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Preface

1h1s report has been a long time in the making, ana as a result
several moaiiications (anu some extensive 1improvements) nave
accumulatea 1n our personal notes. nowever, to incliuae them now ana

to re-integrate tne ianguage woulu only auelay this report further.

50 in tne 1interest of providing some waocument on Ia, ctnese
changes anu improvements will be reserveu for an updatea version of
the language. At that point we will be able to remove the qualifier

"preliminary" from the title.

Your comments ana criticisms are welcomed.
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1. Introaguction

The purpose of tnis work is to capture what one intuitively
feels 1s the enormous potential of LSI technology to produce large
numoers of small processors to be the building blocks for a large
general-purpose computer. A  characterization of the kind of
computer we have in mind 1is the following: The machine would
consist of a large number (possibly hundreds or even thousands) of
small asynchronously operating processors. Each processor accepts
and performs a small task generated by a program, produces partial
results, and then sends these partial results to other processors in
the system. Thus many processors would cooperate towards the common
goal of completing the overall computation. A natural concomitant
effect of such behavior would be increasing speeds of computation as

new processor modules are added to the machine.

Many computer architects have imagined machines that might
exnipit such behavior and thereby utilize this new technology. But
in trying to discover why no sucn machine has as yet demonstrated
real 'success in tnis endeavor, we became convinced that the real
problems are not related simply to devising an appropriate bus and
machine interconnection scheme, or to designing a machine whicn, for
example, can efriciently manipulate arrays or 1interchange numbers.
Ratner, the difficulties are due to one of the fundamental bases  of
computer design: the von Neumann model. 1Indeed, more than 3@ years
have passed since John von Neumann first laid down the model that
virtually all machines and languages have taken ever since. The von
Neumann model has become so ingrained in our thinking that we rarely
even consider it, let alone guestion it, but it 1is precisely here
that we find the source of the real problems that have prevented the

creation of the kind of machine just described.

Two particularly troublesome attributes of the von Neumann
model are [Dennis73, GIMT74, Backus78]:

1. centralized sequential control

2. memory cells.

Sequential control 1is troublesome since it prohibits the
asynchronous behavior and distributed control that we consider

essential to the machine we wish to devise. It also burdens the

1.



progyrammer with the need to explicitly specify (or to employ an
analyzer to determine) exactly where concurrency is to occur. The
second point, the memory cell, presents a difficulty since its
existence forces the programmer to consider not only what value 1is
being computed, but also where that value is to be kept. This
places additional burden on the programmer and presents particularly
thorny problems in program verification. Furthermore, the
introduction of asnychrony into a programming system makes menmnory
cells even less tolerable; we 1llustrate why this is so by an
extreme case: the global variable. We imagine a situation where
some otherwise asynchronous processor modules are busy executing
tasks, but these tasks reguire coordination through a common cell.
This calls for rather complex synchronization controls to ensure
orderly use of the global variable. Such controls are difficult to
design into a machine and may be very costly in execution time.
Synchronization controls are also tedious for programmers to use,

especially where large numpers of activities are to be coordinated.

.we contend tnat the apbove two cornerstone principles of the von
Neumann model (sequential control and the memory cell) must be
rejected in order to obtain a useful general-purpose system composed
of large numbers of small processors. We offer evidence in the rest
of this paper in support o0f this contention. 1In place of these two
principles, we adopt a language that is everywhere asynchronous
except where synchronization 1is explicitly specified (i.e., no
sequential control), and where values are the subject of computation
rather than the places where those values are kent (i.e., no memory
cells). An asynchronous language assumes computations are
unrelated, and thus concurrent, unless otherwise specified. A
sequential or von Neumann language on the other hand requires
explicit specification (either by the programmer or by analysis of
the program) to identify those places where concurrent processing
may be initiated. The aosence of memory cells ensures that only
simple control mechanisms are needed to coordinate access to data,
since races to “store” data will never occur. Such a semantic pbasis
should work well witnh a machine composed of many asynchronous

cooperating processors.

The principal arguments against the von Neumann model are not

original to these authors and have been noted by several researchers
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[Dennis73, GIMT74, Sutherland & Mead77, Backus78]. Essentially, the
approach is one of avoiding the difficulties currently plaguing
multiprocessor design rather tnan suffering with them. Rejecting
von Neumann's model may at first seem a radical approach. However,
a brief survey of much of the current work in programming language
design and software methodology reveals that this is, in fact,
taking place already, alpeit in a much disguised form and at a very
slow pace. Consider the drive towards structured programming.
Often it can be viewed as an attempt to produce programs that are
more functional (as opposed to procedural) in tneir operation. As
an example, moadern programming practice suggests that returning
results by modification of global variables shared among subprograms
is less desirable than writing the subroutine -as a function-type
subprogram and returning values as the result of a function call.
The fact that this is not even possible in many languages
(particularly if more than one result or an array of results is to
be returned) is not the fault of the functional approach, rather it
is the fault of 1language restrictions that do not allow the
returning of such values. We can also give several examples of the
movement away from the von Neumann model in the field of programing
language design: We note that EUCLID has imposed many restrictions
on PASCAL that make variables inaccessible to procedures when those
variables are declared outside those procedures, the effect of which
is to force procedures closer to the 1ideal of a mathematical
function. Also, tne current interest 1in (abstract) data types
[Guttag77, LSAS77, SWL77] points 1in a direction away from the
semantic base implied by a von Neumann machine, since functionality
(information hiding) appears essential to both data and program
abstraction. Finally, we can observe the past few years work on the
linguistic aspects of resource control |[Jones77] where as we move
from semaphores, to conditional critical regions, and to monitors
[Brinch-Hansen72, Hoare74], we see movement away from arbitrary
specification of program synchronization (semaphores) to more highly
controlled and encapsulated specifications (monitors). This
movement is in the direction of providing the programmer with a more
functional view of a computation that involves resources. However,
resource management is one of the areas in programming language
design which has not yet seen solutions that go far enough in the
direction of functionality to ©provide hard evidence of this



4.

movement, we nope to <convince the reader of what can be
accomplished witin a more functional approach [AGP77) by giving a
concrete example later in this paper (Section 5). Lastly, we
mention program verification, where some researchers have noted the
potential benefits of a language with semantics more closely akin to
mathematical languages. The concept of a memory cell is not natural
to mathematics, and can often complicate what otherwise would be a

simple proof of correctness [Guttag77, Ashcroft & Wadge76].

The chief thrust of the above argument is that a proposal to
replace von Neumann's model with a new semantic model is not
capricious. All too often in studies related to the above examples
in language design, remedies for reducing the high cost of software
have ignored the architectural base on which software and software
tools have been developed and continue to exist. The unstated
assumption is that von Neumann semantics will remain. Our position
is that if we are going to fully utilize the new technology of LSI
in the manner described above, we cannot retain the von Neumann
base. we furtherimore bpelieve that the semantic founaation we
regquire coincides in the long run witn the natural culmination of
much of the evolutlionary movement ongoing in software engineering
and programming language design. However, by beginning with a new
semantic base ratner than continuing to develop "restrictions" on
the old, we see a much smaller and more elegant semantics resulting
[Kahn74, Arvind & Gostelow77a]l] -- an essential for future
development.

One system that has been proposed in the past and which
incorporates new principles more compatible with the needs we see,
is dataflow [Arvind & Gostelow77b, Dennis73, Kosinski73]. (Pure
LISP [McCarthy6@] and Red languages [Backus73, 78] were not chosen
for adoption because, even though their semantic bases are elegant
and functional, neither caters to asynchronous operation.) The major
deviation of "data flow" semantics from von Neumann's principles of

"control flow" is that dataflow 1is asynchronous, and it has no

memory cells -- only values are the results of computations. A
dataflow program is a set of partially ordered operations on operand
values where the partial order is determined solely and explicitly

by tne neea for 1intermediate results; operationally:




1. a dataflow operation executes when and only when all of the
required operands become available, and

2. a dataflow operation is purely functional and produces no
side-effects as a result of its execution.

Arguments in the past against dataflow have centered around the
lack of a higher-level language, the ability of people to program in
such a language (were it to exist), the inability to handle database
problems, and efficiency. In this paper we provide definite answers
to some of these objections. We present a complete higher-level
aatatlow language that 1incorporates all of the usual programming
concepts, as well as some new concepts not wusually found 1in
contemporary languages (for example, streams, functionals, anad
nondeterministic programming). Also, the implementation of these
concepts (botn o0ld and new) is often easier in dataflow than in
conventional languages due to the simplicity of dataflow semantics.
In this category we include procedure definition and manipulation,
programmer-defined data types, and operator extensionality. The
ability to handle resource (database) problems is also a capability
of the 1language. Concerning the above noted objection of
"efficiency", one must first of all not evaluate dataflow in terms
of a von Neumann implementation, for dataflow not only allows a new
kind of machine design " but in fact requires it. It is most
important when considering dataflow languages that they be
considered in their own terms and not pbe forced to fit into measures

valid only for otner systems.

Two languages will be described here: a higher-level 1language
Id (for Irvine dataflow), and a base machine language that serves as
the semantic language of Id. 1In Section 2 we show how to write
elementary Id programs and we explain the meaning of these programs
in terms of their base language translations. 1In Section 3, we give
more detalls on how Dpase language programs are interpreted by a
machine and how these programs achieve highly concurrent operation.
Streams are introduced 1in Section 4, while issues concerning
indeterminacy and resource managers are discussed in Section 5.
Programmer-defined data types and functionals are presented in
Section 6, while Section 7 summarizes the work and presents our

conclusions.



2. Elementary Programming in Dataflow:

Id (for Irvine dataflow) is a block-structured
expression-oriented single-assignment language. A program in Id is
a list of expressions. 1In this section we explain the four most
basic kinds of Id expressions -- blocks, conditionals, loops, and
procedure applications -- by giving examples of each, and by giving
their translation into the base language. We use the base language
both to define and to explain Id; the base language is also used as
the machine language to be directly executed by a dataflow computer.
Proyrams, nowever, are written only in Id. Thus the base dataflow
language 1is discussed only 1in the context of how that language
supports the higher-level Id constructs. we are less concerned with
how the base language operators behave in isolation than how they

pehave in concert with one another in building these Id constructs.

1d variables are not typed. The internal representation of
values is simply self-identifying and type is thus associated with a
value and not with a variable. This matter is discussed later in
this® section where we detail two particular value types: structure

values and procedure definition values.

2.1 Block expressions: To evaluate the two roots of a quadratic

(-b+sgrt(bt2-4*a*c))/(2*%a),
(-b-sgrt (b+2-4*a*c))/(2*%a) (2311}

Any program can be written as a list of expressions in 1Id, however
it 1is often more convenient for a programmer to break a computation
into pieces, identify certain partial results, and then use those
partial results to compute a final answer. Thus we can rewrite

(2.1) as the block expression

( X <= sgrt(b?2-4*a*c);

y <= 2%*a
return (-b+x)/y, (=b=-x)/y ) (2.2)
Expressions (2.1) and (2.2) each require three inputs

(a, b, and c) and produce two (ordered) outputs. Expression (2.2)
compiles into the pase language expression shown in Figure 2.1. The
reader should refer to Figure 2.1 and to expression (2.2) while

noting the following: An assignment statement serves to name the




Figure 2.1

(2.2)

Compilation of the block expression



output(s) of an expression. The name itself 1is called an Id
variaple. Variables are used to specify interconnections among
operators (the boxes in Figure 2.1). Assignment statements in a
plock are separated by semicolons and can always be commuted without
aftecting the result of the expression. The inputs to a block
expresslon are exactly those variables that are referenced Dbut not
assigned witnin tnat block. The return clause is the last item in a

block and specifies the (ordered) outputs of that block.

From the above, it is most important to realize that an 1Id
assignment 1is not an operator as it is in other languages; it is a
specification to the compiler to label an output. 1In Id, a variable
can be assigned exactly once within 1its scope. This {single

assignment rule makes the connection shown in Figure 2.2 impossible.

The single-assignment rule guarantees to us that once defined, an
instance of a variable never changes in value. This obviates the
need for disparate sections of the machine to <coordinate the
updating of memory cell variables, since there are no cells to
update. In this respect Id variables are more like the variables of
mathematics than of conventional programming languages, 1.e., they
stand for values rather than act as containers of values. One
problem with most languages that follow the single-assignment rule
is that the programmer ' must often invent many names for distinct
variables. Id avoids this proolem by limiting the scope of names to
the olock 1in which they are defined. Hence, variables x and y are
not visible outside the block expression (2.2). Furthermore, if the
same names X and y were also assigned outside (2.2) they would not
pe visible inside (2.2) and hence would not affect the computation
within that block. Expression (2.3) further illustrates this
scoping rule.

(a <=-1; b <= 1; c K- =2;
X,y <= (x <= sqgrt(b+2-4*a*c);

y <= 2*a
return (-b+x)/y,(-b-x)/y)
return x,y ) (2.3)

When expression (2.3) is evaluated the values of x and y in the
inner block will be 3 and 2, respectively, while the values of x and
y in the outer block will be 1 and -2. Unlike ALGOL, the scoping
rules of Id prevent assignments to global variables from an inner

block since assignment to a variable automatically defines its scope




Figure 2.2

An illegal connection

Figure 2.3a

Execution of a dataflow operator

/{\:

Figure 2.3b

Behavior of a fork
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to be that of the innermost block in which that assignment occurs,
and assignment can occur only once in that scope. Use of the same
variable name in two different Dblocks is not a violation of the
single-assignment rule since the scooes do not overlap -- one name
is simply being used to label two distinct outputs.

values in the base language are carried by tokens that flow
along lines. According to the first principle of dataflow, an
operator may execute when and only when all 1its required input
tokens have arrived. An operator executes by absorbing all input
tokens, computing a result, and producing an output token that
carries that result as its value. Operator execution is illustrated
in Figure 2.3a. Note that the operators internal to the olock
expression of Figure 2.1 will start executing as soon as any tokens

on lines a, b, or c arrive.

Figure 2.3b shows that whenever a token encounters a fork while
traversing a line, the token replicates and follows all branches of
the fork. 1In this way a single result may be sent asynchronously as
input to many different operators. Clearly, several operators may
be enabled at any given time and the order of execution of those
operators does not affect the final result, that is, the computation
is determinate [Patil7@, Kahn74, Arvind & Gostelow77a].

The reader should note that a constant in Id does not represent
a value, but rather a function that produces that value as its
output regardless of the value of its input. But since a dataflow
operator will not execute wuntil its input is present, some token
must always be sent to a constant function to indicate that an
output value 1is needed. Any input line wused for signaling a
constant function is called a trigger. The value of a token on a
trigger 1line is unimportant, only its presence is significant. As
will become clearer later, the choice of which 1line to wuse as a
trigger affects only the execution asynchrony of an expression and

not the final results.

Reflecting on the basic principles of adataflow given in Section
1, we see that 1Id is asynchronous because (sub-) expressions are
independent of one another and may be executed in any order, or at
the same time, unless otherwise constrained by an explicit need for

partial results. Expressing the need for partial results 1is easy:
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just write the variable name. This approach is the inverse of the
usual method of obtaining asynchrony or parallelism in conventional
languages which requires either an analysis of the problem or the

use of parallel programming constructs (e.g., cobegin-coend). Also,

Id waoes not present the concept of a memory cell to the programmer
since the value of a variable cannot be updated. The purpose of a
variable 1is solely to allow the programmer to name partial results
which he may later reference 1in other expressions. It 1s the
single-assignment rule that removes the possiblity of a race and
implies that Id proygrams are determinate (unless, of <course, some

operator 1is used which is internally nondeterministic).

2.2 Conditional expressions: Consider the Id conditional expression

(1f p(x) then f(x) else g(x)) (2.4)

and its base langquage translation in Figure 2.4. Whenever a token
arrives on line x the predicate p is evaluated to produce a boolean
value. TIf the predicate is true then the token from x 1is sent by
the SWITCH operator to box f, otherwise it is sent to box g. Figure
2.5a shows the behavior of the SWITCH operator for the case of a
true valued boolean input. Also, Figure 2.5b shows that if one of
the output lines of a SWITCH is not used, and if according to the
boolean 1input that ©pranch is to be taken, then the input token is
simply aosorbed. The QD operator is used in base language program
graphs in exactly three situations: to mark the merging of two
branches of a conditional expression (as in Figure 2.4), to mark the
formation of a loop (Section 2.3), and to produce stream output from
a loop (Section 4). As with the SWITCH and QD, we will see that
many base language operators do not result in legal programs if
interconnected arbitrarily. Since we intend to program in Id anad
not 1in the base 1language, we do not give rules for forming all
possible legal base language programs. The emphasis here is on
specifying the semantics of syntactically correct Id programs in
terms of legal base language programs. The operational meaning of a

legal base 1language program will be defined more precisely in
Section 3.

