,3-butandiol SIM 772 n.d. d 1732 726 
C17 ethyl butanoate SIM 800 12.10 27.30 1.72 
C18 ethyl lactate m/z 45 813 2974 16158 2019 
C19 3-methylbutanoic acid m/z 60 830 n.d. d 184 24.2 
C20 furfural m/z 95 832 n.d. d 1079 45.7 
C21 ethyl (E)-2-butenoate SIM 843 333 1234 72.6 
C22 ethyl 2-methylbutanoate SIM 850 1.83 32.8 1.01 
C23 ethyl 3-methylbutanoate SIM 853 3.13 37.7 1.36 
C24 1-hexanol SIM 867 10.0 62.5 6.19 
C25 3-methylbutyl acetate SIM 875 14.4 49.7 3.40 
C26 2-methylbutyl acetate SIM 878 1.87 5.50 0.335 
C27 ethyl pentanoate SIM 899 254 1381 65.2 
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Table 7. Cont. 

Code Compound Detection a RI b 
Min 

(μg/L) 
Max 

(μg/L) 
LSD 

(μg/L) 

C28 difurfuryl Ether c m/z 81 901 n.d. d 4485 294 
C29 difurfuryl Ether c SIM 901 n.d. d 824 54.6 
C30 butyrolactone SIM 911 n.d. d 361 115 
C31 methyl hexanoate SIM 924 n.d. d 592 226 
C32 unidentified terpene c SIM 942 n.d. d 133 14.3 
C33 hexanoic Acid m/z 60 966 75.4 344 70.1 
C34 1-heptanol SIM 968 n.d. d 1861 295 
C35 ethyl hexanoate SIM 997 124 300 16.0 
C36 n-hexyl acetate SIM 1010 1.47 10.4 0.403 
C37 2-ethoxy-2-(2-furyl)ethanol c SIM 1024 n.d. d 347 13.7 
C38 p-cymene SIM 1032 0.530 2.13 0.372 
C39 limonene SIM 1037 n.d. d 5.33 0.764 
C40 eucalyptol SIM 1041 n.d. d 632 39.9 
C41 ethyl hexanoate m/z 97 1042 33.8 202 11.5 
C42 ethyl 2-hexenoate c SIM  1042 n.d. d 3.67 0.246 
C43 phenylacetaldehyde SIM 1050 0.97 2.57 0.579 
C44 2,5-dimethyl-4-methoxy-3(2H)-furanone SIM 1061 n.d. d 1357 123 
C45 isoamyl lactate c SIM 1070 1.03 4.17 0.662 
C46 (Z)-linalool oxide SIM 1079 n.d. d 401 12.5 
C47 ethyl heptanoate SIM 1095 1.03 6.13 0.210 
C48 linalyl acetate SIM 1100 n.d. d 854 68.8 
C49 nonanal SIM 1104 n.d. d 852 257 
C50 phenethyl alcohol SIM 1121 44.6 206 42.84 
C51 octanoic Acid m/z 60 1159 n.d. d 382 94.3 
C52 4-ethylphenol SIM 1167 n.d. d 15117 3795 
C53 diethyl succinate SIM 1175 227 930 151 
C54 ethyl octanoate SIM 1194 303 855 40.0 
C55 n-octyl acetate SIM 1208 n.d. d 1437 67.3 
C56 isopentyl hexanoate c SIM 1250 n.d. d 3944 458 
C57 2-phenethyl acetate SIM 1264 1.80 5.70 1.10 
C58 (Z)-oaklactone m/z 99 1300 130 2031 315 
C59 (E)-oaklactone SIM 1337 n.d. d 4084 417 
C60 ethyl 9-decenoate SIM 1388 n.d. d 3898 171 
C61 ethyl decanoate SIM 1394 26.2 157 14.3 
C62 ethyl 3-methylbutyl succinate c SIM 1430 0.700 4.87 0.883 
C63 ethyl dodecanoate SIM 1594 0.570 6.80 0.736 
C64 ethyl hexadecanoate SIM 1994 75.3 706 121 
a Compound areas were extracted either from the SIM trace (SIM), or via the extracted ion from the scan 

trace (m/z); b RI were matched with RI libraries available on the internet [67–69]; c tentatively identified—no 

reference standard; d not detected. 
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3.4. Elemental Profiling 

