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The Adjoint Projection Pursuit Regression

NAIHUA DUAN*

Consider a projection pursuit regression model y = g(a + fx) + ¢, with an arbitrary monotonic link function g. We assume
the link function is unknown; thus we can only estimate the direction of f, that is, the ratios among the components of f, say,
Bi/B,. The direction of f is a useful estimand that measures, say, how many units of x; is equivalent to one unit of x, in terms
of potency in affecting the outcome y. Projection pursuit regression usually solves the equation cov(x, y — E(y | fx)) = 0.
As an alternative, we propose to solve the adjoint equation cov(x — E(x | fx), y) = 0. The adjoint equation has the advantage
that E(x | fx) might be easier to estimate than E(y | fx). We establish two main results for the population case. First, f is the
unique solution (up to a multiplicative scalar) to the adjoint equation. Second, f satisfies a fixed-point property based on a
modified least squares regression derived from the adjoint equation. We apply the population results to two important empirical
problems: diagnosis and estimation. For diagnosis, we check whether the linear least squares estimate for f is valid for the
direction of f. In particular, we test whether the estimate agrees with either the adjoint equation or the fixed-point property.
The tests are analogous to Tukey’s 1 df test. For estimation, we propose the adjoint projection pursuit regression estimate,
which solves the empirical adjoint equation. The estimate is \};t-consistent for # up to a multiplicative scalar. The rate
of convergence is insensitive to the choice of the smoothing parameter in estimating E(x | fx); any window size of order
O(1/Vn) or smaller achieves the optimal convergence rate. The estimate can be implemented numerically by iterating the

modified least squares regression; a simulation study is given to illustrate this procedure.

KEY WORDS: Adjoint equation; Diagnostic test; Modified least squares regression; Nonparametric orthogonalization.

1. INTRODUCTION

Regression analysis is usually based on a working model
that is at best an approximation. For example, we might
assume a standard linear model

y=a+px+e e|x~NO oY), (1.1)

where y denotes a scalar outcome variable and x denotes
a p-dimensional column vector of regressor variables. Un-
der this model, we might use the least squares linear
regression of y on x to estimate the parameter vector (a,
f). However, we might be concerned about possible
violations of the model assumptions. For example, the
standard linear model might be subject to distribution
violation: the error distribution might not be normal.
There is a rich literature on robust methods for estimating
the linear model in the presence of distribution violation;
see, for example, Huber (1981).

A more serious challenge to the working model is a
violation of the functional form. The true model might be
a power transformation model; the working model (1.1)
might be based on a wrong transformation. For example,
assume the true model is

y=(a+ px+e¢ e|x~N0s») (1.1)

We should take the cubic root transformation for y before
fitting the linear regression. If we use (1.1) as the working
model, and fit the least squares linear regression of y on
X, our estimates for @ and ff might be substantially biased.

Table 1 (in Sec. 5) gives an illustration based on a Monte
Carlo study. We assume a = 0, # = (3,1), 6> = 1, and
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cussions with Dennis Cook, Persi Diaconis, Brad Efron, Jerry Friedman,
Hidehiko Ichimura, Jacob Klerman, Ker-Chau Li, Dan Relles, Tom
Stoker, and Sandy Weisberg, and helpful comments from the associate
editor and two referees.

x is distributed uniformly over the square (-1 =x, =1,
—1=x, =1). For reasons to be discussed later, we focus
on estimating r = f,/f;. For each replicate of the simu-
lation, we sample 400 observations from the uniform dis-
tribution for x and model (1.1"). The simulation is rep-
licated 1,000 times.

The least squares linear regression of y on x is sum-
marized in “iteration” column 0. The Monte Carlo esti-
mate for E(F) is .44446, about 33% larger than the true
value r = 3. In the following paragraphs we introduce a
new method for estimating r, called the adjoint projection
pursuit regression. Iteration columns 1-4 summarize the
results of applying this new method, using an iterative
algorithm called the modified least squares regression. The
rows (m) in the table refer to the amount of smoothing
used in implementing the algorithm. After one iteration
of the algorithm (column 1), the Monte Carlo estimates
for E(#) are very close to the true value; that is, the bias
is essentially eliminated entirely. Furthermore, the be-
havior of the estimate is rather insensitive to the amount
of smoothing: there is not much difference among rows in
the table.

We now describe the general theory for the adjoint pro-
jection pursuit regression and the modified least squares
regression; the Monte Carlo study is discussed further in
Section 5. Instead of restricting the true model to be a
power transformation model such as (1.1'), we assume the
true model has the following form:

y = gla + px) + ¢, E(e|x) =0, B#0, (1.2)

where g is the link function, assumed to be arbitrary and
unknown. We call a model of form (1.2) a projection pur-
suit regression model (PPRM) (with one ridge); see Fried-
man and Stuetzle (1981). Model (1.2) includes both
transformation models (see Remark 1.1 at the end of the
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Introduction) and generalized linear models. To avoid triv-
ialities, we assume the slope vector f is not null.

Stoker (1986) and Ichimura (1989) studied a broader
class of models, the single-index models y = g(h(f; x))
+ ¢, E(¢| x) = 0, where & is known up to the parameter
B. Model (1.2) is a special case, with h = a + fx. We
focus on model (1.2) in this paper.

For model (1.2), when the link function g is arbitrary
and unknown, we cannot estimate the entire parameter
vector (@, ). The most we can identify in («, f) is the
direction of , which we define to be the collection of the
ratios {f/f, j, k = 1, ..., p}. We cannot identify the
intercept « and the length of §. We will therefore neglect
the intercept « in the PPRM, and focus on estimating the
direction of f.

The inability to identify the magnitudes of the slope
coefficients might be disturbing. Is this too general a con-
text for meaningful estimation and inference? No; the di-
rection of f is a meaningful estimand; it measures the
substitutability of different components of the regressor
x. If we can determine the ratio f5,/f,, we know how many
units of x, are equivalent to one unit of x; in terms of
potency in affecting the outcome y; the ratio can be in-
terpreted as the relative potency between x, and x,.

For many empirical problems, we might be interested
more in the relative potencies than in the absolute poten-
cies. For example, consider a risk management decision
problem: we must choose between two pesticides, A and
B, both of which are carcinogenic. Assume that the ex-
termination efficacies of both pesticides are linear and let
¢ (cy) denote the efficacy for one unit of pesticide A (B).
Assume that the carcinogenicity of the pesticides follows
a PPRM, with S, (f,) being the potency for one unit of
pesticide A (B). Assume that the link function is increas-
ing; that is, a larger value of fx corresponds to stronger
carcinogenicity. Under those assumptions, we should
choose pesticide A if §,/f, < ¢,/c,, and B otherwise. It
follows that we need only estimate the relative potency
Bi/B, and not the absolute potencies f; and f,.

