Lawrence Berkeley National Laboratory
Recent Work

Title
COMPUTER-INDEPENDENT DATA COMPRESSION FOR LARGE STATISTICAL DATABASES

Permalink
https://escholarship.org/uc/item/0rs9k8h1|

Author
Gey, F. .

Publication Date
1983-03-01

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0rs9k8h1
https://escholarship.org
http://www.cdlib.org/

LBL-15824
¢ .2~

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

RECEIVED

e .

WRENCE
BERKELEY LABORATORY

4K 14 1954

LIBRARY AND
DOCUMENTS SECTION
Presented at the Second International Workshop on
Statistical Database Management, Los Altos, CA,
September 27-29, 1983; and published in the
Proceedings

Computing Division

COMPUTER-INDEPENDENT DATA COMPRESSION FOR .
LARGE STATISTICAL DATABASES

F. Gey, J.L. McCarthy, D. Merrill,
and H. Holmes

)
March 1983

TWO-WEEK LOAN COPY
This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

. -
‘f“"t ‘ \ !
\ - ‘\ A

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

.

e =747

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. '

LBL-15824

COMPUTER-INDEPENDENT DATA COMPRESSION FOR LARGE STATISTICAL DATABASES

Fredric Gey, John L. McCarthy, Deane Merrill, Harvard Holmes

7

t Computer Science and Mathematics Department
¥4 . N . v . -

University of California
Lawrence Berkeley Laboratory
Berkeley, CA 94720
March 1983
¥
"

Published in the Proceedings of the Second International Workshop on
Statistical Database Management, September 27-29, 1983 Los Altos, CA.

LY

LBL-15824

Computer-Independent Data Compression for Large Statistical Databases
Fredric Gey, John L. McCarthy, Deane Merrill, Harvard Holmes

Computer Science and Mathematics Department
Lawrence Berkeley Laberatory
Berkeley, CA 94720

Abstract

This paper describes a dictionary-driven,
hardware-independent data compression
scheme for archival storage of large statisti-
cal databases. It discusses motivations for
this development, storage format require-
ments, implementation details, access con-
siderations, and possible extensions of the
technique. It also analyzes the degree of
campression achieved for different types of
statistical data files.

1. Introduction and Motivation

SEEDIS is a research and development project
on Social, Economic, Environmental, and
Demographic Information Systems [MCCA82C],
[GEY 81]. The project was initiated in the
early 1970's to provide quick, low cost access
to databases including the 1976 U. S. Census -
1.8 billiecn individual data values for some
400,000 geographic areas. Over the past
decade, SEEDIS has evolved from a batch-
processing system on Control Data Corpora-
tion (CDC) computers to an interactive system
on a distributed network of Digital Equipment
Corporation VAX 11/780 computers running
the DECNET communication system.

By 1977, SEEDIS databases contained nearly
25 billion characters of information, primarily
1970 census data for numerous geographic
summary levels, including states, counties,
census tracts, enumeration districts, and oth-
ers. Data were stored in a variety of physical
formats, usually a different format for each
majocr data set. Some had been converted to
binary representation on the CDC 600C-7000
computers at Lawrence Berkeley Laboratory
(LBL). Others had been converted to the CDC
display code character sel (a 64 character
alphabet, with ten six-bit characters per com-

This work was supported by the Office of Health
end Environmental Research and the Office of Basic
Energy Sciences of the U.S. Department of Energy
under Contract DE-AC03-763F00098; and the Depart-
ment of Labor, Employment and Treining Adminis-
tration under Interagency Agreement No. 06-2063-
38.

puter word).

Data were stored, for the most part, on an
unusual mass storage device, the [BM 1360
photodigital chip store [GEY 75]. In 1977, IBM
announced it would no longer maintain this
storage device after October 1, 1979, and LBL
undertock to search for a replacement. The
LBL Computer Center eventually settled on a

. Cal Comp automatic tape library (ATL), with a

3300 tape reel capacity, robot-assisted tape
retrieval, and mounting without operator
intervention.

