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ABSTRACT OF THE DISSERTATION

Optimal Variance Estimation for a Multivariate Markov Chain Central Limit Theorem
by
Ying Liu
Doctor of Philosophy, Graduate Program in Applied Statistics

University of California, Riverside, March 2017
Dr. James M. Flegal, Chairperson

Markov chain Monte Carlo (MCMC) methods are often used in Bayesian analysis to ap-
proximate expectations with respect to a target distribution. Monte Carlo standard errors (MCSEs)
can be used to determine the desired number of dependent samples, as well as to construct confi-
dence intervals of MCMC estimates. Various techniques have been suggested to estimate MCSE,
but a fundamental problem is to choose an appropriate bandwidth. Previous research shows that a
bandwidth proportional to n'/3 is optimal for certain estimators, however the proportional constant

3

is unknown. As a result, n'/3 is suggested although sub-optimal due to the missing proportional

constant. In practice, n!/?2

was also considered to account for the constant but its asymptotic perfor-
mance is worrisome.

Existing literature almost always considers the above issues under univariate settings but
Bayesian analysis normally involves multiple parameters. Computation time is a major challenge
to estimate multivariate MCSE, where large amount of dependent samples are involved. Therefore
multivariate estimators of MCSE that delivers fast and accurate estimation is desirable.

This dissertation addresses the above two problems. I consider a family of estimators and

established conditions under which their mean squared consistency exist. The results have a direct

Vi



application in bandwidth selection and also suggests a bandwidth proportional to n'/3. The propor-
tional constant can be obtained based on the proof of mean squared consistency. I further suggest to
approach the proportional constant with a pilot estimate. The suggested bandwidth shows superior

1/2 The above results are

performances compared with the commonly used bandwidth n'/3 or n
established under multivariate setting which not only covers the long-standing univariate bandwidth
selection problem, but also brings up the multivariate question with a solution.

To tackle the computational problem in multivariate setting, I propose a family of new

estimators and prove strong consistency of these estimators. The new estimators are fast to compute

and have comparable performances to spectral variance estimators with a slightly inflated variance.
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Chapter 1

Introduction

Bayesian analysis provides a framework that combines data with available information
when making statistical inferences. Under such a framework, parameters are treated as random
variables and analysis is made based on the posterior distribution of interested parameters. Poste-
rior expectation is commonly used as a point estimate of the parameter. Obtaining such an expecta-
tion requires complex and often high-dimensional integrals. If independent samples from posterior
distribution are available, a sample mean can be used to approximate the integral via Monte Carlo
methods. However in most of the cases, obtaining independent samples from a posterior distribution
is challenging. Markov chain Monte Carlo (MCMC) methods have been extremely popular under
these settings and the integral can be approximated by dependant samples from a Markov chain with
an invariant distribution equal to the posterior distribution.

Let F be the target posterior distribution with support X € R? and g : X — R” be a F-

integrable function. Suppose we are interested in estimating the p-dimensional vector

6::Epg:/xg(x)dF.



Consider the case where independent sampling from posterior distribution F is challenging, but
one can obtain a Markov chain with invariant distribution F. Hence, 0 can be approximated using
dependent samples from the Markov chain. To this end, Let X = {X;,7 > 1} be a Harris ergodic

Markov chain with invariant distribution ¥, then with probability 1,

n

1
On::fZg(X,)HGasn%oo.

=
The Monte Carlo error, 8, — 0, reflects the accuracy of the estimator and the sampling distribution is
available via a Markov chain central limit theorem (CLT). That is, if there exists a positive definite

symmetric matrix ¥ such that
(6, —6) % N,(0,%) as n — oo. (1.0.1)

Using the CLT (1.0.1) requires estimation of X, which is difficult since it captures the covariance

structure in F and the covariance due to the dependent sample, that is,

5 = Varr (g(X))) + zl [Covr (8(X,), 8(Xs1s)) + Covr(g(X,), g(X )]

¥ is usually unknown and a good estimate ¥ is essential to construct confidence regions
for 6 and further to terminate a simulation. This dissertation focuses on problems related to 3
under multivariate settings. As I will show in chapter 2 how to obtain reliable estimates of X. |
will also introduce a family of £ that are fast to compute in chapter 3. Given £, various stopping
rules have been established. Jones et al. (2006) suggest a fixed-width stopping rule (FWSR) under
univariate setting, which terminates the chain the first time a confidence interval of the estimate is
sufficiently small. Jones et al. (2006) and Flegal et al. (2008) show that FWSR is superior than visual
inspections and convergence diagnostics. FWSR requires a pre-specified value € as the threshold

when comparing confidence interval width. Flegal and Gong (2013) advocate relative standard



deviation FWSR that terminates the chain when uncertainty caused by computation is relatively
small compared with posterior uncertainty of 8, hence eliminates the specification of €. Gong and
Flegal (2015) further establish relative standard deviation FWSR based on the diagonal element
of ¥ in high-dimensional settings. Vats et al. (2015a) also addressed the multivariate termination
rule utilizing all entries of X. We first introduce univariate FWSR and relative standard deviation
stopping rules, which apply to the cases where 0 is univariate. It is also related to the diagonal terms
of ¥, hence can be used for multivariate terminations.

If conditions to guarantee a univariate Markov chain central limit theorem is satisfied so
that

(6, — 6) % N(0,62) as n — oo (1.0.2)

where 62 = Varp(g(X;)) +2Y , Covr(g(X;),8(Xi+s)), which are the diagonal terms of ¥. Given
an estimate of 6 say 62, FWSR Glynn and Whitt (1992); Jones et al. (2006) terminates simulation

at

ti(e) =inf{n > 0: 22526 //n+p(n) < €}

where € > 0 is the desired interval half-width and p(n) is a positive function that decreases mono-
tonically to ensure the simulation is not terminated prematurely in case 67 is poorly estimated. A
reasonable p(n) is to fix the desired minimum simulation effort n* > 0 and take p(n) = €l(n < n*).

Covariance due to sample dependence and posterior variance both contribute to 6. De-
note A2 the posterior variance of 6, then seperating A2 from ¢ enables one to terminate the chain
according to uncertainty caused by computation. Suppose A2 is an estimator of A2, Flegal et al.

(2008) consider the relative FWSR that terminates the simulation when the length of a confidence



interval of 6, is less than a eth fraction of A2
n(e) =inf{n > 0:225/,6/\/n+ p(n) <el.}

The benefit of using #, is that only a fraction is selected hence it can be used in all settings regardless
of various magnitude of the parameter.

The above two stopping rules apply to univariate parameter 6. The following two stopping
rules consider multivariate 6. Let 6; be the ith element of 6 and 6, ; be the corresponding sample
mean. Denote A7 the posterior variance associated with 6; and its estimate is denoted by iiz. If for

each 6;, univariate CLT (1.0.2) exists, that it there exists a finite constant ¢; such that
d
V(6 —6;) 5 N(0,67) as n — oo,

then the multivariate Markov chain can be terminated if #, is satisfied for all 8;. Gong and Flegal

(2015) advocate the standard deviation FWSR which terminates the simulation at

Ti(e)= sup inf{n>0:2z5/,6;/v/n+ p(n) < eli}
{i=1,...,p}

Due to the cross-correlation among 6;, incorporating the off-diagonal elements for termi-
nation is reasonable. Let A be the posterior covariance matrix associated with 6. Suppose £ and A
are estimates of £ and A, repectively. 3 enables one to construct confidence region for 6 and denote
its volume as V. When (1.0.1) is satisfied, the relative standard deviation fixed-volume stopping

rule was suggested by Vats et al. (2015a), terminates a simulation at
T2(8) = inf{n > 0: Vl/p—}—n*1 < g|[A\|1/2P}'

The rest of this chapter is organized as follows. Batch means, overlapping batch means,

spectral variance estimation of £ are first introduced, together with a discussion of their relationship



and strong consistency. Existing bias and variance results of these estimators are then given, as
they are crucial to the optimal bandwidth selection of the estimators, which is addressed afterwards.
Then the computational challenge of high-dimensional problem is explained. Three examples used

throughout the dissertation are illustrated at the end of this chapter.

1.1 Commonly used estimators
Denote y(s) =Eg[(Y; — 0)(Yi+s— 0)], where ¥; = g(X;) and 6 = Erg. Consider estimating

6% = Varp(Y;) 42 i 7(s).

s=1

in univariate setting, which is equivalent to estimating of diagonal entries in X.
Batch means (BM) estimator assumes the independence of @ non-overlapping batch means.
Sample variance of these batch means are used to estimate 2, adjusted by batch length of . Sup-
pose the number of iteration equals to n = ab. For [ =0, ...,(a— 1), define ¥ =b~'Y?_, v},,,. BM

estimator is defined as

a—15

Non-overlapping batch means is a simplified version of overlapping batch means (OBM) based
on (n— b+ 1) batches with equal length. Define ¥;(b) = b~ 'Y? Y, , for [ = 0,...,(n — b), The

estimator is defined as

nb

n—b

Meketon and Schmeiser (1984) proposition 1 and 2 show that 6(2)BM is weighted average
of 6§M and their bias are equivalent. Overlapping of bacths in OBM reduces variance the BM es-

timator. Variance ratio of BM and OBM is 3/2, see Meketon and Schmeiser (1984) proposition 3



and Flegal and Jones (2010). As a result, 6(2)BM generates confidence intervals with less variability.
Welch (1987) analysed relationship between variance and the amount of overlapping batches. It
showed that estimator variance can be largely reduced with modest overlapping of batches, point-
ing a middle-ground between 63, and 63,,. Despite the variance reduction of OBM estimator, it
requires significantly more computation compared with 6'15%11/1- This computation is especially chal-
lenging under high-dimensional MCMC settings. Chapter 3 of this thesis introduces a new estimator
which is a batch means version of spectral variance estimator as a solution of computational burden
for high-dimensional problems.

Spectral variance estimator was applied in non-parametric spectral density estimation.
Since estimating o is tantamount to spectral density estimate at zero frequency Fishman (1978);
Welch (1987), they are also used to approximate 6> under MCMC settings. These estimators ap-
proximate an infinite summation of y(s) by truncated summation of sample auto-covariance (s).

Spectral variance (SV) estimator is defined as
) h—1
Gy = T(0)+2 ) wa($)9(s),
s=1

where

wp(s) is the lag window and b is the truncation point.

A popular SV estimator is Bartlett estimator with window function
wpe(s) = (1 —s/b)I(|s| < b).
Figure 1.1a shows the plot of wy, (s). The resulting estimator is

b—1
6j = 7(0) +2 ;(1 —s/b)¥(s).



Politis and Romano (1995) introduced a family of spectral variance estimators based flat top window
functions. These window functions are constructed from windows such as Bartlett window by
letting the function equal to 1 near zero. It was demonstrated by Politis and Romano (1995) flat top
window results in significant reduction of bias compared with SV estimator with original windows.

Flat top window constructed from Bartlett window wy; shown in figure 1.1b. It has the following

expression
b
1 f <=
or |s| 5
(s) = b
wri(s) =4 2(1—|s|/b) f0r§< Is| <b
0 for |s| > b

0
1.0

0.8

0.6

04
I

0.2

-b/2

0

b/2

(a) Bartlett 1ag window (b) Bartlett flat-top lag window

Figure 1.1 Bartlett 1ag window and Bartlett flat-top lag window with batch size b.

SV estimator with Bartlett window is known to be equivalent, except for some end-effect
terms, to overlapping batch means (OBM), see Meketon and Schmeiser (1984) proposition 5. Song
and Schmeiser (1993) establish properties such as non-negativity, location invariance, bias and vari-

ance of quadratic-form estimators including BM, OBM and Bartlett SV estimators. The quadratic



forms of OBM and Bartlett estimator also show that the two are equivalent asymptotically. Although
BM is a simpler version of OBM, it is not a SV estimator Song and Schmeiser (1993).

Estimation of X via multivariate batch means (mBM) has been discussed in Chen and
Seila (1987) and Charnes (1995). More recently, Vats et al. (2015a) provide necessary conditions
for strong consistency. Let ¥ = n~! Y' Yyandn=ab. Forl =0,1,...,a— 1, mean vector for batch

I is denoted by ¥;(b) = b~! Zf’: 1 Yip4+, where b is the batch size, then
) b o .
Zpm = —— 2 (Ni(b) = V) (¥i(b) = 7).

We also consider the following multivariate generalization of OBM. Let ¥;(b) = b~! Zf’zl Y1, there

are n — b batches of length b in multivariate OBM estimator with the following expression

. nb n—b+1 o o
Lobm = (nfb)(n—bJrl) Z;O (Yl(b)_Y)(Yl(b)_Y) :

Multivariate spectral variance (mSV) estimator is introduced by Vats et al. (2015b) along with con-
ditions on Markov chain and window functions to guarantee strong consistency. mSV is defined

as
b1
£ =700)+ ; wa () [7(s) +7(5)"],

where

Y NI ST i

t=1

7(s)

n

Strong consistency of the above estimators have been established by various author, indi-
cating that they are asymptotically correct estimate of . In paticular, Damerdji (1991) previously
established the strong consistency of 62 estimators by showing an equivalent expression of 62, con-
verges to 62, and that the difference between them goes to 0. Strong invariance principle is used

to build connection between Brownian motion and {X, }, thus convergence was established based



on Brownian motion results. Flegal and Jones (2010) weakened the uniformly ergodicity condition
required by that of Damerdji (1991, 1994) and proved strong consistency of 62 under geometrically
ergodicity and other conditions that are easy to verify. Strong consistency of 63,, and 63, were
addressed by Damerdji (1994) under uniformly ergodicity. Jones et al. (2006) lemma 2 povides
uniformly and geometrically ergodicity conditions required by strong invariant principle, hence
strong consistency of 62,, can be relaxed to geometric ergodicity. Flegal and Jones (2010) further
estabished strong consistency of 63,, and 6£BM under geometrically ergodicity. Strong consistency

of multivariate SV estimator £, was shown by Vats et al. (2015b).

1.1.1 Bias and Variance

Bias of 62, and 6p,, were considered by Chien et al. (1997); Goldsman and Meketon
(1986); Song and Schmeiser (1993, 1995) based on the following theorem.
Theorem 1. (Chien et al., 1997) Suppose process {X;} is stationary and ¢ —mixing with

E[X{?] < e and ¢ = O(k~°). Consider the case where E(X;) = 0.

El63u] = E (aflazlm—fff)

1=0

b C o o
= —F l;x, —aX

ab o2 o2
= (Var(X/) — Var(X?))

a—1
o, (a+1)C 1
ot o)

where I'= —2Y"77 | s7(s).



Definition of ¢ —mixing is in appendix 1.B. The mixing condition requires a chain to be

uniformly ergodic Flegal and Jones (2010). From theorem 1,
r 1
Bias(63,,) = — —.
ias(Gpy) 5O <b>

Song and Schmeiser (1995) proposition 2 and Song and Schmeiser (1993) equation (14)-(17) show

the same bias results for 63,, and 63, under certain conditions, that is

lim  bn-Bias(6p,/n) =T,
b—so0, n/b—soo0

and

lim  bn-Bias(655,/n) =T.
b—yeo, n/b—sco

Univariate SV estimators are previously addressed by Damerdji (1991, 1994); Flegal and Jones
(2010).

Damerdji (1994) derived variance expression of 63, and 63,, under uniformly ergodic-
ity by combining Brownian motion results and strong invariance principle. Flegal and Jones (2010)
obtained the same expressions under geometrically ergodicity. Variance of 62,, was also discussed
previously by Chien et al. (1997) under same conditions as theorem 1. These authors show that

under certain conditions,

2b b
Var(63,,) = —o* -
ar(6z,,) O +0<n>,
and
4b b
A2 N A2y _Tb 4 b
Var(65p),) = Var(6j,) = 3.C +0<n>.

Asymptotic mean-squared error can be obtained based on the bias and variance results. In particu-

lar, Damerdji (1995) proved mean square consistency of 6'§M and 6(2)31\4 under uniformly ergodicity

10



given their bias and variance expressions. Flegal and Jones (2010) showed the mean squared con-
sistency of 6§M and 6(2,BM under geometrically ergodicity. The bias and variance expression were
derived based on existing literature that requires uniformly ergodicity.

Politis and Romano (1995) discussed bias and varianc of flat top estimator for nonpara-
metric spectral density estimation. Bias of the estimator were derived according to different auto-
covariance decreasing rate of {X;}. The new estimator has significant bias reduction effect espe-
cially for those {X;} with faster die down rate. Variance of 6% estimator is slightly inflated but at the
same rate of b/n as that of 61%. Multivariate flat top SV estimator for nonparametric spectral density
estimation was advocated by Politis and Romano (1996). Bias and mean square error were also
discussed for various auto-covariance decreasing rates. The flat top estimators were further applied
to nonparametric estimation of multivariate density function by Politis and Romano (1999). Some
of the above results are listed as follows in the setting of time series and spectral density estimation.

Suppose notation A, ~ B, means A,/B, — 1 as n — oo. Under certain conditions, the

asymptotic variance of 6'b2t is given by

4
Var(67) ~ 3. (1.1.1)

Romano (1994). The following theorem provides bias of 6%1 estimate with an optimal choice of
truncation points in terms of MSE.

Theorem 2.(Romano (1994)) Let { X, } be a stationary time series. Assume Y i—c |s|"|7(s)| <
oo for some positive integer r. Suppose we take b = 2m and that b — oo as n — o, but with " /n — 0

(or b= |n"| for some 0 < v < 1/r). Then

Bias(67,) = o(1/b").

11



If in addition X; is such that the condition to guarantee equation (1.1.1) holds are satisfied, then

Lot

By choosing b = Cyn'/(?+1) for some constant C|, MSE(CAFJ%[) is minimized and is of order O(n=2"/(r+1),
Theorem 3. (Romano (1994)) Let {X, } be a stationary time series. Assume that the auto-

covariance Y(s) decreases geometrically fast, i.e. y(s) < De™¢ sl Suppose we take b ~ Alogn for a

constant A > 0. Then

Bias(67,) = O(e” /).

If in addition X; is such that the condition to guarantee equation (1.1.1) holds are satisfied, then

. 8b
Var(G]%,) ~ 5264

By choosing b, ~ Alogn, MSE(&%[) is minimized and is of order O(logn/n).
Proof of the above bias results see appendix 1.A. There are many conditions under which
(1.1.1) holds. Labhiri (1999) provide the conditions and detailed approximation of bias and variance
of Bartlett estimator and we will prove the MSE consistency of flat top estimate under the same
conditions.
- 6+8 w 12 2=
Theorem 4. Lahiri (1999) Assume Ez|X;|°"° < eo, and }';7_; k“(0ax (k))3+6 < oo for some

8 >0.If b — oo as n — oo but with b = o(n'/?) (or b = |n" | for some 0 < v < 1/2), then
NI |
Bias(6j;) = ZF—i-o(l/b),

. 4b

Bias and variance of 5b2; in theorem 4 coincide with results in that previous section.
Existing results consider univariate bias and variance of 613, and 64; in non-MCMC con-

texts. Multivariate bias and variance results of )isv with other window functions under MCMC

12



settings have not been addressed. In this thesis, mean square error expression of a family of 5, is

derived and their mean square error consistency is established.

1.2 Optimal bandwidth

The choice of batch size for mBM and bandwidth for mSV estimators largely influences
the performance of the estimators. Note that batch size and bandwidth selection are similar problems
with different nomenclature since the overlapping BM estimator is equivalent to a SV estimator
using a modified Bartlett window, see e.g. Welch (1987), Song and Schmeiser (1993), or Meketon
and Schmeiser (1984). For more general dependent processes, (Song and Schmeiser (1995)) and
Damerdji (1995) consider univariate BM estimators and obtain optimal bandwidths that minimize
the asymptotic means squared error based on bias and variance results in previous section. Flegal
and Jones (2010) also consider BM and OBM estimators for MCMC simulations under weaker

mixing and moment conditions. These papers show the asymptotic mean-squared error for 63,, and

(A%BM are
MSE(63 )—F—2+2b64+ L) so(?
BMJ ™ 2 a0\ ) T\n )
and

. I’ 4bo* 1 b
MSE( gBM) = ﬁ +3T+0 (lﬂ) +o () .

n

The resulting bandwidth that minimized mean-squared errors are

. 2\ ' . 320\ '/?
bBM: ? and bOBM: F .

