
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Bioinformatic Analysis of Circadian Reprogramming Events

Permalink
https://escholarship.org/uc/item/0rp2t33r

Author
Ceglia, Nicholas Joseph

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rp2t33r
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Bioinformatic Analysis of Circadian Reprogramming Events

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Nicholas Joseph Ceglia

Dissertation Committee:
Professor Pierre Baldi, Chair
Professor Paolo Sassone-Corsi

Assistant Professor Marco Levorato

2018



c© 2018 Nicholas Joseph Ceglia



DEDICATION

To my mom and dad.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Data Analysis of Circadian Rhythms 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Tools and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Large Scale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Software 5
2.1 BIO CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Dataset Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Periodic and Aperiodic Signals . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 CircadiOmics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Web Server Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Data Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Data Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Metabolomic Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Circadian Reprogramming by Nutritional Challenge 23
3.1 High Fat Diet-Induced Reprogramming . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Reorganization of the Circadian Metabolome . . . . . . . . . . . . . . 27
3.1.2 Linking Circadian Metabolome and Transcriptome . . . . . . . . . . 31
3.1.3 Disrupted CLOCK-BMAL1 . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Diet-Induced Reprogramming and Obesity . . . . . . . . . . . . . . . 34

iii



3.1.5 Reversibility of Diet-Induced Remodeling . . . . . . . . . . . . . . . . 35
3.2 Effects of Nutritional Challenge in the Serum . . . . . . . . . . . . . . . . . 37

3.2.1 Pathway Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Metabolic Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Comparison of Liver and Serum Metabolic Reprogramming . . . . . . 48

4 Circadian Reprogramming and Metabolism 53
4.1 Circadian Metabolism in the Liver . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Circadian Regulation of SIRT6 and SIRT1 . . . . . . . . . . . . . . . 55
4.1.2 SIRT6 Interacts with CLOCK-BMAL1 . . . . . . . . . . . . . . . . . 58
4.1.3 SIRT6 Regulates SREBP-1-Dependent Circadian Transcription . . . . 60
4.1.4 Implications in Metabolic Phenotypes . . . . . . . . . . . . . . . . . . 62

4.2 Circadian Control of Fatty Acid Elongation . . . . . . . . . . . . . . . . . . 66
4.2.1 SIRT1 Protein-mediated Deacetylation of Acetyl-CoA1 . . . . . . . . 66
4.2.2 Rhythmic Acetylation of AceCS1 Controls Acetyl-CoA . . . . . . . . 68
4.2.3 Therapeutic Implications . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Fasting Induced Circadian Reprogramming . . . . . . . . . . . . . . . . . . . 73
4.3.1 Fasting Targets Core Circadian Clock . . . . . . . . . . . . . . . . . . 77
4.3.2 Fasting Sensitive Genes . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Implications in Disease . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Circadian Reprogramming and Development 86
5.1 Mir-132/212 and Depth Perception Development . . . . . . . . . . . . . . . . 86

5.1.1 MiR-132 Affects Visual Cortical Transcriptome . . . . . . . . . . . . 86
5.1.2 Impaired Binocular Matching . . . . . . . . . . . . . . . . . . . . . . 88
5.1.3 Ocular Dominance Placticity . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.4 Depth Perception Impairment . . . . . . . . . . . . . . . . . . . . . . 92
5.1.5 Developmental Implications . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Reprogramming Human Fibroblast to Myogenic Lineage . . . . . . . . . . . 99
5.2.1 Cell Fate Determination . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 MYOD1-mediated Direct Reprogramming . . . . . . . . . . . . . . . 103
5.2.3 Synchronization of Circadian Rhythms . . . . . . . . . . . . . . . . . 103
5.2.4 MYOD1 and Core Circadian Clock . . . . . . . . . . . . . . . . . . . 105

6 Mechanisms of Circadian Oscillation Reprogramming 107
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Oscillating Molecular Loops . . . . . . . . . . . . . . . . . . . . . . . 107
6.1.2 Periodicity and Evolution . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.3 Network of Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . 109
6.1.4 Effects of Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Importance of the Core Circadian Clock . . . . . . . . . . . . . . . . . . . . 112
6.3 Developing a Model of Transcriptional Organization . . . . . . . . . . . . . . 113

6.3.1 Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 Regulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3.3 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

iv



6.3.4 CRC Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

v



LIST OF FIGURES

Page

2.1 Visualizations of the deep neural networks (DNNs) . . . . . . . . . . . . . . 8
2.2 Samples of synthetic signals in the BioCycleForm dataset. Signals in green

are periodic; signals in red are aperiodic . . . . . . . . . . . . . . . . . . . . 11
2.3 Samples of synthetic signals in the BioCycleGauss dataset. Signals in green

are periodic; signals in red are aperiodic . . . . . . . . . . . . . . . . . . . . 11
2.4 Samples of biological signals in the BioCycleReal dataset. . . . . . . . . . . . 13
2.5 Accuracy of periodic/aperiodic classification at different p-value cutoffs on the

BioCycleForm dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Three-tier Model-View-Controller architecture of the CircadiOmics web por-

tal. Intelligent data discovery supplies candidate datasets for inclusion in the
repository using a machine learning filter applied to key word features derived
from web crawling published abstracts. BIO CYCLE results are obtained
and stored for all datasets. The user interface sends requests and displays
results from the web server allowing for interactive hypothesis generation and
scientific discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Dataset Collection by Species, Tissues, Experimental Conditions, and Omic
Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Visualization of queries for ARNTL, PER1, and CRY1 in a control mouse
dataset. Any number of queries, across any number of datasets, can be dis-
played simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Selected Examples of the Impact Of CircadiOmics. (A) CircadiOmics was
used to link a multitude of circadian metabolites with functionally related
circadian transcripts. Figure taken from Figure 5A of [68]. (B) CircadiOmics
was used to discover reprogrammed circadian transcripts and metabolites re-
lated to inflammatory and energy pathways. Figure taken from Figure 2E,
4B and 5D of [182]. (C) Exogenous MYOD1, during MEF myogenic repro-
gramming, entrains oscillation in MYOG and related targets in absence of
oscillation of the core clock. (D) Bar heights show the ordered number of
oscillating protein coding transcripts with a p ≤ 0.05 in each mouse tran-
scriptomic experiment in the repository. The trend is the cumulative union
of oscillating transcripts. Over 93% of possible protein coding transcripts are
found to oscillate in at least one tissue or condition across all mouse datasets. 22

vi



3.1 The Circadian Transcriptome Is Reprogrammed by a HFD. (A) The number
of oscillatory transcripts only in NC, only in HF, or in both NC and HF
groups (p-value = 0.01, JTK CYCLE). (B) Heat maps for NC- and HF-only
oscillating transcripts (p-value = 0.05). (C) Gene annotation on oscillating
genes with a p-value = 0.01 reveals pathways that are oscillatory in both
NC and HF livers (unique pathways in bold font). (D) Pathways in which
oscillatory expression is lost by the HF diet. (E) KEGG pathways represented
by genes oscillatory only in the HF liver. (F) Proportion of the oscillatory
transcriptome shared in both liver sets that is phase shifted (left) and the
direction of the phase shift (right). (G) Phase analysis of transcripts that
oscillate only in NC or HF. (H) Circadian fluctuations of the metabolome
relative to the transcriptome in both (left), NC-only (middle), or HF-only
categories (right). (I) Extent of amplitude changes in transcript abundance
(heat map and graph) and metabolites (graph) after HF feeding. . . . . . . . 28

3.2 HDF alters the Circadian Profile of the Metabolome. (A) Number of hepatic
metabolites affected by diet or time. (B) The hepatic circadian metabolome
consists of metabolites that oscillate in both groups of animals regardless of
diet (Both), metabolites that oscillate only in animals fed normal chow (NC),
and metabolites that oscillate only in animals fed HFD (HF). p-value = 0.05,
JTK CYCLE, and n = 5 biological replicates. (C) The number of hepatic
metabolites altered by the HFD at each zeitgeber time (ZT). (D) Percent
of metabolites in a metabolic pathway changing at a specific ZT in HF ani-
mals. (E) Metabolic landscapes depict the percent of oscillatory metabolites
that peak at a specific ZT for each feeding condition compared to the total
number of oscillatory metabolites in that metabolic pathway. (F) Propor-
tion of metabolites that oscillate on both diets that are in phase or phase
shifted (left) and the direction of the phase shift (right). (G) Phase graph of
metabolites that oscillate in both conditions (left) or only in the NC or HF
conditions (right). (H) Heat maps depicting phase-delayed or phase-advanced
metabolites in HF livers. (I) Overlap of metabolites that are both CLOCK
dependent and sensitive to a HF diet. . . . . . . . . . . . . . . . . . . . . . . 30

3.3 HFD Disrupts Circadian Organization between the Transcriptome and Metabolome.
(A) Heat map showing the relationships between all pairs of metabolites
and enzymes in KEGG. (Note: flat is a subset of not, where the maximum
abundance does not exceed the minimum by 20%.) Circled are the numbers
referring to the five most common relationships. (B) Related enzyme tran-
scripts and metabolites (edges) that follow a particular temporal profile. (C)
Metabolites and related transcripts within the SAM node that gain oscillation
in HF.(D) Oscillatory abundance of SAM, SAH, and their related enzymes
Ehmt2 and Ahcyl2 only in HF. Error bars, SEM. . . . . . . . . . . . . . . . 33

3.4 Comparison of Liver and Serum Oscillating Metabolites by KEGG Pathway. 47

4.1 Paritioning Transcriptomic Oscillation by SIRT1 and SIRT6. . . . . . . . . . 59
4.2 Overall Oscillation in Fasting Liver and Muscle. Specific Core Clock Repres-

sion in Liver and Muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



5.1 MYOD1 and MYOG Oscillation After Bifurcation Leading to Myogenic Lineage103
5.2 MYOD1 and MYOG Target Synchronized Oscillation . . . . . . . . . . . . . 105

6.1 Most Frequent Oscillating TFs and RBPs . . . . . . . . . . . . . . . . . . . 114
6.2 Tables showing the ranking of circadian TFs and RBPs by CRC E-score in

different tissue types. The leftmost table shows ranking in mouse transcrip-
tome across all datasets. RBPs are labeled in red, while TFs are labeled in
black. Core clock TFs have been removed from the listing. . . . . . . . . . . 116

6.3 Correlation analysis. (A) Edge Score Heatmap of inter-regulator (TF/RBP)
circadian CRC score (E-score aggregates) in mouse with hierarchical cluster-
ing. The score is calculated by aggregating CRC scores from the directed
edges starting from row TF/RBP to the column TF/RBP across all datasets.
Stronger colors in the heatmap indicate higher total scores (normalized for vi-
sualization). Color on row and column indicates the type of regulators: blue
indicates core clock TF, red indicates RBP and gray indicates regular TF.
There is a strong cluster of core circadian TFs and RBPs (e.g. CIRBP, FUS).
(B) Ranking of top regulations between TFs and RBPs. Regulations between
core clock TFs have been omitted. . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Mean percentages of transcriptome explained by TF/RBP at fixed regulatory
distances from the core clock across mouse datasets. . . . . . . . . . . . . . . 122

6.5 Network view of TFs and RBPs that are found at regulatory distance =
0. These TFs predominantly fall into three broad categories labeled from GO
annotations that includes Cell Cycle, Neuronal Function, and Metabolic Process.124

viii



ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Pierre Baldi, who has shown tremendous support
and understanding, I am extremely grateful.

I would like to thank my labmates Yu Liu, Vishal Patel, and Mike Zeller for support and
friendship.

I would like to thank collaborators Kristin Eckel-Mahan, Selma Masri, Paola Tognini, Ken
Kenichiro, and Paolo Sassone-Corsi.

I would like to thank Camilla Favaretti for pretty much everything else.

I thank the editors and publishers of Nature Methods, Cell, Journal of Biological Chem-
istry, Bioinformatics, Cell Reports, Nature Communications, and Nucleic Acid Research for
publishing parts of this work.

Section 2.1 adapted from Agostinelli et al. (2016).
Section 2.2 adapted from Ceglia et al. (2018).
Section 3.1 adapted from Eckel-Mahan et al. (2013).
Section 3.2 adapted from Abbondante et al. (2015).
Section 4.1 adapted from Masri et al. (2014).
Section 4.2 adapted from Sahar et al. (2014).
Section 4.3 adapted from Kenichiro et al. (2014).
Section 5.1 adapted from Mazziotti et al. (2017).
Section 5.2 adapted from Liu et al. (2018).
Section 6.1 & 6.2 adapted from Patel et al. (2015).

ix



CURRICULUM VITAE

Nicholas Joseph Ceglia

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, California

Master of Science in Computer Science 2018
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2011
University of Nevada, Reno Reno, Nevada

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2018
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant Fall 2017 – Winter 2018
ICS 33 - University of California, Irvine Irvine, California

Reader Spring 2017
ICS 99 - University of California, Irvine Irvine, California

INTERNSHIPS

Data Science Intern Summer 2014 – Spring 2015
The Retail Equation Irvine, California

Product Development Intern Spring 2017
MSC Software Santa Ana, California

x



REFEREED JOURNAL PUBLICATIONS

Reprogramming of the circadian clock by nutritional
challenge.

2012

Nature Methods

Partitioning circadian transcription by SIRT6 leads to
segregated control of cellular metabolism.

2014

Cell

Circadian Control of Fatty Acid Elongation by SIRT1
Protein-mediated Deacetylation of Acetyl-coenzyme A
Synthetase 1.

2014

Journal of Biological Chemistry

The pervasiveness and plasticity of circadian oscilla-
tions: the coupled circadian-oscillators framework.

2015

Bioinformatics

Comparative circadian metabolomics reveal differential
effects of nutritional challenge in the serum and liver.

2016

Journal of Biological Chemistry

What time is it? Deep learning approaches for circadian
rhythms.

2016

Bioinformatics

SIRT6 suppresses cancer stem-like capacity in tumors
with PI3K activation independently of its deacetylase
activity.

2017

Cell Reports

Mir-132/212 is required for maturation of binocular
matching of orientation preference and depth percep-
tion.

2017

Nature Communication

CircadiOmics: circadian omic web portal. 2018
Nucleic Acid Research

xi



ABSTRACT OF THE DISSERTATION

Bioinformatic Analysis of Circadian Reprogramming Events

By

Nicholas Joseph Ceglia

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Pierre Baldi, Chair

Circadian oscillations play a fundamental role in many biological processes including cell

metabolism and cell cycle. As such, interest in understanding these molecular oscillations

has generated an increasingly large collection of circadian omic data. These studies have

demonstrated the remarkable plasticity with which the set of oscillating molecular species

within a cell are selected. These large shifts in oscillating species are known as circadian

reprogramming events. These events have been observed across experimental condition,

tissue, and species. While many of these studies have made tissue or condition specific

conclusions, a consolidated framework of software tools and a central repository of data

has become necessary to answer questions about the orchestration of these reprogramming

events.

By combining the largest repository for circadian omic data with improved methods for the

detection of circadian oscillation and regulation in omic studies, a model for the transcrip-

tomic organization of circadian rhythms can be identified. Results are presented from a

collection of specific reprogramming studies utilizing these new methods, as well as a high

through-put analysis of a large collection of comparable transcriptomic datasets from mouse

tissue. The identified model can be viewed as a deep hierarchical network of circadian reg-

ulation that originates from the core circadian clock to over 95% of oscillating transcripts.

xii



Chapter 1

Data Analysis of Circadian Rhythms

1.1 Introduction

Circadian oscillations in the concentrations of molecular species play a fundamental role in

many biological processes from metabolism, to cell cycle, and to neuronal function [18, 57,

87, 193]. To study the role of these oscillations, an increasing amount of high through-put

circadian omic data is being generated under diverse genetic, epigenetic, and environmental

conditions. In any single circadian transcriptomic experiment, roughly 10% of measured

transcripts are found to oscillate in a circadian manner [68, 67, 183, 182, 204]. However,

the intersection of oscillating transcripts between any two experiments is typically small,

only about 2% [224]. This small overlap between experiments suggests that the union of

all oscillating transcripts across all experiments is large. Remarkably, we calculate that

over 95% of all of protein coding transcripts in mouse are found to oscillate in at least one

condition [34]. Previous studies have demonstrated specific mechanisms by which a cell can

select different oscillating subsets of transcripts, an event known as circadian reprogramming

[167, 168, 319, 204]. However, the question of how almost every transcript is capable of
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oscillating in a circadian manner remains unanswered. The body of this research is devoted

to the development of informatic tools and the analysis of specific reprogramming events

to generate an understanding of the mechanisms behind these events. Finally, this research

aims to identify a model for the transcriptomic organization of circadian rhythms.

To address this problem, it must be noted first that the concentration of any molecular

species cannot oscillate in isolation [20]. The fundamental unit of any such oscillation is a

feedback loop of molecular interactions, such as transcriptional regulation, post-trascriptional

modification, and protein-protein interactions [183, 245, 224], causing all species in the loop

to oscillate at the same frequency. A very large number of such regulatory loops have

been identified using informatics methods and large omic repositories [224, 48, 315, 281,

126, 248]. The empirically observed pervasiveness of circadian oscillations implies that a

significant fraction of these loops is capable of oscillating with a 24 hour period. This 24

hour common period is most likely due to evolution given the importances of the differences

between night and day for all biological life, the ∼ 2 trillion night-day transitions that

have occurred since the origin of life 3.5 billion years ago, and the inherently circadian

nature of the molecular circuitry of early photosynthetic life (cyanobacteria) [217]. Thus, in

short, modern cells contain entire networks of circadian coupled oscillators. The question

again is how specific subsets of oscillators are selected under specific genetic, epigenetic, and

environmental conditions.

