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Abstract

Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known
about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a
genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-
variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes
involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly
co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of
transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This
result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are
regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was
more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a
result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at
the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance
proteins in this genetically diverse population is not caused by variation of their underlying transcripts.
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Introduction

Genetic variation leads to networks of co-regulated transcripts.

The implications of these network structures have been discussed

extensively, generally with the assumption that such transcription-

al networks give rise to corresponding protein networks [1–6].

However, due to limitations in technology, these hypothesized

protein networks have not been examined directly, and thus it is

not known whether they are driven by underlying transcriptional

networks. By measuring protein and transcript levels for 354 genes

in a genetically diverse population of yeast segregants, we are now

able to address the question ‘‘Are protein networks formed

primarily on the basis of regulation of their underlying

transcripts?’’ (We use the term ‘‘protein networks’’ to refer to

groups of proteins that are co-regulated and not groups of proteins

that interact physically or genetically.) Before describing our

results, three points are important to consider: First, the magnitude

of individual to individual variation in transcript levels for a single

gene is generally far less than the magnitude of gene to gene

variation in transcript levels within a single individual [7]. Second,

the demonstration in multiple studies that the correlation between

transcript and protein levels for different genes within a single

individual is high does not imply that differences in abundance of

the same transcripts between different individuals must cause

corresponding variation in protein abundance [8,9]. And third, a

correlation between transcript and protein networks does not

prove a causal relationship between the two.

Protein levels cannot necessarily be inferred from transcript

levels because protein levels can be controlled not only by

regulating transcripts but also by regulating other steps in protein

metabolism, such as translation and protein stability. Thus the

degree to which protein levels can be inferred from transcript

levels depends on the degree to which the former mode of

regulation overwhelms the latter two (Figure 1). In experimental

situations when a gene is placed under a strong promoter like the

CMV promoter, a transcript can be elevated 1,000-fold and this

generally leads to a striking increase in protein. However, in

genetically diverse populations, transcript levels generally do not

vary 1,000-fold between individuals; for example, in the

population of yeast described in this report, a typical transcript

varies just 2.7-fold across 95 individuals. Such modest variation in

transcript levels may be buffered such that it causes no variation in

protein levels, or regulation of translation and/or protein stability

may obscure effects of minor transcriptional variation. Under such
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circumstances, transcript levels should not be expected to reflect

protein levels, and whether such circumstances are the norm or

the exception for typical levels of inter-individual variation is not

known.

Several reports have demonstrated that, when comparing

different genes whose transcript levels vary over orders of

magnitude, high abundance proteins are associated with high

abundance transcripts and vice versa [8–10]. There are two

important differences between this issue and the issue we address

here: First, the magnitude of variation in transcript levels is vastly

different in the two situations. Just as 1,000-fold overexpression of

a transcript through experimental manipulation is virtually

guaranteed to increase the level of the corresponding protein,

transcript levels that differ by orders of magnitude between genes

are virtually guaranteed to manifest themselves in differences in

the corresponding proteins. For example, a 2007 study by Lu et al.

of 346 genes in yeast demonstrated a high correlation (R = 0.85)

between transcript and protein levels, and thus concluded that ‘‘…

.70% of yeast gene expression regulation [occurs] through

mRNA-directed mechanisms’’ [8]. However, if one calculates

correlation coefficients with this same data set using a sliding

window within which transcript levels vary on average just 3.5-

fold, the average correlation drops from 0.85 to 0.36 with almost

half of the bins showing correlation coefficients that could easily

have been achieved by chance (Figure S1, Text S1). Thus, the

striking correlation between transcripts and proteins all but

disappears when analysis is limited to a range of transcript

variation similar to that occurring between individuals. Second, as

we will discuss further below, studies like that of Lu et al. involve

protein and transcript measurements from a single individual

under a single experimental condition, making it impossible to

measure gene-specific correlation coefficients (Figure S2). The

point here is not to call into question the solid conclusions of these

past reports, but instead to point out that our work addresses a

different issue.

In assessing the importance of transcriptional regulation in

determining protein levels, it is important to distinguish correlation

from causality. Biological pathways that sense physiological

conditions can trigger responses that include changes in transcrip-

tion, translation, and protein stability, often with the same group

of genes targeted by more than one of these regulatory

mechanisms [11]. For example, the TOR pathway, a highly

conserved pathway named for the signaling kinase ‘‘Target of

Rapamycin,’’ responds to changes in nutritional conditions by

increasing both transcription and translation of a group of target

genes [12,13]. Thus transcript and protein levels of these genes will

be correlated, but if translation has a much larger effect on protein

levels than does transcription, this correlation need not reflect

causality. More generally, any time a cellular response pathway

has both a transcriptional and a post-transcriptional branch, the

target genes are expected to show a correlation between transcript

and protein levels, but it is only in those cases where the former

regulatory mechanism is the dominant one in affecting protein

levels that this correlation reflects a predominantly causal

relationship between transcript and protein levels (Figure 1).