The optimal bandwidths are proportional to n'/3 with " and 62 being unknown quantities deter-
mined by Markov chain. As a result, n'/? was widely used as bandwidth to achieve an asymptoti-

cally correct increasing rate. Practically speaking, using a bandwidth of n!'/3 has poor performance

13



for finite sample simulations Flegal and Jones (2010). Hence, n'/2

is routinely used avoiding esti-
mation of the unknown proportionality constants. However, the long-run performance of such an
approach is a concern.

Optimal bandwidth forOBM is also optimal for 6'; due to their asymptotic equivalence.
This can also be obtained from theorem 4. To our best knowledge, optimal bandwidth that mini-
mized mean squared error for other SV estimators received no attention under MCMC settings. A
main challenge is to obtain asymptotic variance and bias for the estimator. Given bias and vari-
ance hence optimal bandwidth expression, the unknown proportional constant is again frustrating.
Chapter 2 of the thesis aims to solve these two problems. First of all, I consider asymptotic bias
and variance for a family of estimators that resemble mSV estimators, which provides a natural
connection to calculating the variance and bias for a larger class of mSV estimators. As before, the
optimal bandwidth is proportional to n'/3. This is an important extension since prior results focus
on univariate BM estimators. It also justifies recommended bandwidths in Vats et al. (2015b) inher-
ited from univariate results. Secondly, we advocate a bandwidth proportional to n'/3 and provide
an estimate of the proportionality constant. In particular, pilot estimates from flat top estimator and
iterative plug-in methods are considered for the proportional constant. Simulation results show that
pilot estimates with iterative plug-in method have smaller variance compared with flat top pilot, but
it requires more computational efforts. We also provide guidance on optimal bandwidth selection
in multivariate settings given the pilot estimates. The suggested optimal bandwidth yields £ with a
significant better performance than bandwidth of n'/3 or n'/2,

Bandwidth estimation for BM and SV estimators is related to the bandwidth selection in

nonparametric kernel density estimation where many data based methods have been proposed. An

interested reader is directed to Bowman (1984), Jones et al. (1996), Silverman (1986), Woodroofe
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(1970), Hall (1980), Sheather (1983), Sheather and Jones (1991). In the context of kernel density
estimation, the bandwidth is often chosen so that the asymptotic mean integrated squared error of
the kernel density estimator is minimized. The proportionality constant in bandwidth expression can
be approached by plugging in a pilot estimate, which again requires a proper bandwidth. Our work
is motivated by flat top pilot estimates Politis (2003, 2009) and iterative plug-in method Brockmann
et al. (1993); Biihlmann (1996) because their bandwidth selection of pilots are well-established.
These methods were addressed in the context of spectral estimation that is closely related to the
estimation of . Hence we consider similar approaches when estimating the proportionality constant
of n'/3 for mBM and mSV estimator in MCMC. Flat top pilot estimates in quantile estimation have
been considered by Liu et al. (2016) to determine the number of draws needed for Bayesian credible

interval.

1.3 Computational challenge

Normally a large sample size n is required to calculate 6,. Moreover, Bayesian analysis
usually involves multiple parameters as shown by the toy example in 1.1.1, where there is a total
of 20 parameters. Therefore expensive computation is a major challenge to estimate X for high-
dimensional problems.

The mSV estimator has been widely used to estimate X in other fields, such as nonpara-
metric density function estimation and spectral density estimation, see ( Politis and Romano (1996),
Politis and Romano (1999)). One advantage of these estimators is the flexibility of choosing various
window functions, making it possible to improve the estimates by choosing better performed win-

dow function. Vats et al. (2015b) recently introduced multivariate spectral variance (mSV) estimator
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under MCMC setting and provided theoretical justification of the methods. Despite the popularity
in other fields such as time series analysis where sample size are moderate, expensive computing
restricts the application of mSV in MCMC problems. As a result, only mBM is considered in high
dimensional problem. ¥p is fast to compute but does not allow one to improve the performance
with windows other than Bartlett window. The lack of study in this area discourages one to monitor
3 and terminate Markov chain in a sensible way.

Chapter 3 of the thesis advocate a new family of estimators that are fast to compute yet
allowing use of better-performed window function to improve performance of mBM. Simulation
shows that new estimators with flat top window are superior to mBM. In the meantime, the new
estimators have significant reduction of computation time compared with mSV, hence provides an
applicable solution to the problem faced by multivariate MCMC methods. I prove the strong consis-
tency of the new estimators, followed with the discussion of their minor sacrifice on the convergence
rate compared with mSV. The performance of the new estimators are illustrated by univariate and
multivariate auto-regressive models. These simulations coincide with the theoretical results, show-
ing that the new estimators converge to the correct value, and as dimension or chain length increases,
the new estimators save significant amount of time compared with mSV. The variance of the new
estimators are slightly larger than mSV, but the ratio between the variance of a new estimator and
the corresponding mSV estimator with the same window function are usually less than two, which
seems to be negligible since the actual variance of these estimators are already small given a chain

with a reasonable length.
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1.4 Examples

Three examples are used for simulation study. Markov chain generated from auto-regressive
(AR(1)) process is used to illustrate univariate results. Vector auto-regressive (VAR(1)) model and
a Bayesian dynamic space-time model are considered for multivariate simulations. In this section,

some basic results of these examples are introduced.

14.1 ARQ)

Suppose ¢&; are i.i.d N(0,1). Consider the following autoregressive process of order 1
(AR(D)):

Xi=0Xi_1+€& fori=1,2,..

Consider approximating 6 = E[X;] by 6, = X,,. The Markov chain satisfies

1
1—¢2’

(Psfl
= 1_(])2'

Var(X;) =

Cov(X1,X;)

For |¢| < 1, the Markov chain is geometrically ergodic.

AR(1) model is considered because the true value of 6% in Markov chain CLT is available.
The usually unknown quantity I' in the optimal bandwidth expression is also available for this
example. Performances of new estimator and suggested optimal bandwidth can be evaluated by
comparing estimate of ¢ with true value. True proportional constants are known given I" and
o2, hence pilot estimates from flat top and iterative plug-in method can be evaluated. Related

calculations are as follows.

62 - Var[Xl] + 2 Z COV(X[,X[+Ay)

s=1
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1 o= O’
= +2

1_¢2 .S;l —_ 02

1 n ¢S
= ——=+42lim

1_¢2 "_>°°5:z:11_¢2

_ 1 2 ¢

Y S S R g

_ 1+¢
(1-9¢2)(1-9)

(1-9)

To calculate I, first let S = Y., s¢°, then

S=¢+20>+3¢>...+no",

S =02 +20° +3¢* +...+(n—1)¢" +no" .

Hence
(1=0)S=¢+¢>+¢ ..+ ¢" —n¢""' = ¢(11—_¢;1) —ngmtt,
resulting
G (P(l 7¢n—1) B n¢n+l
(1-¢)> 1-9¢°
Therefore

L=2Y" s Cov(X;, X .y)
s=1
n S
i ¢
=2lim s g
2 S
1—¢235?°;S¢

- 2 . ¢(1_¢n—1) n¢n+1
_1—¢2,35‘30£ 1-902 1-9¢
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N 1—2¢2 [(1—¢¢>2]

(1-¢%)(1-¢)*
142 VAR(Q)

As in the AR(1) model, X for vector auto-regressive (VAR(1)) model is known hence can
be used to evaluate different estimates. Fori = 1,2, ..., consider p-dimensional vector autoregressive
process of order 1 (VAR(1))

Xi =®X;1 +¢,

where X; € R?, g are i.i.d N,(0,1,) and @ is a p x p matrix. Let ® be the Kronecker product. When
the largest eigenvalue of ® in absolute value is less than 1, the Markov chain is geometrically ergodic
Tjgstheim (1990) with invariant distribution N,(0,V), where vec(V) = (I, — ® ®@ @) 'vec(l,).
Consider approximating 8 = EX; by 6, = X,,, we would like to estimate

oo

¥ = Var[X;|+2 Z Cov(X;, X +5)

s=1

=(I,-®)'V+V(I,-®) ' -V

To construct a geometrically ergodic VAR(1) Markov chain, the largest eigenvalue of ® should be
less than 1. First of all, a positive semi-definite matrix is constructed from product of a matrix and its
transpose, say B = AAT where A is a p x p matrix with each entry generated from standard normal
distribution. The eigen decomposition of positive semi-definite matrix B always exists. Suppose
B=UAUT where A = diag{A1,),...,A,} is a diagonal matrix with eigen-values 4;,i = 1,2, ..., p.
The ith column of U is the corresponding eigen-vector. Let m = max!_ ||, then ®y = B/(m +

0.001) = UA/(m +0.001)UT has eigen values |4;/(m+ 0.001)| < 1 for i = 1,...,p. We would
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like to consider various strength of auto-covariance and cross auto-covariance in the simulation,
therefore consider a series of ® = k- ®, where k € (0, 1) so that the eigen-values of ® remains less

than 1, meanwhile larger k implies stronger auto-covariance and cross auto-covariance.

1.4.3 Bayesian dynamic spatial-temporal model

Spatial-temporal models are often applied to model data at several locations in a certain
region over a period of time. Usually space is treated as continuous and time is viewed as discrete
in these models. Without the time effect, spatial-temporal model becomes a spatial models.

This example is applied to NETemp data described in R package spBayes Finley et al.
(2013). Choose a subset of locations by letting variable UTMX> 6000000 and UTMY > 3250000,
we consider 10 nearby weather stations. For each weather station, elevation and temperature from
126 consecutive months are available. We consider the first 12 month (year 2000) for these 10

stations.

Spatial model. Consider building regression model to explain response variables over a region.
Suppose y(s) denotes reponse at location s for s = 1,2, ..., N;. Let x(s) be a k x 1 vector of predic-
tors. The following spatial model Gelfand et al. (2003) allows responses at closer locations to have
stronger dependence.

y(s) =x(s)TB +u(s) +£(s), & ~N(0,7%),

where u(s) ~ GP(0,C(-,062,¢)) is a zero mean stationary Gaussian process. Gaussian process is
one of the most commonly used stochastic process when modelling dependent data over time or
2

space. It is determined by its mean and variance functions as follows. E[u(s)] = 0, Var[u(s)] = o=,

Covlu(sy),u(s2)] = 62p(s1,52:0), where ¢ is a valid two-dimensional correlation function. By
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specifying u(s) ~ GP(0,C(-,62,¢)), it conveniently describes variance and covariance structure

for all locations. A possible distribution of y = (y(1),¥(2),...,y(Ny))7 is

y~N(x(s)"B, £(0)).

In the above distribution, ® = {0, 7,¢} and X(0®) = (02 + 72)I + H(¢) where I is identity ma-
trix and H(¢) is a k x k matrix. The ijth element of H(¢) is H;;(¢) = exp(—||s; —s;|| /), where
|lsi —s;]| is the Euclidean distance between locations s;, s;. Therefore, dependence between two
locations decreases as their distance increases. This model is attractive when describing the cor-
relation structure of location. To further model time series observed at these locations, consider

spatial-temporal model incorporates time effect.

Spatial-temporal model. We apply a spatial-temporal model to the temperature data from 12
month and 10 locations. Suppose y;(s) denote the temperature observed at location s and time ¢
for s =1,2,...,Ny and r = 1,2,....N,. Let x;(s) be a k x 1 vector of predictors and f; be a k x 1
coefficient vector, which is a purely time component. 1 (s) denotes a space-time component. The
model is

yi(8) =x:(8)T B, +u:(s) + &(s), & ~N(0,72),
B.=B,_,+n; n, ~ Np(0,Xy),
uy(5) = 1 (s) +wi(5); wi(s) ~GP(0,Ci(-, 62, ¢,)).

GP(0,C,(-,02,¢,)) is a spatial Gaussian process where C;(s1,52; 67,8 ) = 62p(s1,52;¢). p(-;9) is
an exponential correlation function with ¢ controlling the correlation decay, and o> represents the
spatial variance components. We are interested in estimating posterior expectation of 185 parame-

ters 0 = (B;, u(s), 07, Xy, T2, ¢;), their prior follows spDyn1M function in spBayes package.
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Elevation is the only predictor in this example, hence B, = ([3,(0), Bt(l))T fort=1,2,...,12,
where [3,(0) is intercept and [3,(1) is coefficient of covariate elevation. In this example, covari-
ate elevation stays the same over time, therefore it is a simpler version of the spatial-temporal
model. Compared with spatial model, time effects of both B, and u(s) are introduced by the tran-
sition model from r — 1 to z. B, is centered at B,_; with a covariance matrix determined by X;.
ur = (u(1),u,(2),...,ur (Ns))T is centered at u! | = (uy—1(1),ur—1(2),...,ur—1(Ns)) with a covari-
ance matrix determined {c?,¢;} in the Gaussian process so that u;(s;), u;(s2) with closer sy, s,
have higher correlation.

We will consider the intercept parameter for two consecutive month [51(0) and ﬁz(o). Let
{X; = (Bl(g), Bz(g))T % | be posterior sample of (Bl(o), Bz(o)) generated from spDynlM function. We
are interested in estimating

£ = Var(X) + Y [¥(s) + 7(5)T].

s=1

1.A Appendix of Chapter 1

A Proof of bias of theorem 3

Let B=b and b = b/2 for simplicity of the proof. First we prove that Bias(é'fzt) =

0(e=9). Since y(s) = O(e~ ), y(s) < C- el for some constant C.

Bias(67,) = E[67,] — 0% = A1 + Ay + A3

where
1 n—1
Ar=5p L (9=
1 n—1
I MY



2ﬂ:|v|>n
11 o C 1 e i
’A3| < 271,'69”2 }/(s)e "< ﬁeﬁ Z e (Is=n) :0(8 n)
s|>n |s|>n
Ml< - T wer e Y lsivs) = ol
< — siw(s)y(s) < — s|y(s) =0(-).
275” s=—n+1 27l'n s=—n+1 n

Since if y(s) = O(e~ %), x7=! | [s|"y(s) < oo forany r >0. Whenr=1,Y"="  |s|¥(s) < co.

Al=a1+ar+a3

where
Y (ws) - 7ts)
a) = — w(s) — s
2 51=h
1
w=5- T (wls)~ 1))
b<|s|<B
1
a=5- ¥ (w5~ )16)
B<|s|<n
a; = 0 since w(s) = 1 for |s| < m. Note gj’)| <1forb < |s| <B, we have
1 s—b 11
| < — ) Ys) < —— Y €”1(s)
Ty B0 e, A
C1 —6(|s|—b) —6b
<l oy 0(c~)
met p
When B < |s| < n, w(s) =0, thus
1 1
<t ¥ < Sy otn Zoon) — o),
2 B<|s|<n 7 €9 B<|s|<n

We proved that Bias(é}t) =0(e ).
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B Mixing conditions

Let P(x,dy) be the Markov chain transition kernel of X on space (X, #(X)). Let P"(x,dy)

denote the n-step transition kernel of X. For x € X and A € #(X),

P'(x,A) = P(X,1n € A|X, = x).

Suppose X is Harris ergodic with stationary distribution 7(-), then for any initial probability distri-
bution A(+),

|IP(x,") —m(:)|| =0 (as)n— oo

where || - || denotes total variation norm.

Definition. A Markov chain with stationary distribution 7(-) is geometric ergodic if

HP(X7) _”()H SM(x)pn n=1273,..

for some p < 1.

Suppose X is defined on the probability space (Q,.%,P). Let %" = 6(Xi, ...,X,,) be the
sigma field generated by (X, ..., X,,) and L, (%) be the family of all square integrable . —measurable
random variables. Jones (2004) discuss the connections between mixing conditions and conver-
gence of Markov chain. We focus on the results of @-mixing and p-mixing in this section.

Definition. The sequence X is said to be strongly mixing (or a-mixing) if &¢(n) — as
n — oo where

o(n) 1= sup sup |P(o/ NAB)—P()P(B)|.

k20 o e 7§, BeTE,

Definition. The sequence X is said to be asymptotically uncorrelated (or p—mixing) if p(n) — 0 as
n — oo where

p(n) :=sup sup |corr(Z1,27)].
k20, €Ly (FE), Zela(F,)
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It can be shown that for a Harris ergodic Markov chain X,

o(n) = sup |P(o/ NAB)—P()P(B)|
geo(Xy), Beo(Xn)

and

p(n) = sup |corr(Zy,2,)|
Zl ELQ(G(X())), ZzELz(O'(Xn))

Bradley (1985). From now we say a non-negative sequence {a,,n = 1,2,3,...} converges to 0
exponentially fast if @, = O(e~9"). The following facts about mixing conditions are true:
(i) Harris ergodic Markov chains are ¢-mixing. (ii) Geometric ergodic Markov chains

have exponentially fast ot-mixing. (iii) If a geometric ergodic Markov chain satisfies
n(dx)P(x,dy) = n(dy)P(y,dx), x,y€X, (LA.1)

then it has exponentially fast p—mixing.
To prove fact (i), consider coupling method Lindvall (2002) by constructing Markov chain
X' := {X/} which is also governed by P(x,dy) but start with the invariant distribution 7(-). Define

X":= {X]'} by
X ift<T

Xt// —
X/

§ ift>T

where T = min{z : X, = X/}. X and X" are equally distributed due to Markov property. Since

IP"(x,-) = m(-)|| =2 sup (P(X, € ) — P(X, € )),
SdeF

and

PX,e o)—P(X, € o)=P(X € )—P(X, €)
=[PX, € ,n<T)+PX, € ,n>T)]
—[PX, € & ,n<T)+P(X, € ,n>T)]

<Pn<T).
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Therefore

[P"(x,) = ()| <2P(n < T). (1.A2)
Let A, B € #(X) be sets corresponding to o7, # € .# respectively. Then

o(n) = sup |P(o/ NB)— P(L)P(RB)|
e (Xo), Beo(Xn)

< |P(Xo € A and X,, € B) — m(A)7(B)|
<| [ 1P"(4) = w(4) ()
< [ 1P (x.a) = m()|n(d)
< /B 2P(n < T)n(dx) = 2E-[P(T > n)).
Since Ex[P(T > n)] — 0 as n — 0, fact (i) is proved.

For fact (ii), if ExM < oo, we can prove that

a(n) < [ M(x)p"|r(d)
<EM-p",
hence a(n) = O(e~°") for an 6 > 0.

(Rosenblatt (1971) and Roberts and Rosenthal (1997)) show that if a Markov chain is
geometric ergodic, it is p-mixing. By strong Markov property, it is exponentially fast p-mixing
Bradley (1985) and (iii) is proved. From now on, assume E[X;] = 0 without loss of generality.
Define the lag s auto-covariance y(s) = y(—s) := Ex[X X+

Proposition. If X is a geometric ergodic Markov chain and satisfies (1.A.1), then y(s) =
0(e™9) fora 6 > 0.

Proof. By fact (iii), there exits constant N > 0, C and 6 > 0, such that
p(n)<C-e7® forn> N.
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Therefore |y(s)| = |corr(X;,X;1s)| - ¥(0) < p(s) - ¥(0) < C-¥(0)-e~9 for n > N, which proves

Y(s) = O(e™®).
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Chapter 2

Optimal bandwidth selection

Choosing an appropriate bandwidth has been a long standing question for BM, OBM and
SV estimators since it is crucial to the performances of the estimators. In this chapter, I consider

optimal bandwidth selection for a family of mSV estimators. Recall that

[Covr(g(X:),8(Xe+s)) + Covr (8(X:), 8(Xi+s))"]-

s

X = Varp(g(X1)) +

s=1

Estimation of X via multivariate batch means (mBM) has been discussed in Chen and Seila (1987)
and Charnes (1995). More recently, Vats et al. (2015a) provide necessary conditions for strong
consistency. Univariate BM estimators for the diagonal terms of X have been studied previously by
Chien et al. (1997), Chien et al. (1997), Damerdji (1994), Flegal and Jones (2010), and Jones et al.
(2006). Multivariate spectral variance estimators (mSV) of X are also available along with necessary
conditions for strong consistency Vats et al. (2015b). However, Vats et al. (2015a) suggest mSV are

computationally expensive relative to mBM. Damerdji (1991), Damerdji (1994), and Flegal and

Jones (2010) previously studied univariate SV estimators for the diagonal terms of X. One can also
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consider regenerative simulation (RS) estimators of X see e.g.Hobert et al. (2002); Mykland et al.
(1995).