A key element of the answer to this question is the circadian core clock. The circadian

core clock is genetically implemented by a relatively small set of genes whose transcripts

are consistently found to oscillate in most circadian experiments [140, 145, 283]. The core

clock regulates an extensive number of transcripts through a set of transcription factors

(TF) including CLOCK-BMAL [243]. CLOCK-BMAL binds to E-box motifs that are found

abundantly throughout the genome [211, 327]. A possible centralized model of organization

is that the core clock directly orchestrates the selection of oscillators in the coupled network.
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While the importance of the core clock is undeniable [297, 243, 147, 249], additional findings

have shown that knocking out elements of the core clock (including CLOCK-BMAL) does

not lead to a complete loss of circadian oscillations [148, 171, 7, 320, 54]. Thus, at the other

extreme, a completely decentralized model of circadian oscillations is also conceivable where

oscillators compete and self organize. Here we seek to find where in this spectrum, from

centrally orchestrated to completely decentralized, the cellular network of coupled-oscillators

operates.

1.2 Tools and Methods

A main component of the informatic tools within this manuscript is the collection of data

on CircadiOmics (www.circadiomics.ics.uci.edu). We have aggregated the largest repository

of high through-put circadian omic data on this webserver and built a suite of software tools

for its analysis. Among others, CircadiOmics contains 161 transcriptomic datasets from 8

species and over 23 broad tissue categories. The most important component of this suite of

informatic tools is BIO CYCLE, a deep learning based software available on CircadiOmics.

BIO CYCLE is used to identify oscillating transcripts with statistical significance [3]. Mo-

tifMap and MotifMap-RNA are used to study transcription factors (TF) and RNA binding

proteins (RBP) and their binding sites [315, 48, 174]. These binding sites can provide evi-

dence for transcriptional and post-transcriptional regulation.

1.3 Experimental Results

Several studies observing large reprogramming events are examined. These studies fall into

three broad categories: nutritional challenge by high fat diet and fasting, metabolism, and

developmental processes including cell fate determination. Experiments are focused on both

3
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transcriptome and metabolomic reprogramming. The findings illustrate the pervasiveness

of circadian oscillation across tissue and condition. Additionally, these results provide con-

clusions for specific reprogramming mechanisms that will be explained through large scale

analysis over many such diverse conditions.

1.4 Large Scale Analysis

With the goal of identifying a model for the organization of circadian reprogramming, we

performed a series of analyses on 87 mouse transcriptomic datasets and 64 baboon tran-

scriptomic datasets. We formulate the Circadian Regulatory Control (CRC) method for the

identification of regulatory edges in a circadian feedback loop. Finally, we construct large

CRC graphs based on this method to demonstrate the hierarchical transcriptomic organiza-

tion on which circadian reprogramming events can take place.
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Chapter 2

Software

2.1 BIO CYCLE

2.1.1 Motivation

The importance of circadian rhythms cannot be overstated: circadian oscillation have been

observed in animals, plants, fungi and cyanobacteria and date back to the very origins of

life on Earth. Indeed, some of the most ancient forms of life, such as cyanobacteria, use

photosynthesis as their energy source and thus are highly circadian almost by definition.

These oscillations play a fundamental role in coordinating the homeostasis and behavior

of biological systems, from the metabolic [65, 80, 283, 324] to the cognitive levels [65, 87].

Disruption of circadian rhythms has been directly linked to health problems [138, 156, 283]

ranging from cancer, to insulin resistance, to diabetes, to obesity and to premature ageing

[9, 80]. At their most fundamental level, these oscillations are molecular in nature, whereby

the concentrations of specific molecular species such as transcripts, metabolites and proteins

oscillate in the cell with a 24 h periodicity. Modern high-throughput technologies allow
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large-scale measurements of these concentrations along the circadian cycle thus creating

new datasets and new computational challenges and opportunities. To mine these new

datasets, here we develop and apply machine learning methods to address two questions:

(i) which molecular species are periodic? and (ii) what time or phase is associated with

high-throughput transcriptomic measurements made at a single timepoint?

At the molecular level, circadian rhythms are in part driven by a genetically encoded, highly

conserved, core clock found in nearly every cell based on negative transcription/translation

feedback loops, whereby transcription factors drive the expression of their own negative reg-

ulators [219, 257], and involving only a dozen genes [219]. In the mammalian core clock,

two bHLH transcription factors, CLOCK and BMAL1 heterodimerize and bind to conserved

E-box sequences in target gene promoters, thus driving the rhythmic expression of mam-

malian Period (Per1, Per2 and Per3) and Cryptochrome (Cry1 and Cry2) genes. PER and

CRY proteins form a complex that inhibits subsequent CLOCK-BMAL1-mediated gene ex-

pression. The master core clock located in the suprachiasmatic nucleus (SCN) [200] of the

hypothalamus interacts with the peripheral core clocks throughout the body.

In contrast to the small size of the core clock, high-throughput transcriptomic (DNA mi-

croarrays, RNA-seq) or metabolomic (mass spectrometry) experiments [68, 117, 182, 217],

have revealed that a much larger fraction, typically on the order of 10%, of all transcripts

or metabolites in the cell are oscillating in a circadian manner. Furthermore, the oscillating

transcripts and metabolites differ by cell, tissue type, or condition [217]. Genetic, epigenetic

and environmental perturbationssuch as a change in dietcan lead to cellular reprogramming

and profoundly influence which species are oscillating in a given cell or tissue [21, 67, 182].

When results are aggregated across tissues and conditions, a very large fraction, often exceed-

ing 50% and possibly approaching 100%, of all transcripts is capable of circadian oscillations

under at least one set of conditions, as shown in plants, cyanobacteria and algae, and mouse

[224, 328].
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In a typical circadian experiment, high-throughput omic measurements are taken at multiple

timepoints along the circadian cycle under both control and treated conditions. Thus the

first fundamental problem that arises in the analysis of such data is the problem of detecting

periodicity, in particular circadian periodicity, in these time series. The problem of detecting

periodic patterns in time series is of course not new. However, in the cases considered here

the problem is particularly challenging for several reasons, including: (i) the sparsity of the

measurements (the experiments are costly and thus data may be collected for instance only

every 4hours); (ii) the noise in the measurements and the well known biological variability;

(iii) the related issue of small sample sizes (e.g. n=3); (iv) the issue of missing data; (v) the

issue of uneven sampling in time; and (vi) the large number of measurements (e.g. 20,000

transcripts) and the associated multiple-hypothesis testing problem. Here we develop and

apply deep learning methods for robustly assessing periodicity in high-throughput circadian

experiments, and systematically compare the deep learning approach to the previous, non-

machine learning, approaches [117]. While this is useful for circadian experiments, the vast

majority of all high-throughput expression experiments have been carried, and continue to

be carried, at single timepoints. This can be problematic for many applications, including

applications to precision medicine, precisely because circadian variations are ignored creating

possible confounding factors. This raises the second problem of developing methods that

can robustly infer the approximate time at which a single-time high-throughput expression

measurement was taken. Such methods could be used to retrospectively infer a time stamp

for any expression dataset, in particular to improve the annotations of all the datasets

contained in large gene expression repositories, such as the Gene Expression Omnibus (GEO)

[69], and improve the quality of all the downstream inferences that can be made from this

wealth of data. There may be other applications of such a method, for instance in forensic

sciences, to help infer a time of death. In any case, to address the second problem we also

develop and apply deep learning methods to robustly infer time or phase for single-time high-

throughput gene expression measurements. 2.1 illustrates the neural network architecture of
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Figure 2.1: Visualizations of the deep neural networks (DNNs)

BIO CYCLE.

2.1.2 Dataset Curation

To train and evaluate the deep learning methods, we curate BioCycle, the largest dataset in-

cluding both synthetic and real-world biological time series, and both periodic and aperiodic

signals. While the main goal here is to create methods to analyze real-world biological data,

relying only on biological data to determine the effectiveness of a method is not sufficient

because there are not many biological samples which have been definitively labeled as being

periodic or aperiodic. Even when one can be confident that a signal is periodic, it can be

difficult to determine the true period, phase and amplitude of that signal. Therefore, we rely

also on synthetic data to provide us with signals that we can say are definitely periodic or

aperiodic, and whose attributessuch as period, amplitude, and phasecan be controlled and

are known. Furthermore, previous approaches were developed using synthetic data and thus

the same synthetic data must be used to make fair comparisons.

Synthetic Data

We first curate a comprehensive synthetic dataset BioCycleSynth, which includes all pre-

viously defined synthetic signals found in JTK CYCLE [117] and ARSER [322], but also
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contains new signals. BioCycleSynth is in turn a collection of two different types of datasets:

a dataset in which signals are constructed using mathematical formulas (BioCycleForm), and

a dataset in which signals are generated from a Gaussian process [240] (BioCycleGauss). In

previous work, synthetic data was generated with carefully constructed formulas to try to

mimic periodic signals found in real-world data. While this gives one a lot of control over

the data, it can create signals that are too contrived and therefore not representative of real-

world biological variations. In addition, the noise added at each timepoint is independent

of the other timepoints, which may not be the case in real-world data. The BioCycleGauss

dataset uses Gaussian processes to generate the data and address these problems. Samples

of synthetic signals are shown in 2.2.

The datasets used in JTK CYCLE contain the following types of formulas or signals: cosine,

cosine with outlier timepoints and white noise. The ARSER dataset contains cosine, damped

cosine with an exponential trend, white noise and an auto-regressive process of order AR(1).

In addition to all the aforementioned signals, BioCycleForm contains also 9 additional kinds

of signals: combined cosines (cosine2), cosine peaked, square wave, triangle wave, cosine

with a linear trend, cosine with an exponential trend, cosine multiplied by an exponential,

flat and linear signals (many of which can be found in [53]). For clarity, the periodic signals

are shown without noise. Signals in the BioCycleForm dataset have an additional random

offset chosen uniformly between 200 and 200, random amplitudes chosen uniformly between

1 and 100, signal to noise ratios (SNRs) of 15, random phases chosen uniformly between 0

and 2π, and periods between 20 and 28. At each timepoint sample, zero mean Gaussian

noise is added with the proper SNR variance.

The BioCycleGauss dataset is obtained from a Gaussian process. The value of the covariance

matrix corresponding to the timepoints x and x’ is determined by a kernel function k(x,x).

Equation 2.1 is the kernel function used to generate the periodic signals, and Equation 2.2 is

the kernel function used to generate the aperiodic signals in BioCycleGauss. Sample signals
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from BioCycleGauss are shown in 2.3

kp(x, x
′) = exp(

−sin2(
∣

∣

∣
π 1

p
(x− x′)

∣

∣

∣
)

2t2
) + σ2δ(x, x′) + βxx′ (2.1)

ka(x, x
′) = exp(

−(x− x′)2

2t2
) + σ2δ(x, x′) (2.2)

The parameter l controls how strong the covariance is between two different timepoints, σ

controls how noisy the synthetic data is, and β can add a non-stationary, linear, trend to

the signals. The parameter p in equation 1 is the period of the signal. To generate the data

in BioCycleGauss, the values of l, σ, β, p, as well as the offset and the scale are varied, in a

way similar to the data in BioCycleForm.

BIO CYCLE analyzes synthetic signals sampled over 48 hours with a sampling frequency

of 1 and 4hours. ARSER analyzes synthetic signals sampled over 44 hours with a sampling

frequency of 4h. BioCycle analyzes synthetic signals sampled over 24 and 48hours. Signals

sampled over 24 h have a sampling frequency of 4, 6 and an uneven sampling at timepoints

0, 5, 9, 14, 19 and 24. Signals sampled over 48 h have sampling frequencies of 4, 8 and an

uneven sampling at timepoints 0, 4, 8, 13, 20, 24, 30, 36, 43. The sampling frequencies in

these datasets are intentionally sparse to mimic the sparse temporal sampling of real-world

high-throughput data. The number of synthetic signals at each sampling frequency is 1024

for JTK CYCLE, 20,000 for ARSER and 40,000 for BioCycleSynth. Finally, each signal in

BioCycleSynth has three replicates, obtained by adding random Gaussian noise to the signal,

to mimic typical biological experiments.
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Figure 2.2: Samples of synthetic signals in the BioCycleForm dataset. Signals in green are
periodic; signals in red are aperiodic

Figure 2.3: Samples of synthetic signals in the BioCycleGauss dataset. Signals in green are
periodic; signals in red are aperiodic
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Biological Data

The performance of any circadian rhythm detection method requires extensive validation

on biological datasets. In previous work, due to the aforementioned difficulty of not having

ground truth labels, the biological signals detected as being periodic had to be inspected by

hand, or loosely assessed by comparison to other methods [323]. In addition to the scaling

problems associated with manual inspection, this approach did not allow the computation of

precise classification metrics [15], such as the AUC the Area Under the Receive Operating

Characteristic (ROC) Curve. The repository of circadian data hosted on CircadiOmics

[224] includes over 30 high-throughput circadian transcriptomic studies, as well as several

circadian high-throughput metabolomic studies, that provide extensive coverage of different

tissues and experimental conditions. From the CircadiOmics data, a high-quality biological

dataset BioCycleReal is created with periodic/aperiodic labels.

To curate BioCycleReal, we start from 36 circadian microarray or RNA-seq transcriptome

datasets, 32 of which are currently publicly available from the CircadiOmics web portal (28 of

these are also available from CircaDB [234]). Five datasets are from ongoing studies and will

be added to CircadiOmics upon completion. All included datasets correspond to experiments

carried out in mice, with the exception of one dataset corresponding to measurements taken

in Arabidopsis Thaliana. BioCycleReal comprises experiments carried over a: 24 hour period

with a 4 hour sampling rate; 48 hour period with a 2 hour sampling rate; and 48 hour period

with a 1 hour sampling rate.

To extract from this set a high-quality subset of periodic time series, we focus on the time

series associated with the core clock genes in the control experiments. These gene include

Clock, Per1, Per2, Per3, Cyr1, Cry2, Nr1d1, Nr1d2, Bhlhe40, Bhlhe41, Dbp, Npas2 and Tel

[101] for mouse, and the corresponding homologs in Arabidopsis [100]. Arabdiposis homologs

were obtained from Affymetrix NetAffx probesets and annotations [172]. These core gene
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Figure 2.4: Samples of biological signals in the BioCycleReal dataset.

time series were further inspected manually to finally yield a set of 739 high-quality periodic

signals. To extract a high-quality biological aperiodic dataset, we start from the same body

of data. To identify transcripts unlikely to be periodic, we select the transcripts classified as

aperiodic consistently by all three programs JTK CYCLE, ARSER and Lomb-Scargle with

an associated p-value of 0.95. After further manual inspection, this yields a set of 18094

aperiodic signals.

2.1.3 Periodic and Aperiodic Signals

To classify signals as periodic or aperiodic, we train deep neural networks (DNNs) using stan-

dard gradient descent with momentum [279]. We train separate networks for data sampled

over 24 and 48hours. The input to these networks are the expression time-series levels of the

corresponding gene (or metabolite). The output is computed by a single logistic unit trained

to be 1 when the signal is periodic and 0 otherwise, with relative entropy error function. We

experimented with many hyperparameters and learning schedules. In the results reported,

the learning rate starts at 0.01, and decays exponentially. The training set consists of 1

million examples, a size sufficient to avoid overfitting. The DNN uses a mini-batch size of
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Figure 2.5: Accuracy of periodic/aperiodic classification at different p-value cutoffs on the
BioCycleForm dataset

100 and is trained for 50,000 iterations. Use of dropout [16], or other forms of regularization,

leads to no tangible improvements. The best performing DNN found has 3 hidden layers of

size 100. We are able to obtain very good results by training BIO CYCLE on synthetic data

alone and report test results obtained on BioCycleForm, BioCycleGauss and BioCycleReal.

2.1.4 Statistics

In a way similar to how we train DNNs to classify between periodic and aperiodic signals,

we can also train DNNs to estimate the period of a signal classified as periodic. During

training, only periodic time series are used as input to train these regression DNNs. The

output of the DNNs are implemented using a linear unit and produce an estimated value for

the period. The error function is the squared error between the output of the network and

the true period of the signal, which is known in advance with synthetic data. Except for the

difference in the output unit, we use the same DNNs architectures and hyperparameters as

for the previous classification problem.

To calculate p-values, the distribution of the null hypothesis must first be obtained. To
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do this, N aperiodic signals are generated from one of the two BioCycleSynth datasets.

Then we calculate the N output values V(i) (i=1,,N) of the DNN on these aperiodic signals.

The p-value for a new signal s with output value V is now 1

N

∑

Nil(V > V (i)), where l

is the indicator function. This equation provides an empirical frequency estimate for the

probability of obtaining an output of size V or greater, assuming that the signal s comes

from the null distribution (the distribution of aperiodic signals). Therefore, the smaller the p-

value, the more likely it is that s is periodic. The q-values are obtained through the Benjamini

and Hochberg procedure. We also compute a posterior probability of periodic expression

(PPPE), which models the distribution of p-values as a mixture of beta distributions.

