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Evaluation of greenhouse gas emissions from hog manure
application in a Canadian cow–calf production system
using whole-farm models

AkliluW.AlemuA,D, KimH.OminskiA,Mario TenutaB, BrianD.AmiroB andErmias KebreabC

ADepartment of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
BDepartment of Soil Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
CDepartment of Animal Science, University of California, Davis, CA, 95616, USA.
DCorresponding author. Email: akliluwake@yahoo.com

Abstract. The development of beneficial management practices is a key strategy to reduce greenhouse gas (GHG)
emissions from animal agriculture. The objective of the present study was to evaluate the impact of time and amount of hog
manure application on farm productivity and GHG emissions from a cow–calf production system using two whole-farm
models. Detailed model inputs (climate, soil and manure properties, farm operation data) were collected from a 3-year field
study that evaluated the following three treatments: no application of hogmanureongrassland (baseline); a single application
of hog manure on grassland in spring (single); and two applications of hog manure as fall and spring (split). All three
treatments were simulated in a representative cow–calf production system at the farm-gate using the following whole-farm
models: a Coupled Components Model (CCM) that used existing farm component models and the Integrated Farm System
Model (IFSM). Annual GHG intensities for the baseline scenario were 17.7 kg CO2-eq/kg liveweight for CCM and
18.1 kg CO2-eq/kg liveweight for IFSM. Of the total farmGHG emissions, 73–77%were from enteric methane production.
The application of hogmanure on grassland showed amean emission increase of 7.8 and 8.4 kgCO2-eq/kg liveweight above
the baseline for the single and split scenarios, respectively. For the manured scenarios, farm GHG emissions were mainly
from enteric methane (47–54%) and soil nitrous oxide (33–41%). Emission estimates from the different GHG sources in the
farm varied between models for the single and split application scenarios. Although farm productivity was 3–4% higher in
the split than in single application (0.14 t liveweight/ha), the environmental advantage of applyingmanure in a single or split
applicationwas not consistent betweenmodels for farm emission intensity. Further component andwhole-farm assessments
are required to fully understand the impact of timing and the amount of livestock manure application on GHG emissions
from beef production systems.

Additional keywords: beef cattle, emissions intensity, single application, split application. 
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Introduction

The environmental impact of animal agriculture has received
increasing attention and, therefore, quantification and mitigation
of greenhouse gas (GHG) emissions from the sector has been a
focal point in agricultural research (O’Mara 2011). Globally,
agriculture is estimated to contribute more than 10% of
anthropogenic GHG emissions, with livestock accounting for
about one-third of the methane (CH4) emissions (Smith et al.
2007; O’Mara 2011). In 2012, the Canadian agricultural sector
contributed ~8% of the total national GHG emissions, of which
57%was from the livestock sectorwherebeef cattlewere themain
contributors (Environment Canada 2014).

Given the complex nature of livestock production systems,
quantification of GHG emissions from the sector and evaluation
of management practices tominimise GHG emissions at the farm
scale have been challenging (Schils et al. 2005). As such, in an
effort to quantify emissions and assess the whole-farm impact of

management practices, various component-based (e.g. Dijkstra
et al. 1992; Li et al. 1992;Kebreab et al. 2004) aswell as integrated
whole-farmmodels (e.g. Little et al. 2008; White et al. 2010; Rotz
et al. 2011a) havebeen developed and implemented. Evaluation of
management practices that reduce GHG emissions must be
conducted at the farm scale using a whole-farm approach
because implementation may yield synergistic and/or tradeoff
effects among farm components, which impacts net farm GHG
emissions (Janzen et al. 2006; Gerber et al. 2013). For example, a
whole-farm simulation study by Hünerberg et al. (2014) on an
averageCanadian beef farm indicated that including high-fat dried
distiller grain in the diet of feedlot cattle reduced enteric CH4

emissions but increased nitrogen (N) excretion, which increased
nitrous oxide (N2O) emissions. As such, the intensity of GHG
emissions increased by 6–9%on farms that fed dried distiller grain
comparedwith thecontrol averagepractice.Generally,whole-farm
modelling provides a tool to inform policy decisions with respect
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to estimated effectiveness of GHGmitigation practices associated
with changes in farm management practices.

Application of manure as a substitute for synthetic fertiliser
can potentially increase pasture productivity and reduce the
carbon footprint of livestock products (Petersen et al. 2007;
Hermansen and Kristensen 2011). For a cow–calf production
system in a nutrient-poor landscape such as the Canadian prairie,
where the largest proportion of the grazing land is unimproved
(native) pasture (McCaughey et al. 1999; Manitoba Agricultural
Review 2001), addition of external sources of manure to
grassland is essential to maintain and improve productivity
(Wilson et al. 2010; Bork and Blonski 2012). The use of
animal manure as a source of N also provides a means to
effectively utilise manure from intensive livestock operations
and is a common practice in several parts of the world, including
south-easternManitoba, Canada (Chadwick et al. 2000; Petersen
et al. 2007; Wilson et al. 2010; Bork and Blonski 2012).
Furthermore, application of animal manure reduces the use of
synthetic fertilisers and, therefore, the GHG emissions associated
with production and use (Bouwman et al. 2010). However,
application of manure to grassland has a potential to increase
soil N2O emissions (Ellis et al. 1998; Chadwick et al. 2000;
Rochette et al. 2008; Tenuta et al. 2010). Therefore, the challenge
is to identify management practices, such as amount and
time of application, that serve to improve productivity while
decreasing gaseous emissions. In the Canadian Prairies, it is a
common practice to apply manure on grassland once during the
growing season, either in the spring, summer or fall; however,
there is a lack of knowledge regarding its impact on net farm
GHGemissions. Therefore, the objective of the present studywas
to evaluate the impact of timing and amount of hog manure
application on farm productivity and total farm GHG emissions
from a cow–calf production system by usingwhole-farmmodels.