A conditional expression needs all of its inouts for execution

regardless of the branch to be taken. For example, the expression

(if p(x) then f(x) else g(x,y)) (2.5)



Figure 2.4

Compilation of the conditional expression (2.4)

120




Figure 2.5a

The SWITCH operator for a true input

false

Figure 2.5b
The case for a SWITCH whose output

is not utilized

3%
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Figure 2.6

Compilation of the conditional expression

(2:5)
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will always regquire an input token from y, put whenever p(x) is true
that token is simply absorbed and is not used. Figure 2.6 gives the
base language translation of expression (2.5) and clearly shows tnat
a token 1is always absorbed from y. The reason a token is always
absorbed is to maintain the proper order of tokens flowing along all
lines, and regardless of whether an Id expression is a block, a
conditional, or any other kind of expression, one token is absorbed
from each input and one token is produced for each output on each
execution of that Id expression. Note than an entire expression

behaves similar to a primitive box.

Id also provides syntax for writing conditionals in statement
form. The meaning of the conditional statement (2.6) is given by
the conditional expression (2.7).

(if p(x) then y <- f(x); z <- 1 else y <= g(x); 2z <- 0) (2.6)

y,2 <= (if p(x) then f£(x),1 else g(x),9) (2.7)

In a conditional expression the then clause and the else clause must

contain an egqual number of expressions. Thus the following is
illegal
v,z <= (if p(x) then f(x),1 else g(x)) ¥Xillegal*¥

A case-expression (case-statement) may be written as a nest of

if-then-else expressions (statements).

2.3 Loop expressions: Like most conventional languages, looping

constructs are important for writing interesting programs in Id.
All looping constructs in Id are expressions consisting of four
parts: an initial part, a predicate to decide further iteration, a
loop body, and a list of expressions to be returned as the value of
the 1loop. Consider the 1loop expression (2.8). It represents a
program to compute the smallest i such that the sum of all integers
from 1 through i exceeds some number s,
( ipitial & <& g
sum <- 1
while sum<s do
new 1 <- i+1;
new sum <- sum+i
return i) (2.8)

AU WM

An Id loop is a set of recurrence relations, where new values

are specified in terms of old values and initial values. For
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Figure 2.7

Compilation of the loop expression

(2.8)
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example, a set of recurrence equations for computing the above
values of i and sum are

ij41 = i3 + 1 where iy = 1
Sumj4] = sumy + 14 sumy = 1
I1d differs only in tnat a stopping condition is specified and those
final values of interest are written in the return clause of the
loop. Thus the statements in the loop body specify that new value
instances of 1 and sum are to be «createa at each iteration.
dowever, any reference to a recurrence variable in the body of a
loop refers to the "old" value of that variable unless the reference
is precedea by the word "new". Thus the i in line 5 of (2.8) does
not refer to the value new i computed in line 4. (The value of new
i could be referenced in line 5 by writing new i instead of just 1i.)
The translation of expression (2.8) into the base language is given
in Figure 2.7. Note that changing the order of statements 1in the
loop body affects neither the results nor the base language
translation. (The reader will have to wait until Section 3 to
understand the meanings of the D, D=1, L, and L-1 operators. These
operators do not affect the values of the tokens passing through
them, and for the sake of dicussion at this point we can treat these

operators as identity functions.)

We would like to emphasize that the assignment statements new
i<-i+l ana new sum<-sum+i do not violate the single-assignment rule.
Since i on the left-hand side is new i and the i on the right-hand
side is old 1, we really have two distinct lines in the base
language program. One is tempted to think of i and sum as memory
cells whose values are being updated, but as pointed out earlier, a
dataflow variable never represents a memory cell. Also, any
assignment statement whose left-hand side is a variable that is not
assigned an initial value is not considered a recurrence statement.
Such variables are actually partial results used within a given
iteration but not carried over to any subsequent iteration.
Expression (2.9) and its translation given in Figure 2.8 further
clarify these points.

( initial i <- 1; sum <- @
while 1<n do

new i <- i+l;

y <= £(i);

new sum <- sum+y
return sum ) (2.9)

AN WO
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Compilation of the loop expression (2.9) where
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Here statements 3 anu 5 are recurrence statements (new 1 and new sum
are peing computed, both variables having been given 1initial
values), while statement 4 1is simply a partial result used 1in

statement 5 (variable y was not given an initial value).

Now let us briefly consider the execution of (2.9). Suppose
function f of 1line 4 takes a 1long time to execute. The loop
predicate i<n, however, does not depend upon the evaluation of f(i).
Therefore it is possible for several tokens to accumulate on the
line i going into the function box f since these tokens are the
values of i counting from 1 to n, a relatively fast process. Now if
i were treated as a memory cell then the notion that 1 might be
several values at the same instant of time would be meaningless. We
will show in Section 3 that the machine's interpretation of the base
language 1is such that instead of accumulating tokens on the line
leading from output i to box f, many instantiations of function f
may proceed concurrently. This greatly increases the apparent

asynchrony and concurrency of loop expressions.

"Id supports many different loop constructs such as for-loops,
repeat-until-loops, and for-while-loops, put the semantics of all
loops (except for those involving streams*) are encompassed within
the general while-loop construct given in expression (2.10).

( initial 'x <+ f(a)
while p(x,c) do
y <= g(x,c);
new x <- h(x,y,c)
return r(x,c) ) (2.10)
In an actual loop expression there might be more than one variable
of type a, X, y, or c. Variables that are assigned in the initial
part (x variables) circulate in the loop and thus have both old and
new values. Variables that are not assigned in the initial part but
are assigned in the loop body (y variables) are simply partial
values and can be wused only within the body; a y variable never
circulates. Variables referenced but not assigned 1in a 1loop (or
assigned only in the initial part) are loop constants (c variables).
A ¢ variable bpehaves exactly 1like an x variable in that it
circulates (see n in Figure 2.8) and one can assume that a statement

new ¢ <- c exists in tne loop body. All variables referenced on the

*Streams are discussed in Section 4.
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right-hand side of assignments in the initial part (a variables) are
treated as inputs to the loop expression and must originate from
outside the loop expression. Hence, x <- f(x) appearing 1in the
initial part of a 1loop expression would be a valid assignment
statement. The X on the right-hand side would be connected to the
output named x outside the loop expression, while x on the left-hand
side will be the name of an output inside the loop expression. To
explain <furtner we give two equivalent loop expressions. The loop
(2.11) is a for-wnile-loop which is implemented as if it were the
while-loop (2.12).

)
initial x <= £(x)
for 1 from 1 to n while p(x)do
yli<=sg ()5
new x <- f(x)+y
return x)
return y ) (Zee- 1)

( x <= g(a
¥ Er.akd

[~ R g
y' <= a*(initial x <= £(x'); i <= 1
while (i<n) and p(x) do
Yok Gilol)of
new x <- f(x)+y;
new i <- i+l

return Xx)
return y' ) (2.12)
Now we describe a very useful default for conditional

assignment statements. Consider expression (2.13).

( initial x <- x; sum <- 0
for i from 1 to n while p(x) do
new x <- f(x);
(1f g(x) then new sum <- sum+l)
return sum ) (2.13)
Normally a variable must be assigned both in the then clause and the
else clause. But instead of treating the conditional assignment in
expression (2.13) as illegal, we translate it as 1if it were the

following statement:

(if g(x) then new sum <- sum+l else new sum <- sum)
or

new sum <- (if g(x) then sum+l else sum)
This is a default rule that applies only within a loop body.

2.4 Procedure applications: Figure 2.1 shows the Id sqgrt function
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implemented by the machine primitive 3QRT. If sgrt were actually a
procedure application, tnen the SQRT box would e replaced by the
schema ot Figyure 2.9. T1he APPLY operator expects a token carrying a
procedure definition value and another token carrying the argument
value. It applies the procedure aefinition to the argument when
potnh have been received. Note that sgrt is the name of a line, and
we would now say that expression (2.2) needs sqgrt in addition to a,
b, and ¢ as inputs. The line sgqrt would then, presumably, be
connected to a box that outputs a procedure definition value that
describes a square root function. We will elaborate on procedure
definitions in Sections 2.5.2 and procedure applications in Section
3.

2.5 Data structures and procedure definitions: Variables in Id are

not typed; only values are typed. Thus a variable may be assigned
a value of any type at any time. The programmer may, however, write
an expression to test the type of a value, coerce the value to a
different type, or assert that a value must be of a particular type.
We do not wisnh to impose a strongly-typed language on the programmer
where he is required to state the type of value every variable is to
acquire. In our aind this can cause a great deal of overhead for
the programmer. Instead, we feel the programmer can be Jiven
sufficient tools to allow him to specify in as much detail as he
wisnes the information that a strongly-typed  language would
otherwise require; he need not, however, specify typing in those
situations which are burdensome or in which it is unnecessary to

state typing information.

There are ten different primitive types of Id values:
integers, reals, booleans, strings, structures, procedure
definitions, manager definitions, manager objects, pdts

(programmer-defined data types), and errors. The first four need no
discussion; manager definitions and manager objects will be
discussed 1in Section 5 while pdts will be discussed in Section 6.
Error values are not discussed at all. The following subsections
concentrate on structure values and procedure definition values. A
full discussion of type coercions, assertions, and

programmer-defined types is deferred to Section b.

2.5.1 Structure values: A structure value is either the
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Figure 2.9
Applying a procedure

name height weight age
"John Doe" 175 33
1 2
6 5

Figure 2.10a

A structure value t with string and integer selectors
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name height weight age

"John D u' l 175 33
John Doe 1 2
6 5

Figure 2.10b
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The structure t+["sex"]"M"
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name height weight age

"John Doe" 1 2

6 5

Figure 2.10c

| I 180 33 "M"
|

seXx

The structure (t+["sex"]"M")+["weight"]180
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distinguished emoty structure A or a set of <selector:value> ordered
pairs. A selector is an integer, string, or boolean value; a value
is any Id value. An example of a structure is shown in Figure 2.1¢a
where "name", "height", "weight", and "age" are string selectors

(string selectors are not guoted when used in figures). There are

exactly two operators defined on structure values: SELECT and
APPEND. If t 1is the structure value in Figure 2.10a, then values
can be selected from t by writing, for example, t["weight"] and

t["height"] [1] (giving 175 and 6, respectively). The APPEND
operator is somewhat more complex. Given a structure, a value, and
a selector to be associated with that value, APPEND Creates a new
structure value. For example, Figures 2.106b and 2.10c are the
results of the indicated appends on tne structure t of Figure 2.10a
(the "+" symbol means APPEND when the right-context 1is the symbol
Wit the "-" symbol means to use an APPEND operator to remove a
<selector:value> pair from the original structure). Note there are
two distinct appends 1in Figure 2.10c. These will be done in
left-to-right order with an intermediate value as indicated by the
parentheses. Most importantly, the structures created as a result
of an APPEND are neither the original structure t nor any modified
version of t, since dataflow values cannot be modified. Rather each
append creates a new and logically distinct structure, and the o0ld
structure (t 1in the examples of Figure 2.18b and 2.10c) has an
existence of its own, possibly concurrent with the new structure.
This means that the value of t may be referenced by some other
expression in the program even after the appends have been

completed. Select and append may be summarized by the equations

(t+([s]lv) [s'] (if s'=s then v else t[s'])

Als'] = error
(t-1ls])is'] = (if s'=s then error else t(s'])
A-[s'] = error

Some syntactic shortnands are available in Id for manipulating
structure values. In the case of string selectors, the notation
x.weight can be used instead of the more cumbersome x["weight"].
Also, to simplify the construction of structures, the angle-bracket
notation

<height:<6,5>, weight:175, age:33>
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can be used insteaad of
A+ ["heignt"] (A + [1]6 + [2]5) + ["weight"]175 + ["aye"]33

In tne apbove, tile notation <6,5> means <1:6,2:5> where tne values 1
ana 2 are selector specifications. To explain in more detail, an
integer-valued counter is associated with each angle-bracketed
structure specitication during compilation. The specification is
scanned left-to-right and whenever a value is encountered with no
associated selector specification, the value in the counter is used,
and then the counter is incremented by one. Whenever an 1integer
constant selector 1is specified, the counter is reset to that value
plus one. No other selector specification affects the counter,
which 1s 1initialized with wvalue 1. Figure 2.11 illustrates the

above with several equivalents.

We often find statements in the body of a loop that <create a
new structure by appending to an old structure with a change in just

one component, as for example

new x <- x+|i]v

A shorthand equivalent is
new x[1i] <= v

Id also allows multiple selectors in order to makKe references to
trees and arrays more convenient, for example, the reference x[1,2]

means (x[1])l2].

Notice that the programmer sees each variable that is assigned
a structure value as holding that entire structure. This 1is
reflected in the base language where a token that carries a
structure logically carries the whole structure as its value. 1In an
actual machine, this gquickly becomes impractical when large
structure values are involved. However, the fact that structures
are acyclic and that dataflow operators are pure functions has
allowed Dennis [Dennis73] to devise a technique whereby a memory may
be used to store the actual structure while only pointers to the
structures are physically carried by the tokens. That is, the
underlying implementation of structure values in dataflow may use
pointers, shared common substructures, reference count gJgarbage
collection, and many otner technigues in order to reduce overhead

[Dennis74, Newell & Tongeo6d]. Nevertheless, these aspects are



shorthand notation definition

<v,7,w> A +[1]Jv+[2]7+[ 3w

<0:v,w,5:x,y> A +[0]Jv+[1]w+[5]x+[6 ]y

<=-5:v,str:w, x> AN +[=5]v+["str" Jw+[-4]x

Figure 2.11

Shorthand structure specifications and their equivalents

(trigger)

procedure (s)
(initial i<1;
sum<1
while sum <s do
new sum-<sum+i;

new i<i+l1

return 1)

Figure 2.12
Compilation of statement (2.14)
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completely transparent at the level of Id, and even at the level of
the ©opase aataflow language where any structure-carrying token still
behaves as if it carried the entire structure value*, we do not
discuss detailed memory mechanisms here, but it is important to
emphasize that any such memory system that may be used to imolement
dataflow 1is never seen by the programmer. A memory system would be
present only to reduce the amount of information that would

otherwise need to be carried by a token.

2.5.2 Procedure definitions: An example of a procedure definition

value being assigned to a variable y is

y <= procedure (s) (initial i <- 1; sum <- 1
while sum<s do
new sum <- sum+i;
new i <- i+l
return i) (2.14)
The specification of a procedure definition value, exemplified by
(2.14), 1is much like a constant specification. That is, just as a
numeric constant o in Ia actually implies a constant function that
produces o as 1its value, so does a procedure definition imply a

function that produces that procedure as its value.

Statement (2.14) translates into Figure 2.12. Since Id
variables are not typed, variable y in (2.14) is not a procedure
variable, but does receive a procedure value whenever (2.14) is
executed. Variable vy is like any other variable and can be passed
as an argument to a procedure, appended to a structure, or operated
upon by any operator that is defined on the type of value carried by
y. In Id, two operators are defined over procedure values: APPLY
and COMPOSE. We recall from Section 2.4 that the APPLY operator
applies a procedure definition to a 1list of actual arguments by

writing
apply (y,x1,x2,...,xn)
or simply
vy(x1,X2,...,%Xn)

Since a variable may assume any one of the several values during an

*We differ from Dennis |[Dennis73] on this point, since in his
language a distinction can be made between a pointer and an
elementary value.
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execution, it cannot be guaranteed at compile-time that the value of
y will always be a procedure requiring exactly n inout parameters.
Suppose the value of y is a procedure with m formal parameters and,
as above, the apply lists n actual arguments. If m<n then the first
m arguments from the actual parameter 1list are passed to the
procedure while the remaining n-m actual parameters are ignored. On
the other hand, 1f m>n then m-n actual arguments with the special
value & are supplied in place of the missing actual arguments. If
tne programmer wishes to omit an argument, its place can simply be
left empty. For example, y(xl,,x3) is translated as y(xl,§&,x3).
Corresponding situations can arise where the number of outputs
expected from an apply do not match the number received from the
applied procedure. The compiler must be able to deduce the number
of outputs to be produced by the apply; where necessary, the
programmer must make the deduction unambiguous by proper
parenthesizaton on the left-hand side of an assignment statement.
For example,

(x,v) 2 <- f(a),qg(b) (2-15)

means that f(a) must produce two outputs and g(b) only one. If the
procedure value from f produces more than one output, the extraneous
outputs are lost. 1If f produces fewer then two outputs, the value &
is produced by apply. Section 3 discusses the implementation of
APPLY in detail.