When the prediction of y from x is of interest, we can
first estimate the direction of f, then smooth y on fx to
predict y; f being an estimate that might be poor for es-
timating the length of f, but is good (e.g., consistent) for
estimating the direction of f. Any bias in estimating the
length of B is compensated by an opposite bias in esti-
mating the link function g.

We assume throughout this article that the regressor x
is sampled from a nondegenerate population:

Condition 0. The regressor x is sampled randomly
from a probability distribution; the moments 1 = E(x),
S(xx') = cov(x), and Z(xx')"! exist.

We now review some relevant facts about the standard
linear model (1.1), then extend them to the PPRM (1.2).
For now we focus on the population case: (y, X') is a
random vector. The population results are applied to the
sampling case in Sections 3 and 4.

For model (1.1), the usual likelihood theory determines
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the direction of f by solving the equation
COV(X, y - L(y l bX)) = 0’ (13)

where b € R? and L(y | bx) is the least squares linear
regression of y on bx. Under (1.1), b = f is the unique
solution (up to a multiplicative scalar) to (1.3). Equation
(1.3) is equivalent to

cov(x — L(x | bx), y) =0, (1.4)

where
L(x|bx) = u + S(xx')b’b(x — u)/bE(xx')b’ (1.5)

is the linear regression of x on bx. In (1.3), we orthogon-
alize y against bx, then examine the association between
x and the y residual. In (1.4), we orthogonalize x against
bx, then examine the association between y and the x
residual. The two equations are dual to each other; there-
fore we call (1.4) the (linear) adjoint equation; see, for
example, Halmos (1958) for a general discussion of adjoint
operators in linear algebra.
Both Equations (1.3) and (1.4) are equivalent to

cov(x — L(x |bx),y — L(y|bx)) =0, (1.6)

which deals with the partial association between x and y
after controlling for bx.
The analog of (1.3) for the PPRM is the equation

cov(x,y — E(y | bx)) = 0. (6]

The analog of (1.4) is the (nonparametric) adjoint equa-
tion

cov(x — E(x | bx), y) = 0. (1.8)

Both Equations (1.7) and (1.8) are equivalent to the partial
association equation

cov(x — E(x |bx),y — E(y|bx)) = 0. (1.9)

The only difference between the two sets of equations
is the way we orthogonalize y and x against bx. For the
standard linear model, we use the linear regression to
control for bx. For the PPRM, we use the nonparametric
regression to control for bx.

Under the PPRM, b = f solves Equation (1.7). The
(standard) projection pursuit regression is based on solving
(1.7); see, for example, Friedman and Stuetzle (1981,
1985) and Huber (1985). Friedman and Stuetzle proposed
an algorithm that alternates between smoothing y on bx
and optimizing b for a given link function.

Equations (1.7)—(1.9) are all equivalent to E[cov(x, y |
bx)] = 0. We can therefore solve any of the three equa-
tions to determine . We propose the adjoint projection
pursuit regression, which is based on solving the adjoint
equation (1.8).

The apparent advantage of solving (1.8) instead of (1.7)
is that (1.8) does not depend explicitly on the unknown
link function. For empirical applications, this might be an
important advantage: E(x | bx) might be easier to estimate
than E(y | bx). For randomized experiments, we might
know the distribution for x, and therefore have complete
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knowledge about E(x | bx). For sampling studies, the sam-
ple available for estimating E(y | bx) might be much
smaller than the sample available for estimating E(x | bx).
For example, we might observe x for a large sample
screened for possible enrollment in a study; we might ob-
serve y only for a smaller sample actually enrolled in the
study.

When x and y are observed in the same sample, the
estimation of E(x | bx) might require more computation
than the estimation of E(y | bx). However, E(x | bx) might
be closer to being linear than E(y | bx), and therefore
easier to estimate. We can improve upon the linearity of
E(x | bx) by deleting leverage points with extreme x values.
Truncating the distribution of x does not affect the direc-
tion of f. It is more difficult to improve upon the linearity
of E(y | bx). For example, deleting or modifying outliers
with extreme y values might affect the direction of f.

We introduce some notation: {(bx, b) = E(x | bx) and
o(b) = cov(x — ((bx, b), y). For a given b, { is the
nonparametric regression of x on bx. Note that its func-
tional form also depends on b. The covariance function
d(b) is analogous to the score function in parametric
regression models; therefore, we call it the adjoint score
function.

We establish two main results in Section 2. First, we
establish in Theorem 2.1 that f is the unique solution (up
to a multiplicative scalar) to the adjoint equation (1.8)
under the PPRM and some mild conditions, the main one
being

Condition 1. 'The link function g is strictly monotonic.

Condition 1 is plausible in many empirical applications.
Although the scientist does not know the exact form of
the link function, he might know the ranking of the ex-
pected outcome, and thus can verify a priori whether
Condition 1 is valid. For example, an environmental ep-
idemiologist might.not know the exact form of a dose—
response curve; nevertheless, he probably has a firm
belief that a higher dose of PCB means a stronger
carcinogenicity.

Our second main result relates the adjoint equation
(1.8) to the least squares slope fis = (yx')2(xx')7!,
where 2(yx') = cov(y, x'). Under the PPRM, S solves
(1.4) but might not solve (1.8); therefore, it might not be
collinear with . However, if

E(x | bx) = L(x | bx) (1.10)

for all b, then (1.8) coincides with (1.4), and S5 solves
both equations.

Under (1.10), fys is collinear with f, despite possible
nonlinearity in the link function. This result was first es-
tablished in Brillinger (1977, 1982). Related results for
various parametric regressions are given in Chung and
Goldberger (1984), Duan and Li (1987), Goldberger
(1981), Greene (1981, 1983), Li and Duan (1989), Ruud
(1983), and White (1981). Duan and Li (in press) studied
a link-free regression method, the slicing regression, which
is also based on (1.10).
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It is unlikely for (1.10) to hold exactly in empirical ap-
plications. When (1.10) is not satisfied, we can modify x
so that it will satisfy (1.10) for a given initial value b. In
particular, we consider the modified regressor

x = L(x|bx) + (x — E(x | bx)).