Results

Protein Quantitation
We have previously reported a mass spectrometry-based

method for protein quantitation that relies on mathematical

alignment of ion signals in mass spectra (MS1) from multiple

samples [14,15]. This algorithm rounded mass to charge

measurements to integer ‘‘Dalton’’ values, which has the

advantage of making the data sets much smaller than they would

be if one made full use of the high mass accuracy of modern mass

spectrometers (like that on which the data were collected) and thus

avoids computational difficulties that arise with large data sets.

However, such rounding sacrifices accuracy to the extent that our

previous quantitation, while sufficient for obtaining a broad view

of the genetic architecture of protein expression, was insufficient in

terms of both accuracy and coverage to rigorously address the

causal relationship between variation in transcript levels and

Figure 1. Three possibilities for regulating protein levels.
Protein levels can be regulated through control of transcript levels,
translation, and protein stability. The weight of the arrows here
indicates the size of the effect. In this example in which protein levels
are controlled primarily non-transcriptionally, there will nonetheless be
a correlation between protein and transcript levels.
doi:10.1371/journal.pbio.1001144.g001

Author Summary

The level of protein produced by each gene corresponds
approximately to the level of mRNA transcript produced
by that gene: so high-abundance proteins, like those
involved in protein synthesis, are represented by high-
abundance transcripts, whereas low-abundance proteins,
like those involved in signaling pathways, are represented
by low-abundance transcripts. Furthermore, genetic vari-
ation can cause variation in transcript levels for the same
gene between different individuals. These two observa-
tions have led to the assumption that inter-individual
variation in transcript levels for any particular gene causes
corresponding variation in protein levels. However, this
need not be the case, because protein levels could be
controlled not only by regulating transcript levels but also
by regulating protein translation and stability. Because
inter-individual variation in the levels of the transcript for
any particular gene is typically less than 3-fold, rather than
orders of magnitude, it is possible that the predominant
cause of inter-individual variation in levels of any particular
protein is transcription-independent regulation of protein
levels. Here, we look in a genetically diverse population of
95 yeast strains at the genetic variation that leads in turn
to variation in levels of 354 proteins that function within
co-regulated networks. We find that the between-strain
variation predominantly reflects transcription-independent
mechanisms. If this result is typical of the proteome as a
whole, it suggests that protein levels in genetically diverse
populations cannot be accurately inferred from levels of
their underlying transcripts.

Genetic Variation and Protein Networks
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variation in the corresponding proteins. To overcome the

limitations of our previous algorithm, we used a modification of

an accelerated random search [16] to solve computational

challenges and developed a new protein quantitation algorithm

that exploits the high mass accuracy and resolution of modern

mass spectrometers (Text S1). We then used this algorithm to

reanalyze our previously reported [14] mass spectrometric data,

aligning 380 data sets: two technical replicates of two biological

replicates for each of 95 progeny strains derived from a cross

between a wild type and a laboratory strain of yeast [17]. These

two strains differ at approximately 0.5% of their base pairs [18],

and this cross has been studied extensively [19–21]. Restricting

ourselves to peptides that were identified with high confidence

(Text S1) and that corresponded uniquely to one protein, we

quantified 354 proteins (Table S1). This is more than twice the

number of unique peptides (164) we were able to quantify in our

previous report [14].

If one is to assess the effect of transcriptional variation on the

proteome, it is necessary to focus on transcripts that show

significant individual-to-individual variation. With measurements

for only 354 proteins, constituting less than 6% of the proteome,

we were concerned that the corresponding transcripts might not

show significant individual-to-individual variation; thus we looked

at variance of the transcripts in question (transcript data previously

reported [17]). The 354 genes for which we had protein

measurements were all among the most highly variant ,10%

(522/6,215) of all transcripts. Thus this subset of proteins is not

merely sufficiently variable for our study; it comprises almost 70%

(354/522) of the ideal genes on which to focus for our purposes.

We speculate that this fortuitous result reflects the fact that we are

best able to measure high abundance proteins, and thus our data

set is enriched for accurately measured high abundance transcripts

as well. (Levels of highly abundant proteins tend to be less variable

than low abundance proteins [22]; therefore it is unlikely that the

high variance of this set of proteins is a reflection of their

abundance.) We note, however, that this is a special set of proteins

in that they are mostly high abundance proteins involved directly

or indirectly with protein synthesis and thus they may not be

representative of the proteome as a whole.

