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Abstract: Among the cultivated crop species, the economically and culturally important grapevine
plays host to the greatest number of distinctly characterized viruses. A critical component of the man-
agement and containment of these viral diseases in grapevine is both the identification of infected
vines and the characterization of new pathogens. Next-generation high-throughput sequencing
technologies, i.e., HTS technologies, have been widely adopted for their ability to quickly, broadly
and directly characterize molecular sequences associated with potential pathogens. We empirically
analyze the performance of HTS as a diagnostic tool in a phytosanitary context and make recommen-
dations on its deployment for detecting known and novel viruses in grapevine. Three popular and
widely used modalities for analyzing HTS data are characterized and compared using the standard
diagnostic performance criteria of sensitivity (the true positive rate), specificity (the true negative
rate) and analytical sensitivity (dilution series).

Keywords: plant viruses; bioinformatics; NGS; grapevine; diagnostics

1. Introduction

Among the cultivated crop species, grapevine plays host to the greatest number of
distinct viruses [1]. Over 101 plant viruses from diverse families have been characterized in
this economically and culturally important crop [2,3]. The majority of viruses isolated from
grapevine have Vitis sp. as the only known host [2]. More importantly, most of the viruses
isolated from grapevine are associated with damaging symptoms, about half of which are
widespread [2].

A critical component of the management of these viral diseases is the identification and
subsequent removal of infected vines. This happens at the vineyard level, in quarantine
programs and at the production level. In particular, the establishment of virus-tested
foundation vine-stock as a resource for propagation is an essential component in the
production of quality planting materials and for the planting of healthy vineyards. Thus,
clean plant and quarantine facilities like Foundation Plant Services (FPS) are important
consumers of virus detection technology. Located at the University of California, Davis, FPS
is a USDA-APHIS-permitted grapevine importation center and maintains a virus-tested
collection of grapevine totaling more than 2400 selections. Each selection is rigorously
tested for pathogens before release from quarantine and inclusion in the collection.

1.1. Identification of Grapevine Virus Infections

The conventional serological and molecular methods for detecting viral infections
are enzyme-linked immunosorbent assay (ELISA) and Polymerase Chain Reaction (PCR),
respectively. These methods are widely considered sensitive, but they require prior knowl-
edge of the virus to develop. Because developing an ELISA is a time-consuming and
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expensive process, PCR is the more favored of the two but not without its own drawbacks.
PCR primers are highly sequence-specific; thus, developing a sensitive and specific PCR
assay requires detailed knowledge of both the genome and nucleotide diversity of the
target virus. The high sequence specificity of PCR primers makes designing assays for
diverse virus species a unique challenge [4]. It can also lead to false-negative test results in
the presence of unanticipated genetic diversity [5,6].

Biological indexing has been the standard in quarantine and regulatory programs for
decades; it has the ability to detect viral infections independent of specific knowledge of
the infecting virus, as is the case for novel viruses. This method involves the replicated
grafting of subjects onto indicator plants followed by years of expert monitoring for virus
symptoms. Biological indexing is expensive, time consuming, and subject to false-negative
results [7].

In this context, next-generation high-throughput sequencing technologies, i.e., HTS
technologies, have been widely adopted for their ability to quickly, broadly, and directly
characterize molecular sequences associated with the potential pathogen. The primary
advantage of HTS over the aforementioned methods is that deep sequencing provides a
detailed view of the infection status of the plant. Because the nucleotide sequence data
are available, taxonomic characterization can be accomplished in silico using approaches
that are much more robust to nucleotide divergence. Novel viruses can be identified and
characterized using translated comparisons that infer amino acid similarities over very
long evolutionary distances.

1.2. This Study

In this study, we empirically analyze the performance of high-throughput sequencing
as a diagnostic tool and make recommendations on its deployment for detecting known
and novel viruses in grapevine. Previous quality assessments and validation of sampling,
timing, internal controls and sample templates were completed by [8]. This study provides
a deeper look at the bioinformatics on which the diagnostics rely. Many of our recom-
mendations have been featured in the HTS bioinformatics workflow at FPS, which is the
ensemble method presented at the end of this paper.

Three widely used modalities for analyzing HTS data are characterized and compared.
First, the mapping of reads to a reference database, which requires a priori knowledge of
the virus species genome. Second, to facilitate the detection of novel viruses, we employ
a de novo assembly approach. Finally, we looked at a more recent metagenomic method
that relied on a database of taxonomically classified short k-length substrings (i.e., k-mers)
to taxonomically classify sequenced reads [9]. We evaluated these approaches using the
standard diagnostic performance criteria of sensitivity (the true positive rate) and specificity
(the true negative rate) [10,11].