2.2 CircadiOmics

2.2.1 Goals

It is well known that circadian oscillations at the transcriptomic level are pervasive and well

coordinated [217, 224]. Oscillation in transcription is strongly regulated by a number of key

transcription factors, such as CLOCK, BMAL1, PERs and CRYs that comprise the core

clock [140]. These transcript level oscillations form regulatory feedback loops that oscillate

throughout the transcriptome [183, 245, 224]. Moreover, a large number of metabolites and

proteins in cells exhibit circadian oscillations and may play a key role within the organi-

zation of genetic circadian regulation. Strikingly, the circadian landscape in a cell can be

drastically different depending on genetic and epigenetic conditions [145, 68, 319, 224]. The

process by which these circadian landscapes evolve is understood as circadian reprogram-

ming. Reprogramming can be induced by external perturbations such as inflammation or

dietary challenge [103, 168, 14, 204]. The large repository of omic data provided in Circa-

diOmics, together with several comparative analysis tools, provide a foundational platform
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that can be used to analyze these complex mechanisms and their implications.

2.2.2 Web Server Architecture

The CircadiOmics web application is constructed as a three-tier Model View Controller ar-

chitecture. The web server is implemented with the Flask Python library. The interface

is generated dynamically with Twitter Bootstrap and Google Charts. Fast query response

times are accomplished by caching JSON serialized datasets on disk as the server is started.

The interface loads with an example search of ARNTL (CLOCK-BMAL) in a sample liver

control dataset. Dynamic filtering of the available datasets is provided based on tissue and

experimental perturbations. Examples of filtering options are provided in the documentation

on the main web server in the context of various sample workflows. Downloadable results

for each search include high resolution images in PNG or SVG format, and an excel table

of BIO CYCLE reported statistics. Dataset documentation includes a short technical de-

scription as well as a link to the corresponding article in PubMed. At last, additional help

information on the features of CircadiOmics is provided through a link on the main page of

the web server. 2.6 shows a simplified view of the web server architecture.

2.2.3 Data Repository

The omic datasets available on CircadiOmics are compiled from project collaborations, au-

tomated discovery and manual curation. Over 6400 individual time points spanning 227

separate circadian experiments are available for search and visualization. In aggregate, these

datasets form the largest single repository of circadian data available, including all datasets

from other repositories including CircaDB (25). Eight species are currently available on

CircadiOmics. The majority are collected from Mus musculus and Papio anibus.
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Figure 2.6: Three-tier Model-View-Controller architecture of the CircadiOmics web portal.
Intelligent data discovery supplies candidate datasets for inclusion in the repository using
a machine learning filter applied to key word features derived from web crawling published
abstracts. BIO CYCLE results are obtained and stored for all datasets. The user interface
sends requests and displays results from the web server allowing for interactive hypothesis
generation and scientific discovery.

Over 62 tissues grouped into 18 categories are represented in the database. Within these

categories, liver and brain experiments comprise the majority. Diverse experimental con-

ditions grouped into nine broad categories are available for comparison. Unique conditions

include chronic and acute ethanol consumption, high-fat diet, traumatic brain injury, fibrob-

last undergoing myogenic reprogramming and several cancer-specific datasets [182, 94]. At

last, CircadiOmics is the only tool that includes transcriptome, metabolome, acetylome and

proteome experiments. The full table of datasets is available, with a short description and

experimental details such as number of replicates, on the CircadiOmics web portal. Figure

2.7 quantifies the number of datasets by category.
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Figure 2.7: Dataset Collection by Species, Tissues, Experimental Conditions, and Omic
Categories.

2.2.4 Data Discovery

Increased interest in circadian rhythms is driving a continuous increase in publicly available

omic datasets. Automated discovery of datasets has become necessary to maintain the most

current and comprehensive repository. A Python framework built with scholarly and geotools

Python packages is used to continuously search the literature for new circadian omic studies

and datasets. Automated discovery based on keyword searches in published abstracts is fil-

tered using several features including publishing journal, author and provided supplementary

materials. A logistic regression step is used to classify datasets that are good candidates for

inclusion in CircadiOmics. Results produced by this automated pipeline are then manually

inspected for quality, based primarily on the time point resolution of the dataset. The min-

imum sampling density for any dataset in the repository is every eight hours over a 24-h

cycle. Additionally, the CircadiOmics team and collaborating biologists periodically search

recent publications for new datasets that qualify for inclusion in CircadiOmics.
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2.2.5 Visualization

The main functionality of CircadiOmics is the search, comparison and visualization of os-

cillation trends. The user can search any molecular species in the omic datasets within the

repository and overlay multiple searches together to initiate a comparative study. A typical

work flow may consist of comparing a set of specific transcripts, metabolites or proteins

among several datasets. Intelligent auto-completion facilitates user queries within the cur-

rently selected dataset. Searches can be performed individually or in batch on a selected

dataset. When datasets do not have the same time course, results are displayed from the

minimum to the maximum time point over all selected datasets. Documentation available

on the web server illustrates common query tasks and results. Datasets with large difference

in intensity values at each time point can be dynamically scaled for easy visual comparison.

Minimum and maximum values are normalized to zero and one, respectively.

A table of statistics is compiled and displayed beneath the main search window after each

query. Statistics can be updated dynamically to reflect results obtained with BIO CYCLE.

The table can be downloaded in several formats compatible with Excel. Individual searches

can be removed from both the search view and the statistics table. Figure 2.8 highlights an

example query and accompanying results.

With a rapidly expanding dataset collection, filtering candidate dataset within the inter-

face has become necessary. The filtering menu allows the user to limit the scope of datasets

displayed under drop-down menus for each dataset type. Filtering can be done by species, tis-

sues and experimental conditions. Similar experimental conditions are categorically grouped

together in the filtering menu. These include knock-downs, knock-outs, diet changes and

drug treatments. The search interface uses an abbreviated dataset identification. Upon

selection of a dataset, the user can quickly verify the source of the data through a corre-

sponding literature citation. Additional details for each dataset can be found in tabular form
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under the dataset tab. These details include a brief description of the experimental protocol.

Figure 2.8: Visualization of queries for ARNTL, PER1, and CRY1 in a control mouse dataset.
Any number of queries, across any number of datasets, can be displayed simultaneously.

2.2.6 Metabolomic Atlas

The Metabolic Atlas web portal (http://circadiomics.ics.uci.edu/metabolicatlas) is also avail-

able under the CircadiOmics umbrella. In addition to metabolite time series, interactive

metabolic networks can be generated and visualized. These networks are derived in part

from the KEGG database (30) and can be filtered using BIO CYCLE statistics.

2.2.7 Impact

Central to the study of circadian rhythms are large-scale reprogramming events. Under-

standing these events at the molecular level critically depends on being able to access and

compare significant amounts of high-throughput circadian omic data. CircadiOmics, with

its advanced search features and unprecedented amount of high quality circadian data, is

a primary enabling tool for such studies. In a circadian reprogramming event, changes in

oscillation of one molecular species can often be related to changes in other molecular species

[224, 117]. One of the main qualities of CircadiOmics is the flexibility of the comparative

analyses it enables. For instance, a user can compare transcripts across species, or relate

metabolites to proteins and transcripts and identify underlying oscillatory trends. An im-
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portant example can be seen in the loss of oscillation in the metabolite NAD+ as a response

to changes in the transcriptomic oscillatory landscape [68]. As a result, CircadiOmics has

proven to be highly effective for hypothesis generation in new studies. To date, the web

server has contributed to multiple studies that have been published in high impact journals.

The server has been accessed more than 250,000 times in total traffic in 2017 alone.

Figure 2.9 details some examples of the impact of CircadiOmics. For instance, Eckel-Mahan

et al. utilized CircadiOmics to analyze three related omic datasets in mouse liver [68]. They

found that core clock genes regulate the acetylation of the enzyme AceCS1. AceCS1 is

responsible for changes in the oscillation of the metabolite acetyl-CoA, a key metabolite in-

volved in fatty acid synthesis (Figure 2.9 A). Similarly, Masri et al. compared liver transcrip-

tomic data with metabolomic data in mice afflicted with cancer using CircadiOmics (Figure

2.9 B). They discovered that a distal tumor-bearing lung can reprogram the liver circadian

transcriptome through inflammatory pathways and insulin related metabolic pathways [182].

More recently, CircadiOmics has been used to examine the role of circadian regulation in myo-

genic reprogramming of fibroblast (https://www.biorxiv.org/content/early/2017/06/18/151555).

It was observed that the core clock is completely disrupted during this process. However,

exogenous MYOD1 gains rhythmicity during transition to muscle cell. As a result, MYOG

and a majority of critical transcription factors related to muscle development known to be

regulated by MYOD1 synchronize oscillation. This behavior was identified in CircadiOmics

through visualization and confirmed by BIO CYCLE reported phase lag (Figure 2.9 C).

Finally, aggregating all mouse transcriptomic datasets confirms and amplifies the notion

that circadian oscillations are pervasiveness: 93.5% of all possible protein coding transcripts

exhibit circadian oscillations in at least one tissue or experiment (up from about 67% in

[224]) (Figure 2.9 D). The large number of datasets in CircadiOmics facilitates these kinds

of integrative analyses.

The latest release of CircadiOmics is the largest single repository of circadian omic data avail-
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Figure 2.9: Selected Examples of the Impact Of CircadiOmics. (A) CircadiOmics was used
to link a multitude of circadian metabolites with functionally related circadian transcripts.
Figure taken from Figure 5A of [68]. (B) CircadiOmics was used to discover reprogrammed
circadian transcripts and metabolites related to inflammatory and energy pathways. Figure
taken from Figure 2E, 4B and 5D of [182]. (C) Exogenous MYOD1, during MEF myogenic
reprogramming, entrains oscillation in MYOG and related targets in absence of oscillation
of the core clock. (D) Bar heights show the ordered number of oscillating protein coding
transcripts with a p ≤ 0.05 in each mouse transcriptomic experiment in the repository. The
trend is the cumulative union of oscillating transcripts. Over 93% of possible protein coding
transcripts are found to oscillate in at least one tissue or condition across all mouse datasets.

able. Updates in server architecture and data mining ensure that CircadiOmics will continue

to maintain and grow as new data is published. Improvement in features for search and vi-

sualization expand the possibilities for study of circadian rhythms in omic datasets. These

possibilities include generating specific hypothesis for individual experiments and answering

larger questions about the organization of oscillation within a cell.
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Chapter 3

Circadian Reprogramming by

Nutritional Challenge

3.1 High Fat Diet-Induced Reprogramming

Circadian rhythms and cellular metabolism are intimately linked. We revealed that a high-

fat diet (HFD) generates a profound reorganization of specific metabolic pathways, leading

to widespread remodeling of the liver clock. Strikingly, in addition to disrupting the nor-

mal circadian cycle, HFD causes an unexpectedly large-scale genesis of de novo oscillating

transcripts, resulting in reorganization of the coordinated oscillations between coherent tran-

scripts and metabolites. The mechanisms underlying this reprogramming involve both the

impairment of CLOCK-BMAL1 chromatin recruitment and a pronounced cyclic activation

of surrogate pathways through the transcriptional regulator PPARy. Finally, we demon-

strate that it is specifically the nutritional challenge, and not the development of obesity,

that causes the reprogramming of the clock and that the effects of the diet on the clock are

reversible.
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Accumulating evidence supports the notion that oscillating metabolites are also important

for the maintenance of cellular rhythmicity [68, 206, 214, 49, 239], but the extent to which the

circadian metabolome is affected by nutritional stress is not known. Metabolic homeostasis is

not maintained when components of the circadian clock are missing or functioning improperly

[149, 161, 180, 249, 250, 265, 295, 328], and circadian disruption can result in disorders such

as diabetes, obesity, and cardiac disease [9, 61, 63, 76, 81, 138, 156, 264, 280]. Conversely,

metabolic disruptions such as the restriction of energy intake to a phase that opposes that

of the traditional feeding phase, can reset some peripheral clocks almost entirely, disrupting

energy balance [11, 51, 116, 274, 302]. Hepatic circadian rhythmicity, in particular, is highly

responsive to cyclic energy intake [106, 229, 302].

The molecular mechanisms by which a high-fat diet (HFD) affects the circadian clock are

not known. Using high-throughput profiling of the liver metabolome and transcriptome,

we establish that HFD has multifaceted effects on the clock, including a phase advance of

metabolite and transcript oscillations that are maintained on the diet, as well as an abolition

of otherwise oscillating transcripts and metabolites. In addition to these disruptive effects, we

find a surprising, elaborate induction of newly oscillating transcripts and metabolites. Thus,

HFD has pleiotropic effects that lead to a reprogramming of the metabolic and transcriptional

liver pathways. These are mediated both by interfering with CLOCK-BMAL1 recruitment

to chromatin and by inducing the de novo oscillation of PPARy-mediated transcriptional

control at otherwise noncyclic genes.

We analyzed the circadian transcriptome using the same liver samples used for the metabolome.

In all, 2,828 transcripts oscillated in expression; of these, 49.5% (1,394) were rhythmic only

in the normal chow (NC) condition. An additional 778 were rhythmic in both NC and HF

conditions, and a surprising 654 were newly oscillating exclusively in HFD. When analyzed

for singular enrichment in metabolic pathways, we found that genes oscillating in both NC

and HF showed unique annotations, including purine metabolism and circadian rhythm. The
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persistence of circadian clock gene oscillation in both NC and HFD validates the notion that

circadian oscillation within the core clock genes is highly resistant to perturbation, whereas

clock output genes are more sensitive to food as a zeitgeber [51]. Metabolic pathways whose

oscillation was uniquely lost in HFD included ubiquitin-mediated proteolysis and insulin

signaling.

The disruptive effect of HFD on CLOCK-BMAL1 chromatin recruitment does not explain

the de novo rhythmicity gained by a large group of genes in HFD. Notably, with the exception

of the group of genes whose oscillation is lost under HFD, the group of newly oscillating genes

is the largest, more than doubling the number of genes that showed phase advancement as

a result of the HFD.

Transcription factor motif analysis by MotifMap [48, 315] was performed on a region located

10 kb upstream and 3 kb downstream of the transcriptional start sites to determine what

transcriptional pathways might be most heavily affected by the HFD. Using a Bayesian

branch length score of 1 or greater, E boxes were significantly enriched in genes oscillating

only under NC, as well as in genes oscillating under both NC and HFD conditions. On the

contrary, no enrichment for E boxes was observed in the group of genes oscillating exclusively

in HFD condition. Analysis of the frequency of specific transcription factor binding sites in

the promoters of genes whose oscillation was induced by HFD revealed that HFD promotes

the use of additional transcriptional pathways to reprogram the hepatic transcriptome. One

of the most represented transcription factors in the newly oscillating group of genes was

PPAR. Several other transcription factors oscillated in HF only, which included SREBP-1

(Srebf), CREB1, and SRF. PPAR and SREBP1 were identified as having one or more target

sites in 322 and 91 genes, respectively. In line with the idea of increased PPAR-mediated gene

expression under HFD, metabolomics analysis revealed that PPAR ligands were elevated in

livers of HFD-fed animals, specifically 13-HODE, 15-HETE, linolenate, and arachidonate.

PPAR is a nuclear receptor involved in glucose and lipid metabolism [71, 230] and has been
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described as a nutrient sensor in metabolic tissues [271, 292]. PPAR expression is induced

in response to HFD and during the development of diet-induced fatty liver disease [120].

We found that PPAR expression was robustly oscillatory in the liver of HFD-fed animals,

with a peak at ZT12. Whereas the levels of total PPAR protein were elevated, but not

circadian, in HFD-fed mice, nuclear PPAR showed a significant circadian oscillation, with

a robust peak in expression at ZT12. Levels of PPAR in NC-fed mice had no variation.

Importantly, chromatin-bound PPAR displayed a robust change at different zeitgebers only

in HFD-fed mice. Expression of nocturnin (NOC), which has been implicated in PPAR

nuclear translocation in adipocytes [133], was phase advanced under HFD but showed similar

amplitude under both diets.

We next analyzed the expression of several known PPAR target genes. Cell-death-inducing

DFFA-like effector C (Cidec, also known as fat-specific protein 27-Fsp27) is substantially

elevated in the livers of the obese ob/ob mice [186]. Cidec expression is not considered to

be circadian under normal conditions but became robustly oscillatory under HFD, corre-

sponding with a circadian change in H3K4me3 at its promoter. We validated the role of

PPAR by injecting GW9662, a specific PPAR antagonist, into HFD-fed animals. GW9662

blocks PPAR activity while not affecting its binding to DNA [163]. While the circadian

fluctuation in PPAR in the chromatin fraction was unaltered, GW9662 produced a decrease

in PPAR-induced Cidec expression at the peak. Furthermore, we found that PPAR oc-

cupied the Cidec promoter in a circadian manner only in HFD-fed animals. We analyzed

another known PPAR target, pyruvate carboxylase (Pcx), an enzyme that converts pyruvate

to oxaloacetate and is an important regulator of hepatic gluconeogenesis [124]. Liver- and

adipose-specific inhibition of Pcx produces a reduction in plasma glucose, adiposity, plasma

lipid concentrations, and hepatic steatosis in HFD-fed animals [154]. Pcx expression was

significantly elevated and rhythmic in livers of HFD-fed mice, and PPAR occupied the Pcx

promoter in a circadian manner only in HFD conditions. Thus, the transcriptional repro-

gramming induced by HFD relies on changes in the presence and pattern of oscillation and
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chromatin recruitment of PPAR.