The choice of batch size for mBM and bandwidth for mSV estimators largely influences
performance of the estimators. Note that batch size and bandwidth selection are similar problems
with different nomenclature since the overlapping BM estimator is equivalent to a SV estimator
using a modified Bartlett window, see e.g. Welch (1987), Song and Schmeiser (1993), or Meketon
and Schmeiser (1984). The focus here is on optimal bandwidth selection for MCMC simulations,
which has received limited attention in the literature. For more general dependent processes, Song
and Schmeiser (1995) and Damerdji (1995) consider univariate BM estimators and obtain optimal
bandwiths that minimize the asymptotic means squared error. Flegal and Jones (2010) also consider
these estimators for MCMC simulations under weaker mixing and moment conditions. In short,
these papers show the optimal bandwidth is proportional to n'/3. However, there has been no work
to our knowledge in MCMC settings with regard to estimating the proportionality constant. As a
result, Flegal and Jones (2010) suggest using a bandwidth equal to Lnl/ 2],

In this chapter, we derive an asymptotic expression of variance and bias for a larger class
of mSV estimators resulting in an optimal bandwidth expression that minimizes the asymptotic

means squared error. As before, the optimal bandwidth is proportional to n'/3

. This is an important
extension since prior results focus on univariate BM estimators. This also justifies recommended
bandwidths in Vats et al. (2015b) inherited from univariate results.

Although suggested by existing literature, using a bandwidth of n'/3 has poor perfor-
mance for finite sample simulations and n'/? is routinely used avoiding estimaiton of the unknown

proportionality constants Flegal and Jones (2010). However, the long-run performance of such an

approach is a concern. In this chapter, I advocate a bandwidth proportional to n'/3 and provide an
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estimate of the proportionality constant, which has received no attenton in the MCMC literature.
The proposed estimates resemble mSV estimators, which provides a natural connection to calculat-
ing the variance and bias for a larger class of mSV estimators. We also provide guidance on optimal
bandwidth selection in multivariate settings. Simulation studies show the optimal bandwidth im-
proves performance over using n'/? and n'/3.

Bandwidth estimation for BM and SV estimators is related to the bandwidth selection in
nonparametric kernel density estimation where many data based methods have been proposed. An
interested reader is directed to Bowman (1984), Jones et al. (1996), Silverman (1986), Woodroofe
(1970), Hall (1980), Sheather (1983), Sheather and Jones (1991). In the context of kernel density
estimation, the bandwidth is often chosen so that the asymptotic mean integrated squared error of
the kernel density estimator is minimized. The proportionality constant in bandwidth expression
can be approached by plugging in a pilot estimate, which again requires a proper bandwidth. Our
work is motivated by flat top pilot estimates see Politis (2003, 2009) and iterative plug-in method
see Brockmann et al. (1993); Biihlmann (1996). These methods were addressed in the context
of spectral estimation that is closely related to the estimation of ¥. Hence we consider similar
approaches when estimating the proportionality constant of n!/3 for mBM and mSV estimator in
MCMC. Flat top pilot estimates in quantile estimation have been considered by Liu et al. (2016) to
determine the number of draws needed for Bayesian credible interval.

The rest of this chapter is organized as follows. Section 2.1 derives asymptotic variance
and bias results for a class of mSV estimators. Then an optimal bandwidth selection procedure is
given based on asymptotic mean squared error. Section 2.2 introduces two pilot estimates for the
proportional constant of the optimal bandwidth. Section 2.3 considers three examples to compare

performances of suggested bandwidth with n'/2 and n'/3.
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2.1 Mean squared consistency

Recall 8 = Erg. Let Y, = g(X;), t = 1,2,3, ..., and denote y(s) = Er[(Y; — 0)(Y,1s— 0)7].
We are interested in estimating

oo

Y = Varp(V}) Z

LetY =n~! Y1 Y;, mSV estimator Vats et al. (2015b) is defined as

where

1 n—s _ _

HOEEDMIZS SV ARSI

=3

wp(s) is the lag window and b is the truncation point. We are interested in the asymptotic mean
squared error of 3, which are based on the leading terms in asymptotic bias and variance of £;. De-
note Euclidean norm by ||-||. A fundamental condition required in this thesis is the strong invariant
principle established by Vats et al. (2015b).

Condition 1.(strong invariant principle) There exists a p—dimensional vector 6, a p X p
lower triangular matrix L, an increasing function y on integers, a finite random variable D and a
sufficiently rich probability space Q such that for almost all w € Q and for all n > ny,

n

Z Y, —n6 — LB(n)

<D(w)y(n) w.p.l. (2.1.1)

For polynomial ergodic Markov chains, under certain moment conditions on g, Condition 1 holds
with y(n) = n'/>~* for some A > 0 see Kuelbs and Philipp (1980); Vats et al. (2015a,b). If y(n)
satisfies that y(n)/\/n — 0 as n — oo, Condition I also implies a strong law, a Markov chain CLT

and a functional CLT.
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Condition 2. The lag window wy,(+) is an even function defined on Z such that
lwa(s)| <1 forallnands,

wn(0) =1 for all n,
wn(s) =0 forall |s| > b.

Condition 3. b is an integer sequence such that b — e and n/b — o as n — oo, where b
and n/b are monotonically non-decreasing.
To approach means squared error of £, we define an asymptotically equivalent expres-

sion. Let ¥;(k) = k'YX, v, for [ =0, ..., (n — k), define

Suppose £, = £, —d, the following proposition shows that the two expression are asymptotically
equivalent.
Proposition 1. Assume condition 2 and 3 hold and condition 1 holds for both g and A. If

n>2b, b, 'logn=0(1) and b~ y(n) — 0, b~ 'yy(n) — 0 as n — oo, further
b
bn~' Y k|Aywa (k)| — 0,
k=1

thend — 0 w.p.1 as n — oo.

Proof. See Appendix B.

Given Proposition 1, we will focus on mean squared error of 3,, to approach mean squared
error of 3, which is challenging to obtain directly. Let iw’,- ; be the ijth entry of 3, then the

following theorem provides the asymptotic variance of each entry for £,,.
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Theorem 1. Define 4(X;) = (g(X;) — Erg)> t = 1,2,3,... and suppose ||Eph|| < . Sup-
pose condition I holds for g with L, D and y and for A with Ly, D, y,. Let condition 2 and 3 hold.

If
L Y?  (Aaw)? <0 <l)12> ;
2. by (n)logn(Xh_, |Aawna(k)[)? — 0.
3. ¥ (n) Eiy [Aawn (k)] — 0.

Then

. 2
Var(y,] = [ZaXj; + 7] 3

b b—1b—t 2 1 b
Z Aowy) 2k3 7—1—22 ZAzwu Aowyyy - <3u3+u2t> n] +o0 <n>

k=1 t=1u=1

3\@‘

= (S+o(1))- (2.1.2)

Proof. See Appendix C.

Remark. It can be shown that condition 1 in theorem 1 is satisfied for Bartlett window

wie(s) = (1 —s/b)I(|s| < b),

where Apwy, (b) = b~ " and Agwy, (k) =0 fork=1,2,....,b— 1. Hence Y'2_, (Ayw;) = 1/b*. Consider
flat top window discussed in section 2.3, Aow,,(b/2) = —2/b, Ayw,(b) =2 /b and Apw, (k) = O for
k#b/2, b. Then Y7_, (Ayw;)? = 8/b?, condition 1 is also satisfied. It also follows the fact that w,
is equivalent to the difference of two wy,.

Bias of the diagonal entries iwﬁ, i=1,2,...,p has previously been discussed by Chien
et al. (1997); Goldsman and Meketon (1986); Song and Schmeiser (1995). Bias of off-diagonal

entries follows a similar expression.
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Theorem 2. Let X be a stationary uniformly ergodic Markov chain, if Erg'? < o and

condition 3 holds, and further

b
Z kAng(k) = 1,

k=1

then
b 1
BlaS le ZAZWn Tij+o +o Nk
where
L=—Y s[y(s)+7(s)"]
s=1
and

Proof. See Appendix D.

Corollary 1. Under conditions of theorem 1 and theorem 2,
MSE[£,;j] =0 asn— co.

Proof. Follows directly from theorem 1 and theorem?.

Besides corollary 1, we are also interested in the expression of MSE[iW’,- ], which is a
function of bandwidth b. By minimizing the mean squared error of iw’,- j» an optimal bandwidth that
minimizes the asymptotic mean squared error of ZAZWJ ; can be achieved.

Corollary 2. Suppose conditions in theorem 1 and theorem 2 hold. if S # 0 in theorem 1
and

b C
Y Aown(k) = 7 (2.1.3)

for a constant C # 0, then

MSE Wl/

Z Azwn

102 ()
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and

A e\
bothj = (214)

is an optimal bandwidth B()pl,i ; that minimizes mean squared error.

Remark. General expression of S and C are not given but can be easily derived for a
specific window. Corollary 2 requires non-zero S and C. In other words, variance and bias in
theorem 1 and theorem 2 are restricted to estimators with a corresponding die down rate no faster
than the dominant terms in those theorems. Nevertheless, the results apply to an important family
of estimators including Bartlett estimator.

Remark. Corollary 2 shows an optimal bandwidth for each entry of £,,. We would like to

choose a bandwidth that benefits all elements of )iw. Based on simulation result,

A 1 A
bopt -5 Zzbopl,ij
P j

is used as the optimal bandwidth for £,, that minimizes mean squared error of all entries on average.
As an example, consider mSV with Bartlett window 3,. From theorem 2 and the proof

of theorem 1, it is easy to obtain bias and variance

A I b 1
oo () ().

~ b b
Var[Xy, ;] = *(ZiizjjJrE%j); 40 <n> .

W N

Mean-squared error of the (i, j)th element is

35



hence
; srzn \ P
brij = | v w7 .
Zii):jj + 212]

The average of 131,[7,-.,- is then used as bandwidth of £,,.

A potential issue with suggested bandwidth is that it involves unknown quantities deter-
mined by Markov chain, such as I and X. Flegal and Jones (2010) suggested using n!/2 in univariate
setting, in order to adjust for the unknown constant of n'/3 due to the poor performance of n'/3. We

would like to improve this convention of bandwidth selection by considering the coefficient of n'/3.

2.2 Estimation of coefficient

This section considers pilot estimation of X and I' in order to estimate the coefficient of
n'/3. The idea of plugging in pilot estimates has been applied in density estimation see e.g. Jones
et al. (1996); Loader (1999); Politis (2003); Woodroofe (1970). Since estimation of X is related to
spectral density estimation at its origin and I" is related to derivative of the spectral density, it is

natural to consider pilot estimates of the form

b—1
£ = 5(0) + ; wa(8)[9(s) +9(s)],

and
. h—1
PO = — Y was)-s[7(s) +9(5)"],
s=1
where wy,(+) is a window function. More specifically, Tukey-Hanning window and flat top window
Politis and Romano (1995) are used in the above pilot estimates. These window functions again

require optimal bandwidths to achieve an accurate coefficient estimate. In this section, we consider

coefficient estimation and bandwidth selection in pilot estimates.
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2.2.1 Flat top pilot estimate

Politis and Romano (1995) introduced a family of spectral variance estimators using flat
top window functions. These window functions are constructed from windows such as Bartlett
and Tukey-Hanning window by letting the function equal to 1 near zero. Bias reduction of flat top
estimator was illustrated by Politis and Romano (1995). It was suggested by Politis (2003) to use
flat top windows as pilot estimates in nonparametric density estimation. We apply a similar idea
under MCMC context when estimating ¥ and I'.

Consider the following mSV with w; window for pilot estimate of X and I'

and

Asymptotic variance and bias of 252) and fﬁg) are discussed by Politis (2003). Bandwidth of pilot

estimate 253) and f‘;?) follows a simplified version of Empirical Rule suggested byPolitis (2009).

Bandwidth of flat top pilot. Denote p;;(s) = %i;(s)/1/7:(0)7;;(0). Let p(s) = maxi<; j<p | fi; (s)|
and by be the smallest positive integer such that |p (b + k)| < cy/logn/n, for k = 1,2,...K,, where
¢ > 01is a fixed constant and K, is a positive, non-decreasing integer-valued function of »n such that
K, = o(logn). Then b = 2b is the bandwidth of w(-).

Remark. Any ¢ > 0 and 1 < K,, < n would work for the asymptotic result but for finite
samples, it is suggested to chose ¢ = 2 and K, = 5 Politis (2003).

Remark. The rule aims to find the point by after which sample autocorrelation are negligi-
ble. The original Empirical rule Politis (2009) suggests an optimal bandwidth for each entry of the

matrix 3 .+ which should yield better performance for density estimation than using the same band-
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width for all entries. Due to the heavy computation encountered in MCMC context, this simplified

version is applied when choosing by, which is more conservative.

2.2.2 Iterative plug-in pilot estimate

Iterative plug-in method was introduced by Brockmann et al. (1993) in nonparametric
regression for independent observations. Biihlmann (1996) also applied the idea in nonparametric
spectral density estimation on frequency domain of stationary time series. The idea is based on the
circular relationship of £ and its bandwidth b. In other words, b is required to estimate £, while 3
is required in order to obtain an optimal b. If we starts from a b to estimate 3, this 2 can be used to
obtain a better b, which again results in a better ¥. Therefore an optimal bandwidth can be achieved
by iteratively repeating the above procedure. A univariate iterative plug-in procedure was applied
by Biihlmann (1996) to select bandwidth for spectral density at its origin, which is equivalent to
the diagonal entries of ¥ adjusted by a constant. Therefore we discuss this method when estimating
bandwidth for the diagonal entries of ¥ for illustration purpose. A multivariate iterative plug-in
procedure should work in a similar way.

Suppose the goal is to estimate coefficient of the optimal bandwidth for ibtv,-,-. Then an

optimal bandwidth that minimizes mean squared error of ib,’ii is

A 31_Q 1/3
b ii = ”2n :
' 2%

Biihlmann (1996) discussed estimating I';; and ¥;; by

£ = 9u(0) + ¥ () [fls) + ()],

and
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where

(1+cos(m|s|/b))/2  for <b

0 for |s| > b

and

1 for |s| < 0.8

w(s) =94 (1+cos{5(]s|/b—0.8)n})/2  for0.8b < |s| <b

0 for |s| > b

are Tukey-Haning window and flat top Tukey-Hannig window (split rectangular-cosine window in
Biihlmann (1996)). Notice lA);,t’ii is the same as optimal bandwidth for univariate Bartlett estimator
derived by Flegal and Jones (2010).

Although Empirical Rule can be applied again to select bandwidth of w(-), it is still chal-

lenging to obtain bandwidth for Tukey-Hanning window. Therefore pilot bandwidth of £ and

i, W

f(O)

i,y are both chosen according to the following iterative plug-in procedure Biithimann (1996).

Bandwidth of iterative plug-in pilot. Let by = n be the starting bandwidth. For ¢t =

1,...,4, iterate
—4/21

bi_1n =2 242
. 0L,y e W (s)s %i(s)}1/3'n1/3_

b4/ ”
Y : _am Vi (S)

s=—b;_1n

(2.2.1)

The bandwidth for pilot estimate is b = byn~4/?!.

Remark. (2.2.1) is a global step iteratively searching for an global optimal bandwidth

ST KA

e AT

that minimizes mean integrated squared error MISE = E[[™_(f(A) — f(A))?dA] for Bartlett window

function at A, where

1 & is
1) =52 ¥ wls)e ™,

S=—o00
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and

1 & .
f(”(l)ZE Y Islyi(s)e ™.

§=—o0

If we estimate [” {f(4)}? and [* {f1)(1)}? in bgiopar by

Lym| 1 g A ’ 1
- - Aii —is. d
2/ 37 L Hilo)e
and
|1 2 oA 2
| 55 X w)bluts)e ™| daa
- s=—b

for a certain bandwidth b, and apply Parseval’s identity

. 2 c
/ [Z h(s)em] =Y Rs),

T | s=—c s=—c
bandwidth expression of (2.2.1) can be obtained. Although X; and I'; are related to local results
of £(0) and f(1)(0), the global step stabilizes the procedure and achieves correct asymptotic order,
with n~%/2! being an inflation factor that adjusts for an optimal rate. An interested reader is directed
to Biihlmann (1996) for more details.
Remark. We considered iterative plug-in method for Bartlett estimator as a motivative ex-
ample. Biithlmann (1996) also discussed iterative plug-in method for Tukey-Hanning SV estimator.

Same idea should as well work for SV estimator with other window functions.

2.3 Examples

Three examples are considered to evaluate performance of the optimal bandwidth as a

1/3

comparison to conventional bandwidth of n'/~ and n'/2. In the first univariate auto-regressive exam-

ple, both iterative plug-in and flat top pilots are evaluated when estimating coefficient of bandwidth.

40



Multivariate examples based on real data and vectorized auto-regressive process are then considered

to show the benefit of proposed optimal bandwidth.

2.3.1 Univariate auto-regressive example

Recall g are 1.i.d N(0,1). Consider the following autoregressive process of order 1 (AR(1)):
Xi=0X,_1+¢& fori=1,2,..

For |¢| < 1, the Markov chain is geometrically ergodic with invariant distribution N(0,1/(1 — ¢)?).

Consider approximating 6 = E[X;] by 6, = X,,. We would like to estimate

6? = Var[X] +2§:C0V(X,,X,+s) =1/(1—¢)%

s=1
Since cov(X1,X;) = ¢"~!/(1 — ¢2), large ¢ results in a Markov chain with high auto-correlation
therefore we consider a range of ¢. To calculate true coefficient of the optimal bandwidth, we need

the following result

_ 2¢
Lz |s|Cov(X;, Xi4s) = (1—02)(1—¢)2

, oo

SV estimator with Bartlett window 67, and BM estimator 62, are applied to estimate 62
since optimal batch size of BM estimator also involves unknown quantities of the Markov chain
Flegal and Jones (2010). We consider flat top and iterative plug-in pilot estimate of the optimal
bandwidth for 67 and 63,,.

Consider 500 replications for each ¢ from 0.4 to 0.9. In each replication, generate 1e4
of AR(1) sample and apply flat top and iterative plug-in pilot to estimate coefficient of optimal
bandwidth for 62 and 63,,. Figure 2.1 and 2.2 shows the coefficient results for 6z and 6. If n'/?

1/3

is used to adjust for the unknown constant of n'/3, it is equivalent to choose a constant of n'/® that
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is determined by sample size n, regardless of ¢. For n={1e4, le5, 1e6}, the coefficient of n'/0 is
denoted by the dotted lines.

To see how bandwidth affects the estimation of 62, 62 and 63,, are applied to AR(1)
sample of lenght le4. Four different bandwidths are used, n'/3, n'/2, optimal bandwidth with flat
top pilot and optimal bandwidth with iterative plug-in pilot. Results of 500 replications are also
shown in figure 2.1 and 2.2 for ¢ from 0.7 to 0.96.

Coefficient plots in figure 2.1 and 2.2 indicate that both pilots estimates are close to the
true optimal coefficient. Iterative plug-in method has a smaller variance. As a compensation, it
requires more computation and has slower convergence rate compared with flat top pilot Politis
(2003), hence we will use flat top pilot in the following examples. Nevertheless, the idea of optimal
bandwidth is open to all legitimate pilot estimation.