2. Material and Methods
2.1. Grapevine Panel Selection

Our validation panel consists of 19 grapevine plants infected by a broad range of
common DNA and RNA viruses and viroids (Table 1). Eighteen virus-infected plants were
selected for this study because of their consistent use as positive controls for diagnostic
testing at FPS [12]. They are also proximally maintained in the Davis Virus Collection [13].
The panel also includes one virus-free sample that is only infected with Hop stunt viroid (cv.
‘Ganzin’) maintained as a rootstock in a foundation vineyard at FPS. All vines were tested by
HTS and real-time reverse transcription quantitative PCR (RT-qPCR) or qPCR, as described
previously [5,14]. The phytosanitary status of these plants is given in Supplementary
Table S1.
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Table 1. Composition and number of independent occurrences of virus and viroid infections in our
grapevine validation panel. For this study, we considered PCR-confirmed infections to be “real”
positives. N = number of panel samples.

Virus Acronym N  Virus Acronym N
Arabis mosaic virus ArMV 2 Grapevine roditis leaf discoloration-assoc. virus ~ GRLDaV 1
Grapevine asteroid mosaic assoc. virus GAMaV 3 Grapevine rupestris stem pitting-associated virus ~ GRSPaV 15
Grapevine badnavirus 1 GBV-1 1 Grapevine rupestris vein feathering virus GRVFV 7
Grapevine enamovirus 1 GEV-1 1 Grapevine virus A GVA 6
Grapevine fanleaf virus GFLV 1 Grapevine virus B GVB 5
Grapevine fleck virus GFkV 2 Grapevine virus D GVD 1
Grapevine Kizil Sapak virus GKSV 1 Grapevine virus E GVE 1
Grapevine leafroll-associated virus 1 GLRaV-1 3 Grapevine virus F GVF 4
Grapevine leafroll-associated virus 2 GLRaV-2 4 Grapevine virus L GVL 1
Grapevine leafroll-associated virus 3 GLRaV-3 9 Grapevine satellite virus satGVV 1
Grapevine leafroll-associated virus 4 GLRaV-4 8 Viroids Acronym N
Grapevine leafroll-associated virus 7 GLRaV-7 1 Hop stunt viroid HSVd 19
Grapevine polerovirus 1 GPoV-1 1 Grapevine yellow speckle viroid 1 GYSVd-1 17
Grapevine red blotch virus GRBV 1 Grapevine yellow speckle viroid 2 GYSVd-2 9
Grapevine Red Globe Virus GRGV 1 Australian grapevine viroid AGVd 5

2.2. TNA Extraction

Petioles and dormant canes were collected from the 19 vines in late May and October
(spring and fall), respectively. Petioles or cane scrapings (665 mg/sample) were processed
and spiked with 35 mg of leaf tissue from Phaseolus vulgaris endornavirus 1- and 2-infected
common bean to act as a positive control for extraction and library preparation (see [8]).
The spiked tissue was subsequently homogenized in 10 mL lysis buffer (4 M guanidine
isothiocyanate; 0.2 M sodium acetate, pH 5.0; 2 mM EDTA; 2.5% (w/v) PVP-40) using
a Homex grinder (Bioreba, Reinach, Switzerland) followed by TNA extraction with the
MagMax Plant RNA Isolation kit (ThermoFisher Scientific, Waltham, MA, USA), excluding
DNase treatment. TNA was quantified with the Qubit (ThermoFisher Scientific, Waltham,
MA, USA).

2.3. lllumina Library Preparation and Sequencing

For individual samples, a total of 700 ng per 10 uL of extracted nucleic acids was
subjected to rRNA depletion (only for TNA-based input) and cDNA library construction.
Later, cDNA libraries were end-repaired, adapter-ligated by unique dual indexes, PCR-
enriched, and used in two separate HTS runs. Finally, the amplicons were sequenced in an
Ilumina NextSeq 500 platform using a single-end 75 bp format. To reduce carryover from
the previous run, three washes were performed prior to sample loading.

2.4. In Silico Dilution Series

To increase the tested range of virus titers and investigate the limits of detection for
these methods, we created an extensive in silico dilution series. The reads from each fully
sequenced sample were randomly subsampled to create in silico subsampled replicates.
Sampling was performed without replacement until replicate dilution occurred or the
sequence was exhausted. For each sample, we created the following 32 subsampled
replicates (K = thousand reads): 150 K, 250 K, 500 K, 1000 K, 1500 K, 2000 K, 2500 K, 3000 K,
3500 K, 4000 K, 4500 K, 5000 K, 6000 K, 7000 K, 8000 K, 9000 K, 10,000 K, 11,000 K, 12,000 K,
13,000 K, 14,000 K, 15,000 K, 16,000 K, 17,000 K, 18,000 K, 19,000 K, 20,000 K, 21,000 K,
22,000 K, 23,000 K, 24,000 K, 25,000 K.