It is easy to verify that x satisfies (1.10).

Our second main result is a fixed-point property for f.
We take the least squares linear regression of y on %, and
call this regression the modified least squares regression.
The slope vector from this regression is called the modified
least squares slope:

b0 = 3(yx)S(XK')", (1.12)

where 2(X') = cov(y, ') and 3(X%') = cov(X). We es-
tablish in Theorem 2.2 that b is collinear with b if and
only if b is collinear with #. In other words, the direction
of B is the only fixed point for the functional

§: d(b) — d(b®),

where d(v) denotes the direction of the vector v.

We apply the preceding population results to two im-
portant empirical problems: diagnosis and estimation. For
the diagnosis problem, we use the standard linear model
(1.1) as the working model, and take the least squares
linear regression of y on x. However, we suspect that the
link function might be nonlinear. We want to diagnose
whether the estimate ﬁLS is valid for the direction of S.

The standard diagnostic techniques aim at detecting
nonlinearity in the link function; see, for example, Tukey
(1949) and Cook and Weisberg (1982). However, this
might be inefficient if we are interested only in the direc-
tion of 4. We might be willing to accept fs if it estimates
the direction of f properly, despite possible nonlinearity
in the link function. We therefore propose to use diag-
nostic techniques that focus on the direction of S.

An obvious diagnostic technique is to test whether fy5
agrees with Equations (1.7) or (1.8). There is an advantage
in using (1.8) for this purpose: the null distribution for the
test can be derived in a manner similar to Tukey’s 1 df
test (Theorem 3.1). We can also use the fixed-point result
for such a diagnosis. We take ,[?LS as the initial value, then
modify the regressor accordingly to obtain the modified
least squares slope. We then test whether the two esti-
mated slopes are collinear (Theorem 3.2).

For the estimation problem, we want to estimate f with-
out relying on a working model like (1.1). Friedman and
Stuetzle’s (1981) projection pursuit regression is an ob-
vious choice. Hall (1989) established that the projection
pursuit regression estimates the direction of § at the Va
rate. Ichimura (1989) established similar results for the
single-index model, using the semiparametric least squares
estimate, based on minimizing n=! 2, [y; — E(y | h(g,
X))

Han (1987) proposed the maximum rank correlation
estimator, which maximizes the rank correlation between
y and bx. Han established strong consistency for this es-
timator, and conjectured that it converges at the Vn rate.

(1.11)

(1.13)
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Manski (1975, 1985) studied a closely related method, the
maximum score estimator. Both Han’s and Manski’s es-
timators are fairly difficult to compute numerically.

Stoker (1986, 1989), Powell, Stock, and Stoker (1989),
and Hardle and Stoker (1989) studied the average deriv-
ative estimate (ADE). Let m(x) = E(y | x), and Vm(x)
be the derivative of m at x. Under model (1.2), we have
E[Vm(x)] = yB, where y = E[g'(fx)]. We can estimate
the direction of f by estimating Vm(x), then taking the
average. Alternatively, since E[Vm(x)] = E[l(x)y], where
I(x) = —V log f(x) and f(x) is the density of x, we can
estimate the direction of f by estimating /(x) y, then taking
the average. The ADE requires p-dimensional smoothing
to estimate Vm(x) or f(x) and might be difficult to imple-
ment when p is not small. However, it is \/ﬁ-consistent,
does not require iterative computation, and does not re-
quire the monotonicity Condition 1. It does require that
y # 0.

We propose the adjoint projection pursuit regression
estimate, which solves the adjoint equation (1.8) empiri-
cally. The estimate is shown in Theorem 4.1 to be Va-
consistent for # up to a multiplicative scalar. The rate of
convergence is insensitive to the choice of the smoothing
parameter used in estimating E(x | bx); any window size
of order O(1/Vn) or smaller achieves the optimal con-
vergence rate.

The adjoint projection pursuit regression can be imple-
mented numerically by iterating the modified least squares
regression. We do not have general results on the numer-
ical properties of this algorithm. A heuristic argument is
given in Section 4, which suggests that when the initial
value is good, the algorithm converges very fast: one it-
eration might be nearly adequate.

The behavior of the adjoint projection pursuit regres-
sion estimate is illustrated with a simulation study in Sec-
tion 5. For the example used in this study, one iteration
eliminates the bias almost completely; the behavior of the
estimate is also found to be insensitive to the choice of
the smoothing parameter.

Remark 1.1. Transformation models such as (1.1") are
submodels of the PPRM (1.2) as long as the transformation
is invertible and the error terms are identically distributed
after the transformation. For example, consider a general
transformation model

hA(y) = a+ fx + ¢,
The regression function is given by

e|lx~F(g). (1.1

E(y|x) = fh-l(a b A+ 8 dF (), (L14)

and depends on x only through o + px. Therefore the
transformation model (1.1”) can be written in the form of
the PPRM (1.2), with the link function being the regres-
sion function (1.14) expressed as a function of & + fx. It
should be noted that the PPRM (1.2) does not require the
errors to be identically distributed.

Remark 1.2. Under model (1.1), (1.3) is the likelihood
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equation for the direction of f. Equation (1.7) can also be
interpreted as the likelihood equation if the true model is
a generalized linear model with the canonical link [see,
e.g., McCullagh and Nelder (1983)], and we replace the
nonparametric regression E(y | bx) in (1.7) by the para-
metric mean function for the given generalized linear
model.

Remark 1.3. For PPRM’s with more than one ridge
[E(y | x) = 2K, g;(B¥x)], the adjoint projection pursuit
regression can be applied to the residuals for each suc-
cessive ridge component in steps similar to the standard
projection pursuit regression.

2. MAIN RESULTS

We observed in Section 1 that f solves the adjoint equa-
tion (1.8). We now give the converse, which guarantees
that the solution is unique up to a multiplicative scalar.

Theorem 2.1. Assume the random vector (y, x') fol-
lows a PPRM (1.2) and satisfies Conditions 0 and 1 and

Condition 2. If b € R is not collinear with S, then
E[var(fx | bx)] > 0.

Let b € R’ be any initial value for f. The adjoint equation
(1.8) is solved by b if and only if b is collinear with S.

(The proofs of all theorems are given in the Appendix.)

We observed in Section 1 that Condition 1 is plausible
in many empirical problems. It cannot be ignored: without
Condition 1, the adjoint equation might have solutions
that are not collinear with . An example is given in Re-
mark 2.1.

