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High-Frequency Green's Function for a Rectangular 
Array of Dipoles with Weakly Varying Tapered 

Excitation 
F. Mariottini', F. Capolino', S. Maci', and L. B. Felsen' 

1) Dip. Ingegneria dell'hformazione, Universiti di Siena, Via Roma 56, 53100 Siena, Italy. 
2) Dept. Aerospace and Mechanical Eng., and Dept. of Electrical and Comp. Eng., Boston 

University, 110 Cummington St., Boston, MA 02215, USA. 

I. INTRODUCTION 
The array Green's function (AGF) is the basic building block for the full-wave 

analysis of planar phased array antennas. Its representation in terms of element- 
by-element summation over the individual dipole radiations can be replaced by a 
more efficient global representation constructed via Poisson summation. The result- 
ing Poisson-transformed integrals can be interpreted as the radiation from continuous 
equivalent Floquet wave (FW)-matched source distributions extending over the array 
aperture [l], [2]. Applying high-frequency asymptotics to each FW-matched array 
aperture casts the AGF in the format of a generalized Geometrical Theory of Diffrac- 
tion (GTD) which includes conical wavefront edge diffracted rays as well as spherical 
wavefront vertex diffracted rays. In this paper, the results in [I], valid for equiampli- 
tude excitation, are extended to accommodate tapered illumination, which also in- 
cludes dipole amplitudes tending to zero at the edges. This extension, which has been 
performed in [3] with a numerical technique based on the discrete Fourier transform 
(DFT), is herein carried out by a direct Poisson-transformed asymptotic evaluation 
of the striparray GF with inclusion of asymptotically subdominant "slope" ed e and 
vertex diffracted fields, in addition to the dominant edge and vertex difFractecffields 
for appreciable edge illumination. Numerical results are presented for illustration. 

11. FORMULATION 
Consider a rectangular periodic array of NI x Nz linearly phased dipoles located in the 
zl,zz-plane (Fig.la), with interelement spatial period along the 21 and zz directions 
given by dl and d2, and the interelement phase gradient by 71 and 72, respectively. 
All dipoles are oriented along the unit vector Jo (a bold character denotes a vector 
quantity, and a caret-denotes a unit vector). Superimposed upon that background is a 
+-dependent amplitude-separable tapering function f(z1, zz) = fl(.q)fz(zz), sampled 
at the dipole locations, J ( n l d l , n z d z )  = f1(nldl)f~(nzdz) exp(-j(ylnldl + yznzdz)), 
with J(z:,z;)  denoting the dipole current amplitude, and (z:,z$) = (n ld1 ,nzdz )  de- 
noting the location of (n1,nz)th dipole. A time dependence exp(jwt) is suppressed. 
Without compromising practical utility, we assume f(q, z ~ )  real and positive in the 
domain 21 E [0, Lt], z~ E [O, Lz] and zero elsewhere; here, L1 = ( N I  - 1)dl and LZ = 
(Nz-l)dz. The electromagnetic vector field at  any observation point r = zlil +zziz+ 
yy can be derived from the vector potential A(r) = joA(r) by summing over the indi- 
vidual (nl, nz) dipole radiations f l (n,d,)f i (nldl)e- l ( l~"ldl+~~"~da) exp(-jk~,. ,) /(4nE~"~) 
where, R,,,, = lr - nldlil - nzdziz l .  Employing the (kZ1,krz) spectral Fourier rep- 
resentation of the free space Green's function as shown in [l], yields 

with I;(kz;) = &(kz*-7t)3dt f;(n;dJ, i = 1,2, g ( k , l ,  kZz) = k,lz~ + k,zzz + k,y 
and k, = ,/-, w!th 3mky < 0 for k2 - kz2 < kz,, 3mky > 0 for 
k2 - k:z > h& on the top aemann sheet of the kzi-plane (see [2]). The nj-sum 
I ; (ks ; )  in (1) is manipulated via the truncated Poisson sum formula into a ( p ,  q)-sum 
of Fourier transformed functions &(k;;) = J,". &"ikL:ifi(z;)dzi, translated by the FW 
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Fig. 1. (a)Geometry of the rectangular array, pI = m, pz = m. (b)!,, 
component of the electric field radiated by a rectangular array with excitation function 
f(zl ,  z2) = ni sin(mi/Li) , at a distance R = 1OX from the vertex. 

wavenumbers krju = yj + 27ru/di, with i = 1 ,2  and U = q,p; i.e. 