2.5. Sequence Processing

All llumina reads were demultiplexed using bcl2fastq v2.20.0.422. The tolerance for
barcode mismatches was set to 0 to reduce the possibility of crosstalk (or misidentified
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barcodes) between adjacent clusters on the flow cell. Adapter trimming is also performed
by bcl2fastq during demultiplexing. Where noted, we also evaluated the added utility of
using trim galore (v 0.6.7) as an additional adapter and quality trimming step.

Where noted, we performed a host genome screen by mapping sequenced reads
against a target database consisting of the grapevine (Vitis vinifera) reference genome
(GCF_000003745.3), mitochondrion (NC_012119) and chloroplast (NC_007957). Mapping
was conducted using bowtie2 [15], and all exact matches were filtered.

2.6. De Novo Assembly

Three commonly used de novo assemblers were evaluated for this project, namely
megahit (v1.2.9), developed at the Beijing Genome Institute [16]; trinity (v2.13.2), developed
at the Broad Institute and the Hebrew University of Jerusalem [17]; and spades (v3.15.4),
also known as the Saint Petersburg genome assembler [18]. In all cases, de novo assemblers
were run with default values for a single-read (unpaired) Illumina sequencing protocol.
Assemblies were annotated using NCBI blastn, blastx, and DIAMOND blastx [19,20].

2.7. Read Mapping

INlumina reads were mapped to virus and viroid sequence databases using bowtie2
(v2.4.2) software [15]. Bowtie was run in two variations: with default parameters for
unpaired reads and also in very sensitive local mode (bowtie2-very-sensitive-local), which
allows for more divergent partial alignments using a local alignment algorithm with a
scoring methodology that reduces the penalty for mismatches and gaps. Where noted, the
pathoscope? software package (v2.0.6) [21] was employed to reassign multi-mapped reads
using the very sensitive local bowtie2 output, as described by the Pathoscope 2 method [21],
and implemented for detecting plant viruses in [22].

2.8. Taxonomic Read Classification Using k-Mers

We used the program kraken2 [9] to perform read-based taxonomic classification.
Reads were taxonomically classified using a database of taxonomically classified k-mers
constructed using a kraken2-build from the GenBank non-redundant nucleotide database.
Classifying reads using kraken2 is the most memory intensive method employed in this
study due to the size of the database, and kraken2 can only be run on a computer with at
least 1 Tb of ram installed. After reads were classified, read counts for each taxon were
compiled by adapting the method provided in the KrakenTools software suite v1.2 [23] to
sum reads over all taxon ids associated with a virus (Supplementary Table S1). A sample
was considered a positive for a virus or viroid if it met the minimum read count threshold
for the associated taxon (Supplementary Table S1); otherwise, it was considered negative.

3. Results
3.1. Samples and Sequencing

For this study, we relied on a validation panel consisting of 18 virus-infected grapevine
samples and one additional grapevine sample free of virus infection but infected with Hop
stunt viroid. The 19 selected samples represented a broad range of common DNA and RNA
virus and viroid infections (Table 1; Supplementary Table S1) which have been confirmed
by PCR. Two independent tissue and timepoint replicates were taken from each grapevine:
spring petioles and fall canes (Table 2).

Our 38 replicates were sequenced to a minimum target depth of 20 million reads using
a 75 bp single-end (one read per molecule) Illumina protocol. This was performed across
two flow cells, resulting in 903 million reads total, in line with the per flow cell yield of
450 million reads we typically see at FPS for this protocol. For these samples, we obtained
24 million reads on average, with all but two of the 38 replicates exceeding 20 million reads.

For a robust comparison of methods, and to ascertain limits of detection, each indepen-
dent sample was subsampled at 32 different dilution levels (see materials). This resulted
in 1216 in silico dilution replicates, with the goal of having a similar sequencing depth for
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each replicate in a two orders of magnitude dilution series (Table 2). After this step, the
total number of reads analyzed increased from 903 million to 12.4 billion. The in silico repli-
cates were then processed through a second round of adapter and quality trimming—the
first round having already occurred during the demultiplexing step. Consistent with the
high-quality adapter-free dataset that emerged from Illumina’s bcl2fastq software, few data
were lost during this phase. We observed a 0.02% reduction in the number of reads and a
0.7% reduction in the total number of bases in the dataset. Subsequent to this, an additional
dataset was created with host-screened reads. Our libraries are constructed from total RNA
and are expected to contain a substantial amount of RNA originating from the genome of
the host, even after employing a hybridization-based ribo-depletion step during library
construction. In this dataset, a majority of the data (67.7% of reads and bases) was identified
as similar to, and thus likely transcribed from, the host nuclear and organelle genomes.

Table 2. Sample, sequencing and filtering data.