Materials and methods

Data sources
Data for model inputs came from a 3-year field experiment in
which manure was applied to grassland. Experiments were
conducted for 3 years from 2004 to 2006 on the University of
ManitobaLaBroquerie Pasture andManureManagement Project
site, La Broquerie, Manitoba, Canada (49�310N, 96�300W). The
experimental sitewas divided into 12 paddocks, with hogmanure
applied to eight paddocks, as follows: four paddocks, as a split
application in fall and spring, with 50% of the manure (70 kg
available N/ha) applied in fall and the remaining 50% in spring
(split); four paddocks, as a single application in spring (142 kg
available N/ha, single); and the remaining four paddocks that did
not receive hog manure served as a control (baseline). The
paddocks were further subdivided such that they were used for
either grazing or hay production (Wilson et al. 2010). The applied
hog manure was sourced from the primary cell of a three-cell
earthen manure storage at an adjacent commercial hog finishing
operation. Manure was applied at a rate based on plant-available
N content in the manure, assuming that 25% of manure ammonia
and ammonium were lost by volatilisation on surface application
to forage and 25% of organic N was available for plant use in
the year of application (Tri-Provincial Manure Application and
Use Guidelines 2006). Average total N applied over the 3-year

periodwas 252 and 236kg/ha for the single and split applications,
respectively (Table 1). Hog manure was surface-applied using
a splash-plate system without incorporation.

The quantity and composition of the applied hog manure,
pasture and hay yield, and nutrient composition were measured
throughout the experimental periods (Tables 1, 2). Soil properties
were measured before the start of the experiment (Fall 2003) and
throughout the trial in the fall of 2004, 2005 and 2006 before
manure application (Table 1).Manure sampleswere collected and
sent to a commercial laboratory for detailed analysis (Wilson et al.
2011). Rainfall at the site was monitored using a tipping bucket
rain gauge and the normal annual precipitation was 541mm. The
growing-season total precipitation (April to October) during
2004, 2005 and 2006 was 611, 574 and 283 mm, respectively.

On the basis of the detailed information collected from the
experimental site, the three management scenarios, namely (1)
zero applicationof hogmanureongrasslandasbaseline, (2) single
full application of hogmanure on grassland in spring and (iii) split
application of hog manure on grassland in fall and spring, were
used to simulate a cow–calf production system using whole-farm
models to evaluate net GHG emissions associated with time and
amount of manure application.

Description of the simulated cow–calf production system
The simulated system consisted of a cow–calf operation that
maintained breeding animals, a backgrounding operation that
raised weaned calves in preparation for finishing in a feedlot, as
well as annual crop and forage production. The cow–calf
production system was typical of the area and located in
proximity to hog production facilities that provided hog
manure to the land to enrich the nutrient content of the soil.
The annual production cycle consisted of three major production
periods, which began in late October when the animals were
managed in confinement (Table 2). During the first period,
1 November to end of February, the operation consisted of
150 cows, 24 replacement heifers, seven bulls and 104
backgrounded animals. Animals were confined in a seasonal
feeding area including pens and drylots and fed rations
formulated on the basis of grass hay supplemented with barley
grain and soybeanmeal.Beef cowswere assumed tobe in the third
trimester of pregnancy. At the beginning of Period 1, culled cows
were replaced by heifers from the previous year. Average cow-
culling and mortality rate were 0.15 and 0.0125, respectively
(Waldner et al. 2009). Replacement heifers (average daily gain
(ADG) = 0.68 kg/day) were bred and calved at 15 and 24 months
of age, respectively (Alemu et al. 2011). During the second
period, 1 March to end of April, animals were also managed in
confinement. Calves were born in late winter–early spring, with
an average bodyweight (BW) of 44 kg. The gender ratio of calves
was assumed to be 1 : 1 (MacNeil et al. 1994). At the age of
weaning (7 months, average BW = 190 kg), calves were
categorised as replacement heifers (24) and/or backgrounded
animals (104). Backgrounded animals were fed a high forage
diet containing 70–75% grass hay (ADG = 1.2 kg/day, Alemu
et al. 2011) and shipped to market at the end of March
(average BW = 433 kg for steers and 423 kg for heifers). Solid
manure produced during Periods 1 and 2 was managed using a
deep-bedding system, with barley straw as the bedding material,
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1.81 kg/animal unit.day, where one animal unit is equivalent to
the weight of a mature cow (Manitoba Agriculture Food and Rural
Development 2013). Measured soil parameters of the baseline
scenario were used as model inputs to simulate barley
production. On-farm produced solid cattle manure and synthetic
urea N were applied in spring to the barley field on the basis of the
recommendations inManitoba (Tri-ProvincialManureApplication
and Use Guidelines 2006). During the third period, 1 May to 31
October, animals (cows, suckling calves, replacement heifers and
bulls) were grazed on pasture continuously at a stocking rate of
0.56, 1.14 and 1.26 animal unit month per hectare for the control,
single and split management scenarios, respectively. An average
stocking rate of 0.59 animal unit month per hectare has been

reported as an ecologically sustainable rate for mixed grass
(wheat, needle and thread) native prairie pasture (Adams et al.
2013). Land area required for forage (pasture, hay) and barley
grain production to support the nutritional needs of the animals
was calculated on the basis of the total farm annual feed
requirement, land productivity and losses related to harvest,
storage and feeding (Table 3).

System boundary
The system boundary was defined by the GHG emissions
associated with the simulated cow–calf production from
‘cradle to farm-gate’ (Fig. 1). The study used an International
Organisation for Standardisation (ISO) partial lifecycle

Table 1. Average climate, soil and manure characteristics measured at the experimental site over 3 years (2004–2006) for the baseline and manured
(single and split application of hog manure) treatments (mean � s.e.)