With optimal bandwidth, performances of 6[,% and 6§M are improved compared with a
bandwidth of n'/3 or n!/2. Although n'/? is the correct asymptotic rate, when the coefficient is
ignored, it results in poor performance especially for highly correlated Markov chain. In fact, figure
2.1 and 2.2 show how the true coefficient inflates as correlation increases, which explains why n'/3

is poorly behaved for higher ¢.
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Figure 2.1 Left plot is average of estimated coefficient for 63,, over 500 iterations with 95% CI.
True value of coefficients are calculated as a comparison. From high to low, top three dotted lines

denote n!/®

1. Right plot is average of 500 63,, with different bandwidth.
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Coefficient of n'/* 8., with different bandwidth
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Figure 2.2 Left plot is average of estimated coefficient for 613[ over 500 iterations with 95% CI. True
value of coefficients are calculated as a comparison. From high to low, top three dotted lines denote
n'/6 when n = 1e6, 1e5, le4. The bottom dotted line is reference when coefficient equals to 1. Right
plot is average of 500 6b21 with different bandwidth.
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2.3.2 Vector auto-regressive example

Fori=1,2,..., recall p-dimensional vector autoregressive process of order 1 (VAR(1))
Xi = PX;—1 + &,

where X; € R?, g are i.i.d N,(0,1,) and @ is a p x p matrix. Let ® be the Kronecker product. When
the largest eigenvalue of ® in absolute value is less than 1, the Markov chain is geometrically ergodic
Tjgstheim (1990) with invariant distribution N,(0,V), where vec(V) = (I, — ® ®@ @) vec(l,).
Consider approximating 8 = EX; by 6, = X,,, we would like to estimate
¥ = Var[X;|+2 Z Cov(X;, X +5)
s=1

=(,-®)'V+V(I,-®) ' -V

A
Eaisled coatreatornl 2 Mean squared error of Zp

14
|
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|
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Figure 2.3 Left plot is average of estimated coefficient for fl,%t over 500 iterations with 95% CI. From
high to low, top three dotted lines denote n'/® when n = 1e6, 1e5, le4. The bottom dotted line is
reference when coefficient equals to 1. Right plot is average of 500 mse with different bandwidth.

45



We consider optimal bandwidth with flat top pilot when estimating X by 3. ® is chosen
as follows to guarantee geometric ergodicity of VAR(1) samples. Consider a p X p matrix A with
each entry generated from standard normal distribution, let B = AA” be a symmetric matrix with the
largest eigenvalue m, then @y = B/(m-+0.001) leads to geometric ergodic chains. Then we evaluate
a series of ® = k- &y, where k = {0.8, 0.81,..., 0.90}. Larger k implies stronger auto-covariance
and cross auto-covariance of the chain.

For each ®, optimal coefficient with flat top pilot is computed for VAR(1) of length 1e4.
The averages over 500 replications are plotted in figure 2.3 with 95% confidence interval. n'/®
for n = led, 1e5 and 1e6 are provided as references for bandwidth of n'/2. Further more, )i;,t
is computed with n'/3, n'/2 and optimal bandwidth. Let E = £;, — X, mean squared error across
entries of E can be reflected by

1

2
e,
SEL

mse —

To compare performance of different bandwidth, mse of corresponding £, is calculated. Average
over 500 replications in 2.3 shows that by using suggested optimal bandwidth, mse is significantly

for various strength of autocorrelations.

2.3.3 Bayesian dynamic space-time example

This example is applied to monthly temperature data collected at 10 nearby station in
northeastern United States in 2000, which is a subset of NETemp data described in R package
spBayes Finley et al. (2013). A Bayesian dynamic model proposed by Gelfand et al. (2005) is
fitted to the data and the model treats time as discrete and space as continuous variable.

Suppose y; denote the temperature observed at location s and time ¢ for s = 1,2, ..., Ny and

t=1,2,...,N;. Let x;(s) be a k x 1 vector of predictors and J; be a k x 1 coefficient vector, which is
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a purely time component. i (s) denotes a space-time component. The model is
Yi(s) =x(5)" B, +ui(s) +&(s), &~N(0,7),

B.=B._,+tn: m, NNP(Ovz‘U)v
ur(8) = w1 (s) +wi(s); wi(s) ~GP(0,G(-, 6%, ¢)).

GP(0,C;(-,072,8;)) is a spatial Gaussian process where C; (s1,52;67,¢;) = 62p(s1,52;¢). p(-;9) is
an exponential correlation function with ¢ controlling the correlation decay, and 6/ represents the
spatial variance components. The Gaussian spacial process allows closer location to have higher
correlation. Time effect for both B, and u,(s) are characterized by transition equations to achieve
reasonable dependence structure. We are interested in estimating posterior expectation of 185 pa-
rameters 0 = (B;, u(s), 07, Ly, T, @), their prior follows spDyn1M function in spBayes package.

Elevation is the only predictor in this example, hence B, = ([3,(0), Bt(l))T fort=1,2,...,12,
where [3[(0) is intercept and ﬁt(l) is coefficient of covariate elevation. Consider the intercept param-
eter for two consecutive month ﬁl(o) and ﬁz(o). Let {X; = (ﬁl(?, Bz(g))T | be posterior sample of

([31(0), [32(0)) generated from spDyn1M function. We are interested in estimating

Y = Var(X;) + Y [y(s) + y(s)"]

s

s=1

by 3 with different bandwidth.

An average over 20 chains of length 1e7 is used to approximate true value of [31(0) and
ﬁz(o). Then consider 1000 replications of the following. For each replication, £, with bandwidth
nt/ 3 n'/2 and Bopt are calculated for chain length n={1e4, 5e4, le5, 2e5}, then 90% confidence
intervals based on £, is used to check whether the true ( [31(0), [5'2(0) ) is captured. Capture rates from

1000 replications in table 2.1 show that %, with bandwidth 13(, pr 1eads to captures rates closer to 90%
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compared with n'/3 and n'/2, suggesting a better estimate of X. Figure 2.4 plots confidence regions
for ([31(0), BZ(O)) and (/31(0), 67) constructed from £;,. Bandwidth of n!'/3 ignores the proportionality

constants and leads to a much smaller ellipse.

Table 2.1 Capture rate of 90% confidence region for ( ﬁl(o), Bz(o)) based on £, over 1000 replications.

Bandwidth | n=le4 =5¢4 n=le5 n=2e5

n'/3 0.371 0479 0496 0.561
n'/2 0.625 0.747 0.778 0.843
Eop, 0.763 0.845 0.865 0.902
90% confidence region 90% confidence region
o | Flat top 0 —— Flattop
2 — n1,¥3 g - — 3
2 i n1,’z J n1,’2
- S & |
| =
2 - v |
y I
f f T T T T T T T T T
L 535 883 422 426 430 434
B|1_D_| &

Figure 2.4 Confidence regions for (ﬁl(o), BZ(O)) and (Bl(o), 1) based on £, and a chain length of
les.
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2.4 Discussion

In this chapter, we consider asymptotic mean squared consistency and optimal bandwidth
selection for a class of multivariate spectral variance estimator, under conditions that are easy to
check under MCMC setting. Although mainly focused on mSV estimator, the suggested optimal
bandwidth can also be applied to other estimate of ¥, such as batch means and overlapping batch
means method. Diagonal element of X is equivalent to univariate variance of CLT, hence univariate
optimal bandwidth selection of SV, BM and OBM follows the same procedure.

To reduce computational effort, we used the first 1e4 MCMC samples for flat top pilot
estimats regardless of the chain length used to estimate 6 and X. As a result, performance of the
estimator is significantly improved without adding much computation, which is crucial in practice
especially for multivariate problems. One can also use the last 1e4 samples for better performances.
We choose 1e4 as a compromise of computation and accuracy based on simulation. In fact, there
is a major improvement even if only 1e3 pilot samples are used. Hence the length of pilot samples
can be determined according to computation resources available.

Asymptotic variance of mSV requires the chain to be polynomial ergodic, while the bias
results are based on uniformly ergodicity. Bias results under polynomial ergodicity is of interest and

requires future work.
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2.A Appendix for Chapter 2

A Brownian motion and propositions

Denote
. 1 _ _ 1
76) = 3 L =) (s =) = LTV,
t

n

later we will show that the difference between 3, and 3, is

1 b b—1b—s
=- {men Z vi+Y ZAlwn (s+h) (Z(V,V,QSJFV,HV,T)H
h=1 s=1h=
1 b n —1b— n—
+[Z Y Awa(n —r—|—h+1)VVT—|—ZZ Z Aywy(n—r+h+1)(VVL + V. V|
ML=t r=n—bth+1 s=1 h=1r=n—b+h+1

Let B = {B(t),t > 0} be a p-dimensional standard Brownian motion. Denote ¥(s), £, £,, and d the
Brownian motion analog of f(s), %, %, and d. Specifically, define Brownian motion increments
U =B(t)—B(t—1) fort = 1,...,n, then Uy,...U, ~ N,(0, I,,). Let B=n"'B(n) and T, = U, —
then

~ 1 - S\7T 1 T

')/(S) = 7Z(UI _B)(UI+S _B) = ZZT;T;+5‘7

t
b—1 ,
+ Z wa($)[7(s) + 7(s)"];

n

fi K2 A (k) By (k) — BI[B (k) — B]",

3\'—

where B; (k) = k' (B(1+k) — B(l)) for { =0, ...,(n — k), and

5 1 b —1b—s
= {men Z .1 + Z ZAlw,, (s+h) <Z(TrTZH+T,+STrT)>]
= s=1h=
b—1b—s n—s
[Z Z Alwn(n—r+h+1)TrT,T+Z Y Y Aywp(n—r+h+ 1)(LTL + T T |
h=1r=n—b+h+1 s=1h=1r=n—b+h+1
Also define the following matrix:
1 b n—k o -
WL_nZZk Aow, (k)L[B;(k) — B][B;(k) — B)"L",
k=11=
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where L is the lower triangular matrix satisfying £ = LLT. Let B?) (1) be the ith component of vector
B(t), we need some properties of Brownian Motion.
Proposition 2. Csorgo and Révész (2014) Suppose Condition 3 holds, then for all € > 0

and for almost all sample paths, there exists ng(€) such that foralln > npandalli=1,....p

. . 1/2
sup  sup |BY(t+s)—BY(1)] < (1+¢) (Zb (log% —|—loglogn)> ,

0<r<n—b0<s<b

. : 1/2
sup |BY(n) =B (n—s)| < (14¢€) (2b (log% —i—loglogn)) ,

0<s<b
IBY (n)| < (14 €)\/2nloglogn.

Recall £ = LLT where L is a lower triangular matrix. Define C(t) := LB(z), let C\(¢) be the ith
component of C(¢) and define C_'l(i) (k) = k=1 (CO(1 + k) — (1)), C) = n='C)(n). We have the
following propositions.

Proposition 3. Vats et al. (2015b) For all € > 0 and for almost all sample paths, there

exists no(€) such that foralln >npand alli=1,...,p
IO (n)| < (1+¢€)(2nZiiloglogn)/?,

where X;; is the ith diagonal entry of X.
Proposition 4. Vats et al. (2015b) If condition 3 holds, then for all € > 0 and for almost

all sample paths, there exists ng(€) such that foralln > npand alli=1,...,p

ICOK) <~ sup  sup |[CO(I+s)—COD)| < =2(1+ &) (bZalogn)'/?,
k o<i<n—bo<s<b k

where ¥;; is the ith diagonal entry of X.

Proposition 5. If variable X and Y are jointly normally distributed with
X of |in h

~N ; ;
Y 0 Il I»n
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then E[X2Y?] =21, + 111 1».

Proof. Let

I I o}  pooy

2
lip In P OxOy Gy

Suppose Z; and Z, are two independent standard normal variables, rewrite X and Y by X = 0,Z;

and Y = oy[pZ, + /1 — p?Z,], then

E[X*Y?| = E[0;Z{[0,(pZ1 + /1 - p*Z) ]
E[p*c;0;Z{]+ (1 - p*)0; 0, E[Z{Z3] + 2p+/ 1 — p20; 0, E[Z]|E(Z)]
=ILEZ{+ (Ll — 1) E[Z1)E[Z3]

= 2[122 +li1l2s.

Proposition 6. Janssen and Stoica (1987) If X|, X5, X3 and Xy are jointly normally dis-

tributed with mean 0, then

E[X1X2X3X4] = E[X]XQ]E[X3X4] + E[X1X3]E[X2X4] +E[X1X4]E[X2X3].

B Proof of proposition 1

~ N

We will first show that £,, = £, — d and iw = X —d. Proposition 1 can be proved by
showing that d — 0 and d — 0.

Lemma 1(**). Under condition 2, %,, = £, —d.

Proof. The proof is similar as the proof for theorem 3.1 in Damerdji (1991). We need the

following straightforward results.

b
Arwn(1) = Y Aoy (k). (2.A.1)
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b b
Y Awa(l) =wals), Y Arwa(l) =1. (2.A.2)
[=s+1 =1

We will prove that for i, j =1,..., p, iwa,-j =Xsii— J,j Notice that

(B\" (k) — BV (B (k) — BY)

i i i 5(i 1 i ; . .
[(Ul(+)1 F U+t Ul(+)k) — kB' )]> <k[(Ul(er)1 +Ul(i)2 4 —I—U,(i)k) —kB(J)]>

H{g) ()

1 k
2 (Z Tl(+)h T)0,+ Z Z Tl+h l+h+b + Z Z Tl+h l+)h+s>

h=1 s=1h=1 s=1h=1
For simplicity, denote w, (k) by wy. Plug in the above expression,

lbnk o oy .
Soij = nZZka )~ B)(B} (k) — BY)
k=11=
lbnk

Z Z Agwi Z Tl+h l+h - Z Z Agwi Z. Z l+h l+h+s + Tlile(ﬁlm)

T nf
= T4 10, + 10,

Recall that

Fiy(s) = - Y (0 B0y 0 — B0y = - Y 101

L t t

Change the order of sums in I and apply (2.A.1)

n

Y 70)
Z 2W/<Tl+h I+h

3
|
~

=

; 1
Azwle( i) Tl(+31 -
ny

L

Il
S| =
»‘Mw

Il
—_
~
Il
o
>
Il
—_

bk n— ) 1 &b
Z Z Z 2Wle+h l+h_ﬁz Z
—1h=11=0 =1 k=h
b n—h

5

I g W () 1 i) ()
~ Z Z Apwi T Tl+h n Z Z Z AZWleJrthJrh
h=11=0 k—=h h=11=n—b+1k=n_I+1
1 b n—h 1
o Z Tl+h l+hZA2W k= Z Tl+h l+h Z Apwi
h=11=0 h=11=n—b+1 k=n—1+1
LA () () ¢
n Z T nArwn — n Z Z l+hA1W" I+1
h=11=0 h=1Il=n—b+1
1 b
o ZAlwh Z Tl+h l+h Z Z l+hA1W” I+1
h=1 =1l=n—b+1
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14 =
o Z +h l+hA1W" I+1

b N . )
ZAIWh [%J I(Tl(l)Tl(])+'“+Th(i)lTh(i)1)} n
h=1 h=1Il=n—b+1

12 . 0
0) Z Aiwn— E Z [Alwh( ()T( 7 +T( )TZ‘(]) + "'T},(JIT}Ei)l)
=1 h=1

70

nobhn FAIWh-1 Tn(l—)b+h+2Tn(i)b+h+2 + .+ AWy 77

+A1WbT( )b+h+l

h—1 . n

Aywy, Z Tr(i) Tr(J) + Z AWy rintt Tr(i) Tr(j) .
r=1 r=n—b+h+1

03k

1
o

For II;;, apply (2.A.1) and ,

1 b n—kk—1k—s () NAn—kk—
Il = n Z AZWsz l+h+s = Z Z Z Z 2WkT1 1+h+s
k=11=0s=1h=1 =11=0h=
1 b k—1k—sn—k i 1 b—1 b k—sn—
~ Z Z Z 2W’<Tl+h 1+h+s Z Z Z ZAzwkTHh 1+h+s
k=1s=1h=11=0 s 1k=s+1h=11=
1 b—1b—s b —
o Z Z 2WkT1 l+h+s
s=1h=1k=h+s1=0
1 b—1b—sn—h—s b 1 —1b—s n—h— b @) ()
= Z AZWle l+h+s T Z Z Z A2Wle+th+h+s
s=1h=1 1=0 k=h+ s=1h=11=n—b+1k=n—
1 b—1b—sn—h—s @) () b 1 b—1b—s n—h—
o Ty T b Z Agwi — n Z l+h l+h+s Z Aawi
s=1h=1 [=0 k=h+s s=1h=1Il=n— k=n—I+1
1 b—1b—sn—h—s (i) ( ) 1 b—1b—s n—h—
o Tipn z+h+sA1Wh+s_; Z Z Z+h l+h+cA1W" I+1
s=1h=1 [=0 s=1h=1l=n—
1 b—1b—s n—h—s @) () 1 b—1b—s n—h— @) ()
o Z AWy Z T Tithgs — n Z Z Z AWn—i11 T~ Th 1+s
s=1h=1 1=0 s=1h=1l=n—
b—1b—s
B . . . . .
=Y Y Aiwis [7 (s)—n (Tl(l)Tl(i)s—f_"‘+Th(-121Th(-{-)l+s)}
s=1h=1
1 b—1b—s n—h—s @) ()
o Alwn71+17}+h7}+h+s‘
s=1 h=1I1=n—b+1
b—1b—s —1b—
1%
= Arwpi¥ij(s ; Z Z [Alwhﬂ 1(+)s+ +Th( )lTh( )1+s)
s=1h=1 s=1 h=1
(i) (J) (@) () (@) ()
+A1WbT b+h+lT7b+h+l+s+A1Wb 1T b+h+2T b+h+2+s+"'+Alwh+s+1Tn—sTn ]

b—1 1 b—1b—s () n—s (D) (J)
=Y wiFii(s) — = Al Whis Z 7 T+ Y W LT
s=1 n =1 =1 r=1 r=n—b+h+1
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Notice %(s) = ¥ji(—s),
IF 5 (@) (/) 7(0)

IIj; = ArwpisTii(s) y Z Z [Alwh+s T1+s+ AT )

()

+A1WbT( )b+h+1 T(l—)b+h+1+s +Awp- Tn—b+h+2Tn(l—)b+h+2+s o A Whst 7;1(1)57;1([)]

b—1 _ 1 —1b—
:;Ws'yj‘i *Z;Z

" () (= () )
Alwh+v Z T, ! Tr+s + Z Wn7r+h+lTrj Tr+s .
r=1 r=n—b+h+1

Combine I, H,J and Hj,',

b—1 b—1
ZWJ'J' = I—}—Hij —|—Hj,' = [’}7,](0) + Z WS}N/Z'J'(S) + Z WS’YJ','(S)]
s=1 s=1

B b helo n 0

- Z Aywy Z 7TV 4+ Z Alwn—r+h+1Tr( )70

np r=1 r=n—b+h+1

1 —1b—s h—1 ) NG n—s ; . N (i
=Y Y |Awnes Y (T 0+ 1T + Y Wariai 1+ 1T
n s=1h=1 r=1 r=n—b+h+1

~dy.

M

The next three lemmas show that d; i—0asn— oo

Lemma 2. (Vats et al. (2015b) lemma 6) Under condition 2, 3, if as n — oo,

b
bn= 'Y k|Aywa(k)| — 0,
k=1

then

S| s

—1b—s
<Z|A1wn |+2ZZ|A1wn (s+1)| >—>o.

s=1t=

Lemma 3*. Let condition 2, 3 hold and n > 2b. If as n — oo,
! Z k| Aywy (k)| — 0,

then d — O w.p. 1.
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Proof. For i,j = 1,..., p, we prove that cf,-j — 0 w.p.1. Using the inequality |ab| < (a® +

b?)/2, forh=1,...,b,

h—1 ; 1h 1 ; 2b 1 2
Zl ‘Tr()Tr(/)| < 5 71[(7}())2 E Z + Z
Similarly,
N 00 4 )l
Y (B T+ 11T
r=1
1 2b ) 1 2b 1 b
1 2b ) 1 2b 1 2b 1 2%
2 Z v = Z 24 Z 24 Z
— Z(Tr(l))2+ Z(T(]) 2
r=1 r=1
therefore
_ 1 /(& hfl —1b—s -
h=1 r=1 s=1h= r=1
1 b - —1b—s . ' i
< Z (Z ’AIWn(h)| Z |+ Z Z |A1Wn S+h Z(|T HJ_“ 4 ’Tr(])TrQY))
h=1 r=1 s=1h=

1 1 2b i 1 2b
§;Z|A1Wn(h)| (22 2+ Z )
h=1 r=1
11) 1b—s . .
4= Z Z |A1Wn S—|—h <Z r(l))2+Z(Tr(]))2)
r=1

n = 1 h= r=1
1 12b ()12 1217 ()2 b b —1b—s
(3R R ) <2 (L a2 L X 8w+
=1 r=1 n\,3 s=1h=
=HXxI.