Independent Grapevines 19
Independent Samples 38
Average number of reads sequenced 24  million average
Total number of reads sequenced 903  million total
Average number of bp sequenced 1.77  billion bp average
Total number of bp sequenced 67.2  billion bp total
In silico Subsampled Replicates
Number of subsamples 32 persample
1216  total
Number of reads sampled 12.4  billion total
Number of bp sampled 924.6  billion total

Adapter and Quality Trimmed
Number of trimmed reads 12.4 billion total
0.02% % reduction
918.2  billion total
0.70% % reduction

Host Filtered
Number of reads post filter 4.0 billion total
67.73% % reduction
Number of bp post filter 296.4 Dbillion total

67.72% % reduction

3.2. Read Mapping for Virus Detection

For read mapping, we evaluate three target sequence databases of increasing size and
generality. The smallest and most specific is a database of reference genomes of grapevine
viruses (Ref-GV) which contains only a single reference genome for each grapevine virus
and viroid in our study (Supplementary Table S2). These sequences primarily come from
the NCBI RefSeq database or GenBank (when a RefSeq entry does not exist). All segments
of the virus are represented in this database, but only one isolate or variant is chosen for
each virus—therefore, genetic diversity is not captured. To capture viral genetic diversity
in the database, we used a database consisting of all sequences for each grapevine virus
and viroid deposited in GenBank, as identified by their taxonomic ID (NT-GV). Finally,
for the broadest scope, we used the entire viral division of GenBank (NT-Viral). We were
unable to evaluate all of GenBank in this study due to the excessive computational cost.

For each of the given databases, we evaluated three mapping approaches. The widely
cited bowtie2 was examined as a representative of a short-reads mapping approach. We also
evaluated the pathoscope2 software package, which uses a Bayesian approach to reassign
multi-mapped reads to the most likely (minimal) taxonomic distribution. Because the
pathoscope algorithm uses bowtie’s very sensitive local output (bowtie2-vsl), we evaluated
that method separately so we could separate the utility of the more sensitive mapping
algorithm from taxon assignment.
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Finally, we evaluated the utility of host screenings in this context by performing
mapping with and without a host screening. For each approach, diagnostic statistics were
calculated using a minimum read count of 20 and a minimum coverage of 200 bp, chosen
as a one-size-fits-all cutoff averaged over all dilution samples (Supplemental Figure S2).
The results are summarized in Table 3.

Table 3. Summary of diagnostic statistics for three popular read mapping algorithms using three
databases. Both host-screened and unscreened reads were considered. Statistics are averaged over all
in silico replicates sampled to a depth of at least 15 million reads. The observed trends are consistent
with all in silico replicates.

Algorithm Database Host Screened Truei{I’a(:zitive FalseI-{l;(t):itive False-Ii\:l ttaegative True-Illetiative
bowtie2 91.49% 0.55% 8.51% 99.45%
bowtie2-vsl Ref-GV 92.25% 0.54% 7.75% 99.46%
pathoscope2 92.25% 0.48% 7.75% 99.52%
bowtie2 94.11% 2.41% 5.89% 97.59%
bowtie2-vsl NT-GV yes 94.18% 2.39% 5.82% 97.61%
pathoscope2 88.53% 2.25% 11.47% 97.75%
bowtie2 95.39% 1.05% 4.61% 98.95%
bowtie2-vsl NT-Viral 95.97% 1.04% 4.03% 98.96%
pathoscope2 92.22% 1.00% 7.78% 99.00%
bowtie2 91.63% 0.58% 8.37% 99.42%
bowtie2-vsl Ref-GV 92.15% 0.55% 7.85% 99.45%
pathoscope2 92.15% 0.48% 7.85% 99.52%
bowtie2 94.46% 2.53% 5.54% 97.47%
bowtie2-vsl NT-GV ne 94.28% 2.72% 5.72% 97.28%
pathoscope2 89.15% 2.45% 10.85% 97.55%
bowtie2 95.66% 1.25% 4.34% 98.75%
bowtie2-vsl NT-Viral 96.42% 1.21% 3.58% 98.79%
pathoscope2 92.18% 1.11% 7.82% 98.89%

Mapping Algorithm. For all but one combination of host screening and database,
bowtie2-vsl performed optimally or co-optimally in terms of sensitivity (TPR); the only
exception was NT-GV with no target host screening, where bowtie2 performed slightly
better (delta TPR 0.18%). For all combinations of host screenings and databases, patho-
scope2 performed optimally in terms of specificity (TNR). The pathoscope2 algorithm
worked best on the database of grapevine virus reference genomes, similar to how it is
deployed in [18]. In these two cases (with and without host screening), the reassignment of
reads maintained sensitivity and increased specificity.