Baseline, no application of hog manure on forage land; Single, application of hog manure in spring (100% spring application); Split, application of hog manure
on forage land in fall and spring (50% of the manure is applied in fall and 50% in spring)

Item Treatment
Baseline Single Split

Climate
Average daily solar radiation (MJ/m2)A 13.53 13.53 13.53
Total precipitation from April to October (mm)B 489.33 489.33 489.33
Nitrogen in precipitation (mg/L)C 0.87 0.87 0.87

Soil characteristics (0–30 cm)D

Texture Loamy sand Loamy sand Loamy sand
Type Gleyed dark gray Chernozem Gleyed dark gray Chernozem Gleyed dark gray Chernozem
pH 7.6 ± 0.1 7.5 ± 0.1 7.5 ± 0.1
Field capacity (water filled pore space) 0.58 0.60 0.60
Total organic C (g C/kg) 18.7 ± 1.4 18.2 ± 1.2 18.3 ± 1.5
Total N (g N/kg) 1.5 ± 0.1 1.5 ± 0.1 1.4 ± 0.1
NO3

- concentration (mg N/kg) 3.5 ± 1.2 4.5 ± 1.4 3.1 ± 0.8
NH4

+ concentration (mg N/kg) 2.7 ± 0.2 3.1 ± 0.4 3.2 ± 0.3
Olsen-P (mg/kg) 12.1 ± 4.0 30.4 ± 8.4 27.6 ± 6.9
K+ (mg/kg) 84.3 ± 19.2 131.7 ± 41.4 125.1 ± 32.4
Land topography Nearly level (<2%) Nearly level (<2%) Nearly level (<2%)

Imported hog manureE

DM (%) – 8.8 ± 1.9 6.0 ± 1.3
pH – 7.0 ± 0.2 7.2 ± 0.1
C:N ratio – 7.0 ± 0.2 7.2 ± 0.1
NH4

+ (g N/L) – 3.6 ± 0.2 3.4 ± 0.2
NO3

- (g N/L) – 0.002 ± 0.005 0.01 ± 0.01
Organic N, % total N – 36.8 ± 3.1 27.3 ± 1.9

Manure nutrient application rateE

Application (’000 L/ha) – 49.2 ± 8.0 48.7 ± 4.3
Total N (kg/ha)F – 252.0 ± 27.8 235.8 ± 12.2
Organic N (kg/ha) – 95.0 ± 40.1 39.0 ± 30.1
Ammonium-N (kg/ha) – 120.0 ± 11.0 126.4 ± 4.2
Total P (kg/ha) – 62.4 ± 3.3 44.0 ± 7.4

AMeasured at the experimental site from 2005 to 2010.
BRainfall at the sitewasmonitored using a tipping bucket rain gauge. The total precipitation for the growing season (April–October)was 611, 574, 283mm for the
2004, 2005 and 2006 growing year, respectively.

CNitrogen in precipitation was obtained from Environment Canada (2012).
DMeasured over 3 years (2004–2006), textural class was according to USDA classification. Information regarding soil characteristics was obtained from Tenuta
et al. (2010), Wilson et al. (2011) and Coppi (2012). Soil characteristics for the 30–120 cm were reported in Wilson et al. (2011) and Coppi (2012).

EAverage values for the composition and application rates of the imported hog manure applied in spring and fall (2003–2006) for the manured (split and single)
treatments were obtained from Wilson et al. (2010, 2011) and Tenuta et al. (2010).

FThe average (2004–2006) applied total N for the split and single hog manure applications were 240 and 252 kg/ha, respectively.
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methodology (ISO 2006a, 2006b). The GHG emissions included
were (1) direct emissions of CH4 from enteric fermentation and
manure, and N2O from soil and manure, (2) indirect emissions of
N2O from N leaching, runoff and volatilisation, and (3) carbon
dioxide (CO2) emissions from primary (on-farm energy use) and
secondary (production and transportation of farm inputs) sources
(Fig. 1). On-farm energy use included diesel fuel for farm
operations and electricity for housing and crop processing. Farm

inputs included hog manure, soybean meal, herbicide and
commercial urea-N fertiliser. GHG global-warming potentials
for a 100-year time horizon were expressed as CO2

equivalent units (CO2 eq), where: CO2 = 1, N2O = 265 and
CH4 = 28 on a mass basis, without including climate-carbon
feedbacks (Myhre et al. 2013). Total GHG emission of the
cow–calf production system was the sum of all GHG emissions
converted to CO2-eq units.

Raw materials

Energy resources

Diesel fuel

Pesticide

Feed supplements
(Protein, mineral)

Hog slurry

Electricity

Transport

Forage production
(Pasture and hay)

Beef cattle
(Backrounded)

Solid manure

Synthetic fertilizer Crop production

Beef cattle
(Cow-calf)

Liveweight

Functional unit
(1 kg liveweight)

Enteric emissions

Manure emissions

Soil emissions

Primary and secondary
CO2 emissions

Fig. 1. System boundaries and processes of a Western Canadian cow-calf backgrounding production system from ‘cradle to farm-gate’.