The SEEDIS project was faced with re-
archiving its entire database on the new mass
storage device. The actual conversion effort
consumed 2.5 staff years over a pericd of 20
months. Given the magnitude of this conver-
sion effort for existing archived data, the pro-

ject decided to -develop a standard -archival

format in order to minimize the cost of
current and future reconversions which might
be necessary:

2. Storage Format Requirements

As the project reviewed its long-term archival
storage requirements, several cocmmeoen
characteristics of statistical databases helped
narrow the storage format design goals. First,
SEEDIS databases were archival rather than
transactional; updates were infrequent and
limited in scope. Second, large new databases
were continually being added, thus requiring
ever-increasing amounts of storage space.
Given these basic parameters, several basic
design goals were developed, as follows:

« Computer-independent, binary physical
storage format for multiple data types

« Dicticnary-driven data definiticn fles for
data specification and access

« Data compression for efficient storage,
retrieval, and transmission

2.1. Computerdindependent Data Formats

For large archival databases such as those in
SEEDIS, the data may have a much longer life
than the hardware and software used to sicre
and manage them. 3Since conversion is an
expensive and time-consuming process, data
need to be stored in formats that do not have

tc be changed as hardware and software
change over time.

Unfortunately, most simple standard formats
(e.g., fixed length ASCII records) are too
inefficient for large numeric databases. Fixed
length records require more storage space,
more disk accesses for retrieval, and more
overhead for data transmission. Furthermare,
numeric data represented as characters must
be converted tc binary before the data can be
used in calculations.

[n order to provide a format that was simple,
efficient, and computer-independent, SEEDIS
staff developed a binary storage scheme based
on a "virtual machine” for portability of data
[HEAL 78]. The commonality of characteristics
which constitute this "virtual machine” are as
follows:

. storége is divided into 8-bit byte segments

« character (or string) data are stored with
ASCII enceding

2.2. Dictionary-Driven Data Definition

Machine-readable data require data
specifications that retrieval and applications
programs can use. They also require ccde-
bocks that human beings can read. The

SFEDIS project decided to meet both these’

requirements simultaneously, by developing a
data definition language that cculd be used to
describe bcth compressed data files and their
uncompressed, fixed-length ASCI equivalents.

The basic approach is similar to that of data
dictionaries in other database systems and
statistical packages. Each self-describing

dataset consists of two logical components -- a

data definition file (DDF) and a data file (DF).
The logical data view is that of a table (or flat
file) with a fixed number of rows and columns.
Data are arranged so each row of the table
contains all the attributes (data elements or
columns) of a named entity (e.g., Alameda
County), as well as a row label or stub plus any
keys necessary for data access and matching.
The number of rcws is equal to the number of
entities in the data file, and the number of
columns is equal to the number of data ele-
ments in each row.

The basic structure of meta-data elements in
the DDF is:

<keyword> = <value(s)>

with cne "keyword=value” pair per unit record
(line). Keywords occurring before the first
data element definition have global effect.
That is, they hold for all data elements, unless
specifically overridden by keyword definitions

within the local environment of a data ele-
ment definition.

SEEDIS COMPRESSED files, which will be
described in Section 3, separate data and
description into two distinct physical flles.
The data file (DF) is in a binary format, while
the data definition file (DDF) is in human-
readable ASCII representation. One DDF can
describe an unlimited number of compressed
data files.

Another similar data format known as CODATA
(COmmon DATA Format) was alsc developed by
SEEDIS staff [MERR81], [MERR82]. CODATA
files contain both data definition and an
uncompressed, fixed-length, ASCII representa-
tion of the data in a single physical file. These
self-describing CODATA files are used to com-
municate between various independent
modules within the SEEDIS system (retrieval,
analysis, data entry, graphic display, data
export). A software library is available to
translate COMPRESSED datasets to CODATA
files and vice versa, as well as to extract par-
ticular pieces of meta-data information from
data definition flles.

2.3. Data Compression

Since the volume of SEEDIS databases was
quite large (over 25 billion characters of infer-
mation in 1977 and growing), it was clear that
compression techniques were required to
minimize costs of data storage, retrieval, and
transmission. [nitial experimentation
revolved arcund a meodified form of packed-
decimal format, a data compression technique
commeonly used by COBOL programmers. This
technique, however, was soon rejected
because it would save only a fixed amount of
space (approximately 50%) for each numeric
data item.

Drawing on previous experience with the data,
project staff surmised that more substantial
compression could be achieved by exploiting
several characteristics common to many of
the databases in SEEDIS:

« although fixed data flelds on source tapes
allow encugh space for the maximum possible
values, most data values require only cne or
two digits

« many values (particularly zero and missing
data codes) are repeated in sequence

The project staff therefore undertoock to
develop a format which takes maximum
advantage of these characteristics, and yet
retains the basic objective of hardware
independence. The details of this format are
described in the following section.