111. HIGH-FREQUENCY SOLUTION 
Henceforth, we assume [legitimately for actual tapering functions for large arrays) 
that f;(z,) varies slowly with respect to the wavelength A. For such weak variation, 
and since fi(zj) is positive in the domain z; E (O,L,), its spectrum f ; ( k l i )  is localized 
around k l j  = 0, thereby enhancing contributions to l i ( k l i )  from k,j = ksiu. Thus, 
adiabatic methods can be applied, based on perturbation about fj(zi) = const.. Con- 
sequently, the integral in (1) which defines A is dominated asymptotically by: a) 
one ( k z l r  k,z) saddle-point ( k : l ,  k&) that satisfies ( d / d k z i ) g ( k z l ,  k,z)  = 0, yielding 
the vertex diffracted field; b)"quasi poles" at k,i = k,ju that describe the same phe- 
nomenology and localization property_ as the spectral poles for the semi-infinite array 
[l], yielding FWs; c)critical points at k i l  and kZ2 which annul ( d / d k , l ) g ( k , l , k z z , )  and 
( d / d k z z ) g ( k i l q ,  k,z)  respectively, and lead to diffracted fields from edge 2 (located at  
z1 = 0) and edge 1 (at z2 = 0), respectively. Diffraction from the other two edges can 
be found similarly by including the appropriate phase reference in the second term in 
the right side of (2). 

Floquet Wave Contributions. Inserting (2) into (l), the contributions due to 
the critical points at  ( k z l ,  k,z) = (kZlq, kzzp )  are found by expanding the exponent of 
the integrand in Taylor series in a neighborhood of ( k z l q ,  kzzp) (see [4]). Retaining 
only the dominant asymptotic term of the remainder which applies for observation 
points away from the array surface one finals 

where z,,, = r, - ykrru /kgpqr  and kgpq = 4- (with branches chosen 
according to (1)) is real for propagating FW, and U,, = U ( Z ~ ~ , ) U ( ~ ~ ~ , ) U ( L ~  - 
zl,,)U(Lz - zz,,) with U ( z )  = 1 or 0 if z > 0 or z < 0 respectively. Criteria for 
the asymptotic validity of the expansion obtained in (3) will be given elsewhere. In 
(3), AgW is the pqth FW for eqniamplitude excitation [l], which is multiplied in (3) 
by the tapering function j(z~,,, zzPq) evaluated at the footprint ( z lppr  zzpq) of the pqth 
FW. The stationary phase evaluation of the radiation integral associated with each 
p, qth equivalent FW-matched aperture distribution would provide the same result 
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(see 2D case in [5])since (zip,, zzPq) is the stationary phase point of the p, qth spatial 
radiation integral. The function up,, is unity or zero for (zlpq, is inside or outside 
the finite array dimensions. The discontinuity of the truncated FW at the Shadow 
boundary (SB) plane angle defined by zip, = 0 is restored by the diffracted field that 
arises from the saddle point evaluation of (1). 

FW-Induced diffracted contributions. Here, we show only the final result, 
derived asymptotically in [4], for the diffracted field arising from the truncation at 
z1 E [O,LI] (edge 1) associated with the critical spectral points (k~l~o,k~z). The 
total propagating diffracted field arising from edge 1 is thus represented as Ad>' = 
C, A$'lJ,OIJ,L1 where 

in which Bz and its derivative B;(kZz) are defined in the text after (5), F ( z )  is the 
standard UTD transition function, FS(z )  = Zjz[l -F(z)] is the slope UTD transition 
function with argument S:,pq (defined in [4]) which vanishes at the SB planes, and 
U," = U(@: - PI), where 01 is the observation angle (see Fig.la) (similarly for 
U,"l). A$' is the q-th conical wave decaying along p1 and ,G'?f = 01 = cm-*(kzl,,/k) 
locates the shadow boundary cone (SBC) centered at the vertex, which truncates the 
domain of existence of the el-edge diffracted waves. In (4) the tapering function f1 is 
evaluated at the diffraction points zf, = z1 - ykZ1,,/k& with k;, = ,/-. 
The discontinuity across the SBC of the edgediffracted contribution is repaired by 
the diffraction from the vertex (0,O) of the array. Analogous diffracted fields arise 
from the other edges. 