By lemma 2,1 — 0 as n — . We will show that H stays bounded w.p.1 which guarantees |a,71 il —0

as n — oo, Recall that 7, = U, — B, apply proposition 2,

12b . 12b

0y2 (i) _ ply2
5 (Tr( )" =5 2 (U —By)
2br§’ 2[92“1
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2b

1

?2 _73 Zw BY
b

%ZU

i

2

1
< |z L’

2+ 28] +1(BY)?]

<L
2b 1

2
+( 1 + ) (2nloglogn)'/?) -

5L

2
<1(1 +¢€)(2nloglogn) 1/2)
n

2b

121)

()
o Y w0

r=1

((n"'logn)'/*)+ O(n"'logn).

Forr=1,...,2b, Ul ~ N(0, 1) and (Ur(i))2 ~ x%(1), by classical strong law of large numbers, both

1 2b 1 2b
ZU and 2bZ(U())l/2

stay bounded w.p.1, hence H stays bounded and we proved d; i —0asn— oo

Lemma 4. (Vats et al. (2015b) Lemma 8) Set h(X;) = [¢(X;) — Erg]* for t = 1,2,3,...
and assume ||Erh|| < oo. Let condition 1 hold for 4 such that there exists a nonnegative increasing
function yj, on the positive integers, a lower triangular matrix Ly, a finite random variable D, and

an ng € N such that w.p.1, for n > ny,

2: (Xy) —nEph— L,B(n)

< Dyyi(n).

Also assume condition 3 hold and as n — o,

b 'yu(n) =0 and b 'logn=0(1),

then
b
INC

stays bounded w.p.1 as n — oo. By lemma 3 and lemma 4, it can be proved that d — 0 using a similar

W‘ \

proof as (Vats et al. (2015b) lemma 9), hence proposition 1 is proved.
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C Proof of theorem 1

We first define Brownian motion analog of the multivariate flat-top spectral variance esti-

mator:
- 1 b=b _ _ _ c cb"h
= gy LB BB B~ Y Bi(eh) (BB
1=0

Let if,’L = LiﬂLT where L is the lower triangular matrix such that ¥ = LLT. Then

~ 1 b= b _ o o
YaL= 1_6,1;)1‘[31(17)_3”31(1?)—3] L
c b"C ch
T L[B;(cb) — B]|B;(cb) — ]TLT
=0
1 bn b ) ) -
=12 . [LBi(b) — LB|[LB/(b) — LB]
=0
c b"C [/ . . )
~ =2, X [LBi(ch) ~ LB|[LB(cb) — LB)"
=0
n—>b
= 2y () - Clicip) - T
=0
c bn—cb
“1_cn [Cy(cb) — C)[Ci(cb) — C)".
=0

Let £, 1. be the (i, j)th entry of £4, ;. Then

bnb . B

B reris *cn Z coNe’ (b) — €]
=
n—ch . N .
— DS E0 () — COE (eb) - €U
l—cn [z

Lemma 5. (*x) The variance of £, 1 ;; satisfies

n ~ 4c 2
Evar[zﬂ’L’ij] = (3 + 3> [Ziizjj +Z?j} +0(1)‘

Proof. Var[£ 1] = E[ijz‘t,L,ij] — (E[E..;j])?. First, consider E[i}nL’ij].

. 1 b Ny :
ElS 1] =E Kl e L (G0N )= CV)
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b n—cb

2
- (Cl(i)(cb)C(i))(Cl(j)(cb)C(j))>]

l—cn 5

2b2

n—b . ) . .
- {(11) . LZO (€ () — ) (P (b) — C)
¢\ (ch)?
* <1—c> n?

2 2 (n=b . ¢ .
—(12_)b [Z (€7 (6) - (b) - c%]
=0

—C 2
Zb<c‘§” (cb) — CDY(CY (cb) — c‘<f>>]
[=0

=A1+A+A3

where

M 2
nr| (1 )2(6”)2 Zb<c‘f"><cb>—c‘<l‘>><c‘}”<cb>—c‘<f>>] ]

2C2 b2 n—b_i (i . .
NI P CRORI ORI

A3=E
(1—c)?n? =

Consider the calculation of A;:

[ = =(i)\2 ¢ ~) ~(j)\2
A= 5 Z(Cl (b)=C)(C7(b)—CV)
(I1—¢)’n =
5N (G0 ) EOyED 1 SONED (1 SOV ED () (U
+23 Y (G (6) - CNE (b) — CV)(C (b) = CD)(C L (b) = CV)
s=1 [=0

n—bn—b—s . oy e ; i (s /s
+2Y Y (€7 (6) = CY(C (b) — COYCYL(b) — CON(CL (b) —CD) |
s=b [=0

Denote A, B, C the first sum and the two double sums in the above equation, respectively. First

calculate the expectation of A. Define U,(i) =B (1)—BY(r—1), then U,(i) ~N(0,1)forr=1,2,...,n

and
31U B (i —b g i 1 ! [ 1 a i
B;)(b)_B():( nb) y Ur()—;ZUr”—; y o
t=[+1 t=1 t=I+b+1
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Notice that E[B" (b) — B®] = 0 for [ =0, ..., (n — b) and

. . ~b\2 n—-b n—b
Var(B{" (b) - B9 = (“-2) b+ " .

nb 2 bn’
therefore
_ b
B 50 N <07 n >
b
and
_ _ n—>b
B;(b)—B, ~N (O, - Ip) ,
resulting
3 3 — — n— b T
C/(b)—C,=L(B;—B,)~N |0, 5 LL ). (2.A.3)
n

Now consider E[(C\ (b) — C)2(CY) ()

C_‘lm (b) —CU). Recall £ = LL”, then

Zt N 0 n—>b Zu le
" bn
Z; 0 Lij Xjj
Apply proposition 5,
E[(C]" (b) - CO)X(CP) (b) - €V = E[Z}23)
2
n—>b n—>b n—b
2 2
n—>b n—b
- ( - > 57+ ZiZj] + (b) .
Therefore
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We first derive the joint distribution of the following vector of length 2p

_ _ n—>b n—b s
Gi(b)-€ 0 ( bn >Z < bn _b2>2

_ _ ’ n—>b s n—>b
Ciys(b)—C ~ )z z
r5(b) 0 < bn b2> ( bn )

Recall (2.3.1),

We will show that

Notice that

= E[L-(Bi(b) = B)(Biys(b) = B)" - L")

— L-E[(Bi(b) ~ B)(Bir(b) - B)"] - L.

we first consider E[(B;(b) — B)(By,s(b) — B)T] by considering each entry of the matrix.

Fori # j,



For i = j, we need to calculate E[B"” (b) — B [B(i)s(b) —B0]. Let "

l

Bl(ﬂs(b) — BY, then the joint distribution of Z is

Zgi) 0 n—b nb—nsz—b2
~N ’ bn nb
70 0 nb — ns — b* n—>b
2 nb? bn
and
(i) (i) b(n—b)—ns_ ) 2bs(n—>b)—ns
2,2y ~N
e ( b(n—b) "%’ b (n—b) ’
(i) n—b
Z,’  ~N|(0, — |.
2 ( ) bn )
Hence

_ () (bln—s) —ns

~ep [ (25|
b(n—s)—ns (i)

_b(n—s)—ns n—b

~ b(n—>b) bn

_n—=b s

- bn b2

Combine the above results, we have

Cov(Ci(b) = C, Cr15(b) —C)=L- (n—b : )IP'LT B (nb_nb

bn b2
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Let Z] = Cl(b)(i) —C(i), Zz = C](b)(j) —C(j), Z3 = Cl+s(b)(i) —C(i>, Z4 = Cl+5(b)(j) —C(j>. From

the joint distribution of the 2p vector, we have

ro m ] n—>b n—>b n—-b s n—-b s
Z 0 < bn )Z"" ( bn )Z"f ( bn _b2>2"" ( bn _b2> Zij
n—>b n—-b s n—-b s
Z N 0 ( bn )ij < bn _bz>2ij ( bn b2 i
’ n—>b n—>b ’
Z3 0 ( o Xii < b L
n—>b
|24 0] <bn>2jj

we only show the upper triangle entries of the covariance matrix and the lower triangle can be

obtained by symmetry. Apply proposition 6,

E[ZIZZZ3Z4] = E[Z]Zz] . E[Z3Z4] + E[le3] . E[Z2Z4} + E[Z]Z4] . E[Zsz,]

2 2 2
n—>b 2 n—>b s n—b s 2
=< b ) Zw’*( b _bZ> Ziizjj+<bn_bz) Zij»

resulting
TN B ED () — EOVED () — EDVED () — EOVED () —
EB— E[(C ()~ CO) (T ()~ CO) (L, (b) ~ CO) (L (b) ~ )]

s=1 [=0

b—1n—b—s

= E[212,7374)
s=1 [=0
b—1n—b—s

2 2 2
n—>b 9 n—>b s n—>b s 2
( b ) fo*( b ‘bz> Z”Z-f-f+<m‘bz> Eff]'

bZlnbs(n_b _S>2
s=1 =0 bn b
b—1n—b—s SZ N 2 2 N 1 N 1 2
== —_ —_— S _— e —
o B S b*n b3 b* n?> bn
os? L(rp 200
= — = — = — — ]S
=1 RGN

n 3 2n+ 2 2 1
T ——
b2 b3 bn b3 n?



LY B R (a1 1 2N(R B b
o\ 4 2 4 b b bt bm 3 2 6

b? b b2 n2 bn n2
_n P 2n b* n
"y 3 2 te?
_1n+ (n)
3 \p

Plug in the above results, we have

2
In n
y2 Z Yoy y2
BB =% bn ) (i X)) [3b+0(b>]'

b—1n—b—s (n—b
s=1 [=0

Similarly as EB, we calculate EC by first consider

for s = b, ...,(n—b). We show that the joint distribution of the 2p vector is

_ _ n—>b 1

C(b)-C 0 ( o )2 .
~N ’ 1 b

_ n

Crys(b)—C 0 —-X < - >z

For i # j,

For i = j, we need to calculate E[Bl(i)(b) - B(I)HBz(is(b) —BY) for s =b,...,(n—b).. Let Z§i) =
B (b) ~ B and ;" = By (b) ~ B). Since
; — 1
Zi )] 0 n—b 1
~ N 9 bn n bl
0 _1 n—>b
Z 0 n bn
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then

Hence

Then we have

A A . I 1
Cov(Ci(b) —C, Crus(b) ~C) = L- (—n> =l

which yields the joint distribution of the 2p vector. Again denote Z; = C; (b)) —C), Z, = C; (b)) —

C), 23 = Cpyy(b)) —CW, Z4 = C15(b))) — CU). The expectation of C is

Be=Y Y EIC ()~ C)(C (b) (L, ()~ C) (Y ()~ )
Z l / I+s




Plug in EC, we have

EC= z2nzbnzb"s< ) (g)

Combine EA, EB and EC, we can calculate A; as follows.

1\ 52

A =FE —
: |:(1c> n?
1
 (1—¢)? n?
1

- (1—¢)? n?

+2%,~<l;)<" b) bZZ:

E( 5 (=)

2 n n
S S e 3% JPFT 5 m\ L y2 1)
(1=c)* n? [3( i+ E) b+0<b)+ ”< bn > (n=b+1)

1 b [2 n. n?  4n
SR SN a5 3 YRS 2 e <f) +32 (= ——
(1—c)2 n? {3( i+ Ej) » 1 \p (b b)}

zu_lcy-[i(ziizjj+z§,)-z+22 — 457 } <> (2.A.4)

.[EA+2EB+2EC]

2 sy N n
3z 5o ()

l’l—b2 n—bn—b—s
w) 22 L (%

Notice the similar structure of A; and A, we have

c? 2 b, , ¢b b
Now we calculate As.
222 B2 (i)~ " ~(i
M=o e | L@ 0 -CNE ) - ) | | L (6 (eb) ~CO)(E (k) -G
(1-¢)* n* |5 =0
__2702.[’72.1;[((1_ Yo+ 1)( —b—l—l)'OL(i)OL(j)
 (1—0)? n? ¢ !
cb—1n—b—s B ) B _ B . ) .
+2 Z Z (Cl(b)(L)_C(l)>(Cl(b)(j)_C(j)>(cl+(1 C)b+S(Cb)_C(l))(Cl+(1 C)bJrS(Cb)_C(']))
s=1 [=0
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+2 (Cl(b)(l) - C(i))(él(b)(]) - C(]))(Cu(l C)b+s(Cb) - Cv(i))(cpr(l,c)bﬂ(d’) - C(j))],
s=cb =0
where
oL = (G} (b) = C)(C}" (be) ~C¥),

First, consider E [OL( oLl )] We first derive the joint distribution of the following 2p vector.

n—>b n—>b
G- of [(5)F (55
p ~N ’ bnb bnb
- _ n— n—c
Cq(cb)—C,, 0 < o )Z < - >Z

gl

By 2.A.3),
_ b
c,,(b)—c,,~N<0, ”b Z),
n—cb
C.(ch)—C, ~N (0,
4(ch) ( cbn >
For i # j,

For i = j, we need to calculate E[Bf,,) (b) —B(i)][ gl )(cb) B! )] for p, g satisfying ¢ > p and g+ cb <

p+b. Let ZY) = Bf,,i) (b) — ,(1) and Z B ,, , ). then

n—>b
bn

n—cb

chn
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thus

Hence

012212

i 270z
()2 c(n—b)

E | (Z .

z {< 2) n—cb
_c(n—b) n—ch
 n—cb chn
_n—b
 bn

Then we have

A = A = n—b n—b
COV(Cp(b) —Cy, Cq(cb) —C,)=L- <bn> I, T — - X,

which yields the joint distribution of the 2p vector. Denote Z; = C,, (b)) —C(), 7, =

25 = C,(cb) D =, 24 = €, (cb)) — €. Then

E[(1—c)b+1)(n—b+1)0LD0LY))

= (1= )b+ )(n—b+1)-E[(C(b) =€) (G (b) ~CV)(C (cb) ~ CV)(Cf (eb) ~CV)]

=((1=c)b+1)(n—b+1)-E[Z12,7374]

2
=((1=c)b+1)(n—b+1)- <”b_nb> (ZF +ZiZj))

F((1=)b+1)(n—b+1)- (";f) (”c_b;”> 2.

Notice that

(1=c)b+1)(n—b+1)- (n;@b)z
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= ((1=c)b+1)(n—b+1)- (1712+7112_bzn>
:(1*c)bn%+0(%>

1-0l).

and
o-amrocsen (22) ()
— (1=e)b+ 1) (n—b+1)- <;)+1_ <cczn1>>
= (1 +o(})
=5 o(3):
We have

E[(1—c)b+1)(n—b+1)0LD 0LV

1—c n n

We calculate ED by first derive the following joint distribution.

_ _ n—>ab 1 1 S
Gi(b)-C N 0 (bn >Z (b_n_cbz>2
_ _ ’ 1 1 Ry n—cbh
Cri(1-c)p+s(cb) =C 0 (b T cb2> = ( cbn ) >
For i # j,
E[B (6) = BB _oypi(b) ~ BV = EB (0) = BY)-EIB) . (eh) = BV =o0.
For i = j, we need to calculate E[Bl(i) (b) —B(i)][gl(i(l_c)bH(Cb) _B(i)] fors=1,....(cb—1). Let
2/ =B(b)~B. 22 =B, _,,,(cb) ~ B, then
Z{i) 0 n—b w
~N : bn ch*n ,
20 o| |nztiosn  n—ch
2 ch’n chbn
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hence

7(0) ]Z(i) ~N Wz(i) (c—c?)b?*(n—b) —s*n+2ch(n—b)s
b2 b(n—cbh) ?’ cbh3(n—cb) ’
(i) n—cb
Z, ~N|(O .
z < " cbn )

Hence

EZZ) = E,p[E,0 5012212}

gi)lzgi)

, cbn—ch* —sn
b(n—cb)

- cbn—cb* —sn n—ch
b(n—cb) chn

- cbn — sb* —sn

=Ey [(Zéi)>

ch?n
_ 1 1 K
b n b

Then we have
_ - - _ 1 1 s 1 1 s
Cov(Ci(b)—C, Crus(b)-C)=L-(~——— 5 |, LT = -—-—— ) -X
ov(Ci(b) ; Crys(b) ) <b Cb2> P <b > )

which yields the joint distribution of the 2p vector. Again denote Z; = C_‘l(i) (b)—CY), 7, = C',(j )(b) -

CY), z3 = Cfi(lfc)bﬂ(cb) —CW, z,= C‘l(i)(l—c)b+s(Cb) — CU). The expectation of D is
cb—1n—b—s ~(0) (i 1 A0) . ~(i) . (/) /s
ED=Y Y EC"(B)~CE 1) = CONCL oy (eb) = CNCL o (cb) = C)]
s=1 =0
cb—1n—b—s
— Y E[212,7574]

s=1 [=0

cb—1n—b—s n—b
EEC

n—cb 1 1 s \? 1 1 s \?
2 JY (L B 36 S (. B A
> < cbn ) it <b n cb2> it (b n cb2> ”]

Consider the first summation in the above expression.

) (%)

cb—1n—b—s n—b
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= [\ cb? c bn cb? c bn n
1 c+11 1 1 c+11
(S Y b ) (eb—1)—  —> —
(cb c bn+n2>( +1)(e ) <cb2 ¢ bn
1 n
2 mebro ()
(M)
b b

ch—1n—b—s 1 1 s 2
X ) <b_n_c192>

s=1 [=0

Chi"*ff £ (2 2N (L, 1 2

= _— _— S e _———

o Bl c2b* ch’n b3 b2 n® bn
ch ! n 2 1\N1 11 21Y\,
L e tlart (i 2)mtar o)’

(AL 2 g, 2) 1 21 21

c b2 b3 c)bn cb*n cb?

+n+3 3 b+l+1 2
b2 n b n® b2 n2 bn

B 1 <c2b4 b3 czb2>

4 2 T a

G - W T U S S O
c2bt c )b 2t cbhb’n 3 2 6

. 4 1 1 2n+ ) 2 1+21 21 1 c
c b2 b3 c/)bn cb’n b3 n?

n n+3 3 b+1+1 2 (b 1)
T TN T S N S
b2 n b n? b2 n? bn

_1 n b’ 2nc2b2+n bt <n>
T2 3 2 T

Plug in the above result, we have

C n
ED=S(zix;;+x2) v x2” (7) .
3( ]]+ )b+ ljb b
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Finally, we calculate EG. For s = cb, ..., (n—b). We show that the joint distribution of the 2p vector

is
~ _ n—>b 1
C(b)-C 0 < o >Z -z
~N ’ 1 b
— — n—=c
Cri(1-c)ps(cb) =C 0 — X ( o >Z
Fori # j,

E[B)" (b) — BY|[BY), )y, (cb) — BV = E[B}" (b) — BY]-E[B)) . ,(cb) — BV =0.

For i = j, we need to calculate E[Bl(i) (b) — E(")][Bl(i(lfc)bﬂ(cb) —BW] for s = cb,...,(n—b).. Let
7)) =B (b)-BY, 2, =8 |, (cb)— BV, then

Z(l) 0 n—b _l
o N 7 bn n ’
(i) 1 n—cb
Z 0 ——
2 n cbn
hence
(i) (1) b ,m (n=b cb
2’2y ~N —
1% ( b—n 2"’ < bn  n(n—cb)))’
; n—cb
zg)NN(o, o )
Hence

‘ch—n
cb n—cb
ch—n cbn
1
—

Then we have

72



which yields the joint distribution of the 2p vector. Again denote Z; = C‘l(i) (b)—CY, 7, =C l(j ) (b)—

CW), 73 = C_,l(—lz(l—c)b—i-s(Cb) —CY, 74 = C’l(i)(l_c)bﬂ(cb) —CU), The expectation of G is
NN 0y A0y Dy A =0y (AU ~
EG=Y Y EIC 1)~ COC6) NN, e (c0)=CONC, ., cb) ~C)]
s=cb =0
n—b n—b—s
= E|Z12,7374]
s=cb =0
n—b n—b—s
n—>b n—cb 1 1
- pIANE ) RS A
= = [( bn )( cbn ) ’-’+n2 ”+n2 Y
Consider the first summation in the above expression.
”i{’"‘b_’ n—>b n—cbh
s=cb 1=0 bn cbn
1 e+l 1 ce+ll 1
= ————t = -b+)- | ———+=
S;n <cb2 c bn+n2>(n +1) <cb2 c bn+n2)s
I c+11 1
=(—-———4 = )m—b+Dn—(1 1
<cb2 " bn+n2>(n b+1)n—(14+c)b+1]
(1 e+l 1 TN\ [(c=Db+n]n—(1+c)b+1]
cb? c bn  n? 2
1 c+11 1 2 2
= <cbzcbn+n2) [n"—(24c)bn+2n+(1+c)b”— (2+c)b+1]
1L e+l 1 1\ AP=(I+o)bntnt(c—1)bn—(1+c)(c=1)b*+(c—1)b
ch? c bn  n? 2
1, 1 l+c1 ,
—— .22 bn— —.
<cb2 " cbz( )b c bn n>
1 n 1 4 1A N (g)
ch> 2 cb? c bn 2 b

_1n (3 33\n, (%)
22 \27 2 )b \p)

Consider the second summation in EG.