Construction of Genetic Networks
We next constructed a connectivity matrix between proteins on

the basis of Pearson’s correlation coefficient. For each pair of

proteins, we used permutation testing to determine a false positive

rate (FPR) cutoff, accepting only connections that were below a

1% FPR cutoff. Out of 62,481 possible protein-protein connec-

tions, we observed 7,058 connections, 91% of which were deemed

genuine because we expect only 625 connections by chance. The

numbers of connections for individual proteins ranged from 1 to

100, with an average of 40 and a median of 37. For transcripts, we

observed 15,989 connections out of 62,481 possible. For individual

genes, the transcript numbers ranged from 4 to 176, with an

average of 90 and a median of 76. Among the 50 most highly

connected proteins, there was a 1.9-fold enrichment for genes

involved in amino acid biosynthesis, and among the 50 most

highly connected transcripts, there was a 2.7-fold enrichment of

genes involved in ribosomal functions, but enrichment for other

functions was not obvious. Remarkably, the most highly connected

genes for proteins and transcripts look entirely unrelated. For

example, among the 34 most highly connected genes in the two

groups, there are only two genes present in both groups (RPS7A

and TEF4). A global comparison suggests that connectivity of

genes at the transcriptional level is unrelated to their connectivity

at the protein level (Figure S3).

In order to identify networks of co-regulated genes, we turned to

a widely used ‘‘community’’-based approach [23]. Cliques are

groups in which each member is connected to every other

member, and ‘‘communities’’ are simply groups of highly

overlapping cliques (precise definition in legend to Figure 2); thus

in our case, communities are groups of proteins or transcripts that

show a high degree of co-variation. In both the protein and

transcript data sets, we identified two large communities, one

enriched for genes involved in amino acid metabolism and the

other for genes involved in ribosome biogenesis. The amino acid

and ribosomal communities in the protein data set consisted of 93

and 36 genes, respectively, and these two communities in the

transcript data set consisted of 67 and 127 genes, respectively

(Figure 2; Table S2). Even though the genes within each

community showed a high degree of co-regulation, the two

communities within each data set showed very little connection.

For example, only 1.6% (54 out of 3,348 with 378 expected by

chance) of possible intercommunity protein pairs were connected;

thus we have two networks of highly connected proteins that vary

largely independently of one another (Figure 2). (Below, unless

specified otherwise, if we refer to a ribosomal network or

community, we mean the protein ribosomal community and the

same is true for references to an amino acid network or

community.)

With two large networks of functionally related proteins, we

were in a position to address our main question, namely ‘‘to what

extent are protein networks shaped by regulation of their

underlying transcripts?’’ If protein networks are shaped primarily

by variation in their underlying transcripts, we would expect (1)

high correlations between proteins and transcripts, (2) similar

genetic regulation of proteins and transcripts, and (3) that

normalization of protein levels according to variation in transcript

levels should abolish linkage to genetic regulatory loci. Using these

criteria, we found that both protein networks were formed

primarily through non-transcriptional mechanisms.

Protein-Transcript Correlations
We calculated correlation coefficients between protein and

transcript levels for all 354 genes and then assigned each a binary

value of ‘‘significant’’ or ‘‘not significant’’ on the basis of 1,000

permutations done separately for each gene. Only 4 out of 36

genes in the ribosomal network showed a significant correlation

(p,0.05); thus clearly for the vast majority of these genes, protein

levels vary without regard to the levels of their corresponding

transcripts. The genes in the amino acid network showed a higher

fraction of significant correlations, but even here less than half of

the genes (41 out of 93) showed a significant correlation at the

same 5% cutoff. These results demonstrate an important non-

transcriptional component to regulation of both networks and

suggest that the ribosomal network is either largely unaffected by

transcriptional variation, within the range of transcriptional

variation observed here, or that transcriptional regulation of

protein abundance is obscured by regulation of translation and/or

protein stability.

The variable correlation between transcripts and proteins for

these two networks raises the broader question of how transcripts

and proteins are correlated in general. As noted above, several

studies in yeast including one from our laboratory have reported a

wide range (0.34–0.98) of correlations between protein and

transcript levels [8,9,14]. However, two features of the current

study are critically different from the previous reports. First, this

study examines gene-specific correlations. Most previously report-

ed correlation coefficients for protein and transcript abundance for

yeast were derived from single measurements of protein and

Genetic Variation and Protein Networks
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transcript levels for many genes in a single strain, and these

individual measurements for different genes were combined to

derive an average correlation coefficient. The correlation coeffi-

cients we report here, in contrast, are derived from 95

measurements of protein-transcript pairs for each of 354 different

genes (Figure S2). This is important because there are dramatic

differences in the degree to which different genes are regulated at

the transcript level versus the protein level. Second, while our

previous study reported gene-specific correlation coefficients [14],

we did not emphasize these results because our marginal ability to

map protein regulators raised the possibility that these low

correlation coefficients reflected inaccuracies in our protein

measurements (see below for mapping results). (The ability to

map significant numbers of regulators can be used as a metric to

assess accuracy of measurements when FDRs are empirically

determined through permutation testing [24].)