J

r

£

3. Compressed Format Specifications

The SEEDIS compressed format which was
developed to satisfy the preceding require-
ments is basically a binary coding scheme
with variable length records. Each data value
is stored as a variable-length sequence of 8-bit
bytes, preceded by an initial byte containing a
4-bit type code and a 4-bit length count. The
formatl currently provides for three basic
types of data: integers, floating point
numbers, and character strings. Specific for-
mats for each are described in the subsec-
tions below.

3.1. Integer and Fixed Decimal Numbers

Both integers and fixed point decimal data
values are handled by a single compressed
data storage format. The only difference is in
the data definition file, where the "type” for a
data element (field) may be defined as either
decimal or integer, and a scale factor may be
included for decimal data. If a scale factor is
indicated, that constant value is multiplied by
the stored data value at retrieval time. Scale
factors may have any positive or negative

~ value; they may be used to convert units (for:
example feet to meters) at the time data are

retrieved from archived files.

For integer and fixed point decimal data
values (type = i), the first four bits of the ini-
tial byte contain a code indicating type "i,”
and the second four bits specify a "length
count,” the number of bytes required tc store

the integer in its signed binary representa-.

tion. The initial byte is followed by the "length
count” number of bytes containing the signed
binary representation of the integer dala
value. The integer value 0 (zero) is stored in a
special way in the initial byte itself, with a
"length count” of zerc. Exhibit 1 presents a
schematic representation of this compression
scheme for integers and values of zero. In
this schematic representation, the initial byte
is shown as byte position "I", while the vari-
able number of succeeding bytes are labeled
"1" through "N". Thus the total number of
bytes required for a non zero integer data
value is N + 1, while a zero value requires only
a single byte of storage.

Exhibit 1: Integer Compression

Il1 2 3... N| byte position
e ol i S
iN| integer value | contents
s w2 et S

I zero value requires only tnitial byte
--+ .
io| zero stored in length count
-+

Since many computers cannot handle integers
larger than can be stored in 32 bits, integers

-larger than that are automatically stored in

ASCII character string form. The DDF plus the
access software can automatically translate
such data tc floating point values on retrieval.

3.2. Floating Point Decimal Numbers

Floating point numbers are stored as two suc-
cessive integers representing the expcnent
and mantissa. The first four bits of the initial
byte of the exponent contain a ccde type indi-
cating "e,” and the second four bits contain a

."length count,” the number of bytes required

to store the exponent in its signed integer
binary representation. The initial exponent
byte is followed by "length count” bytes con-
taining the value of the exponent. These are
followed by the initial byte of the mantissa,
with four bits indicating type "m" and four
bits for the "length count” of the mantissa.
Finally, there are the "length count” bytes
containing the value of the mantissa itself.
Exhibit 2 summarizes the compression
scheme for floating point numbers in
schematic form.

Exhibit 2: Floating Point Compression

j1... Pl |1 2... Q| byte position
e TE b el i e S ek
eP| exponent |nf)| mentissa | contents
s SUS LT ST R e e

As the schematic representation shows, the
amount of storage required for floaling point
numbers is 2 + P + Q, where P and Q are the
number of bytes required to store the
integers representing the exponent and
mantissa, respectively. The values of P and Q,
in turn, are N + 1 and M + 1, respectively,
where N is the the number of bytes required
to represent the signed integer value of the
exponent, and M is the number of bytes
required to represent the signed integer value

of the mantissa.

This compressed format for floating point
numbers is, in general, less efficient than
standard 32-bit binary representations. It
requires a minimum of four bytes (32 bits),
and frequently may require five or six bytes.
On the other hand, it provides a single
representation for decimal numbers of virtu-
ally unlimited precision. Because of different
formats and precision limits for single and
double precision on 32, 60, and 64 bit
machines, and because most SEEDIS data are
integers or fixed decimal numbers, the staff
decided to trade compression efficiency for
computer hardware independence. Depending
upon the data and applications, if large
amounts of floating point data became the
rule rather than the exception, it might be
desirable to add more data types to achieve
greater compression at the expense of preci-
sion.

Scale factors may be wused with the floating
point decimal format just as with the fixed
decimal format.

3.3. Character Strings

For character string data values (type = a),
the first four bits of the initial byte contain a
code indicating type "a,” and the second four
bits contain a "length count,” the number of
bytes required to store the binary integer
representation of the length of the character
string. The initial byte is followed by "length
count” bytes containing a binary integer, "'S,"
and then S bytes containing an ASCII
representation of the character string itself.
Character strings are further compressed by
removing trailing blanks.