1 [/ n? 1 b 1

Plug in the above result, we have

1 n 3 3 n n

Combine E[((1 —¢)b+1)(n—b+1)OLDOLY)], ED and EG, we can calculate A3.

22 BT A0y 0D ) — GO | 1S (ED (o) — SOV ED (o GU
M=E| g | L@ (6) =CNC (B)=CN| | X (G (cb) =CD) (G (cb) V)
=0 1=0
2 m () oL0)
:_(lfc)z‘ﬁ[E[((l—c)b+1)(n—b+1)0L OL ]+2ED+2EG}
22 o b 1—co, b
2¢ b b
+?(Ziizjj+2i2j)'*+22i2j'2
1
e 3c—|—3212 bl (P
c J J n n
2¢(c - 3) o b 22 (1—c+2c-3c¢—3\ , b
= (ST +EE) - - 322
3(1—c)? (ZiZj; +Xij) n (1—c)2< c > I n
2c 2 b
g me(7)
2¢%(c—3) 5. b 2¢2 [(—2c-2\ o, b
- )P SRR 37 1 R B
3(1—6)2( i+ ) n (1—c)? c Yon
2c 5 b
T (1o L to <n> : (2.A.5)

Now we calculate E[%> 1L ] by combining Ay, A; and A3.

E[i;, Lijl =A1+A2+ A3

4c —6c2+2 s b 1+t =2c,
— (X4
3(1—6‘) ( J]+ lj) }’l+ (1_ ) ij

i (‘(1 jc)Z ) <14—CZ>2 i 2‘552553)) o (b>
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4¢® — 6 +2 o b o AP +AC+Ac—4 ., b b
= = Cmi TR PRy &fn+”<n>‘

We also need E[£,1;j]* in order to calculate Var[Es 1 ;;]. Consider E[(Cl(i) (b) — C’(i))(él(j)(b) -

¢ and E[(C\" (cb) — C)(CY (cb) — CW)]. By (2.3.1),
C(b)—C~N <0, ”b_nbz> ,

_ - n—cbh
Ci(cb)—C~N <O, b E) .

Therefore
~\ ~(i = = n—>b
E[(C (b) - CO)(E () - ¢ = " P,
! N PeY () n—cb
E[(CY (cb) — ¢DY(EY) (cb) — EW)] = s
resulting
~ 1 b n—b . l B )
(EEfLifl)? = < T E[(CY (b) — EY (D) (b) — EY]
=0

(b T S M)
_2’21(1 1C - (n—b+1) nb—b - lic %(”—Cb"‘ 1) nc—b;‘b>2
—xp (1A (0)
_x 4¢3 _(zltci;)zztc+4zlzj . % +o (Z) _
Plug in the result from univariate case. The variance can be calculated as
Var(Ss i) = E[i%ugij] —EEn L)
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43 — 4% —4c+-4 b b
— (2 - 2.2 z
(- 0) = (3)

4¢3 —6¢2 42 5. b b
= W(Zu%ﬂu) o <n)
1
de[(1—c)>+ —(c—1)?] b b
— 2c 3o y2y. b
- 3(1 C) (leZ]]+Zl]) n+0<n>

4c 2 2 b b
= <3 + 3> (ZiZjj+Xij) - ~to <n> :
Lemma 6(*x). Under condition 2 and conditions 3, if
b 1
Eem<o(5)
then

< P by 1 A 25 L\ 1 b
Var[ZmL,U} = (2,-,-ij+2 gkg’l Azwk k- *+2[Z]HZ] AzWquthru (314 +u l‘> n:| +o (n> .

Proof. Note
2 d 2 1
(Apwy)” < ;(Azwk) <0 <b2> ;
hence
ay = b Azwk S 0(1)
Consider
- IR GR e ) ~(j)
Zw,Ltj:;k;; AZWn (k)—C HCI (k)_cj]

Let ¢, = k/b for k = 1,...,b, also denote a; = b - Apwy, for simplicity. Consider:

z 28w (K)[C}" (k) — CD][CY) (k) — €]
b
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Recall (2.A.4) and (2.A.5) from flat-top estimate.

n

2
[ = (i A (i 2 b b b
E { (2 (Cl()(b)—C“)(Cf’)(b)—cw)) ] =E?j+3<2,-,-zjj+2%j>~n—425'n+0<),

b2 n—cib i . . . n—cCyyth » . . .
-(Z <c§f)<ctb>—c<’>><c,€”<cfb>—c<f>>)-( Y <c5/><ct+ub>—c<'>><cé”<ct+ub>—cm))

q=0

1, 3-c b 2ce+2_, b b

3

Define Agkl) g and Ag"fj) as below then we have

(exb)? (&P 4 2
Al —p | ( 3 (€9 (erb) — €Y (erb) — C—<j))>

k=0

2 cxb b
= (3(2,-izjj+z$j) —42,@) = +X5+0 (n) .

and
u Cu b2 n—qb_i i o o
Agfj) =F (n‘i';) ( Z (C[(,)(Ctb)—C(l))(Cé])(ctb) _C(J))>
p=0
n—cyb » L N
1L (@ (crab) ~CNEY (crpub) — CD)

q=0

¢ 2c cub  c b

_ 1 _Cu PIDIR y2y_ (2 u-+tt 2. u-+t u+12.2‘ o

[< 3Cu+t>( ji+ %) < - Cu ) 7] Cu it

u

2
c ) 2c 2| D Cuti o b
= |:<Cu+t - g”) (ZiZj +Xij) = <2C”+’+ cw) Z”} n e, Tt <" '

In order to calculate Var[)iw_yL_,,‘ i), we will calculate E [ifv Li j] and (E[£,.1; j])z.

r I\ 2
5 b c bn—Ckb (i i A .
E[ZEV,L,I']']:E (chak‘ -~ Z (C,()(k)—C())(Cl(])(k)—C(f))
k=1

R

: [ —Ck T\ 2
Z (ckak. ckb Zb(cz(i) (k) — C‘v(i))(c‘vl(j) (k) — C(j)) )

k=1 R
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b—1b—t b2 [roab (i I .
+2Y, Y cactuara | Y (G (eb) ~CO)(C () - V)

t=1u=1 p=0

n—cryub ) L »
< )y (C’é’)mﬂb)—C'“))(Cé”(ctﬂb)—CU)))
q=0

=0

_ | :
:;c’%"% - {(6213)2 | ( ¥ (€ - o) ) —c‘<f>>> ]

2y bZ Gt [(C““b ", (nfb@é")(ctb) — C0) () (crb) cm))

2
t=1u= n

n—cyub . . . .
| ( )} <éé’><cz+ub>c(”)(cé”(ctﬂb)c“)))

q=0

b—1b—t

b
:Zc,% A1U+2Z Zc auauHA(ZU)
k=1 t=1u=1

2 ckb
< >+chak [(3 lez’]]+z’l'2j)_4zz'2j) L —i—Zz]

—1 b—t Cy 2 2C ) b Cuti on
+2 Zl Z CayQy it (Cu+t - g) (Ziizjj +Zij) — | 2cyps + —— Z Z + . Z

t u= Cu u

= u+t 2 2 b

Z crag X + 2 Z Z Cullubu+t= == Z cpaj ( [ZiZj;+Xi] — 421‘,') -~

t=1u=
—1b—t Cy b 2Cu+t 5 b b
+2 Z Z CyQy+t (Cu+t - §> (ZiZjj +Z; )— | 2cusr + 7 - 4o -
t=1u= Ccy

b
= (Z acy) 222 + Z crax ( (ZiZj; +Zl.2j) —4212].) -

—1b—t

Cu 2c;, b b
+22 ZC ayQyyy |:<Cu+[—3) (Z[[ij-f-zi ) (26u+t+ +t>212j:| -n—l—o(n) .

t=1u=

Now we calculate (E[£,,;;])?. Since

- - — b
Cz<Ckb)C~N(o, i 2>,

Ckbn
EIC? (exb) — COY(CD (cx) — )] = "= K05
Ckbl’l
then
2
5 Ly iy () )y V) ()
(EEwri)’) = | - ¥ Y KamE((C (exb) = C)(G (exb) = CV)]
k=11=0



b Ckb n—cyb 0 » ) o 2
= Z cray | — Z E[(C," (ckb) — C(’))(Cl] (ckb) _C(J))]
k=1 L i
b b ) 2
= (Z Cray [Ck “(n—cb+1)- nao -Zij} ) apply (1.4.3)
k=1 n ckbn
N b 5 b ) b b—1b—t b b
= Zij (kz::] akck) - kz::] 4akc Z 2 tz:l uz:l auau+t 2C uCutt + 2Cu Ll-‘rl) +o0 <I’l> )

resulting

Var(E,.1j] = E[Z5,, ;] — (E[EwLii])?

b
) b
= Z cl%“k( [3 (ZiZ) +Zi2j) _4Z%i] +4Z%"> n

bl [ ) 22\
+2 X‘i ] C,ayQy 1t |:<Cu+t g) Z”Z]] +Z ) <2cu+t+ L; ) le:|
=1 u=
b b
+auau+,(2c Curr +2¢yc u+t)22> - +o0 <n>
b b—t
2 b 1 b b
=Y SAa (T +5) - +2Y. Y | chcurs — 36 | utu (ZaZj +25) - = +o | -
=13 L (| 3 n n
b 3
2 (k b
1

b—t 2 3
uN2u+t 1 /u o b b
2L () —3(;))“”"'“”““] @iz +55)- o)

t=1u=1

2 b—1b—t 2 1 b
= (Ziizjj—&-zfl-) [3 Z(Azwk)2k3 - —|—2 Z ZAQWH Aowy iy (3u3+u2t> .n] +o0 () )
k=

=1 u=1 n

Lemma 7(***). Let condition I hold for g and condition 2, 3 hold. If as n — oo,

2
b
by(n)*logn (Z Azw,,(k)y> -0, (2.A.6)
k=1
and
n)? Z |Agw, (k)| — 0, (2.A.7)

then iw — LY, LT = )~:W7L w.p. 1.
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Proof. We will prove for i, j=1,..., p, 2W7,-j — %,,.1.;j- In this proof, let ¥; = g(x;) — Erg.

Recall
R ~ 1bn7k . Ny . . . . .
Buij = Zurij = - X Y Rl (77 (k) =¥ )£ () = 7)) (& () - €O)(E (k) — CV).
k=11-0
Let
A =k(Ti(k) — Ci(K)),
Dy = B(I+K) — B(1),
nk = kB,
Fu=k(Y =C),
since
k(7 (k) = 70y = k(7 (k) — 70 4 P (k) — P (k) + €O — €10
= k(T () = G (k) + (kG (k) —C) = k(7 - €
= A+ (D) — (LE, )" ~ Y,
Sy~ s < - i lz: Bowil - JAL + (LD — (LE, ) — FD) [AY) 1 (LD — (LE, 1))~

— (LD — (LE )] - [(LDR) Y — (LE, 1))

—

|
e

b n . . ' .
== ) [Aow- AVAY L AD (LD — AV (LE, ;)1) _Al(cl)Fn(,Q
k=1

3\'—‘
—

Il
)

+ (LD VA — (LD VEY) — (LE, ) VA + (LE, 1) VF)

n,

~FAY —E (D) + F(LE, Y + FJE]|

;‘,

2, = A 4 p0E0) L 40 : )4 0)
==Y ) [Aow- |A ¢ EE A (LD)Y) + (LDg) DAL
k=11=0

3\'—

— AV (LE, )Y + (LE, ) VA~ AV + FAY)
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— (D) VEY) + EQ (LD V) + [(LE, ) VE) + F S (LE, ) D).

n

Now we prove each term in the above expression goes to 0 as n — oo,

Zk L X Agwy] - \A j)\. By condition 1, and note [ +k < n,

4| = k(Fi(k) - Ci (k)|

k+1

ZY' i Dk 41)— D)

ket _
<yZY D(k+1 \+|Zy< (1))

tf

<D-y(l+k)+D y(l)

< 2Dy/(n),

therefore by the assumption of the lemma, as n — oo,

n—k

— R R k 1
Aow| - |AVAY)| < 4Dy Azwk 1) o
k “k
=1

1b

1 . .
2 . Yo, 27:_(])‘ |Agwy| - \Fn(f,zF('Q |. By condition 1,

n,

hence by condition 3 and (2.A.7), as n — oo,

1 & k+1
,ZZ AZWk| ’F F(]‘< Z‘Azwk| <I’l + >—>0
mi=1i=0

3. Zk L X Agwy] - \A (LDk)(f) + (LDy) DA \ First consider LD,(() , by proposition 4,

(LD V| = LB+ k)] — [LB(1) ] = | (1 +k) = C(1)]
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< sup sup |[CO(I+5)—CO (D)

0<I<n—b0<s<b

< 2(1+¢€)(bZiilogn)'/?,

by (2.A.6), as n — oo,

b n—k j
%Z X 18wl A (LD + (LD VA
k=11=0
b — 1
<2|[2(1+¢&)(bZiilogn)"?] - 2Dy (n Z|A2W"| <” i+ >

—k+1
=8D(1+&)5/” [by*(n >10gnr/22mzwz<!(n n+ )*0‘
k=1

4. Zk L K | Aowy] - |A (LE,,vk)(j) + (LE, 1) PA | First consider LE" ,)c, by proposition 3,

»

[(LE, )" < = (1—|—8)(2n2,,loglogn)1/2,

therefore by condition 3 and (2.A.6), as n — oo,

b n— .
122 Agwi| - AV (LE, 1)) + (LE, ) DAY
n
k=11=0
b 1
)y [|Azwk| ("= |- eowi-| 2a +e><2nzﬁzogzogn>‘/2]]

) [mmr(” )] v 1+ 21, L tostosn)

b
—k+1
<4\f2DZl/2 \/> (blogn)'/*yr Z | Agwy| (n n+ > — 0.

k=1

5. zk 2R Awi] - | (LE, ) O + (LF, ) DAY)|. By condition 3 and (2.A.7),

lbnk

o X X ol W (00 + (L) 04
1=

<23 [laowal (") |- (Lowin) - 2owio
:402b vi(n )Zb:\Azwk\ (’“i“) 0.
k=1
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6.— zk L 2 Agwi| - | (LDy) D (B i)Y + (F i) D (LDy)Y)|. By condition 3 and (2.A.6),

b n—k
z Z [Aowi] - [(LD) W (o)D) + (F) D (LDy) |

=11
i [|A2Wk’ (n k+1)] [2(1+€)(bZilogn)'/?] - <leI/(n)>]

b b —k+1
= 4D(1+¢)x)/%. - (blogn) Y2y Z|A2wk| <”n+>—>0.

zk L X8 Aawi | [(LE 1)V (B )W) + (F i) (LE, )Y)|. By condition 3 and (2.A.6),

b n—k
Z Z |Agwi| - [(LEn 1) (i)Y + (Fp o)V (LEy 1) V|

_ﬁ_@Am\ (") |- (S ereamiogioz' ) - (Uoyn)

b b k+1
<2v2D(1+¢)x)/? .2 . \/;-(blogn 12y Z|A2wk| (” + >—>0.

3\*—‘

Combine 1 to 7, we have ’iw,ij —iW7L7,-J-| — 0.
Lemma 8.

E[iwﬂ'j — iw,LJj] —0 and E[iw,ij — iw7L7ij]2 — 0.
Proof of Theorem 1. Recall lemma 6,

N 2
Var[E,1ij] = [£aZ); + X7 - 3

b b—1b—t 2 1 b
Z Aowy) 2k3 7+2Z ZAzwu AWy - <3u3+u2t) .n] +o0 (n>

k=1 t=1u=1

3\@‘

= (S+o(1))-
where S is a constant. Define
N =Var(Eyij —Ewri) + 2E[(Enij — Swrif) Ewrij — EZwrif),

we first show that 7 — 0 as n — co. Under condition 3, use Cauchy-Schwarz inequality and

Var[X] < EX*.

&3



| = [Var[Eyij — Evrif] + 2E[(Evij — Lwrif) Ewrij — ESwrif)ll

< E[iw,ij — iw,L.,ij]z + 2\/E [iw,ij — L L2 EEw i —EL, L)

=o(1) —|—2\/0(1) [(S4+0(1))- S]

12
—o(1)+2 (Z) fo(1) - (S+o(1))]/2

=o(1).

Now consider Var[£,,;;], by lemma 8

A

Var[L,ij] = EEwi; — ESwij)?
=E[Syii—Swrij+Ewrii—EZwiij+ESwrii— ELwii]?
=E[Ewij—Ewrij) + Ewrij —EZwri) — (ESwij— EZwri)]?
= E[(Euij = Ewrij) = EGwij = Ewri))* +EEwrij — EZwrif]®

+2E[[(Zyij — Ewrif) — EEwij — Ewrij)] - [Ewij — EZuif]]
= E[(Ewij = Ewrif) —EEwij—Ewr i)l + EEwrij— ELwrifl’
+2E[(Enij —Ewrij) - Ewij — EZwi))]

=E[E1ij—EL,Lij]*+n

= Var[iW,L,ij] +n

55 o(2) ot

n
Similar as the proof of theorem 4 in Flegal and Jones (2010), lemma 8 results in

n

bVar[ﬁWJj] = S+0(1),
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that is
< 2] 28 231 bl 25 L\ 1 b
Var[ZW’ij]:[Z,-iijJrZ gz Agwk k *—FZZ ZAzwu Azwt+u gu +u't E +o ; .
k=1 t=1u=1

D Proof of theorem 2

When i = j, for a stationary and uniformly ergodic, if Erg'? < e and Condition 3 holds,

then

iy i —k +k i
Var[¥," (k)] — Var[F ) (k)] = ”W <z,~,»+ ”kn Li+o ( k2)>

followed by univariate results discussed by (Chien et al. (1997), Song and Schmeiser (1995) propo-

sition 2, Goldsman and Meketon (1986)). Similarly,
(i _ (i _ (D) =(i n—k n+k 1
COV[YI( )(k)aYl(J) (k)] _COV[Yn( ),Yn(J)] = i <Zij + FFU +o <k2>> .

To obtain the expression of Bias(L,,;;), we consider E[£,,;;].

E[£,;j]= Z KAwi-E (g(yl(") (k) — f/(i))(‘l(f) (k) — y(j))>

=0

:izkzmwk(ZEY K1 ()] = (n—k+ DE [“Y“])M(z)“(;)

—k n+k 1 b 1
2
— A 1 Zi' Fl n
S EFsk gt ( (@) ()~ (6)
bnk+1n@mwn b (n—k+1)(n* — k) Agw, (k)
Z S Ty
I—1 n =1 I’l
bo(n—k+1)(n—k)Agw,(k
ol P o (1) o )
b 0 b — k%) Aow, (k b 1
Z —k+1)(n—k)kAyw, (k 1Y (n—k+1)(n* )ZW()'Fij+0<>+0<>~
=1 n? ] n3 n b
If
z:kAzwnk)_-L

k=1
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then

R k+1)(n> —k?)Aow, (k b 1
E[$,] Z”+Z (n—k+1)(n? )2W()_Fij+0<n>+0<b>

n3

b 1
= Zij-l- Z Azwn(k) ‘Fl’j-i-O <n> +o <b> s

k=1

and

b 1
Bzas W,] ZAzwn U+0<n>+o<b>.