It 1s also possible to give a name to an Id procedure. This
can Dbe useful in writing recursive programs. The named procedure f

which calculates the ubiguitous factorial function may be written

y <- procedure f(n) (if n=@ then 1 else n*f(n-1)) (2.16)

Essentially, whenever a named procedure is applied its definition is
also passed as if it were a parameter, thereby making a named
procedure able to reference itself. Recursive programs can be
written without named ©procedures, but it <can be a little less

convenient. This is shown in (2.17) where z(3,z) is 6.

z <- procedure (n,f) (if n=@ then 1 else n*f(n-1,f)) (2.17)

An unnecessary danger also exists in (2.17), since when z is applied
the procedure passed as a parameter need not be z. Hence, z(3,9) is

a valid application, but the effect of the application may be
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aifterent from what one expects. Procedure definitions such as the
one 1in (Z.lo) are wmore convenient than (2.17), as well as more

desirable for good programming.

The remaining operator defined on procedure values is COMPOSE.
This operator is actually a very simple but very powerful functional
in that it accepts a procedure as input and produces a new procedure
as output. COMPOSE takes the input procedure value and "freezes"
one or more of the procedure's formal parameters to particular
actual values, and then removes the parameters that were frozen from

the formal parameter list. For example, in

g <— procedure i(asb,c)(at2+bt2+ct2):;
r <- compose (q,<<2,5>>) (2.13)

the procedure value assigned to r, when applied, behaves as 1if the
progyrammer nad written

r <- procedure (a,c) (at2+5t2+ct2)
since the argument of compose is a list of subarguments of the form
<formal-parameter-position,value>. As another example, we use z
from (2.17) and write:

w <- compose (z,<<2,2>>)

which produces a value w with one formal parameter (the parameter n
in (2.17)). The value of each instance of f in (2.17) has thus been
frozen to the procedure value z, so w(3)=z(3,z)=3! . In fact, a
named procedure is implemented by compose. For example, statement
(2.16) actually translates into

y <~ (£' <- procedure (f,n)
(if n=0 then 1
else n*compose (f,<<1,£>>) (n-1))

return compose (f',<<1,£'>>))

so that y, regardless of how it may be composed further, will allow
procedure f to internally refer to the original definition of f in
all cases. The translation of the named procedure definition £ to

its new form is according to the following steps:

1. Construct a new procedure definition f':

- insert the original procedure's name f as the first
parameter of the argument list

- alter tne code inside the original procedure £f by
replacing every occurrence of f by the code
compose (£,<<1,£>>) .
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2. Return the procedure compose (f',<<1,f'>>)
The name of the resulting procedure is f (i.e., the original name).

Named procedures are important and are used extensively in
implementing programmer-defined types and in the environment feature
of Id. (These application points are covered later in Section 6.)
Lastly, we note that the above algorithm is the straight-forwara way
of nandling namea procedure definitions. However short-cuts are
sometimes possible, for example, rather than do a compose and then
immediately ao an apply, the compose could be deleted and instead
the procedure passed directly to itself as a parameter in the apply.
Such short-cuts must pbe very carefully considered, ana in general
can Dbe done only by a complete analysis of all possible paths
through the named procedure and with the guarantee that the
procedure will never be returned to an outer context and applied by
another program that knows nothing about it. For example, the
result of such an apply could be for procedure f to return f itself,
which must be the f' version of f, but which may not be the case |if
it is not composed before the apply.

Only COMPOSE and APPLY are allowed to manipulate the internal
representation of procedure values. To describe exactly how the
COMPOSE operator works, we consider the -encoding of a procedure
value to be a special kind of structure which the Id programmer can
neither select values from nor append values to. (A programmer can,
of <course, always append an entire procedure value to and select a
procedure value from another structure.) In this way we can
guarantee the consistency of the internals of a procedure value.
The special structures that encode the procedure values at outputs g
and r of (2.18) are shown in Figures 2.13a and 2.13b, respectively.
In these structures, thne detailed encoding of the procedure body
itself 1is of no consequence to this discussion and is left
unspecified. Concerning the other components, the "name" records
the name of the procedure (if any) as a string. The "#" component
specifies the number of parameters. The "formals" specifies for
each parameter position, the name of the parameter as a string,
while "actuals" specifies, for each parameter frozen, its actual
value. We note here that the COMPOSE operator rearranges nothing
but the "formals" and "actuals" components. The procedure values in
Figure 2.13a and 2.13b contain enough information for the APPLY




body name # formals actuals
n "
: 1 2 3 A

"all “b" Ilc"

Figure 2.13a

The encoding of the procedure value on line q in (2.18)
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Figure 2.13b
The result of the compose function in (2.18)
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operator to determine the values of all actual parameters.

The COMPOSE operator is useful for tailoring a procedure to
special forms by freezing certain parameters. COMPOSE 1is used
extensively in Section 6 for implementing programmer-defined data
types. It furtnermore provides a way in which (dynamic) program
linking can be performed, since such linking is actually just the
freezing of certain formal parameters to actual parameters, where

the actual parameters would generally be subprograms.

2.6 Two sample programs: We now give two sample programs written in

Id: Hoare's quicksort and matrix multiply. Wwe have chosen
conventional algorithms for two reasons. First of all, we want to
show that a programmer proficient in ALGOL-60 would have no
difficulty in writing programs in Id, even though Id is a dataflow
language and has a difterent semantic base. Second, we want to show

that even conventional algorithms automatically exhibit a great deal

ot concurrency when expressed in Id. A complete discussion of the
second point must wait until Section 3 because it is related to the
unravelling interpreter of the base language.

2.6.1 Hoare's quicksort: 1In Id we write quicksort as

procedure quicksort (a,n)
(middle <- alil;
below,),above <-
(initial oelow <~ A; j <- @;
above <= A; k <= 0;
for i from 2 to n do
(1f a[1] < middle
then new below[j+1] <- a[i];
new j <= j+l
else new above [k+1l] <- al[i];
new k <- k+1)
return (if j>1 then quicksort(below,j)
else below),j,
(if k>1 then quicksort (above, k)
else above)))
return (initial t <- below+[j+1l]middle
for i from 1 to n-j-1 do
new t <- t+[i+j+1]aboveli]
return t)) (2.19)

On a single-processor, quicksort takes an average of O(n log n)
time anda 1in tne worst case O(nz) time. The above Id counterpart,
when complled 1into the base language and executed under the

unravelling 1interpreter, has an average of 0(n) and a worst case
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behavior of 0(n2), but reguires an average of 0O(n) processors. The
time complexity is reduced because of the possibility of executing
the recursive procedure calls in parallel. Given sufficient
processor resources, this will occur automatically and without any
analysis of the program. The mechanism which accomplishes this is

discussed in Section 3.

2.6.2 Matrix mutliply: The following procedure multiplies an £ x m

matrix a by an m x n matrix in the straight-forward way.

procedure multiply (a,b,£,m,n)
(initial c <= A
for i from 1 to £ do
new c[i]J<-(initial a<-A
for j from 1 to n do
new d[j]<-(initial s<-@
for k from 1 to m do
new s<-s+a[i,k]l*b[k,]]
return s)

return d)
return c) (2.29)

The above program executes in O(£+m+n) time wutilizing in the
worst case O(£mn) processors and in the best case 0(4n) processors.
The wunravelling interpreter will try to execute all of the
multiplications and n of the additions in parallel, thus reducing

the usual time complexity. of O(4mn) to O(L+m+n).

The reader should not conclude from these examples that Id is
just anotner language for writing programs. We are most interested
in expressing algorithms in a way that preserves the structure of
problem solutions. For many types of problems sequential languages
have worked well, and we would 1like to keep as many of these
features of sequential 1languages as is possible provided they are
not in conflict with the semantic basis of dataflow. However, 1in
Section 4 we will give examples of programs that one is not likely
to write 1if restricted to von Neumann semantics. Itubia a
well-accepted fact that language influences our thinking. We hope
that thinking in terms of dataflow will remove some unnecessary
constraints placed on us by languages with sequential control
Structures.
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3. The Base Language and the Unravelling Interpreter

The wunravelling interpreter (described herein) has been
designed to exploit even greater asynchrony then what is normally
realized in a dataflow language [Dennis73, Chamberlin71,
Kosinski73]. To see how the interpreter operates, we must examine
token flow in some detail. 1Imagine the operator f of Figure 3.la in
the body of a loop at a time when three complete sets of values from
outputs a and b are ready for processing, the results of which are
to be placed at output c. According to the first principle of
dataflow, since both input values x; and yj are present (from
outputs a and b, respectively), the first initiation of the operator
can take place and we can move to the configuration of Figure 3.1b.
Immediately the second initiation of the operator can occur on the
input values X, and yj. However, the implication that the second
initiation can take place only after the result due to the first
initiation has been produced 1is wunnecessary, since the second
principle of dataflow states that the actions of each operator must
be free of side-effects. To take full advantage of the freedom from
side-effects, 1let each distinct initiation of an operator be termed
an activity. Then we note that if sufficient free processors were
available, and if each activity were associated with one processor,
then in the case of Figure 3.1 all three activities (initiations of
operator s) could be carried out concurrently. The purpose of the
unravelling interpreter 1is to execute programs by generating
activities (in fact, large numbers of activities) for execution by
waiting processors. Of course, the main problem is to keep the
different sets of tokens from being mixed, since for correct
operation it is essential that the token carrying x; be matched only
with the token carrying Vi The unravelling interpreter
accomplishes this by appropriately tagging every token that 1is

produced with a destination activity name. The unravelling

interpreter is 1largely a set of rules for manipulating these

activity names.

3.1 Activity names: An activity is a single execution of a base

language operator. Each activity 1is assigned a unique activity
name, and all tokens carry the name of the activity for which they
are destined. The rules for generating activity names are based
upon the following principles:
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1. All tokens with identical activity names must be destined
for the same activity, that is, each activity has a name
that is unigue throughout the system, and

2. All tokens accepted by an activity have identical activity
names.

A machine composed of an ensemble of large numbers of identical
processing elements (PEs) 1is very well suited for the unravelling
interpreter. Consider a machine in which each PE can execute any
base language operator and can communicate with other PEs by sending
tokens through a communication medium. A copy of the program to be
executed 1is available to every PE, and each PE repeatedly goes
through basically the following cycle:

1. If a PE is free it looks for an allocation token* in the
communication medium. Whenever it finds such a token, the
PE acquires the activity name written on that token and
thereby becomes that activity. By decoding the activity
name, the PE discovers which operation in the program it is
supposed to execute and how many operands are needed before
it can initiate.

2. After acquiring an activity name, the PE waits for the
other operands to arrive from the communication medium.

3. When all required operands have been received, the PE
begins execution of the activity, and after a finite period
of time it terminates. The PE then produces result tokens
witn appropriate activity names and inserts them into the
communication medium.

4. The PE becomes free.

3.2 Generation of Activity Names: We assume each operator in a

dataflow program graph 1is uniquely labelled, and that it has some
specific number of input and output ports. As shown in Figure 3.2,
a fork connection is not an operator. By moving a fork back to the
output port to which it is connected and by assigning token
replication to that port, we can wuse the operator itself to
implement a fork. (Note that still no two 1lines converge on a
single input port.) Thus, the structure of a program graph is such
that each operator contains a destination list for each output port,
and where that destination list contains the names of all the input

*Exactly one input line to each operator can be distinguished 1in

that each token flowing along that 1line can be marked as an
allocation token.
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ports which are to receive identical output tokens. In the
remainder of this section we show how activities are created and
named, and how the structural integrity of the program graph is

maintained 1in the midst of a system based on activity name
manipulation.

A token is output from an operator and moves to the input of a
successor operator. Each token <carries both its data and its

destination activity name which we write as the ordered pair
<data, destination>

where destination comprises five fields: context u, procedure code
c, operator label s, initiation i, and port p. Logical groupings of
the values in various fields help to identify some facets of the
destination of a token. Thus fields c, s, and p specify that the

token under consideration is passing along the line of the program

graph connected to port p of operator s in procedure c. Any such
specification must, of course, be consistent with the static
structure of the program graph. The remaining fields u and i of the
token destination give the context u (for example, the procedure
application context) and initiation éount i consistent with the
dynamics of program execution. These latter fields u and i are
particularly important 'in the case of the two operators A and L
associated with procedure applications and loop expressions,
respectively. Operator A dynamically creates a new program graph,
while operator L copies only a portion of the executing program
graph, 1i.e., a loop. Under such circumstances it becomes necessary
to attach a wunique context name to the operator labels to
distinguish between the various initiations of two operators with
the same label, and in general an operator is uniquely identified by
fields u, ¢, and s instead of fields ¢ and s only. Considering
another grouping of the fields in a token destination, we may

identify a logical line by u, ¢, s, and p, rather than fields ¢, s,

and p only. The set of tokens associated with a logical line
contains all those tokens with fielas u, ¢, s, and p common in their

destinations. These tokens are called the history of that 1logical
line.

An activity of an operator is identified by the fields u, ¢, s,
and i and is written as the symbol "u.c.s.i". The symbol is called
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an activity name. The input tokens associated with an activity are

called the 1input token set and are easily identified as all those

tokens with fields u, c, s, and i common in their destination. The
process of generating activities is described by specifying how an
input token set is transformed to a set of output tokens, each token
intended for some successor activity. Even though lines in the
program graph have no actual physical significance, the activity
name generation process for each operator (specified below) makes it
clear that the structural integrity of a graph is never violated,
i.e., tne fields <c¢, s, and p of a destination are easily verified
correct. In general, even when 1logical 1lines are dynamically
created (the A and L operators) and dynamically destroyed (the A-l
and L-1 operators) no line of the program graph is added or deleted.
It 1is somewhat more complex to verify that the history of a line is
valid, that is, that no two tokens in the history of a line have the
same initiation count value i*. Brief arguments are given to show
that all operators produce valid histories, provided these operators
are interconnected in a proper way, 1i.e., according to a
syntactically correct ID construct. Any other interconnection of

base language operators is undefined.

Below we will specify in detail the semantics of dataflow
operators, where we ‘often make wuse of definition by case.
Notationally,

(a=>b; c=>d; ...; e=->f; qg)

means that if a holds then token b is the result; otherwise, if «c
holds then token d is the result; etc., finally, if no condition
holds then token g is the result. If no result token 1is specified
() + then none is produced. Also, the following semantic
specifications generally assume that u.c.s.i 1is the name of the
activity under consideration, and that the destination of a token is
port p of operator t. Because of the emphasis on activity names, we
have logically grouped the fields of the token destination part in
the form <activity name, port>, or <u.c.s.i, p>. Further, we often
refer to a logical line by the form <u.c.s, p>.

*This statement does not hold for streams. A valid history of a
stream line will be discussed in Section 4.
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3.2.1 Block Schema (functions and predicates): This category
includes SELECT and APPEND as well as all arithmetic and boolean
operators. The binary function F typically specifies the operators
of this class:

input = {<X,40.C.8.1,1>>, Lysu.Cc.5.1,2>>}
output = {<F(x,y),<u.c.t.i,p>>}

Instead of using the above formal notation, sometimes we will
express the semantics by writing the activity name and an
abbreviated description of its input and output as follows:

u.c.s.i == input: port 1
port 2

X
y

output: port 1 = F(Xx,Yy)

In case only one port is used, port numbers will be deleted.

As we have said, the history of line <u.c.t, p> is valid if no
two tokens have the same initiation count. We define a schema to be
valid if given wvalid input histories it produces valid output
histories. Since the initiation count is unchanged from input to
output for function and predicate operators, and since no two lines
converge on the same input port of any operator, it is clear that if
a function operator receives valid input histories, then the output
will be a valid history. Furthermore, any block expression (any
acyclic interconnection of functions and predicates and other wvalid
schemas) is also valid.

The interesting aspect of the activity name mechanism 1is that
two initiations of a function box need not initiate or terminate in
any particular order. Returning to the example of Figure 3.1, the
result token corresponding to the input values x5 and yjy can be
produced before the computation with tokens x; and Y] ever begins.

This obviously increases asynchrony over what it might otherwise be.

3.2.2 Conditional schema: The operator needed to implement
conditional schemas 1is the SWITCH operator. This operator copies
the single input datum onto one of the two output 1lines depending
upon the value of the boolean input. A SWITCH does not affect the
initiation count field of the tokens passing through it.

Assume in Figure 3.3 that the labels of the SWITCH, £, and g

operators are s, tgp, and tp, respectively. Then the SWITCH can be
described as

u.c.s.i -- input: data-port = x
control-port = b

output: T-port = (b=true -> x; 9¢)
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F-port .= (b=false -> x; ¢)

The QD operator does not affect the initiation count field i,
the context field u, or the data part of a token. 1In fact it does
nothing except change the value of the s and p fields according to
the (static) program graph connections. (Therefore the Qb operator
is implemented simply by merging it with the operator following it.
This operator is needed only to guarantee that lines in a program

graph are not connected together in an arbitrary manner.)