Condition 2 indicates that fx is not a deterministic func-
tion of bx. This is necessary in order for the direction of
B to be identifiable; otherwise we can express the PPRM
using either a link function for fx or a link function for
bx.

Condition 2 is satisfied if the support of x is p dimen-
sional; that is, has an interior point in R?. This might be
too restrictive, though. For many empirical applications,
some of the regressors might be discrete; we might also
have functional constraints on x; for example, some of the
regressors might be higher-order terms or interaction
terms. In order to identify the direction of f in those cases,
we usually need an “anchoring” variable known to have
an effect. We can then calibrate the potency of the other
regressors relative to the anchoring variable.

Lemma2.1. Condition 2 follows from Condition 0 and

the following:

Condition 2'.  The support for x has the form R X §,
where & C RP~!is the support for (x,, . . ., x,)".

B # 0.

Condition 2’ requires that the anchoring variable x; have
infinite support. It might be possible to weaken this re-
quirement if the direction of § is known to be bounded
away from the hyperplane f; = 0; see Remark 2.2. We

Condition 2".
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also give examples in Remarks 2.2 and 2.3 to illustrate
that Conditions 2’ and 2" cannot be ignored.

We now give the fixed-point property for f: we can check
the collinearity between b and b to determine the col-
linearity between b and .

Theorem 2.2. Assume the random vector (y, x') fol-
lows a PPRM (1.2) and satisfies Conditions 0 and 1, and

Condition 2". 1If b, v € RP are not collinear, then
E[var(vx | bx)] > 0.

The initial value b and the modified least squares slope
b® in (1.12) are collinear if and only if b and g are col-
linear.

Condition 2" is stronger than Condition 2: it requires
that all two-dimensional projections of x be nondegener-
ate. However, this stronger condition is only used to es-
tablish that %(XX’) is nonsingular; that is, b is well de-
fined. The theorem remains true with Condition 2", if we
redefine the modified least squares regression as

bV = 3 (yx')(xx')"" (1.129

With definition (1.12"), we do not need to verify that
2(xx') is nonsingular; thus only Condition 2 is needed.

There does not appear to be any intrinsic reason for
preferring either (1.12) or (1.12'). We have focused on
(1.12) instead of (1.12") for two reasons, neither of which
is very compelling. First, (1.12) is easier to implement on
standard statistical packages. Second, (1.12) leads to a
simpler null distribution for the diagnostic test to be given
in Section 3.

Remark 2.1. 'We now give a counterexample for Theo-
rem 2.1 when Condition 1 fails. Let p = 2 and let x follow
a joint distribution such that E(x, | x;) = 0, but E(x; | x,)
is not a constant. For example, take the uniform distri-
bution over the triangle with vertices (1, 1), (1, —1), and
(0, 0). Let p = (0, 1), g(x2) = E(x; | x,), and b = (1, 0)
* f. Note that cov(x,, x,) = cov(x;, E(x, | x;)) = 0. Since
cov(x;, x,) = cov(x,, g(x,)), the link function does not
satisfy Condition 1. It is easy to verify that 5(b) = 0; thus
the converse part of Theorem 2.1 fails.

Remark 2.2. Consider an ANOCOVA problem with
x, = 0 or 1, and the support of x, given x, is the interval
(0, 1). Letb = (1, 1). Conditioned on bx, x is degenerate;
therefore, Condition 2 fails even if Condition 2" holds.
More generally, Condition 2 fails in this example if |b,/b,|
= 1. For |b,/b,| < 1, the conditional distribution of x given
bx is nondegenerate for some values of bx; therefore, Con-
dition 2 holds.

If we have prior information that |f,/8,| < 1, that is, x,
is less potent than x,, then we can restrict the initial value
b to satisfy |b,/b,| < 1 also; therefore, Condition 2 and
Theorem 2.1 hold. More generally, if we believe | £,/ <
¢, we can obtain Condition 2 by requiring the support of
x; to be an interval with width at least 1/c.

Remark 2.3.  Consider a quadratic regression problem
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with x; = x3 and §; # 0. If f;, = 0, Condition 2 fails with
bx = x,, even if Condition 2’ holds. Note that Lemma 2.1
identifies the direction of f by calibrating all potencies
relative to x;. If §; = 0, we can no longer compare the
potencies of x, and x; by calibrating against x;.

3. DIAGNOSIS
We now apply the results derived in Section 2 to the
sampling case: we observe data {(y;, x/),i =1, ..., n}

sampled randomly from a PPRM (1.2) that satisfies Con-
dition 0. We need to estimate {(bx, b) = E(x | bx). Since
there is only one “predictor” bx, we are free from the
curse of dimensionality. There are many nonparametric
regression methods available, such as the kernel method,
the nearest-neighbor method, and smoothing splines. We
assume that we have chosen a generic smoothing method,
and denote the estimate as { (bx, b). We introduce some
notation: {; = {(bx;, b) and {; = {(bx;, b). Let 2(vw)
denote the sample covariance matrix between v and w.

Since b{; = bx;, we do not need to use smoothing to
estimate b(;. In order to take advantage of this fact, we
reorient { by

{i=C+ Lix - {|bx), (3.1)

where L is the estimated linear regression of x — { on bx:
Lx - {|bx) = & - T) + S(x)b'b((x; — X) — (£ -
¢ ))/bE(xx )b’, where X ({) is the sample average for the
x;’s ({s). It is easy to verify that bl; = bx;.

We estimate the adjoint score function d(b) = cov(x —
¢(bx, b), y) by the sample covariance between x — ¢ and

y:
5(b) = 3(x - ¢, y)
=((X-%) - (Z-2)Y/(n-1), (32

where X =[x, ..., %], Y = (31, - - ., ), 7 = [¢,
- C,,] and z is the sample average for the C,
For a given initial value b, we estimate the modified
regressor by

X = L(x|bx) + (x = {), (3.3)

where L is the estimated linear regression of x on bx. Note
that bx; = bx;. We then estimate the modified least squares
slope b by

pm = E(yx )2(“’) L (3.4

For the rest of this section, we discuss the diagnosis
problem. The estimation problem is studied in the next
section.

We consider the estimated least squares slope bis =
2( yX )E(xx )~1. We test whether f3, s agrees with either the
adjoint equation (1.8) or the fixed-point property in Theo-
rem 2.2. For simplicity of notation, we drop the subscript
LS from ﬂLS in this section.

