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Illuminating the intra-species diversity of bacterial populations from 

shotgun metagenomes 

 

Stephen Nayfach 

 

Abstract 

Deep	metagenomic	sequencing	has	the	potential	to	illuminate	the	intra-species	genomic	

variation	of	abundant	microbial	species.	In	this	thesis,	I	develop	a	new	tool	MIDAS	

(Metagenomic	Intra-species	Diversity	Analysis	System)	for	rapidly	and	automatically	

quantifying	species	abundance,	single	nucleotide	polymorphisms	(SNPs),	and	gene	copy	

number	variants	(CNVs)	from	metagenomes.	To	illustrate	the	utility	of	this	approach,	I	re-

analyze	three	public	datasets	with	MIDAS.	First,	I	re-analyze	stool	metagenomes	from	98	

mother-infant	pairs	and	used	rare	SNPs	to	track	strain	transmission.	I	find	that	early	

colonizers	are	likely	transmitted	from	the	mother	whereas	late	colonizers	are	likely	

transmitted	from	the	environment.	Second,	I	re-analyze	>300	stool	metagenomes	from	

healthy	adults	and	use	SNPs	to	identify	examples	of	both	strain	co-existence	and	strain	co-

exclusion.	Third,	I	re-analyze	198	globally	distributed	marine	metagenomes	and	used	gene	

copy	number	variants	to	show	that	many	species	have	population	structure	that	correlates	

with	geographic	location.	Strain	level	genetic	variants	clearly	reveal	extensive	structure	

and	dynamics	that	are	obscured	when	metagenomes	are	analyzed	at	coarser	taxonomic	

resolution.	
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Chapter 1 

 

Defining bacterial species in the genomics era 

 

Quantifying the intra-species variation of bacterial populations requires a clear and consistent 

definition of what is a bacterial species. Because taxonomic annotations of reference genomes 

derive from many different sources (e.g., individual labs, sequencing centers), Latin names of 

species are often erroneous and inconsistent. I address this problem in this chapter by applying a 

consistent, sequence-based definition of bacterial species to >30,000 currently sequenced 

bacterial reference genomes.  I identify 30 universally distributed gene families that are optimal 

for defining species based on a comparison to genome-wide average nucleotide identity (ANI), 

which is considered a gold standard for microbial species delineation. Next, I systematically 

compare species derived from this approach to a reference taxonomy and identify many 

differences. Finally, I use metagenomes to address whether current reference genomes capture 

the diversity of bacterial species found in different environments and find that many types of 

communities are dominated by novel organisms. 
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1.1 Background 

Quantifying the intra-species variation of bacterial populations requires a clear and consistent 

definition of what is a bacterial species. Current microbial genome taxonomies (e.g. NCBI) rely 

on Latin names provided by users [1]. This results in taxonomic annotations that are inconsistent, 

erroneous, and incomplete [2]. For example, over 20% of current microbial genomes are not 

annotated at the species level.  

 

Over the past 10 years, there have been a number of efforts to systematically catalog bacterial 

species based on genomic information [2-5].  For example, Varghese et al. [4] used genome-

wide average nucleotide identity, considered to be a gold standard [6], for delineating microbial 

species among 13,151 reference genomes (Table 1.1). Several years prior, Mende et al. [2] used 

40 genes to found in nearly all prokaryotes to delineate species among 3,496 genomes (Table 

1.1).  

 

However, these high quality taxonomic annotations have not kept-up with the flood of new 

genome sequences. At start of my project in 2015 there were over 30,000 bacterial genomes 

available in the Pathosystems Resource Integration Center (PATRIC) [7] and two years later 

there are now over 90,000. Single cell genomics [8], discovery of genomes from metagenomes 

[9], and large-scale genome sequencing projects [10] will only increase the pace of new genome 

discovery.  

 

To address this issue, I developed a procedure to hierarchically cluster bacterial genomes into 

species groups based on the pairwise percent identity across a set of 30 universal gene families. 
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These gene families were systematically identified from a set of 112 candidates to achieve 

equivalent results to whole genome comparisons. Thus, this approach is similar in speed to that 

described by Mende et al. because it involves comparison of only 30 genes between genomes. 

Furthermore, it achieves a resolution similar to that of Varghese et al. Finally, because this 

approach uses a small set of highly informative marker genes that comprise only ~1% of a 

typical genome it will be efficient to update these annotations as additional genomes are 

sequenced.  

 

1.2 Methods 

First I downloaded and quality controlled all currently available bacterial reference genomes. 

Reference genomes (N=33,252) were downloaded from the Pathosystems Resource Integration 

Center (PATRIC) [7] on March of 2015. I searched these genomes against 112 universally 

distributed gene families [11] using HMMER3 [12] and identified homologs with E-values 

<1×10-5. When there were multiple homologs of a gene family identified in a genome, I took the 

homolog with the lowest E-value. Low quality genomes – defined as having fewer than 100 

universal genes (N=1,837) or greater than 1,000 contigs (N=618) – were removed. This left us 

with 31,007 high-quality genomes.   

 

Next, I aligned all genomes to each other at the 112 universal genes using BLASTN [13]. I 

filtered out local alignments where either the query or target was covered by <70% of its length. 

I converted percent identities to distances using the formula: !!" = (100−  !!")/100, where 

!!" was the percent identity of a gene between genomes a and b. This resulted in an undirected 

graph for each marker gene family where nodes were genomes and edges were distances.  
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To identify clusters of genomes that represented bacterial species, I performed average-linkage 

hierarchical clustering using the program MC-UPGMA [14]. The input to MC-UPGMA was the 

set of pairwise distances between genomes and the output of MC-UPGMA was a dendrogram. 

The dendrogram was cut at different distance thresholds (0.01 to 0.10, representing 90-99% 

identity) to identify genome-clusters (i.e. connected components). This procedure was performed 

separately for each of the 112 gene families. 

 

1.3 Validation 

For validation, I compared each set of genome-clusters to average nucleotide identity (ANI), 

which is considered to be a gold standard for delineating prokaryotic species [6, 15] but was too 

computationally intensive to compute for all genome-pairs. Specifically, I used the procedure 

described by Richter and Rossello-Mora [6] to compute ANI for >18,000 genome-pairs. Genome 

pairs with ANI ≥ 95% were labeled as members of the same species and genomes pairs with ANI 

< 95% were labeled as members of different species.  

 

Next, I compared the true species labels to those predicted from genome clustering. Each 

genome pair was classified into one of the following categories: true positive: a clustered 

genome-pair with ANI ≥ 95%; false positive: a clustered genome-pair with ANI < 95%; false 

negative: a split genome-pair with ANI ≥ 95%; true negative: a split genome-pair with ANI < 

95%. Using these classifications I calculated the true positive rate (TPR), precision (PPV), and 

F1-score for each set of genome-clusters. I used this procedure to evaluate performance for 



	 5	

genome-clusters defined using each of the 112 universal gene families and at each of the 10 

distance cutoffs (Figure	1.1). 

 

Based on this evaluation, I identified a subset of 30 universal gene families that produced 

genome-clusters that were in agreement with ANI (F1-scores > 0.93). Interestingly, I found that 

the best gene families for identifying bacterial species were less conserved and more widely 

distributed across the tree of life relative to other genes I tested (Figure 1.2). For example, many 

ribosomal gene families were too conserved to differentiate closely related species. 

 

Finally, to increase clustering performance, I combined results across the 30 universal gene 

families. Specifically, for each genome-pair I averaged distances across these 30 gene-families to 

obtain a new genome distance graph. This graph was used to cluster genomes again using MC-

UPGMA. Performance was evaluated again at different distance thresholds. I found that a 

distance cutoff of 0.035 (96.5% nucleotide identity) maximized the F1-score at 0.98 and resulted 

in 5,952 genome-clusters (Figure 1.3 and Table 1.2). In conclusion, I developed a fast procedure 

that produced bacterial species groups that were highly concordant with a gold standard 

definition of species based on 95% ANI. 

 

1.4 Results 

1.4.1 Comparison to the PATRIC taxonomy 

I annotated each of the 5,952 genome-clusters according to the most common Latin name of 

genomes within the cluster. Interestingly, these names often differed from those specified by the 

PATRIC taxonomy (Figure 1.3). In particular this procedure clustered 2,666 genomes (8.6% of 
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total) that had not been previously annotated at the species level. About half of these genomes 

were assigned to cluster with at least one other reference genome, providing additional support 

that these represent new species of bacteria. Other genomes were previously annotated at the 

species level were assigned to a genome cluster with a different Latin name (4.3% of total). 

These represent potentially erroneous labels. Finally, I found other genomes that were split from 

a larger cluster with the same Latin name (5.22%). These represent diverse clades of bacteria that 

have been given a common Latin name. For example, genomes annotated as H. pylori often 

differ by as much as 80% ANI [1].  

 

1.4.2 Quantifying the % of organisms from the environment with a sequenced 

reference genome  

My approach for quantifying intra-species genomic variation relies on mapping reads to 

reference genomes. Therefore this cannot quantify genomic diversity for “novel” bacterial 

species without a sequenced representative in the reference database. Despite that microbial 

genome sequences are doubling in number every 18 months, the vast majority microorganisms in 

the environment are novel [10, 16]. To a lesser extent, even well studied environments like the 

human microbiome contain novel species [17, 18]. It was therefore important to quantify the 

percent of novel organisms with respect to the database of >30,000 genomes and identity the 

types of environments where the approach of mapping reads to reference genomes to uncover 

strain-level variants could be successful.  

  

I developed a method to estimate the % of cellular organisms (i.e. Archaea, Bacteria and Fungi) 

in a metagenome that have a sequenced representative in the reference database (Figure 1.4). 
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First, the method aligns reads to a panel of 15 universal gene families and applied species-level 

mapping thresholds (94 to 98 % DNA identity). These genes and mapping thresholds were 

selected to optimize classification accuracy. DNA to DNA alignment was performed using HS-

BLASTN [19]. Based on reads mapped to these genes, I estimated the total sequencing depth of 

all organisms with a sequenced genome in the database. Next, the method estimates the total 

sequencing depth across all organisms at the domain level, including those absent from the 

reference database. This was done using a tool I developed, called MicrobeCensus [20], which 

aligns reads to a panel of universal genes with parameters designed to recruit reads from 

distantly related organisms. Finally, to estimate the percent of organisms with a sequenced 

genome, I take the ratio of these two quantities, multiplied by 100.  

 

I first applied this method to stool metagenomes from the Human Microbiome Project [21] and 

four other studies of the human gut [22-25] (Figure 1.5). I found that the majority of organisms 

from the human body had a sequenced reference genome at the species level. This included 

communities from skin (83%), nasal cavity (63%), urogenital tract (62%), mouth (55%), and 

gastrointestinal tract (49%). The best characterized human gut communities (i.e. greatest % of 

known organisms) came from individuals in the United States (52%), Europe (45%), and China 

(54%) that live urban lifestyles. In contrast, gut microbiomes of individuals from Tanzania and 

Peru that live hunter-gatherer and agricultural lifestyles had a much lower percentage of known 

organisms (9% and 13% respectively). This finding extends the previous discoveries of elevated 

levels of novel genera [26] and functions [23] in the gut microbiome of African hunter-gatherers. 

 



	 8	

Next, I was interested in identifying taxonomic groups that contained novel species in the human 

gut. Towards this goal, I performed Spearman correlations between the % of known organisms 

and the relative abundance of genera across HMP stool samples. Genus-level relative 

abundances were estimated using mOTU [17]. Gut communities with a higher % of novel 

organisms tended to have higher levels of several genera including Coprococcus, 

Subdoligranulum, Dorea, and Blautia, whereas communities with a higher % of known 

organisms tended to have higher levels of the genus Bacteroides (Figure 1.6). This analysis 

points to specific phylogenetic gaps in the set of currently sequenced bacterial genomes from the 

human gut. 

 

Next, I quantified the % of known organisms across metagenomes from non-human 

environments. These included metagenomes from mouse stool [27], baboon stool [28], seawater 

[29], and soil [30]. Strikingly, I found that novel organisms consistently dominated these 

environments. For example, the best-characterized non-human environment I surveyed was 

marine surface water, where only 8.2% of organisms were estimated to have a sequenced 

genome at the species level. Even in the mouse gut microbiome, which is commonly used as a 

model system for the human gut microbiome, only 4.3% of genomes had a sequenced 

representative at the species level. This agrees with a previous report, which found that only 4% 

of microbial genes from the mouse gut overlapped with genes from the human gut [27]. In 

conclusion, there remains a massive gap between the microbial diversity found in non-human 

environments and that represented by sequenced bacterial reference genomes. Strain-level 

analyses can still be performed for these environments, but only for those species with sequenced 

representatives. 
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1.5 Conclusions & Discussion 

Quantifying the intra-species variation of bacterial populations requires a clear and consistent 

definition of what is a bacterial species. In this chapter, I address this problem by applying a 

consistent, sequence-based definition of bacterial species to >30,000 currently sequenced 

bacterial reference genomes.  This approach was fast and produced bacterial species groups that 

were highly concordant with a gold standard definition of species based on 95% ANI. 