Following the example in Figure 3.3, if the history of output x
is valid then so will be the history of the lines going into boxes f
and g. However, if a token with initiation count i exists on the
line going into f, then no token with initiation count i exists on
the line going into g. Hence the initiation count of tokens going
into £ and g are mutually exclusive. ©Now let us assume that f and g
are valid schemas in the base language. Then, 1like functions and
predicates discussed earlier, f and g each merely copies the
initiation count from the tokens on its input lines to the tokens on
its output lines. Due to the disjointedness of the initiation
counts of the tokens on the lines coming out of £ and g, only a
proper history will result after merging the two lines via Gb.
Hence, if the histories of the input lines to a conditional schema
are valid, so will be the history of the output. Note that the
entire dotted box in Figure 3.3 behaves Jjust 1like an ordinary
function box.

3.2.3 Loop schema: A simplified loop schema is shown in Figure 3.4

where the corresponding ID expression is

( while p(x) do
new x <- f(x)
return x ) (3.1)

A loop needs operators D, D‘l, L, and L‘l, as well as a SWITCH.
All these operators are control operators and they do not affect the
data portion of the tokens passing through them. Each does,
however, affect the activity name of the tokens passing through
them.

(a) The D operator: This operator is used if and only if there is a
cycle in the base 1language program graph. A token going through
this operator is an indication of the fact that the next iteration
of the loop is underway. The D box simply increments the initiation
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count of the token passing through it.

u.c.s.l1 == input = X

output = <x,<u.c.t.i+l,p>>

To explain the operation of a loop, assume the L box in Figure
3.4 produces exactly one token and that the initiation count of that
token is 1 (we will show shortly that this is indeed the case). If
the predicate p produces a true valued output, then the data token
from L will take the T branch output from the SWITCH. If £ 1is a
valid schema then the output line of f (and the input line to D)
will receive a token with an initiation count of 1. The D box then
increments the initiation count of the token by one and sends it to
the SWITCH and to the predicate p for the next iteration. As long
as only that single first token is output by the L box, the history
of each line going into the SWITCH and the predicate will remain
valid. Since D always increments the initiation count by one, it
can never duplicate an activity name. The operator Qb also
preserves histories since the only token it receives from L has an
inifiation count of 1, and the tokens it receives from D all have
initiation counts of two or more. If the loop executes n times and
the preciate produces a false value on its n+lth execution, then the
token coming out the 'F branch of the SWITCH will have initiation
count n+l. Since this branch terminates the loop, the input to the
p-1 operator <can never receive more than one token. It 1is
interesting to note that tokens need not go around a 1loop in any
particular order unless constrained by the need for partial results.
This situation was illustrated earlier by the program in Figure 2.8
where it is possible for the jth, the 3j+lst, and in fact all
executions of box £f to go on concurrently. Even if the Jj+1st
execution of f terminates before the jth execution, no confusion or
mismatch of activity names can result. The unravelling or unfolding
of a loop is a very powerful feature of the unravelling interpreter.
Automatic unravelling, constrained only by those data dependencies
that are actually necessary, Jreatly increases the asynchrony of
programs (for example, £ could be another nested 1loop), many of
which would otherwise be considered completely sequential.
(b) The D-1 operator: This operator 1is the inverse of the D
operator, and serves to return the initiation count of the token

output along witn F branch of the SWITCH back to the value 1. The
first token that began the loop as output from the L operator had an
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initiation count of 1, the D operator incremented it for each
iteration of the 1loop, and now the D-1 operator ensures that the
output of the loop also has an initiation count of 1. The »-1
operator is

u.c.s.i -- input = X

outout = <x,<u.c.t.l,p>>

Before describing the L and L-1 operators, we would 1like to
point out that it is possible to define a base language without them
(for example, the languages in [Dennis73] and [Kosinski73] have
nothing corresponding to these operators). However, these operators
were introduced after we realized that the semantics of 1ID loops
could permit even greater asynchrony of execution. 1ID loops are
pure functions, that 1is, they have no memory of previous
invocations, or equivalently, an execution of a loop expression can
receive information only from tokens explicitly input to it. Thus
in the case of nested 1loops it is quite possible that the input
tokens for several instantiations of the inner loop may be available
at the same time. It is the L and L-1l operators (in conjunction
with the D and D-1 operators) which capitalize on this fact by
creating a new logical loop schema for each instantiation of that
loop, and by destroying that logical schema on loop termination.

(c) The L (loop begin) operator: The L operator accomplishes the
creation Of a new logical loop by changing the context part of the

activity name. Following is a description of an L operator with two
inputs (see Figure 3.5a):

u.c.s.i == input: port 1
port 2

X
Yy
output: port 1 = <x,<u'.c.tj.l,p1>>

port 2 = <y,<u'.c.ty.l,pa>>}
where u' = (u.s.i)
By changing the context u to u' = (u.s.i), L creates a

completely new set of logical lines and operators in the loop schema
for each input token set it receives. Equivalently, we may note
that L puts one token with initiation count 1 on each new set of
logical output lines. It is also clear that each token output by L
has a unique destination name because, based on that name, we can
deduce the input token which was itself assumed to be unique. It
should be clear that the requirement placed by the D operator on the
L box, namely that the L box produces only one token on each of its
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output lines, is satisfied by the definition of L. (Note that the L
operator does not have to wait for all its input tokens to arrive.
It may produce an output token as soon as it receives an input

token.)

since all input lines to the loop pass through the L. box, all
tokens involved in the 1ith instantiation of a loop will have
(u.s.i) .c common to their destination activity names. This
information is extremely useful in localizing the tokens belonging
to a particular instantiation of a loop.
(d) The L=l (loop end) operator: This operator is the inverse of
the L operator. It expects only one token on each input line and
changes its activity name back to the environment to which the

output token belongs. The following description relates to Figure
3.5b:

u'.c.r.l where u' = (u.s.i)

input: port 1 = x

port 2 =y
output: port 1 = <x,<u.c.tj.i,p1>>
port 2 = <y,<u.c.ty.i,pp>>

several facts about the above activity names are worth pointing
out. First, only an initiation count value of 1 is valid on any
input to L-1. Second, statement s in u.s.i must refer to the L
operator mate of the L-1 under discussion. Third, a close
examination of the activity names generated for a given output
logical 1line, say <u.c.tj,p;>, reveals that several initiations of
operator L‘l, each under a different context, contribute tokens to
that logical line. 1In a sense the L-1 operator collapses many input
logical lines into new output logical 1line. For example, input
logical lines o )Ty P 2 <{u,8.2)C.r,3>,
...<(u.s.i).c.r,j>..., all collapse to form the single output
logical line u.c.ty,pj>. Since each input 1logical 1line
<(u.s.i).c.r,j> contributes exactly one token with an initiation
count value of i to the output logical 1line <u.c.ty,pj>, the history
of that output logical line is valid.

The reader may be concerned about activity names becoming
arbitrarly large because the context field is recursive. Even
though this is logically true, names can physically be kept within
bounds by proper encoding of the information. As an example of such
encoding, consider the possibility of an L operator sending the



46.

context u' = u.s.i on a special "dummy" token directly to its mate
Lrl operator. Then it is easy to see that u' can essentially be
equal in size to u. With the help of the dummy token the L-1

operator will be able to generate the proper output.

Again, note that the dashed box in Figure 3.4 is a valid schema
(the ith gset of input values produces the ith get of output values).
Each instantiation of a loop and the corresponding new context u' is

called a 1loop domain, and all activities within a loop domain can

proceed independent of activities outside that loop domain,
including loop domains at the same and at other arbitrary nesting

levels.

3.2.4 Procedure application: Procedure application is specified by

the APPLY operator. Let us assume that the procedure definition
value Q@ (recall the definition of procedure values from Section
2.5.2) is being applied to arguments x and y for the ith jnitiation
of the APPLY operator. The APPLY operator must create a new logical
schema for each instance of execution of APPLY, and in this case the
schema to be created is Q. We do this by breaking APPLY into two
internal operators called A (activate) and A-l (terminate);
futhermore, every procedure must have a BEGIN and an END operator.
All these operators are related as shown in Figure 3.6. The purpose
of the A operator 1is to create, for each initiation of that

operator, a new logical procedure domain similar to the way in which

the L operator creates loop domains. Because of this similarity, we
say that all tokens with u.c common in their activity names belong
to the same logical domain, where that logical domain may be either

a loop domain or a procedure domain. The major difference between a
loop expression and a procedure application is that the same 1loop
expression 1is always executed at the same point in a given program,
but the particular procedure definition value that arrives on a
token at the APPLY may vary, and in general is not known in advance.
Equivalently, we can say that a loop is like a nameless procedure
that is applied at only one place in the program. In Figure 3.6 the
connection between the two logical domains (the calling and the
called domain) 1is with dashed lines since the connection is known
only at execution time. Note also that since APPLY is actually
carried out by two disjoint operators, it is not possible for an
execution of Q to keep an actual APPLY activity 1in execution
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indefinitely, for example, if Q never terminates.

Activiy name generation and various other functions of A, A-1,
BEGIN, and END are described in the following.

(a) The A (activate) operator: This operator examines the procedure
value supplied to determine how many actual parameters are needed
for tne execution of the procedure. It accomplishes this by

matching the elements in the list of formal parameters contained in
the procedure value with the actual parameters supplied to the A
operator on various input ports. According to the rules explained
in Section 2.5.2, a structure o containing the actual parameters
input to A, and the actual parameters carried by the procedure value
itself, and the environment* structure n, 1is constructed. This
structure o 1is supplied to the BEGIN operator of the applied
procedure. The activity name generation process for the operator A
is given Dbelow. It shows that a new logical graph is created
dynamically corresponding to the applied procedure. Assuming two
input ports, we describe the A operator by the following:

u.c.sp.i -- input: procedure port = Q
argument port 1 = Xx
argument port 2 =y

output = <o,<u'.cqy.begin.l1,1>>

where u' = (u.c.spq.i)

(b) The BEGIN operator: This operator essentially tears apart the
parameter 1list o that it receives from the A operator. It produces
a token for each input variable of the procedure Q (that 1is, the
procedure to which this BEGIN operator belongs) as well as a token
carrying the environment value n.

u'.cg.begin.l where u' = (u.c.sp.i)
input = o
output: port 1 = x
port 2 =y

where x and y are selected from o based on the names of the
corresponding formal parameters.

(c) The END operator: This operator first constructs a structure B8
containing the value received on each input port. It then sends
this structure to the A-l operator in the calling domain by changing
the context part of the input activity name.

Assuming two inputs, we describe the END operator by the
following:

u'.cQ.end.l where u' = (u.c.sp.1i)
input: port 1 = x
port 2 =y

output = <B,<u.c.sp.i,1>>

*The environment is discussed in Section 6.
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where B is the structure <1:x,2:y>

(d) The a-l (terminate) operator: This operator tears the B
structure apart and matches its elements with the number of output
ports. In the case of extra elements in B, it discards the extra
elements in B, and in the case where more outputs are needed, a-1
supplies an output value of £ (see Section 2.5.2).

u.c.sp.i -- input = 8

output: port 1 X
port 2 =y
where x is either g[1l] or g
and y is either B[2] or &

It is clear from the definition of END and A-l that if the END
operator were to receive two tokens on some input line (i.e., one
token with initiation count 1 and another with an initiation count
greater than 1) then it could generate two tokens for A-l with the
same activity name u.c.s.i and the history of the output 1lines on
A=l will not be valid. However, if Q is a valid ID procedure, Q
cannot produce more than one token on each output line. Hence the
A, BEGIN, END, and A-l operators, when supplied syntactically
corréct procedures, will produce only valid histories on all logical

lines.

The scheme discussed above for encoding the context part u' on
a dummy token sent from an L operator to an L1 operator, is also
applicable here between the BEGIN and END operators. Again, this

will allow essentially constant space to hold all context names.

3.3 Asynchrony in a sequential algorithm: In this section we

analyze the procedure given in Section 2.6.2 for multiplying two
matrices. The procedure of expression (2.20) assumes the matrices
are stored by rows, so a[i] gives the structure value representing
the ith row of matrix a. While discussing loop schemata in Section
3.2.3 we showed that the wunravelling interpreter exploits loop
asynchrony 1in two ways: by unravelling, ana by permitting
concurrent invocations of the same 1loop. Asynchrony in matrix
multiply depends on both. The innermost dot product will unravel,
for if the structure selections and the multiplications take longer
than incrementing the index k, the 1 through m values of k will be
generated gquickly, and the a[i,k]*b[k,j] operations will overlap.
But the additions in the innermost loop in this program must be done
serially, so it will take O(m) time to generate each dot product s
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(each element of row d).

Since the meaning of new d[j]<-expr is actually new
d<-d+[jlexpr, the value of new d depends upon the old value of d
(just like s above). However, many instantiations of the innermost
loop might be executing concurrently because each value of j can be
generated faster than a complete execution of the innermost loop.
Hence the time complexity of the Jj 1loop 1is determined by the
sequentiality of the append operations as opposed to the time to
generate each element of d. Since the first append operation (i.e.,
new d|l]<-expr) cannot begin until the innermost loop produces an
answer, the total time to generate a row d is O(m+n). Similar
arguments can be made for the loop with index i to show that the
total time complexity of the matrix multiply program is O(£+m+n);
note that the total number of multiplications, i.e., the total
computational flux, has not changed from that of a purely sequential
execution of the same program -- only the overlapping of operations
in time has changed. The importance of the unravelling interpreter
lies in the fact that it does not recognize unnecessary data
dependencies and thereby exploits the semantics of ID programs to

enhance the attainable asynchrony.

The above analysis was done assuming unlimited processors. If
only enabled operations are scheduled, then it can be shown that
processing time is inversly related to the number of processor
resources. In the case of matrix multiply, if only one processor
were available rather than £n processors, the time complexity would
be O(£Lmn) .
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4. Programming with Streams

All variables discussed in Sections 2 and 3 are called
simple variables. Another kind of variable is also possible
in Id: a stream variable. Stream variables generalize

the possible behavior of an activity in two ways:

1. A simple activity may input (output) a potentially
unbounded number of tokens from (onto) a single
stream line, and

2. Input and output of streams through an activity
is asynchronous, so a single activity may be in
the act of producing an output stream while still
accepting tokens from an input stream.

As an example, we generate a stream FIB comprising the

first k Fibonacci numbers by the statement

FIB « (initial f <« 1; nextf <« 1
for counter from 1 to k do
~ new f <« nextf; e
new nextf « £ + nextf
return all f) (4.1)

Statement (4.1) has the simple variable k and the constant 1l as
its inputs, and produces a stream of tokens at its output FIB.
The stream output FIB corresponds to the clause all £, i.e.,
the ordered sequence of values assumed by f whenever the loop
predicate is true (when l<counter<k). If k<1 initially, then
FIB will receive the empty stream. Figure 4.1 illustrates
the stream produced on line FIB for k=5.

As a second example, let us consider the electrical
circuit shown in Figure 4.2a. Let the state of an electrical
line be represented by an ordered pair giving the voltage and

the point in time when that voltage is said to exist on that
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line. We can then represent the dynamic behavior of an
electrical line by a stream of

<time: t, voltage: v>
structured values called a "voltage stream". Suppose at
time ti the voltage at the output port of Figure 4.2a is

(t If a voltage Vin is impressed upon the input port

VOut i)'

at time ti and held constant, then the behavior of the circuit

at time ti is described by the following equation

+1

T(t

Vout(ti+l) - Vout(ti) + (Vin(ti) - vout(ti))(l “ € i+l-ti)

where 1 is the time constant of the circuit. If the input
voltage varies in discrete steps then the output voltage
will also vary accordingly (see Figure 4.2b). If output
voltage is recorded every time a new input voltage is
impressed we can express the behavior of the circuit in
Figure 4.2a by an Id program. In the following assume IN
is the input voltage stream and OUT is the corresponding

output voltage stream.

OUT « ( initial in =< Vin(to); out « V (t t « t

out 0); 0

for each status in IN do

new t « status.time;

new in « status.voltage;
new out « out + (in - out)
*(1 - e+ (-tau*(status.time - t))

return all <time: new t, voltage: new out>) (4.2)

The for-each-loop above is ‘a new construct which accepts

each token as it arrives on stream line IN, transforms that
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token to a simple token and places that token on the simple
line "status", and finally executes the body of the loop
one time. This behavior is repeated for each token arriving
on the incoming stream IN. The return clause at the bottom
of the loop is active on each iteration (due to the all construct)
and consequently produces an output voltage stream on line OUT.
Execution of (4.2) terminates when the end-of-stream is
reached on IN. The function performed by (4.2) is interesting
for two reasons:
1. It illustrates a "history-sensitive" function,
whereby the output produced for a given input
depends upon inputs previously received, and
2. Input and output is asynchronous; not all input

need be defined before output can be produced.