For example, if we wish to store a 30-byte
character fleld which contains 6 trailing
blanks, the initial byte will contain a code for
type "a" and a value of 1, indicating that the
length of the character string will be stored in
the next 1 byte. The second byte will contain
a binary integer representation of the value
"24," and that will be followed by 24 bytes of
the actual character string, represented in
ASCII. Exhibit 3 shows a schematic represen-
tation of the SEEDIS compressed format for
character strings.

Exhibit 3: Character String Compression

I[]1t 2... Rl1 2...- 5| byteposition
B e s S P S e N s v
aR| integer "S"|string value| contents
i TG T ST LR St

3.4. Repetition of Data Values

The SEEDIS compression scheme is rounded
out by a fourth data "type" which specifies a
repeat count (type = r) of the data value
which follows it. Repetition of data values is
an extremely important consideration in sta-
tistical summary data, which often consist of
multi-dimensional cross tabulations of micre-
data files. For example, 1970 Fourth Count
census data for each geographic area consist
of 1178 data items for each of five race
categories (total, white, black, hispanic-origin,
other). For a large number of geographic
areas, all data for the latter three race groups
are zero or suppressed. Thus, for those three
racial categories, groups of 1178 data values
can be replaced by six bytes of actual storage,

assuming the appropriate arrangement has .
been made for physical contiguity of the data’

(which sometimes requires transposition of
the data matrix). Exhibit 4 presents a
schematic representation of the repeat data
type, using zero as an example of the
repeated value. The first four bits of the ini-
tial byte contain a code indicating typle "r,"
and the second four bits contain a "length
count,” the number of bytes required to store
the binary integer representation of the
repeat count W (the number of times the data
value is repeated).

- Exhibit 4: Repetitive Value Compression

[l 1 2 3... W I| byte position
B ket SUNC R

™| repeat count |i0| contents
e e UG S e

Since repeated values of zeros and missing
data codes occur frequently in scientific and
statistical databases, this type of compression
is particularly eflective. The repeated value
need not be zero, of course. It can be any of
the currently recognized data types - integer,
floating point, or character string.

4. A Simple Example

Using the basic building blocks outlined
above, we illustrate in this section a brief
example using fragments of the data
definition file and a single abbreviated data
record from the 1980 Census Summary Tape
File 1 (STF1).

Exhibit 5 shows a slightly simplified version of
the global portion of a data definition file plus
definitions for several individual tabulations.
This data definition file contains information
for both the compressed data file and its fixed
fleld ASCI{ equivalent. The varicus meta-data
elements appearing in Exhibit 5 are fully
defined in [MCCA82A). The meta-data element
"POSITION" gives the sequential field position
of the data element within each compressed
data recerd, while the corresponding "START"
and "LENGTH" meta-data elements give the
physical position and field length in the
corresponding fixed-length ASCII CODATA file.

Exhibit 5 Example Data Definition File

DATABASE = 1980 Census SIF1 Fragrent
NE = 17
ARFAS = 4
RECORD_IENGIH = 40
TYPE = A
[E = FIPS.STATE
START = 1
LENGIH = 2
POSITIN = 1
[E = FIPS. CAANTY80
START = 4
LENGIH = 3
PCSITIN = 2
IE = STUB.GED
START = 8
LENGIH = 33
POSITION = 3
[E = TAB3(1)
TYE = [
START = 42
[FNGIH = 9
RCSITIN = 4
INIVERSE = 100-Percent Count of Persons
HEADFR =#10C-Percent Count of Persons#
IE = TAB74
T™YFE =D

SCAIE = 0.001

INIVERYE = Families

HEAIXR ={Median Family Incare In 197§
HEATER =#(in thousards of doilars)#

DE = TAB12
STHICIURE = ARRAY
DIMENSICN = RACE(12)
TYPE = [
START = 61
IFNGTH = 10
POSITION = 6
INTVERSE = Persans
CATEGORY_SET = RACE(12)
CATHZORY = White
CATHXRY = Black ’
CATHXRY = Arerican.Imdian
CATEXRY = Eskinp
CATEXRY = Aleut
CATEQXRY = Japanese
CATHXCRY = Chinese
CATHXRY = Filipinp
CATHXRY = Korean
CATEXRY = Asian_Indian
CATEXRY = Vietnarese
CATEXRY = Hawaiian
D ITF