 

While my species groups were concordant with 95% ANI, I found 20% of genomes assigned to a 

species group disagreed with their annotated Latin name. About half of these discrepancies were 

because the genome was unannotated at the species level (e.g. Streptococcus sp.). In other cases, 

I found diverse well-studied species groups, like H. pylori, that were split into 10’s to 100’s of 

clusters. Future work may be needed to refine species boundaries for these groups of organisms. 

Different species groups may also require different definitions. One promising solution is to use 

genome sequences from type strains to guide species definitions [1]. Another interesting idea 

would be to define bacterial species based on rates of recombination and lateral gene transfer, 

analogous to the current species definition in multicellular organisms. However, quantifying 

recombination and lateral gene transfer between genomes remains a major challenge in it of 

itself. Finally, it might be possible to create an ecological definition of species that relied on gene 

content, rather than sequence identity of core genes. 

 

Scanning through >300 public metagenomes from 5 different biomes, I found that there remains 

a massive gap between the microbial diversity found in non-human environments and that 

represented by sequenced bacterial reference genomes. For example, I estimated that only ~1% 
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of genomes from soil have a sequenced representative. Luckily, genome sequences continue to 

rapidly increase in number and diversity, particularly with the advent of single cell genomics [8] 

and new computational [9] approaches to uncover genome sequences of uncultured microbes. 

For this reason, it will be important to update my species definitions as the number [31] and 

diversity [10] of microbial reference genomes continues to rapidly grow. It will also be useful to 

extend these sequenced-based annotations to Viruses, Eukaryotes, and Archaea.  

 

1.6 Tables 

 

Table 1.1 A comparison of efforts to systematically cluster all known prokaryotic genomes into 
species groups. 
 

Reference Genomes Species Genomes/
Species 

Naming 
conflicts 

Distance 
estimation 

Clustering 
algorithm 

Identity 
cutoff 

Schloissnig et al. 
Nature. 2012. 1,497 929 1.6 n/a 40 universal 

marker genes 
Complete 
linkage 95.00% 

Mende et al. Nature 
Methods. 2013. 3,496 1,753 2.0 19.80% 40 universal 

marker genes 
Average 
linkage 96.50% 

Varghese et al. 
Nucleic Acids 

Research. 2015. 
13,151 3,032 4.3 18.00% Bi-directional 

best hits 
Complete 
linkage 96.50% 

Nayfach et al. 
Genome Research. 

2016. 
31,007 5,952 5.2 18.40% 30 bacterial 

marker genes 
Average 
linkage 96.50% 
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Table 1.2 Genome clustering performance for 30 marker genes at different percent identity 
cutoffs. Genes were selected from a panel of 114 “PhyEco” marker gene families [11]. 
Performance was determined by comparison to genome-wide average nucleotide identity (ANI). 
True positive: genome pair with ANI ≥ 95% clustered together; false positive: genome pair with 
ANI < 95% clustered together; false negative: genome pair with ANI ≥ 95% assigned to different 
clusters; true negative: genome pair with ANI < 95% assigned to different clusters. Asterisk 
indicates the selected cutoff. 
 

1.8 Figures 

 

Figure 1.1. Genome clustering performance for 112 bacterial marker gene families. Marker-gene 
family names are listed on the horizontal-axis. The clustering percent identity cutoff is listed on 
the vertical-axis. Asterisks indicate selected gene families. Cell color indicates the F1-score, 
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which is a measure of clustering performance that balances the true positive rate with precision. 
True positive: genome pair with ANI ≥ 95% clustered together; false positive: genome pair with 
ANI < 95% clustered together; false negative: genome pair with ANI ≥ 95% assigned to different 
clusters; true negative: genome pair with ANI < 95% assigned to different clusters. 
 

 
Figure 1.2. Features of gene families that explain genome-clustering performance. Clustering 
performance measured using the maximum F1-score across percent identity cutoffs. Universality 
is defined as the proportion of genomes where a gene family is found. Conservation is defined as 
the average ratio between the marker-gene percent identity (PIDi,j) and genome wide percent 
identity (ANIi) across n genome pairs for each marker-gene j: !! = !

!
!"#!,! 
!"#!

!
! .  High 

conservation for a marker-gene indicates low sequence divergence relative to the genomic 
background. 

 
Figure 1.3. Clustering performance of top 30 marker genes versus ANI. TPR: true positive rate, 
PPV: precision, F1-score: harmonic mean of TPR and PPV. True positives and false positives are 
defined in Figure 1.1. 
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Figure 1.4. Concordance of genome-cluster names and annotated species names. Each genome-
cluster was annotated according to the most common Latin name of genomes within the cluster. 
Of the 31,007 genomes assigned to a genome-cluster, 5,701 (18%) disagreed with the consensus 
Latin of the genome-cluster. Most disagreements are due to genomes lacking annotation at the 
species level (47%). Other disagreements are because a genome was split from a larger cluster 
with the same name (29%) or assigned to a genome-cluster with a different name (24%). 
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Figure 1.5. An approach for estimating the percent of genomes in a metagenome with a 
sequenced representative. Metagenomic reads are aligned to marker genes present in a collection 
of reference genomes. Reads are classified if their alignment satisfied either species or domain 
level mapping cutoffs. Species level mapping cutoffs recruit reads from strains of the same 
species as exist in the reference database. Domain level mapping cutoffs are much more lenient 
and recruit reads from any microbial genome (excluding viruses). The ratio of read-depth at 
marker-genes between the species and domain levels results in an estimate of the percent of 
genomes in a metagenome with a match to genome in the reference database at the species level. 
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Figure 1.6. The percent of genomes with a sequenced representative across metagenomes from 
host-associated, marine, and terrestrial environments. Inset panel shows the distribution of 
database coverage across human stool metagenomes from six countries and two host lifestyles. 
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Figure 1.7 Correlations between taxon relative abundance and the percent of novel organisms in 
the human gut. 
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Chapter 2 

 

An integrated pipeline for quantifying species abundance 

and strain-level genomic variation from metagenomes 

 

In this chapter, I discuss construction of an integrated pipeline for automatically and accurately 

quantifying bacterial species abundance and strain-level genomic variation from shotgun 

metagenomes. The method is called the Metagenomic Intra-species Diversity Analysis System, 

or MIDAS (Figure 2.1). Open source software is freely available at 

http://github.com/snayfach/MIDAS. MIDAS leverages the genomic database of >30,000 

bacterial reference genomes clustered into bacterial species (Chapter 1). Using realistic 

benchmark datasets, I show that MIDAS accurately quantifies species abundance, nucleotide 

variants and gene copy number variants, but requires at least 1 to 10x sequencing coverage. 
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2.1 Background 

Deep metagenomic sequencing has the potential to illuminate the strain-level genomic diversity 

of microbial communities, yielding a genomic resolution not achievable by sequencing the 16S 

ribosomal RNA gene alone [17] and circumventing the need for culture-based approaches. 

However, limitations of existing computational methods and reference databases have hampered 

quantifying strain-level genomic variation from metagenomic data (Table 2.1).  

 

One class of methods estimates the relative abundance of known strains from sequenced 

reference genomes (Table 2.1). Sigma [32] and Pathoscope [33] focus on accurately assigning 

reads to sequenced reference genomes. MetaPhlan2 [34] and GSMer [35] utilize strain-specific 

marker sequences identified from genomes. These methods are effective for well-characterized 

pathogens like E. coli that have thousands of sequenced genomes, but work poorly for the 

majority of species that have only a single sequenced genome.  

 

A second class of tools uses SNP patterns to identify strains (Table 2.1). WG-FAST [36] uses 

consensus alleles at SNPs to reconstruct the core-genome sequence of the dominant strain in a 

metagenome. MetaMLST [37] does the same thing, but only for genes present in a multi-locus 

sequence typing (MLST) database. Neither of these approaches was designed to handle mixtures 

of two or more strains. To address this, binStrain [38] uses SNP allele frequencies to estimate 

mixtures of strains based on a SNP reference panel. However, this approach can only quantity 

the abundance of strains with sequenced reference genomes, which are utilized to build the SNP 

reference panel. ConStrains [39] overcomes this limitation by identifying strain haplotypes de 

novo. It does this by clustering together single nucleotide variants that co-vary in frequency 
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across metagenomic samples. However, ConStrains requires multiple samples where the same 

strains are found (e.g. time series samples) and may not be able to resolve strains in communities 

with high population heterogeneity.  

 

A third class of tools uses sequence assembly to reconstruct microbial strains de novo from 

metagenomes (Table 2.1). Many tools exist for assembling metagenomic data [40-43], however, 

these nearly never produce complete microbial genomes. A number of clever strategies have 

been developed to overcome this limitation. MaxBin [44] bins contigs based on their coverage, 

nucleotide composition, and marker genes. Alneberg et al. [45] improved this algorithm by 

incorporating coverage co-variation of contigs across metagenomic samples; if two contigs have 

coverage levels that co-vary over tens to hundreds of metagenomes, they are likely linked 

together on the same chromosome. However, these approaches still require performing assembly 

on the entire metagenome, which can be time and memory intensive. To overcome this 

limitation, Clearly et al. designed a pre-assembly algorithm called LSA, which bins sequencing 

reads with k-mers that co-vary in abundance across metagenomic samples. Read bins of interest 

– for example corresponding to a specific strain – can then be assembled into genomes using 

significantly less memory. However, these latter methods require many metagenomic samples 

and may not work for rare strains that occur in only one metagenome. 

 

A fourth class of methods identifies strain-level genomic variants based on read mapping to 

reference sequences, but does not attempt to identify discrete strains or haplotypes. Schloissnig 

et al. [3] described a procedure for identifying SNPs in human gut metagenomes and used SNPs 

to quantify population genetic parameters like pN/pS and nucleotide diversity. Greenblum et al. 
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[46] and Zhu et al. [47] described approaches for quantifying gene copy number variants and 

genes that are highly variable between strains of the same species. A similar approach was later 

implemented by Scholz et al [48] in the tool PanPhlAn. While these approaches are very 

promising, they are limited by a lack of existing software and good reference databases.  

 

To address these issues, I developed the Metagenomic Intra-species Diversity Analysis System 

(MIDAS). MIDAS falls into the fourth class of methods described above. It automatically and 

accurately quantifies bacterial species abundance and strain-level genomic variation from 

shotgun metagenomes. MIDAS leverages the genomic database of >30,000 bacterial reference 

genomes clustered into bacterial species and identifies SNPs and CNVs in bacterial populations 

present with at least 1-10x sequencing depth. MIDAS processes ~5,000 reads per second and 

requires <1 gigabyte of RAM for a typical metagenome. 

 

2.2 Methods 

2.2.1 Estimating the relative abundance of bacterial species 

In the first step in the pipeline, MIDAS estimates the sequencing depth and relative abundance of 

the 5,952 bacterial species in the reference database (Figure 2.1). This enables the automatic 

identification of species with sufficient sequencing depth for strain-level genomic variation 

analysis. Also, this dramatically increases pipeline speed and decreases RAM usage by limiting 

the size of the reference database: reads are only aligned to genes and genomes from species that 

are actually present (e.g. >1x sequencing depth). Finally, this enables users to quantify the 

taxonomic composition of a metagenome, which can be useful on its own. 
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Species abundance is estimated by mapping reads to a database of 15 gene families, which each 

occur in nearly all bacterial genomes at one copy per genome. Previous work has shown that 

these types of gene families are phylogenetically informative and can be used for metagenomic 

species profiling [17, 49]. In total, the database contains 87,895 genes from the 5,952 reference 

species. MIDAS aligns metagenomic reads to this database with HS-BLASTN [19] at an 

alignment rate of ~5,000 reads/second. To reduce false positives, local alignments that cover 

<70% of the read and alignments with low % identities are discarded. Each read is mapped one 

time according to its best hit in the reference database. Some reads align equally well to genes 

from two or more species. MIDAS probabilistically assigns these reads to species based on the 

number of uniquely mapped reads to each species. Finally, the mapped reads are used to estimate 

the sequencing depth and relative abundance of each species.  