Table 3. Total land required for annual production cycle and expected yield, losses and nutrient composition of forage and barley grain used
in the whole-farm analysis

Yield and composition of grass hay and pasturewere obtained from thefield experiment conducted between 2003 and 2006 (Wilson et al. 2010), barley grain yield
for LaBroquerie areawas obtained fromManitobaManagement Plus Program (MMPP 2012) and barley strawDM (89%) and straw crude protein (38 g/kg) were
obtained fromNarasimhalu et al. (1998). Harvest and storage loss for grass haywas based onRotz (2003). Feed utilisation loss (trampling andwastage for pasture
land) was according to Adams et al. (2013). Baseline, no application of hog manure on forage land; Single, application of hog manure in spring (100% spring

application); Split, application of hog manure on forage land in fall and spring (50% of the manure is applied in fall and 50% in spring). Y, yes; N, no

Item Yield
(mg DM/ha)

DM (%) Crude protein
(g/kg)

Herbicide used Harvest and storage
loss (%)C

Feed utilisation
loss (%)

Land
required (ha)

Baseline
Barley grainA 2.02 88 127.3 Y 3 0 55
Grass hay 1.12 92 74.6 N 15 15 479
Pasture 1.52 38 97.5 N 0 25 414

Single
Barley grainA 2.02 88 127.3 Y 3 0 37
Grass hay 4.21 90 100.4 N 15 15 159
Pasture 3.45 31 181.7 N 0 25 205

Split
Barley grainA 2.02 88 127.3 Y 3 0 41
Grass hay 4.04 89 90.6 N 15 15 160
Pasture 3.69 32 162.5 N 0 25 186

ANitrogen applied on the barley field was from solid on-farm produced manure as well as synthetic urea nitrogen.

Hog manure application in cow–calf production system Animal Production Science E



Functional unit and allocation
The functional unit is the measure of the performance of the
production system inwhich all inputs andoutputs are related (ISO
2006b), and should be consistent to compare beef-production
systems (Crosson et al. 2011). In our study, 1 kg of liveweight at
the farm-gate was used as the functional unit (Fig. 1). Total
liveweight at the farm-gate was calculated from the average
weight of backgrounded steers and heifers as well as culled
cows sold from the farm. Emissions were also expressed per
unit land (t liveweight/ha) to consider the whole system as an
integrated production unit. These functional units have been
implemented in several previous studies (e.g. Phetteplace et al.
2001; Casey and Holden 2006a, 2006b; Beauchemin et al. 2010;
Basarab et al. 2012; Bell et al. 2012).

Because hog manure was used as fertiliser in the cow–calf
production system, emissions related to transport and application
were included in the whole-farm GHG analysis; however,
emissions associated with the storage and handling were
allocated to the hog farm as described by Knudsen et al. (2010)
and Whitman et al. (2011). Furthermore, emissions (N2O, CO2)
related to the production, processing and transportation of the
imported soybean meal were included in the whole-farm GHG
analysis usinganaverageemission factorof0.46kgCO2-eq/kgdry
soybeanmeal (Adom et al. 2012;McGeough et al. 2012; Table 4).

Mathematical models
Twomodelswere used to analyse total farmGHGemissions from
the simulated cow–calf production system, namely, the Coupled
Components Model (CCM) and the Integrated Farm System
Model (IFSM; Rotz et al. 2011a). Table 4 summarises the
different approaches, assumptions and emission factors used in
the models. A brief summary of each of the models is provided
below.

Coupled Components Model
Several models developed for different components of the

farm were coupled to estimate emissions from the cow–calf
operation. The CCM included: Cowbytes@ beef-cattle ration
balancer (Alberta Agriculture Food and Rural Development
2003), COWPOLL (Dijkstra et al. 1992), Manure-DNDC (Li
et al. 2012) and some aspects of the Intergovernmental Panel on
Climate Change (IPCC 2006). These models were simulated
separately for their respective farm components by maintaining
the carbon (C) and N flows within the production system.

Dry matter intake and diet composition for a representative
animal from each category during the annual production cycle
(Table 2) in CCM were estimated using the Cowbytes@ beef-
cattle ration balancer (Version 4.6.8). These values were used as
inputs for the COWPOLLmodel that was used to estimate enteric
CH4 emissions on the basis of predictions from rumen
methanogenesis and hind-gut fermentation as described by
Mills et al. (2001) and Reijs (2007), respectively. Excretion
and composition (organic matter, C and N) of faeces and urine
were estimated using an extended COWPOLL model based on
static equations that describe intestinal and hind-gut digestion
(Reijs 2007). For each component excreted in faeces and urine, a
constant C and N fraction was adopted to estimate the amount of
excretion. Urinary N balance was calculated by deducting the

amount of N in faeces, milk (for lactating cows) and in the body
(for growing animals) from the total N intake of the animal.

Emissions ofN2O andCH4 from soil inCCMwere estimated
using a process-based model, manure–denitrification–
decomposition (manure–DNDC) model (Version 2.0; Li et al.
2012). Manure–DNDC was simulated over 3 years (2004–2006
individually) to estimate N2O (direct and indirect) and CH4

emissions from soil, using the measured climate and soil
characteristic data collected from the experimental site as an
input to manure–DNDC (Tables 1, 3). The model simulated a
1-year production cycle and did not consider inter-year dynamics
(Li et al. 2012). Indirect N2O emissions were calculated from
manure–DNDC estimates of N volatilised and leached and the
IPCC(2006) emission factors for volatilisation (0.01kgN2O-N/kg
gasses volatilised) and leaching (0.0075 kg N2O-N/kg NO3

leached; Table 4).
Emissions of CH4 and N2O (direct and indirect) from on-farm

produced solidmanure inCCMwere estimated using IPCCTier 2
methodology (IPCC2006)because thevirtual farmconstructed in
manure–DNDC contained only cow and veal animal categories
and can accommodate only one animal category per simulation.
However, the typical beef cow–calf operation in western Canada
has cows, bulls, replacement heifers, backgrounded animals and
calves (Basarab et al. 2005; Alemu et al. 2011). Manure
management methods incorporated in the model were limited
to compost, lagoon and anaerobic digester, which differ from the
deep-beddingmanuremanagement systemused in themajority of
western Canadian beef operations (Beaulieu 2004). Methane
emissions from fresh cattle faeces deposited on pasture during
grazingwere calculated usingmeasured emission factors from the
experimental site (0.085, 0.096 and 0.118 g CH4/kg faeces for
baseline, split and single scenarios, respectively (Tremorin 2009).
The excreted urinary urea-like components (urea, uric acid
and allantoin) estimated by COWPOLL were assumed to be
converted into ammonium and ammonia during manure
storage and used to estimate indirect N2O emissions from
on-farm solid manure storage by applying the default IPCC
volatilisation fraction of 30% (Table 4). Emissions of CO2

from direct on-farm fuel use were calculated as the product of
the size of land area and a unique energy use value associated
with each crop type (Table 4).