The elemental composition of the wines was measured with a 7700x Inductively-Coupled  

Plasma-Mass Spectrometer (ICP-MS) from Agilent Technologies, using the same conditions as described 

in [21]. In short, wines were diluted, in duplicate, 1:3 in 5% Nitric Acid (Fisher Scientific) in metal-free  

50 mL plastic tubes (VWR, Radnor, PA, USA) prior to analysis. The IS mix was diluted 1:10 in 1% 

HNO3 and constantly fed into the sample stream before entering the spray chamber (quartz double 

wall, cooled to 2 °C). Sample was introduced into the spray chamber through a MicroMist nebulizer 

(Agilent). The plasma was operated at a RF power of 1550 W, a RF matching voltage of 1.8 V, a 

sampling depth of 10 mm, and an Argon (99.999% purity; Airgas) carrier gas flow of 1.05 L/min. 

Elements listed in Table 8 were monitored using the ORS3 system in no gas, helium (He flow  

4.3 mL/min) and/or high energy helium (He flow 10 mL/min) gas mode, and calibrated between 0 and 

500 μg/L with matrix-matched calibration standards (4% ethanol, 5% HNO3) to account for possible 

matrix effects on the plasma stability [55,70–72]. Detection limits were calculated from the 

measurement of 10 calibration blanks [73]. Data was analyzed in ICP-MS MassHunter software 

(version B.01.03; Agilent Technologies).  

Table 8. Elements detected by ICP-MS, together with calibration parameters (correlation 

coefficient R, intercept d, slope k), detection modes, limits of detection (LOD), and 

detected concentration ranges (minimum and maximum).  

Element Mode a R d k (Blank) LOD b (μg/L) Min (μg/L) Max (μg/L) 

9 Be ng 0.99999 0.00131 0.00001 0.0057 0.016 0.768 
11 B ng 0.99999 0.00090 0.00386 5.3657 5140.718 18367.781 
27 Al He 0.99999 0.00090 0.00159 0.0788 140.93 1001.583 
28 Si He 0.99964 0.00059 0.59768 13.6102 11802.427 48636.718 
31 P He 0.99981 0.00013 0.00111 2.6963 258706.776 571219.68 
34 S He 0.94825 0.00000 0.00913 327.0532 294596.986 803247.824 
47 Ti He 0.99990 0.00098 0.00016 0.4161 15.126 75.573 
51 V He 0.99990 0.03808 0.00101 0.0040 0.238 438.866 
52 Cr He 0.99990 0.04921 0.01665 0.0228 5.732 70.931 
55 Mn He 0.99990 0.02531 0.00175 0.0428 779.293 3281.82 
56 Fe He 0.99990 0.04142 0.04786 0.0521 389.695 2891.526 
59 Co He 0.99990 0.08494 0.00043 0.0020 1.323 11.049 
60 Ni He 0.99990 0.02387 0.00364 0.4025 8.704 101.587 
63 Cu He 0.99990 0.07832 0.02022 0.0158 11.332 350.268 
66 Zn He 0.99990 0.01436 0.03622 0.0368 283.243 1576.367 
69 Ga ng 0.99990 0.03555 0.00014 0.0006 3.311 43.356 
75 As He 0.99994 0.02277 0.00050 0.0024 0.462 34.446 
77 Se heHe 1.00000 0.00089 0.00001 0.0124 0.347 3.841 
90 Zr He 0.99991 0.01087 0.00221 0.0044 n.d. 2.033 
93 Nb He 0.99997 0.02358 0.00014 0.0018 0.014 0.207 
95 Mo ng 0.99999 0.00181 0.00006 0.0056 0.544 24.833 

103 Rh He 0.99998 0.04102 0.00001 0.0002 0.001 0.016 
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Table 8. Cont. 