3.1.1 Reorganization of the Circadian Metabolome

To understand how altered nutrients affect circadian metabolism, we explored the effect of

HFD in mice by studying the hepatic metabolome, where a large number of metabolites

are circadian or clock controlled [50, 68, 129]. After 10 weeks on a HFD, mice displayed ex-

pected metabolic features. Importantly, the timing and quantity of energy intake was similar

between feeding groups. Metabolome profiles were obtained by tandem mass spectrometry

(MS/MS) and gas chromatography-mass spectrometry (GC/MS) from livers isolated ev-

ery 4 hr throughout the circadian cycle [5]. A large number of metabolites across several

metabolic pathways displayed changes in HFD-fed animals. Of 306 identifiable metabolites,

77% showed a diet effect, and 45% showed a time effect. When analyzed for circadian oscilla-

tions, 141 metabolites cycled in abundance. Of these, 61 metabolites (43%) oscillated in both

feeding conditions (both), whereas 42 metabolites (30%) oscillated only in normal chow-fed

animals (NC). Importantly, 38 metabolites oscillated only in HFD-fed animals (HF). Many of

the metabolite changes were present at ZT12 and ZT16, and included numerous nucleotide,

amino acid, and xenobiotic metabolites. The metabolite peak profiles differed across sev-

eral of the metabolic pathways throughout the circadian cycle. Interestingly, the phase and

amplitude of remaining oscillatory metabolites also differed. Specifically, metabolites that

oscillated in both feeding conditions generally showed a shift in phase when in HFD. Of the

phase-shifted metabolites, 28% were delayed in phase, whereas 72% were phase-advanced

in HFD. Considering the phase of metabolites that oscillated only in NC or only in HFD,

metabolites that oscillated only in HFD tended to peak earlier.

A majority of metabolite oscillations previously shown to be CLOCK dependent [68] are

affected by HFD. As seen in our previous experiments, specific metabolic subpathways are
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Figure 3.1: The Circadian Transcriptome Is Reprogrammed by a HFD. (A) The number of
oscillatory transcripts only in NC, only in HF, or in both NC and HF groups (p-value =
0.01, JTK CYCLE). (B) Heat maps for NC- and HF-only oscillating transcripts (p-value
= 0.05). (C) Gene annotation on oscillating genes with a p-value = 0.01 reveals pathways
that are oscillatory in both NC and HF livers (unique pathways in bold font). (D) Pathways
in which oscillatory expression is lost by the HF diet. (E) KEGG pathways represented by
genes oscillatory only in the HF liver. (F) Proportion of the oscillatory transcriptome shared
in both liver sets that is phase shifted (left) and the direction of the phase shift (right). (G)
Phase analysis of transcripts that oscillate only in NC or HF. (H) Circadian fluctuations of
the metabolome relative to the transcriptome in both (left), NC-only (middle), or HF-only
categories (right). (I) Extent of amplitude changes in transcript abundance (heat map and
graph) and metabolites (graph) after HF feeding.28



circadian. For example, lysine metabolism is highly rhythmic in normal feeding condi-

tions [68]. In this study, lysine metabolism was highly rhythmic in both feeding conditions.

Specifically, glutarate, lysine, 2-aminoadipate, and pipecolate showed oscillatory abundance

in both conditions. On the other hand, pyrimidine metabolism displayed rhythmicity only

under NC condition. For example, cytidine 5-monophosphate (5-CMP), 2-deoxycytidine,

and 2-deoxycytidine 5-monophosphate all lost oscillation in HFD.

Strikingly, HFD completely blocked oscillation of nicotinamide adenine dinucleotide (NAD+).

A previous report demonstrated reduced hepatic NAD+ under HFD [326]. Thus, HFD may

modulate its negative influence on energy balance by eliminating circadian oscillations in

NAD+ rather than inducing a static decrease in total NAD+ content. The lack of circa-

dian NAD+ accumulation under HFD supports the observation that NAD+ is high during

fasting [247]. Animals fed a HFD may never achieve such an energy-depleted state due to

the constant and nonoscillatory levels of glucose. The molecular mechanism leading to the

impairment in NAD+ oscillation in HFD constitutes a paradigm of clock transcriptional

reprogramming through the control of the Nampt gene.

A large number of lipid metabolites were affected by HFD. Coenzyme A, a cofactor in-

volved in fatty acid synthesis and B oxidation, displayed a circadian profile in HFD that

was substantially increased in amplitude, as did its precursors phosphopanthetein and 3-

dephosphocoenzyme A. Many amino acid metabolites continued to oscillate in both condi-

tions, even though their relative abundance was substantially reduced by the HFD, likely

due to increased gluconeogenesis. We conclude that the HFD impinges on the circadian

metabolome in three possible manners: ablation, phase advancement, or promotion of oscil-

lation for specific metabolites.
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Figure 3.2: HDF alters the Circadian Profile of the Metabolome. (A) Number of hepatic
metabolites affected by diet or time. (B) The hepatic circadian metabolome consists of
metabolites that oscillate in both groups of animals regardless of diet (Both), metabolites
that oscillate only in animals fed normal chow (NC), and metabolites that oscillate only in
animals fed HFD (HF). p-value = 0.05, JTK CYCLE, and n = 5 biological replicates. (C)
The number of hepatic metabolites altered by the HFD at each zeitgeber time (ZT). (D)
Percent of metabolites in a metabolic pathway changing at a specific ZT in HF animals. (E)
Metabolic landscapes depict the percent of oscillatory metabolites that peak at a specific ZT
for each feeding condition compared to the total number of oscillatory metabolites in that
metabolic pathway. (F) Proportion of metabolites that oscillate on both diets that are in
phase or phase shifted (left) and the direction of the phase shift (right). (G) Phase graph
of metabolites that oscillate in both conditions (left) or only in the NC or HF conditions
(right). (H) Heat maps depicting phase-delayed or phase-advanced metabolites in HF livers.
(I) Overlap of metabolites that are both CLOCK dependent and sensitive to a HF diet.
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3.1.2 Linking Circadian Metabolome and Transcriptome

We determined the relationship within metabolic pathways between the transcriptome (of

the enzymes) and the metabolome on different diets by integrating the data into the bioin-

formatics resource, CircadiOmics [225, 34]. We classified and grouped metabolite-enzyme

edges based on the presence or absence of oscillation, as well as additional characteristics of

the oscillationspecifically, the phase and amplitude. The most common edge characteriza-

tion (87 of 384 edges, 23%) revealed that the loss of oscillation for a particular metabolite

usually was accompanied by a loss of oscillation for its related transcripts. Interestingly, the

second most common edge classification involved the loss of oscillatory transcript abundance

in HFD but an increase in the amplitude of oscillation in the related metabolite. No phase

delay in the transcriptome or metabolome was observed within the top ten edge classification

scenarios, suggesting again that a significant effect of HFD is to phase advance the remaining

oscillatory metabolites. Edge classification reinforced the notion that one of the effects of

HFD is to reorganize the temporal coherence between the metabolome and transcriptome.

The most common relationships between related transcripts and metabolites involved an

opposing state of oscillation in animals fed HFD.

A paradigmatic example of a metabolite whose loss of oscillation by HFD is accompanied

by a dampened oscillation for its related transcript is NAD+. Circadian NAD+ synthesis

depends on the transcriptional control by the clock of Nampt gene expression [206, 239]. HFD

induces a loss of NAD+ oscillation that parallels a dampening of Nampt cyclic transcription.

Additional case scenarios include ornithine decarboxylase 1 (Odc1) and ornithine (where

a concomitant loss of oscillation occurs in HFD), acyl-CoA synthetase short-chain family

member 2 (Acss2) and coenzyme A (where loss of oscillatory transcript in HFD corresponds

to an increased metabolite amplitude), and cytochrome P450 monooxygenase (Cyp2a5) and

arachidonate (where a phase advance in transcript in HFD corresponds to a lack of oscillation

in its related metabolite).
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Importantly, several metabolite and transcript edges within individual pathways mirror each

other in HFD-induced gain of oscillation. Remarkable examples are within the amino acid

subpathway of cysteine, methionine, S-adenosylmethionine (SAM), and taurine metabolism.

Indeed, both SAM and S-adenosylhomocysteine (SAH) showed newly oscillating profiles in

HFD. HFD-induced cycling of these metabolites was accompanied by de novo oscillation of

several related enzymes, including Ehmt, Trmt2b, Whsc1, and Dph5genes whose products

have known or predicted methyltransferase activity. A relevant case is Ahcyl2, the gene

encoding the enzyme that catalyzes the reversible conversion of SAH to adenosine and ho-

mocysteine and whose oscillation parallels the one of SAH in HFD. Each metabolite and

transcript identified in the livers of animals fed NC or HFD were integrated within the

computational resource, CircadiOmics [68, 225, 34].

3.1.3 Disrupted CLOCK-BMAL1

[68, 206, 239]. Thus, we investigated the molecular mechanisms by which circadian oscilla-

tions are disrupted by HFD. First, we hypothesized that HFD might alter core clock gene

expression. Importantly, most of the core circadian genes were rhythmic in the livers of

HFD-fed mice, displaying only weak shifts or slightly dampened patterns of oscillation, re-

sults that are cohesive with previously published work [106, 144]. Per2 and Bmal1 mRNA

showed mild dampening and phase advancement, whereas Clock expression was unaffected.

One case scenario is represented by the gene Dbp, whose robust circadian oscillation was

phase advanced in HFD. Because Clock and Bmal1 cyclic transcription is similar in HFD-

fed mice, we analyzed protein levels. Importantly, the levels of BMAL1 and CLOCK pro-

teins were unaltered in livers of HFD-fed animals. Similarly, the phosphorylation profiles

of BMAL1 in NC and HFD conditions were similar in different cellular fractions. We next

explored whether CLOCK-BMAL1 chromatin recruitment might contribute to the altered
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Figure 3.3: HFD Disrupts Circadian Organization between the Transcriptome and
Metabolome. (A) Heat map showing the relationships between all pairs of metabolites
and enzymes in KEGG. (Note: flat is a subset of not, where the maximum abundance does
not exceed the minimum by 20%.) Circled are the numbers referring to the five most common
relationships. (B) Related enzyme transcripts and metabolites (edges) that follow a partic-
ular temporal profile. (C) Metabolites and related transcripts within the SAM node that
gain oscillation in HF.(D) Oscillatory abundance of SAM, SAH, and their related enzymes
Ehmt2 and Ahcyl2 only in HF. Error bars, SEM.
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pattern of Dbp expression by chromatin immunoprecipitation (ChIP) [244]. Remarkably,

BMAL1 and CLOCK recruitment was shifted in livers of HFD-fed mice.

Interestingly, transcripts whose oscillation was lost in HFD were in large part peaking be-

tween ZT4 and ZT12, a time period that correlates with prominent CLOCK-BMAL1 recruit-

ment to chromatin targets [105, 147, 201]. This parallels the dampening or abrogation of

the oscillations of numerous metabolites previously shown to be CLOCK-BMAL1 regulated.

A remarkable example is NAD+, whose cyclic levels become flat after HFD, paralleling the

profile of Nampt transcription. Similarly, the oscillations of the metabolites uridine and

uracil, the abundance of which is dependent on the enzymatic activity of CLOCK-BMAL1-

driven uridine phosphorylase 2 (Upp2) [68], were depressed in the livers of HFD-fed animals.

The amplitude of Upp2 expression was considerably reduced under HFD. Interestingly, we

observed a substantial decrease in CLOCK and BMAL1 circadian occupancy on the Upp2

and Nampt promoters in livers of animals fed a HFD. Importantly, oscillation in H3K4me3,

a histone modification tightly associated with circadian transcription [130, 244], significantly

decreased at the Upp2 and Nampt promoters in HFD-fed animals. Thus, the profound effect

elicited by HFD is caused by either phase-shifted or reduced recruitment of the CLOCK-

BMAL1 complex to chromatin at the level of target promoters.

3.1.4 Diet-Induced Reprogramming and Obesity

Animals fed a HFD for 10 weeks become obese [311]. To discern whether clock reprogram-

ming depends on the development of obesity rather than the HFD content, we fed mice

a HFD for only 3 days and then analyzed the metabolome. Considering only metabolites

that showed consistent circadian profiles in NC between the 10 week group and the 3 day

groups at the zeitgeber times chosen (this comparison revealed 87.5% consistency between

experiments), 131 metabolites showed a diet effect, whereas 80 showed a time effect. We
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used NAD+, uridine, and uracil as metabolic markers as they were highly susceptible to

10 weeks of HFD. Notably, the abundance and oscillation of uracil and uridine was greatly

reduced in amplitude, and the circadian oscillation of NAD+ was abolished within 3 days

of HFD. Next, we determined the impact of the 3 day feeding paradigm on transcription.

Bmal1 transcript and protein levels were unchanged by the 3 days of HFD, paralleling the

scenario of the 10 week HFD. However, the amplitude of Upp2 and Nampt oscillation was

already reduced after 3 days of HFD, as was the expression of Dbp at ZT12, a reflection

of the phase shift observed in the 10 weeks HFD analysis. Finally, PPAR targets gained

rhythmicity after acute HFD feeding as illustrated by Cidec expression.

In addition to the NC diet, a second low-fat diet was used to confirm that observed changes

at 3 days were not simply due to variation in carbohydrate composition. Results were

similar to NC-fed animals, underscoring the deleterious nature of HFD on the circadian

clock. Chromatin immunoprecipitation experiments revealed that the occupancy of CLOCK

and BMAL1 was reduced at their target sites on Upp2 and Dbp at ZT12, as was the H3K4me3

mark at these promoters. Thus, a short 3 day exposure to HFD initiates the reprogramming

of the circadian clock.

3.1.5 Reversibility of Diet-Induced Remodeling

To determine whether the transcriptional state of HFD-fed mice is reversible, we fed a group

of animals a HFD for 10 weeks followed by 2 weeks of NC feeding. Although animals lost

some weight during the 2 week NC period, they remained significantly overweight relative

to normal chow. Interestingly, after 2 weeks of NC feeding, circadian expression of Upp2

and Dbp was restored, as was Nampt. Expression of the PPAR target Pcx was not elevated

relative to control livers at ZT12. Finally, BMAL1 occupancy at the Upp2 and Dbp promot-

ers at ZT12 was identical in both liver groups, revealing a restoration of circadian BMAL1
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presence at target promoters after the HFD challenge was removed. Thus, the HFD-induced

transcriptional and epigenetic remodeling is reversible.

Metabolic and circadian processes are tightly linked, but the mechanisms by which altered

nutrients influence the circadian clock have not been deciphered. We have explored the effects

of nutrient challenge in the form of HFD on the circadian metabolome and transcriptome and

found that HFD induces transcriptional reprogramming within the clock that reorganizes the

relationships between the circadian transcriptome and the metabolome. We have unraveled

at least three mechanisms by which this reprograming occurs: (1) loss of oscillation of a

large number of normally oscillating genes; (2) a phase advance of an additional subset of

oscillating transcripts; and (3) a massive induction of de novo oscillating gene transcripts.

We have demonstrated that HFD-induced changes in the circadian clock implicate a repro-

gramming of the transcriptional system that relies on at least two key mechanisms. The

first mechanism is the lack of proper CLOCK-BMAL1 chromatin recruitment to genes that

would normally be considered as clock controlled. This results in a decrease or abrogation of

oscillation in transcription. The second, illustrated by the de novo oscillations in transcrip-

tional networks otherwise considered arrhythmic, relies in large part on the robust, circadian

accumulation in the nucleus and on chromatin of the transcription factor PPARy. Although

we predict that other transcriptional pathways would contribute to clock reprogramming,

including SREBP1, the role of PPAR appears prominent. This nuclear receptor has been

linked to circadian control during adipogenesis and osteogenesis [133], whereas its role in

the liver clock is not fully understood [91]. We determine that PPAR circadian function in

HFD-fed mice relies on a clock-controlled nuclear translocation of the protein and rhythmic

chromatin recruitment to target genes.

In contrast to the PPAR scenario, HFD does not affect CLOCK-BMAL1 nuclear translo-

cation but impedes their specific chromatin recruitment. We speculate that additional reg-

ulatory pathways are implicated that might interplay with the ones described here. In
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conclusion, the remarkable induction of de novo oscillation in both metabolites and tran-

scripts under HFD indicates that a diet high in fat has previously unsuspected, potent, and

pleiotropic effects on the circadian clock. Furthermore, the rapid influence of the diet on the

clock (as demonstrated by the 3 day HFD experiment) reveals that this type of nutritional

challengeand not merely the development of diet-associated complications such as obesityis

capable of remodeling the clock. Further work will elucidate how the molecular composition

of CLOCK-BMAL1 and PPAR chromatin complexes may be influenced by nutritional chal-

lenges, possibly leading to modulation of enzymatic activities of specific coregulators and

modifiers.

An intriguing concept that may be derived from our study relates to the potential of specific

genes to be circadian or not. Indeed, the transcriptional remodeling in the HFD raises the

hypothesis that, given the right molecular environment, an extended array of transcripts and

metabolites can oscillate. We speculate that this may be achieved through the coordinated

harmonics of energy balance, transcriptional control, and epigenetic state. In summary,

nutrients have powerful effects on the cellular clock, revealing its intrinsic plasticity. These

effects consist not only of the abrogation of pre-existing rhythms but the genesis of rhythms

where they do not normally exist. This induction is rapid and does not require the onset of

obesity, and it is also reversible. The reversible nature of these effects gives hope for novel

nutritional and pharmaceutical strategies.