Integrated Farm System Model (Version 3.4)
The IFSM is a farm-simulation model that estimates the

performance, environmental impact and economic sustainability
of beef, dairy and crop farms (Rotz et al. 2011a). The model
integrates nine major submodels that represent crop and soil,
grazing, machinery, tillage and planting, crop harvest, crop
storage, herd and feeding, manure management and economic
analysis. The model parameters reflect the management strategies
used in the beef industry in Manitoba. The formulated
management scenarios (split and single) were simulated by
adjusting the duration of manure storage in the IFSM. Manure-
storage options in the model were 6 months when manure was
applied to the field twice yearly (early April and late October; split
application) and 12 months when manure was applied to the field
once per year (early April; single application).

The model was simulated over 6 years (2005–2010) using
environmental parameters (temperature, precipitation, solar
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radiation) measured at the experimental site. Initial conditions
were reset each year as the model does not consider inter-year
dynamics. In a given year, IFSM simulated a sequence in a daily
time step that began with manure handling, tillage, planting,
growth and harvest operations, feed storage, feed utilisation
and herd production. Animal feed intake, performance and
manure production were modelled using the herd and feeding
components of the model. Feed allocation and animal responses
were related to the nutritive value of available feed and nutrient
requirements of the animal groups, estimated using the Cornell
Net Carbohydrate and Protein System, level 1 (Rotz et al. 2005).

The IFSM tracked emissions of CH4, N2O and CO2 from
different sources in the production system (i.e. crop, animal,
manure) as well as emissions related to production and transport
of resources used on the farm (Table 4). Enteric CH4 production
was estimated using the non-linear equation developed by Mills
et al. (2003) and CH4 emissions from solid manure storage
were estimated using IPCC Tier 2 methodology. However,
CH4 emissions from field-applied manure were based on
manure volatile fatty acids, which were assumed to decline
exponentially after application (Sherlock et al. 2002). A
constant emission factor of 0.086 g CH4/kg faeces (Sommer
et al. 2004) was applied for CH4 emission from fresh faeces
deposited on pasture.

Direct N2O emissions from forage- and crop-land were
estimated using a simplified model based on DAYCENT
(Chianese et al. 2009a). However, for direct N2O emissions
from manure storage, the model applied a constant emission
factor of 0.005 kg N2O-N/kg excreted N (Table 4). Indirect N2O
emissions were the product of default IPCC (2006) emission
factors for volatilisation (0.01 kg N2O-N/kg N) and leaching
(0.0075 kg N2O-N/kg N, Table 4) and model-estimated
ammonia volatilisation (from animal housing, manure storage,
field-appliedmanure, faecal- andurine-Ndeposited on thepasture)
andsoilN loss through leaching, respectively.The IFSMestimated
CO2 emissions from feed production and on-farm energy use, as
well as secondary emissions from the production of machinery,
fertiliser and pesticide (Chianese et al. 2009b).

Results

GHG emission estimates from the different sources (farm
components) and annual emission-intensity estimates are
reported in Table 5. The relative proportional contribution (%
of total farm emissions) of the various GHG sources within the
production system are indicated in Fig. 2, whereas Fig. 3 shows
the proportional contribution of each animal category to the total
CH4 emissions from enteric fermentation.

Baseline scenario

Estimates of annual emission intensity for the baseline scenario
were in close agreement, ranging from 17.7 kg CO2-eq/kg
liveweight using CCM to 18.1 kg CO2-eq/kg liveweight using
IFSM. When emission intensity was expressed per land basis,
estimateswere 1.06 tCO2-eq/hausingCCMand1.08 tCO2-eq/ha
using IFSM.EntericCH4was theprimary contributor to total farm
emissions (73–77%) followed by soil N2O (7.2–15.4%) and
manure CH4 (3.7–9.1%; Fig. 2). Methane emissions from
enteric fermentation were mainly from beef cows (69%)

followed by backgrounded steers and heifers (14%; Fig. 3). Of
the total farm GHG emissions for the baseline scenario, direct
emissions from animal husbandry (enteric CH4, manure CH4 and
N2O), accounted for 78% using IFSM and 90% using CCM.

Although the estimates of annual emission intensity for the
two models varied on average by only 2%, their differences in
estimating emissions from the differentGHGsourceswere higher
(Fig. 2). For example, the contribution of manure N2O to the
total farm emissions was 4.1% using CCM compared with 1.2%
using IFSM. Conversely, soil N2O contributed 7% of the total
farm GHG emissions using CCM and 15% using IFSM. Of the
total soil N2O emissions, CCM estimated 20% from indirect
sources, whereas IFSM estimated 19% from the same sources
(Table 5).