Vertex diffracted contributions. Near the vertex at (qrz2)  = (O,O), for exam- 
ple, the q-edge and zz-edge planar FW-shadow boundaries interact with the vertex- 
induced conical SBCs with symmetry axes z1 and Z Z ,  respectively, that arise form the 
truncation of the corresponding edge diffracted fields. The confluence of these four 
SBs near the vertex defines the asymptotics pertaining to the vertex diffracted field 
A",'(r), obtained by the following steps. First, I, in the (2) is expanded asymptoti- 
cally (integrating by parts up to the second order) as 

l i (ka i )  N fi(O)Bi(kzi) -jf{(O)Bi(kzi) + O ( ( k z i  - k 2 i , J 3 ) ,  i = 172 (5) 
where &(ai) = [1 - &(ks.i-7.)dt]-,l and B:(kZi) = jdjd(b-7i)dt/[1 - d(k=i-7i)4]2 is 
its derivative. Next the integration contours are locally deformed along a 45O-line 
through the (kli, k$) saddle point and then extended parallel the real axis (see [Z]). 
Thus, inserting in to (1) the two terms of the asymptotic expansion of I;(kzi) ,  i = 1,2, 
we have A",'(r) - xi=, A?'(=) expressed as a sum of four terms. The asymptotics is 
then obtained by the Pauly-Clemmow method. Within this method, the asymptotic 
evaluation of integrals characterized by specific arrangements of critical points (saddle 
points (SPs) and singularities) is addressed by mapping the given integrand (both 
phase and amplitude) onto the simplest canonical integrand that accommodates the 
relevant critical point configuration. For the vertex problem, the critical parameters 
are tied to the (kzl,kzs) = (k;l,k;z) = ( k c ~ s ~ ~ , k c o s ~ )  first order SP, and to the 
k z ~ -  and k,s-poles in (1). For details, see [2]. The final asymptotics for each h-indexed 
integral yields 
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where 

am+lbl+l m m &*+2w<7+?) 

Th(aq, b p ,  W )  = 3°C L L (t - *)rn+yq - A ) l + l  d6hl (7) 
diT7 

are the canonical transition functions. In (7), the parameters aq, bp and (, q are 
defined in [2], the superscript (4 denotes the a-th derivative and, for h = 1, m = 
1 = 0, c = (I - w2)’/’; for h = 2, m = 0, I = I ,  c = -(I -U,’); for h = 3, 
m = 1, 2 = 0, c = -(1 - U’); for h = 4, m = 1, 2 = 1, c = (1 - The 
numerical evaluation of the integrals Th can be performed in terms of an algebric 
sum of standard Generalized Fresnel Integrals and UTI) transition functions. It is 
found (see [2]) that the vertex-diffracted contribution A’;’’ containing the integral 
function Tt accounts for the transition from a vertex-centered spherical wave to an 
edge-centered cylindrical wave and it compensates for the discontinuities across the 
SBCs. The other vertex diffracted terms AY are of higher asymptotic order and 
compensate for the discontinuities across the SBCs when the fi(zi) is weakly tapered. 
Note that when the excitation-function tends to zero at the vertex, only the AY,’ 
contribution remains. 

Numerical Example. The total high frequency solution is 

A = 1 A:? ~ ( Z I , ~ ~ ,  cpq + Ad”UiU; + 1 c A? (8) 

with U = q for i = 1 , 3 ;  U = p for i = 2 , 4 .  The preliminary numerical example in 
Fig.lb shows the accuracy of the truncated Floquet wave (TFW) asymptotics in (8), 
including the transition region close to the SBC,, when compared with a reference 
solution obtained by an element-by-element summation over the contributions from 
each dipole. The test array has N I  = NZ = 200 elements. The dipoles are oriented 
along 22 with interelement spacings d,  = d2 = 0.5X, interelement phasings 71 = 
~2 = 1.52/X and tapering f ( z l , z 2 )  = nisin(nzi/ l i) .  Electromagnetic quantities are 
evaluated from the vector potential as in [l], and only the E,, component is shown 
in Fig.lb along a scan at R = 1OX in the y,zz plane from the vertex of the array. 
We observe that when the observation point P passes through a = = 76O (scan 
angles= 14’ in Fig.lb), the TFW without the vertex contribution vanishes, and the 
tip contribution provides the required continuity for the total field. In this particulare 
case, fi(0) = f,(Li) = 0; thus the diffracted field and the vertex field involve only the 
terms fi(O), therefore providing a good test case for the additional ”slope edge- and 
vertex-diffracted fields”. 
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