There are 17 data elements in Exhibit 5,

" namely FIPS.STATE, FIPS.COUNTY80, ...,

TAB74, and the 12 elements of TAB12. Note

. that the last DE entry, TAB12, is a vector (or

one-dimensicnal matrix) rather than a simple
single-valued fleld. This fact is denoted by the
meta-data information "STRUCTURE =
ARRAY." Information about the 12 components
of TABIZ is located in the category set
"RACE(12)" named in the "DIMENSION" state-
ment. This notation considerably simplifies
specification of multi-dimensional arrays,
which frequently occur in scientific and sta-
tistical data. It alsoc saves space and process-
ing time in handling large data definition files.
For such array data elements, the "POSITION"
given is the position of the first cell in the
array. Each element of an array is stored
exactly as a simple data element. Retrieval
software computes the linearized position
number of cther cells from a standard array
notation such as "TAB51(3,12,4)". Similarly,
the "START" for such data elements gives the
starting location of the first cell, while
"LENGTH" gives the length of each successive
cell in the array.

Exhibit 6 shows a fixed format ASCII represen-
tation of a single data record as defined by
the DDF in exhibit 5. As implied by the
"RECORD_LENGTH" global meta-data item of
the DDF, each logical record is comprised of
five 40-character physical records (lines), with
20 characters of padding at the end of the last
line. This is the type of format that consti-
tutes the data portion of a CODATA file, and it
typifies formats used for data export by many

agencies such as the U.S. Census Bureau.
Note how fields are allocated to accommeodate
the largest possible value that might occur in
that field - even though most of the actual
values are much smaller. The indication
"SCALE=0.001" under "DE=TAB74" specifices
that the stored value (17240), when multiplied
by the scale factor (0.001) will yield the
median family income in thousands of dollars
(17.240).

Exhibit 6: Fixeddength ASCII Data Recard

byte position in physical record

10 20 30 40
i | At | A | | et | S | | |
06 003 CA ALPINE

1097 17240 912 0
169 0 0 e
o 0 0 Y

0 5

Exhibit 7 presents a schematic representation
of the compressed form of the data record
from Exhibit 6. It shows how 200 bytes of ori-
ginal data compresses. tc 38 bytes of output
data, or 19-percent of the original record size.

Exhibit 7- Compressed Data Record

byte position
12345678 81011121314151817181920

e L i s s st o

al 2 0 8al1 300 3al 89CA

e e A e e e e e e e e e e
s muiuts saden Snf SEiut anten anden Snints s el Sutats Snten 4

ALPINE

+

byte position (continued)

21 2BUSBXBIIARXIHUADIIBINAB
B e e i i e at E e e S o e S e
i2 1097 i2 17240 i2 912 10i2 18 rl 8i0i1 5
B s e T S e e S e e

A close comparison of Exhibits 6 and 7 shows
that space savings occur in four major ways:
(1) truncation of the area name by removing
trailing blanks; (2) binary encoding of integer
and fixed point decimal data (e.g. one byte will
now hold numbers from -127 to +127, two
bytes will now hold numbers from -32,767 to
+32,767, and these can be scaled by an arbi-
trary constant in the data definition file for
decimal fields); (3) run-length encoding of
repeated values; and (4) elimination of pad-
ding at the end of the last physical record.
The largest single savings comes from the
repetition of 8 successive zeros, which

S 3 I N
 andun ndens sadul suten oube of

originally occupied 80 bytes, but takes only
three bytes in compressed form (byte posi-
tions 34-36).

The next section provides more extensive
empirical data about the degree of compres-
sion achieved over large numbers of records
for some actual SEEDIS datasets.

8. Analysis of Compression in SEEDIS

Previous secticns have described SEEDIS
compression methods and an example of how
these compression techniques work for a sin-
gle data record. This section analyzes the
results of compression on entire data flles and
data bases. In general, data from public agen-
cies such as the U. S. Census Bureau are for-
matted into fixed-size records for each flle,
regardless of the contents of the data. Thus,
for each data base, a single constant number
of bytes is associated with each record as
received by LBL. Of interest, therefore, are:

e The distribution of sizes of output records
after compression

« The ratioc of compressed record size to origi-
nal record size for different databases

« The cumulative percentage of all records in
a data base whose compressed size is less
than some percent of the criginal size

« Whether compression correlates with any
particular data item contained within the data
record

Exhibit 8 shows the distribution of records for
a single data base (1980 Census Summary
Tape File 3 (STF3), county records) whose
compressed size is expressed as a percentage
of the original size. For this database (and
level of geography) the median compressed
record was 25 percent of the size of the origi-
nal record.