Manured (single and split) scenarios

Annual estimated emission intensities for the manured scenarios
were 40–47% higher for single and 38–56% higher for split
scenarios than those for the baseline scenarios (Table 5).
Expressed in land-based emissions, intensity estimates were
3.57 and 4.04 t CO2-eq/ha for the single and split applications,
respectively, usingCCM,whereas IFSMestimated3.64and3.66 t
CO2-eq/ha for the split and single applications, respectively
(Table 5). Given the addition of N from the hog manure
application in these scenarios, the observed increase in
emission intensity was expected. In addition to the increased
emissions intensity, application of hog manure also improved
farm productivity, expressed as liveweight per unit land
(Table 5). Compared with the baseline scenario (0.06 t
liveweight/ha), farm productivity was on average 134% and
146% higher in single and split applications, respectively. The
models differ in estimating farm emission intensity by 3% for
single application, with the highest estimate from IFSM (26.1 kg
CO2-eq/kg liveweight), and by 11% for the split application, with
the highest estimate from CCM (27.6 kg CO2-eq/kg liveweight).

Addition of hog manure significantly increased soil N2O
emissions, to the point where the combination of direct and
indirect N2O emissions matched enteric CH4 emissions
(Fig. 2). For the manured scenarios, total farm emissions were
mainly contributed by enteric CH4 (47–54%) and soil N2O
(33–41%). For both the single and split hog manure-
application scenarios, the greatest proportion of soil N2O
emissions were from direct emissions in CCM (19–24%) and
indirect emissions in IFSM (23–24%; Table 5). Overall, the
average contribution of direct emissions from animals (enteric
CH4, manure CH4 and N2O) were 61% in single and 57% in split
scenarios.

Discussion

Baseline scenario

Given the differences in production systems, farmboundaries and
assumptions, mathematical models used to estimate emissions
and global-warming potential factors of GHGs (Myhre et al.
2013), comparison of emission-intensity estimates with
previously reported values is challenging. However, some
comparisons can still be made between model estimates and
literature values for similar production systems. Estimates of
farmGHG intensity for the baseline scenario (17.7–18.1 kg CO2-
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eq/kg liveweight) were higher than previously reported estimates
(11.6–15.4 kg CO2-eq/kg liveweight) for Canadian beef
production systems (Vergé et al. 2008; Beauchemin et al. 2010,
2011; Basarab et al. 2012; Hünerberg et al. 2014). Beauchemin
et al. (2010) and Hünerberg et al. (2014) conducted a life-cycle
analysis for cow–calf through to the feedlot production system
by using the Holos model and reported an intensity estimate
that ranged between 11.9 and 15.4 kg CO2-eq/kg liveweight.
Furthermore, for a similar production system, Vergé et al.
(2008) and Basarab et al. (2012) used the IPCC Tier 2
approach to conduct the whole-farm analysis and reported an
emissions intensity that ranged between 11.6 and 13.8 kg CO2-
eq/kg liveweight. The observed variation may be related to
differences in model assumptions and production systems
analysed. Previous studies examined emissions from cow–calf
to the feedlot, whereas our analysis did not include a feedlot phase.
The feedlot phase has higher efficiency (Johnson et al. 2002;
Capper 2011); therefore, a whole-farm analysis that incorporates
feedlot operation is expected to have lower total emissions per unit
of production than does a cow–calf production system.Phetteplace
et al. (2001), for example, reporteda33%higher emission intensity
for conventional cow–calf production than for cow–calf to the
feedlot production (15.5 kg CO2-eq/kg liveweight gain).

Emission-intensity estimates expressed in land-based units
(1.06–1.08 tCO2-eq/ha) and farmproductivity (0.06 t liveweight/
ha)were smaller than values reported by Johnson et al. (2002) and
Beauchemin et al. (2010). For beef production systemsmanaged
on pasture and fed mixed hay in North America, Johnson et al.
(2002) reported an emissions intensity of 1.8 CO2-eq/ha. For a
beef production system in southern Alberta based on native
pasture and dryland crop production, Beauchemin et al. (2010)
reported a farm productivity of 0.18 t liveweight/ha. In the
current study, the baseline scenario was based on native
grassland with lower productivity, which increased the total
land required to support the production cycle (948 ha,
Table 3). Generally, even though the baseline scenario was
used for comparison in the current study, the scenario is rarely
recommended for long-term sustainability because the soil
nutrient reserve will eventually be depleted, risking long-
term productivity. As such, unless long-term implications are
also considered, short-term estimates alone are not reliable as
indicators of sustainability.

According to Johnson et al. (2003) and Vergé et al. (2008),
proportional contributionof entericCH4 to total farmemissions in
North American beef production systems ranged between 40%
and 70%. These values were comparable to the contribution of
enteric CH4 (73–77%) in the current study for the baseline
scenario, sourced mainly from beef cow and backgrounded
animals (Fig. 3). However, the greater estimates using CCM
(77%) can be attributed to the greater emission factor used in
COWPOLL (7–8% of gross energy intake) than the default IPCC
value (6% of gross energy intake) used in the previous studies.
In a cow–calf backgrounding production system, Pelletier et al.
(2010) and Lupo et al. (2013) reported that beef cows and
backgrounded animals contributed 68–81% and 11–24% of
the total farm GHG emissions, respectively. Furthermore,
Beauchemin et al. (2010) indicated that beef cows and
backgrounded animals contributed up to 79% and 7%,
respectively, of farm CH4 emissions from enteric fermentation.
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Overall, the close agreement between model-estimated enteric
CH4 values (0.4–4%) as well as between model estimates and
previously reported literature values in the current study might
suggest the current advances in enteric CH4 prediction-model
accuracy and the little opportunity for improvement.