 

I selected these 15 gene families from a set of 112 candidates [11] on the basis of their ability to 

accurately recruit metagenomic reads to the correct species. To evaluate recruitment performance 

of each gene, I conducted an in silico metagenomic experiment in which the true species and 

gene family of origin for each read was known a priori. Specifically, I generated a dataset of 

100-bp genomic fragments that were randomly sampled from bacterial reference genomes in the 

database. Each read was labeled based on its true species and gene family of origin. HS-

BLASTN [19] was used to map these reads back to the database that contained gene sequences 

from all 112 gene families. All reference sequences were labeled with their true species and gene 

family. To simulate the presence of novel organisms, I discarded alignments between reads and 

reference sequences from the same genome. Each read was assigned to a species based on its top 

hit in the reference database. Recruitment performance was measured using the F1-score. 
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Based on this experiment, I identified 15 gene families that were able to accurately recruit 

metagenome reads (Table 2.2). Additionally, I made sure that these gene families were 

universally distributed and single copy. I also identified the optimal percent identity cutoffs for 

mapping reads to the database, which ranged from 94.5% to 98.0% identity depending on the 

gene family.  

 

2.2.2 Estimating the pan-genome gene content of abundant species 

To quantify the gene content of a bacterial population, MIDAS first uses the species abundance 

profile to identify bacterial species with sufficient coverage (Figure 2.1). Next, MIDAS 

dynamically builds a pan-genome database, which contains the set of non-redundant genes of all 

genomes from the abundant species. Bowtie 2 [50] is then used to map reads from the 

metagenome against the pan-genome database. Because the database typically contains genes 

from only a handful of abundant species, and redundant genes are removed, the mapping step is 

extremely fast. Each read is mapped a single time according to its best hit, and reads with an 

insufficient mapping percent identity (default=94%), alignment coverage (default=70%), or 

sequence quality (default=20) are discarded. Mapped reads are used to quantify the sequencing 

depth of each gene in the database. These values are normalized by the sequencing depth of 

single-copy genes, yielding an estimated copy number of each gene per cell in the bacterial 

population. Copy numbers are also thresholded to predict the presence or absence of the gene in 

the community.  
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MIDAS relies a reference database of pre-computed pan-genomes. A pan-genome is defined as 

the set of non-redundant genes across all genomes of a given species. I used the tool USEARCH 

[51] to cluster all genes from each species at 99% identity. This procedure clustered 116,978,184 

genes from the 31,007 genomes into 31,840,245 gene families. I further clustered these genes at 

different levels of sequence identity (75-95% DNA identity) in order to identity gene families of 

varying size and diversity for downstream analyses. Functional annotations for all genes were 

obtained from PATRIC and include FIGfams [52], Gene Ontology [53], and KEGG Pathways 

[54].  

 

2.2.3 Identifying core-genome SNPs in abundant species 

To identify SNPs of individual species, MIDAS maps reads to a genome database (Figure 2.1). 

This database contains one representative genome sequence per species, and it only includes 

species with high sequencing coverage at universal single-copy genes in the metagenome being 

analyzed. Representative genomes are selected in order to maximize their sequence identity to all 

other genomes within the species. The core genome of each species is identified directly from the 

data using nucleotide positions in the representative genome that are at high coverage across 

multiple metagenomic samples. SNPs are quantified along the entire core genome, including at 

sites that are variable between samples, but fixed within individual samples. Core genome SNPs 

are useful because they occur in all strains of a species and facilitate comparative analyses. 

 

To estimate core genome SNPs, MIDAS first uses the species abundance profile to identify 

species with sufficient coverage (e.g. >10x). A representative genome database is dynamically 

built, which contains a single genome per species that meets the coverage requirement. The 
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representative genome is a single genome chosen that has the greatest nucleotide identity, on 

average, to other members of the species. Only a single genome is needed for identifying the 

core genome, because this region should be present in all strains of a species. Bowtie 2 is used to 

globally map reads to the representative genome database.  Each read is mapped a single time 

according to its best hit, and reads with an insufficient mapping percent identity (default=94%), 

alignment coverage (default=70%), mapping quality (default=20), or sequence quality 

(default=20) are discarded. Additionally, bases with low sequence quality scores are discarded 

(default=30). Samtools [55] is used to generate a pileup of nucleotides at each genomic position. 

Pileups are parsed to generate output files that report nucleotide variation at all genomic sites. To 

identify the core genome of a species, MIDAS uses the output from multiple metagenomic 

samples to identify regions at consistently high coverage (e.g. >10x coverage in 95% of 

samples). MIDAS then produces core genome SNP matrices for all species, which facilitate 

comparative analyses of nucleotide variation across genomic sites and metagenomic samples. 

MIDAS also gives the option of outputting all SNPs, including those that are not in the core 

genome. 

 

2.3 Validation 

I designed 20 realistic mock metagenomic datasets to validate each step in the MIDAS pipeline. I 

pooled short 100-bp Illumina reads from completed genome sequencing projects to create each 

mock metagenome. These datasets are expected to contain sequencing errors and other 

experimental artifacts found in real short-read sequencing data that might prevent accurate 

estimation of species abundance and strain-level genomic variation. 
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First, I identified short-read libraries to include in the mock metagenomes. I used the SRAdb 

MySQL database [56] to systematically scan through metadata from the NCBI Sequence Read 

Archive [57] and identify sequencing run accessions with the following criteria: 1) The read 

length was between 100 and 101 base-pairs, 2) The technology was Illumina GAIIx, Illumina 

HiSeq2000, or Illumina HiSeq2500, 3) Reads were paired-end, 4) There was a corresponding 

assembled genome in the MIDAS database, and 5) I selected a maximum of one short-read 

library per bacterial species. I identified 237 sequencing run accessions with these criteria. Short-

reads were then pooled together to create the 20 mock metagenomes. Each metagenome 

contained reads from 20 randomly selected genome projects and contained 100x total genome 

coverage. The relative abundances of the 20 genomes were exponentially distributed in each 

simulation (50%, 25%, 12%, 6.5% etc.).  

 

I ran each dataset through MIDAS and compared the output of MIDAS to the known species 

abundance, gene content, and SNPs in the simulated communities. To evaluate the accuracy of 

species abundance estimation I compared the expected relative abundance and coverage to the 

simulated relative abundance and coverage. I found that MIDAS accurately estimated species 

relative abundance but slightly underestimated the true sequencing depth of the species in the 

metagenome (Figure 2.2, left). 

 

To evaluate the accuracy of gene content estimation, I ran MIDAS to estimate the copy-number 

of genes in the pan-genome of each species in each simulation (Figure 2.2, middle). I applied a 

cutoff to these values to predict gene presence-absence. True positives (TP) were present genes 

predicted as present, false positives (FP) were absent genes predicted as present, true negatives 
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(TN) were absent genes predicted as absent, and false negatives (FN) were present genes 

predicted as absent. Performance was measured across a range of copy-number cutoffs using 

balanced accuracy: (TPR+TNR)/2, where TPR=TP/(TP+ FN) and TNR=TN/(TN+FP). MIDAS 

accurately predicted the presence or absence of genes in species present with at least 1 to 3x 

sequencing coverage (Figure 2.2, middle). Prediction accuracy was maximized at 0.96 for strains 

with >3x coverage when using a threshold equal to 0.35x the coverage of universal single-copy 

genes – lower thresholds resulted in lower specificity and higher thresholds resulted in lower 

sensitivity.  

 

To evaluate the accuracy of core genome SNPs, I ran MIDAS to estimate the frequency of 

nucleotide variants in the representative genome of each species in each simulation (Figure 2.2, 

right). I predicted SNPs using the consensus allele at each genomic position. True SNPs were 

identified by comparing genomes in the simulations to the representative genomes used for read 

mapping with the program MUMmer [58], which identified 3,971,528 total true SNPs. Because 

there is one genome per species in the mock community, all SNPs are differences from the 

reference genome. True positives were correctly called SNPs, false positives were incorrectly 

called SNPs, and false negatives were SNPs that were not called due to insufficient coverage. I 

compared predicted SNPs to true SNPs and measured performance using the true positive rate 

(TP/TP+FN) and precision (TP/TP+FP). I found that MIDAS called SNPs at a low false-

discovery rate, but required between 5 to 10x coverage to identify the majority of SNPs present 

(Figure).  

 

2.4 Conclusions & Discussion 
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Recent work has shown extensive strain-level genomic variation of bacteria at the level of gene 

copy number variants [46, 47] and single nucleotide variants [3], yet there is currently no method 

to automatically, efficiently, and accurately extract this information from shotgun metagenomes. 

Existing methods either estimate the relative abundance of known strains [32, 33, 35], or use 

SNPs to phylogenetically type strains [36, 39]. These methods not capture the functions of these 

organisms and therefore cannot shed light onto the ecological forces shaping their genomes.  

 

To address these issues, I developed MIDAS, which is an integrated computational pipeline that 

quantifies bacterial species abundance and strain-level genomic variation from shotgun 

metagenomes. By coupling fast taxonomic profiling via a panel of universal-single-copy genes 

with sensitive pan-genome and whole-genome alignment, MIDAS can efficiently and 

automatically compare hundreds of metagenomes to >30,000 reference genomes to identify 

genetic variants present in the strains of each sample. The publicly available software and data 

resources will enable researchers to conduct large-scale population genetic analysis of 

metagenomes.  

 

This first version of MIDAS has several limitations. Since it currently relies on bacterial 

reference genomes, MIDAS cannot quantify variation for novel species, novel genes, or known 

species from other groups of microbes (e.g. archaea, eukaryotes, and viruses). To accurately 

quantify strain-level gene content and SNPs, MIDAS requires greater than 1x and 10x sequencing 

coverage, respectively. This biases analyses towards the most abundant and prevalent species in 

an environment. MIDAS was nonetheless able to capture the majority of microbial species 
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abundance across human body sites, making it well suited for uncovering strain-level variation of 

human-associated bacteria.  

 

2.5 Tables 

Method Reference Description 
Reference 

based 
Species 

Abundance 
Strain 

Abundance CNVs SNVs 
Phylogenetic 

Reconstruction 

MIDAS 

Nayfach et al. 
(2016) 

Genome 
Research 

Species abundance, intra-
species genomic variants, 

& phylogenetic 
reconstruction 

Yes Yes No Yes Yes Dominant strain 
only 

PanPhlAn 
Scholz et al. 

(2016) Nature 
Methods 

Intra-species genomic 
variants Yes No No Yes No No 

ConStrains 
Luo et al. 

(2015) Nature 
Biotechnology 

Phylogentic 
reconstruction of strains Yes Yes Yes No 

Only at 
marker 
genes 

Yes 

MetaMLST 

Zolfo et al. 
(2016) Nucleic 

Acids 
Research 

Phylogentic 
reconstruction of strains Yes No No No 

Only at 
marker 
genes 

Dominant strain 
only 

WG-FAST 

Sahl et al. 
(2015) 

Genome 
Medicine 

Phylogentic 
reconstruction of strains Yes No No No Yes Dominant strain 

only 

BinStrain 
Joseph et al. 

(2015) 
bioArxiv 

Strain relative abundance 
from SNP allele 

frequencies 
Yes No Yes No Yes Yes 

Pathoscope 

Francis et al. 
(2013) 

Genome 
Research 

Strain relative abundance 
from accurate read 

assignment 
Yes Yes Yes No No No 

Sigma 
Ahn et al. 

(2014) 
Bioinformatics 

Strain relative abundance 
from accurate read 

assignment 
Yes Yes Yes No No No 

GSMer 

Tu et al. 
(2014) Nucleic 

Acids 
Research 

Strain relative abundance 
from strain-specific 

sequences 
Yes Yes Yes No No No 

MetaPhlan2 
Truong et al. 

(2015) Nature 
Methods 

Strain relative abundance 
from strain-specific 

sequences 
Yes Yes Yes No No No 

CONCOCT 
Alenberg et a. 
(2014) Nature 

Methods 

Post-assembly tool that 
bins contigs by coverage 

and composition 
No No No No No No 

LSA 
Cleary et al. 