First we test whether f  agrees with the adjoint equation
(1.8): we check whether §(f) is significantly different from
the null vector. In order to implement this test, we need
to derive the null distribution for 5(f). We use a derivation
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similar to Tukey’s (1949) 1 df test, and consider the dis-
tribution for §(f3) conditioned on /. Under (1.1), we have
the following conditional distribution: Y | (£, X) ~ N(fX,
o¥(I, — P,)), where I, is the n X n identity matrix and P,
is the projection matrix (‘hat matrix”) for [1,, X']. The
conditional distribution for S(B) is therefore ) (ﬂ) | (B, X)
~ N(v,T), where v = (3(xx’) — E(CC NB’, S(EE ) is the
sample covariance matrix for the Crs,and T = o*(I, —
P)Z’'/(n — 1)*. This gives us a chi-squared test:

Theorem 3.1. Assume the observed data {(y,, x;), i =
1, ..., n}are sampled randomly from the standard linear
model (1.1) and satisfy Condition 0. We then have

6B =T 6B - v ~xt, (3.5)

where k = rank(I') and I'™ is any generalized inverse of
I', such as the Penrose inverse.

An alternative diagnostic test is to check whether f
agrees with the fixed-point property in Theorem 2.2. With
b = J as the initial value, we test whether f is collinear
with the modified least squares slope S0 glven in (3.4).
By (3.4), the conditional distribution for 5" is given by
/J"” | (B, X) ~ N(B, T), where T = 3(xx')"'TX(x&’)"!
We orthogonalize o against B, and consider the res1dua1
,8l = fBD, where D = I, — (&I S(R)p /5‘/
BE(R&T- E(“’)[)’ The conditional distribution for f*
is given by g+ | (B, X) ~ N(0, W), where ¥ =
S(R&K')-T3(x&) ! — B'B/B3(R&") -S(X%')4’. This gives

us another chi-squared test:

Theorem 3.2. Assume the same conditions as in Theo-
rem 3.1. We then have

Bru-pr ~ y2, (3.6)

where W~ is a generalized inverse of W, and m =
rank(W).

For the linear model (1.1), consider the population case,
with the initial value b = f;5: the adjoint score function
6(BLs) is null, and the modified least squares slope b
coincides with fi5. For the sampling case, with the initial
value f5, the conditional expectation of §(f.s) is v, which
might not be null; therefore, the estimated score functlon
might be conditionally biased. On the other hand, the
conditional expectation of B(” coincides with ﬂLS, there-
fore, the estimated modified least squares slope is con-
ditionally unbiased. This is an advantage for the diagnostic
test in Theorem 3.2 over the test in Theorem 3.1.

4. ESTIMATION

For the estimation problem, we assume the observed
data follow a PPRM (1.2) with an unknown link function
and want to estimate £ up to a multiplicative scalar. Either
Theorem 2.1 or Theorem 2.2 can be used for this purpose.
First we consider the empirical adjoint equation

5(b) = 0, 4.1)

where § is the estimated adjoint score function given in
(3.2). We estimate the direction of § by any solution to
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(4.1). Alternatively, we can estimate J in (1.13) by
§: d(b) > d(fM), (4.2)

where O is given by (3.4). We then estimate the direction
of § by any fixed point for .

We do not have general results on the existence or the
uniqueness of solutions to (4.1) or of fixed pomts for (4.2).
If the number of regressors, p, is odd, and §is continuous,
a variant of Brouwer’s fixed-point theorem holds (Brown
1971, p. 31), and guarantees the existence of a fixed point
for (4 2). The continuity for § probably follows from suit-
able smoothness conditions on the PPRM and the distri-
bution of x; we have not been able to formulate this
formally.

We will refer to either estimate defined above as the
adjoint projection pursuit regression estimate f for the
direction of . The two definitions are approx1mately
equivalent. By (3. 2) and (3.3), we have S(yx') = ch(xx )
+ &(b)’, where c is a scalar. Since b3 (xx') = bS(R%'), f®
= cb + §(b)’S(k%')L. If the approximation can be re-
placed by an equahty, then b solves (4.1) if and only if
B « b; that is, the two definitions are equivalent. If we
define b“) by (1.12') instead of (1.12), and estimate it by
B0 = 3(yR)S(xx')~! instead of (3.4), then the two defi-
nitions are exactly equivalent.

Under reasonable conditions, the smooth ¢ is consistent
for {; thus the adjoint projection pursuit regression esti-
mate is consistent for f up to a multiplicative scalar. This
is established formally in Theorem 4.1 for the estimate
based on (4.1).

For simplicity, we use a step function estimate for {(bx,
b). This is a rather crude smoothing method; however, it
does achieve the optimal Vn convergence rate for §. For
empirical applications, it might be possible to improve the
efficiency by using better nonparametric regression meth-
ods.

Without loss of generality, we normalize the initial value
b to have length 1:

b = (bb")? = 1. (4.3)

We partition the range of bx into equal-width slices
{..,8_1,80, 81, . +.,8h ...}, where the hth slice s, is
the interval hd, < bx < (h + 1)d,. The window size d,, is
chosen a priori and converges to 0 as n — . For each
slice of bx, we estimate { by the sample average for the
corresponding x’s. More specifically, we estimate {; =

C(bxi’ b) by

> x;1u/np, if bx; € s,

j=1

= {(bx,, b) = (4.4

where 1 is the indicator for the event “bx; € s,,” and p,
is the proportion of bx;’s in the hth slice. We then reorient
¢ into ¢ using (3.1).

We can now substitute the {;s derived from (4.4) and
(3.1) into the empirical adjoint equation (4.1) to esti-
mate the direction of f. In order to establish the V-
consistency of this estimate, we need the following regu-
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larity conditions:
Condition 3. The moments E(y*) and E(||x[*) exist.
Condition 4. {(bx, b) is continuous in b.

Condition 5. There exists B < e such that I (bx, b)]|
=< B for all b and x, where ( is the derivative of { with
respect to bx.

Theorem 4.1. Assume the observed data {(y;, x/), i =
1, ..., n}are sampled randomly from a PPRM (1.2) and
satisfy Conditions 0-5. For the step function estimate of
{(bx, b) given by (4.4) and (3.1), the adjoint projection
pursuit regression estimate § that solves (4.1) is \)ﬁ-con-
sistent for ff up to a multiplicative scalar if the window size
d, is of order O(1/Vn) or smaller.