We found that proteins and transcripts were well correlated for

only 27% of genes (94/354 at 5% significance; Table S3), with

most genes showing little or no correlation. Even if we limit

ourselves to proteins for which we mapped regulators (p,0.05; see

below for mapping results) and thus have high confidence in our

protein measurements, only 37% of genes (46/125) show

Figure 2. Networks of protein-protein and transcript-transcript co-regulation. Communities are defined on the basis of k-cliques, complete
(and in our case undirected) subgraphs of size k, and are comprised of the union of all k-cliques that can be reached from each other through a series
of adjacent k-cliques (where adjacency means sharing k21 nodes). The most stringently defined (highest k value) protein community was a 35-clique
community notably enriched for genes involved in amino acid metabolism. Lowering the k threshold to 19 simply expanded this community whereas
at k = 18, there appeared five closely related communities (which we will henceforth refer to as a single community) that were enriched for ribosomal
proteins. An analogous approach with transcripts yielded communities of 67 and 127 genes involved in amino acid metabolism and ribosome
biogenesis, respectively. No gene was in both protein communities and just two genes were in both transcript communities. Communities of co-
regulated proteins are on the left in blue and communities of co-regulated transcripts are on the right in green. In both data sets, the ribosomal
community is above the amino acid community. Connections are plotted only for the 160 most highly connected genes within each data set,
regardless of those genes’ membership in any community. The two genes that are present in both transcript communities, VAS1 and YHR020W, are
arbitrarily plotted in the ribosomal community and connections involving these genes are not plotted.
doi:10.1371/journal.pbio.1001144.g002

Genetic Variation and Protein Networks
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significant correlations between proteins and transcripts. Further-

more, we could find no relationship between these correlation

coefficients and the corresponding genes’ transcript or protein half

life [25,26]. Plotting the data in terms of variance explained for

transcripts and proteins similarly failed to reveal trends (unpub-

lished data). We conclude that for most genes, inter-individual

variation in protein levels does not reflect variation in underlying

transcripts (Figure 3A).

Genetic Regulation of Networks
To compare the genetic regulation of the two protein networks,

we began by mapping loci that affect transcript and/or protein

levels. (We note that heritability for proteins, like that for

transcripts, was high: averages for proteins and transcripts were

0.70 and 0.71, respectively, and medians for proteins and

transcripts were 0.71 and 0.74, respectively; calculation described

in Materials and Methods.) All strains have been genotyped for

Figure 3. Genetic regulation of protein and transcript levels. (A) Correlation coefficients between protein and transcript levels are plotted in
ascending order. The dashed lines at 0.24 and 0.31 indicate the average cutoffs for significance at p,0.05 and p,0.01, respectively, based on 1,000
permutations done separately for each gene. A very small number of genes show significant negative correlations. These may reflect protein-
destabilizing polymorphisms for which the cell tries to compensate by increasing transcription, though we note that none of these loci are on the
same chromosome as the regulated gene and thus any destabilization would have to act in trans. (B) Distribution of genetic regulators of proteins
(top) and transcripts (bottom). The genome was divided into 20 kb bins arranged from the beginning of chromosome 1 on the left to the end of
chromosome 16 on the right. The number of linkages in each bin is plotted for proteins on the top and transcripts on the bottom. Dashed vertical
lines indicate the borders between chromosomes. The two insets show the locations of genes regulated by the hotspot on chromosome 3 (upper left
insert) and those regulated by the hotspot on chromosome 13 (lower right insert) with proteins on the top and transcripts on the bottom. (The
hotspot on chromosome 3 is likely caused by a deletion of LEU2 combined with a tightly linked polymorphism in ILV6 [43] and the hotspot on
chromosome 13 is likely caused by a polymorphism in BUL2 [38]. The horizontal line in the insets represents the genomic location, going from the
beginning of chromosome 1 on the left to the end of chromosome 16 on the right. (C) Locations of genetic regulators specifically for those genes in
the protein ribosomal network are plotted as in (B). (D) Locations of genetic regulators specifically for those genes in the protein amino acid network
are plotted as in (B).
doi:10.1371/journal.pbio.1001144.g003