(2015) Nature 
Biotechnology 

Pre-assembly tool that 
bins reads by co-variation 

of  k-mer frequencies 
No No No No No No 

 

Table 2.1 A comparison of bioinformatics tools for high-resolution characterization of microbial 
communities from shotgun metagenomes. 
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PhyEco 
Marker Universality Copy # 

% ID 
Cutoff TPR PPV 

F1-
score 

B000032 0.98 0.99 95.50 0.88 0.83 0.86 
B000039 0.99 1.02 94.75 0.89 0.82 0.86 
B000041 1.00 1.01 98.00 0.85 0.79 0.82 
B000062 0.99 0.99 97.25 0.85 0.79 0.82 
B000063 1.00 1.01 96.00 0.88 0.76 0.82 
B000065 1.00 1.01 98.00 0.81 0.81 0.81 
B000071 0.99 1.01 95.25 0.87 0.80 0.84 
B000079 1.00 1.01 98.00 0.84 0.81 0.83 
B000080 0.99 1.00 95.25 0.88 0.78 0.83 
B000081 1.00 1.01 97.00 0.86 0.81 0.84 
B000082 1.00 1.03 95.25 0.86 0.81 0.84 
B000086 0.99 1.00 96.75 0.84 0.77 0.81 
B000096 0.99 1.03 96.75 0.86 0.82 0.84 
B000103 1.00 1.02 95.25 0.88 0.78 0.83 
B000114 1.00 1.04 94.50 0.89 0.81 0.85 

 
Table 2.2 Selected marker gene families for metagenomic species profiling. Performance was 
based on a metagenomic simulation in which the true marker gene and species of each fragment 
was known. Mapping cutoffs maximize the F-score for each gene family, which balance 
classification sensitivity and precision. 
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2.6 Figures 

 

Figure 2.1 The MIDAS analysis pipeline. Reads are first aligned to a database of universal-
single-copy genes to estimate species coverage and relative abundance per sample. For species 
with sufficient coverage, reads are next aligned to a pan-genome database of genes to estimate 
gene coverage, copy-number, and presence-absence. Finally, reads are aligned to a representative 
genome database to detect SNPs in the core genome. The core genome is defined directly from 
the data by identifying high coverage regions across multiple metagenomic samples. 
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Figure 2.2 Shotgun simulations validate pipeline.  To evaluate performance for each component 
of MIDAS, we analyzed 20 mock metagenomes composed of 100-bp Illumina reads from 
microbial genome-sequencing projects. Each community contained 20 organisms with 
exponentially decreasing relative abundance. We tested the ability of MIDAS to estimate species 
coverage and to predict genes and SNPs present in the strains of the mock communities 
compared to the reference gene and genome databases. Left) Species coverage is accurately 
estimated. Each boxplot indicates the distribution of estimated genome coverages across 20 
mock communities for the top 8 most abundant species out of 20 analyzed. Middle) SNPs are 
detected with a low false discovery rate and good sensitivity when genome coverage is above 
10x. Sensitivity = (# correctly called SNPs)/(# total SNPs); False Discovery Rate = (# incorrectly 
called SNPs)/(# called SNPs). Right) Gene presence-absence is accurately predicted when 
genome coverage is above 1x and a gene copy number cutoff of 0.35 is used. Accuracy = 
(Sensitivity + Specificity)/2; Sensitivity = (# genes correctly predicted as present)/(# total genes 
present); Specificity = (# genes correctly predicted as absent)/(# total genes absent). 
 

 

  

Simulated Genome Coverage

Es
tim

at
ed

 G
en

om
e 

C
ov

er
ag

e

0.1 1 10 100

0.
1

1
10

10
0

●

●

●

●

●
●

R−squared = 0.95

Simulated Genome Coverage
SN

P 
Pr

ed
ic

tio
n 

Pe
rfo

rm
an

ce

0.1 1 10 100

0
0.

2
0.

4
0.

6
0.

8
1

●

●

Sensitivity
False Discovery Rate

●
●

●

●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ●

Species Abundance 	 SNPs	
median_phyeco

Simulated Genome Coverage

G
en

e 
Pr

es
en

ce
/A

bs
en

ce
 A

cc
ur

ac
y

0.1 1 10 100

0.
5

0.
6

0.
7

0.
8

0.
9

1

●

●

●

●

●

Cutoff
0.05
0.15
0.35

0.5
1

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

● ●
●

Gene Content	



	 32	

Chapter 3 

Mother-to-infant transmission of gut microbiome strains 

 

In this chapter I use MIDAS to re-analyze stool metagenomes from 98 mothers and their infants 

[59] over the first year of life to assess whether gut microbiome strains are transmitted vertically 

(i.e. mother to infant) or not. Specifically, I develop a novel approach that utilizes rare SNPs to 

track gut bacteria from mother to infant. Based on this approach, I find that there is extensive 

vertical transmission of strains by 4 days after birth. However, by 1 year after birth, there is an 

emergence of late-colonizing bacterial strains in infants that are clearly distinct from those 

present in the mother. Interestingly, late colonizing bacteria contain spore-forming genes, 

whereas those that colonize early do not. Based on these results, I hypothesize that early 

colonizing bacteria are transmitted via direct physical contact between mother and infant, 

whereas late colonizing bacteria are transmitted via other sources in the environment.
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3.1 Background 

The gut microbiome is critical for many important processes. While infants are not sterile at birth 

[60], the gut microbiome is largely acquired after birth. Despite many infant gut microbiome 

studies to date [59, 61-65], it is not clear from what sources gut bacteria are acquired and the 

extent to which they are transmitted vertically (i.e. from mother to infant) or from other sources 

in the environment, including unrelated individuals. An understanding of vertical transmission is 

critical for determining the extent to which the microbiome – and by extension microbiome-

mediated phenotypes – are inherited. Furthermore, disruption of vertical transmission by various 

factors – including birth mode, antibiotic use, and diet – may lead to abnormal development of 

the gut microbiome. 

 

Several culture-based studies have found evidence of vertical transmission [66-69]. In general, 

these studies have focused on specific bacterial taxa (e.g. Bifidobacterium spp.) that were 

culturable from both the mother and infant stool. It is not clear whether other species are 

vertically transmitted and whether transmission rates vary over time. More recently, several 

culture-independent studies have been conducted on the mother and infant gut microbiome [59, 

61]. These studies found significant overlap in species between mothers and their infants over 

the first year of life and concluded that this was a result of vertical transmission. However, many 

species of gut bacteria commonly occur in the human population, while individuals harbor 

distinct strains [3, 46]. Therefore, species sharing may not necessary indicate a transmission 

route. Other studies have examined the development of the infant gut microbiome [65], including 

at the strain level [39, 62], but did not assess vertical transmission. Thus, the extent and timescale 

of vertical transmission and the stability of transmitted stains are currently not well established. 
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I hypothesized that I could apply MIDAS to a recently published dataset of 98 Swedish mother 

and their infants [59] to quantify mother to infant transmission of gut bacterial strains. 

Specifically, I planned to use discriminative SNPs that are not shared between unrelated 

individuals to track transmission of gut bacteria to infants (Figure 3.1). Because these bacterial 

SNPs are extremely rare in the human population, their co-occurrence in mothers and infants 

would be strong evidence of vertical transmission. 

 

3.2 Methods 

I downloaded 391 stool metagenomes from the NCBI sequence read archive from a recently 

published dataset of Swedish mother and their infants [59]. Each metagenome contained an 

average of 40 million 100-bp sequencing reads. Mothers were sampled 1x at 4 days after birth, 

while infants were sampled at 4 days, 4 months, and 12 months after birth. Of the 98 infants, 83 

were delivered vaginally and 15 via cesarean section. 

 

Each metagenome was run through the MIDAS pipeline to estimate the relative abundance of the 

5,952 reference species. I found an average of 56.6 species detected per metagenome. The 

number of shared species was computed between all mother-infant pairs, where a shared species 

is defined as a species with >1 mapped read to >=1 marker gene in both samples. Additionally 

Bray-Curtis dissimilarity was used to estimate the species-level compositional similarity of 

mother and infant microbiomes. 
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Next, I used the MIDAS pipeline to align reads to genomes for species with >10x sequencing 

depth in each sample.  I found an average of 5.3 species with >10x sequencing per metagenome. 

Next, I identified core-genome sites by comparing the read depth of each genomic site across 

metagenomic samples. I defined a core-genomic site as having >1x depth in >95% of samples. 

 

I used rare SNPs referred to as marker alleles to detect transmission of gut microbiota from 

mother to infant with high specificity and sensitivity (Figure 3.1).  A marker allele was defined 

as an allele of a SNP that was present in one individual (or group of related individuals) and 

absent from all unrelated individuals. In my analysis, unrelated individuals included other 

Swedish mothers (N=97 at 1 time point), infants from other mothers (N=97 at 3 time points), and 

American individuals from the Human Microbiome Project (N=123 at up to 3 time points) [70].  

Only bi-allelic SNPs were considered. To reduce noise from sequencing and mapping errors, I 

called a SNP if it was supported by ≥3 reads and ≥10% allele frequency. To sensitively call 

SNPs, I only considered bacterial species with ≥10x sequencing depth in a metagenome. To 

accurately identify rare alleles, I only considered bacterial species that occurred in ≥10 

individuals. Marker alleles were identified separately for each species of gut bacteria and 

compared between all pairs of samples.  

 

3.3 Results 

3.3.1 Maturation and diversification of the infant gut microbiome  

I first used MIDAS to quantify the relative abundance of bacterial species in mother and infant 

stool metagenomes. As described more fully in section 2.2.1, species relative abundances were 

estimated by mapping reads to a panel of 15 universal single copy genes. In agreement with 
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Backhed et al. and previous work [59, 61, 64, 65], I found that bacterial species alpha diversity 

was lowest in newborns and increased over time, species beta diversity was highest in newborns 

and decreased over time, and samples clustered by host age based on Bray-Curtis dissimilarity 

between species relative abundance profiles (Figure 3.2 and 3.3). These results illustrate the 

normal development of the infant microbiome to an adult-like state.  

 

I found a large number of shared species between infants and their mothers that increased over 

time as the infant microbiome became more diverse (Figure 3.3). However, I found nearly as 

many shared species between mothers and unrelated infants (Figure 3.3) where there was no 

direct transmission. This indicates shared species are a result of the infant microbiome maturing 

to an adult-like state rather than an indication of mother to infant transmission.  

 

3.3.2 Mother-infant strain similarity is high 4 days after birth but rapidly 

decreases over time 

I used rare SNPs (i.e.) in order to detect transmission of gut microbiota from mother to infant 

with high specificity and sensitivity (Figure 3.1). I reasoned that a bacterial population from a 

mother’s microbiome could harbor one or more SNPs would uniquely discriminate it from 

populations of the same species found in other unrelated individuals. Co-occurrence of these rare 

SNPs between mothers and their own infants would be strong evidence of vertical transmission. 

For the remainder of this chapter, I refer to these SNPs as marker alleles, since they serve as 

markers of individual strain populations.  
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Applying this procedure to the Backhed et al. dataset yielded a total of 278,924 marker alleles 

found in gut microbiomes the 98 mothers (217 ± 520 marker alleles per mother-species pair) 

(Figure 3.4). Together, this indicates that there are many SNPs in the microbiome that can be 

used for unique identification of a host in a cohort of ~300 individuals. 

 

Next, I asked whether the large number of marker alleles found in mother microbiomes were 

shared with their infants, which would be evidence of vertical transmission. Towards this goal, I 

computed the fraction of shared alleles between mother-infants pairs for each species using the 

Jaccard Index. A value of 100% indicates that all marker alleles are shared for a species and a 

value of 0% indicates that no marker alleles are shared. 

 

At 4 days after birth, allele sharing was remarkably high between mothers and their infants 

(mean=72%), indicating extensive mother-to-infant transmission of gut bacteria shortly after 

birth (Figure 3.5). However, over time there was a precipitous decrease in marker allele sharing 

(Figure 3.5). Across all species, allele sharing decreased from 72% at 4 days, to 58% at 4 

months, to 35% at 12 months (Pearson’s P=6e-17, r=-0.33). Thus, while the species level 

composition of mothers and infants converged over time, the strain level composition actually 

diverged. 

 

To contextualize these results I performed two experiments. First, I identified and tracked marker 

alleles in healthy individuals from the HMP over a time period of 300-400 days. Across all 

individuals, I found high marker allele sharing (mean=77.0%) and no significant decrease in 

allele sharing over time (Figures 4.5 and 4.6), which indicates that strains are quite stable over 
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time in healthy adults and agrees with previous work [3, 71]. Therefore, the decrease in strain 

similarity between mothers and infants over time is not due to normal turnover of strains that 

occurs in healthy adults.  

 

Next, I identified and tracked marker alleles in unrelated healthy individuals from the HMP. 

Because it is unlikely that unrelated individuals harbor the same strains, marker allele sharing 

between these individuals is expected to be close to 0%. For this experiment I separated 

individuals into training and testing groups (9:1 ratio); the training group was used to discover 

marker alleles and these alleles were then identified and tracked between individuals in the 

testing group. As expected, I found low allele sharing (mean=1.01%) between metagenomes 

from unrelated individuals (Figure 3.5), indicating that the high allele sharing between mothers 

and infants at 4 months is unlikely due to chance alone.  

 

3.3.3 Early and late colonizers have distinct transmission patterns 

I hypothesized that decreasing strain similarity between infants and mothers was due to late 

colonization of the infant gut by new species derived from the environment. Alternatively, early 

colonizing strains could lose marker alleles over time due to mutation and/or selection. Another 

possibility is that early colonizing strains are later lost and replaced by other strains not found in 

the mother.  