Database Choice. For the bowtie algorithms, the single-reference database performed
less optimally in terms of sensitivity (TNR). We observed an increase in sensitivity and a
decrease in specificity when moving to NT-GV, which incorporates more genetic diversity.
Moving to NT-Viral, there is a slight increase in sensitivity (TPR) and specificity (TPR). The
pathoscope algorithm performed optimally in terms of sensitivity and specificity on the
single-reference database (Ref-GV), suggesting that the larger, less curated databases may
confound the Bayesian assignment algorithm.

Host filtering. For all mapping algorithms, the unscreened reads performed the best in
terms of sensitivity for the larger databases. If the goal is maximum sensitivity, mapping
unscreened reads against a database incorporating genetic diversity (NT-GV and NT-Viral)
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performed best. On the flip side, the host-screened data mapped against the single-reference
database (Ref-GV) using pathoscope2 had the best specificity.

Sequencing depth. The in silico dilution series was employed to determine a recom-
mended sequencing depth. Using that data, we performed a limit of detection style analysis
by plotting sensitivity (TPR) against sequencing depth (Supplemental Figure S1). The result
for pathoscope against Ref-GV is included in the ensemble analysis (Section 3.6). The
curves have an asymptotic quality, and, at 15 M, an obvious flattening of the curve occurs,
a notable feature of all detection methods. We observed diminishing returns by 15 M reads,
with sensitivity improving at only 1% per 5 million reads (Supplemental Figure S1).

3.3. De Novo Assembly for Virus Detection

We also looked at methods for de novo assembly of the overlapping reads from
a metagenome and subsequent annotation of the resulting consensus sequences. The
assembled genome consists of fewer but longer consensus sequences (contigs) that should
allow for longer, more divergent homologies to be ascertained and for more computationally
intensive annotation methods. Figure 1 shows the averaged diagnostic statistics and a limit
of detection analysis for our de novo assemblers.

The results presented in the Figure 1 table suggest that, if one wanted to choose a
single assembler for optimal sensitivity, it would be spades, which has the highest average
TPR for the three assemblers evaluated over all 1216 in silico dilutions. The averaged results
also support the idea that host screening may lead to higher sensitivity and specificity in a
de novo assembly context. This is true for all three assemblers individually and averaged.
A secondary benefit of host screening, for trinity in particular, is that it made the assembly
much more tractable—as noted by a substantial decrease in runtime.

The limit of detection analysis shows the performance of each assembler with a host
screening implemented as the number of reads sequenced is reduced. In regard to averaged
overall sampling depths, the spades assembler performs the best in terms of sensitivity;
however, it did not always maintain that rank for all sampling depths. For example, megahit
performed best at the sampling depth of 6 million. The heuristic nature of assemblers
suggests that trying more than one assembler on a dataset could be used to improve results.
Indeed, we combined the results of the best two and three assemblers, such that a positive
for one is a positive for the combination, to quantify this improvement. The shape of the
curves in the LOD analysis also suggests diminishing returns in regard to sensitivity as the
sequencing depth increases past 15 m reads, at which point the curves flatten out.

3.4. Comparing Annotation Methods

We evaluated tractable variants of BLAST [19] to annotate the contigs obtained from de
novo assembly. In all cases, we used the appropriate GenBank non-redundant nucleotide
(nt) and protein (nr) databases to annotate our sequences over a wide taxonomic range.
This analysis was confined to the spades assembler after being identified as the single
best option.

For annotating known viruses and viroids, NCBI blastn was employed. Overall, in
silico subsamples of 15 million reads or more, the average sensitivity (TPR) was 92.18%. It
was only slightly easier to detect viruses than viroids (delta TPR < 1%). This is probably
due to their short lengths and the circular nature of viroid genomes.

For detecting novel viruses, we evaluated two tractable methods for translated
searches. Both methods performed equally well in this study. In all the 1216 in silico
replicates, the algorithms only differed in two annotations, both from in silico replicates
with fewer than 15 million reads. Surprisingly, for replicates with 15 million or more reads,
the results were identical (Table 4).
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Limit of Detection for Three Denovo Assemblers
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Assembler Screened True-Positive Rate False-Positive Rate False-Negative Rate True-Negative Rate
megabhit 80.80% 0.14% 19.20% 99.86%
trinity 82.30% 0.17% 17.70% 99.83%
es
spades Y 82.93% 0.18% 17.07% 99.82%
average 82.01% 0.16% 17.99% 99.84%
megabhit 80.59% 0.62% 19.41% 99.38%
trinity 82.37% 0.68% 17.63% 99.32%
no
spades 82.66% 0.68% 17.34% 99.32%
average 81.87% 0.66% 18.13% 99.34%
spades + trinity 86.81% 0.20% 13.19% 99.80%
ini es
spades + trinity Y 87.36% 021% 12.64% 99.79%
+ megahit

Figure 1. (top) Limit of detection style plot of sensitivity (TPR) over different in silico dilution levels.
(bottom) Summary of diagnostic statistics for three popular de novo assemblers and two ensembles
over all 1216 in silico replicates. Both screened and unscreened reads were considered for the
individual assemblers.