4.1 Background

Viewing the inputs and outputs of some operating system routines,
e.g., I/O drivers, as streams is not new., Streams have also been
used by Landin [Landin 65] in describing the applicative
semantics of loops in ALGOL-60. There Landin defined a stream
as a list (i.e., structure) with some special properties regarding
‘the sequencing of evaluation. Essentially, the elements of a
stream (both Landin's and ours) have a total linear ordering
and are not required to exist simultaneously. Thus the
sequence of values assumed by a loop variable in ALGOL can be
easily modelled as a stream. However streams also have practical
advantages, especially when subjected to a cascade or a pipeline of

editing processes. For example in applicative languages*,

Note that Id is an applicative language.
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streams enable one to perform operations on lists (such as
generating them, mapping them, concatenating them) without
using an item-by-item representation of the intermediate
resulting lists. More interesting is the fact that streams
enable one to postpone the evaluation of the expressions that
produce the items of a list, until those items are actually
needed. Friedman and Wise have exploited these ideas in

pure LISP and other related languages [Friedman & Wise 76a,76b].

Streams also form an integral part of the language for networks
of parallel processes developed by Kahn and MacQueen [Kahn &
MacQueen77].

Streams were first introduced into dataflow by Weng in
[Weng 75] where he gave formal rules for constructing "well-formed"
dataflow schemata with streams. Weng does not allow any
cyclic schema with streams except in a very limited sense; however,
recursive schemas are defined in full generality. Weng did
not have to extend Dennis dataflow language [Dennis 73] to
implement his streams. The principal semantic difference between
Id and Weng's streams is that many Id streams can appear on
one line, while in Weng's language a stream is identical with
the history of a line.

The remaining sub-sections are concerned with showing how
streams can be implemented, and how they can be used to
solve problems. Streams introduce new capabilities into
dataflow that are necessary for programming certain kinds of
problems, e.g. the problem of updating databases (this particular
history-sensitive function is discussed in depth in Section 5).
However, streams are also interesting for problems that can be
solved by methods already presented in Sections 2 and 3, except

that streams often introduce still another level of asynchrony
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which can be very significant in exploiting machine concurrency.

4.2 Implementation of Streams

A stream is an ordered sequence of tokens, each token
carrying a value,and where the last token in the stream carries
the special value est (end-of-stream). Notationally we can
describe the stream of Figure 4.1 in Id by writing the stream
constant [1,1,2,3,5]; also, the empty stream may be written in
Id as [ ] which comprises exactly one token, the est token.
However, the Id programmer is never aware of the est token

and cannot use it as a value except by writing [ ]. Extending
the notation of Section 3, we denote the kth token carrying

the value Xk to activity u.c.s.i on stream line <u.c.s, p> by
<<Xk,k>,<u.c.s.i,p>>

We may denote an entire stream with n tokens as a set:

{<<Xk,k>,<u.c.s.i,p>> | l<ksn}

where the assumption is that the nth token is est.
We denote the number of tokens in stream A (including est) by Np-

The basic rules given in Section 3 for generating activity
names are also valid for streams. Even though an activity may
absorb more than one token on a port, no two tokens will have
identical stream positions. Hence, each token in the input set
for an activity is still uniquely identified. A further

requirement on streams makes this task even simpler - a stream
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cannot have missing token positions. If the est token appears
in stream position n, then a token is defined for each stream
position k such that 1l<k<n.

The following shows how the four categories of Id
expressions - blocks, conditionals, 1loops, and procedure
applications - and some extensions of these expressions are
implemented when stream variables are used. We assume that
variables are typed as either stream or simple and that the
type of a variable does not vary during the execution of
a program. For convenience we will denote stream variables
with upper case letters. This convention has been observed

in both examples given earlier in this section.

§:2.1 Block expressions (functions and predicates): Several

functions and predicates are defined on streams, some of which
are primitive and others of which are included in the language
simply because they are useful. Many of these functions

and predicates will be used in implementing various Id constructs
shown later. Activity names for streams in functions and
predicates are manipulated in a manner identical to that for
simples (see section 3.2.1); only the data parts and the
stream positions are affected. Therefore we will show the
manipulation of only these parts under the assumption that

the input activity name u.c.s.i is transformed into the
destination activity name u.c.t.i. If an operator has more
than one output then it is assumed that the ith output port

is connected to input port Py of statement t;. As before, if

an operator has only one port then port numbers are not shown.
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(a) size (A): This function produces a simple value giving
the length of the input stream A (recall that na is the

number of tokens in stream A, including the est token).

u.c.s.i -- input: (stream) {<Ak, k> | lsksnA}

output: (simple) n, - 1

(b) empty (A): This predicate produces a boolean token true
if A = [ ], otherwise a false token is produced.

u.c.s.i -- input: (stream) {<Ak, k> | 1sksnA}
output: (simple) (nA = 1 » true; false)
(c) first (A): This function outputs the first token of

stream A provided stream A is not empty.

u.c.s.i -- input: (stream) {<A., k> | lsksn,}

output: (simple) (nA=l > &3 Al)
(d) rest (A): The result stream is all but the first member

of stream A.

u.c.s.i -- input: (stream) {<A,, k> | lsksnA}

output: (stream) (nA=l~+ {<est, 1>};

{<Ak+l’ k> | 1sksnA—l})

(e) cons (x,A): The output stream has x as the first member

and A as the rest, i.e. if X represents the output stream
then X = cons (first (X), rest(X)).

u.c.s.i -- input: port 1 (simple)= x
port 2 (stream) = {<A,, k> | 1s<ksn,}

output: (stream) {<x, 1>} u {<A k> | 2sksnA+l}

k-X'

(f) consf (A,x): This function is similar to cons except that
the input x appears at the end of the output stream.

u.c.s.i -- input: port 1 (stream) {<a,, k> | l<ksn,}

port 2 (simple) X
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output: (stream) {<Ak, k> | 1sk5nA—1} v

{<x, n,>,<est, n, + 1>}

A A

(g) concatenate(A,B): The output is a stream with the tokens
ot A (except the est token) preceding the tokens of B.

u.c.s.i -- input: port 1 (stream) {<a,_, k> | lsksnA}

port 2 (stream) {<Bk, k> | lsksnB}

output: (stream) = {<A;, k> | 1ikinA—1} U

{<By, ny-1 + k> | 1sksngl

(h) filter(x,A): This function produces two output streams.
The stream on output port 1 contains all those tokens of A
that are not equal to x, while the stream on output port
2 specifies the input stream position of those tokens selected
to appear at output port 1.

I

u.c.s.i -- input: port 1 (simple) X

port 2 (stream) = {<a, k> | ls<ksn,}
output: port 1 (filtered stream)

= LJ (Ak#x + {<Ak,count>}; d)
lsksnA

port 2 (position stream)

= k) (B #x > {<k, count>};¢)
lﬁkSnA

where count = 4 {j|l<j<k A Ak#X}

(i) equalize(A,B): This function outputs two equal length
streams formed from input streams A and B by truncating the
longer of A and B to the length of the shorter. The
truncated portions of A and B are also output as remainders
(one of these two output remainder streams will be empty,
by definition).

u.c.s.i -- input: port 1 (stream) {<a

kl
{<B

port 2 (stream) K’
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output: port 1 (equalized A stream)

-+~ {<a ¥

= (n, < n

i k> | 1l<ks<n

B k’ A
{<ap, k> | 1ls<ks<ng-1} v {<est, np>})

port 2 (equalized B stream)

g < np > {<By,

{<B,, k> | 1<ksn,-1} v {<est,n,>})

IA

= (n k> | 1sksnB};

port 3 (remainder of A stream)

= (nA

IA

n_, » {<est, 1>};

B

{<AnB—l+k’ k> | l<ksn,-ng+1})

port 4 (remainder of B stream)

= (nB < n, > {<S§E' 1>};

{<BnA-l+k’ k> | lsksng-n,+1})

(j) extend(A,x,B,y): This function also outputs two
streams of equal size, formed from the input streams
A and B. However the length of the output streams
is equal to the longer of streams A and B. The shorter
stream is extended by x or by y depending upon which input
stream is to be extended.

u.c.s.i -- input: port 1 (stream) {<Ak, k> | l<kszn,}

A

port 2 (simple) X

port 3 (stream) {<Bk, k> | l<ksn_}

B
port 4 (simple) =y

output: port 1 (extended A stream)

IA

= (n n_ - {<Ak, k> | 1sksnA—l} u

A B
{<x,k> | np<k<ng-1} v {<est,ng>};

{<a

wr k>} | l<ksn,})
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port 2 (extended B stream)

= (n.<n, - {<B_, k> | lsksnB—l} U

B A k'’
{<y, k> | ng< ksnA-l} u {<est,n,>};
{<By, k> | l<k<ng}
(k) exif(A,B,x): This operator means "extend A to B by x, if

necessary", and is a useful combination of the equalize

and extend operators as shown in Figure 4.3. Unlike extend
and eguallze, exif is not symmetric. It produces a stream
which is equal in length to stream B. In case A is longer
than B, the output stream contains the first ng -1 tokens of A.

Otherwise enough x tokens are added behind stream A to extend
its length to that of stream B. The remainder of stream A
is also produced on a separate port.
The above functions and predicates are available to the
Id programmer; some will also be used later to implement the
for-each-loop and other constructs. As has already been
pointed out, the general rules for activity name manipulation
are also followed by stream functions. However, as opposed
to simple functions, stream operators can begin producing
output tokens as soon as enough input has been received to
calculate any result token(s). For example rest(A) can produce
tokens as soon as it receives any input token. In particular,
the arrival order of tokens for rest (A) is totally immaterial.
Similarly empty(A) can produce a true or a false token as
soon as it receives any token belonging to stream A. But even
though answers can be produced before all input has been received,
the activity continues to remain in existance until it absorbs
all its input tokens. (Otherwise, there would be unused
tokens left to clutter up the machine.)
To understand the kind of asynchrony that is possible with

streams, let us consider the block expression (4.3).
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(A « cons(3,A);
B « concatenate ([2,7,47,A7):
return A, B) (4.3)

l,l> = <3,1> immediately

upon receipt of the simple input value 3. Thus the input stream

The cons function outputs the token <A

A to cons is defined, which allows cons to produce token
<A2,2> = <3,2> etc. 1In this manner A becomes an infinite
stream of 3s. while B is the result of concatenating the
stream [2,7,4] and A. Both A and B are returned as the
(infinitely long stream) result of (4.3).

We indicated above that tokens within a stream may
appear as input to an activity at a time out of phase with
their positions in the stream. Such a condition might easily
afise in an implementation with varying token communication
delays. But even more important we also allow stream output
tokens to be produced in a time order unrelated to stream
position order. Thus tokens appearing late in physical stream

position might still be produced early in time.

4.2.2 Conditional expressions: Consider the Id conditional

expression
{if p(x,A) then f(A) else g(B)) (4.4)

where f(A) and g(B) are streams. The base language translation

of (4.4) is identical to the case when f(A) and g(B) are simples.
The meaning is that if the predicate is true (the predicate

must be a simple boolean value), then the result of the expression
is stream f(A), else it is stream g(B). Any expressions may

appear in the then and else clauses that satisfy the rule.
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given in Section 2.2 for the case of simple value expressions
(e.g. both clauses must specify the same number of results).
There is only one further condition we must now impose on

the expressionsappearing in the then and else clauses:

corresponding results in the then and else clauses must
both be simples or both be streams.

To implement the above conditional on streams, we
simply extend the definition of the SWITCH (Section 3.2.2)

operator for the case of stream data inputs:

u.c.s.i -- input: dataport (stream) = {<X;, k> | lsksnx}

control port = b

output: T-port (stream) (b=true - {<Xk, k>

| 1<ks<n}; ¢)

(b=false > {<X k>

F-port (stream) o

| 1<ks<ny};¢)

Just like any other operator, a SWITCH with stream input
is asynchronous from input to output, so if the boolean
token has already arrived then each stream input token can

be output immediately without waiting for further input.

4.2.3 Loop expressions: Loops on streams can be very involved

expressions. However, if streams appear simply as another
variable in a loop, then the schemata already discussed in
Section 3.2.3 provide the appropriate semantics - we simply

1

extend the operators D, D -, L, and ™1 to handle stream input

and output just as we did for the SWITCH operator above by
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replacing any reference to a simple variable x in the definition
with the stream reference {<X;, k> | 1ls<ksn }.

As we saw at the beginning of this section there are
also some new loop constructs concerning streams. The following

paragraphs consider these constructs.

4.2.3.1 The all construct: A loop is a natural stream generator
as demonstrated by expression (4.1). A somewhat idealized loop

incorporating the all construct is

( initial x <« f(a)
while p(x,n) do
Y « g(xln) 7
new x < h(y)
return all x, all y, x ) (4.5)

the base language translation for which is given in Figure 4.4

where we have introduced a new operator:

(a) The E—l operator: This operator is necessary for
implementing the all construct. It accepts a simple
token as input and changes its activity name to conform

to a token belonging to a stream.

u.c.s.i --input: (simple) x
output: (stream element) <<x,i>,<u.c.t.l,1>>

Note that every initiation of operator E—l with activity
name prefix u.c.s contributes to the production of the

same stream, that is the stream on line <u.c.t,1>. Further
note that this output stream always has an initiation count
of 1.

There are two important points about Figure 4.4. First,
recall that L—1 is asynchronous on stream input and output
(all x and all y in the above example). Second, all x returns

exactly those x for which p(x,n) is true, and this means that




all x all y X

Figure 4.4

Compilation of expression (4.5)

showing the all construct
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the final x is not included in the output stream. The figure
also shows that since any stream is terminated by an est
token, est is automatically output for every stream being
generated. Note that the history of each stream line is valid and
that the streams produced have no missing tokens.
The all clause is not necessary for writing stream programs

in 14, but it can simplify matters considerably. Expression (4.6)
produces the same results as (4.5) but involves substantially
more computation (two partial streams are circulated completely
around the loop on each iteration), and it functions with far
less asynchrony.

(initial x <« f(a); X « [ J; Y « [ ]

while p(x,n) do

Yy « g(x,n);

ew Y « consf(Y,vy);
ew X « h(y);

ew X « const (X,x)
return X, Y, X) (4.6)

o}
-3

3

=
£

The base language translation of expression (4.6) is given
in Figure 4.5. Even though expression (4.5) and (4.6) produce
the same results, they are semantically different because they
result in different base language programs. This situation is
gquite different from the translation of for-loops into while-loops
that was discussed in Section 2.3, since the semantics of a
for-loop can only be expressed in terms of a while-loop. 1In
this sense, expression (2.11) and (2.12) are semantically the
same since they result in identical base language programs;

again, this is not the case for expressions (4.5) and (4.6).




H

[1]

new Y : y
h

new x

new X

S

new n

Figure 4.5
This loop (from expression (4.6)) produces results
identical to the loop of Figure 4.4,

but by circulating streams

69.
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4.2.3.2 The for-each construct: Another new loop construct
is the for-each-loop shown earlier in expression (4.2). To
show how a for—-each-loop is translated, as well as some other
new constructs, consider expression (4.7) for computing the

number s of elements in stream B that satisfy some predicate g.

( initial s « O
for each b in B do
T (if g(b) then new s <« s+l
return s, all new s ) (4.7)

First note that the default meaning of the conditional statement

is
(if g(b) then new s « s+l else new s <« s)

Second, expression (4.7) produces not only the final value

s but it also produces a stream giving a running count of the
number of tokens in B that satisfy the predicate g. The phrase
new s in the return clause refers to the newly created value

of s, rather than the old value of s. The base language
translation of expression (4.7) is given in Figure 4.6. As

before, it uses the E_l operator for the all construct, but

a new operator E is introduced to implement the for-each construct:

(b) The E operator: Each activity of this operator takes
a single stream of tokens as input and produces a
sequence of simple tokens for different initiations
of the operator that follows it.

u.c.s.l --input: (stream) {<Xk, k> | lfkinx}

output: (simples) {<X,,<u.c.t.k,p>> | 1<ks<nyg}
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Figure 4.6
Translation of expression (4.7)

showing the for-each construct
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Note that the input stream always has an initiation
count of 1, and that the initiation counts of the
output tokens correspond exactly to the stream
positions of those tokens in the input.