 

To test these hypotheses, I compared vertical transmission patterns between microbiome species 

at the three different time points (Figure 3.7). Here I quantified a vertical transmission event as 

marker allele sharing >5% based on the distribution of allele sharing between related and 
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unrelated individuals (Figure 3.5), although the results were largely consistent at different cutoffs 

(Figure 3.8). Based on this analysis, I found that strains of Bacteroides, Parabacteroides, and 

Bifidobacteria were commonly vertically transmitted by 4 days. The vast majority of these 

persisted in the infants at 4 months (49/54 mother-infant pairs with >5% marker allele sharing) 

and at 12 months (47/51) indicating that the decrease in strain similarity over time is not due to 

loss of early colonizing strains. In contrast, at 4 months and 12 months after birth, many new 

species of bacteria appeared in the infants that were distinct from the mothers at the strain level. 

These included many Firmicutes like Blautia, Faecalibacterium, Clostridium, and 

Ruminococcus.  

 

To further test my hypothesis, I compared the colonization timing of all species with the 

probability that they were vertically transmitted (Figure 3.9). In support of my hypothesis, I 

found a strong positive correlation between the relative abundance of a species in the infant at 4 

days and vertical transmission (P=9x10-14). In conclusion, early colonizing bacteria are often 

vertically transmitted whereas late colonizing bacteria are rarely vertically transmitted and likely 

derive from the environment. 

 

3.3.4 Late colonizers are enriched for spore-forming bacteria  

If late colonizing bacteria are derived from the environment, then they should be spore formers. 

Sporulation is a process in which a bacterium forms an endospore to protect it from 

environmental factors.  Sporulation is particularly critical for anaerobic gut bacteria to survive 

outside of the host due to their sensitivity to ambient oxygen [18]. 
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To address this question, I used data from a recent study, Browne et al. 2016 [18], to classify gut 

bacteria from this study as either spore-formers or non-spore formers. In their study, Browne et 

al. computed a sporulation score for various gut bacteria based on the presence/absence of 66 

genes (scores > 0.4 indicate likely spore-formers). Strikingly, I observed high sporulation scores 

for species with low vertical transmission rates, supporting the hypothesis that these organisms 

colonize the infant from the environment (Figure 3.10). For example, 6/7 of species with low 

vertical transmission rates (<25% strain sharing) were predicted spore-formers. One exception to 

this pattern was the facultative anaerobe E. coli, which can survive in the environment without 

undergoing sporulation.  In contrast, I observed low sporulation scores for species with high 

vertical transmission rates. For example, 10/11 of species with high vertical transmission rates 

(>65% strain sharing) were predicted non-spore-formers. These results suggest that direct 

physical contact between hosts (i.e. mother and infant) is required for transmission of these 

species.  

 

3.3.5 Vertical transmission rates differ by birth mode  

Interestingly, I found no species present with ≥10x sequencing depth in 15 C-section born infants 

and their mothers, and therefore had no way to assess transmission in these individuals. The lack 

of abundant shared species likely reflects lower vertical transmission of the mother’s gut 

microbes, but I cannot directly test that hypothesis with the available data. However, C-section 

born infants did share species at 4 months and 12 months after birth and had fewer vertically 

strains transmitted strains compared to vaginally born infants at four months (chi-square P=5×10-

8, 3/14 versus 128/149 shared species with >5% marker allele sharing) and to a lesser extent at 12 
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months (chi-square P=0.06, 13/34 versus 159/279). These results indicate that birth mode may 

affect where our gut microbiota is derived from. 

 

3.4 Conclusions & Discussion 

To illustrate the utility of MIDAS, I analyzed stool metagenomes from a recently published 

study of 98 mothers and their infants over one year [59] and used rare SNPs to track transmission 

of strains between hosts. Based on this analysis, I found extensive vertical transmission of early 

colonizing bacteria, which largely persisted in the infant for one year. While significant attention 

has been paid to transmission of Bifidobacterium spp. [66-68], I found high transmission rates 

for many Bacteroides spp. I also found that late colonizing bacteria, including Blautia, 

Ruminococcus, Eubacterium, and Facelibacerium, were rarely transmitted from the mother. 

Instead the mother was colonized by a different strain of these species. Comparing these species 

to a recent study of sporulation in the human gut [18], I found that late colonizers tended to be 

spore-formers capable of surviving in the environment, whereas early colonizers were non-spore-

formers. Together, these results suggest that only certain taxonomic groups of bacteria may be 

vertically inherited, while others are acquired from the environment. My results build upon 

previous infant microbiome studies [59, 61, 62, 65] by showing that early and late colonizing 

species likely derive from different sources, which may be linked with their ability to form 

spores and survive in the environment. When the same metagenomes were analyzed at the 

species level, these patterns of transmission were missed, and a false signal of increasing 

transmission over time was detected due to convergence of the infant microbiome towards a 

more diverse and adult-like species profile.  
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My analysis of mother-infant strain sharing leaves a few questions unanswered. One intriguing 

issue is the source of the strains that colonize the infant but are not present in the mother’s stool 

microbiome at 4 days after birth. It is possible that some strains colonize the mother’s gut later in 

the year and are then passed along to the infant, though this is unlikely based on the temporal 

stability of strains in the adult microbiome. The new strains could also derive from other sites on 

the mother’s body, such as skin and breast milk, other people, food, or the environment. One 

caveat of this analysis is that I did not distinguish which strains were transmitted to the infant 

from the mother in cases where mothers harbored multiple strains. Instead, I treated the 

transmission events as binary, whereby a transmission was defined as at least one strain being 

transmitted. It would be interesting to explore transmission as a quantitative variable in future 

work, including elucidating how the strain composition and genetic diversity of bacterial 

populations change as they are passed from mother to offspring and potentially undergo 

bottlenecks and selection.  

 

3.5 Figures 
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Figure 3.1 A SNP-based strategy for tracking strains between mothers and their infants. In the 
example, the G and C alleles at positions 1 and 5 in the genome of one microbiome species 
uniquely discriminate the mother from other unrelated individuals. These alleles are shared with 
the same species found in the mother’s infant, indicated a shared strain and likely transmission 
route. 

 
Figure 3.2 Principal coordinate analysis of Bray-Curtis dissimilarity between species relative 
abundance profiles of stool samples from mothers and infants at 4 days, 4 months, and 12 
months following birth. Species composition of infant microbiomes is most similar to mothers at 
12 months. 

 
Figure 3.3 The number of shared species increases over time between mothers and their own 
infants. This pattern for biological mother-infant pairs is similar to that of unrelated mothers and 
infants (permuted pairs). 
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Figure 3.4 Distribution of the number of marker alleles found in mothers per species. On average 
there were 217 ± 520 marker alleles per mother-species pair. 

 
Figure 3.5 Percent of marker alleles shared between mothers and infants at 4 days, 4 months, and 
12 months after birth. Each point indicates one species found in a mother and infant. 
Additionally plotted is allele sharing between the same healthy adults over 300-400 days (self vs. 
self) and healthy unrelated individuals (self vs. non-self) to provide additional context. The red 
horizontal line at 5% marker allele sharing defines the cutoff for determining a vertical 
transmission event. 
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Figure 3.6 Allele sharing for gut microbiome species between different samples from the same 
healthy adults over time. 

 
Figure 3.7 Vertical transmissions for bacterial species across mother-infant pairs at three time 
points. The 20 species with the greatest number of high-coverage mother-infant pairs are shown. 
A vertical transmission is defined as >5% marker allele sharing between mother and infant. The 
phylogenetic tree is constructed based on a concatenated DNA alignment of 30 universal genes 
and shows that phylogenetically related species have similar transmission patterns.  
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Figure 3.8 Vertical transmission patterns are robust to the marker-allele sharing cutoff used for 
defining transmission events. 

 
Figure 3.9 Colonization timing is correlated with vertical transmission. The dynamics of two 
species is shown on the left. Bacteroides vulgatus is an early colonizer that is vertically 
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transmitted and maintained over time. Blautia wexlerae is a late colonizer that is not vertically 
transmitted. On the right, colonization timing is plotted against vertical transmission. The 
horizontal axis indicates the relative abundance of bacterial species at 4 days. The vertical axis 
indicates whether a strain of the species was transmitted from the mother (y=1) or not (y=0) at 12 
months. The curve is a logistic regression fitted to data points. 
 
 

 
Figure 3.10 Species with low vertical transmission rates are predicted to be spore-formers with 
the ability to survive in the environment. Sporulation scores are genomic signatures of 
sporulation based on 66 genes. Error bars indicate one standard error in each direction. Only 
species with sporulation scores computed by Browne et al. and with ≥3 mother-infant pairs at 12 
months are shown. 
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Chapter 4 

 

Clonality of bacterial populations within and between host 

microbiomes 

 

In this chapter I use MIDAS to reanalyze stool metagenomes from >500 stool metagenomes 

from the United States, Europe, China, Peru, and Tanzania and present the first global analysis of 

strain-level variation and biogeography in the human gut microbiome. On average, strain 

populations harbor 10x more nucleotide diversity between different individuals than within 

individuals. Many species are nearly clonal within individual hosts, but extremely diverse 

between hosts.  I find that diversity is elevated in hosts from Peru and Tanzania that live rural 

lifestyles. For many, but not all common gut species, a significant proportion of between host 

genetic diversity is explained by geography. Eubacterium rectale, for example, has a highly 

structured population that tracks with host country, while strains of Bacteroides uniformis and 

other species are structured independently of their hosts. Finally, I discovered that the gene 

content of some bacterial strains diverges at short evolutionary timescales during which few 

nucleotide variants accumulate. These findings shed light onto the recent evolutionary history of 

microbes in the human gut and highlight the extensive differences in the gene content of closely 

related bacterial strains. 
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4.1 Background 

Over the past several years, a number of studies have begun to shed light onto the extensive 

genomic variation of populations in the human gut microbiome. Some of these studies have 

focused on genomic variation between hosts. Greenblum et al. [46] and Zhu et al. [47] found that 

the gene content of bacterial populations varies significantly between individuals, while 

Schoissnig et al. [3] found extensive nucleotide diversity of microbiome species after pooling 

sequencing reads across metagenomic samples. Other studies have focused on genomic variation 

within hosts. Luo et al. [39] identified strains of the same species co-existing within the same 

host, and Kuleshov [72] used synthetic long reads to uncover mixtures of discrete haplotypes in 

one human stool sample. 

 

While these studies have advanced our understanding of population genomics in the gut, they 

leave a number of questions unanswered. What is the relative magnitude of within and between 

host genomic variation of human gut bacteria? Are bacterial populations more clonal within 

individuals or is it common for individuals to harbor co-existing stains of the same species? 

What are the biological mechanisms that prevent or promote strain coexistence? Do bacterial 

populations differ significantly between individuals, and if so, do these differences track with 

host geography, disease, or other covariates? In this chapter, I use MIDAS to perform a large-

scale population genomic meta-analysis of publicly metagenomes from human stool samples.  

 

4.2 Methods 



	 50	

To understand global patterns of sequence variation within human gut species, I downloaded 372 

publicly available metagenomes from the human gut. All metagenomes were downloaded from 

the NCBI Sequence Read Archive [57] and were identified with the aid of the SRAdb MySQL 

database [56]. These data included samples from healthy unrelated individuals from Denmark & 

Spain [25], the United States [21], China [24], Tanzania [23], and Peru [22] (Figure 4.1). I 

excluded all individuals with known diseases, including: diabetes, colorectal cancer, impaired 

glucose control, and inflammatory bowel disease.  

 

Next, I developed an approach to use SNPs to estimate the intra-species nucleotide diversity, π, 

of bacterial populations within and between the metagenomic samples (Figure 4.2). Nucleotide 

diversity is defined as the expected number of variants per base pair between two randomly 

sampled genomes from a population. Conceptually, within-diversity is an indication of how 

clonal a bacterial population is within an individual, and between-diversity is an indication of 

how many differences there are between individuals. 

 

In order to accurately estimate within and between host diversity, I focused on nucleotide 

variation within the core genome of each species. The presence or absence of SNPs in variable 

regions is a poor indicator of population heterogeneity if these regions are absent or duplicated in 

a subpopulation. For example, a region that occurs in only one of two subpopulations may 

appear to have abnormally low diversity whereas a gene that occurs at multiple copies may 

appear to have abnormally high diversity. To identify the core-genome of a species, I used the 

per-site distribution of read depth across metagenomic samples where the species was found at 

high depth. Specifically, I identified core-genomic sites that were covered by at least 15 reads in 
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> 95% of samples with >20x sequencing depth. Additionally, genomic sites with abnormally 

high read depth (>2x the per-sample mean) in >5% of samples were removed. This yielded an 

average of 1.2 million (range=0.14 to 2.74 million) core-genome sites per species. 