For detecting known viruses, blastn (TPR = 91.98%) is only slightly more sensitive than
blastx (TPR = 91.92%). We expected larger differences due to the different alphabet sizes
and scoring methods. We expect that these differences would become more pronounced for
novel viruses as the level of divergence becomes higher and blastn is no longer effective.
Not surprisingly, blastx is not suited for detecting viroids, so this comparison was only
undertaken for viruses.
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Table 4. Summary of diagnostic statistics for different BLAST annotation algorithms with their
appropriate GenBank non-redundant databases. The diagnostic statistics are averaged over all in

silico replicates sampled at a depth of at least 15 million reads.

False-Positive

False-Negative

True-Negative

Algorithm Detecting True-Positive Rate Rate Rate Rate
blastn nt Viruses + Viroids 92.18% 0.25% 7.82% 99.75%
blastx GV + NR Viruses + Viroids 57.16% 0.24% 42.84% 99.76%
diamond NR Viruses + Viroids 57.16% 0.24% 42.84% 99.76%
blastn NT Viruses 91.98% 0.32% 8.02% 99.68%
blastx GV + NR Viruses 91.92% 0.31% 8.08% 99.69%
diamond NR Viruses 91.92% 0.31% 8.08% 99.69%
blastn NT Viroids 91.36% 1.92% 8.64% 98.08%
3.5. k-mer Methods for Virus Detection
We used the program kraken?2 to perform virus detection using taxonomically clas-
sified reads using a database of taxonomically classified k-mers constructed from the
GenBank non-redundant nucleotide database. A virus positive was determined if a specific
read threshold is reached. The histogram in Figure 2 plots the number of taxonomically
assigned reads associated with both true- and false-positive results in the in silico dilution
data. From that plot, we assumed that 35 reads, the place where the TPR and FPR rates
are roughly equal, would offer a good balance of sensitivity and specificity. The summary
diagnostic statistics are presented in the Figure 2 table. The kraken2 algorithm performed
nearly as well in terms of overall sensitivity as the best read mapping technique but with
higher specificity, implying that it may actually perform better if the threshold was relaxed.
The kraken?2 algorithm performs better than de novo + blastn in terms of sensitivity at the
expense of specificity.
Kraken2 Genbank
160 -
140
120 A
100 A
€ [ True Positives
é 80 False Positives
60
40
20 4
IS e — , |
0 20 40 60 80 100
totalreads
Algorithm Detecting True-Positive False-Positive False-Negative True-Negative
Rate Rate Rate Rate
kraken2 NT Viruses + Viroids 95.76% 0.63% 4.24% 99.37%
kraken2 NT Viruses 94.22% 0.70% 5.78% 99.30%
kraken2 NT Viroids 97.18% 1.92% 2.82% 98.08%

Figure 2. (Top) Histogram showing the number of taxonomically assigned reads associated with

both true- and false-positive results in the in silico dilution data. (Bottom) Summary diagnostic

statistics for the kraken2 method averaged over all in silico replicates sampled at a depth of at least

15 million reads.
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3.6. Ensemble Methods

We evaluated the diagnostic performance of two ensemble methods in the context of a
limit of detection analysis (Figure 3). A de novo assembly (spades + blastn + blastx) and read
mapping (pathoscope2 + Ref-GV) method were combined logically by considering a sample
positive for a viral agent if either method produced a positive result and negative only if
both methods produced a negative result. This logic implies that the sensitivity can not
decrease, since the ensemble set of positives is the union of the individual methods. Indeed,
this is reflected in the results where the ensemble method is more sensitive (TPR = 95.9%)
than both individual component methods (TPR = 92.18%) for de novo and (TPR = 92.25%)
for read mapping. The price we pay for this increase in sensitivity is a decrease in specificity
(TNR = 99.2%), as the ensemble set of false positives is the union of the false positives from
the individual methods.

Limit of Detection Analysis

1.0
B —
0.9 -
0.8 -
0.7 -
2
2 0.6
2
&
0.5 4
0.4 - —— DENOVO
—— MAP
0.3 4 —— DENOVO+MAP
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de novo assembly and
v Y ANE Viruses + viroids 95.87% 0.80% 4.13% 99.20%
read mapping
d , ing, . .
¢ NOVO MAPPIE i1 ises + viroids 96.52% 0.95% 3.48% 99.05%

and k-mer methods

Figure 3. Ensemble methods. (Top) Limit of detection style plot of sensitivity (TPR) of the individual
methods and the two ensemble methods over the different in silico dilution levels. (Bottom) Summary
of diagnostic statistics for two ensemble methods averaged over all in silico replicates sampled at a
depth of at least 15 million reads.