The Vn-consistency for the adjoint projection pursuit
regression estimate is insensitive to the choice of the
smoothing parameter: Theorem 4.1 guarantees the opti-
mal convergence rate for any reasonably “small” window
sizes. It can be seen from the proof that the asymptotic
mean squared error is dominated by variance (bias is neg-
ligible) if d, is of order o(1/Vn). We do not have the
tradeoff between bias and variance for the usual non-
parametric regression methods. This is because  does not
depend on the entire estimated curve {(bx, b); instead it
depends on the estimated curve only through an integrated
summary measure, cov({, y).

It is a nontrivial numerical task to solve (4.1) or to find
a fixed point for (4.2). If the dimensionality of x is very
low, it might be possible to find § using a grid search.
Otherwise we need an efficient algorithm to find §. A
reasonable algorithm is to iterate 5 to find its fixed point.
More specifically, we define the algorithm as follows:

Step 0. Choosp any initial estimate b, say, the least
squares estimate fys.

Step 1.
in (3.3).

Step 2. Regress y on % to obtain fO,

Compute the estimated modified regressor X

Step 3. Take O as the new initial estimate and return
to Step 1 until convergence, say, if the angle between b
and O is smaller than a given threshold.

If the algorithm converges, the limit is a fixed point for
§. We do not have general results on the numerical prop-
erties of this algorithm. A heuristic argument is given be-
low which suggests that when the initial value is good, the
algorithm converges very fast: one iteration might be
nearly adequate.

For simplicity, we consider the population version of
the algorithm. Without loss of generality, we assume that
the regressor x and the initial value b are orthonormalized
as follows: E(x) = 0, cov(x) = [,,andb = (1,0, ...,
0). Assume that b is nearly collinear with §, so we can
take the first-order Taylor approximation for the link func-
tion g:

E(y|x) = g(Bixi + foxo) = g(Bix1) + frXag'(Bix1);
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therefore, b = B,E[g'(Bix1)cov(x, | x;){E[cov(x; |
x|}t If g'(Byx,) is nearly uncorrelated with cov(x, | x;),
we have

b = B E[g' (Bix)]; (4.5)

thus b{" is nearly collinear with f,. The condition preced-
ing (4.5) is not crucial. We can avoid it if we redefine the
modified least squares regression: instead of using the un-
conditional least squares regression of y on X, we use the
conditional least squares regressions

bP(x;) = cov(y, %5 | xp)[cov(X, | x))] ™" = g’ (Bix1),
then average them over x;. We then have

bi" = E[b{"(x)] = BE[g'(Bix)], (4.5

without requiring that g'(f; x,) be nearly uncorrelated with
cov(x, | xy).

It follows from either (4.5) or (4.5') that b® is nearly a
linear combination of b and f. Therefore, we need only
search over the two-dimensional space spanned by b and
b® to find B. Since we only need the direction for g, this
is actually a one-dimensional search over the unit circle in
this two-dimensional space.

We might not even need to perform this one-dimen-
sional search. The first component of b®, b{"), is given
approximately by b{) = E[x;g(fix))] + BE[g'(fix)
x1x3]". If g'(Byx,) is nearly uncorrelated with x;x;, the
second term is approximately 0. We then have

bV = E[x,g(fix:)] = BE[Bix:8(Bix:)]/var(Bix)). (4.6)

If x, is nearly normal, the scalars E[g'(f,x,)] in (4.5) and
E[Bix,8(Bix1)]/var(B, x,) in (4.6) are nearly identical, and
thus b is already nearly collinear with . Otherwise, the
former scalar equals E[—log(f(fix1))g(fix,)], where
f(Bix,) is the density function for f,x;. It is therefore
possible to estimate the ratio between the two scalars, then
adjust b{» and b{" by these scalars to estimate f.

Remark 4.1. Condition 5 indicates that the curves
{(bx, b), parameterized by bx, have a common speed limit.
Both Conditions 4 and 5 probably follow from suitable
smoothness conditions on the distribution function for x;
we have not been able to formulate this formally.

Remark 4.2. Since bias is dominated by variance for
the adjoint projection pursuit regression estimate f§, we
can derive inference procedures for f from the asymptotic
variance. Alternatively, we can make inferences for j us-
ing resampling methods such as Efron’s (1982) bootstrap
method. Efron and Tibshirani (1986) and Efron (1988)
applied the bootstrap method to the (standard) projection
pursuit regression.

5. A SIMULATION STUDY

We now discuss in further detail the simulation study
mentioned in Section 1. The study demonstrates the
behavior of the adjoint projection pursuit regression
estimate, using the modified least squares regression al-
gorithm Steps 0—3. We assume the regressor x is distrib-
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uted uniformly over the square (-1 =x; =1, -1 =x,
= 1). We consider two PPRM’s:

y=(fx+e &|x~N(@1), (5.1
y=px+¢ ¢&|x~N(Q,1), (5.2)

where f = (3, 1). We assume that we do not know the
true link function, and therefore can estimate only the
direction of f, that is, the ratio r = fB,/f;. The true value
isr =3

For the standard linear model (5.2), the least squares
linear regression is unbiased and efficient. The value of
R?for the linear model is 10/13 = .77. For the cubic model
(5.1), we should take the cubic root transformation for y.
If we were unaware of this, and took the least squares
linear regression of y on x, the estimate would be sub-
stantially biased. It is easy to verify that the population
valueis f s,/ fis.1 = 21/47 =~ 4468, which is quite different
from the true value 3. Our simulation results indicate that
the modified least squares regression algorithm corrects
this bias essentially in just one iteration.

For each replicate of the simulation, we sample 400
observations from the uniform distribution for x and model
(5.2). The regressors are redrawn for each replicate. For
model (5.1), we take the cube of the y’s generated for
model (5.2). We then apply the modified least squares
regression algorithm for four iterations, using the least
squares slope as the initial value in Step 0. The simulation
is replicated 1,000 times.

We determine the window size d by choosing the nom-
inal number of slices, m. For an initial value b, we divide
the range of bx, (—|by| — |b,|, |bs] + |bJl), into m equal-
width slices, with d = 2(|b;| + |b,|)/m. Since the realized
values of bx might not cover the entire range, the actual
number of nonempty slices might be smaller than m. We
take a wide range of nominal slice numbers: m = 10, 20,
40, 80, and 200. For m = 10, we smooth a lot: on the
average, each slice has 40 observations. For m = 200, we
smooth very little: on the average, each slice has only two
observations.