Exhibit 9 summarizes these distributions over
several data bases, showing the cumulative
percentage of records with compressed size
less than some fraction of original size. The
best compression is achieved on the 1980
Census Equal Employment Opportunity (EEO)
data file, which contains counts cf labor force
for 514 detailed occupational categories. The
high degree of compression is due to the large
number of repeating data values of zero in
this file. The worst cases are the air quality
and mortality datasets, which contain a high
propoertion of floating point data.

Finally, we conjectured that the compression
might be related to the total population of the
geographic area corresponding to the data
record, since the proportion of data with
values of zero or suppression {missing data)

codes increases for smaller areas. Exhibit 10
is a scatter plot of compressed record size
versus the logarithm (base 10) of 1980 total

population for the STF3 data base.

A straight-line fit is a remarkably good one,
which is especially significant because it sug-
gests that one can sometimes make quantita-
tive estimates of storage requirements for
each record or set of records based upon a

single value contained within the data.

Our quantitative exploration of compression
results is continuing and we hope to use these
results in developing further analytic models

of compression.

Exhibit 8 Size of Compressed Records

Exhibit 9: Caompression in Selected Data Files

Cumulative Percent of County Level Records
Fraction of ’

Original | EFO | STF3 | CDB | STF1 | AQ | MOR
0to 5% 58 V] 0 [} 0 0
5 to 107 93 0 0 0 o} 0
10 to 15% 98 o] 0 0 0 0
15 to 20% 100 3 1 0 o} 0
20 to 25% 100 43 S 1 2 0
25 to 30% 100 92 94 18 7 0
30 to 357 100 100 100 87 20 1
35 to 407% 100 100 100 100 35 3
40 to 457% 100 100 100 100 46 8
45 to 50Z 100 100 100 100 59 15
50 to 55% 100 100 100 100 73 28
55 to 807 100 100 100 100 1 49
80 to 657 100 100 100 100 88 64
85 to 707% 100 100 100 100 92 5
70 to 75% 100 100 100 | 100 95 85
75 to 807Z 100 100 100 100 98 92
80 to 857 100 100 100 100 99 97
85 to 907 100 100 100 100 99 ; 100
90 to 957 100 | 100 | 100 | 100 | 100 | 100
95to 100% ! 100 . 100 ! 100 ! 100 } 100 ! 100
Mean 7% 5 25 27 32 47 61

EEO - 1980 Census Equal Employment Opportunity
STF3 - 1980 Census Summary Tape File 3

CDB - 1940-1977 City County Data Book

STF1 - 1980 Census Summary Tape File 1

AQ- 1974-1976 Air Quality

MOR - 1988-1972 Age-Adjusted Mortality

Exhibit 10: Compressed Size vs. Population

aumber of county records

1axf{ 1

14x] 1

16X 4

17% 16

18% 19

19% 47

20x 93 .

21x s 144

22% 2 IR 251

23% o > 355

24x SRR S O N Y, 2 406

2SR e D e NSl 423

2N R o e e 50 394

2IXB T 33t -

28X o 254

29% 144

Jexks 93

3ix 49

32x 46

33% 42

Jax 17

35x 10

36% 4

Bx(

Jox|___4
T
[100 200 300 400

< +
4 *
Mumbar of Bytes o4
on the 3
Compressed
Record 1
4 e
1090~t—r—rrrt+rrrr{rrrrtrrrr T T T T
1.8 - 2.0 3.0 4.0 S.9 6.8 7.0

log (base 19) of 1988 total population

6. Access Methods for Compressed Data

In the simplest case, a SEEDIS compressed
dataset consists of four physical files. A
dataset known as MYFILE, for example, might
consist of files having the following names:

MYFILE.DAT: Compressed binary data file (DF)

MYFILE.NDX: Index file containing pointers to
individual records (entities) in MYFILE.DAT

MYFILE.DDF: ASCII data definition file (DDF)
describing individual named attributes (data
elements) in the DF

MYFILE.DDX: Index file containing pointers
(sequence numbers) corresponding to each
data element in the DDF.