So the reader may be certain of the semantics of expression (4.7),

a while-loop equilvalent is given in (4.8):

( initial s # 0; 8 « [ ]
while not empty (B) do
(Lf g(first(B))then new s <« s+l);
new B « rest(B) ;
new S < consf (S, new s)
return s, S) =

(4.8)

Suppose we modify the above problem slightly so that in
addition to producing a stream giving a running count of those
eléments in B that satisfy predicate g, let us determine the
size of the smallest prefix of B that contains n such elements.
We also wish to output the suffix of stream B, if any, after
determining the above prefix. A program for this new problem
is

( initial s «0; i « 0
for each b in B while s<n do
new i <« i+1l;

(££ g(b) then new s <« s+l);
return all new s, i, remainder B ) (4.9)

This loop can terminate for one of two reasons: s<n and B

runs out of tokens, or s=n. In the first case the final value
of i will be the size of stream B, while the remainder of B
will be the empty stream. In the second case, i will give

the desired result and the remainder stream will contain all



B

those elements of B which come after the ith element. Expression
(4.9) can also be written as a pure while-loop by changing

the loop predicate of expression (4.8) to (not empty(B) and s<n)

and by introducing some detail involving i. However, since

B may be an infinite stream*, we are most interested in the
latter expression, the semantics of which appears in Figure 4.7.
This concern is quite practical since an infinite stream

should not be circulated in a loop, ratherAit should be taken
apart one token at a time as in a for-each-loop. Figure 4.7
also shows stream B some distance from the E operator, since

not all tokens in B will necessarily be used prior to loop
termination. Thus a signal is necessary to indicate whether a
token from stream B is needed or not. If the loop predicate
turns false, then the signal stream (labelled S in Figure 4.7)
is terminated by generating an est token. Also, since a

token must be received from stream B before the loop can begin
execution, a true valued token is put in front of the signal
stream by cons. (This starts the whole mechanism.) The signal
stream is used as a control input to the exif operator placed
between the L and the E operators. The exif operator acts like
a valve and lets a token pass only if it is needed for the next
iteration of the loop. Due to the extra true token in the signal
stream, the last token coming out of operator E is also extra and
it is destroyed by the DELETE-est operator which is represented

by in the diagrams.

*Infinite streams are not just a mathematical curiosity, but are
very useful in modelling continuously operating systems.
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A for-cach-while loop corresponding to expression (4.9)

Figure 4.7

lremainder B
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(c) The DELETE-est operator: This operator lets all the
tokens except the est token pass through. This
operator is not available to the Id programmer.

u.c.s.i -- input X

output (x # est > X;0)

The graph enclosed in the lower dashed box in Figure 4.7
is needed to generate the correct remainder of stream B. When
the predicate s<n turns false before tokens in stream B
are exhausted, the remainder stream produced by the exif operator
does not contain the first unused token of stream B( i.e.,
the last token to enter the loop body). The conditional construct
of the dashed box is used to include this last token in the
remainder stream under the appropriate condition.

The program shown in Figure 4.7 will terminate prematurely
if there are any ¢ tokens in the input stream B. This problem
is easily avoided either by keeping the ¢ token used by the
exif operator distinct from all the other possible e tokens
(say, based on token names) or by generating the boolean
sequence needed by the loop predicate (line c in Figure 4.7)
directly on the basis of the input stream B and the signal
stream S.
As a notational abbreviation in future base language

program graphs, we will use the EACH macro-operator in place
of both of the areas enclosed in dashed boxes shown in Figure
4.7. The EACH operator has sufficient information to generate

the remainder stream also. Hence, we do not show the two ouputs
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marked "last" as inputs to the EACH operator.

It is also possible to write the following type of loop:
for each b in B while p(b,x) do

where the tokens being extracted from the input stream are
also part of the loop predicate. Since the last b may be an
e token (actually an est changed to an ¢ token), an error
may be caused by evaluating p(b,x) unnecessarily; thus, the

base language translation of p(b,x) is actually

(if b # € then p(b,x) else false)

Extra care has been taken to ensure that no tokens remain in
the loop domain at loop termination. We note this point since
it would be possible to speed-up loop execution even further

if token clean-up was not a requirement.

4.2.3.3 The next construct: This mechanism has meaning only
when embedded in a loop and is very useful for merging streams
on the basis of some condition. Suppose we have two streams

X and Y and a stream B'of boolean values. A new stream may
be formed by successively taking tokens from stream X and
stream Y depending upon whether the token in stream B is

true or false. The semantic effect we wish to achieve is

described by expression (4.10).
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(if b then z « first(X); new X <« rest(X)
first(Y); new Y « rest(Y))
return all z,X,Y) (4.10)

Stream all z is the desired stream, and X and Y are remainder
streams. The syntax described so far is inadequate for achieving
the above without circulating the streams X and Y. As before,
we consider the circulation of streams X and Y wasteful since
at most one token is used from either stream in each iteration
of the loop. We introduce the next construct to build the
desired stream without circulating either X or Y. An expression
equivalent to (4.10) using next is

( for each b in B do

z « (1f b then next X else next Y)
return all z, remainder X, remainder Y) (4.11)

The next construct behaves in a manner distinctly apart
from our other constructs since next X takes a token from
stream X only when one is needed. For example, in (4.11) a token
is taken from X only when b is true, and no token is taken
when b is false. To see how this works, associate a virtual
counter with each stream X and a predicate with each next X
operator. The counter associated with stream X is incremented
when any of the predicates associated with next X is true.
(For the present assume there is at most one next X .) For
example, in expression (4.11) the predicate associated with
next X is "b", while the predicate associated with next Y
is "not b". A compiler dan detect the predicate associated

with each next. In order to translate next X , we generate
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a stream containing the successive boolean values of the
associated predicate. The length of this stream is determined
by the number of times the encompassing loop is executed.

Once this boolean stream has been formed, we filter out all
false tokens and send the resulting stream of true tokens

to the control input of an exif operator. The exif operator

interprets the stream of true tokens as a stream of signals

that indicate when a token should be released from stream

X. The base language translation of expression (4.11l) is
shown in Figure 4.8. The exif operator here also behaves
like a valve on a stream just as it does in a for-each-while
loop. A new operator DIST (distribute) is needed in Figure
4.8 to generate the appropriate activity names for stream X
tokens that are released into the loop. Again it should be
pointed out that some of the complexity of the program in
Figure 4.8 would vanish if self clean-up were not required.
(d) The DIST operator: The purpose of this operator is to

distribute tokens only to specific initiations of

another operator. This operator is available to the
programmer only via the next construct.

u.c.s.i —- input: data port = x
control port = j

output = <x,<u.c.t.j,p>>

As a notational abbreviation we will use the NEXT macro-
operator in future base language program graphs in place of
the larger network outlined in Figure 4.8. Since the exif

operator does not use the values of the tokens in the signal
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stream, we can use the stream containing the position integers
for signaling purposes. This will further cut down the
overhead.

The following is a more complicated example of a program
that merges streams. Suppose three input streams X, Y, and Z are to be
merged into two output streams according to specifications given by

stream I. Let i represent an individual token from stream I. If i=1 then

a token is.taken from both stream X and stream Y, and their
sum is merged into the output; stream Z is left undisturbed.
If i=2 then X is left undisturbed but the sum of the next
tokens from Y and Z is taken. In case i=3 a token is taken
from streams X and Z while Y is not affected. Expression

(4.12) shows how these streams might be formed.

(for each i in I do

(if i=1 then new X <« rest(X); new Y « rest(Y);
a <« first(X)+first(Y); b <« first(Y);
else if i=2 then new Y <« rest(Y); new Z <« rest(2)
A= T a € first(Y); b « first(Y)+first(z)
else new X « rest(X); new Z <« rest(Z)
a « first(X); b « first(2))
return all a, all b ) (4.12)

For input stream I = [1,1,2,1,3,2], the following output streams

would be produced by expression (4.12):

A

Il

L%y vy i %04y iy 30 X34y 1%y ¥5 ]
B = Lyyo¥pr¥3+z)/¥yr25i¥5+2;]
Expression (4.13) instead uses the next operator to

produce the same output as expression (4.12).




81.

( for each i in I do
a,b <«

(if i=1 then next X +next Y, next Y;
else if i=2 then next Y, next Y + next Z;
else next X, next 2)

return all a, all b ) (4.13)

The translation of expression (4.13) is quite involved;
the following program is semantically identical to expression
(4.13) but is better suited for illustrating the techniques of
compiling the next construct. (Nevertheless, the programmer

would probably consider (4.13) easier to write.)

( for each i in I do

a,b « (if i=1 then (y, <« next Y ; return next X +y.,y.)
P34 g, gy < pext 1'¥1

else next X, next Z)
-return all a, all b)

1
2
3 else if i=2 then (y2 « next Y; return Yo rYytnext Z)
4
5

As noted before there may be several next constructs
referencing a given stream, the associated predicates of which
are not necessarily identical. For example, the predicate
associated with next X in line 2 of (4.14) is "i=1" while the

predidate associated with the next X of line 4 is "i#l and i#2".

Recall that there is exactly one counter associated with each
stream regardless of the number of next clauses in which it

appears. This implies that next X on 1line 2 is affected by

next X on line 4, and vice-versa. The translation process deals with
this situation in essentially the following way (below we will state

the limitations of the translation technique):

1. Generate sequences of true/false tokens for every next
operator in a loop (remember that only the innermost
loop encasing a next affects its behavior). If the
ith token in such a sequence is true, then the ith
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iteration of the loop requires a token from the
stream being input to the next.

2. All such true/false sequences associated with the same
stream (say X) are logically ORed element by element
to generate signal stream for input to the NEXT macro-
operator. In this way the NEXT macro produces a token
exactly when some next associated with X requires a token.

3. The remaining problem is to send the token produced by
the NEXT macro to the appropriate place. Information regarding
which next clause expects the token is contained in the
true/false sequence associated with that next; these
true/false sequences are thus used to switch the tokens
to the waiting clause.

It is possible to take advantage of the fact that a given
predicate may be associated with several next expressions
on the same or different streams. We can, in genéral, reduce

the number of true/false sequences that must be generated and

thus considerably reduce overhead as shown in Figure 4.9.

The scheme described above operates properly when the
next clauses associated with a stream are "properly nested" in
conditional expressions. The following is an example where

the above translation technique fails.

(for ...

b « (if(if p then next X else f(y)) then next X
else g(y))

return ...)

It may be possible to assign some reasonable meaning to the
above next clauses, but at this point we are not prepared to
specify such complex semantics, nor does it appear essential

to do so. As we will show in Section 5 (Resource Managers),




all a all b

Figure 4.9
The NEXT construct and the

compilation of expression (4.13)
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the next operator is already quite convenient and sufficiently

powerful for programming interesting problems.

4.2.3.4 The but construct: This construct is used

in conjunction with the all construct to withhold some

tokens from a stream. For example, if the return clause of a

loop expression is

return all x but a

then only those values of x that are not equal to a will be

returned. This construct was mentioned previously (Section 4.2.1(h))

when discussing the filter function, but is repeated here due to
its common use in loops; implementation is straightforward

and is shown in Figure 4.10.

4.2.3.5 Streaming a function: A common programming situation

is to perform an operation on several streams, element by
element. Since the streams may be of different sizes several
options exist. We have decided to let the smallest of the

input streams determine the size of the output stream. Alternate
semantics can be programmed by using the extend operator.
Expressions (4.15) and (4.16) give two different syntaxes for

streaming a binary function.

( for each x in X; y in Y do
z « £(x,y) A A1 e
return all z, remainder X, remainder Y) (4.15)

[f(@X,ey) ] (4.16)




filt?f(a,x) the but construct

Figure 4.10

The but construct
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The syntax of expression (4.16) does not permit the remainder

of streams X and Y to be returned.

An example:

Now, we present a program to generate in ascending numerical

order the first n elements of the set {2i3j5k | i,j,k=20} [Dijkstra76,
Kahn & MacQueen77]. One method for generating this sequence uses the
three queues X1, X2, and h3. Queue X1 contains numbers which are two
times the number last output, while queue X2 contains numbers which
are three times the number last output. The third queue h3 is
of length one and contains five times the number last output.
AtAany given point, the next number output is the smallest
number at the head of the three queues (i.e., min(hl,hz,h3)
where h; is the head of the ith queue). If the ith queue has
the smallest number at its head (thus becoming the next number
output), then a new element is added to every queue before the
ith queue, according to the rules stated above.

Expression (4.17) produces the desired set as the

stream output A. It is unusual in that it uses streams X1 and

X2 as inputs to the same loop that generates them.
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(A,X1,X2 « (initial hl’hz’hB < 2,3,5

for i from 1 to n do
c <« min(hl,hz,h3);

i = * ;: n
(if c hl thenﬂaf,xl,x2 <+ hl’2 hlf A; new hl + next X1

else if c=h2'then a,X Xy € h2,2*h2,3*h2;

new h, <« next X2

else a,XqrXy <« h3,2*h3,3*h3; new h

3° 5*h3)

return all a, all x,,"all x, but 4) (4.17)

4.2.4 Procedure application: Recall from Section 3.2.4 that

procedure application actually involves the four operators

A, A_l, BEGIN, and END. Like other control operators, the

semantics of these operators must also be extended to handle
streams. However, the change in the semantics here is more

involved. We consider each operator in turn.

(a) A (activate): In Section 3.2.4 the A operator always
had one output port which produced a single token
carrying the value of structure a (the list of actual
parameters). In order to maintain the asynchrony of
streams as well as to handle infinite streams, it is
necessary that a stream parameter be treated independent
of structure a. Therefore the A operator has a separate
output port for each stream parameter implied by the
procedure definition being applied. If too few or too
many input streams are actually supplied to operator A,
then we follow the rules given in Section 2.5.2 and
supply empty streams or delete extra streams as required.
The following description is for the case when the

procedure being applied requires one stream parameter and
two simples.

u.c.sA.i --input: procedure port = g
argument port 1 (simple) = x
argument port 2 (simple) =y
argument port 3 (stream) ={<Z , k> | 1l<k<n}
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output: port 1 (simple)

<a,<u’'.c

{<<2

Q.begin.l,1>>

krk>,<u'.c .begin.1,2>>
I 1>k>n}

I

port 2 (stream)

where u' = (u.cQ.sT.i)

(b) The BEGIN operator: The extension of the semantics given

in Section 3.2.4(b) are quite straightforward and need no
further explanation.

(c) The END operator: Here again, each stream output must

’ be treated independently of the simple outputs (g). In
the following we assume the END operator receives two
simple inputs and one stream input.

v 1] e J
u .cQ.end.l where u' = (u.c.sT.l)
input: port 1 (simple) = x
port 2 (simple) =y
port 3 (stream) = {<Z;,k> | l<ks<n}
output: port 1 (simple) = <B,<u.c.s..i,1l>>

where B is ' <x,y>
{<<z, ,k>,<u.c.sy

| l<ksn}

port 2 (stream) Li,2>>

(d) The A - operator: This operator, in addition to doing
what is described in 3.2.4(d), also adds streams or
deletes extra streams. Activity name generation is
extended in an obvious way from the case of simples
to handle streams as well.

It is clear from the semantics given above that applying

a procedure with stream arguments and stream results causes that

procedure as a whole to be asynchronous from input to output.

4.4 Pipelining effect in stream programs

We illustrate the natural cascading effect of streams
by the program in (4.18) to generate primes according to the
Sieve of Eratosthenes algorithm. A recursive version of this

procedure is given in [Weng 75]. (See also [Kahn & MacQueen77]).
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procedure SIEVE (LIST)
(while not empty (LIST) do
prime « first (LIST);
new LIST + (!delete all the multiples of prime from LIST!
for each item in LIST do

a <« (if mod(item, prime) = 0 then ) else item)
return all a but 2)
return all prime) (4.18)

The above procedure, when applied to a stream of integers from
2 through n, will iteratively create sieves, each of which
filters out multiples of the first item of the iteratively
created LIST. Each iteration of the outer loop generates one
prime number and a sieve; it is this sieve that produces a
stream of integers for the next sieve if that stream is non-empty
(see Figure 4.11). The predicate empty (LIST) can be decided by
examining any token of stream LIST. Therefore the next iteration
of the loop will begin as soon as any token of the stream new
LIST is produced. Since the LIST gets smaller after every sifting,
it is possible that many sieves may work simultaneously. The
amount of time it takes to do the ith iteration of the outer
loop is O(si) where S; is the number of tokens in the LIST for
the ith iteration (recall from Section 4.2.3 that filtering
is completely sequential). However, due to the pipelining of
sieves the total time to execute procedure SIEVE will also
be_O(s) where s is the size of the largest LIST. Obviously the
size of the initial LIST is the largest and thus the SIEVE
procedure will take O(n) time (assuming an unlimited number of

processors is available).
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Figure 4.11

The Sieve of Eratosthenes in execution
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Deterministic interprocess communication channels
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In order to illustrate the asynchrony of this stream
procedure we compare it with the non-stream version of the
Sieve of Eratosthones given in (4.19) following:
procedure sieve (1ist, s) !s is the number of elements in the list!
nd tial. p ¢ Ol 1

while s#0 do
new le] < 1ist[i];

new i « i+l;
new list, new s < (initial a <« A; k < 1
for j from 1 to s do
(If mod (1ist[3jJ, plil) # 0
then new a[k] * llst[j]
EEE k <« k+1)
return a,k-1)
return p) (4.19)

Even though each sieve still takes O(si) time, this procedure
m

takes O(_Zl si) time, assuming there are m primes in the first
n number;T Since a complete new list has to be produced before
the next iteration begins, no overlapping of the sieves is
nossible.