3.2 Effects of Nutritional Challenge in the Serum

Diagnosis and therapeutic interventions in pathological conditions rely upon clinical moni-

toring of key metabolites in the serum. Recent studies show that a wide range of metabolic

pathways are controlled by circadian rhythms whose oscillation is affected by nutritional chal-

lenges, underscoring the importance of assessing a temporal window for clinical testing and
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thereby questioning the accuracy of the reading of critical pathological markers in circulation.

We have been interested in studying the communication between peripheral tissues under

metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic

analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional

challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a

circadian misalignment between the tissues analyzed. Importantly, our results show that

the levels of serum metabolites do not reflect the circadian liver metabolic signature or the

effect of nutritional challenge. This notion reveals the possibility that misleading reads of

metabolites in circulation may result in misdiagnosis and improper treatments. Our findings

also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis

in response to altered nutrition.

Circadian rhythms govern a large variety of behavioral, physiological, and metabolic pro-

cesses [2, 238, 251, 57]. Recent advances reveal that a very large fraction of mammalian

metabolism undergoes circadian oscillations [206, 227, 274, 145]. This notion is critical, and

it raises awareness of the need for increased attention to the time of monitoring clinically rel-

evant values in patients. Indeed, studies in humans show that levels of key markers oscillate

significantly [49], possibly leading to false or misleading reads that may result in question-

able therapeutic outcomes. Thus, a comprehensive comparative analysis of the circadian

metabolome in the serum versus peripheral tissues is critical to decipher the circulating

metabolites that constitute a specific signature of a given physiological state.

Circadian rhythms are under the control of clocks that ensure cyclic regulation of a large spec-

trum of cellular and molecular mechanisms. In mammals, the central clock is located in the

suprachiasmatic nucleus (SCN)2 of the anterior hypothalamus. The SCN integrates external

daily cues, such as the light-dark cycle, and operates as a synchronizer for a multitude of pe-

ripheral clocks located in most tissues [257]. Peripheral clocks respond to nutritional cues and

can be uncoupled from the SCN by restricted feeding [274]. Recent studies have shown that
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restriction of the time of feeding [274] as well as nutritional challenge by a high fat diet (HFD)

[106, 144, 67] result in extensive modifications of liver metabolism. Furthermore, the liver

clock displays a highly dynamic homeostasis associated with an elaborate reprogramming of

its molecular gears under nutritional challenge [67]. Accumulating evidence underscores the

intimate interplay between the circadian clock and cellular metabolism [91, 67, 18]. Indeed,

many metabolic pathways are under circadian control and, in turn, may feedback to the clock

system to assist in circadian timekeeping [206, 227, 251]. Although transcriptomics studies

have extensively illustrated a substantial fraction of the genome controlled by the molecular

clock [135, 196], analysis of the metabolome has lagged behind, mostly because of technical

difficulties. The relatively recent use of technologies such as liquid chromatography-mass

spectrometry (LC-MS) and the subsequent development of appropriate bioinformatics tools

[225] have been valuable in starting to unraveling the contribution of the circadian clock to

mouse and human metabolism in a number of tissues as well as in blood and saliva [50].

Analyses of serum metabolome in humans and mice have been performed in a variety of

conditions (i.e. sleep deprivation, phase shifting, etc.) [118, 129, 52]. Because serum is a

biological sample most often harvested in human patients and is also a critical linker between

peripheral tissues as well as between peripheral tissues and the brain, we wanted to under-

stand how a high fat diet affects the circadian clock at the level of serum metabolites. Here

we reveal that, unlike in the liver, the overall effect of a high fat diet on the serum circadian

metabolome is a profound loss of rhythmicity. Our results demonstrate that monitoring

the levels of metabolites in the serum is a poor predictor of the metabolic landscape of the

liver. Moreover, we underscore the possibility that the uncoupling of peripheral clocks from

the SCN, known to be detrimental for energy balance [253], may occur through metabolic

information present in the serum. Finally, we have identified specific serum metabolites di-

agnostic of the risk of diabetes, obesity, and other metabolic disorders that are associated

with nutritional challenge.
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We used LC-MS metabolomics to analyze the relative abundance of metabolites in the mouse

serum and liver throughout the circadian cycle under NC and HFD conditions. Wild-type

mice were divided in two experimental groups, the first fed an NC diet and the second fed an

HFD (60% of calories from fat [67]) for 10 weeks. Liver and serum were harvested across the

circadian cycle every 4 h. Although the hepatic circadian metabolome and transcriptome

have been previously reported to undergo extensive reprogramming following nutritional

challenge [67], the degree and specificity to which circulating metabolites oscillate have not

been determined.

Our metabolome analysis identified 362 known metabolites in the serum, belonging to major

metabolic pathways. Although a large fraction of metabolites are present in both tissues

(222 metabolites), 140 metabolites, corresponding to 38.6% of the total, were detected only

in serum and not in the liver. This indicates that either 1) their abundance is too low in

the liver to be detected; 2) these metabolites are not typically made in or transported to the

liver; or 3) due to technological variability, they were unable to be detected.

In both tissues, a large number of metabolites (62% in serum, 77% in the liver) were af-

fected by HFD. When analyzed by analysis of variance, 40% of serum metabolites and 45%

of liver metabolites deviated in abundance throughout the circadian cycle. However, when

analyzed for circadian oscillation specifically (p value 0.05, JTK CYCLE [67]), the fraction

of oscillating metabolites was the same. Specifically, 46% oscillated in the serum, and 46%

cycled in the liver under a distinct feeding condition. Strikingly, in serum, HFD induced an

extensive disruption in the oscillation of metabolites that cycle in NC (55%). A smaller frac-

tion of metabolites (27%) oscillated in both feeding conditions, and only 18% oscillated in

HFD. This profile is in stark contrast to the situation in the liver, where 43% of metabolites

oscillate in both feeding conditions, 30% oscillate only in NC (i.e. oscillation is lost under

HFD), and 27% oscillate only in HFD [67]. Thus, although a similar number of metabolites

oscillated in both feeding conditions in the liver, there was a 3-fold decrease in the number
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of metabolites oscillating in HFD in the serum relative to NC. Thereby, it appears that the

serum metabolome is much more sensitive to nutritional challenge than the liver. More-

over, an analysis of the phase of oscillation in both tissues under NC and HFD revealed

some important differences. In serum, apart from the loss of oscillation in carbohydrates

and cofactors in HFD, the remaining oscillatory metabolites were phase-delayed in HFD.

Moreover, some variance was noted in the phase of oscillation for metabolites that oscillated

in both diets. In particular, serum metabolites oscillating in both feeding conditions were

phase-advanced in HFD, whereas, considering the phase of metabolites that oscillated only

in NC or only in HFD, liver metabolites in HFD were somewhat phase-advanced compared

with metabolites oscillating only in NC [67]. Also, we analyzed the relative abundance of

major classes of metabolites at ZT0 and ZT12 for serum and liver [224]. Significant de-

creases in serum were detected at ZT0 under HFD compared with NC diet for peptides and

xenobiotics. Moreover, lower levels of peptides were also found at ZT12 compared with ZT0

under NC. Interestingly, some major classes of metabolites showed a diet effect in the liver.

This is the case for amino acids, xenobiotics, and nucleotides, with a marked decrease in

their content under HFD for both of the time points analyzed.

By analyzing a variety of parameters, we have previously shown that, as expected, HFD-

fed mice develop an obese phenotype [67]. Adipose tissue in mammals not only acts as

storage for excess of nutrients; it also acts as an endocrine organ secreting adipokines that

are involved in a wide range of functions [232, 293]. Specifically, obesity is associated with

oxidative stress and inflammatory responses in adipose tissue (due to adipocytes hypertrophy

and hyperplasia) with consequent increased levels of local and systemic pro-inflammatory

cytokines. We analyzed the levels of IL-6, leptin, and adiponectin in serum and liver at two

different time points (ZT4 and ZT16) to monitor whether the obese status elicited by the

high fat diet could affect the circadian secretion of these adipokines. No changes or little

change was observed in IL-6 and adiponectin levels between NC and HFD in both tissues.

This could be due to various factors, such as the diet composition and/or the circadian
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changes occurring at other ZTs. Importantly, the levels of leptin at ZT16 were significantly

higher in HFD as compared with NC in both serum and liver. This result not only indicates a

temporal disruption of this adipokine; it also suggests a misreading of the signal for the brain

of the body’s energy stores. Moreover, because leptin is implicated in the etiology of insulin

resistance [158, 318, 202, 26], we extended our analysis by monitoring AKT and GSK3. As

expected, we found that HFD induced an increase in basal (non-insulin-stimulated) AKT

phosphorylation at Ser473 and GSK3 inactivation (as measured by phosphorylation at Ser9).

Importantly, we also observed a complete loss of rhythmicity in AKT phosphorylation in the

animals fed an HFD, whereas robust rhythmicity in phosphorylation of AKT is seen in

NC-fed animals.

Next, in the pool of shared metabolites between serum and liver, we analyzed in detail

the metabolites present in both tissues and oscillating only in NC. Of the eight metabolites

oscillating in both tissues under NC, most were synchronous by showing a similar phase peak

at ZT16. Importantly, there was a different composition of the metabolites shared between

serum and liver in NC. Specifically, 75.5% of the serum lipids oscillated in NC versus 36.4%

in the liver. Another striking difference relates to nucleotide metabolites; 18% of the shared

nucleotide oscillated in the liver, whereas none oscillated in the serum. A parallel analysis

for oscillating metabolites only in HFD revealed that only two are shared between liver and

serum (allantoin and 2-oleoylglycerophosphoethanolamine).

Another revealing difference relates to metabolites oscillating in HFD, where 52% of liver

lipid metabolites cycled, whereas only 33% did so in serum. Interestingly, 14 metabolites are

shared and oscillate under both feeding conditions in both tissues, and most of them belong

to the amino acid pathway. Analysis of the phase of oscillation for these shared metabolites

revealed that, unlike the liver, the serum metabolome is not phase-advanced under HFD.
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3.2.1 Pathway Analysis

Amino Acid

A significant fraction of amino acid metabolites are common to serum and liver, although

some unique profiles are distinctive of the two tissues. Specifically, a number of amino acids

were found exclusively in the serum (40% of all serum amino acid metabolites), including

sarcosine, N6-acetyllysine, phenylpyruvate, and creatinine. A smaller fraction of amino acid

metabolites are unique to the liver (17% of all liver amino acid metabolites), including

glutarate, hypotaurine, and S-adenosylmethionine. Comparison of the profiles reveals that

fewer amino acids oscillate in the serum than in the liver (48% versus 61.3%). In particular,

we observed a 2-fold reduction in circadian amino acids affected by HFD in the serum as

compared with the liver.

During the analysis of the amino acid pathway, we found that several amino acids, including

glycine, serine, and threonine, display rhythmicity only under HFD in the serum. Conversely,

metabolites belonging to the subpathway of the tryptophan metabolism, including trypto-

phan, indolelactate, indolepropionate, and kinurenine, completely lost oscillation in HFD.

These metabolites, however, showed a significant decrease in levels, indicating that one of

the effects of HFD is to influence the homeostasis of tryptophan metabolism. Moreover,

HFD results in an increase of the overall levels of tyrosine and induces temporal regulation

of tyrosine-related metabolites, such as cresol sulfates and 3-(4-hydroxyphenyl) lactate. Al-

though HFD did not appear to regulate the circadian levels of other metabolites belonging

to this pathway (phenol sulfates, 4-hydroxyphenylpyruvate), it decreased temporal aspects

of their degradation. Interestingly, serotonin levels were significantly decreased in the serum

under HFD compared with NC, in contrast to observations in human plasma following sleep

deprivation [52].
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The comparison between serum and liver amino acid metabolites revealed that some metabo-

lites, including betaine, glutamate, glutamine, and 3-methylcrotonylglycine, are not oscilla-

tory in serum, whereas they are robustly cyclic in the liver only in HFD. Similarly, amino

acids of glutathione metabolism were devoid of oscillation in the serum (except for the oph-

thalmate and 5-oxoproline), in contrast to the liver, where they are highly oscillatory in both

feeding conditions. In contrast, isobutyrylcarnitine, tyrosine, tryptophan, p-cresol sulfate,

3-indoxyl sulfate, and arginine were not cyclic in the liver but were cyclic in serum in NC or

in HFD. Comparison of the oscillation phase revealed that metabolites of both tissues tended

to peak later under HFD than what was typically observed in NC. Interestingly, under NC,

most of serum and hepatic amino acids peaked at ZT16. Serum also showed an absence of

fibrinogen cleavage peptides and dipeptide derivatives and a higher number of metabolites

belonging to the dipeptide subpathway compared with the liver. Also, there was an increase

in oscillating peptides in the serum compared with liver in HFD and a complete loss of

rhythmicity for serum peptides that cycle only in NC as compared with liver. No temporal

similarity for the oscillation phase was found between the two tissues analyzed.

Nucleotides

Most nucleotide metabolites are shared between liver and serum. The liver is the primary

organ of de novo nucleotide synthesis, although many tissues use salvage pathways to generate

nucleotide levels sufficient for cellular functions [26]. Several differences between liver and

serum were, however, found, specifically in the content of the purine metabolites adenine

and guanine. Interestingly, there was a loss in nucleotides oscillating in the serum compared

with the liver (37% versus 54%). In particular, no oscillating nucleotide metabolites were

found under NC conditions in the serum. Moreover, in the serum, nucleotide metabolites

tended to peak mostly at ZT4 under both of the feeding conditions, whereas in the liver,

they were phase-advanced under HFD.
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Carbohydrates

Analysis of carbohydrate metabolites showed that 15 are shared between serum and liver.

Almost one-third (29%) of the total serum carbohydrate metabolites were found exclusively

in the serum, whereas 50% of total liver carbohydrates were found only in the liver. There

was a striking difference in the number of carbohydrate metabolites whose levels changed in a

circadian manner in the liver versus serum. Indeed, whereas only four metabolites (mannose,

mannitol, sucrose, and xylose) oscillated in the serum (19%), 20 did so in the liver (61%).

Moreover, all circadian serum carbohydrates in NC lost their cycling profile in HFD, whereas

in the liver, the oscillations were conserved also under nutritional challenge. The cycling of

carbohydrates in general appears to be more prominent in the liver, the primary site of both

glucose uptake and glucose production. The loss of cycling under HFD of most carbohydrate

metabolites in the serum reinforces the notion that the general effect of nutritional challenge

is the disruption of homeostasis.

In addition to carbohydrates, another pathway that in the serum undergoes circadian dis-

ruption by HFD is glycolysis. Under nutritional challenge, all metabolites involved in gly-

colysis lost oscillation in the serum, including glucose 6-phosphate, lactate, glucose, and

3-phosphoglycerate, all of which remained oscillatory in the liver. An intriguing example is

sucrose. A likely explanation could be that mice under HFD have a delay in glucose clear-

ance compared with those in NC, mostly because of peripheral insulin resistance that results

from higher levels of circulating free fatty acids.

Lipids

Many lipid metabolites are shared between serum and the liver. However, 33% of the lipid

species found in the serum were not present in the liver. Most of these belong to the

subpathways of medium-chain fatty acids, monohydroxy fatty acids, branched-chain fatty
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acids, lysolipids, and metabolites in the carnitine metabolism pathway. Conversely, 18% of

liver lipids are not found in the serum. Importantly, whereas more than half of the serum

lipids oscillated across the circadian cycle, fewer did so in the liver (55% versus 33%). Diets

also differentially affect lipid metabolites in the liver and serum. In particular, under NC, a

higher number of lipids oscillated in the serum compared with the liver. Conversely, there

was a massive loss of lipid metabolites under HFD in the serum as compared with the liver.

Strikingly, most metabolites of the lysolipid pathway (55%) cycled in NC but lost oscillation

in HFD, in striking contrast to the situation in the liver, in which only 28% of the lysolipids

were shown to have a diet effect. Also, metabolites in the essential fatty acid and long chain

fatty acid pathways oscillated in the serum only under NC, although they showed a non-cyclic

trend in the liver under any diet condition. On the other hand, few lipids of the carnitine

metabolism subpathway (e.g. myristate, carnitine, acetylcarnitine, and stearoylcarnitine)

oscillated in the liver but not in the serum under HFD. For a number of metabolites, there

were also changes in the phase. Some serum lipid metabolites were phase-delayed in HFD;

also, whereas most of the liver metabolites oscillated in NC between ZT0 and ZT12, most

serum lipids peaked at ZT8. Thus, circadian lipid profiles are profoundly affected by HFD

and show loss of circadian oscillation in the serum.

Cofactors and Xenobiotics

The comparison between cofactors revealed the absence of vitamin B6, folate, and thiamine

metabolites in the serum, whereas these metabolites were highly present in the liver. Interest-

ingly, 91% of serum cofactor and vitamin-related metabolites were not oscillating throughout

the circadian cycle compared with the liver (57%), whereas the remaining 9% oscillated only

in NC conditions. This difference was inverted for xenobiotic metabolites. Indeed, 41% of

serum xenobiotic metabolites were circadian versus only 27% in the liver, where there was

a complete loss of oscillation under HFD. Moreover, serum xenobiotic-related metabolites
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Figure 3.4: Comparison of Liver and Serum Oscillating Metabolites by KEGG Pathway.

were phase-advanced in NC compared with those in the liver.