Evaluation of the addition of hog manure

There is a paucity of information on the impact of animal-manure
application on whole-farmGHG emissions from beef production
systems (Petersen et al. 2007). As such, it is challenging to
compare the estimated farm intensity values for single and
split scenarios, with previously reported values. Casey and
Holden (2006a, 2006b) examined application of on-farm cattle
slurry twice per year at a rate of 50 t/ha, combined with synthetic
fertiliser and reported emission intensities ranging from8 to 11 kg
CO2-eq/kg liveweight. These values are lower than the intensity
estimates for single and split scenarios in our study, in which all
the required N in the farm for the forage field was sourced from
imported hog manure. Higher soil N2O emissions have been
reported fromsoils that received livestockmanure than from those
that received synthetic fertiliser. Smith et al. (2008) reported 0.23
kg/ha of N2O emissions for a maize field that received synthetic
fertiliser (150 kg/ha) and 1.21 and 3.1 kg/ha for the field that
received pig slurry at the rates of 60 and 120 t/ha, respectively.
Therefore, the higherGHG-intensity estimates for split and single
scenarios in our study could be associated with the use of hog
manure on grassland causing increased soil N2O emissions.
Conversely, estimated emissions per unit land for single
(3.6–3.7 t CO2-eq/ha) and split (3.6–4.0 t CO2-eq/ha)
scenarios were comparable to values (3.3–5.9 t CO2-eq/ha)
reported by Flessa et al. (2002), Casey and Holden (2006b)
and Foley et al. (2011) for European beef production systems
that applied on-farm produced slurry to forage and crop land.

The addition of hog manure greatly increased soil N2O
emissions and had similar proportional contribution with
enteric CH4 to the total farm emissions (Fig. 2). Johnson et al.
(2002) conducted a whole-farm analysis of GHG emissions for a
cow–calf through to the feedlot production system in the USA,
where on-farm-produced solid manure was deposited on pasture.
In their study, enteric CH4 contributed 36%andN2O52%of farm
GHG-emission intensity. As much as 54% of the N2O emissions
were from manure application or manure deposition during
grazing. Furthermore, Flessa et al. (2002) reported that N2O
emissions contributed 60% of emissions for a conventional
beef farm that applied on-farm produced slurry to the
cropland. Hence, our estimates of increased soil N2O emission
with the application of manure are consistent with these other
studies.

Although the application of animal manure on grassland
increases land productivity (Wilson et al. 2010; Bork and
Blonski 2012), it is apparent that the concurrent increase in
emissions of soil N2O occur through enhanced nitrification and
denitrification (Ellis et al. 1998; Chadwick et al. 2000; Tenuta
et al. 2010). Therefore, the sustainability of manure application
requires implementation ofmanagement practices that reduce soil
N2O emissions. One of the management strategies is timing of
manure application to favour plant uptake of N (Chadwick 1997;
Rochette et al. 2004). Furthermore, application of manure at two
different times of the year (i.e. spring and fall) has also been
practiced (Tenuta et al. 2010). This practice provides the same
total amount of N and may have the potential to reduce the large
flush of ammonium and nitrate in the soil that leads to increased
soilN2Oemissions. In thecurrent study, althoughannual emission
intensitywas higher for both single and split applications thanwas
the baseline, there was disagreement between models regarding
which scenario has lower emissions. However, farm productivity
was smaller in the single than split scenario by 3–4%.Variation in

Table 5. Greenhouse gas emissions from different sources in the farm and emissions intensity for baseline, single and split scenarios estimated
using the Coupled Components Model (CCM) and Integrated Farm System Model (IFSM)

Baseline, no application of hog manure on forage land; Single, application of hog manure on forage land in spring (100% spring application); Split,
application of hog manure on forage land in fall and spring (50% of the hog manure is applied in fall and 50% in spring). n.a., not applicable

Greenhouse gases Emissions (t CO2-eq)
Baseline Single Split

CCM IFSM CCM IFSM CCM IFSM

Enteric CH4 770.2 742.1 775.6 768.2 734.0 737.0
Manure CH4 91.0 37.6 102.3 77.3 95.2 75.7
Manure N2O 40.7 11.9 33.7 24.1 38.1 20.9
Direct N2O 36.7 10.0 31.3 20.7 34.9 18.3
Indirect N2O 4.0 1.9 2.4 3.4 3.3 2.6

Soil CH4
A

–8.3 n.a. –3.4 n.a. –4.8 n.a.
Soil N2O 72.6 157.0 474.5 536.7 648.1 531.9
Direct N2O 58.4 128.0 267.7 194.5 372.9 191.6
Indirect N2O 14.2 29.0 206.8 342.2 275.2 340.3

Leaching and runoff 3.5 25.5 28.9 4.0 17.4 3.8
Volatilisation 10.7 3.5 177.9 338.2 257.7 336.5

CO2 from farm energy use 39.0 71.2 47.9 63.4 53.8 42.7
Total farm GHG emissions 1005.3 1019.8 1430.6 1469.7 1564.4 1408.3
Farm emissions intensity (kg CO2-eq/kg liveweight) 17.7 18.1 25.3 26.1 27.6 25.0
Farm emissions intensity (t CO2-eq/ha) 1.06 1.08 3.57 3.66 4.04 3.64
Farm productivity (kg liveweight/ha) 60.0 59.5 146.2 145.4 141.1 140.5

ANegative values indicated consumption or uptake of CH4 by the soils.
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pasture quality and dry matter productivity is reported for
pastureland that received hog manure (Wilson et al. 2010). The
increased pastureland productivity in split applications
(Table 3) reduced the total land required to support the
production cycle (387 ha) compared with the single application
(401 ha), which may contribute to the observed higher farm
productivity for the split scenario.