E Equivalence of 62 and 67

Next consider the variance of X,, and X,. Let’s consider univariate case for illustration

purpose. Multivariate case can be shown in a similar manner. Recall V; = Y. Then
_ _ 1 _
(k) = 7% = 25 (s +Yp2 4+ Vi) — kTP
1 & ) k—=1k—s
= kj[z Vik]” = Z Vi, +2 Z Z VienVishs)-
=1 s=1h=
Plugging in the above expression,

1 bn l’l—k _

6, = - Y P Aowi(Vi(k) —Y)?
k=11=0
1 b, n—k 2 b, n—k —1k—s
= Y Z QW - Z Vz+h+ Z ZAZWk Z Z VienVith+s
k=11=0 s=1h=
=141
Changing the order of sums in I and apply result 1
lbnfkk 1 k n—k lbbnnk
==Y Y YAwmVi,=-Y ) Y AwmVi,= Z > Z Nz
M =11=0 h=1 M =ih=1i=0 —lk=hi=
| bon=hb | b n=h b
= Z Z Aowi Vi — ~ Z Z Z DoV

M h=11=0 k=h M =11=n"b+1k=n—1+1
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1 & n=h

=YYV thm_lz Y o, Y A

Ly Ly E— k=n—I+1
1 b n—h 5 1 b — )
= Y ) VA - p ) Z ViEnAtWa-1 1
h=11=0 h=11=n—b+1
1 b n—h )
= ; Z Arwy, Z V[Jrh Z Z V[+hA1Wn I+1
h=1 = =1l1=n—b+1
1 & 5
==Y 1WhZV —*Z Z ViEAIWn—r+ht1
Ly —1t=n—b+h+tl
Similarly,
2 b—1b—s n—h—s 2 b—1b—s n—h—s
O==Y Y Awis Y, VieVines—= 3, Y, Y Awa i1 VienVinss
=1 =1 =0 =21 h=11=n—b+1
zbflbfs n—s 2b 1b—s n—s
== Atwis Y ViVies =~ 3 3 2 Aiwnrpnit ViVigs
=1 =1 t=h S h=11=n—b+h+1
therefore

1 b 2b 1b—
;ZAIWhZV + - ZZAlwh+SZVtVt+s

h=1 s 1h= t=h
1 b n 2b 1b—s n—s
-1=Y Y VAwwinat= Z Y Y A ViVisg
=1 t=n"brhi1 521 h=11=n—brh+1

=lh= t=n—b+2  h=1

2 b-ln=s t b=l n=s 1—(n—b+1)
+ Y A ViVis—= ) Y, Y A1 ViVigs

—

1o ) 1 n t—(n—b+1) 5
— E Z Z AIWth —_ - Z Z Alwn7t+h+1‘/t
t

-1 N s i=n—b+2 =1

o
Il
-
=
Il
-
=

Recall that

b,—1
7(0)+2 Z{ wn(s)9(s)

Notice that



in the expression of &,,, t goes form 1 to n, whent > b, Y _ wu(s) =1

we can rewrite 6; and 6,, as

6s:< ZaoV —l— Z aoV; —i—l i ath2>

t b+1 z n—b+1

h 1b—s b 1 n—b 2
( Z ZathVH—s"_ Z Z asViViys+— " Z Z athVt-‘rs> )

s=1t= L (P —s+1 s=1t=n—b+1

and
6, ( ZC();VZ—F Z aoV —i—l Z do,V)
bt t=n—b+1
=
(i

2 b=l n=b
tVtVtJrs + - Z Z asViVigs+— Z Z dy tVtVtJrs ,
where ay, ay, co;, ¢s4, do; and dg; are constants. Denote

u[\’]\

sltbs—',-l sltnb-‘rl

co,1 ao don—b+1
02 aop don—pi2
Co= Ay = Dy =

C0.b ap dO,n
Cs,1 as ds,nfb+l
Cs2 as ds,nfb+2

Cs = As = D; = )

Cs.b Ay ds,n

and fork=1,2,...(n—b)/b,

V? Vib+1 ViVits Vio—s)+1Vr(b—s)+1+s

Vi Vio+2 VaVoy Vibo—s)+2Vi(o—s)+2+s

VO(O) _ Vo(k) _ VS(O) _ s Vs(k) _ (b—s) (b—s5)+2+s
I V;? | | Vivsn | | VosVi | | Vo9 Vi) (o) +s |

88



then we have

6= LY a1 2Y 'y AT
=0 =1 k=0
and
. ) . 7 b=l -2 neb_|
=1 (cgvg°>+k21A5V(§k)+Dévéh ”) L) crvi + ) ATV DTy
= §= =

For a big enough b, if
Var(Vb+1 + Vo + ...,Vzb) ~ Var(V2b+1 + Vopyo + ...V3b) ~ Var(V3b+1 +Vapio + ..., —|—V4b) ...,

and Var(g(X;)) < o, then

n—>b
—

b—1 —b 1
( ) ATVar(V()Ao+4Z n-b 2ATVar(V(1))A~
p) 0 b—s) ° s

+4Z( )( >Agcov( ()V(l))A:|+0<b12>

1 2 2
Var(6,) =~ — [ (g - 2) AgVar(V( ) JAo+4 Z ( 2) ASTVar(VS(l))As

n

1
T2

similarly,

then as n — oo, Var(62) = Var(62). A similar argument applies for biases of the two estimators,
which shows that the two estimators are asymptotically equivalent in the sense of mean squared

error. A similar argument applies for the multivariate case.
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Chapter 3

Efficient estimator

As mentioned in chapter one, Bayesian analysis tends to involves multiple parameters
hence we usually face high-dimensional problems. Although mSV estimators can be used to obtain
reliable estimates of X especially when using the optimal bandwidth suggested in chapter 2, they are
computational expensive. The computational burden may discourage practitioners to keep track of
3 and further terminate the chain in a sensible way. Estimators that are accurate and fast to compute
are highly desired from a practical point of view.

In this chapter, we propose a family of variation estimator of multivariate sample mean.
These estimators are especially convenient under MCMC context but they can also be applied in
other fields such as time series and nonparametric analysis. The new estimators enjoy the same flex-
ibility of choosing various window functions as mSV. Simulation shows that by choosing flat top
window function, the resulting estimator are superior to mBM, which is related to Bartlett window.
In the meantime, the new estimators have significant reduction of computation time compared with
mSYV, hence provides an applicable solution to the problem faced by multivariate MCMC methods.

We prove the strong consistency of the new estimators, followed with the discussion of their minor
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sacrifice on the convergence rate compared with mSV. The performance of the new estimators are
illustrated by univariate and multivariate auto-regressive models. These simulations coincide with
the theoretical results, showing that the new estimators converge to the correct value, and as dimen-
sion or chain length increases, the new estimators save significant amount of time compared with
mSV. The variance of the new estimators are slightly larger than mSV, but the ratio between the vari-
ance of a new estimator and the corresponding mSV estimator with the same window function are
usually less than two, which seems to be negligible since the actual variance of these estimators are
already small given a chain with a reasonable length. We also consider a Bayesian spatial-temporal
model applied to temperature data collected from ten nearby weather station in the year 2010. It
takes a reasonable amount of time to compute the proposed estimator for the 185 parameters in the
example while mSV requires much longer time for such high dimensional problem .

The rest of the chapter is organized as follows. The new estimator is defined in Section 3.1,
together with its strong consistency and some discussion regarding variance. Section 3.2 contains

three examples, including a Bayesian model applied to real data.

3.1 Efficient Spectral Variance Estimator (EFSV)

We first establish notations needed for the main results. Let F be a probability distribution
with support X € R? and g : X — R” be a F-integrable function. We are interested in estimating the

p-dimensional vector

9::EFg:/g(x)dF.
X
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by MCMC methods. Let X = {X;,# > 1} be a Harris ergodic Markov chain with invariant distribu-

tion F, then with probability 1,

fig as  n—»oo.

The sampling distribution for 6, — 0 is available via a Markov chain Central Limit Theorem if there

exists a positive definite symmetric matrix X such that
Vi(6,—0) 5N, (0,5) as  n—» oo,

where

Y = Varg(g(X1)) + Y [Covr (g(X1),8(X1+s)) + Covr(g(X1),8(X145)) ],

Mx

s=1

and it is usually unknown. If an estimation ¥ is available, it can be used to access the variation
of the estimator 6,. Denote ¥; = g(X;) and ¥ =n~'Y" |, Vats et al. (2015b) introduced the mSV

estimator of ¥ with the expression

w=1(0 "‘an +1(s)7],

where

1 n—s

Pis) ==Y V=7V = 1),

3
and truncation point b is a finite number that increases as n and wy,(-) is the lag window. The strong
consistency of the estimator was also provided by Vats et al. (2015b). £, with a flat top window
wy(+) was shown to have superior performance in nonparametric estimation of multivariate density
function. Politis and Romano (1999). However, computational of %, is too expensive.
The mBM estimator introduced by Vats et al. (2015a)) is cheaper to calculate compared

with mSV. Recall that for n = ab and [ = 0,1,...,a — 1, the mean vector for batch [/ is denoted
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by Yi(b) =b~! Zf’zl Yip1s, where b is the batch size. mBM is based on totally a non-overlapping

batches, then sample variance of batch means is used to estimate X

Sn = = Y (Fi(b) ~ V) () ~ F)'.
=0

We consider OBM in multivariate setting. Recall }_’l(b) =p! thzl Y,.,, there are n — b batches of

length b in multivariate OBM estimator with the following expression

R nb n—b+1

S = by gy MO PR =D

iobm has a similar structure as ibm by considering the sample variance of multiple batch means.
Since the bathes in £, do not overlap, its sparseness in bathes yields a faster computation while
remaining a consistent estimator of X. $pm and 3, are related to mSV with Bartlett window S,.
$opm is equivalent to mSV estimator with Bartlett window apart from some end effects. Interested
readers are directed to (Welch (1987), ?, Meketon and Schmeiser (1984), Song and Schmeiser
(1993)).

Our goal is to construct a mBM version of mSV for a given window function, so that
the nonoverlapping structure of the new estimator allows for cheaper calculation while inheriting
the desired property from a certain window function. If we are able to rewrite any mSV in terms
of overlapping batches as X, then it is possible to reduce number of batches by keeping those
non-overlapping batches, thus reducing computing time. £y version of mSV has previously been
addressed by various authors including (?, Flegal and Jones (2010), Damerdji (1991)). Chapter 2

suggested an OBM version of mSV that is closer to mSV compared with the expression used in

previous literature. Let ¥;(k) = k~'Y*_, ¥, for [ = 0,..., (n — k), denote Ayw, (k) = w,(k—1) —
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wy (k) and Apw, (k) = wy(k—1) — 2w, (k) +w,(k+1). The expression is as follows

b n—k
Y Y KAaw, (0)[Fi () — P)[Fik) — 7]
k=11=0

A
z:w =

S|

Suppose d = isv—iw, it was shown that d — 0 as n — o (see chapter 2), hence f‘.sv has an asymp-
totically equivalent expression in terms of overlapping batches. From X,,, we suggest an efficient
spectral variance (EFSV) estimator )ief. Denote ¥;(k) = k! Zle Yijjpo, for l =0,1,...,a;, — 1, and

k=1,2,....b where a; = | (n/k)],

b akfl
Sop= Y o ¥ RAaw(K)(T(K) ) (k) ~ )
ima— 1

mBM is included in the family of %7, with a wy(-) window function. For Bartlett window,
Aowp(s) =0 fors =1,2,...,(b—1), Aywp,(b) = 1/b, hence £, is equivalent to mBM.

Notice that Apwy(+) has a similar expression as w/, () in a sense. For instance, if a window
function is twice continuously differentiable on (0, b), it can be seen from the proof of (Flegal and
Jones (2010) lemma 7) that the two quantities are closely related. If the window function has a
simple structure so that Apw,(s) = 0 for certain s, then the first summation in the expression of ie r
can be further simplified, resulting a shorter computation time. One example is Bartlett window
where Ayw,(s) and w/(s) are O for s = 1,2,...,(b—1). Form this point view, the new estimator
tends to be more beneficial for window function with Ayw),(s) = 0 for certain s.

Politis and Romano (1995) introduced a class of flat top window functions that modify
existing window by letting w,(s) = 1 for s near 0. Here we consider the flat top window function
constructed from Bartlett window wy,(-), which is equivalent to the the difference of two Bartlett

spectral variance estimators in the following way

b
£ =D(0)+2 ) wy()(s) =28 ~ £,

s=1
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where bandwidth of £ fr and 21(71) equals to b and 21(71) has a bandwidth of b/2. (Politis and Romano
(1995)) demonstrated that flat top structure near 0 contributes to bias reduction of the SV estimator.
For ief, we suggest using wy,(-) constructed from Bartlett window for bias reduction purpose.
Further more, Aowy;(b/2) = —2/b, Aowy,(b) =2/b, for other s, Aow,(s) = 0. Using this window,
the first summation in %,  becomes a summation of two terms, which is ideal from a time saving
aspect. We will see the bias and computational advantages of £, ¢ with flat top window.

One disadvantage of the flat top window, as pointed out by ?, is that 3 £+ 1 not guaran-
teed to be positive semi-definite, which is required in order to estimate ¥. Modification based on

eigenvalues of X, is discussed by ? to correct the estimation when positive semi-definite is an issue.

3.1.1 Theoretical results

In this section, we establish conditions under which strong consistency of %, + holds. De-

note Euclidean norm by ||-

, the following conditions are needed.
Condition 1.(strong invariant principle) There exists a p—dimensional vector 6, a p X p
lower triangular matrix L, an increasing function y on integers, a finite random variable D and a

sufficiently rich probability space Q such that for almost all w € Q and for all n > ny,

ig(Xr)—HG—LB(n) <D(o)y(n) wp.1. (3.1.1)
=1

Condition 2. The lag window wy, () is an even function defined on Z such that

[wa(s)] <1 forall nand s,

wy(0) =1 foralln,

wn(s) =0 forall |s| > b.
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Condition 3. b is an integer sequence such that b — oo and n/b — oo as n — oo, where b and n/b are
monotonically nondecreasing.

Theorem 1. Let condition I hold for g and condition 2, 3 hold. Suppose there exists a
constant ¢ > 1 such that Y, (b/n)¢ < oo. If

b

Y kAow, (k) =1, (3.1.2)

k=1

b 2
by(n)*logn (Z Azw,,(k)|> -0, (3.1.3)
k=1
and
b
w(n)* Y [Aowa (k)| — 0, (3.1.4)
k=1

then with probability 1, flef — XY asn — oo,
Proof. See appendix A.
Remark. Condition (3.1.1) is also necessary to guarantee that the estimator is asymptoti-

cally unbiased, see chapter 2. It can be shown that Bartlett window satisfies since

b 1
Y Aowy (k) =b-—=1.
k=1 b

Condition is also satisfied by flat top window w,(-) where

b 2 b 2
Azwlft(k):—*'*—l-*'b:l.
k; b2 b

Remark. The following result provides conditions under which condition I holds.
(Vats et al. (2015b) Corollary 1) Let X be a polynomial ergodic Markov chain of order k.
In addition, let ||EFg||>t% < oo for some 0 < & < 1, then for k > (1 +€)(1+2/8), € >0, (3.1.1)

holds with y(n) = n'/>~* for some A > 0 that depends on p, € and §.
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Since 3, r are based on less batches compared with ., a variance inflation is expected.
We are interested in how the sparseness in batches may influence variance of flgf. Univariate es-
timators are equivalent to diagonal entries of multivariate estimators. The off-diagonal entries are
expected to behave in the same manner by observing the proof in chapter 2. Therefore we consider
variance of univariate estimators for illustration purpose. This should also shed lights on multivari-
ate estimators due to their intrinsic similarities.

Let 8§m and 6bzt be BM and SV estimator with Bartlett window. Flegal and Jones (2010)
showed that the ratio of asymptotic variances between OBM and BM is 1.5. Variance of 613, were
disccused by Politis and White (2004), Lahiri (1999). Under certain moment and mixing conditions,

it is equivalent to the variance of 63,%, which implies that as n — oo,
Var[62,]/Var[67] = 1.5
ar| Oy, ar|Op| = 1.D.

We would like to explore the variance ratio between SV and EFSV with flat top window w(-).

Denote 6]%, and 6e2fﬂ the corresponding univariate SV and EFSV estimator, the following theorem

holds.
Theorem 2. If condition I and condition 3 hold, then
n . 8
ZVar[G]%t] = 56; +o(1),
and

n A
Proof. See appendix B.

The little o notation f(n) = o(g(n)) means lim,_,. f(n)/g(n) = 0. It follows from theo-

rem 2 that the ratio of the asymptotic variances is
Var(8; ]/ Var[67,] = 1.875.

97



Remark. A general expression of ratio between SV and EFSYV is challenging to obtain but it can be
derived given a specific lag window or approximated by simulation. In section 3, we will approxi-

mate by simulation the variances ratio for Tukey-Hanning window

(1+cos(m|s|/b))/2  for <b
win(s) =

0 for |s| > b.

Remark. Bias of ie 1 1s equivalent to bias of isv. The result can be obtain by (Meketon and Schmeiser

(1984) proposition 2).

3.2 Examples

In this section, three examples are considered to estimate 8 by 6,, then SV and EFSV es-
timators are applied to estimate variance of 6,. In the first example, geometrically ergodic Markov
chains are generated from univariate auto-regressive models. The example aims to evaluate per-
formances of EFSV and compare variances between EFSV and SV estimators for three window
functions wy, (-), wy(-) and wy,(-). Then a multivariate vector auto-regressive model is considered
to show computational gains of EFSV over SV for a range of dimensions and chain lengths. The

last example compares performances of the two estimators on high dimensional real dataset.

3.2.1 Univariate auto-regressive example

Suppose &; are i.i.d N(0,1). Consider the following autoregressive process of order 1
(AR(D)):

Xi=0X,_1+¢& fori=1,2,..
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For |¢| < 1, the Markov chain is geometrically ergodic with invariant distribution N(0,1/(1 — ¢)?).

Consider approximating 6 = E[X;] by 6, = X,,. We would like to estimate

6% = Var[X;] +2 i Cov(X1,X145) = 1/(1—9)>.

s=1
Since cov(X1,X;) = ¢! /(1 — ¢2), large ¢ results in a Markov chain with high auto-correlation
therefore we consider a range of ¢. The true value of 62 are used to evaluate performances of
estimators.
More specifically, consider ¢ from 0.2 to 0.9. For each ¢, generate AR(1) sample of
length 1e5 and calculate the sample mean, then compute EFSV and SV using three window func-
tions. Repeat the procedure 500 times to obtain sample variance of each estimator. n'/3 is chosen

to be the batch size or truncation point for all six estimators. The average of each estimator over

Estimation of o

g

- — True _)'
Barttlet

® —| — Batchmeans
Flattop

o | Flattop_ef

oy € Tukey-Hanning
— Tukey-Hanning_ef

o _|

Q

o _|

(]

T T T T T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90

o

Figure 3.1 Estimation of ¢ for AR(1) model with ¢ between 0.6 and 0.9. Bartlett, Flattop and
Tukey-Hanning window are used for both SV and EFSV method. Results are based on the average
over 500 replications, with a chain length of 1e5 for each replication.

500 replications is plotted against the true value of 62 as shown in figure 3.1. All six estimators
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Figure 3.2 EFSV and SV estimators for ¢ = 0.8, 0.9, true values of ¢ are denoted by dashed lines.

perform well when auto-covariance is low. As ¢ increases, SV and EFSV with flat top window
seem to have better estimate compared with the other two window functions. Estimates between
SV and EFSV with the same window are very close and they mostly overlap in figure 3.1. To have
a closer observation, figure 3.2 plots 500 SV estimates against EFSV estimates for three windows
when p = 0.8, 0.9. Flat top and Bartlett window have slightly larger discrepancies between SV and
EFSV than Tukey-Hanning window but still are close to the line, showing that EFSV estimates are
close to SV. When ¢ = 0.9, flat top window has the smallest bias. Variance ratios between EFSV
and SV are plotted in figure 3.3. Ratios for Bartlett and flat top window are close to the theoretical
values of 1.5 and 1.875. Tukey-Hanning window has a ratio that is very close to 1, showing little

inflation of variance.
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Figure 3.3 Variance ratio between EFSV and SV for AR(1) model using wy, (), wz(-) and wy(-).
Theoretical ratios of Bartlett and flat top window are 1.5 and 1.875, as shown by the dashed lines.
Variances are calculated based over 500 replications, with a chain length of 1e5 for each replication.