Element Mode a R d k (Blank) LOD b (μg/L) Min (μg/L) Max (μg/L)

105 Pd He 0.99992 0.00858 0.00071 0.0027 0.06 1.209 
107 Ag He 0.99997 0.01783 0.00004 0.0016 0.002 0.012 
111 Cd ng 0.99999 0.00110 0.00001 0.0030 0.085 3.759 
118 Sn ng 0.99995 0.00297 0.00020 0.0053 n.d. 2.808 
121 Sb He 0.99997 0.00636 0.00008 0.0045 0.041 3.564 
125 Te He 1.00000 0.00029 0.00000 0.0000 0.000 0.038 
133 Cs ng 0.99999 0.01079 0.00001 0.0002 1.470 68.223 
137 Ba ng 0.99996 0.00138 0.00004 0.0052 60.525 603.697 
139 La He 0.99997 0.02344 0.00001 0.0002 0.009 1.493 
140 Ce He 0.99997 0.02768 0.00002 0.0002 0.013 2.376 
141 Pr He 0.99998 0.02765 0.00000 0.0005 0.002 0.398 
146 Nd He 0.99994 0.00546 0.00000 0.0011 0.008 1.618 
147 Sm He 0.99995 0.00470 0.00000 0.3430 n.d. 0.343 
153 Eu He 0.99997 0.01777 0.00001 0.1070 n.d. 0.107 
157 Gd He 0.99995 0.00751 0.00000 0.0005 0.004 0.331 
163 Dy ng 0.99999 0.00391 0.00000 0.3290 n.d. 0.329 
165 Ho He 0.99997 0.04206 0.00001 0.0002 0.001 0.068 
166 Er He 0.99997 0.01437 0.00000 0.0003 0.004 0.205 
169 Tm He 1.00000 0.04558 0.00002 0.0360 n.d. 0.036 
172 Yb He 0.99996 0.01033 0.00000 0.0002 0.009 0.319 
175 Lu He 0.99906 0.03030 0.00803 0.0123 n.d. 0.097 
178 Hf He 0.99906 0.00260 0.00008 0.0056 0.073 0.854 
181 Ta He 1.00000 0.01683 0.00014 0.0009 0.046 0.705 
182 W He 0.99994 0.00439 0.00004 0.0018 0.061 9.561 
185 Re ng 0.99999 0.00396 0.00001 0.4770 n.d. 0.477 
193 Ir He 0.99997 0.01032 0.00000 0.0920 n.d. 0.092 
195 Pt He 0.99996 0.00381 0.00001 0.0210 n.d. 0.021 
197 Au He 0.99995 0.00646 0.00001 0.0007 0.024 0.357 
205 Tl He 0.99996 0.01102 0.00002 0.0006 0.110 1.216 
208 Pb He 0.99996 0.01455 0.00043 0.0031 1.422 9.331 
232 Th He 0.99995 0.01596 0.00006 0.1230 n.d. 0.123 
238 U He 1.00000 0.01652 0.00001 0.0002 0.004 1.086 

a detection mode: ng: no gas, He: helium mode (flow 4.3 mL/min), heHe: high energy helium mode (flow  

10 mL/min); b limit of detection (LOD) determined with 10 calibration blank runs. 