The results for the simulation study are given in Tables
1-6. For each table, the column “m” designates the nom-
inal slice number. The columns below ““Iteration” desig-

Table 1. Estimated Direction for : Cubic Model
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Table 2. Mean Squared Error for f: Cubic Model

Iteration
m 0 1 2 3 4
10 .014975 .002578 .002126 .002126 .002095
(.000367) (.000111) (.000098) (.000097) (.000097)
20 .014975 .002446 .002011 .002009 .001993
(.000367)  (.000107) (.000092)  (.000091) (.000093)
40 .014975 .002544 .002041 .002085 .002061
(.000367) (.000110) (.000092)  (.000096) (.000095)
80 .014975 .002757 .002297 .002235 .002192
(.000367) (.000120) (.000109)  (.000099) (.000102)
200 .014975 .003383 .002975 .002897 .002781
(.000367)  (.000143) (.000140) (.000137) (.000127)

——
NOTE: o(MSE) in parenthesis.

nate the iteration number: 0 refers to the linear regression,
1 refers to the first iteration of the modified least squares
regression, and 2, 3, and 4 refer to the second, third, and
fourth iterations, respectively.
_ Tables 1 and 4 give the estimated mean values for 7 =
pa/B,. Tables 2 and S give the estimated mean squared
error E[( — 3)?]. For the cubic model (5.1), the linear
regression is biased; E(7) is indistinguishable from its pop-
ulation value r =~ .4468. The first iteration eliminates most
of the bias; the remaining bias is small (about 5%), but
significant relative to the Monte Carlo precision available.
The mean squared error is reduced from the linear regres-
sion by a factor of 4-6. Further iterations reduce the bias
and the mean squared error more, on a smaller scale.
For the standard linear model (5.2), the linear regres-
sion is unbiased for #; E(#) is indistinguishable from the
true value r = §. The adjoint projection pursuit regression
estimates also exhibit little or no bias. The only bias (about
1%) detectable under the available Monte Carlo precision
occurs when we smooth a lot (m = 10). The mean squared
errors for the adjoint projection pursuit regression esti-
mates are larger than that for the linear regression esti-
mate; this is to be expected since the latter is efficient.
Unless we smooth very little (m = 200), the loss of pre-
cision is minor: the mean squared error increases by at
most 25%. For empirical applications in which we lack

Table 3. Average Relative Change in r: Cubic Model

Iteration Iteration
m 0 1 2 3 4 m 0-1 1-2 2-3 3-4
10 44446 .34845 34414 34319 .34316 10 .21679 .04342 .01784 .01178
(.00162) (.00153) (.00142) (.00142) (.00141) (.00161) (.00106) (.00056) (.00045)
20 44446 .34435 .33734 .33663 .33646 20 .22615 .04088 .01617 .01094
(.00162) (.00153) (.00141) (.00141) (.00140) (.00159) (.00099) (.00055) (.00046)
40 44446 .34361 .33665 .33542 .33534 40 .22802 .05084 .02501 .02090
(.00162) (.00156) (.00143) (.00144) (.00143) (.00169) (.00122) (.00079) (.00079)
80 44446 .34455 33717 .33688 .33614 80 .22592 .06944 .04748 .04529
(.00162) (.00162) (.00151) (.00149) (.00148) (.00197) (.00171) (.00145) (.00144)
200 44446 .34795 .33542 .33686 .33494 200 .21881 11156 .10811 .10612
(.00162) (.00178) (.00172) (.00170) (.00167) (.00256) (.00284) (.00351) (.00309)

NOTE: In each entry pair the top row is E(f) = E(f2/f1) and the bottom row is o(E(?)).

NOTE: o(ARC) in parenthesis.
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Table 4. Estimated Direction for §: Linear Model Table 6. Average Relative Change in r: Linear Model
Iteration Iteration
m 0 1 2 3 4 m 0-1 1-2 2-3 3-4
10 .33217 .32910 .32919 .32923 .32913 10 .02778 .00979 .00615 .00475
(.00094) (.00100) (.00099) (.00100) (.00100) (.00068) (.00029) (.00019) (.00016)
20 33217 .33213 .33195 .33207 .33197 20 .02578 .00834 .00488 .00388
(.00094) (.00100) (.00100) (.00100) (.00100) (.00063) (.00025) (.00016) (.00014)
40 .33217 .33272 .33251 .33269 .33262 40 .02959 .01309 .00983 .00890
(.00094) (.00101) (.00100) (.00101) (.00100) (.00073) (.00041) (.00035) (.00035)
80 .33217 .33326 .33294 .33349 .33279 80 .03808 .02787 .02653 .02603
(.00094) (.00105) (.00103) (.00106) (.00104) (.00094) (.00082) (.00082) (.00083)
200 .33217 .33260 .33239 .33361 33244 200 .06222 .07189 .07328 .07537
(.00094) (.00124) (.00118) (.00122) (.00122) (.00152) (.00200) (.00201) (.00204)

NOTE: In each entry pair the top row is E(?) = E(fl2/f1) and the bottom row is o(E(?)).

precise prior information about the form of the link func-
tion, it might be worthwhile to pay this premium for the
protection against possible nonlinearity in the link func-
tion.

For both models, the performance of the adjoint pro-
jection pursuit regression estimate is rather insensitive to
the choice of m. Both E(7) and mean squared error are
indistinguishable for m = 20, 40, and 80. When we smooth
alot (m = 10), E(F) is slightly different. When we smooth
very little (m = 200), the mean squared error is substan-
tially higher.

Tables 3 and 6 give the average relative change in 7,
ARC = E(|(P¢*D — £®)/#@)), from one iteration to the
next. For the cubic model (5.1), a large movement occurs
in the first iteration. The average changes in the later
iterations are much smaller than o(#), except when we
smooth very little (m = 200), in which case the algorithm
still makes a fairly large movement in the fourth iteration.
For the standard linear model (5.2), there is little change,
especially after the first iteration. The average changes in
the later iterations are an order of magnitude smaller than
a(F), except when we smooth very little.