Genetic Variation and Protein Networks
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2,955 genetic markers, 1,969 of which exhibited unique

segregation patterns among the 95 segregant strains. We looked

for linkage between inheritance of these 1,969 markers and the

354 transcript and protein levels using t tests and determined FDR

cutoffs for each gene on the basis of 100 permutations. At a 5%

FDR, we mapped 49 and 97 loci that control the level of a total of

125 and 200 proteins and transcripts, respectively. At a 1% FDR,

we mapped 30 and 74 loci that control levels of 89 and 170

proteins and transcripts, respectively (Table S4). Because proteins

and transcripts can map to more than one locus, the total number

of linkages at a 5% FDR was 179 for proteins and 342 for

transcripts, and at a 1% FDR these numbers were 115 and 253,

respectively. These results provide an objective metric for the

extent to which our current algorithm (i.e., the one used in this

report) has improved our accuracy: At a 5% FDR, our previous

algorithm [14] allowed us to map 24 regulators that regulate levels

of 18 proteins, whereas the current algorithm allowed us to map

179 regulators that regulate levels of 125 proteins. (We use the

term ‘‘regulator’’ to denote a locus that influences transcript and/

or protein levels.) With comparable measurements for proteins

and transcripts, we are now able to address questions about the

relationship between the two data sets that we could not address in

our previous publication [14]. Consistent with our previous results,

we found that (1) both proteins and transcripts show hot spots of

regulation (single loci that control multiple genes), (2) these hot

spots are largely but not completely overlapping, and (3) the genes

regulated by a single hot spot show low overlap at the protein and

transcript levels, highlighting the difference between genetic

regulation of the proteome and transcriptome (Figure 3B).

The locations of the genetic regulators that control proteins and

transcripts within the ribosomal network bore essentially no

resemblance to each other; indeed, given the overall distribution of

regulatory loci for proteins and transcripts, loci that regulated both

proteins and transcripts within this network appeared much less

frequently than is expected by chance (p,0.0001 based on 10,000

permutations; Figure 3C). These results call into question the widely

held belief that in yeast, in contrast to vertebrates, ribosomal protein

levels are controlled primarily by regulation of their transcripts [27].

(We note that genetic regulation of the ribosomal transcripts is

complex, i.e. a large number of loci, each with relatively small effect.)

The locations of genetic regulators of proteins and transcripts were

more similar for genes in the amino acid network: Approximately a

quarter of the time (20 out of 84 linkages, corresponding to 17

different regulated genes), protein linkages (5% FDR) to genes in the

amino acid network showed regulation of the corresponding

transcript by the same locus. Below we ask whether, at least for

these 20 linkages, the mechanism by which the loci regulate the

proteins is regulation of their underlying transcripts.

Normalization to Transcript Levels to Test Causality
This subset of 20 linkages comprise the most likely examples of

loci that control the levels of proteins in the protein amino acid

network primarily by controlling the underlying transcripts, but

even here it is possible that transcription is not the main driver of

protein levels. For example, a response to alterations in cellular

physiology created by polymorphisms on chromosomes 3 and 13

may include both a transcriptional response of a specific set of

genes and changes in the translation of the corresponding

transcripts and/or stability of the corresponding proteins.

Multilevel control (i.e. transcriptional and posttranscriptional) of

the same genes is a well-described phenomenon in response to

environmental changes and in development that assures the

magnitude and rapidity of response and that reinforces cellular

decisions [28,29]. If the translational or protein stability changes

have a larger effect on protein levels than the transcriptional

alterations, one would still see shared genetic regulation and high

correlation coefficients, but the protein network would not be

driven primarily by transcription (Figure 1). To distinguish

between these possibilities, we asked whether these 20 linkages

for proteins in the amino acid network maintained linkage after

normalizing for transcript levels [30]. For each of the proteins and

the sites to which they are linked, such as ACS2 to chromosome

12, which is shown as an example (Figure 4A), protein levels were

regressed on the corresponding transcript levels (Figure 4B), the

residuals were tested for linkage to the original loci (Figure 4C),

and residual linkage was plotted against the original linkage

(Figure 4D). In the case of ACS2, it is clear that the locus on

chromosome 12 is regulating ACS2 protein levels by regulating

transcript levels, because the tight linkage between the locus and

protein levels (p = 6.03610210, Figure 4A) becomes insignificant

when the effect of the locus on transcript levels is taken into

account (p = 0.178, Figure 4C). Two other linkages also behaved

this way; thus a total of three out of the 20 protein linkages

examined appear to reflect primarily transcriptional regulation of

protein levels (three points below horizontal line at 2log 0.05 in

Figure 4D, in which all protein linkages have been plotted). Two of

these three map to the transcription factor HAP1, which is

inactivated in the laboratory parent by a Ty element insertion.

These two genes, ACS2 and ERG6, are both regulated by HAP1

and both have upstream HAP1 binding sites that are among the

most tightly HAP1-bound sites in the genome, thus suggesting a

mechanism for transcript-mediated regulation of these two

proteins [31]. Extending this test for transcript-mediated control

of protein levels to all 179 protein linkages (p = 0.05) shows that the

three cases mentioned above are the only instances in which

control of protein levels can be attributed exclusively to control of

the corresponding transcript (Figure 4D).

Comparison of Cis-Regulation for Proteome and
Transcriptome

Quantitative trait loci that affect transcript levels have been

classified according to whether the regulated gene is linked (cis-

regulation) or unlinked (trans-regulation) to the regulatory locus.