The multi-file scheme permits considerable
flexibility in the way data are stored and
accessed. For example, large county-level
data sets are normally stored with one DAT
and its corresponding NDX file for each state,

e.g.:

S01.DAT: Alabama DF
S01.NDX: Index for SC1.DAT
SC2.DAT: Alaska DF

S02.NDX: Index for S02.DAT
MYFILE.DDF: Same as before
MYFILE.DDX: Same as before

Corrections, if necessary, can be easily made
to one state at a time. Furthermore, not all
states need to be stored on the same disk
pack or even on the same node (host com-
puter). Aulomatic schemes in SEEDIS

[MERR83] provide for selective caching of only-

those files actually required by the user.
Because the meta-data (DDF and DDX) are
physically separate from the data files (DAT
and NDX), meta-data elements (for example
data element labels or scale factors) can be
conveniently changed without the need to
recompress the data.

6.1. Record Access Mechanisms

As stated above, the NDX file provides pointers
to the individual records (entities) of the
compressed SEEDIS data file (DAT file). In the
example above, the file S01.NDX is itself a sim-
ple CODATA file containing four data elements
for each county in Alabama: the FIPS (Federal
Information Processing System) state code,
the FIPS county code, the size in bytes of the
compressed record for that county, and the
physical block location of the start of that
county in the file S01.DAT. Now suppose that
at some future date the FIPS county number-
ing scheme for Alabama is changed to

accommeodate the splitting of a county or the
combination of two present counties. Without
modifying the file S01.DAT, one can easily
modify S01.NDX sc that the existing data can
be retrieved via the revised county codes.
New county codes not corresponding tc exist-
ing data are simply omitted from the new NDX
file, resulting in a missing data indication
when data are extracted. Because the NDX
files are much smaller than the compressed
DAT files, multiple sets of NDX files
corresponding to various county definitions
can easily be created, all pointing into a single
set of large DAT files. Enlities {counties) not
in the original DAT files can be left missing, or
can be created by aggregation or disaggrega-
tion and appended to the original DAT file.
Each set of NDX files provides pointers to a
complete and non-overlapping set of entities,
for example 1960 FIPS counties, 1980 FIPS
counties, etc., with only a small increase in
stored data.

6.2. Intra-Record Access

When retrieving a particular data value from a
particular record, the access software must
search from the beginning of the record to
the. .particular. data value. Thus, although
some time can be saved by computing irntra-
record positions over repeated data items,
access time is generally linear, with the last
data item in a record requiring the maximum
access time. This has not posed severe prob-
lems for SEEDIS data records containing up to
1000 data items but it cculd for much larger
data reccrds. The 1980 Census EEO (Equal
Employment Opportunity) database, for
example, contains over 12,000 items per
record. Access time for some data elements
will be slow if the current scheme is not
enhanced.

Recognition of the limitations of linear access
has provided impetus for additional research
on compression methods. This research has
lead to a variety of general results [EGGE 81].
In the modified approach, which has yet to be
incorporated in SEEDIS, all counts are
removed from the data file and stored in a
separate header. The counts are cumulative,
allowing the header to be searched in loga-
rithmic time. The header is used to form the
base level of a B-tree index into the data
record, which further improves the access
time by increasing the rate of the legarithmice
search.

An even simpler scheme involving less storage
coverhead would be to include in the NDX file
not only the starting block location of data
element 1 in the DAT file record, but also (for

¥

example) the starting block location of data
element number 1001, data element number
2001, etc. Considerable time would be saved
in retrieving from large files like the 1980
Census EEO file.

6.3. Other Access Considerations

A minor problem which arose during software
implementation was the fact that most
machines store data in contiguous byte
sequential format, but DEC equipment (PDP-
11 and VAX) stores numeric data in inverted
order within each word of the machine. This
fact has been noted in articles on portable
software [NEAL 78]. Thus the VAX implemen-
tation of the access software had to be slightly
different from what it might be cn IBM or
other hardware.

One other compromise to portability was
made within the data records themselves. In
order to eflficiently use the FORTRAN language
for accessing variable-length data records on
CDC machines, the beginning of each record
contains the CDC word count as well as the
total length of the record in bytes.

7. Current and Future Developments

During the past two years a major develop-
ment effort in SEEDIS has been the design of
extensions to meta-data structures for more
efficient processing of large summary data-
bases [MCCA82A, MCCAB2B]. These enhance-
ments include:

¢ matrix data elements
* category set specifications
+ comprehensive handling of missing data

We are currently designing an enhanced
compressed interchange file wherein meta-
data as well as data will be stored in the same
binary compressed format. Compressed files
will replace CODATA files as the standard for-
mat for internal interchange of data between
SEEDIS modules, in order to provide for more
efficient data transfer and conversion. This
will be an upwerdly compatible enhancement
to the original compressed data format,
adding new compressed data types for
specification of arrays, recursive hierarchical
structures, multiply occurring data values,
multi-valued missing data codes, etc.