Higher concentration elements (>500 μg/L; Ca, K, Mg, Na, Rb, Sr) were determined with a 4200 

Microwave Plasma-Atomic Emission Spectrometry (MP-AES; Agilent Technologies), using the same 

conditions as described in [74]. Briefly, wine samples were diluted 1:50 in 5% HNO3, and the 

ionization buffer, diluted to 2000 mg/L in 1% HNO3, was constantly mixed with the sample stream in 

a mixing tee before entering the spray chamber (baffled cyclonic held at room temperature; Agilent 

Technologies). A micromist nebulizer (Agilent Technologies) was used for sample transport. An 

external gas control module (EGCM) was employed to reduce carbon build-up in the torch by injecting 

air into the nitrogen plasma. Each wine sample was analyzed in triplicate, using the conditions listed in 

Table 9. A six-point calibration between 0 and 20 mg/L (i.e., equivalent to 0–1000 mg/L in the 
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samples) was carried out in matrix-matched solutions (5% HNO3 and 0.2% ethanol) to account for a 

possible matrix effect by the presence of ethanol. Detection limits (LOD) were calculated from 10 

calibration blanks [73]. Collected data was analyzed in MP Expert software (Agilent Technologies).  

Table 9. Instrument settings for the measurement of higher concentrated elements, using 

MP-AES, together with calibration parameters, limits of detection (LOD), detected ranges, 

and Fisher’s least significant differences (LSD) (FDR < 0.05) for each monitored element. 

Element Sr Rb Mg Ca Na K 

Monitored Wavelength [nm] 407.771 780.027 279.553 396.847 589.592 769.897
EGCM setting Low Low Med High 

Pump rate [rpm] 10 
Read time [s] 5 2 

Calibration range [mg/L] 0–5 0–5 0–5 0–5 0–5 0–20 
Correlation coefficient 0.9999 0.9997 0.9998 0.9999 0.9999 0.9999 

LOD a [mg/L] 0.0018 0.0004 0.0012 0.0016 0.0007 0.0020 
Min [mg/L] 0.298 0.702 52.643 31.013 5.357 677.555
Max [mg/L] 1.301 8.831 142.285 75.943 49.693 1620.74
LSD [mg/L] 0.0584 0.0775 0.9159 0.4584 0.4277 24.4880

a determined from 10 calibration blank measurements. 

3.5. Sensory Profiling and Expert Tasting 

All wines were characterized with Descriptive Analysis (DA), a qualitative and quantitative sensory 

technique where a trained sensory panel provides a sensory profile [75]. All details with regards to the 

DA are given in [25], and are briefly summarized here: The panel consisted of 10 males and five 

females (average age 37 ± 17 years), who volunteered to participate in the study. They were recruited 

via emails from the UC Davis community, and included students, staff, and retirees. Each panelist gave 

oral consent prior for inclusion before they participated in the study. The study was evaluated and 

approved by the local institutional review board (UC Davis IRB; protocol 305379-2), and was 

conducted in accordance with the Declaration of Helsinki. Panelists underwent 6 one-hour training 

sessions over a period of two weeks where they were exposed to subsets of the 27 wines. During 

training, the panelists created, refined and agreed upon sensory attributes (21 aroma, 3 taste, 3 

mouthfeel descriptors) that described the differences they perceived among the wines. For each 

sensory attribute, a corresponding reference standard was defined, and the panel had to blindly 

recognize these references at the end of the training, before they were able to proceed to the wine 

assessment. All wines were assessed in triplicate in individual tasting booths under red light and 

positive air pressure. During each session, the panelists were presented with 6–7 wines in black tasting 

glasses (25 mL each), each labeled with an individual three-digit random code. Samples were 

presented in a William-Latin square block design to control for carry-over effects [76]. Each attribute 

was rated on a computer screen on an unstructured line scale (0–9), anchored at both ends, using the 

FIZZ software (version 2.47B, Biosystèmes, Couternon, France).  