The observed inconsistency between models in estimating
emission intensity for the single and split applications may
partly be attributed to their difference in estimating soil N2O
emissions. Direct emissions of soil N2O were quantified using
manure–DNDC in CCM and the simplified DAYCENT model in
IFSM(Rotzetal. 2011a).Themajorproportionof the total soilN2O
emissions was contributed from direct emissions using CCM and

indirect (ammonia volatilisation loss from field-applied manure)
emissions using IFSM for both single and split scenarios (Fig. 2,
Table 5). Several local- and global-scale studies have compared
DNDC and DAYCENT models and observed differences in
estimated N loss (Del Grosso et al. 2006, 2009; Smith et al.
2008; Abdalla et al. 2010). Furthermore, on a farm-component
scale, inconsistencies have been reported in field studies designed
to measure the impact of timing and amount of manure application
on GHG emissions. Allen et al. (1996) reported greater soil N2O
emissions for animalmanure applied on grassland in theUKduring
fall than during spring application, whereas Chadwick et al. (2000)
reported greater soil N2O and CH4 emissions for slurry applied on
grassland in spring than for those applied in fall and summer.
Similarly, Rochette et al. (2004) reported a two-fold increase in soil
N2O emissions for spring application of hog slurry on maize
compared with fall application (1.74% of total hog slurry-
applied N). Rochette et al. (2000) observed an increase in N loss
as N2O (from 1.23% to 1.65%) when the application rate of hog
slurrywas doubled.Combining rate and timeof application,Tenuta
et al. (2010) reported a 0.51% loss of total hog slurry-applied N
when applied on grassland in a single spring application, compared
with 0.29% loss when applied as a split application. Generally, the
observed inconsistencies may indicate the need for further
component and whole-farm assessments to fully understand the
impact of time and amount of livestockmanure application on farm
GHG emissions from beef production system.

Implications and future study

Various mitigation strategies have been proposed and
implemented to minimise GHG from animal agriculture
(Beauchemin et al. 2009; Eckard et al. 2010). However, often
the strategies are applied to a single farm component (e.g. animal,
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soil) and, therefore, it is difficult to evaluate their impact from a
whole-farm perspective. A whole-farm modelling approach is a
powerful tool for the development of cost-effective GHG
mitigation options because relevant interactions among farm
components are revealed (Schils et al. 2007). In the current
study, the two models used to analyse the whole-farm GHG
emissions from the cow–calf operation are not consistent in
estimating GHG-emission intensity from the split and single
scenarios (Table 5). Although differences among models were
expected as a result of their difference in approaches, assumptions
and algorithms used to estimate GHG emissions, there was
general agreement in the baseline scenario. However, the
observed difference in manured scenarios may indicate the
need for further model improvement.

Estimated emissions contributed by the different farm
components identified the sources that should be targeted in
developing beneficial management practices to reduce the
carbon footprint of the beef operations. For the baseline
scenario, total emissions were mainly contributed from direct
emissions of livestock enteric CH4, whereas for the manured
scenarios, enteric CH4 and soil N2O were the main contributors
(Fig. 2). Thus, strategies to minimise emissions might best be
aimed at targeting these farm components.

The simulated cow–calf production system in the current
study followed a common practice in those areas with high
livestock density where hog manure was applied to forage
land without incorporation, which may have increased N loss
through volatilisation (Rochette et al. 2008). Incorporation or
injection of hogmanure may reduce N loss through volatilisation
(Rotz et al. 2011b) and increaseN2OandCH4 emissions fromsoil
(Velthof et al. 2003; Rodhe et al. 2006), which may result in a
greater difference between the application scenarios.

In the current study, beef cattle were assumed to be managed
in confined lots during the winter period (Period 2). However,
the trend in the past decade indicates that cow–calf farmers in
western Canada are moving away from overwintering cows in a
confined lot to an in-field wintering system, in which beef cattle
are fed on pasture with manure deposited directly in the field
(Agriculture and Agri-Food Canada 2011; McCartney 2011).
This management practice reduces the contribution of emissions
from manure management, by avoiding accumulation of manure
in the confined lots. It also reduces entericCH4 emissions because
animals managed outdoors under cold temperatures produce
less enteric CH4 (Kennedy and Milligan 1978; Takahashi et al.
2002; Bernier et al. 2012), there is increased nutrient
recycling efficiency (Jungnitsch et al. 2011; Kelln et al. 2012)
and a reduction in winter feeding costs (Kelln et al. 2011).
Therefore, integration of management practices such as in-field
overwinteringmanagement of beef cattlewith amount and timing
of hog manure application on grassland needs to be evaluated,
so as to assess their impact on the total farm GHG emissions.

Conclusions

The use of a whole-farm approach to analyse GHG emissions
from a beef production system is essential in evaluation of a
beneficial management practice. In the current study, farm
productivity and environmental impact (GHG emissions) of
the timing and amount of hog manure application on forage

land (i.e. in spring or in spring and fall) in a cow–calf operation
were assessedusingwhole-farmmodels.Farmemission-intensity
estimates for a baseline scenario ranged between 17.7 and 18.1 kg
CO2-eq/kg liveweight. The application of hog manure on
grassland showed a mean emission increase of 7.8 and 8.4 kg
CO2-eq/kg liveweight above baseline for single and split
scenarios, respectively. The baseline scenario would rarely be
recommended, regardless of the low GHG-emission intensity,
because the soil nutrient reserves in this scenario would
eventually be depleted, challenging its long-term productivity
and sustainability. Conversely, farm productivity, expressed as
liveweight per unit land, was higher (134–146%) in manured
scenarios than in baseline scenario. The advantage of applying
manure during a single spring application compared with split
applications was not conclusive because of the inconsistency
between model estimates, where CCM estimated a higher
emission intensity for the split and IFSM for the single
scenario. Given their higher proportional contribution to the
total farm GHG emissions, management strategies designed to
minimise emissions need to target enteric CH4 emissions in the
baseline scenario and enteric CH4 and soil N2O emissions in the
manured scenarios. Generally, further whole-farm analyses are
required to evaluate the environmental impacts of livestock
manure application in beef production systems and to identify
best management practices that minimise the environmental
footprint of these systems.
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