We again want to emphasize the fact that these significant
speedups of programs takes place automatically. Dataflow
programs generally are more asynchronous than their counterparts
in sequential languages, and dataflow programs with streams
are even more asynchronous than comparable dataflow programs
without streams. It should also be noted that the actual number of
processors do not figure in writing programs. All dataflow programs
will naturally run slower if there is a lack of resources. However
no critical slow down will take place provided only enabled
activities are given processors. This is primarily due to

the side-effect free nature of dataflow.
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4.5 Streams as interprocess communcation channels

Suppose two processes Pl and Pz communicate by sending
messages to each other over unidirectional channels X and
Y as shown in Figure 4.12. Let us further assume that
communication between P1 and P2 is absolutely deterministic,
that is, both processes send and receive messages only when
certain time independent conditions hold. (We are not avoiding the
case when messages may be time-dependent, that is, non-deterministic
communication; we are simply postponing that discussion until
Section 5.)

It is quite convenient to model such deterministic communication
in Id. Expression (4.20) suggests a way in which P,y and P, may
send and receive messages. The outer block of expression (4.20)
is of no physical consequence. It is only for making the names
of channels X and Y known to each process without compromising the
security of either since the normal scoping rules of Id prohibit
both Py and P2 from determining anything about the internal
operation of the other.
! partial code fgr.pyocess Pl !
ceey X, oee <« (initial

while true do
g% qlis true send a message to P, !

% + L2k q, then my else A);

if p; is true then receive a message from P2 !
+< (if p; then next Y else ...);

N o= oo

return ..., all x but A, ...);
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! partial code for process P, !
ceeyr Y, ... « (initial
while true do

I'if q, is true send a message to P, !

y « (if q, then m, else 1);

! if P, is true receive a message from P,y !

z « (if P, then next X else ...)
return ..., all y but A, ...); (4.20)

It is easy to see that streams in Id really do behave like
channels. Several processes can receive messages from the
same channel, however, only one process can send messages
through that channel (the single assignment rule). Since no
special programming is required in order to use streams as
communcation channels, the full programming power of Id is
available to model interprocess communication. If processes
are communicating over hardware channels then Id streams provide
a good model for integrating these channels into a programming
language.

Lastly, we remark again that Section 5 complements this
discussion on interprocess communication by introducing the
concept of a resource and by showing how general resource

managers (for example, a database manager) can be written in Id.



94.

5. Resource Managers

Any high-level language suitable for writing operating systems
must include the concept of a resource, and it must also provide
mechanisms for synchronizing accesses to a resource. For
non-applicative languages, this is accomplished by using one or more
memory cells to represent the state of each resource, so simple
reading and writing (which includes P and V) of those cells is used
to coordinate and to control those resources. Thus resource sharing
among several processes is accomplished in an indirect way by the
sharing of memory cells. Furthermore, some degree of nondeterminism
is usually implied in the use of resources, for example the order in
which a computer responds to two terminals, or the scheduling of two
identical printers, may depend upon when those respective resources
become available. Any reasonable model for resource managers must

therefore incorporate a facility for nondeterministic programming.

The sharing of memory cells to effect indeterminism and access
synchronization 1is not appropriate to Id since there are no memory
cells to share. 1In this section we show the facilities that are
present in Id for writing resource managers and how those facilities
are implemented in the base language. We feel that Id provides a
good framework in which the programmer can think about resource
managers and produce program code that «closely reflects the
structure of the problem he seeks to solve. Further remarks on the

approach Id takes to resource control are given in Section 5.4.

5.1 A primitive resource manager: Figure 5.1 outlines a very

primitive resource manager in which the token produced by output s
represents the current state of the resource being managed. The
state s 1is part of a loop, so the next value of s is determined by
the function f acting on the current value of s and the incoming
user request, each request arriving as a component of the input
stream X.

Expression (5.1) below is an attempt to represent the resource
manager described by Figure 5.1. However,

( initial s<-a !initialize the
- resource state!
for each x in X do
answer, new s <- f(x,s)
return all answer, s ) (5.1)




RESULT

Figure 5.1

A primitive resource manager

$5.



96.

expression (5.1) is an incomplete model for two reasons. First, it
contains no provision for indeterminacy. Second, the expression
could at best be a procedure being independently applied by the
several contending processes. But a procedure application has no
side-effects, thus no interprocess communication, and thus no
successive values of s. (One vossibility instead is to pass the
resource to each process in turn as a parameter, a new value of
which is then returned as a result. The problems here concern
discovering who to send the resource to and the order of the

processes to which the resource should be sent.)

To remove these difficulties, we have introduced two new
semantic constructs into Id: a manager and a nondeterministic
merge. Toyether tney provide the facilities necessary to write

resource managers in Id.

5.2 Dataflow managers: In statement (5.2) a dataflow manager
definition value 1is being assigned to the variable md. It will be

shown that this manager definition satisfies all of the requirements

statea above.

md <- manager (sg)
(entry X do
RESULT <- (initial s<-sg
for each x in X do
new s, answer <- f(s,x)
return all answer)
exit RESULT) (5.2)

A manager definition value is essentially a pattern from which many
instances of manager values (i.e., managers) may be created. A
given instance of a manager may then be wused by any number of
expressions in a program by passing the name of that manager to that
program. The remainder of this section discusses Id and the
underlying base language implementation of managers by following the
creation and use of a particular manager derived from statement
(B:2) s

Creation of a manager requires a manager definition and
parameters for initializing that manager. For example, to create a
particular manager from (5.2) with the value a as its initial state,

we can write

me <- create(md,a) (5.3)
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The variable me receives a value of tyve manager and is the means by
which the programmer refers to (names) that manager. Figure 5.2
illustrates in some detail the base language implementation of a
manager value, while Figure 5.3 shows the relationships between the

operators that create and use manager values.

To use the manager me requires that the programmer first
acquire the value me; then to send the value y as the entry

argument to me, he writes
z <- use(me,y) (5.4)

Following Figure 5.3, we see that the effect of (5.4) is to place
the token from output y into the stream X of manager me; however,
the exact position of y in stream X cannot be determined unless, of
course, statement (5.4) is the only place from which the manager me
is called. Everyone using manager me sends tokens to exactly the
same manager, but since many independent processes may use that
manager the order of arrival of tokens at the entry of me is
indeterminate. Thus entry performs two tasks: it changes simple
tokéns into stream components, and then it nondeterministically
merges them into one single stream (stream X in the case of manager
me) . Conversely, response tokens produced by me on 1line RESULT
leave the manager through the manager's exit where they are
converted back to simple tokens and are then returned to the waiting
use. 1In particular, the use from where the ith member of X arrived
is the use to which the ith member of RESULT is returned. Any
number of uses may be made of me, each of which simply supplies one
component of the input stream to the manager being used. Finally,
the manager may be destroyed when there are no longer any references
to that manager. Destruction of managers is as yet an unsolved
problem of garbage collection in which, unlike structures, circular
references are possible. A scheme is yet to be devised which can
decide when to destroy a set of managers that reference nothing but
themselves and no one else references them*. As a final point, we

*I/0 is not described here, but each device will be a manager that
references those other managers that contain the data the device is
transmitting; see reference [Bic78].
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Creation and use of a resource manager
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do not allow streams as initial creation arguments nor as arguments

to use. All create and use arguments must be simple values.

we now consider the 1implementation of the constructs just
described as well as the when construct wnich is used to control the
timing of activities in a resource manager. The reader may still

wish to follow Figure 5.3 to maintain perspective.

5.2.1 The create construct: Given a manager definition wvalue and

initialization arguments, the CREATE operator builds a resource
manager and returns two related values, each of type manager, to be
used to refer to that manager. CREATE is actually composed of two
sub-operators as shown in Figure 5.3. Every manager has exactly one
MBEGIN operator.

(a) C3: This operator creates the manager object and produces the
activity name of the ENTRY operator as its result:

u.c.sj.i == input = cp

output: port 1 <(u'.cp.mbegin.l),
u.c.sp.i,1>>

(u'.cp.entry.dl)

port 2

Note that production of the activity name 1is asynchronous to
the 1initialization of the manager just created. We do this
specifically to allow a group of managers to be created, each
of which can bpe dinitializea with the manager object value of
the others. This is convenient when creating a set of manager
objects that are to communicate with one another. Also, the

context u' is arbitrary but unique, so u' = (u.c.sj.i) would
suffice. In case the manager object has more than one entry
port a structure containing the names of each of the entry
ports 1is <created. The structure is not of the type manager

object, only its constituent values are.

(b) Cy: Here we simply send the initialization parameters to the
MBEGIN operator in the manager object just created:

U.C.83.1 —— input: port 1
port 2

(u'.cp.mbegin.l)
X

output = <x,<u'.cp.mbegin.1,1>>

(c) MBEGIN: Every manager has an MBEGIN operator, just as every
procedure has a BEGIN. The only difference between BEGIN and
MBEGIN is that MBEGIN does not receive a "return address" from
CREATE, nor does it have a mate MEND operator.

u'.cp.mbegin.l -- input = x

output = x

5.2.2 The use construct: To use a manager object actually involves
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four new operators, as shown in Figure 5.3. We will let sp be the

label of the U operator, and sg that of its mate U=l.

(d) U: This operator sends a simple input token to the specified
entry port of the manager object.

u.c.sp.i -- input: port 1 = (u'.cp.entry.l)
port 2 =
output = <<X,(u.c.sT.i)>,<u'.cm.entry.l,l>>

(e) ENTRY: This operator accepts simple tokens coming from many
sources (each U operator is a source), changes them to stream
components, and merges them nondeterministically into a sinygle

‘ stream. Two streams are output: one stream contains the data
part while the other stream contains the "return address" for
the EXIT operator. Let t be the label of the destination of X.

u'.cp.entry.l where u' = (u.c.sj.i)
input (simple) = <x,(u.c.sT.i)>
output: port 1 (stream element) = <x,k>

port 2 (stream element) <<(u.c.sp.i) k>,
<u'.cp.exit.l,1>>
where k means this is the kth such

input to this ENTRY.

Note that even though many sources may be sending tokens to
this one ENTRY, it 1is a single activity and thus can keep a
count k of each token as it (nondeterministically) arrives.

(f) EXIT: The purpose of this operator is to return its data input
stream, after transforming them back to simple tokens, to the
activity specified in the "return address" input stream.

u'.cp.exit.1l where u' = (u.c.sj.i)
input: port 1 (stream element) = <(u.c.sp.i) k>
port 2 (stream element) = <x,k>

where k means this is the kth such
input to this EXIT.

output (simple) = <x,<u.c.s¢.i,1>>

Notationally, we often do not show the stream RA from ENTRY to EXIT
since 1t tends to clutter the diagrams; nevertheless, that stream
is always present.

(g) U-1l: similar to a-l in procedure applications, this operator
serves only to interface from the manager object back to the
user.

u.c.sp.i -- input = x
output = x

As a final note, multiple entry-exit pairs may appear 1in a

manager, provided each pair is named, as in
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mon <- manager (t)
(entry a: A;
b: B
4o s+
exit C;
D) {55

a
b
It the programmer writes

q <= create(mon,a)

then g will be a structure of manager object values, the selectors

of which are the names of the entry-exit pairs. Thus

use(g.a,y)

will send y to the "a" port of g, and thus to the stream A. The
result from the above use will be a single value taken from stream

C inside the manager.

5.2.3 The when construct: 1In this section we consider a construct

that is needed in programming managers to provide timing signals and

to release requests from gueues. For example, the expression
sin(x) when t

means that sin(x) 1is not to be evaluated until signal t is received.
The when clause behaves somewhat as an operator, and syntactically
has the highest precedence of all operators. 1In general, to hold
evaluation of the entire expression sin(x)/cos(x) until both of
signals a and b have been received, we write

(sin(x)/cos(x)) when (a,b)
which is translated into the base language equivalent of

if a=a and b=b then sin(x)/cos(x) else &

where the else clause will never be executed since the predicate is
a tautology.

5.3 Nondeterministic stream merge: 1In the previous section, entry
was specified to be a nondeterministic operator. A second

nondeterministic Id operator is available to the programmer and is
the subject of this section.

Let A and B be streams. Then C is the result of

nondeterministically merging streams A and B if

C <- merge(A,B)
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Such a definition of merge allows Id to accept tokens from streams A
and B as they arrive, and output them to C subject to the
restriction that the ith token is taken from A and output to C only
if the 1i-1th token o0f A has already been output to C. The same
behavior must hold for B. The merge construct is primitive ana is
implemented by the MERGE operator below.

(a) The MERGE operator: A complete operational semantics for this

nondeterministic operator is very complex, so we rely on the
reader's intuition and write only

u.c.s.i =-- input: port 1 (stream)

{<Aj Ij> I 1SJSnA}
port 2 (stream)

{<Bk,k> | 1<k<ng}

output (stream) = {<Cyp,m> | 1 <m<np+np-1}
where Cp = A5 or By and m = j+k-1, and where if Cp = Ay and
j>1, then thére exists an m'<m such that Cpy' = Ajy-1-

The behavior of the MERGE operator cannot be described in terms
of a function even from the histories of the input lines to the
history of the output line because output history is not uniquely
determined simply by knowing input histories. The semantics of
MERGE also cannot be described in terms of the set of all possible
input-order-preserving histories. This 1latter point 1is rather
subtle and is due to the possible presence of feedback (cycles)
within a program. For example, consider expression (5.6) a semantic
representation of which is given in Figure 5.4.

( X <= [a,b]; :
4 <= mergei{x,Y);
Y <- (initi#&11%=1
for each z in 2 while i<3 do
new i <- i+l;
y <= z*c

return all vy)
return Z,Y ) (5.6)

Since the loop defining stream Y will execute three times, Y will
receive three tokens (plus the end-of-stream token). There are also
only three possibilities for the firing of the MERGE operator, which
along with the final value of Y are given below:
1. The first two tokens are from X while the third token is
from Y = [ac,bc,ac?].

2. The first and third tokens are from X while the second
token is from Y = [ac,ac2,bc].
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3. The first token is from X while the second and third are
from Y = [ac,ac?,ac3]

Let us consider the first case above in detail. 1Inputs to the

merge are stream X = [a,b] and stream Y = |ac,bc,acZ], and there is
exactly one legal outcome for 2z = |a,b,ac,bc,ac?], Wwe point out

that there are at least nine other input-order-preserving histories
for these 1inputs, all of which are physically unrealizable due to
the presence of feedback. A semantic specification of MERGE

[Keller77, Kosinski78] is beyond the scope of this paper.

5.4 Example: The problem is to devise a resource manager* which has
control over a file and which accepts requests from users to read
and write that file. This resource manager may permit simultaneous
read accesses, but any write access must exclude all other accesses.
Figure 5.5 outlines a resource manager which, with only minor
changes, can implement three different scheduling policies
corrsponding to three different versions of this readers-writers
problem [CHP71, Hoare74]. The manager is composed of two logical
parts: the agent which performs the actual computation, and the
scheduler which blocks or enables individual requests within the
agent. We emphasize the word "logical", in that the scheduler
possesses no new primitive functions in order to carry out its work,

and is programmed entirely in Id.

This particular manager has two entry-exit streams, one called

"read" and the other "write" <corresponding to the two kinds of
requests that can be sent to the manager. For the resource manager
we are now describing, each request enters the queue READQ or the
queue WRITEQ according to whicn named entry port was used. Each
queued request will match with an enabling signal from the streams
READ_ENABLE or WRITE ENABLE (generated by the scheduler) which then
allow queued values to be released to the access _resource routine.
This is done using the when construct discussed above. Proper
operation of the resource manager requires that the scheduler be
notified whenever (1) a reguest enters the manager or (2) a reguest
completes 1its read or write access. Since these signals are
nondeterministically generated, we merge them within the resource

*The solution presented here is taken from [AGP77].



106.

manager to form a single stream X of signals to the scheduler.
Tnus, nondeterminacy may appear in two ways in this manager: in the
entry statements, and in the merge statement.

In the programmed solution of the resource manager shown in
Figure 5.6, the scheduler state 1is represented by the number of
active readers (ra), the number of active writers (wa), the number

of waiting readers (rw), and the number of waiting writers (ww).

The scheduler enables requests to leave the waiting gqueues by
producing a stream of reader enabling tokens (RE) or one writer
enabling token (we). Note that

1. wa<=1l at all times,

2. 1if wa=1 then ra=g,
3 if ra>? then wa=0.

(a) Version 1: ([Hoare74]) A new reader 1is not permitted to
proceea 1if a writer 1is waiting, and all readers that are
waiting when a writer completes are allowed to proceed. This
scheme prevents indefinite exclusion ("starvation") of both the
readers and the writers. The program for this version of the
problem is that given in Figure 5.6.

Recall again that the semantics of an entry-exit pair assumes
that the kth token in the exit stream corresponds to the kth token
in the entry stream. Note that this <correspondence in token
positions is not related to time, that is, the time at which the
k+1lst result token is produced may be before the kth input request
token has even been processed.