We extended our ensemble analysis to evaluate the ensemble of three methods: de
novo, read mapping, and the kraken2 k-mer method. For this ensemble, a sample was
considered a positive if any of the three methods produced a positive. By adding a k-
mer method, sensitivity increased by a further 0.7% to an ensemble TPR of 96.52%, with
specificity modestly decreasing by 0.2% to an ensemble TNR of 99.05%.

The limit of detection analysis illustrates that the ensemble methods particularly
outperform the individual methods with dilutions of 5 million reads or less, which is
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notably less than a single order of magnitude from our target depth. We speculate the
sensitivity gained by using an ensemble method to be even higher for low-titer infections.

4. Conclusions

In this paper, we compared the performance of multiple methods for ascertaining
virus positives in grapevine using high-throughput sequencing (HTS). HTS promises to
be an improved diagnostic technique for screening plant material and limiting the spread
of material containing harmful viruses. It has been reported that HTS-based detection
methods can perform at least as well or better than conventional biological and molecular
methods under specific circumstances.

Previous studies have investigated different aspects of HTS performance criteria. Ex-
traction protocols and sequencing platforms were investigated in [24,25]. Different nucleic
acid templates were investigated in [25-27]. Bioinformatics pipelines have been inves-
tigated [25-27]. In this study, we evaluate the performance of different bioinformatics
approaches for detecting both known and novel viruses in a diagnostic setting. We also
evaluate ensemble approaches that can accomplish both. Finally, we make recommenda-
tions based on the findings in this study as well as the experience gleaned from processing
thousands of individual samples [7].

4.1. Read Mapping Approaches

We believed that read mapping would always be a more analytically sensitive ap-
proach to detecting known viruses than de novo assembly. Theoretically, fewer reads are
required to identify a positive compared to approaches that rely on de novo assembly to
first construct a consensus sequence from multiple overlapping reads before classification
can occur. Indeed, we have many anecdotes of PCR positives that are confirmed by a very
small number of mapped HTS reads. When we employed cutoffs of 20 reads and 200 bp
coverage, the read mapping method was not more sensitive or analytically sensitive than
de novo, at least for known viruses. To obtain higher analytical sensitivity than de novo,
we suggest lowering the minimum number of reads.

Our results showed that selection of the target database for read mapping is important.
A single reference genome is not able to incorporate the high genetic diversity found in
virus species. Target databases incorporating more than one reference genome per species
outperformed target databases incorporating just a single reference in terms of sensitivity.
We also showed that specificity can be increased by using the Pathoscope2 read-assignment
technique. Pathoscope2 works by reassigning multi-mapped reads to a minimal number
of virus species. This helps to reduce the number of false positives. The results suggest
a tradeoff between diagnostic sensitivity (robustness to genetic variation) and analytical
sensitivity (limit of detection). The high-quality single-reference database (Ref-GV) offers
higher analytical sensitivity than the larger uncurated (NT-Viral) because the read cutoff
can be lowered to achieve the same level of specificity.

4.2. De Novo Assembly Approaches

De novo assembly is important for identifying novel viruses. FPS researchers have
discovered or supported the discovery of 35 novel viruses by employing de novo assembly
followed by translated BLAST annotation [7]. However, de novo assemblers are very much
heuristic methods which may be optimized for different scenarios. Our assessment of three
de novo assemblers (for rnaSeq and metagenomic datasets) showed that choice of de novo
assembler is an important consideration in terms of determining sensitivity. Spades and
trinity performed clearly better than megahit at low coverage. Indeed, because assemblers
may be optimized to different scenarios, running more than one offers additional sensitivity
at the price of specificity and computation time. This is something we routinely perform to
obtain better assemblies from a dataset (e.g., [28]).
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Our results showed that identifying novel viruses (blastx vs. GenBank) is nearly as
sensitive as identifying known viruses (blastn vs. GenBank). This is promising for the use
of HTS as a replacement for biological indexing as a phytosanitary diagnostic tool [5,7].

Running NCBI blastx against GenBank was too computationally intense to evaluate
for this study. We looked at two tractable alternative approaches that performed equally
well. The first involved using a small database of virus proteins to obtain presumptive
positives. The much smaller list of presumptive positives is then screened against GenBank
using NCBI blastx. The second method uses DIAMOND blastx, a faster implementation of
the NCBI translated search algorithm.

4.3. k-mer Database Approaches

The kraken2 k-mer method was a surprising standout, though it requires extensive
computational and memory resources. While the method relies on exact substring matches,
it can incorporate the genetic diversity of a virus by using a large target database (in
this case, all of GenBank). The k-mer method was sensitive and also more specific than
read mapping. We routinely filter spurious low-complexity matches to viral sequences
when employing the read mapping approach. We also routinely filter misidentified and
artifactual GenBank sequences (e.g., a series of host sequences amplified using degenerate
primers and wrongly annotated as citrus exocortis viroids, as described in [29]). These
types of sequences may be precluded from being assigned to a specific virus in the k-mer
database due to their taxonomic ambiguity. What the method lacks is a consensus sequence
that would allow for a better follow up, but this could be added by subsequent mapping or
de novo assembly of the classified reads.