Energy Metabolism

Metabolites related to the Krebs cycle and oxidative phosphorylation showed no major

changes along the circadian cycle. Importantly, only two metabolites (22%) oscillated across

the circadian cycle in the serum and only one in the liver (14%). These data suggest that

these critical metabolites must maintain relatively stable levels throughout the circadian

cycle and under nutritional challenge.

3.2.2 Metabolic Markers

The comparison between serum and liver metabolomes showed that almost 39% of the total

metabolites identified, across most of the metabolic pathways, were exclusively present in

serum. Most of the metabolites found in the serum are known to be present in all tissues

and organs of the body, including intestine, muscle, brain, epidermis, and spleen, indicating

that a given metabolite may be not specific to serum but rather present in low abundance or
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is not found in the liver. Considering serum metabolites only, 60% of them undergo changes

in response to the diet, independent of whether it is a decrease or an increase upon HFD.

Interestingly, many of these metabolites can be considered as markers for various diseases,

including cancer, cardiovascular and renal diseases, and metabolic disorders. For example,

in our study, we found altered levels of arachidonate, cholesterol, stearate, betaine, glyc-

erol, sucrose, 2-aminoadipate, eicosapentaenoate, 3-methyl-2-oxovalerate, and oleate. These

metabolites have been shown to be associated with obesity, metabolic syndrome, or type II

diabetes [272, 278, 208]. Moreover, the levels of several metabolites associated with cardio-

vascular diseases and/or renal failure/dysfunctions were significantly changed, such as, for

example, fatty acid, p-cresol sulfate, inosine, genistein, and daidzain [210, 47]. Serotonin,

which has a key role in appetite control, was severely affected by HFD, possibly underscor-

ing the tight link between this neurotransmitter and obesity. Peripheral serotonin could be

involved in the obesity-induced adipose tissue inflammation in our mice [45, 178].

3.2.3 Comparison of Liver and Serum Metabolic Reprogramming

The relevance of blood in clinical tests lies in the fact that tissue lesions, organ dysfunc-

tion, and pathological states alter metabolite composition in the serum, providing valuable

information for diagnosis. Here we have presented a high throughput, comparative analysis

of the serum metabolome as compared with the liver, along the circadian cycle and under

nutritional challenge. In addition to its intrinsic clinical value, this study provides insights

on the organism-wide processes of communication among tissues that may take place in a

time-specific manner. Considerable advances in a variety of biochemical analytical tech-

niques have allowed significant progress in the deciphering the metabolome in a number of

physiological conditions. Specifically, metabolic changes throughout the circadian cycle in

serum of both humans and rodents have been analyzed. In addition, a number of studies

have detected metabolites that vary throughout the circadian cycle in other tissues, including
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the liver [68]. These studies show that many metabolites cycle in abundance throughout the

24-h cycle and that many of these oscillations are subject to disruption in the liver following

high fat feeding [67]. A number of studies support the notion that desynchrony between the

central and peripheral clocks is disadvantageous for energy balance and homeostasis [9, 80],

whereas normal rhythmicity can be altered by HFD administered ad libitum in some mouse

models [106]. Also, phosphatidylcholine (18:0/18:1) has recently been shown to be a diurnal

metabolite capable of integrating lipogenesis in the liver to the use of fatty acids peripherally

[173]. In addition, circulating metabolites whose levels are disrupted as a result of the loss of

adipose tissue-specific clock function have been shown to alter energy balance by disrupting

the rhythmic expression of orexigenic and anorexigenic peptides in the hypothalamus [221].

To determine the extent and specificity to which diets affect the circadian metabolome in

ways that might be disadvantageous to overall energy balance, we compared serum and liver

metabolomes in mice made obese through a high fat diet. This comparison, the first of

this type, has revealed that the serum is generally devoid of oscillation following nutritional

challenge and that the remaining oscillatory events are not synchronized with the liver clock.

A few previous studies have used a single time point (or non-circadian time points) to as-

sess the metabolite profile of obese humans [136]. Some similarities between our results and

these studies exist, specifically when analyzing metabolites of the glycerophospholipid and

lysolipid pathways. In both obese humans and our obese mice, the abundance of many of

these metabolites was substantially increased, supporting the notion that enhanced lipolysis

constitutes a signature of the obese state. Unlike the liver, where only a few lipid metabo-

lites showed circadian oscillation, over half of the lipids showed a circadian oscillation in the

serum, the majority of which lose their oscillation after high fat feeding. Indeed, whereas

de novo lipogenesis occurs in the liver after chronic high fat feeding, loss of oscillating lipids

in the serum probably reflects constitutive breakdown of adipose tissue, which occurs in the

insulin-resistant state [43]. Breakdown of adipose tissue causes the release of free fatty acids

directly into the bloodstream, but it is not the only source of lipids in the blood. Indeed,
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short- and medium-chain fatty acids can be absorbed directly from the intestine, so it is

possible that with the large increase in dietary lipids, oscillations were lost or could not be

detected. Moreover, loss of rhythmicity in this metabolite group may also reflect the fact

that other peripheral clocks become misaligned under HFD. Another potential indication of

this desynchrony between tissues is the total loss of carbohydrate oscillations after HFD in

the serum but not in the liver. One remarkable effect of HFD on the serum metabolome is

that, unlike in the liver, where numerous metabolites take on de novo oscillation only after

HFD feeding [67], most serum metabolites lost their rhythmicity. Obviously, this has pro-

found implications for the likelihood of synchronicity across peripheral tissues and between

peripheral tissues and the brain. Whereas the SCN responds to light and functions as the

central pacemaker [57, 257], clocks located in peripheral tissues can respond to other zeitge-

bers, such as nutrients during restricted feeding [274, 302]. These result in the uncoupling

of peripheral clocks from the SCN, which has been shown to be highly disadvantageous for

energy balance and to cause a variety of physiologic imbalances, as shown in both human

and rodent studies [302, 106, 254, 138, 10]. Our results regarding the effect of HFD show

some interesting similarities to the data of [52], who studied circadian metabolite profiles in

humans after sleep deprivation. For example, whereas many amino acid-related metabolites

generally have not been found to vary in a circadian fashion in humans, isoleucine and valine

have both been shown to be rhythmic in human plasma, with both metabolites increasing

in abundance after sleep deprivation. We have also found that rhythmicity of isoleucine and

valine in mouse serum persists under HFD, although the overall levels of these amino acids

and some of their related metabolites are significantly increased.

In addition, paralleling the effect of sleep deprivation, we observe increases in lysolipids

under HFD. The increased abundance of lysolipids in the serum, as previously mentioned,

may reflect breakdown of muscle and/or adipose tissue membranes. Thus, HFD and sleep

deprivation appear to cause similar effects in terms of rhythmicity and abundance of several

circulating metabolites.
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Our study shows that HFD induces a misalignment between a peripheral tissue and the

serum, where a significant fraction of circulating metabolites lose their rhythmicity under

nutritional challenge. Also, peripheral clocks appear to respond in a highly tissue-specific

manner to nutritional challenge. For example, unlike in the liver, a large number of circu-

lating lipids are oscillatory only when mice are fed the normal chow diet.

Both nutritional challenge and disturbance of normal circadian patterns are risk factors for

obesity [13]. Also, metabolic disruptions elicited by HFD lead to reprogramming of the

circadian clock in the liver [67] and presumably in other tissues and serum, resulting in the

uncoupling of peripheral clocks and SCN [13].

Thus, further investigations on the metabolome of other tissues along the circadian cycle and

in response to different nutritional challenges will help in building a metabolic interconnective

map of circadian metabolism. Indeed, loss of rhythmicity in fatty acids in the serum is likely

to reflect the desynchronization of other peripheral clocks. A similar scenario seems to be

present for carbohydrates, whose oscillation is lost under HFD only in serum and not in

the liver. This result may suggest the presence of active lipogenesis along the circadian

cycle under HFD. Indeed, it has been shown that excess of food intake is translated into

altered expression levels of lipogenic genes [134]. Thus, a diet rich in fat could stimulate

the conversion of carbohydrates into lipids for subsequent storage in the adipose tissue. A

relevant effect of HFD on the liver clock is the phase advance of a group of metabolites

and transcripts [67, 66]. This phenomenon appears to be inverted in serum, where in HFD,

metabolites belonging to major metabolic pathways were generally phase-delayed. This

type of misalignment across tissues may be responsible for lack of appropriate circadian

communication, resulting in a loss of energy balance.

In conclusion, our study has profound implications for deciphering how circadian disruption

is induced by nutrient challenge and its differential effect on serum or liver. A critical value

of our findings relates to the application of this knowledge at the clinical level, by extending
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these high throughput metabolomics studies to personalized medicine in various physiological

conditions.
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Chapter 4

Circadian Reprogramming and

Metabolism

4.1 Circadian Metabolism in the Liver

Circadian rhythms are intimately linked to cellular metabolism. Specifically, the NAD+-

dependent deacetylase SIRT1, the founding member of the sirtuin family, contributes to clock

function. Whereas SIRT1 exhibits diversity in deacetylation targets and subcellular localiza-

tion, SIRT6 is the only constitutively chromatin-associated sirtuin and is prominently present

at transcriptionally active genomic loci. Comparison of the hepatic circadian transcriptomes

reveals that SIRT6 and SIRT1 separately control transcriptional specificity and therefore de-

fine distinctly partitioned classes of circadian genes. SIRT6 interacts with CLOCK-BMAL1

and, differently from SIRT1, governs their chromatin recruitment to circadian gene promot-

ers. Moreover, SIRT6 controls circadian chromatin recruitment of SREBP-1, resulting in

the cyclic regulation of genes implicated in fatty acid and cholesterol metabolism. This

mechanism parallels a phenotypic disruption in fatty acid metabolism in SIRT6 null mice as
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revealed by circadian metabolome analyses. Thus, genomic partitioning by two independent

sirtuins contributes to differential control of circadian metabolism.

The circadian clock regulates a host of physiological events required for energy balance

[73, 251, 313]. These events provide remarkable plasticity for the organism to adapt to sur-

rounding environmental changes, especially given the dynamic input of cellular metabolism

on chromatin modifications [93, 130]. A functional link between the circadian clock and cel-

lular metabolism was revealed by reports implicating the SIRT1 deacetylase in clock function

[12, 205, 206]. Mammalian sirtuins constitute a family of seven NAD+-dependent deacety-

lases (SIRT17) that vary in potency of enzymatic activity and protein targets [38, 96, 113].

The subcellular localization of the sirtuins varies from cytoplasm, mitochondria, nucleus,

and nucleolus [75].

Of the sirtuins, SIRT6 is unique in its constitutive localization to chromatin [203, 286], and its

genome-wide occupancy is prominent at transcriptional start sites (TSSs) of active genomic

loci, which coincides to serine 5 phosphorylated RNA polymerase II binding sites [259].

SIRT6 has also been reported to be dynamic in its chromatin binding in response to stimuli

such as TNF, resulting in altering the transcriptional landscape of aging and stress-related

genes [132]. SIRT6 deacetylates H3 lysine 9 (H3K9) [131, 194] and H3K56 [194], resulting in

modulation of gene expression, telomere maintenance, and genomic stability [286] and the

histone deacetylase (HDAC) activity of SIRT6 has been found to be nucleosome dependent

[88]. Importantly, SIRT6 is also heavily implicated in metabolic regulation, as Sirt6/ mice

die at 24 weeks of age due to severe accelerated aging and hypoglycemia as a result of altered

rates of glycolysis, glucose uptake, and mitochondrial respiration [203]. SIRT6 also controls

the acetylation state of PGC-1 in a GCN5-dependent manner that regulates blood glucose

levels [62]. Liver-specific Sirt6/ mice develop fatty liver due to altered expression of genes

involved in fatty acid beta oxidation and triglyceride synthesis [135].

The circadian transcriptome is thought to comprise at least 10% of all transcripts in a given
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tissue, though genes can gain rhythmicity depending on a tissue-specific permissive environ-

ment [185]. Moreover, the potential for a specific gene to become circadian may be related

to changes in the metabolic, nutritional, and epigenetic state [67]. A number of studies have

revealed the role of chromatin remodeling in providing permissive genomic organization for

circadian transcription [58, 19, 61]. We report that SIRT6 defines the circadian oscillation

of a distinct group of hepatic genes, different from the ones under SIRT1 control. This par-

titioning of the circadian genome is achieved by controlling the recruitment to chromatin of

the core circadian activators CLOCK-BMAL1, as well as SREBP-1. The sirtuin-dependent

partitioning of circadian transcription leads to differential control of hepatic lipid metabolism

related to fatty acid-dependent pathways.

4.1.1 Circadian Regulation of SIRT6 and SIRT1

Given the unique ability of SIRT6 to function as an HDAC [131, 194] and transcriptional

facilitator at chromatin [132], we investigated its role in controlling hepatic circadian gene

expression and metabolism. DNA microarrays were used to delineate the control of SIRT6

versus SIRT1 on the circadian genome. To do so, we used mice with liver-specific ablation of

either Sirt1 or Sirt6 genes and their corresponding wild-type (WT) littermates. Livers were

harvested every 4 hr over the circadian cycle, representing zeitgeber times (ZT) 0, 4, 8, 12,

16, and 20. Groups of genes were selected based on the following criteria: group 1 represents

genes that oscillate in WT (SIRT6) liver and whose oscillation is dampened/disrupted in

SIRT6 knockout (KO) mice. Group 2 represents genes that oscillate in SIRT6 KO, but

not in their corresponding WT littermates. Group 3 represents genes that oscillate in WT

(SIRT1) liver and whose oscillation is dampened/disrupted in SIRT1 KO mice (SIRT1 KO).

Group 4 respresents genes that oscillate in SIRT1 KO, but not in their corresponding WT

littermates. The group referred to as both includes genes that oscillate similarly in both WT

and KO groups for either SIRT6 or SIRT1 data sets. Oscillating genes were selected based on
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a 0.01 p-value cutoff. Of the SIRT6 transcriptome, 691 genes were identified in the WT group

1, with 779 genes oscillating more robustly in the SIRT6 KO group 2 and 506 genes oscillating

similarly in both groups. Using the same criteria for the SIRT1 transcriptome, 703 genes

oscillate in the WT group 3, with 1,126 genes oscillating with greater amplitude in the SIRT1

KO group 4 and 1,091 genes oscillating similarly in both groups. This analysis revealed that,

of the 1,976 rhythmic genes identified in the SIRT6 transcriptome, the expression profile of

1,470 genes was altered by SIRT6 disruption (74%). In addition, of the 2,920 oscillating genes

identified in the SIRT1 experiment, 1,829 genes were changed by SIRT1 disruption (63%).

Thus, SIRT6, in addition to SIRT1, significantly regulates the expression of clock-controlled

genes (CCGs).

Gene ontology (GO) analysis of genes with altered circadian oscillation in SIRT6 versus

SIRT1 transcriptomes revealed some striking differences. The most highly represented bi-

ological processes are transcription, transcriptional regulation, and nuclear processes, en-

riched in both WT liver groups and SIRT1 KO livers but completely absent from the SIRT6

KO livers. In addition to transcription, enrichment in mitochondrial and intracellular non-

membrane-bound organelle (GO term describing ribosomes, cytoskeleton, and chromosomes)

was highly enriched. The SIRT6 KO group shared little homology with WT or SIRT1 KO

groups in significantly selected biological pathways. GO terms enriched in SIRT6 KO were

endoplasmic reticulum, Golgi apparatus, protein localization/catabolism, RNA processing,

and translation. GO biological pathway analysis highlighted unique classes of genes rep-

resented exclusively in the SIRT6 KO group, indicating that disruption of hepatic SIRT6

results in altered circadian biological function.

Next, we focused on understanding how these two sirtuins differentially regulate distinct

classes of circadian genes. Importantly, there is little overlap between the groups of SIRT1

and SIRT6 dependent circadian genes (160 common genes). These are mostly implicated in

cytoplasmic and mitochondrial pathways and are linked to metabolic processes and stress
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response, as described by GO biological pathway analysis. Thus, SIRT6 and SIRT1 regulate

distinct biological classes of circadian genes. For a detailed view of these genes controlled

by SIRT6 or SIRT1, refer to CircadiOmics [34, 224]. Analysis of the circadian phase of gene

expression reveals a peak in phase of the genes oscillating in SIRT6 KO mice at ZT16 and

ZT20, differently from the genes significantly expressed in SIRT1 KO mice peaking at ZT4

and ZT8.