For example a promoter mutation would be classified as cis-

regulatory whereas a mutation in a transcription factor would

likely appear as trans-regulatory. Consistent with numerous

reports in both this collection of yeast strains and other

populations [32–34], we find that at the transcript level, cis

regulation of the 354 genes in this study is relatively common

(Figure 5): at 1% FDR, we map regulators of 170 transcripts, 22 of

which act in cis. In contrast, at this FDR we map regulators of 89

proteins, only three of which act in cis (Figure 5). t tests between

each gene and a single cis marker to reduce the problem of

multiple testing confirmed the wider prevalence of cis linkage in

the transcriptome over the proteome: At a 1% significance, 50

transcripts show linkage to the nearest marker whereas only 13

proteins do. Normalizing for the 3.54 false positives expected

suggests approximately 5-fold more cis linkage for transcripts than

for proteins. As others have noted, we saw that cis regulators

tended to have above average effect sizes and therefore should be

easier to detect; for example, cis linkages at 1% significance

explained on average 29% of variation in transcript levels whereas

the corresponding trans linkages explained only 24%. Thus if

variation in protein levels between individuals were caused by

variation in the underlying transcripts, inaccurate measurements

of either proteins or transcripts would lead to an overestimate of

cis linkage, whereas we see the opposite. Cis linkage for transcript

and protein abundance can be due to polymorphisms in the

Genetic Variation and Protein Networks
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promoter region that alter transcription rates, or polymorphisms in

the untranslated or coding sequences that alter transcript stability,

translation rate, or protein stability. The virtual absence of cis

linkage for proteins in the face of relatively common cis linkage for

transcripts is consistent with our finding that variation in protein

levels in this cross is largely independent of transcriptional

variation. Furthermore, the rarity of cis linkage for proteins also

suggests that cis-acting polymorphisms that lead to alterations in

protein stability and/or translation rates are less common than

those that alter transcription rates.

Discussion

It is particularly noteworthy that, although ribosomal proteins

and their corresponding transcripts are both tightly co-regulated,

they are regulated entirely independently of one another; it is as if

the loci regulating ribosomal transcripts are actively avoiding those

that regulate the corresponding proteins, since permutation testing

(with 10,000 permutations) demonstrates that there is less than a

one in 10,000 chance that this level of ‘‘avoidance’’ could have

happened by chance. This suggests that the loci that trigger the

transcriptional response for ribosomal protein genes are acting

Figure 4. Regression analysis to test for causality. Panels A through C show an example of how the coordinates for a single point (representing
the linkage between a locus at base pair 662,627 on chromosome 12 and the level of protein ACS2) in panel D were obtained. (A) The levels of
protein ACS2 are higher in segregants that inherited SNP 12_662,627 from the RM (vineyard) compared to segregants that inherited this SNP from
the BY (laboratory) parent. The p value for linkage is 6.03610210, and the negative log of the p value is 9.22. (B) Each segregant is plotted according
to levels of the ACS2 transcript on the x-axis and the ACS2 protein on the y-axis and a regression line was calculated (slope = 0.62, y
intercept = 0.0058). The regression line was used to calculate the residuals for protein levels after protein levels are regressed on transcript levels. The
original values for two points (indicated by arrows) are shown as dashed lines and the corresponding residuals are shown as solid lines. (C) Same as
panel A except rather than plotting the original protein levels (dashed lines in B), the residual protein levels after proteins have been regressed on
transcripts (solid lines in B) are plotted. Unlike the original ACS2 protein levels (plotted in A), regressed protein levels are not different between the
segregants that inherited BY and RM SNP 12_662,627 marker (p value of 0.178, the negative log of which is 0.75). (D) Each protein linkage with a p
value less than 0.05 is plotted according to the negative log of the p value for linkage on the x-axis and the negative log of the p value for linkage
after protein levels have been regressed on transcript levels on the y-axis. The horizontal line at 1.3 indicates the cutoff for significant linkage after
normalization for transcript levels, and the three proteins that lose linkage after regression are indicated by arrows. Points close to the diagonal line,
like those in the gray oval, are essentially unaffected by normalization for transcript levels. Two points were omitted to help with scale. The single
point at coordinates (9.22, 0.75) whose calculation is described in panels A through C is noted.
doi:10.1371/journal.pbio.1001144.g004
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through one pathway while the loci that trigger the corresponding

translational (or protein stability) response are acting through

another. The pathways that regulate transcription of ribosomal

protein genes have been studied extensively. For example,

nutrients activate the TOR and PKA pathways, which leads to

phosphorylation of Sch9 and Sfp1. This increases the levels of

Sch9 and causes Sfp1 to enter the nucleus, and this in turn triggers

Fhl1- and Ifh1-dependent transcription of ribosomal protein and

biogenesis genes [35,36]. Thus the loci that regulate transcripts in

the ribosomal community are likely perturbing intracellular

physiology in a way that elicits a TOR and/or PKA signaling

response.