The modified least squares regression algorithm is very
effective in reducing the bias in a few iterations, and does
not increase the variability substantially. The algorithm
converges fairly fast, and the performance appears to be

Table 5. Mean Squared Error for r: Linear Model

Iteration
m 0 1 2 3 4
10 .000888 .001025 .001004 .001021 .001013
(.000040)  (.000046) (.000045)  (.000047) (.000046)
20 .000888 .001003 .000992 .001008 .000999
(.000040)  (.000045) (.000045)  (.000046) (.000046)
40 .000888 .001022 .000995 .001015 .001004
(.000040)  (.000045) (.000045)  (.000046)  (.000045)
80 .000888 .001104 .001061 .001115 .001075
(.000040)  (.000048) (.000048)  (.000051)  (.000048)
200 .000888 .001540 .001396 .001496 .001500
(.000040)  (.000071)  (.000062)  (.000071)  (.000071)

NOTE: a(ﬁS\E) in parenthesis.

NOTE: o(ARC) in parenthesis.

insensitive to the amount of smoothing, except when we
smooth very little (m = 200).

APPENDIX: TECHNICAL PROOFS

Proof of Theorem 2.1. The “if” part of the theorem follows
from (1.2): conditioned on fx, y and x are uncorrelated. To prove
the converse, we assume without loss of generality that the link
function is increasing. If b is not collinear with 8, then

B cov(x, y | bx) = cov(px, g(fx) | bx) > 0
under Conditions 1 and 2. Therefore b does not solve (1.8).

Proof of Lemma 2.1. We partition x, 8, and b into (x,, x;)’,
et cetera. We need to prove that the conditional distribution of
px given bx is nondegenerate.

If b, = 0, it is sufficient to prove that fx given x, is nonde-
generate; that is, that §,x, given x, is nondegenerate. By Con-
dition 2", we need only prove that x, given x, is nondegenerate.
This follows from Condition 2': the support of x, given x, is R.

We now assume b, # 0. Assume Condition 2 fails; thus fx given
bx is degenerate for some b & B. Note that fx = bxf,/b, + (8,
— Bib,/b))x,, where 8, — f,b,/b, # 0. Therefore, the support of
X, given bx is contained in a p — 2-dimensional subspace. By
Condition 2', the support of x, given bx is the same as the support
of x,, namely, §. Therefore, x, is not of full rank, contradicting
Condition 0: cov(x) is nonsingular. The contradiction proves
Condition 2.

Proof of Theorem 2.2. First we verify that 3(Xx') = cov(x)
is nonsingular, and hence b® is well defined. We need to verify
that var(vk) > 0 for all v # 0. Since the two terms on the right-
hand side of (1.11) are uncorrelated, we have

var(vk) = (v3(xx')b’')2/b3(xx')b’ + E[var(vx | bx)].
If v is collinear with b, the first term on the right-hand side is
positive. For other v’s, Condition 2" implies the second term is
positive. Thus 3(%X') is nonsingular.
Note that bx = bx, b2(%X') = cov(bk, X') = cov(bx, X') =
b3 (xx'), and

b® = cb + d(b)'S(XK')", (A.1)

where c is a scalar. The “if” part of the theorem follows from
(A.1) and Theorem 2.1. To prove the converse, we assume b
* . We decompose f3 as follows: § = ab + f*, where B+3(xx')b’
= 0 and a is a scalar. By Conditions 1 and 2, we have $+d(b)
= E[cov(B*x, g(abx + B'x) | bx)] # 0. Since f*Z(xx')b’ = 0,
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this implies d(b) ¢ 3(xx')b’. By (A.1), this implies b®") « b,
which completes the proof.

Proof of Theorem 4.1. 'Without loss of generality, we restrict
the proof to b’s that satisfy (4.3) and bg’ = 0. The domain 8 of
those b’s is compact. We claim that for any ¢’ > 0, we can find
¢ > 0 such that |6(b)|| < ¢ implies b — f|| < ¢'. Assume the
claim is false; we can find ¢’ > 0 such that for all ¢ > 0, there
is a b satisfying ||6(b)|| < ¢ and |[b — ] > ¢'. By compactness
and Condition 4, those b’s have an accumulation point f* such
that |6(8*)| = Oand ||8* — B|| = ¢'. This contradicts the converse
part of Theorem 2.1, and proves the claim. .

According to the claim, we need only prove that o(b) con-
verges to 6(b) uniformly over 8. By (3.2), o(b) = (I — P)(2(xy)
— 2(%y)), where P = 2(xx')b'b/bZ(xx')b’. It is easy to verify
that P converges to P = 3(xx’)b’b/b3(xx')b’ at \/ZA rate uni-
formly over b € @, and (I — P)3(b) = d(b). Since %(xy) also
converges to 3(xy) at Vn rate, we need only prove that %({y)
converges to 3({y) at"\/ﬁ rate uniformly over 3.

By (4.4), we have £(&y) = (n — 1) 31, {(y = ) = n”
2, x(y, — y)w;;, where w,; = 1,1,/np,. It follows that %({y) =

» DXy ¥y — Xy, where X,, (¥,) is the sample average of the x’s
(y’s) for observations with bx, € s,. Since Xy converges to
E({)E(y) at Vn rate, we need only prove that =, p,X,¥, con-
verges to E((y).

Let {, = E[{(bx, b) | bx € 5,], 7, = E(y | bx € s,), and p,
= E(p,) = Pr(bx € s5,). We have 2, p,X,y, — E({y) = bias +
error, where bias = 2, p,{un, — E(ly) and

error = 2 [(Br = Pw)Cumn + B = Cdw + Blu(Fn — n1a)]-
h
Since E(error) = E[E(error | p)] = 0, we have

E(llerror|?) = ; {n~'pullilPmi + E[pini tr(cov(X, | pa))]
+ E[BIGI var(s | BT}
=n7! ; {PullGullni + puri tr(cov(x | bx € s,))

+ pullGil? var(y | bx € s,)}
= 3[E(y)E(Ix][)]"*/n.

The last inequality follows from the Cauchy-Schwarz inequality
and Jensen’s inequality. Since bias = — E[cov({, y | bx € s,)],
we have

IIbias|* = E{llcov({, y | bx € s,)I’}

= i E{var({(bx, b), | bx € s,)var(y | bx € s,)},

where (-, -); denotes the jth component of {(-, -). By Condition
5, we have

var({(bx, b); | bx € s,) = Bd%/4,
Ibias|> < pB*d2E(y?)/4.

If d, = o(1), both bias and error converge to 0 uniformly over
®; therefore, f is consistent for § up to a multiplicative scalar.
If d, = O(1/Vn), the convergence rate is Vn; bias and error
are of the same order. If d, = o(1/Vn), the convergence rate
is \/r_z, but bias is of a smaller order than error.

[Received January 1989. Revised March 1990.]
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