 

I estimated genomic diversity at these sites using the following equation: π =  !! 2!!!!!
! , where 

!! is the reference allele frequency at core-genomic site i, !!=1−  !!, and n is the number of 

core-genomic sites. This equation is adapted from [73] where it was used to estimate nucleotide 

diversity from human polymorphism data. In principle, π range from 0.0 to 0.5 when only 

considering bi-allelic sites. However, because two strains of the same species differ by a 

maximum of 5% by definition, the actual range is from 0.0 to 0.025 (i.e. 0 to 2.5%). To estimate 

π within hosts, I used reference allele frequencies estimated from individual metagenomic 

samples. To estimate π between hosts I used average reference allele frequencies across samples 

from distinct individuals (i.e. excluding replicates), which is akin to estimation of allele 

frequencies based on pooled metagenomes [3] but weights each population equally.  

 

4.3 Validation 

4.3.1 Population diversity estimates are robust to technical factors  

Because MIDAS relies on read-mapping to reference genomes, I assessed the impact of different 

reference genomes on downstream estimates of species abundance and population genomics. 

Therefore, I picked four species with 1) multiple reference genomes in the MIDAS database and 

2) at least 50 samples with >10x coverage in the stool metagenomes. For each species I picked 

two reference genomes: one “representative genome” as determined previously and one 

“alternate genome” which was picked at random. The selected species and genomes include: F. 
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prausnitzii (M21/2 and SL3/3), A. muciniphila (ATCC BAA-835 and Urmite), E. rectale (DSM 

17629 and ATCC 33656), and B. wexlerae (DSM 19850 and DSM 17629). MIDAS was run 

using default parameters for each species using the representative and alternate reference 

genomes with a maximum of 20M reads per metagenome. 

 

First, I compared alignment summary statistics obtained using the two different reference 

genomes and obtained nearly identical estimates of sequencing depth (R2>0.99), (Figure 4.3).  

Next I quantified the SNP density and nucleotide diversity within the core-genome of each 

species using both reference genomes and obtained nearly identical estimates of SNP density 

(R2=0.97) and nucleotide diversity (R2=0.96), regardless of the reference genome used for read 

mapping (Figure 4.4). I also obtained similar estimated of pooled SNP density (mean difference 

of 1.3%) and nucleotide diversity (mean difference of 3.1%) across the four species. Together, 

these results indicate that estimates of population heterogeneity are not strongly influenced by 

the reference genome chosen for read mapping. 

 

4.3.2 Current genomes adequately represent strains in the human gut  

Next, I assessed whether the representative genomes used by MIDAS were representative of the 

genomes found in human gut communities. Reference genomes were covered by ≥40% of their 

length in 95% of sample-species pairs, by ≥60% in 92%, and by ≥80% in 52% (Figure 4.5). 

Further, >70% of low coverage reference genomes (<40% covered) corresponded to just four 

species: Bacteroides rodentium (ID:59708), Escherichia fergusonii (ID:56914), Collinsella 

aerofaciens (ID:61484), and Collinsella sp (ID:62205). For example, on average, B. rodentium 

recruited reads to only 9% of genomic sites but had >37x depth at these sites. These four species 
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were excluded from further analysis. In conclusion, the genomes used by MIDAS were generally 

good references for strains found in the stool metagenomes. 

 

4.3.3 Minimum amount of data for unbiased estimates of population diversity 

Species found in different metagenomes varied significantly in sequencing depth. I performed an 

experiment to explore the effect of sequencing depth on estimated within host nucleotide 

diversity. I down sampled the number of reads mapped to representative genomes of four 

difference species for 50 metagenomes. The number of reads sampled, n, ranged from 2 to 50. 

Reads were sampled without replacement. All core-genomic positions were down sampled to n 

reads. Genomic positions with less than n reads were discarded. 

 

From this experiment, I found that nucleotide diversity strongly depends on sequencing depth 

(Figure 4.6). With fewer than 10 reads per site, diversity is consistently underestimated. This bias 

is most significant at 2 reads per site, where nucleotide diversity is underestimated by 50%. 

Thus, with at least 10-20 mapped reads per site, an unbiased estimate of nucleotide diversity is 

obtained and the diversity of populations found in different metagenomic samples can be directly 

compared. 

 

4.4 Results 

Next I applied MIDAS to the 372 human gut metagenomes with the goal of estimating the 

population diversity of the different species. To quantify population diversity and call SNPs, 

abundant species were first identified with ≥10x sequencing depth in any sample, which is the 

minimum depth required for sensitively calling nucleotide variants (Figure 2.2). Of these 
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abundant species, 273 were found in ≥1 sample, 114 in ≥1% of samples, 55 in ≥5%, 37 in ≥10%, 

and 13 in ≥20% (Figure 4.7). Many of these species occurred in multiple human populations.  

 

By comparing diversity patterns within and between human hosts, I found many species with 

extremely low within-host population diversity but high between-host diversity (Figure 4.8). 

Across all species, there was 8x more nucleotide diversity for bacterial populations between 

different individuals compared to within individuals. However this ratio was as high as 30x for 

many species. Likewise, I found on average 12x more SNPs with a minor allele frequency ≥5% 

between individuals (mean SNPs Mb-1=29,180) compared to within individuals (mean SNPs Mb-

1=3,652). Within and between-host diversity levels of microbiome species were generally 

consistent across different metagenomic studies and host continents, which suggests that they 

reflect consistent evolutionary, ecological, or demographic processes that occur in the 

gastrointestinal tract, such as growth rates [74], population bottlenecks [75] or priority effects 

during host colonization [76].  

 

Many species, like Ruminococcus bromii, Akkermansia muciniphila, and Bacteroides fragilis, 

had consistently low within-host diversity levels (mean π ≤ 5e-4), whereas there were many 

more nucleotide differences when comparing these populations between hosts (Figure 4.9). For 

example, the core-genome of Ruminococcus bromii populations differed by an average of 1.2% 

between hosts, which was 24x greater than the average diversity levels within individual hosts. 

Together, these results indicate that populations of bacteria are commonly clonal within hosts 

and distinct between individuals.  
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Despite this overall trend, I found that intra-sample strain-level heterogeneity varied significantly 

across gut species (range=4x10-4 to 1.1x10-2). While species like Ruminococcus bromii had 

consistently low intra-sample diversity (median π=6.4x10-4), other species like Prevotella copri 

and Faecalibacterium prauznizii had very high levels of diversity (median π>4.5x10-3) (Figure 

4.9), which likely indicates the presence of multiple strains per host.  

 

Next, I asked whether intra-sample strain-level heterogeneity varied systematically between host 

countries. Previous work has shown elevated species-level diversity in individuals living rural 

lifestyles in South America and Africa [22, 26, 64], but it is not clear whether these findings 

extend to the strain-level. To address this, I compared the distributions of intra-sample π for each 

species between host countries and found significant differences for 39% of species tested 

(Kruskal-Wallis q-value < 0.01). In particular, there was a trend towards increased intra-sample 

π in individuals from Peru and Tanzania, including Ruminococcus bromii (generally low intra-

sample diversity) and Facecalbacterium prauznizii (relatively high intra-sample 

diversity)(Figure 4.10), indicating that host geography and/or lifestyle may influence strain-level 

diversity in individuals.  

 

4.5 Conclusions & Discussion 

I applied MIDAS to >300 faecal metagenomes from diverse human groups – including the 

United States, Europe, China, Tanzania, and Peru – and provide the first detailed characterization 

of global strain-level genomic variation of bacteria in the gut microbiome. By leveraging patterns 

of SNPs found in the core-genome of prevalent species, I find that bacterial strain-level diversity 

tends to be much greater between individuals than within individuals.  
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In particular, I found a number of species with high levels of diversity in the human population, 

but low diversity within individual hosts. Together this suggests that individual strains of these 

species colonize their hosts. A number of mechanisms could explain this result, including 

competitive exclusion, interaction with the host immune system, or direct competition or targeted 

killing between strains. While it is unclear which mechanism is the most common, previous work 

found that certain species of Bacteroides are resistant to colonization by members of the same 

species via competitive exclusion [76]. It’s possible that this process may actually be quite 

common across gut species and not specific to the Bacteroides genus. In the future, this 

hypothesis could be experimentally tested in a gnobiotic mouse model.  

 

In contrast, I found a number of other bacterial species with high diversity levels within 

individuals, suggesting that strains of these species are able to co-exist within individual hosts. 

One possible explanation is that strains of these species have functionFurther more is needed to 

gain a better understanding if these coexisting strains have differ  

 

Furthermore, despite low levels of intra-sample diversity across many species, I still observed a 

large number of low-frequency segregating alleles in these species. It is unclear whether these 

variants are acquired during the lifespan of the host, as has been shown for certain pathogens 

[77], or whether they are inherited during colonization. Tracking genomic variation of 

microbiota between parent and offspring or other interacting individuals will shed light onto 

selection and demographic processes affecting bacterial populations during colonization. 
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Using a standard measure of population differentiation, FST, I found strong evidence for genomic 

differentiation – based on CNVs and SNVs – between host countries for most of the species 

examined in this study. In particular, I found that strains from China, Peru, and Africa were more 

differentiated from strains found in hosts from the Europe and the United States. It is currently 

unclear the extent to which these patterns are driven by adaptation to differences in the host 

environment, patterns of host migration, or a combination of factors. Additionally, only a 

minority of the genetic variation of bacterial species was explained by host geography. It is 

possible that increased travel between countries has led to mixing of bacterial populations that 

were at one point highly differentiated. Alternatively other environmental factors (e.g. diet, 

hygiene, genetics) that vary within human populations might explain the residual intra-species 

genetic variation. Lastly, these segregating genes and alleles could represent ancient genetic 

diversity that was present in ancestral bacterial strains and has been maintained across various 

human populations. As additional metagenomes are sequenced from African hosts, it may be 

possible to determine the proportion of current diversity that has arisen since migration out of 

Africa.  

 

Finally, I find that gut communities from Tanzania and Peru are different from other gut 

communities in several important ways. They have elevated levels of novel species, greater 

species and strain-level level diversity, and more functionally and phylogenetically diverged 

strains. Because the hosts in Tanzania and Peru live rural hunter-gather and traditional 

agricultural lifestyles, their novel species and strains may represent ancestral taxa that have been 

lost from the microbiomes of humans living industrialized lifestyles. Furthermore, the increased 

species and strain level diversity might be explained by less hygiene and reduced antibiotics 
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exposure in these rural populations. As additional metagenomes are sequenced from diverse 

global populations, it will be possible to disentangle the degree to which these patterns are 

specific to particular lifestyles and/or geography. If hosts living more traditional lifestyles and 

with more limited access to health care indeed have more diverse microbiomes regardless of host 

migratory patterns, further exploration of strain-level variation with MIDAS may shed light on 

the “hygiene hypothesis” and the role that loss of ancestral microbiome diversity may play in the 

rise of autoimmune disease in industrialized countries. 

 

While humans have been living with microbes throughout our evolution, we are just beginning to 

understand global patterns of variation. An understanding of how bacterial strains vary within 

and between hosts provides a necessary foundation for future studies and for linking the 

microbiome to human health and disease. 

 

4.6 Figures 

 

Figure 4.1 Information and sampling location of human gut metagenomes 

China 
•  N=70 
•  Qin (2012) 

Tanzania 
•  N=21 
•  Hunter-Gatherers 
•  Rampelli (2015) 

Europe 
•  N=91 
•  Denmark, Italy, Spain 
•  Li (2014), Rampelli (2015) 

USA 
•  N=114 
•  HMP Consortium (2012) 
•  Obregon-Tito (2015) 

Peru 
•  N=71 
•  Hunter-Gatherers & 

traditional farmers 
•  Obregon-Tito (2015) 
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Figure 4.2 The general approach for estimating within and between host genomic diversity of 
individual populations in the gut microbiome. Within-host diversity is estimated from individual 
metagenomes, whereas between-host diversity is estimated by pooling reads across metagenomic 
samples. All estimates of diversity and SNP density are based on core-genomic regions that are 
consistently present across metagenomic samples. 
 

 
Figure 4.3 Average read depth is consistently estimated regardless of the reference genome used 
for read mapping. Each point represents one species-sample pair. Different species are indicated 
by point shape. Only genomic positions with non-zero depth were included in the average.  
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Figure 4.4 Within host diversity is consistently estimated regardless of the reference genome 
used for read mapping. Each point represents one species-sample pair. Different species are 
indicated the plot title.  
 

 
Figure 4.5 Representative genomes of most species are covered by at least 40% in nearly all 
metagenomic samples where the species is present. The horizontal axis indicates different 
species. The vertical axis indicates the fraction of metagenomes where the species is present. The 
bar color indicates the percent of the representative genome that is covered by at least 1 read. 
This result indicates that representative genomes are suitable for studying the population 
genomics of human gut bacteria. 