So which pathway might regulate the translational (or protein

stability) response that influences ribosomal protein levels? The

loci that regulate the protein levels for genes in the protein

ribosomal community (upper left in Figure 2) showed a striking

resemblance to the loci that regulate transcripts in the transcript

amino acid community (lower right in Figure 2; Figure 6),

suggesting that these two networks are regulated by a common

pathway. Furthermore, the major loci that regulate these genes on

chromosomes 3 and 13 had diametrically opposing effects on the

two groups; i.e. one allele of chromosome 3 caused essentially

every amino acid transcript (65/67) to increase while also causing

every ribosomal protein (36/36) to decrease, and the same was

true for the locus on chromosome 13. Thus it appears that a single

pathway is causing ribosomal proteins and amino acid transcripts

to vary in opposition to each other. Our search for a pathway that

regulates ribosomal protein translation therefore led us to consider

pathways that affect transcription of genes involved in amino acid

synthesis. The general amino acid control pathway (GAAC)

responds to amino acid imbalances (sensed through levels of

uncharged tRNAs) by activating Gcn2, which then phosphorylates

the translation initiation factor eIF2A. This phosphorylation

causes eIF2A to downregulate translation of a large number of

genes while simultaneously promoting translation of the transcrip-

tion factor GCN4, which in turn stimulates transcription of genes

involved in amino acid synthesis [37]. Thus we suggest that loci on

chromosomes 3 and 13 skew levels of uncharged tRNAs leading to

a GAAC-dependent response that includes increasing transcrip-

tion (via GCN4) of genes involved in amino acid biosynthesis and

decreasing translation of ribosomal proteins. Likely candidate

genes are LEU2 on chromosome 3, which is involved in leucine

biosynthesis and is heterozygous in this cross and BUL2 on

chromosome 13, which regulates amino acid import and is also

heterozygous in this cross [38]. mRNAs encoding ribosomal

proteins in higher eukaryotes have 59 terminal oligopyrimidine

tracts that are critical in regulating translation and thus protein

levels [39]. The fact that yeast lack these so-called TOP mRNAs

coupled with the observation that ribosomal protein transcripts in

yeast are tightly regulated by the TOR signaling pathway [35,36]

has led to the widespread belief that yeast are different from other

eukaryotes in that they regulate ribosomal protein levels primarily

through transcription. Our observations suggest an important

translational role for control of ribosomal protein levels in yeast,

just like in vertebrates.

In summary, our results reveal striking differences in the effect

of genetic variation on networks of proteins versus transcripts. Our

results demonstrate that, in this genetically diverse population,

levels of variation in transcripts are such that non-transcriptional

mechanisms for controlling protein levels obscure the correlation

between transcripts and proteins for most genes. This is not a

consequence of selecting a subset of 354 genes whose transcripts

were biased for low variance; on the contrary, every one of these

transcripts was among the 522 with the highest variance,

suggesting that even among highly variant transcripts, non-

transcriptional variation is the predominant cause for variation

in protein levels in this population. Finally, advances in proteome

profiling technologies that enable high throughput profiling of low

Figure 5. cis-linkage for the proteome versus the transcriptome. Each transcript linkage (p,0.05) is plotted on the left according to the
location of the regulatory locus on the x-axis and the regulated gene on the y-axis, and the same is done for proteins on the right. Vertical strips
indicate hot spots and points falling on the diagonal (gray line) indicate cis-linkage, i.e. the location of the genetic regulator is the same as that of the
regulated gene.
doi:10.1371/journal.pbio.1001144.g005
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abundance proteins [40–42] combined with studies of other

populations will help determine how general the predominance of

non-transcriptional control is in controlling protein levels in

genetically diverse populations, since our current analysis is limited

to high abundance proteins. Given that protein abundance is more

highly related to phenotype than transcript abundance, our

findings underscore the fundamental role of non-transcriptional

mechanisms in the creation of phenotypic diversity in genetically

outbred populations.

Materials and Methods

Raw data for both protein [14] and transcript [17,19,21]

quantitation came from previously published work. Protein

quantification in this manuscript is novel, i.e. the algorithm to

extract protein quantitation from published mass spectrometric

data sets is novel. Protein-protein and transcript-transcript

correlation coefficients were calculated for each pair of genes.