3.2.2 Vector auto-regressive example
Fori=1,2,..., consider p-dimensional vector autoregressive process of order 1 (VAR(1))
Xi=®X;—1+¢,

where X; € R?, g are i.i.d N,(0,1,) and @ is a p x p matrix. Let ® be the Kronecker product. When
the largest eigenvalue of ® in absolute value is less than 1, the Markov chain is geometrically ergodic
Tjgstheim (1990) with invariant distribution N,(0,V), where vec(V) = (I, — ® ®@ ®) 'vec(l,).

Consider approximating 8 = EX; by 6, = X,,, we would like to estimate
Y = Var[Xj|+2 Z Cov(X1,X1 +5)
s=1

=(,-®)'V+V({I,-®) ' -V.

We are interested in how chain length » and dimension p affect the computation time of EVSV and

SV. For each combination of p = 10, 20, 30 and n =1e5, le6, 5e6, a geometrically Markov chain
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from VAR(1) is generated. & is chosen as follows to guarantee geometrically ergodicity. Consider
a p x p matrix A with each entry generated from standard normal distribution, let B = AA” be a
symmetric matrix with the largest eigenvalue m, then & = B/(m+ 1) is used in VAR(1). EFSV and
SV estimators with wy,(-), w(-) and wy,(-) are applied to estimate £. We consider a total of 50
replications.

Table ?? shows ratios of average computational time between SV and EFSV for three
window functions. There is significant computation gain for EFSV using flat top and Bartlett win-
dow. There is not much computation gain for Tukey-Hanning window due to the first summation in
the expression of i‘.,h.

Besides computing time, one may be interested in the accuracy of an estimator. For an

estimator X, consider E = ¥ — X, and mean squared error across entries of £

1
mse = ?ZZelzj
i

is used as a measurement of accuracy. Consider &) = B/(m+0.1) where B and m are constructed in
the same way as above. Then we evaluate a series of ® = k- Py, where k = {0.001, 0.01, 0.1,0.5, 0.8}.
Larger k implies stronger auto-covariance and cross auto-covariance of the chain. mse of EFSV and
SV with wy, (), wg(+) and wy,(+) are calculated for each of the 500 replications.

Figure 3.4 shows the ratio of average mse between EFSV and SV for three windows. All
ratios are below 2 for a range of ®, indicating that EFSV has an less than 2 times inflated mse across
various auto-covariances. Ratios of Bartlett and Tukey-Hanning window have a significant drop for
k = 0.8 while flat top estimators have less of the trend. It is because both EFSV and SV using

Bartlett and Tukey-Hanning window have poor performances when k = 0.8, resulting big mse for
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Flat top Bartlett Tukey-Hanning
n Se4 1e5 S5e5 | Se4 leS 5e5 5e4 1e5 Se5
p=10 | 33.3 229 328|274 489 628 | 024 0.57 0.88
p=20 | 33.3 53.8 704 |66.5 920 110.0| 042 0.87 1.30
p=30 | 46.1 722 94.1 | 88.7 118.8 144.0 | 047 096 147

Table 3.1 Time ratio of SV and efficient estimator

both estimators a and lower ratio. Flat top estimators maintain better estimates, therefore the ratio

is relatively stable when k = 0.8, which is in favor of flat top window estimators.

Truncation point for all estimators is n'/3. Combine the computation and accuracy in-

formation, EFSV with flat top estimator exhibits superior performance compared with existing SV

estimators.

Ratio of MSE between Efficient and SV estimator

Flattop
o —— Tukey-Hanning
S — Bartlett
L
(0]
=
S |
o =
©
r
o |
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0.001 0.01 0.1 05 08
k

Figure 3.4 Ratio of MSE

3.2.3 Bayesian dynamic space-time example

This example is applied to monthly temperature data collected at 10 nearby station in

northeastern United States in 2000, which is a subset of NETemp data described in R package
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spBayes Finley et al. (2013). A Bayesian dynamic model proposed by Gelfand et al. (2005) is
fitted to the data and the model treats time as discrete and space as continuous variable.

Suppose y, denote the temperature observed at location s and time ¢ for s = 1,2,...,N; and ¢t =
1,2,...,N,. Let x,(s) be a k x 1 vector of predictors and f3; be a k x 1 coefficient vector, which is a

purely time component. «,(s) denotes a space-time component. The model is
Yi(s) =x(s)" B, +ui(s) + &(s), &~N(0,7),

B.=B,_,+n; n, ~Ny(0,Zy),
ur(s) = w1 (s) +wi(s); wi(s) ~GP(0,C(-, 6%, ¢)).

GP(0,C,(-,02,@,)) is a spatial Gaussian process where C;(s1,52;67,¢;) = 62p(s1,52;¢). p(-;9) is
an exponential correlation function with ¢ controlling the correlation decay, and 6 represents the
spatial variance components. The Gaussian spacial process allows closer location to have higher
correlation. Time effect for both B, and u(s) are characterized by transition equations, delivering
a reasonable dependence structure. We are interested in estimating posterior expectation of 185
parameters 6 = (B, u(s), 67, Ln, 77, ¢), their prior follows spDynlM function in spBayes
package.

Consider Markov chains of length 5e4, 1e5 and 2e5. 5, rfe and flf, are computed and
ratios computation time between SV and EFSV are in table 3.2. For a high dimensional Bayesian
analysis, the suggested EFSV estimator are much cheaper to compute using Bartlett and flat top
window. With the advantage of bias reduction, EFSV with flat top window produces reliable results
within a reasonable amount of time. Figure 3.5 are the log of diagonal elements form EFSV and SV

estimators. The two methods have similar estimates.
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Table 3.2 Time ratio of SV and EFSV for three windows
| N=5e4 N=le5 N=2¢5

Flattop 111.6  140.8 172.6
Tukey-Hanning 4.7 5.2 6.0
Bartlett 183.3 2314  265.1

Log of diagnal entries Log of diagnal entries Log of diagnal entries

g i B ..
F 1 4 5 5 B
Flattop Tukey-Hanning Bartlett
(a) Flattop (b) Tukey-Hanning (c) Bartlett

Figure 3.5 Log of diagonal entries of SV and EFSV estimators for three window functions

This chapter considers estimating asymptotic variance in Markov chain CLT by EFSV
estimator. The method is especially useful in high dimensional problem where computation time
is a major concern. Under various scenarios, EFSV estimates are comparable to SV with a slightly
larger variance, but the ratio of variances are no more than two for windows considered in this

chapter.

3.A Appendix of Chapter 3

We first introduce some notations and propositions. Let B= {B(t),t > 0} be a p-dimensional

standard Brownian motion. Denote B = n~!B(n) and B;(k) = k! [B(lk+ k) — B(lk)]. The Brownian
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motion counterpart of £, 1 1s

- 1 ac! _ _
Lop=Y — Y KAowu(k)(Bi(k) —B)(Bi(k) - B)"
=1 %~ 1 =0
Define the following matrix:
B 1 b n—k 5 B o T
Bor=— Y. Y KAow,(k)L[Bi(k) — B][B;(k) — B]'L",
k=11=0

where L is the lower triangular matrix satisfying ¥ = LLT. Define C(r) := LB(z), let C\)(¢) be the
ith component of C(¢) and define (:’l(i) (k) = k=1 (CO(1+k) — (1)), CO) = n~1CW) (n).
Proposition 1. Vats et al. (2015b) For all € > 0 and for almost all sample paths, there exists no(€)

such that foralln > ngandalli=1,....p
I (n)] < (14 €)(2nEiloglogn)'/?,

where X;; is the ith diagonal entry of X.
Proposition 2. Vats et al. (2015b) If condition 3 holds, then for all € > 0 and for almost all sample

paths, there exists no(€) such that foralln > npandalli=1,...,p

1 . . 1
<— sup sup |CO(I14s)—CO(1)| < —2(1+€)(bEilogn)'/?,
k o<i<n—bo<s<b k

where X;; is the ith diagonal entry of X.

A Proof of Theorem 1

Lemma 1. Suppose condition 3 holds. If there exists a constant ¢ > 1 such that},,(b/n)¢ <

oo and

b
Y kAow, (k) =1,
k=1
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then £, r— I,, with probability 1, where I, is the p x p identity matrix.

Proof. We show that the diagonal elements of ief goes to 1 and the off-diagonal elements goes to

0. Fori=j,
b ap—1
5 a1 (i) 3(0)\2
Ze i = — k A Wn k B, (k)—B
ri= Lo 1<ak1_0 () (B} (k) — BY)
b 1 ajp— 1 ; . _ (i B
=Y - & 1 (a K2 Agw, (k) (B (k)2 + (BD)> — 2B (k) BY)
k=1%k— k =0
_ O iak : D2 . L )22 £ a2 ol 10
=Y — |2 k> Aowy (k)B,” (k) + —ap (BY) 2k Agw (k) —Bk Aown (k) Y B} (k)
k=1%— k=0 k k 1=0
b ag—1 ) .
=Y o ( K Aqw(K)BY (k)2 + (BY) 2K Agw (k) — B(’)szzwn(k)B(’)>
i—1 Clk 1 ay 1=0 Ay
b 1 %= i .
o Y ( Z “Aowin( k>B§><k>2—<B<'>>2k2Azwn<k>>
= i kAawy (k akZl kB k(B ||
i—1 ajp — 1

By (Damerdji (1994) proof of proposition 3.1),

— ) kgz(i)(k)z —~1 and k(BY)> =0 as n— oo
k j=p
Therefore
Yefii — ZkAzwn k)y=1 as n—oo
k=1
When i # j,
b 1 ap—1 0 . ) )
Xefij = Z Z K Aaw, (k) (B (k) — BY) (B} (k) — BY))

k%S0 B0 ey A0 A ) ) A
o Y (8 (k)B)” (k) - B,” (k)BY) — BYB,” (k) + B BV)] — 0.
=0
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Together with (3.1.1), ief,,-j — 0, resulting ief — I, with probability 1.

Lemma 2. Let condition I hold for g and condition 2, 3 hold. If as n — oo,

b 2
by(n)*logn <Z Azwn(k)|> — 0,

k=1
and

2 Z |A2Wn ‘ — 0
then %, r— LY, fLT =%, r.L With probability 1.
Proof. we will show that for i, j =1,2,...p, ief,ij — ief,L,ij- LetY, = g(Xl) —Erg, C](k)

and C = LB. Then

iefL = Z 1 Z k Azwn(k)L(Bl(k) —B)(Bl(k) B)TLT
=1 % — 1 2o
b ap—1
=Y L Y RaowWGK) - O)GH) O
k=1 %k =0
yielding
T z — zk Ao (7 (k) =7 D) (79 (k) =7 D) — (& (k) — € ()
Let
A = k(Yi (k) — Cy(k)),
(I+k)—B(),
nk = ka
Fn,k _k(Y_C)a
since

= LB (k)



S

1 n—k ; i i i
1 ) |A2Wk"HAJ(()‘*‘(LD/()()—(LEHJ{)()_F( )
=0

n1

Eerij— Lerpifl <
=1

- [(LDk)(") — (LE0) D) [(LD)Y = (LE, ) D)]

b ' . i .
— ]; - Z |A2Wk| ‘A +A( )( )(]) _Al(cl) (LEn,k)(]) _Al(c)Fn(,Jk)
+(LD) Ay — (LDk)(")F,,(’Q — (LE0) DAY 4+ (LE, )1 Fn(i)
A - F,ffz (LD + FLE) D+ ELEY)
b

'+ FGRD + 140 (LD +(LD) V4]

n.k

- [AEP (LE )Y + (LE, ) A7) = (AL FY + FAY)

T
>
_l_
~
>}
z
=
o
T

— (DY) O EY) + FNLD) D) + [(LE, )V FD 4+ FO(LE, )],

n

We can show each of the twelve sums in the above expression goes to 0. Apply condition I,

401 = HE ()~ k)]

[ - Z Vi, — k(€ tk4-k) Wlk))]
(lk+k)
= [ Z y, ZY Wk +k) — O (1K)
lk+k ) Ik ]
= Z Y lk+k) [Z Yt(’) —C(l)(lk)
t=1

<D-y(l+k) +D-y(l)

<2Dy(n).
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Hence by the assumption of the lemma, as n — oo,

ap—1

Z|A2wn HA |<4D2 2(n 27|A2wn k)| — 0.

Similarly, by results from chapter 2 and proposition I, 2, the other terms in (3.A.1) goes to 0, and
flef — LiefLT with probability 1.

Proof of theorem 1 follows from lemma 1 and lemma 2.

B Proof of Theorem 2

Variance of 6% follows from the proof of theorem in chapter 2 and taking ¢ = 1/2 in
lemma I in chapter 2. We will derive the variance of 63]2 fre
Lemma 3. Under condition 3,

ZVar[ajf,ﬂ] = 5+0(1).

Proof.
2b a—1 B _ b/2 2a—1 B
~2 2
Ocf—f1 = 1;}(3!(5)—3) By [;)(B,(b/Z)—
It can be shown that
4a* +8a’ — 124> + 4a 1
E[6} -
[ ef— ft] (a_l)z(za_l)z +0(a)7
and
- 2
(E[Gezf—ft}) =1,
resulting
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Note n = ab, lemma 3 is proved.

Similar as lemma 5 and theorem 1 in chapter 2, we can show that as n —,
) 222
E[6,r 1 — 0,67 1] =0,

and

gVar[CAfeszﬂ] = 56; +0(1)

Theorem 2 is proved.
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Chapter 4

Conclusions

My thesis focuses on estimating ¥ in Markov chain central limit theorem for high-dimensional
MCMC method. I have mainly two contributions. First, I proposed a procedure to select optimal
bandwidth for a family of mSV estimator, which received no previous attention under MCMC con-
text. The proposed bandwidth significantly improved the commonly used bandwidth of n'/3. Other
related results include asymptotic variance and bias, as well as mean squared consistency of the es-
timators considered. Second, I try to ease the computational burden for high-dimensional problem
by considering a new family of estimators that are fast to compute yet delivers comparative results
as existing mSV methods. The establishment of this work answers a crucial practical question, that
is, can we monitor X in an accurate yet computationally affordable way so that one can terminate
Markov chain in a sensible way for high-dimensional problem.

It needs to be pointed out that bias and variance conclusions in chapter 2 are established
under different ergodicity conditions. Bias results requires uniformly ergodicity, which is stronger
than polynomial ergodicity required by variance results. It is of interest to explore asymptotic bias

under weaker ergodicity conditions for a more uniformed results.
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Recall (2.2.1) in chapter 2, bandwidth in iterative plug-in pilot estimates was obtained by

a4/ _ X
|:6th1 a1 WZ(S)SZ%%(S)}I/?’ 1/3
‘n

s=—b;_1n

by n—4/21 o
ZS;_br71n74/21 Yi (S)

bt:

for t = 1,...,4, and bandwidth for pilot estimate is b = byn~*/2!. The pilot estimates are then used
in local step where A = 0 to obtain the optimal bandwidth for 6; estimator. (2.2.1) is based on the

global optimal bandwidth

TG AR
JZ ) 2dA

bgiobal = (
that minimizes mean integrated squared error MISE = E[[™ (f(1) — f(A))?dA] for Bartlett win-
dow. Although the goal is to obtain an optimal bandwidth for 6‘b2t, the iterative updating procedure in
global step estimates 3- [* {f(")(1)}?dA by a flat top Tukey-Hanning window v (s). It is appealing
to consider a bgjypq that incorporates the optimal rate of flat top Tukey-Hanning window since in
each of the four iteration, the updated b, is used as the bandwidth for the flat top Tukey-Hanning
window in the next iteration, and b is the bandwidth for pilot estimates based on Tukey-Hanning
and flat top Tukey-Hanning window. However, b, is updated according to the optimal bandwidth
for Bartlett window. A starting point is to consider how the bandwidth for 6172[ in local step will be
affected when b; is updated according to the optimal bandwidth of flat top Tukey-Hanning window
in global step.

Simulation results in 2.3.1 shows that iterative plug-in pilot estimates have smaller vari-
ance compared with flat top pilot estimates. When dimension is low and computation resource is
available, one may prefer iterative plug-in pilot estimate to achieve estimates with less variance.
However, there are two restrictions on the iterative plug-in pilot estimates discussed in chapter 2.2.

Firstly, only the iterative plug-in method for 6‘% estimator is introduced in this dissertation. For

more general results, see Biihlmann (1996). Secondly, the method is established under univariate
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settings. It is attempting to explore the iterative plug-in method under multivariate settings, and the
idea of iterative plug-in should work regardless of dimensions.

The mBM estimator Vats et al. (2015a) belongs to the family of EFSV estimator. It is
EFSV estimator with Bartlett window function. To our best knowledge, only mBM is addressed as
an applicable estimator of ¥ in multivariate MCMC context. But the performance of mBM estimator
is tightly attached to the performance of Bartlett window, which can be sub-optimal compared with
flat top window as shown in chapter 3. The EFSV estimators are extensions of mBM from this point
of view. By choosing window function such as flat top window, the estimates are more accurate
compared with mBM. Meanwhile they have tremendous computational gains compared with mSV
estimators with flat top window.

As shown in chapter 3, EFSV with Tukey-Hanning does not reduce computation time
as dramatically as the other two windows. By rearranging the order of terms in the expression
of EFSV estimators, they can be viewed as a linear combination of mBM estimators with various
bandwidths. Hence the computing time is shorter for those EFSV estimators with less components
in the linear combination. In other words, EFSV estimator is more beneficial to window functions
with Apw, (s) = 0 for certain s. Nevertheless, as dimension and chain length increases, EFSV could
still save computing time as shown in the 3.2.2. More research can be done regarding the efficient
coding of EFSV with Tukey-Hanning window if one prefers to use this window.

The proposed EFSV estimators can be more influential than illustrated in this dissertation
mainly because when used in a stopping rule, multiple checking of Var[X,] is usually required
as n increases. The computational gains of EFSV then becomes tremendous especially for high-

dimensional problem. More importantly, the resulting convenience and efficiency can determine
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whether or not a practitioner keeps track of Var[X,]. Hence fast computing or not directly affects
whether a chain is stopped in a sensible way or not.

All the estimators in chapter 3 use a bandwidth of n'/? for fair comparisons, but n1/3
is not necessarily the best choice. In fact, there is room to improve their performances by using
a better bandwidth. It was shown in chapter 2 that estimating the coefficient of n'/3 results in a
significant improvement for the estimators. Similar technique can be applied to EFSV estimators.
If we want to omit further exploration, the same bandwidth for SV estimator can be used for the
corresponding EFSV estimator, since optimal bandwidth expression of SV and EFSV usually have
similar components. (see Flegal and Jones (2010) for an example regarding optimal bandwidth
of BM and OBM). As for flat top window, it is suggested by Politis (2003) to use an empirical
rule for the optimal batch size of flattop SV estimator. We suggest using the same empirical rule
for EFSV with flat top window, but more work can be done regarding the bandwidth selection for
EFSV estimators.

Results in chapter 3 can also be applied to the optimal truncation point methods disccused
in chapter 2. The flat top pilot estimates could be replaced by EFSV estimators using flat top window

function, and the resulting ig(}.)ﬂ is a consistent estimate of £ according to theorem 1 in chapter 3.

The consistency of [" g})ﬂ needs to be further established to complete the EFSV pilot estimates but
should be obtainable as the strong consistency of f‘;?) was given by Politis (2003). In fact, using
EFSV as pilot estimates is an attractive idea since obtaining pilot estimates is a preliminary step
to achieve a good £y, and a fast estimate will be appreciated. Computational concern is also the
reason why flat top pilot estimates are computed based on a portion of the sample.

Lastly, methods established in this dissertation are under multivariate settings which is

also determinant to a reasonable termination of the chain, given that Bayesian analysis almost al-
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ways involves multiple parameters. Results restricted to univariate settings are theoretically impor-

tant but can hardly be applied in practice.
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