Circadian expression was confirmed for distinct classes of genes based on their rhythmic pro-

file: (1) genes whose expression profile is unaltered between WT versus SIRT6 KO and SIRT1

KO. Briefly, these genes are involved in transcription and regulation of rhythmic processes,

as the bulk of core clock genes are generally resistant to change in expression. (2) Genes

whose circadian expression is similarly regulated by SIRT6 and SIRT1. Examples include

Nephronectin (Npnt), encoding an extracellular matrix protein, which oscillates in WT liver

and is dampened similarly in both SIRT6 KO and SIRT1 KO mice. Conversely, circadian

expression of Dbp is equally increased in amplitude at ZT 8 in both SIRT6 KO and SIRT1

KO animals. These genes, although responding in opposite manner to the ablation of either

sirtuin, belong to the same class of genes similarly regulated by both sirtuins. (3) Genes

whose amplitude in oscillation is more robust when either SIRT6 or SIRT1 is ablated. For

example, fatty acid synthase (Fasn), 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr),

and lanosterol synthase (Lss) were uniquely regulated by SIRT6, as the amplitude of cir-

cadian oscillation was enhanced in SIRT6 KO. The circadian profiles of these genes were

unaltered in SIRT1 KO, as compared to WT. Conversely, genes with enhanced circadian

amplitude exclusively in SIRT1 KO, including regulator of G protein signaling 16 (Rgs16),

serine dehydratase (Sds), and methylenetetrahydrofolate dehydrogenase 1-like (Mthfd1l), are

shown. The profiles of Rgs16, Sds, and Mthfd1l genes are not altered in amplitude between

WT and SIRT6 KO mice. Also, the expression of Sirt6 and Sirt1 is not altered in the SIRT1

KO and SIRT6 KO livers, respectively. Thus, control of circadian gene expression by SIRT6

and SIRT1 appears to define unique subdomains of oscillating CCGs that are involved in
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distinct biological functions.

4.1.2 SIRT6 Interacts with CLOCK-BMAL1

Because SIRT6 is reported to localize to actively transcribed genomic loci [259], we sought

to decipher the molecular mechanism by which SIRT6 controls circadian transcription. Frac-

tionated liver extracts that lack SIRT6 result in a drastic increase in BMAL1 association to

chromatin, though the total amount of nucleoplasmic BMAL1 was unaltered. Also, Bmal1

circadian expression is not altered in SIRT6 KO or SIRT1 KO, as compared to WT liver.

Because BMAL1 association at chromatin is enhanced in the absence of SIRT6, we analyzed

promoter-specific recruitment of the circadian machinery. Chromatin immunoprecipitation

(ChIP) analysis was performed to understand whether recruitment of the circadian machin-

ery was altered in the absence of SIRT6 or SIRT1, which would therefore contribute to

altered CCG expression observed in our microarray analysis. Circadian BMAL1 recruit-

ment to the Rgs16 and Mthfd1l promoters is unaltered in the absence of SIRT1, despite the

increased amplitude in gene expression in SIRT1 KO. Schematic representation of the pro-

moter, as well as selective recruitment of BMAL1 to different putative E boxes in the Rgs16

and Mthfd1l promoters, illustrating that BMAL1 recruitment is virtually identical in WT

and SIRT1 KO livers. In addition to Rgs16 and Mthfd1l, BMAL1 recruitment is also unal-

tered at Dbp and Per1 promoters in WT versus SIRT1 KO, despite the significant changes

in circadian gene expression. In contrast, lack of SIRT6 results in a significant increase in

circadian BMAL1 occupancy (ZT4 and ZT8) at the Dbp promoter. Also, an increase in Ac-

H3K9 across all time points is seen. Additional data show altered BMAL1 recruitment to

Per1 and Amd1 promoters in the absence of SIRT6. To further address the effect of SIRT6,

we used a Dbp-luciferase reporter and found that ectopic expression of SIRT6 results in

dose-dependent dampening of CLOCK-BMAL1-driven transcription, similar to results with
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Figure 4.1: Paritioning Transcriptomic Oscillation by SIRT1 and SIRT6.
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SIRT1 [21]. Thus, differently from SIRT1, SIRT6 controls circadian function by operating

directly at the transcription level by recruiting the clock machinery to chromatin.

Moreover, we sought to confirm that SIRT6 interacts with the circadian transcription com-

plex. SIRT6 physically interacts with CLOCK and BMAL1, individually or together, as

shown by coimmunoprecipitation (co-IP). Also, SIRT6 does not interact directly with SIRT1

by co-IP. Furthermore, when CLOCK and BMAL1 are ectopically expressed with SIRT6

alone or in combination with both SIRT6 and SIRT1, the SIRT6 IP complex only inter-

acts with CLOCK and BMAL1 and not SIRT1. Furthermore, by fractionating WT mouse

liver, we reveal that subcellular localization of SIRT6 is predominantly in the nucleus and

constitutively at chromatin at all ZTs, whereas SIRT1 is nuclear, but not chromatin bound

[203, 286]. Likewise, co-IP experiments from chromatin fractions of HEK293 cells con-

firmed that SIRT1 does not reside at chromatin. Also, the SIRT6-dependent interaction

with CLOCK and BMAL1 is found at chromatin. In addition, sequential co-IP experiments

were performed to pull down the SIRT6- and SIRT1-dependent clock complexes from the

same HEK293 cell lysates. Primary IP against Flag-SIRT1 revealed an interaction with

CLOCK, and a secondary IP with HA-SIRT6 also revealed an interaction with CLOCK,

which is in keeping with evidence showing that these two sirtuins independently interact

with the clock machinery. Lastly, SIRT1 has been shown to deacetylate BMAL1 at lysine

537 [111, 206]. Whereas SIRT1 readily deacetylates BMAL1, SIRT6 is not able to do so,

highlighting different mechanisms of action of these two sirtuins that reside in partitioned

subcellular clock complexes.
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4.1.3 SIRT6 Regulates SREBP-1-Dependent Circadian Transcrip-

tion

Based on circadian gene expression profiles altered in SIRT6 KO liver, a number of genes

were found to be SREBP targets such as Fasn, Hmgcr, and Lss. MotifMap [48, 315] was used

to determine global transcription factor binding site enrichment in promoters with altered

expression profiles when SIRT6 was disrupted. SREBP binding sites are highly enriched (137

sites) compared to serum response factor (SRF), peroxisome proliferator-activated receptor

gamma (PPAR), forkhead box (FOXO), or E26 transformation-specific (ETS) family motifs.

Next, genes whose expression is disrupted by loss of SIRT6 were compared to published ChIP-

sequencing data [261, 260] to determine the extent of SREBP-1 and SREBP-2 gene targets

that overlap with SIRT6. In addition to the genes already mentioned, other SREBP targets

appear disrupted in SIRT6 KO, including fatty acid elongase family members (Elovl), low-

density lipoprotein receptor (Ldlr), and acetoacetyl-CoA synthetase (Aacs) genes (which are

also represented in MotifMap SREBP hits). As a role for SIRT1 in SREBP signaling cannot

be excluded, we compared SREBP-1 target genes [260] to SIRT6- and SIRT1-dependent gene

targets. Interestingly, overlapping genes between SIRT6/SREBP-1 targets were enriched in

GO terms for fatty acid and lipid metabolism, whereas SIRT1/SREBP-1 overlapping targets

were enriched in lipid and steroid metabolism, suggesting a partition in biological function

in SIRT1- or SIRT6-specific control of SREBP.

As there are no significant changes in SREBP-1c circadian transcript and protein levels in

SIRT6 KO livers, we carried out ChIP experiments. Strikingly, SREBP-1 circadian recruit-

ment to the Fasn promoter, a known SREBP-responsive gene [260], is significantly increased

in the absence of SIRT6, as compared to WT. The increase is prominent at ZT 4, thereby

preceding the peak of Fasn transcription at ZT 16, a scenario in keeping with accumulated

evidence, especially in a circadian context [145]. A schematic of the Fasn promoter illus-

trating selective SREBP-1 recruitment to the TSS versus negative control regions, as well as
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recruitment to the Hmgcr and Lss promoters, is shown. Also, an increase in Ac-H3K9 levels

is present at the Fasn promoter across most ZTs. Based on this evidence, it is expected

that SREBP-1c contributes to Fasn circadian gene expression. To confirm this, we used

livers from WT and SREBP-1c KO mice [260] at ZT 4 and ZT 16 and observed a significant

dampening of Fasn circadian expression in SREBP-1c KO livers, whereas Dbp and Rev-Erb

circadian expression remains unaltered. Thus, SIRT6 appears to define a class of genes

whose amplitude in oscillation is directed by SREBP-1c. To functionally explore the effects

of SIRT6 on SREBP-1c-mediated transcription, we used a luciferase reporter with either

a full-length Fasn promoter (containing the previously described binding site of SREBP-1,

referred to as Fas-Luc 1594/+65) or a mutant that disrupts SREBP-1 binding (Fas-Luc 65

MT). Coexpression with SREBP-1c showed robust Fasn promoter activation that is strongly

repressed by increasing amounts of SIRT6. Importantly, the Fas-Luc 65 MT reporter is not

sensitive to SIRT6-mediated repression. The effect is specific, as SIRT1 is not able to re-

press SREBP-1c-driven activation of Fasn. Thus, SIRT6 is implicated in regulating proper

SREBP-1c chromatin recruitment, resulting in circadian transcription of its target genes.

4.1.4 Implications in Metabolic Phenotypes

Metabolomics analysis was used to determine in an unbiased manner the physiological con-

sequences of SIRT6 or SIRT1 disruption along the hepatic circadian cycle. Heat maps high-

light oscillating metabolites (JTK CYCLE p-value 0.05) in WT livers that were disrupted

in SIRT6 KO and metabolites that oscillated more robustly in SIRT6 KO livers, as com-

pared to WT. In total, 77 metabolites displayed a genotype-dependent effect in the SIRT6

metabolome, and 142 metabolites were dependent on circadian rhythmicity. We also com-

pared the metabolome profile obtained from the SIRT6 KO mice to livers from SIRT1 KO

animals. Heat maps illustrate the metabolomics data for SIRT1, with oscillating metabolites

only in WT livers (left) and those found to oscillate robustly in SIRT1 KO. In the SIRT1
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metabolome, 42 metabolites displayed a genotype effect, whereas 199 show a time-of-day-

dependent effect. In total, 85 metabolites robustly oscillate exclusively in SIRT6 KO, and

57 metabolites display strong rhythmicity in SIRT1 KO livers.

Metabolites were grouped into biological functional categories (peptides, cofactors and vi-

tamins, lipids, nucleotides, amino acids, and carbohydrates) to determine where significant

changes occurred in the livers from SIRT6 KO and SIRT1 KO mice versus their WT litter-

mates. The most robust change was seen in lipid-related metabolites in SIRT6 KO livers.

These lipids were heavily related to fatty acid metabolism, including circadian disruption

of fatty acid synthesis (medium and long-chain fatty acids), storage, cellular membrane

lipids, and signaling. Using SIRT6 microarray data, genes were run through DAVID to iden-

tify possible altered gene expression profiles that match in GO biological function with the

metabolomics data set. A strong correlation in GO biological function was found, comparing

the high-throughput metabolome and transcriptome data when SIRT6 is disrupted.

A group of lipids that displayed a strikingly enhanced circadian oscillation with a peak at

ZT16 was membrane lysolipids that are related to cellular synthesis or degradation. Also,

genes encoding phospholipases related to lipid signaling displayed altered expression profiles

with a paralleled change in eicosanoid metabolite rhythms in response to SIRT6 disruption,

indicating that signaling/inflammatory events are SIRT6 regulated. As an example, genes

of the phospholipase A2 family (Pla2g2a and Pla2g12a) gained circadian oscillation in the

absence of SIRT6, which corresponded with circadian upregulation of downstream 15-HETE

levels. In addition to Fasn, fatty acid elongases and fatty acid transporters were significantly

altered in response to SIRT6 disruption. Both carnitine and acetylcarnitine, which are

important for beta oxidation of fatty acids in the mitochondria, gain circadian oscillation

and peak at ZT16 in the SIRT6 KO livers. Although synthesis and breakdown of fatty

acid pathways are related to SIRT6, storage of fatty acids into triglycerides was also altered

as evidenced by a gain in oscillation of Agpat6 and glycerol-3-phosphate in the SIRT6 KO
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mice. These metabolite pathways parallel the altered SREBP transcriptional response and

indicate that SIRT6 is required for proper circadian regulation of fatty acid synthesis, storage,

breakdown, and signaling.

Circadian control of metabolism is thought to be critical for organismal homeostasis [73, 251],

and the identification of the molecular players implicated in this control is likely to reveal

novel pharmacological strategies. Specifically, SIRT6 regulates hepatic circadian transcrip-

tion consequently linked to downstream modulation of fatty acid metabolism. SIRT6 in-

teracts with core clock proteins and controls circadian chromatin recruitment of BMAL1

to target promoters. Importantly, SIRT6 also controls SREBP1 recruitment to target pro-

moters, such as Fasn, and helps maintain proper cyclic transcription. In fact, circadian

metabolomics analyses reveal that SIRT6 controls lipid metabolism, contributing to the reg-

ulation of pathways involved in fatty acid synthesis and beta oxidation, triglyceride storage,

signaling, and cellular membrane lipids.

One conclusion of this study is that two sirtuins, SIRT6 and SIRT1, control distinct subdo-

mains of the circadian genome through different mechanisms. SIRT6 has been reported to

reside at transcriptionally active loci, and its chromatin association is dynamic in response

to stimuli so as to activate specific biological classes of genes [132]. It is tempting to specu-

late that SIRT6 operates as a transcriptional marker, and given its HDAC function, it may

have multiple roles in dictating the boundaries of transcription. As supporting evidence of

this notion, we show that SIRT6 contributes to chromatin recruitment of both the circadian

machinery, as well as SREBP-1. There is no evidence that SIRT1 functions in the same

manner. Indeed, SIRT1 is not implicated in chromatin recruitment of the clock machinery

[21]. SIRT1 appears to modulate circadian transcription purely as a deacetylase by targeting

both histone proteins and nonhistone proteins such as BMAL1 and PER2 [13, 206]. Intrigu-

ingly, free fatty acids (FFAs) are potent endogenous activators of SIRT6 HDAC activity,

but not SIRT1. Thus, endogenous fatty acids could play a role in activating or sensitiz-
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ing SIRT6, a notion that is particularly appealing, as our metabolomics data reveal that

fatty acids peak in abundance at the beginning of the light phase (after feeding), which also

coincides with peaks in BMAL1 and SREBP1 recruitment to chromatin. In keeping with

this idea, the beginning of the light phase must therefore provide a permissive chromatin

state, as recruitment of SIRT6-dependent transcription factors occurs primarily at ZT4 and

ZT8 and in the case of SREBP-1 in advance of the peak in gene expression. Indeed, it

has been proposed that an activated state of the circadian landscape exists between ZT4

and ZT12, when CLOCK-BMAL1 recruitment occurs and this active state is in advance of

nascent transcription [145]. In virtue of its tight chromatin association, SIRT6 could thereby

operate by sensing changing cellular metabolite levels (NAD+ or fatty acids) and translate

this information to control circadian transcription. In this respect, SIRT6 would be unique

among sirtuins because SIRT1 [13, 206] and SIRT3 [227] appear to be implicated in circadian

regulation uniquely through their enzymatic function.

Aside from transcriptional/translational regulation of the clock, enzymatic activity of a num-

ber of factors influences circadian rhythms and could also contribute to SIRT6 function.

SIRT6 was recently reported to directly regulate SREBP cleavage to its mature protein form

as a result of SIRT6 localization to the promoters of genes such as SREBP cleavage-activating

protein (SCAP) and site-1/2 proteases (S1P and S2P), which are involved in SREBP pro-

teolytic cleavage and transport from the endoplasmic reticulum (ER)/Golgi apparatus. In

addition to the circadian regulation of the SREBP lipogenic transcriptional program, enzy-

matic regulation at the ER has been described whereby a secondary 12 hr rhythm in the

unfolded protein response (UPR) pathway activates SREBP signaling and deregulates lipid

metabolism [46]. Though we are looking at 24 hr rhythms, these results highlight a possible

connection that could further link SIRT6, SREBP, and ER-dependent enzymatic pathways

that, in time, may contribute to the transcriptional role of SIRT6 and the clock described

here.
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Various mouse models have delineated the role of SREBP transcription factors in the li-

pogenic program [260, 261]. SREBP-1a and SREBP-1c (the form dominantly expressed in

liver) activate both genes involved in fatty acid synthesis and the subsequent incorporation

into triglycerides for storage and inclusion into cellular membranes. SREBP-2 is primar-

ily implicated in cholesterol biosynthesis. Based on the results obtained by metabolomics

analysis, our data indicate a disruption in fatty acid synthesis, breakdown, incorporation

into membrane lipids, and storage with little disruption in cholesterol related pathways.

Although we do not exclude the role of other factors such as hepatocyte nuclear factor 4

(HNF-4), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs),

our results point to SREBP-1c as a dominant player implicated in SIRT6 circadian reg-

ulation of fatty acid metabolism. Intriguingly, [127] reported that, when transgenic mice

overexpressing SIRT6 were challenged with a high-fat diet (HFD), these mice were protected

from diet-induced obesity due to SIRT6 repression of PPAR-target genes. In this respect,

recent results from our laboratory have shown that HFD regimen in mice reprograms the

hepatic circadian transcriptome by inducing de novo oscillations of PPAR-dependent genes

[67]. Given the seemingly ubiquitous localization of SIRT6 at transcriptionally active ge-

nomic loci and its role as a regulator of circadian transcription and SREBP signaling, SIRT6

could also be implicated in diet-induced metabolic regulation of SREBP, PPARs, or other

factors. The remarkable role of SIRT6 in regulating the circadian transcriptome and defining

a landscape for biologically relevant genomic loci places this epigenetic regulator in a central

position to control the extensive circadian lipid metabolic program in the liver.
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4.2 Circadian Control of Fatty Acid Elongation

4.2.1 SIRT1 Protein-mediated Deacetylation of Acetyl-CoA1

The circadian clock regulates a wide range of physiological and metabolic processes, and

its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating ev-

idence reveals that the circadian clock regulates levels of metabolites that, in turn, may

regulate the clock. Here we demonstrate that the circadian clock regulates the intracel-

lular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase

1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that

acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock

and the NAD+-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to

the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of

AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction

in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is

governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.