To embed the shared file file res (another manager object)
within the resource manager, we pass file res to it at creation

time:
file_manager <- create(resource_manager, file res)
Requests to read file res can now be performed by writing
use(file_manager.read, request)

Write requests are handled similarly. Note that "return all RE" in
Figure 5.6 returns a stream of simple tokens as opposed to a stream
of streams. This is accomplished by successively concatenating one
RE stream to the output stream at each iteration of the loop.

(b) Version 2: (Problem 1 of [CHP71]) No reader 1is kept waiting

unless a writer has already acquired the resource. Starvation
of writers is possible. This means that the condition for
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resource manager <-
manager (file) ! any file resource manager such as file res above !

(entry read: READQ;
write: WRITEQ do

! this is the agent code for a read request !

READ RESULT,READ DONE <- (for each r in READQ; re in READ_ENABLE do

s <- access resource(flle r) when re

return all s, all “"read exit" when s);

! this is the agent code for a write request !
WRITE RESULT,WRITE DONE <- (for each r in WRITEQ; we in WRITE_ ENABLE do

s <- access resource(flle r) when we
return all s, all "write exit" when s);

X <- merge (READQ,WRITEQ,READ DONE,WRITE_ DONE) ;

the scheduler begins here --

its function is to produce enabling signals !
! the input is stream X, the outputs are streams
READ ENABLE and WRITE ENABLE !

READ_ENABLE,WRITE_ ENABLE <-
(initial rw, ww, ra, wa <- @, A, 9, 0 ! initial state !
for each x in X do
new rw, new ww, new ra, new wa, RE, we <-
(if x = "reader™
then (if wa= ﬂland Ww= @‘

then Tw, ww, ra+l, wa, ["go"], A

gl_sg rw+1, ww, ra, wa, []I >\)
else if x = "writer"
then (if wa=p and ra=p
then rw, ww, ra, 1, [], "go"
else rw, ww+l, ra, wa, [], A)
else if x = "read exit"
then (if ra=1 and ww>@
then rw, ww-1, 0, 1, [], "go"
else rw, ww, ra-1, wa, [], ))

else !x = "write exit"!
(1flrw>ﬂ;——-::\ ___________________ . Y
then i@, ww, rw, @, (for i from 1 to rw do:
STTT--77T ™7 return all "go"), i .
elses oo Brvel@ S~ ngr - 3r T1ITEE S
then {rw, ww-1, ra, wa, [],_"go"s
else rw, ww, ra, 8, (1, 2)))®

return all RE, all we but ))

! the scheduler ends here !

exit read: READ RESULT;

write: WRITE_ RESULT end of the manager !)

Figure 5.6

The reader-writer resource manager
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generating an enabling signal for a "reader" is relaxed from
wa=@ and ra=@ to simply wa=@. This is accomplished by deleting
tne code marked A from the first case condition 1in the
scheduler of Version 1.

(c) version 3: (Proolem 2 of [CHP71]) No reader 1is allowed to

proceed if a writer 1is waiting. Starvation of readers is
possible. This does not affect the scheduling in the case for
a "read exit" because the same condition applied in Version 1.
However, for a "write exit" the scheduler must check for a
waiting writer (ww>@). In particular, the code for Version 1
in position B is interchanged witnh that in position C, and the
code in D is interchanged with that in E.

This example illustrates an advantage of dataflow. The program
presents explicitly the essential components of the problem: the
agent with separate reader and writer queues, and the scheduler
which clearly shows the conditions under which enabling signals are
sent and hence is easily changed to implement different policies.
In all the problems we have programmed, our experience has been that
the scheduler policy is explicit and easily altered to suit various
scheduling criteria. (Again, please note that the distinction made
between agent and scheduler is only for emphasis, and that no
special scheduling primitives are required.) Also, the scheme is
moaular, as illustrated here by the embedding of the file resource
manager within the resource manager manager. Futhermore, we have
found the basic structure ‘of Figure 5.5, differing only 1in the
number of entry-exit pairs, to be very useful in solving many
resource manager problems including a distributed airline

reservation system [AGP77] and a disk scheduler.

We also wisn to make two final points about resource managers
in Id. The first point concerns indeterminacy, which in sequential
languages is usually a secondary effect resulting from a particular
manner of wuse of shared variables. 1In dataflow, indeterminacy is
provided by explicit operators (MERGE and ENTRY in the base
language) which allows the programmer direct control over
nondeterministic behavior. The second point concerns the degree to
which the requesting process 1is separated from that manager's
internal controlling mechanisms. In a sequential language, each
requesting process actually controls and executes the code inside
the monitor [Brinch-Hansen72, Hoare74] representing the shared
resource. This characteristic of monitors in sequential languages

makes it difficult, for example, to replace a software resource with
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a hardware resource. It also makes it difficult to guarantee valid
use of tne resource control mechanisms within a manager, such as
enforcing conventions on the proper segquence in which semaphores are
to be signaled. 1Id, however, implements a resource manager as a
closed module which nondeterministically receives streams of
requests from other processes and acts upon these requests according
to the scheduler written by the programmer that is enclosed within
that manager. The requesting processes have no control over, and
are entirely independent of the resource manager module (which is
itself an independent process). Such a model completely separates
the wuser from the resource and will make hardware/software module

interchange easier to achieve.
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6. Programmer-defined Data Types, Extensionality, and Environments

Data abstraction deals with defining objects of a given type
and various operations on objects of that type. If done
successfully, data abstraction relieves the programmer from the
burden of knowing the internal representation of either the object
or the mechanisms of the associated operations. A common technigque
for defining abstract objects is to give a special syntactic
definition for the programmer-defined data type to serve as a
template for generating instances of those objects. The class
concept of SIMULA, the forms of ALPHARD, and the clusters of CLU are
examples of such special syntactic definition devices. All
operations on the data type are defined as procedures which are

encapsulated in the special definition.

Operator extensibility (e.g., extending the meaning of "+" to
operate on values other than numbers) can also be done in a similar
way by treating each operator as (potentially) a procedure.
However, there are at least two alternative approaches:

1. The definition of the programmer defined object (say,

"tree") includes the procedure giving the meaning of the
operator (say, "+"); or

2. The operator definition (e.g., the definition -of "+")
itself is extended to include the possibilities of operands of
new types (say, ‘"trees") Dbesides the usual types (e.g.,
numbers) .

6.1 Programmer-defined data types (pdts): The following describes

how programmer-defined data types and operator extensibility are
handled in Id. We first note that since a procedure definition 1in
Id 1is treated exactly like any other value in that it may be passed
as a result of a computation, appended to a structure, or composed
within another procedure definition, all programmer defined objects
could be represented by ordinary procedures in Id [Ravi Prakash78].
However, we have chosen to distinguish between an Id procedure which
represents a function (called a procedure) and a procedure which
represents a programmer-defined data type (called a pdt). This
distinction has been made to limit the problems encountered during
type checks of arguments and operator extensibility. These

considerations are discussed below.

To generate a pdt value, the programmer usually writes a
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procedure which, on application to a possibly empty parameter list,
generates a pdt value representing the abstract object. The syntax
of a pdt value follows the convention
pdt pdt_name (f,u,v,...) (<expression>)

where f represents the function to be performed (e.g., "+", '"pop",
or "u"), u is the pdt value, and v (although there may be more than
one such argument) is the second operand in case operator f requires
more than one operand. The distinction between two objects of the
same programmer-defined type is based upon the frozen values of the
parameters other than f, u, and v. Hence, these other paramenters

represent the internal state of the pdt value.

The operators are made extensible by the following semantic
extension to all non-control base language operators. As an

example, consider the binary operator "+":

a tk> a

llall is a

+

pdt value

i l

Figure 6.1

If the values a and b received by the + operator are meaningful for
the plus operation (i.e., integer or real values) the operation is
carried out; otherwise, the operator checks to see if either a or b
is of type '"pdt". If neither 1is of type pdt then an error has
occurred. If a is of type pdt then the "+" operator changes to an
apply operator as shown in Figure 6.1. This semantic extension is
based on the assumption that all value instances of
programmer-defined data types carry enough information to perform
the desired operation (i.e., "+"). The semantic extension shown in
Figure 6.1 also establishes how a pdt expects its parameters.

The last distinction between a procedure value and a pdt value
occurs in the use of the type primitive function. Type is a unary
function which returns a string that characterizes the type of the
input value. Thus type(5) returns "integer" and type("5") returns
"string“. The type of a procedure is returned as "procedure", but
type(x) 1is not defined on x if x is a pdt value. Rather, the value

returned for type(x) is the result of apply(x,"type",x). That is,
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the pdt. value is asked to respond to the type question itself; in
this manner, a programmer may distinguish between a "set" pdt value

and a “"stack" pdt value. We will now give two examples.

6.1.1 “Stack" as a pdt: We define an abstract object called stack
on which the following operations are meaningful:

"type": stack -> "stack"

"push": stack x value -> stack

"pop": stack => stack x value
"empty": stack -> boolean

Let us assume that a stack is represented as a structure and an
integer giving the member of the structure that is the top of the
stack. Procedure stack_gen will generate objects which will behave
as stacks when applied. For simplicity we assume that stack gen
generates only initially empty stacks.

procedure stack_gen () !returns an empty stack!

(z <- pdt stack (B,u,v,8,L) !s is the structure, £ is its size!
(if £ = "type" then "stack", )
else if £ = "push"

then compose (stack,<<4,s+[£+1]v>,<5,L+1>>), A
else if £ = "pop"
then (if =0
then u, error("illegal pop on stack")
else compose (stack,<<4,s-[£]>,<5,£-1>>),

s[£])
else if
el

if £ = "empty" then £=0, A
rror ("illegal operation on stacks"), )

o
—
1]
D

return compose (z,<<4,A>,<5,08>>)) (6.1)

Several facts should be noted about the above definition of the
programmer-defined data type stack. The pdt has two arguments aside
from £, u, and v, and both of these arguments are frozen before a
stack object 1is generated. 1In fact, s and £ represent the current
internal state of the stack. The stack pdt always returns two
values even though in four cases out of five the second result is a
dummy value. A further point is that the definition of stack given
in expression (6.1) 1is wvalid for stacks containing any type of
values. An advantage of not typing the elements that can be stacked
may be illustrated by considering the equality of two stacks. We
introduce some additional syntax at this stage. The meaning of |f|u
is apply(u,"f",u), the meaning of |f|(u,v) is apply(u,"f",u,v), and
SO on.
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(indtial~ u <='uy v <= v} flag <=~ “true

tu and v are stack pdts!
while not(lemptylu) A not(lemptylv) A flag do
new u, topu <- |poplu;
new v, topv <- |popl|v;
new flag <- topu = topv
return flag) (6.2)

Expression (6.2) will be meaningful for stacks comprising any
type of elements. The equality operator in the expression
topu = topv will dynamically become an apply operator if either or
both of the stack elements is a pdt. As long as "=" is meaningful
on stack elements, expression (6.2) will produce the right answer.
It is also possible to include "=" in the pdt stack definition (6.1)
by inserting an else if clause, f = "=", followed by expression
(6.2). A more efficient technique would be to introduce the
following code between the last else if and the else in expression
(6.1) ¢

else if £ = "="

then (initial v <- v; flag <- true
for i from 1 to £ while flag A not(|emptyl|v) do
new v, topv <- |popl|v;

new flag <- s[i] = topv
return flag A i>Z A |emptylv), A

It is worth noting that the pdt stack definition assumes
nothing about how the other stack v is represented internally. As
long as "push", "pop", "empty", and "=" are defined on v, its
internal representation is of no consequence to the stack definition

contained in u.

It is fairly easy to generaiize the procedure stack_gen to
generate non-empty stacks by letting the user pass the initial
contents of the stack to be generated as arguments to procedure
stack _gen. In order to avoid problems, extensive error checking
should be done on the user-supplied arguments before they are
converted to the internal representation for a stack (i.e., s and
£). It should be noted that the efficiency of procedure stack gen
has no direct bearing on the efficiency of stack pdts. Once a stack
value is generated, it does not use procedure stack_gen to generate

further stack wvalues.

6.1.2 A "set" as a pdt*: Suppose we represent a set as a boolean

*We are obliged to G. Ravi Prakash [Ravi Prakash78] for this
representation.
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procedure which tests any element for membership in the represented
set. In other words, the set {x|p(x)} will be represented by the
boolean procedure p. We include only the following operations in
our definition of a set:
"type": set -> "set"
€: set x value -> boolean

U3 set x set =-> set
12 set x set -> set

procedure set gen (p) !p is a boolean procedure!

(z.<-,pdt.set (f,u,v,p)

(if £ = "type" then “set"
else if £ = "e" then p(v)
else if £ = "u"

then (g <- procedure (X,p,V)
(p(x) v lel(v,x))
q' <-.compose{q,<<2,p>,<3,V>>)
return compose (set,<<4,gq'>>))
ﬂi@_ if f = llnll
then (g <- procedure (x,p,v)
(p(x) A lel(v,x));
q' <- compose (q,<<2,p>,<3,v>>)
return compose (set,<<4,q'>>))
else error ("undefined operation on sets"))
return compose (z,<<4,p>>)) (6.3)

This definition of sets functions properly on finite as well as
infinite sets. It does only the minimal amount of execution needed
to carry out the union and intersection operations. Again, nothing
is assumed about the internal representation of the other set
involved in these operations. And, in fact, different
representations of the same pdt may be intermixed as long as the
operators seen by the programmer are the only operations used, both
by the programmer and the different representational definitions
themselves.

6.2 The Environment: 1In order to provide a library of procedures

(such as sin, sgrt, etc.), and to allow the programmer to build a
dynamic execution environment without undue parameter declaration
and passing, Id automatically maintains an environment for the

programmer. The environment, denoted n, is a structure of named
procedures where the selectors of that structure are the names of
the associated procedures. An environment is defined relative to a
block and may change when execution passes from one block to some
inner block. To append a named procedure to the environment, the
programmer writes a procedure statement (as ooposed to a procedure
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expression) . For example, in expression (6.4),

A B
( «e. (x <= a+l;
y <- procedure(a,b) (f(a)+g(b))
procedure f(a) (a+l);
procedure g(b) (b+2)
return y(x,x+1) + (

R 1 I (6.4)

block B is immediately nested in block A. Now 1if np is the

environment brought into block B from A, then
ng <- Na + ["f"]procedure f(a) (a+l) + ["g"]procedure g(b) (b+2)
is the environment in block B.

This is how a block inherits and builds upon an environment.
On a procedure application the most recent environment is passed as
an additional parameter. Within the body of a procedure the
programmer may refer to another named procedure that has been placed
on the environment simply by writing that other procedure's name as
if it were an Id variable. If

1. the name does not appear on the 1left-hand-side of an

assignment in that block or any outer statically
encompassing block (within that same procedure),

2. the name is not the name of a procedure in a named
procedure statement in that block or any statically
encompassing block (within that same procedure), and

3. the name is not a formal parameter nor the name of the
procedure in which that block appears,

then that name is a reference to the environment and we <call that
name a n-parameter. During the translation ©process all the
procedure definitions and applications are adjusted to accomodate
environment parameters and selection from these parameters. For
example, expression (6.4) will be compiled as expression (6.5) even
though a programmer could not write expression (6.5) himself.
A B
( eee (x <= a+l;
y <= procedure(a,b,n) (n.f(a,n)+n.g(b,n));
f <- procedure f(a,n) (a+l);
g <= procedure g(b,n) (b+2);
nB <_ nA + [llfll]f + [ilgll]g
reLurn, (X X+dey ng) | +i A Luse ) ) roae ) (6.5)
In summary, an environment grows towards inner blocks, and

because appends are being used to define an environment, a name can
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be redefined in an inner block. Note also that any environment
modification affects only the procedures applied in that block and
the dynamic descendants of those procedures. That is, n only goes
into an expression as an argument, it never comes out as a result.
The environment is thus a dynamically varying value that reflects
the execution structure of a program. For this reason, if a
procedure A is written which depends upon a particular procedure B
being available via the environment, it may be dangerous to return A
from one block back to a higher-level block where A might be apovlied
in quite a different environment. (LISP programmers might view this
as a special case of the FUNARG proolem.) Like most conveniences,
the environment facility provided by Id depends upon assumptions,
here the assumption is that the context of a procedure's application
can be guaranteed by the programmer. In general, only library-type
procedures or tightly controlled self-sufficient blocks of code that
define their own procedures should be depended upon to properly
maintain context. As an example of the kind of problem that can

arise

procedure U(X)(...V(X)...);
procedure v(Xx) (...u(x)...);

are two mutually recursive procedures and both depend upon each
being in the environment of the other. However, if these procedures
are passed out of the environment in which they are defined, they
may not function properly. Two ways out of the problem are
possible:

1. Return the two procedures encompassed within another

procedure, which when applied causes them to redefine
themselves and the environment in which they need to exist.

2. Have the procedures explicitly pass themselves as
parameters to one another, just as unnamed procedures would
have to do.
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