All 27 wines were also assessed for their quality with a group of 28 wine professionals, i.e., people 

that work in the wine and related industries in jobs where business decisions are based on the outcome 
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of wine tastings. Details are given in [25], but are briefly summarized: Experts were presented with 30 

glasses of wine (27 samples and 3 blind duplicates), labeled with random three-digit codes, and asked 

to score each wine on a 9-point category scale according to their liking of the wine. The left end of the 

scale was labeled with “Dislike extremely”, in the middle with “Neither like nor dislike”, and the right 

end of the scale was labeled with “Like extremely. In the past, studies [25,77] have shown that hedonic 

liking is directly correlated to perceived quality, independent of wine expertise. The obtained liking 

scores of the experts were averaged for each wine over the 28 experts, and used as a quality 

measurement (“expert rating”).  

3.6. Data Analysis 

Statistical significance was set for all data analyses at 5%. Sensory profiling data was analyzed by 

analysis of variance (ANOVA) for the main effects wine, sensory replicate, and judge, as well as for 

all two-way interactions. For significant wine-by-judge interactions, a pseudo-mixed model with the 

interaction sum of squares as error term was applied to test if the wine effect remained significant [78]. 

Volatile compound concentrations and elemental concentrations from ICP-MS and MP-AES were 

subjected to statistical analysis for significant sample and analytical replicate effects, using ANOVA. 

Post-hoc mean separation was carried out using Fisher’s least significant differences (LSDs), applying 

false-discovery-rate (FDR) adjustment for multiple comparisons.  

Multivariate data interpretation was facilitated by principal component analysis (PCA) on the 

correlation matrix (data scaled to unit variance and zero mean) for each data set (sensory profile, 

volatiles, elements). Decision on how many principal components to keep was based on the Kaiser 

criterion and the scree test [79,80]. Simple correlations between individual components (i.e., volatile 

compounds, elements, sensory descriptors) and the various quality measurements (wine score, expert 

rating, vintage, bottle price, region) were calculated as the Pearson product-moment correlation 

coefficient r. Data were prepared for analyses in Excel 2013 (Microsoft, Redmond, DC, USA). All 

data analyses were done in RStudio (version 0.98.978, Boston, MA, USA), with the basic R packages 

(version 3.1.0, R Core Team, Vienna, Austria) and the additional R packages FactoMineR [81,82], 

deducer [83] and agricolae [84].  

4. Conclusions  

The complexity of wine quality is best described by the many measures of wine quality—common 

proxies for wine quality include expert evaluation scores given by wine critics, wine experts or during 

wine judgments, as well as retail price, the year the wine was made (=vintage) and the geographical 

origin. For each of these proxies, analytical methods can be used to correlate the measured wine 

components to the quality proxies.  

In this study, the sensory, volatile and elemental profiles of 27 Californian Cabernet Sauvignon 

wines were correlated to the quality proxies (i) points awarded during a wine competition, (ii) wine 

expert liking scores, (iii) retail bottle price, (iv) vintage, and (v) wine region. With the exception of 

points awarded during a wine competition and the wine expert scores, none of the quality proxies 

showed significant correlations (p < 0.05) to each other, indicating that they in fact cover different 

aspects of wine quality. For the sensory attributes from the descriptive analysis panel, both quality 
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proxies as well as several volatile compounds showed significant correlations, pointing on one hand to 

the importance of wine flavor perception to overall wine quality as judged by wine experts, and on the 

other hand towards the importance of the volatile fraction to wine quality. However, as expected, no 

single compound or sensory descriptor is able to fully describe all aspects of wine quality. Lastly, the 

elemental profile was able to add an unexplored element to wine quality: regionality or regional 

typicity is considered a proxy for wine quality. Correlating the diverse elemental profiles of the studied 

wines to the various quality proxies, one thing becomes apparent: without full knowledge of each 

wine’s history, including viticultural and enological treatments, the elemental fingerprint can only 

serve as a pointer towards regionality. The results of this study can only serve as an initial look at 

quality correlations to instrumental parameters. It is therefore necessary to validate the reported 

findings on a more extensive sample set, both with regards to number of wines per region and wines per 

quality category. 
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