8. Conclusions

With minor mecdifications and compromises,
the computer-independent compressed data
storage format described above has remained
the SEEDIS standard format for six years. We

are currently adding the 1980 Census to the
archive, bringing it from 3 to 6 billion data
values within a three-year period. We are able
to access and decompress on VAX computers
data which were archived on tape by CDC com-
puters in 1977.

These compression methods have been very
successful from the standpoint of reduction in
storage space. Most SEEDIS files occupy from
twenty to fifty percent of their original space.
Compression of integer and fixed decimal
fields to variable-length sequences of bytes,
and run-length encoding of repeated values,
have accounted for the majority of space
saved.

Although the methods currently used to
access SEEDIS compressed data files have
been adequate for retrieval of data for
specified geographic areas, they are not
efficient for queries based on data values.
Analysis indicates that changes in access
methods as well as changes in the compres-
sion scheme itself could considerably improve
performance for such queries.

Work is currently under way lo implement
additional compression techniques, different
access methods, and compressed data types
to ' accommodate meta-data (e.g., data
description files) as well as data. The SEEDIS
project plans to use the compressed data for-
mat as a medium for internal exchange as well
as for archival storage, in order to improve
data transmission efficiency between applica-
tion modules.

9. Acknowledgments

Carl Quong, head of the LBL Computer Science
and Mathematics Department, is responsible
for the research environment in which this
work was conducted. Others who made these
results possible include Harvard Holmes, who
has directed the SEEDIS project and guided
design of the compression methodclogy, and
Bob Healey, who contributed to the design and
implemented the initial versions of compres-
sion. Wayne Graves made substantial contri-
butions to improving the efficiency of the
compression programs, and provided ideas for
intra-record access enhancements.

10. References

EGGE 81 Eggers, S., Olken, F., and Shoshani,
A., A Compression Technique for Large Sta-
tistical Databases," Proceedings of the
Seventh Mmternational (Conference on Yery
Large Databases, Cannes, France, September,
1981, 424-434.

GEY 75 Gey, F. and Mantei, M. “Keyword
Access to a Mass Storage Device at the Record
Level," Proceedings of the First miernational
Conference on Very Large Databases, Fram-
ingham, Massachusetts, September, 1975,
572-588.

GEY 81 Gey, F., “A Beginner’'s Guide to
SEEDIS,” Lawrence Berkeley Laboratory
Report LBL-11198, January, 1981.

HALL 81 Hall, D,, Scherrer, D., and Sventek,
J., “*A Virtual Operating System,” 23 Comm.
ACHM 9, September, 1980, 495-502.

HEAL 78 Healey, R.,, “BYTER and DBYTE,"
Lawrence Berkeley Laboratery, Internal Docu-
ment, May, 1978.

MCCA82A McCarthy, J., “Enhancements to
the Codata Data Definition Language,”
Lawrence Berkeley Laboratory, LBL-14083,
February, 1982. ’

MCCAB82B ‘‘Metadata Management for Large
Statistical Databases,” Proceedings of the
Fighth International Conference on Very
Large Databases, Mexico City, September,
1982. ’ . S : -

MCCA B2C McCarthy, J. L., et al.,, ““The SEEDIS
Project: A Summary Overview,” Lawrence
Berkeley Laboratory, PUB-424, May, 1882.

MERR 81 Merrill, D, “CODATA Users’
Manual,” LBID-021, revised October, 1981.

MERR 82 Merrill, D., “CODATA Tools: Port-
able Software for Managing Self-Describing
Data Files,” Lawrence Berkeley Labcratory,
LBL-15441, Proceedings of Computer Science
and Statistics: Fifteenth Sympostum on the
Interface; Houston, Texas, March 16-19, 1983.

MERR 83 Merrill, D.,, McCarthy, J., Gey, F.,
and Holmes, H.; *Distributed Data Manage-
ment in a Minicomputer Network: The Seedis
Experience;" Elsewhere in the proceedings of
this workshop.

NEAL 78 D. Neal and V. Wallentine, “‘Experi-
ences with the Portability of Concurrent Pas-

cal,” Software Practice and Ezperience, V.8,

NO. 3, 1978, pp. 341-353 (specifically p.348).

10

¥

~3

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the .
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

- Fowma o

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