●
●
●

●●

●●

●●
●●●
●

●
●

●

●●
●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.6 −3.0 −2.4

−3
.6

−3
.0

−2
.4 R = 1

Akkermansia muciniphila

●●●
●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Blautia wexlerae

●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Eubacterium rectale

●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

−2.6 −2.0

−2
.6

−2
.0

R = 0.995

F. prausnitzii

Si
te

 T
yp

e 
= 

AL
L

●
●
●

●
●●●

●●●●●
●

●●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 0.998
●●●

●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.6 −2.2

−3
.0

−2
.6

−2
.2 R = 0.999

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

−3.0 −2.4

−3
.0

−2
.4

R = 0.992
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.4 −2.0

−2
.4

−2
.0

R = 0.993

Si
te

 T
yp

e 
= 

N
C

●
●
●●●

●●

●●
●

●
●
●

●
●

●

●●

●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

−3.6 −3.0

−3
.6

−3
.0

R = 1
●

●●●
●

●

●

●
●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.4 −2.8

−3
.4

−2
.8

R = 0.999

●●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 1
●

●
●

●

●●
●

●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●
●

●

●●

●

●

−3.2 −2.8 −2.4

−3
.2

−2
.8

−2
.4

R = 0.993

Si
te

 T
yp

e 
= 

1D

●
●●●●
●
●

●●
●●●
●

●
●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

−3.5 −2.5

−3
.5

−2
.5

R = 1
●●●

●
●

●

●

●
●
●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.999

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.998 ●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.2 −1.6

−2
.2

−1
.6

R = 0.995

Si
te

 T
yp

e 
= 

4D
Within−sample diversity, log10

(representative reference genome)

W
ith

in
−s

am
pl

e 
di

ve
rs

ity
, l

og
10

(a
lte

rn
at

e 
re

fe
re

nc
e 

ge
no

m
e)

●
●
●

●●

●●

●●
●●●
●

●
●

●

●●
●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.6 −3.0 −2.4

−3
.6

−3
.0

−2
.4 R = 1

Akkermansia muciniphila

●●●
●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Blautia wexlerae

●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Eubacterium rectale

●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

−2.6 −2.0

−2
.6

−2
.0

R = 0.995

F. prausnitzii

Si
te

 T
yp

e 
= 

AL
L

●
●
●

●
●●●

●●●●●
●

●●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 0.998
●●●

●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.6 −2.2

−3
.0

−2
.6

−2
.2 R = 0.999

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

−3.0 −2.4

−3
.0

−2
.4

R = 0.992
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.4 −2.0

−2
.4

−2
.0

R = 0.993

Si
te

 T
yp

e 
= 

N
C

●
●
●●●

●●

●●
●

●
●
●

●
●

●

●●

●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

−3.6 −3.0

−3
.6

−3
.0

R = 1
●

●●●
●

●

●

●
●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.4 −2.8

−3
.4

−2
.8

R = 0.999

●●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 1
●

●
●

●

●●
●

●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●
●

●

●●

●

●

−3.2 −2.8 −2.4

−3
.2

−2
.8

−2
.4

R = 0.993

Si
te

 T
yp

e 
= 

1D

●
●●●●
●
●

●●
●●●
●

●
●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

−3.5 −2.5

−3
.5

−2
.5

R = 1
●●●

●
●

●

●

●
●
●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.999

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.998 ●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.2 −1.6

−2
.2

−1
.6

R = 0.995

Si
te

 T
yp

e 
= 

4D

Within−sample diversity, log10
(representative reference genome)

W
ith

in
−s

am
pl

e 
di

ve
rs

ity
, l

og
10

(a
lte

rn
at

e 
re

fe
re

nc
e 

ge
no

m
e)

●
●
●

●●

●●

●●
●●●
●

●
●

●

●●
●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.6 −3.0 −2.4

−3
.6

−3
.0

−2
.4 R = 1

Akkermansia muciniphila

●●●
●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Blautia wexlerae

●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

−3.2 −2.6 −2.0

−3
.2

−2
.6

−2
.0

R = 0.999

Eubacterium rectale

●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

−2.6 −2.0

−2
.6

−2
.0

R = 0.995

F. prausnitzii

Si
te

 T
yp

e 
= 

AL
L

●
●
●

●
●●●

●●●●●
●

●●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 0.998
●●●

●
●

●

●

●
●
●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.6 −2.2

−3
.0

−2
.6

−2
.2 R = 0.999

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

−3.0 −2.4

−3
.0

−2
.4

R = 0.992
●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.4 −2.0

−2
.4

−2
.0

R = 0.993

Si
te

 T
yp

e 
= 

N
C

●
●
●●●

●●

●●
●

●
●
●

●
●

●

●●

●●
●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

−3.6 −3.0

−3
.6

−3
.0

R = 1
●

●●●
●

●

●

●
●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.4 −2.8

−3
.4

−2
.8

R = 0.999

●●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

−3.4 −2.8 −2.2

−3
.4

−2
.8

−2
.2

R = 1
●

●
●

●

●●
●

●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●
●

●

●●

●

●

−3.2 −2.8 −2.4

−3
.2

−2
.8

−2
.4

R = 0.993

Si
te

 T
yp

e 
= 

1D

●
●●●●
●
●

●●
●●●
●

●
●

●

●●
●●

●●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

−3.5 −2.5

−3
.5

−2
.5

R = 1
●●●

●
●

●

●

●
●
●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.999

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

−3.0 −2.0

−3
.0

−2
.0 R = 0.998 ●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

−2.2 −1.6

−2
.2

−1
.6

R = 0.995

Si
te

 T
yp

e 
= 

4D

Within−sample diversity, log10
(representative reference genome)

W
ith

in
−s

am
pl

e 
di

ve
rs

ity
, l

og
10

(a
lte

rn
at

e 
re

fe
re

nc
e 

ge
no

m
e)

Fr
ac

tio
n 

of
 

sa
m

pl
es
!

Ba
ct
er
oi
de
s_
ca
cc
ae
_5
34
34

Ph
as
co
la
rc
to
ba
ct
er
iu
m
_s
p_
59
81
7

Eu
ba
ct
er
iu
m
_h
al
lii_
61
47
7

Su
tte
re
lla
_w
ad
sw
or
th
en
sis
_5
68
28

Bu
ty
riv
ib
rio
_c
ro
ss
ot
us
_6
16
74

Bi
fid
ob
ac
te
riu
m
_b
ifid

um
_5
50
65

Ba
ct
er
oi
de
s_
sa
lye
rs
ia
e_
54
87
3

Al
ist
ip
es
_s
p_
60
76
4

St
re
pt
oc
oc
cu
s_
th
er
m
op
hi
lu
s_
54
77
2

Ba
ct
er
oi
de
s_
cla

ru
s_
62
28
2

Ph
as
co
la
rc
to
ba
ct
er
iu
m
_s
p_
59
81
8

Ru
m
in
oc
oc
cu
s_
la
ct
ar
is_

55
56
8

Al
ist
ip
es
_i
nd
ist
in
ct
us
_6
22
07

Co
pr
oc
oc
cu
s_
eu
ta
ct
us
_6
14
80

Ak
ke
rm
an
sia

_m
uc
in
ip
hi
la
_5
52
90

Kl
eb
sie

lla
_p
ne
um

on
ia
e_
54
78
8

La
ch
no
sp
ira
ce
ae
_b
ac
te
riu
m
_5
18
70

Ba
rn
es
ie
lla
_i
nt
es
tin
ih
om

in
is_

62
20
8

Ba
ct
er
oi
de
s_
fa
ec
is_

58
50
3

Do
re
a_
lo
ng
ica

te
na
_6
14
73

Ac
id
am

in
oc
oc
cu
s_
in
te
st
in
i_
54
09
7

Pa
ra
ba
ct
er
oi
de
s_
m
er
da
e_
56
97
2

Ru
m
in
oc
oc
cu
s_
br
om

ii_
62
04
7

Es
ch
er
ich

ia
_c
ol
i_
58
11
0

Ro
se
bu
ria
_h
om

in
is_

61
87
7

Ro
se
bu
ria
_i
nt
es
tin
al
is_

56
23
9

Co
pr
oc
oc
cu
s_
co
m
es
_6
15
87

Ru
m
in
oc
oc
cu
s_
sp
_5
54
68

Co
pr
ob
ac
te
r_
fa
st
id
io
su
s_
56
55
0

Ru
m
in
oc
oc
cu
s_
ob
eu
m
_6
14
72

Di
al
ist
er
_i
nv
isu

s_
61
90
5

Bi
fid
ob
ac
te
riu
m
_l
on
gu
m
_5
77
96

Eu
ba
ct
er
iu
m
_s
ira
eu
m
_5
76
34

Co
pr
oc
oc
cu
s_
sp
_6
22
44

Ba
ct
er
oi
da
le
s_
ba
ct
er
iu
m
_5
86
50

O
do
rib
ac
te
r_
sp
la
nc
hn
icu

s_
62
17
4

Al
ist
ip
es
_f
in
eg
ol
di
i_
56
07
1

Bi
fid
ob
ac
te
riu
m
_p
se
ud
oc
at
en
ul
at
um

_5
77
54

Fa
ec
al
ib
ac
te
riu
m
_c
f_
62
23
6

Bi
fid
ob
ac
te
riu
m
_a
do
le
sc
en
tis
_5
68
15

Pa
ra
ba
ct
er
oi
de
s_
jo
hn
so
ni
i_
55
21
7

Su
tte
re
lla
_w
ad
sw
or
th
en
sis
_6
22
18

An
ae
ro
st
ip
es
_h
ad
ru
s_
55
20
6

Ph
as
co
la
rc
to
ba
ct
er
iu
m
_s
uc
cin

at
ut
en
s_
61
94
8

Pa
ra
ba
ct
er
oi
de
s_
di
st
as
on
is_

56
98
5

Al
ist
ip
es
_p
ut
re
di
ni
s_
61
53
3

Cl
os
tri
di
al
es
_b
ac
te
riu
m
_5
64
70

Cl
os
tri
di
um

_b
ol
te
ae
_5
71
58

Ru
m
in
oc
oc
cu
s_
gn
av
us
_5
76
38

Ba
ct
er
oi
de
s_
in
te
st
in
al
is_

61
59
6

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 

sa
m

pl
es
!

>80% of sites covered! >60% of sites covered! >40% of sites covered!