5. Recommendations

An ensemble is best. In general bioinformatics, tools are implemented as heuristic
methods. That is, they are different ad hoc approaches used to solve a problem where
the well-defined optimal solution may be intractable or may not exist. Each heuristic
implementation gives slightly different results. In our diagnostic setting, we can exploit
these implementation differences by combining assembly methods to achieve greater
sensitivity. Translated annotation is required for sensitive detection of novel viruses;
however, it is not a replacement for nucleotide methods that can detect untranslated
homologies and are efficient enough to use on individual reads with potentially greater
sensitivity. In this study, this recommendation is exemplified by the performance of the two
ensemble diagnostics evaluated, which both yielded a higher level of diagnostic sensitivity
than all individual methods.

The more computational work you can put in, the greater the sensitivity. This is not only a
corollary of our first recommendation but also follows from the observation that the best
annotation tools tend to be the most computationally expensive. For read mapping, the
slower, more sensitive algorithm combined with a larger target database incorporating
genetic diversity performed best. For de novo assembly, multiple assemblers may be
run for improved performance, and expensive translated searches offer the potential to
sensitively detect novel viruses. The k-mer method was the most sensitive technique for
known viruses evaluated but it requires the largest computer to run.

Curation improves diagnostic accuracy. It is our experience at FPS that expert curation can
be used to dramatically improve specificity over the numbers observed in this study. This is
because these methods ascertain molecular sequences that can be further investigated by an
expert. Curation can investigate homologies at the sequence and database level, ensuring
the annotation is specific to the putative virus. Furthermore, it can be investigated at the
literature level to determine the level of confidence and, likely, the host range of the virus
homolog. Thus, specificity can be sacrificed somewhat for sensitivity. In our phytosanitary
context, HTS is considered a presumptive test—largely due to the possibility of sample
contamination. Presumptive positives will be followed up using PCR on an independent
sample from the plant at a different time [7,8].
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The molecular protocol is a limiting step. When positives are determined by a very
small number of reads, it is important to use a sequencing protocol that is robust to cross
contamination. For example, [llumina platforms can be prone to cross contamination within
a multiplexed run by the misidentification of the attached barcode sequences and between
runs via sample retention in the fluidics system [30]. We reduce this possibility using
96 dual index barcoding. Barcode pairs are more robust to misidentification within a run
and allow for more infrequent re-use between runs. In the [llumina Nextseq, we employ
additional washing steps to reduce carryover between runs. Finally, we note that a good
ribo-depletion step is required to remove a large amount of unwanted material that would
otherwise be sequenced. We note that our recommended sequencing depth is dependent
on how efficient ribo-depletion is.

For our specific ribo-depleted grapevine HT'S protocol we recommend: (1) Sequence to at
least 15 million reads. The limit of detection analyses suggests diminishing returns after
that point. (2) Host screening of the data upfront leads to improved sensitivity for de
novo assembly. Since a majority of the reads are removed during this step, different hosts
and ribo-depletion protocols may affect performance. (3) If employing a single de novo
assembler, use spades followed by blast against the GenBank non-redundant nucleotide
and protein databases. (4) For maximum sensitivity, employ the most sensitive approach
available for mapping individual reads against a database that incorporates the known
genetic diversity. In our study, this was bowtie2 using the very-sensitive local mode against
the complete viral division of GenBank. Summing reads over taxa using a minimum depth
cutoff of 20 and a minimum coverage cutoff of 200 bp removed the vast majority of false
positives. We reduce those cutoffs when employed as a confirmatory test. (5) For highest
sensitivity, use a read mapping method, de novo assembly and a k-mer method as a third
check and a confirmation. In our study, 35 reads would be appropriate as a standalone test
using kraken2 and could be reduced as a confirmatory test.

In conclusion, HTS has become a critical component of the management of grapevine
viral diseases. It is distinct from previous widely deployed methods in that it benefits from
but does not rely on previous characterization of the viral agent. This allows for sensitive
detection of known viruses with the possibility of detecting novel viruses. In this paper,
we empirically evaluated different bioinformatic tools for detecting viruses in HTS and
reported our recommendations on its implementation in a phytosanitary setting. At FPS,
we have implemented the ensemble method of de novo and read mapping (Section 3.6)
since 2016. Because the diagnostic is inherently presumptive, we focus primarily on
maximizing sensitivity. Because the protocol directly determines molecular sequences for
a putative viral agent, it lends itself well to additional expert evaluation and follow up
experimentation.
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