Segregant identities were then ‘‘scrambled’’ for one of the two

measurements. For example, in calculating the correlation

between levels of CDC19 protein and OLA1 protein, segregant

identities would be shifted by 1 such that we calculated

correlations on the basis of the level of CDC19 in segregant 2

with OLA1 levels in segregant 1, CDC19 levels in segregant 3 with

OLA1 levels in segregant 2, and so forth. For each pair of proteins

and for each pair of transcripts, 1,000 such permutations were

performed. A 1% FPR was determined as higher than the 10th

highest correlation coefficient calculated with the 1,000 permuta-

tions. Each pair of proteins and each pair of transcripts was thus

assigned its own 1% FPR cutoff and this FPR was arbitrarily

chosen as a cutoff for whether two proteins or transcripts are

connected.

Communities were identified as previously described [23]. They

were all derived from the same group of 354 genes for which both

protein and transcript quantitation was available. The five closely

related ribosomal protein communities consisted of five 35-

member communities made up exclusively of 36 genes. Enrich-

ment for functionally related genes within communities was

calculated based on the fraction of members of a community with

appropriate GO term assignments within the community as

compared to the fraction of the same GO term assignments in the

set of 354 genes.

Heritability
Heritability is the degree to which variation in measurement is

due to individual-to-individual variation as opposed to variation

due to unintended fluctuation in experimental conditions. For

each of 95 strains, there are between zero and four measurements

for each protein level, t total measurements for each protein level

across all segregants, n1 of which come from strain 1, n2 of which

come from strain 2, and so forth. Heritability was calculated as

follows:

heritability~

n1 x1{GMð Þ2zn2 x2{GMð Þ2z:::
� �, Xt

i~1

(mi{GM)2

 !
,

Where xi is the mean of the ith segregant, mi is the ith measurement,

and GM is the ‘‘grand mean,’’ i.e. the mean of the entire

population.

Variance Explained
We use variance explained to quantify that proportion of the

variation in phenotype (e.g. protein level) can be attributed to

inheritance of a particular genetic marker. For example, imagine

that the level of Aro1 protein is higher among segregants that

inherited a SNP at base pair 10,000 on chromosome 3 from the

RM parent than among segregants that inherited this SNP from

the BY parent. meanRM is the mean level of Aro1 protein among

segregants inheriting the RM SNP and meanBY is the mean level

Figure 6. Similarity between genetic regulation of amino acid transcripts and ribosomal proteins. Loci that influence transcript and
protein levels (p,0.05) are plotted as in Figure 2B–D, but regulators of proteins in the protein ribosomal community are plotted above the horizontal
line while regulators of transcripts in the transcript amino acid community are plotted below the line.
doi:10.1371/journal.pbio.1001144.g006
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among segregants inheriting the BY SNP. GM is the ‘‘grand

mean,’’ i.e. the mean level of Aro1 protein in all of the segregants.

There are k total segregants with i segregants inheriting the RM

SNP and j segregants inheriting the BY SNP. mRM_1 is the Aro1

protein level in the first segregant inheriting the RM SNP, mRM_2 is

the level in the second segregant inheriting this SNP, and so forth.

variance explained~

Pi

1

mRM n{meanRMð Þ2z
Pj

1

mBY n{meanBYð Þ2

Pk
1

mn{GMð Þ2

Data collection has been described previously [14]. The protein

quantitation algorithm is described in detail below. Complete code

is available from D.R. upon request. Data collection has been

described previously [14]. The mapping algorithm was based on t

tests with permutation testing to determine false discovery rates.

Complete code is available from E.J.F. upon request. Communi-

ties were identified as described previously [23]. All protein

measurements will be placed in the GEO online database upon

publication (http://www.ncbi.nlm.nih.gov/geo/). Transcript mea-

surements are available at this site.

Supporting Information

Figure S1 Data of Lu et al. measuring protein and transcript

levels for 346 genes in yeast were divided into groups within which

transcript levels varied less than 3.5-fold and average correlation

coefficients were calculated within each bin. The horizontal line at

0.31 shows the average cutoff for significance (p,0.01), as

determined with 1,000 permutations.

(TIF)

Figure S2 Illustration of the difference between transcript-

protein correlations between different genes in a single individual

versus transcript-protein correlations between the same gene in

different individuals.

(TIF)

Figure S3 Each of 354 genes is plotted according to the number

of transcript-transcript connections (correlation coefficients with

p,0.01) on the x-axis and protein-protein connections on the y-

axis.

(TIF)

Figure S4 Zoom in view of isotopic strips. X-axis shows scan

numbers and y-axis shows m/z.

(TIF)

Figure S5 Yellow pixels indicate the peptide peaks that are

identified by MS2. On a typical run we identify 1,000 out of 5,000

to 6,000 peaks.

(TIF)

Table S1 Quantitation of 354 proteins.

(XLS)

Table S2 Community membership.

(DOC)

Table S3 Protein-transcript correlation coefficients.

(XLS)

Table S4 Genetic loci regulating protein and transcript levels.

(XLS)

Text S1 Protein quantitation algorithm (see also Figure S4 and

S5).
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