M
eg
am

on
as
_h
yp
er
m
eg
al
e_
57
11
4

Ru
m
in
oc
oc
cu
s_
ca
llid
us
_6
14
79

Bi
fid
ob
ac
te
riu
m
_c
at
en
ul
at
um

_5
82
57

Eu
ba
ct
er
iu
m
_r
ec
ta
le
_5
69
27

Fa
ec
al
ib
ac
te
riu
m
_p
ra
us
ni
tz
ii_
61
48
1

O
sc
illo
sp
ira
ce
ae
_b
ac
te
riu
m
_5
48
67

Bl
au
tia
_w

ex
le
ra
e_
56
13
0

Ba
ct
er
oi
de
s_
vu
lg
at
us
_5
79
55

Fa
ec
al
ib
ac
te
riu
m
_p
ra
us
ni
tz
ii_
57
45
3

Ba
ct
er
oi
de
s_
m
as
sil
ie
ns
is_

44
74
9

Ba
ct
er
oi
de
s_
th
et
ai
ot
ao
m
icr
on
_5
69
41

St
re
pt
oc
oc
cu
s_
sa
liv
ar
iu
s_
58
03
7

Ro
se
bu
ria
_i
nu
lin
ivo
ra
ns
_6
19
43

Ru
m
in
oc
oc
cu
s_
bi
cir
cu
la
ns
_5
93
00

Cl
os
tri
di
um

_s
p_
61
48
2

Ba
ct
er
oi
de
s_
eg
ge
rth
ii_
54
45
7

Bu
rk
ho
ld
er
ia
le
s_
ba
ct
er
iu
m
_5
65
77

Ba
ct
er
oi
de
s_
un
ifo
rm
is_

57
31
8

M
eg
as
ph
ae
ra
_s
p_
50
40
8

Ba
ct
er
oi
de
s_
co
pr
op
hi
lu
s_
61
76
7

Ba
ct
er
oi
de
s_
ce
llu
lo
sil
yt
icu

s_
58
04
6

Ru
m
in
oc
oc
cu
s_
to
rq
ue
s_
62
04
5

Su
bd
ol
ig
ra
nu
lu
m
_s
p_
62
06
8

Eu
ba
ct
er
iu
m
_v
en
tri
os
um

_6
14
74

Ba
ct
er
oi
de
s_
fra
gi
lis
_5
45
07

Pr
ev
ot
el
la
_s
te
rc
or
ea
_5
83
08

Ba
ct
er
oi
de
s_
fin
eg
ol
di
i_
57
73
9

Al
ist
ip
es
_s
ha
hi
i_
62
19
9

Ba
ct
er
oi
de
s_
xy
la
ni
so
lve
ns
_5
71
85

Al
ist
ip
es
_o
nd
er
do
nk
ii_
55
46
4

Ba
ct
er
oi
de
s_
ov
at
us
_5
80
35

G
uy
an
a_
m
as
sil
ie
ns
is_

60
77
2

O
sc
illi
ba
ct
er
_s
p_
60
79
9

Do
re
a_
fo
rm
ici
ge
ne
ra
ns
_5
63
46

Ba
ct
er
oi
de
s_
st
er
co
ris
_5
67
35

Fa
ec
al
ib
ac
te
riu
m
_p
ra
us
ni
tz
ii_
62
20
1

Eu
ba
ct
er
iu
m
_e
lig
en
s_
61
67
8

Ba
ct
er
oi
de
s_
fra
gi
lis
_5
65
48

Co
llin
se
lla
_s
p_
62
20
5

Eu
ba
ct
er
iu
m
_b
ifo
rm
e_
61
68
4

Pa
ra
pr
ev
ot
el
la
_c
la
ra
_3
37
12

Pr
ev
ot
el
la
_c
op
ri_
61
74
0

Ba
ct
er
oi
de
s_
co
pr
oc
ol
a_
61
58
6

Ba
ct
er
oi
de
s_
pl
eb
ei
us
_6
16
23

Ba
ct
er
oi
de
s_
ro
de
nt
iu
m
_5
97
08

Co
llin
se
lla
_a
er
of
ac
ie
ns
_6
14
84

Es
ch
er
ich

ia
_f
er
gu
so
ni
i_
56
91
4

Do
re
a_
lo
ng
ica

te
na
_5
99
13

Di
al
ist
er
_s
uc
cin

at
ip
hi
lu
s_
62
21
3

Cl
os
tri
di
um

_n
ex
ile
_6
16
54

0.0

0.2

0.4

0.6

0.8

1.0



	 61	

 

Figure 4.6 Minimum read depth for unbiased estimates of within-host nucleotide diversity. 
 

 
Figure 4.7 Prevalence and sequencing depth of 25 human gut species across 372 human gut 
metagenomes from 5 continents. 
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Figure 4.8 Within and between host nucleotide diversity for 50 species. 
 

 
Figure 4.9 Allele frequency spectra for two species. Each row indicates the number of SNPs at 
different minor allele frequencies (0.0 to 0.5) for 15 randomly selected individuals. The top row 
indicates the number of SNPs at different frequencies after pooling reads across all samples. On 
the right nucleotide diversity is indicated for the same samples. 
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Figure 4.10 Within host nucleotide diversity is higher hunter-gatherers from Peru and Tanzania. 
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Chapter 5 

 

Global population structure of prevalent marine bacteria 

 

In this chapter I use MIDAS to quantify strain level gene copy number variation for 30 prevalent 

marine bacterial species across ~200 globally distributed ocean metagenomes [29]. I quantify the 

population structure of each species based on the presence or absence of genes between sampling 

stations. Using principal component analysis of gene presence absence, I show that many 

bacterial species have population structure that correlates with geographic location. In contrast 

other species have populations that are structured instead by depth. 
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5.1 Background 

Marine microorganisms are ubiquitous and play key roles in biogeochemical processes. To 

explore marine microbial diversity, the Tara Oceans expedition collected and performed 

metagenomic shotgun sequencing on seawater samples from over 200 sampling locations in all 

of the world’s oceans. In analysis of this data, Sunagawa et al. found that overall community 

composition mostly driven by temperature rather than other environmental factors or geographic 

location [29].  

 

Within the marine microbiome, there are many widely distributed clades including 

Procholococcus [78], Pelagibacter [79], and SAR86 [80]. However, recent work has shown that 

co-existing Procholococcus genomes can differ significantly in their gene content [78]. It is 

currently unclear how marine microbial populations differ in gene content across the global 

ocean, and whether these differences are structured by geography, depth, or other environmental 

variables. For example, while overall community structure could be driven by temperature, 

individual populations could be responding to different environmental stimuli. 

 

Previously, Pritchard et al. conducting a principal component analysis (PCA) of human genetic 

variation data to uncover the geographic structure of human populations [81]. In this chapter, I 

follow a similar approach, in which I conduct a PCA of gene content variation for 30 widely 

distributed and abundant marine species.  

 

5.2 Methods 



	 66	

To assess the global population structure of marine bacteria, I analyzed 198 shotgun 

metagenomes collected from the Tara Oceans expeditions that corresponded to prokaryotic size 

fractions. I utilized up to 100 million reads per metagenome and analyzed only one sequencing 

replicate per sample. I used MIDAS to quantify the relative abundance of the 5,952 reference 

species, and based on these results identified 30 species that occurred at >3x sequencing depth in 

the greatest number of metagenomes (Figure 5.1). The least prevalent species was found in 23% 

of metagenomes. Next, I used MIDAS to quantify the gene content of these species across 

metagenomic samples. Reads were mapped to the pan-genome database, and reads with <94% 

alignment identity were discarded. Mapped reads were used to compute the coverage of genes 

clustered at 95% identity. Gene coverages were normalized by the coverage of 15 universal 

single copy genes to estimate gene copy numbers. I estimated gene presence-absence by 

thresholding the gene copy numbers, whereby any gene with a copy number <0.35 was 

considered to be absent. 

 

To uncover population structure, I performed a principle component analysis of the gene 

presence-absence matrix for each species. To assess the relationship between gene content and 

geography, I first quantified the PCA distance and geographic distance between metagenomic 

samples for each species. PCA distances were computed using the Euclidian distance between 

samples based on the first two principle components. Geographic distances were computed using 

the Great circle distance with the R package geosphere [82]. Mantel tests were computed using 

the R package vegan [83] to correlate the PCA distances to the geographic distances. Up to one 

million permutations were performed to assess significance. 
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5.3 Results 

To explore the extent of population structure across different marine bacterial species on a global 

scale, I used MIDAS to quantify population genomics in 198 marine metagenomes from 66 

stations along the Tara Oceans expedition [29].  

 

First, I used MIDAS to estimate the sequencing depth of bacterial species in the metagenomes to 

identify marine species where gene content could be reliably estimated. Previously, I found that 

these metagenomes were dominated by novel organisms with no sequenced reference genome 

(Figure 1.5). Despite this, I found a number of species that occurred in >20% of metagenomes 

with at >1-10x sequencing depth (Figure 5.1). Among these species were several members of the 

genera Pelagibacter, Alteromonas, Synechococcus, and Marinobacter, a large group of closely 

related Prochlorococcus species, and several unnamed Alphproteobacteria species. Reference 

pan-genome sizes for these species ranged from 1,047 and 1,311 genes in the streamlined 

genomes of SAR406 and SAR86 (each with 1 genome) to 6,427 genes in the largest 

Prochlorococcus genome cluster (N=26 genomes) and 7,819 genes for Alteromonas macleodii 

(N=4 genomes). 

 

Using MIDAS, I discovered extensive variability of gene content for these prevalent species of 

marine bacteria across the ocean metagenomes. Across all species, I found an average of 318 

genes that differed between samples, ranging from 144 genes in SAR86 to 700 in Alteromonas 

marina. I next quantified the percent of genes that were different between samples using the 

Jaccard index and found that on average 19% of genes differed between samples. This level of 

genomic variability was higher than the 13% reported for human gut communities [47], although 
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this may be due to methodological differences. Regardless, the estimate of 19% is almost 

certainly an underestimate of the true level of gene content variation between populations, 

because MIDAS cannot measure the variation of genes that are present in strains but absent from 

sequenced reference genomes. 

 

To explore how this variation correlated with geography and sampling depth, I conducted a 

principal component analysis (PCA) of gene content for each bacterial species, as has been done 

to study the geographic structure of human populations using polymorphism data [81]. 

Strikingly, I found that the populations of many species clustered together by ocean region based 

on the first two principal components of gene content, regardless of sampling depth (Figure 5.2). 

For example, populations of one Pelagibacter species formed three discrete clusters 

corresponding to the Mediterranean Sea, South Atlantic Ocean, and South Pacific Ocean, and 

each cluster contained samples from different water layers. Similar results were obtained for 

many other species. Furthermore, I found that the population structure of the marine bacteria 

examined was highly consistent, regardless of the percent identity threshold used for defining 

pan-genome gene families (75-99% identity). 

 

To evaluate the extent of gene content biogeography across species, I computed the correlation 

between PCA distances and geographic distances and found significant distance-decay in gene 

content for the majority of species tested (Figure 5.3). Furthermore, this pattern was observed 

both in samples from the surface water layer and the deep chlorophyll maximum layer – the 

majority of species I examined were not found in the mesopelagic water layer. A previous study 

found season to be a major driver of biodiversity patterns in the global ocean [84]. To explore 
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whether season or other environmental variables were associated with strain-level population 

structure, I compared correlations of the first principal component of gene content (PC1) with 

geographic location and environmental variables. For 20/30 species tested, longitude (17/30) or 

latitude (3/30) was the strongest predictor of gene content, and each explained a significant 

proportion of gene content variation (22% and 8% on average). In contrast, day length (an 

indicator of season) explained less variation (4% on average) and was the most predictive 

covariate for only one species. 

 

A few species showed relatively little geographic structure. Instead they had gene content 

variation that correlated with depth or marine layer (Figure 5.2). The most striking example of 

this was an unnamed Alphproteobacteria species which contained two genomes in the database 

obtained via single-cell sequencing [8]. This species was predominantly found in the 

mesopelagic layer (below 200m) and increased in relative abundance with decreasing depth. 

Looking only at mesopelagic samples, I found that the first principal component of gene content 

(PC1) was strongly correlated with depth (R2=0.59), suggesting little mixing of strains across 

depth. When I included samples from all marine layers, I found that samples from the 

mesopelagic and epipelagic zone formed separate clusters based on gene content and there was 

still a strong correlation between PC1 and depth (R2=0.57). These results could indicate that the 

populations at different depths contain genes for adaptation to the range of temperatures and 

nutrients across which this species is found. Supporting this hypothesis, I found hundreds of 

functions and pathways with gene-copy-numbers that were significantly correlated with depth. 

 



	 70	

Together, these results expand upon and even contradict patterns of marine bacterial 

biogeography observed at the species level. In particular, gene content analysis reveals that 

abundant and prevalent species are not ubiquitous at the strain level. Instead they show 

significant structure across geographic regions. 

 

5.4 Conclusions & Discussion 

To explore bacterial population structure using gene content, I applied MIDAS to metagenomes 

from the Tara Oceans expedition. I found a number of prevalent and abundant bacterial species, 

which shows that the method can be applied to different environments. Based on these results, I 

found that the gene content of many species in the epipelagic water layer (0-200m) was 

structured geographically. This contrasts with previous work at the species level, which found 

that depth and temperature were the strongest predictors of community structure [29]. However, 

the gene content of other species found in the mesopelagic layer (200-1000m) were structured by 

depth. As more genomes are sequenced from marine ecosystems, it should be possible to 

determine how generalizable these patterns are. Additionally, future work is needed to 

understand the extent to which these gene-level patterns are driven by adaptation to different 

environments in the ocean, or due to neutral processes, like genetic drift and/or migration. 

 

5.5 Figures 
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Figure 5.1 Prevalent bacterial species surveyed by the Tara Oceans expedition across 198 ocean 
metagenomes. Latin names of species are indicated on the vertical axis. In cases where multiple 
species had the same Latin name, the full name of the representative genome is shown. Many 
marine species have sufficient sequencing depth and prevalence for population genetic analyses. 
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Figure 5.2 Gene content is correlated with geography and depth. Scatterplots show principal 
component analysis (PCA) of gene content for two bacterial species. Each point indicates a 
bacterial population from a different seawater sample. Point color and shape indicate the marine 
region and water layer respectively. Candidatus Pelagibacter populations tend to cluster together 
based on ocean region, not ocean depth. In contrast, Alpha proteobacterium populations tend to 
cluster together based on ocean depth, not ocean region. 
 

 
Figure 5.3 Gene content PCA and geographic distance are significantly correlated for most 
prevalent marine species. PCA distance was calculated using the Euclidian distance between 
PC1 and PC2 of the gene presence-absence matrix. Geographic distance was calculated using the 
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great-circle distance between sampling locations. For each species, the correlation of these two 
distances (horizontal axis) and associated p-value (vertical axis) were computed using the Mantel 
test with 1 million permutations. Only one metagenome per location was included in the tests. 
The population structure of marine bacteria, based on the first two principal components of gene 
content, is correlated with geography for many species of bacteria. 
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