The circadian clock machinery is canonically described as a series of interconnected transcrip-

tional and translational feedback loops [104, 220]. Additional findings indicate that the clock

relies on multiple levels of control, including post-transcriptional [159], post-translational

[191], metabolic [206, 239], and transcription-independent pathways [214, 215]. NAD+, a

metabolite that acts as a critical coenzyme, has been shown to be an output of the circa-

dian clock [206, 239]. Moreover, fluctuations in NAD+ can also modulate the clock through

NAD+-dependent deacetylation of histones, BMAL1, and PER2 by the SIRT1 deacety-

lase [205, 111, 12]. SIRT1 has been shown to regulate several metabolic pathways and is

implicated in controlling aging and inflammation through its deacetylase activity [37]. In-

terestingly, one of the proteins regulated by SIRT1-mediated deacetylation is acetyl-CoA

synthetase 1 (AceCS1), a central enzyme involved in acetyl-CoA biosynthesis [97]. Deacety-
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lation of Lys-661 on AceCS1 by SIRT1 leads to activation of AceCS1 [97]. Because SIRT1

activity, and the abundance of its cofactor NAD+, oscillate in a circadian manner [206, 205],

we reasoned that AceCS1 acetylation, and in turn, acetyl-CoA abundance, may display

circadian rhythmicity.

Acetyl-CoA, a metabolite that provides acetyl groups during the acetylation reaction, exists

in two separate pools in the cell: a mitochondrial pool and a nuclear/cytosolic pool [6]. The

mitochondrial pool is derived mainly from the action of the enzyme pyruvate dehydrogenase

and from fatty acid oxidation. The nuclear/cytosolic pool, responsible for protein acetyla-

tion and fatty acid synthesis, is produced by two enzymes: AceCS1 and ATP-citrate lyase

(ACLY). Whereas ACLY uses citrate (produced during the tricarboxylic acid cycle) as a sub-

strate for the production of acetyl-CoA, AceCS1 uses acetate. In mammals, acetate can be

produced physiologically by the intestinal flora, alcohol metabolism, prolonged fasting, and

histone deacetylation [267]. In Saccharomyces cerevisiae, the homolog of AceCS1 (Acs2p),

was shown to be the major source of acetyl-CoA [282]. Importantly, [310] have reported

that ACLY and AceCS1 are present in both the cytosol and the nucleus of mammalian cells,

and that the loss of either of these proteins leads to a reduction in global histone acetyla-

tion [310]. Moreover, reduction in histone acetylation upon loss of ACLY can be rescued by

supplementing cells with acetate, supporting a critical role for AceCS1 in acetyl-CoA biosyn-

thesis [310]. In this study, we demonstrate a novel regulation of the enzymatic activity of

AceCS1 by the circadian clock that results in the rhythmicity of fatty acid elongation.

4.2.2 Rhythmic Acetylation of AceCS1 Controls Acetyl-CoA

To determine whether acetylation of AceCS1 changes with the time of the day, liver extracts

were prepared at different zeitgeber times (ZTs) from mice entrained in 12-h light:12-h dark

cycle. Using an anti-acetyl-AceCS1 antibody, specific to the acetylated Lys-661 residue [97],
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we reveal that acetylation of AceCS1 oscillates in a circadian manner in the liver from wild-

type (WT) mice. The highest level of acetylation was observed at ZT9, whereas AceCS1 was

mostly deacetylated at ZT21. Total levels of AceCS1 did not display circadian rhythmicity,

either in protein levels or in mRNA levels. Interestingly, the phase of oscillation of AceCS1

acetylation parallels that of BMAL1, another clock-related SIRT1 target [205, 111].

To evaluate whether the circadian clock drives AceCS1 acetylation, we used clock/clock

(c/c) mutant mice [300] and found that acetylation is indeed drastically reduced in the

liver of these mutant mice. We further analyzed the oscillation in AceCS1 acetylation in

cultured cells by using MEFs. WT and Bmal1/ MEFs were synchronized by serum shock,

and cells were harvested at different time intervals. Acetylated AceCS1 levels were rhythmic

in the WT cells with a peak at 1824 h after synchronization, paralleling BMAL1 acetylation

profile in MEFs [206, 205]. AceCS1 acetylation levels were almost undetectable in Bmal1/

MEFs, whereas total protein levels of AceCS1 in both cell types remained unchanged and

nonrhythmic. Thus, AceCS1 acetylation oscillates in a circadian manner both in vivo and

in cultured cells. Next we validated the role of SIRT1 in circadian deacetylation of AceCS1

by using EX527, a direct pharmacological inhibitor of SIRT1 [207]. Indeed, blocking SIRT1

functions leads to elevated and arrhythmic AceCS1 acetylation.

Because the acetylation status of AceCS1 controls its activity [97], we next sought to de-

termine whether total cellular acetyl-CoA levels are also rhythmic. To do so, acetyl-CoA

levels were measured by LC-MS/MS by using a modified version of the method described

by Hayashi and Satoh [108]. We found that acetyl-CoA levels were rhythmic in the liver of

WT mice, with highest levels observed at ZT3. This is in keeping with a scenario in which

the peak of acetyl-CoA levels (ZT3) follows the peak of deacetylated (and hence, active)

AceCS1 (ZT21). Next, we determined whether a functional circadian clock is important

for the rhythmicity in the acetyl-CoA levels by analyzing the abundance of acetyl-CoA in

the livers from Clock/ mice. The peripheral tissues of Clock/ mice have been shown to
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be arrhythmic [55]. Consistent with a prominent role of the circadian clock machinery in

regulating acetyl-CoA levels, there is no oscillation in the abundance of acetyl-CoA in the

liver of Clock/ mice. We then measured acetyl-CoA levels in cultured cells by synchronizing

MEFs. WT MEFs displayed robust oscillation in the acetyl-CoA levels, with a peak at 12-h

post-synchronization and trough at 24 hour post-synchronization, in agreement with the

cylic acetylation of AceCS1. Because acetylation of AceCS1 in Bmal1/ MEFs is low and

noncyclic, we expected high and nonoscillating levels of acetyl-CoA in these cells, and this

is in fact the case. Also, MEFs treated with EX527 displayed lower and nonoscillating levels

of acetyl-CoA compared with untreated cells, paralleling the acetylation profile of AceCS1.

These results indicate that acetyl-CoA levels are rhythmic in mouse liver and in MEFs,

that this rhythmicity is clock-controlled, and that the clock-driven acetylation of AceCS1

contributes to the cyclic abundance of acetyl-CoA.

The relative contribution of ACLY and AceCS1 toward the intracellular abundance of acetyl-

CoA is not fully understood. Blocking ACLY in cultured cells, either by RNAi [107] or by

the specific inhibitor SB-204990 [44], has been shown to reduce the total cellular acetyl-

CoA levels by roughly 50%. Moreover, knockdown of ACLY in mouse liver by adenovirus-

mediated RNAi caused roughly 25% reduction in the hepatic acetyl-CoA levels [306]. To

determine the relative contribution of ACLY and AceCS1 on total cellular acetyl-CoA levels,

we transiently knocked down ACLY and AceCS1 by siRNAs in cultured cells. Our results

show that both ACLY and AceCS1 contribute significantly, and in a similar extent, to the

total cellular acetyl-CoA pool. We reproducibly observed a reduction of acetyl-CoA levels

by 24 or 28% upon the knockdown of ACLY or AceCS1, respectively. Furthermore, total

acetyl-CoA levels were also reduced by 31% in a cell line where AceCS1 was stably knocked

down [325]. AceCS1 mRNA levels were reduced by about 90% in these cells. These results

establish that AceCS1 is a major determinant of cellular acetyl-CoA.

Because acetyl-CoA levels could directly influence histone acetylation and thus, gene expres-
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sion [310, 30], we analyzed changes in circadian gene expression after knocking down AceCS1

in MEFs. Using a lentiviral shRNA against AceCS1, we generated a MEF cell line that ex-

pressed significantly lower levels of AceCS1. When synchronized by dexamethasone, both

control and AceCS1-knockdown MEFs displayed very similar, robust oscillation of core cir-

cadian gene expression. These results indicate that AceCS1 is not required for the regulation

of circadian gene expression. Because the Km of histone acetyltransferases for acetyl-coA is

relatively low [157], it is likely that modest fluctuations in acetyl-CoA levels might not be

sufficient to alter histone acetylation and thus affect gene expression.

Acetyl-CoA is the carbon source for synthesis and elongation of fatty acids. Because AceCS1

is present predominantly in the cytosol [325] and the fatty acid synthesis is mostly depen-

dent on cytosolic availability of acetyl-CoA, we explored whether fatty acid synthesis is under

circadian control through the AceCS1-mediated oscillation in acetyl-CoA. Acetyl-CoA pro-

duced by AceCS1 has been shown to be utilized in lipid synthesis [97]. To validate the

role of AceCS1 in lipid synthesis, we measured the incorporation of 14C-labeled acetate into

lipids in AceCS1-knockdown and control cell lines. There is a remarkable decrease in 14C

incorporation into lipids in AceCS1-knockdown cells compared with the control cells.

To further understand the role of AceCS1 in lipid metabolism, we used a lipidomics ap-

proach. We analyzed the levels of fatty acids of varying length and unsaturation at two time

points in synchronized control and the AceCS1-knockdown cultured cells. The overall levels

of fatty acids were significantly reduced in the AceCS1-knockdown cells. Interestingly, most

fatty acids demonstrated a trend where the levels were higher at 12 h post-synchronization

compared with the 24-h time point. These fatty acids included saturated and monounsatu-

rated long chain fatty acids. This could be because the fatty acids are either oxidized during

this time period and/or they are being converted to very long chain fatty acids (VLCFAs).

Supporting the latter scenario, we observed that the levels of VLCFAs are higher at the

24-h time point. Importantly, the change in VLCFA levels is absent in AceCS1-knockdown
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cells. These results suggest that the reduced level of acetyl-CoA in the AceCS1-knockdown

cells leads to reduction in total fatty acid levels and also causes impaired elongation of long

chain fatty acids into VLCFAs. To confirm that elongation of fatty acids is regulated by

the circadian clock, we measured the levels of fatty acids in WT and c/c MEFs. Although

there is a robust oscillation in VLCFAs in the WT MEFs, their levels are significantly lower

and nonrhythmic in c/c MEFs. Our results demonstrate that the elongation of fatty acids,

a process that requires acetyl-CoA, is under the control of the circadian clock machinery.

These results also establish AceCS1 as an important contributor to fatty acid elongation.

4.2.3 Therapeutic Implications

Our findings provide evidence that AceCS1 functions as a circadian enzyme, thereby con-

tributing to the cyclic cellular levels of acetyl-CoA. Rhythmicity in AceCS1 acetylation

contributes to the oscillation of acetyl-coA levels and, in turn, regulates circadian fatty acid

elongation. Acetate could also be converted to acetyl-CoA by the mitochondrial enzyme

AceCS2. However, AceCS2 expression is significantly lower compared with AceCS1 in the

mouse liver [82] and is almost undetectable in the MEFs. Furthermore, in our experiments

where cells were treated with acetate-14C, knocking down AceCS1 is sufficient to reduce

the acetate conversion to acetyl-CoA by roughly 10-fold, confirming the prominent role of

AceCS1 in these cells.

Fatty acid synthesis constitutes a major process that utilizes acetyl-CoA in all cells. We

have reported a unique pathway by which the circadian clock regulates the abundance of

acetyl-CoA, leading to a clock-driven control of fatty acid elongation. Abolishing the activ-

ity of AceCS1 causes a significant decrease in the cellular pool of acetyl-CoA and leads to

dampening of oscillations in fatty acid synthesis. This transcription-independent pathway is

based solely on cyclic enzymatic function, utilizing the NAD+-dependent SIRT1 deacetylase
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to control AceCS1 activity, and contributes to modulated biosynthesis of acetyl-CoA. Thus,

our study adds another layer to important examples of transcription-independent control

by the mammalian circadian clock [214, 215]. These findings underscore that the circadian

clock occupies a central position in controlling both NAD+ and acetyl-CoA levels in the cell,

linking SIRT1 to fatty acid elongation. Increasing evidence reveals the links between the cir-

cadian clock and lipid metabolism [74]. These may involve additional chromatin remodelers,

such as HDAC3, whose recruitment to the genome and enzymatic output follow a circadian

pattern. As many of the genes regulated by HDAC3 are involved in lipid metabolism, and

loss of HDAC3 leads to increased de novo fatty acid synthesis and a fatty liver phenotype [74],

future studies will need to explore its relationship with AceCS1 and the control by SIRT1.

Our study has uncovered another level of interplay among the circadian clock, epigenetics,

and metabolism. As de novo fatty acid synthesis is known to be increased in cancer [79]

and obesity [276], our results might pave the way to future strategies for the use of sirtuin

modulators [35] and chronotherapy in their treatment [252].

4.3 Fasting Induced Circadian Reprogramming

A variety of dietary regimens and time-restricted feeding have a profound impact on the

circadian clock as well as cyclic gene expression in metabolic tissues [36, 67, 106, 144, 302].

Specifically, circadian gene expression in metabolic tissues can be differentially reprogrammed

by various nutritional challenge, underscoring the plasticity of the clock system [67, 288].

In addition, the circadian clock regulates the expression of metabolic genes in a tissue-

specific fashion, emphasizing the reciprocal link between the circadian clock and metabolism

[64, 156, 206, 239]. Although the circadian clock plays an important role in rhythmic gene

expression, time-restricted feeding restores cyclic gene expression even in arrhythmic Cry1

-/- , Cry2 -/- mutant mice, suggesting the presence of nutrient-responsive transcriptional
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pathways that would contribute to the rhythmicity of circadian gene expression in a clock-

independent manner [302]. Despite these findings, efforts to tease out how the circadian

clock and nutrient-sensitive transcription factors (TFs) are functionally

coordinated at the level of gene regulation have not been satisfactory. Finally, while evidence

on how food intake is integrated into circadian transcriptional regulation is accumulating [13],

how lack of food operates on the clock remains virtually unexplored. Fasting is an adaptive

state of metabolism when exogenous nutrient intake is limited [176, 177]. In mammals, a

drastic shift in metabolism takes place so as to survive under low nutrient availability. For

instance, skeletal muscles undergo protein breakdown and provide amino acids for the liver

to implement gluconeogenesis, producing glucose to maintain appropriate blood glucose lev-

els [176]. In parallel, the liver performs ketogenesis to supply ketone bodies to other vital

organs including the brain, by harnessing free fatty acids from adipose tissue [176]. Such

metabolic shifts across different tissues are achieved by fasting-induced TFs such as GR,

CREB, FOXO, TFEB, and PPARs [89]. Recent studies suggest that fasting- mimicking diet

and temporal feeding restriction have numerous health benefits including reduced adiposity,

immune system change, and delayed aging, despite comparable calorie intake [25, 36, 106].

Moreover, temporal feeding restriction confers robustness to circadian rhythm, which could

mediate protective effects of fasting against diverse diseases and aging [106]. Although sev-

eral studies have described the link between fasting and the circadian clock [222, 317], it is

still unclear how fasting by itself impinges on the circadian clock and clock-dependent gene

regulation in concert with fasting induced TFs. Here we demonstrate that fasting has a dras-

tic impact on circadian physiology by inducing a number of de novo oscillatory genes, which

are distinct from those responsive to timed-feeding regimens [302]. We have identified spe-

cific classes of circadian genes whose regulation is dependent on distinct fasting- controlled

TFs. Fasting significantly attenuates rhythmicity of BMAL1 and REV-ERBalpha protein

expression levels both in liver and skeletal muscle, leading to repression and de-repression of

their target genes, respectively. Also, fasting controls distinct classes of genes that are tem-
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porally regulated by the clock and fasting-sensitive TFs. Furthermore, a number of genes are

induced by fasting in a BMAL1-dependent manner, suggesting that the clock modulates the

fasting response. Thus, fasting uncovers a previously unappreciated coordination between

the circadian clock and nutrient sensing pathways leading to different classes of circadian

gene expression.

In order to investigate how fasting influences circadian gene regulation and metabolism, we

used 8-week old male C57BL/6 mice fed normal chow ad libitum and then subjected them to

24-hr fasting and performed indirect calorimetry analyses. There was a reduction in oxygen

consumption, respiratory exchange ratio (RER), and energy expenditure by fastin. Notably,

RER during fasting was lower than that during the resting phase under ad libitum feeding,

likely because mice are still feeding during the resting phase, suggesting that fasting acts as

a profound metabolic perturbation. We then collected tissues every 4-hr over the light/dark

12h/12h cycle from 24-hr fasted mice (FAST) or control mice fed ad libitum with normal

chow (FED). As expected, body weight and epididymal white adipose tissue (eWAT) weight

were reduced remarkably after fasting. To assess how fasting impacts circadian regulation, we

analyzed the circadian transcriptome by RNA-seq. The analysis revealed that approximately

15% of hepatic transcripts and 4% of muscle transcripts are cyclic in FED mice based on

JTK CYCLE analysis [117]. Of the rhythmic transcripts in FED mice, about 80% and 66%

of hepatic and muscle cyclic genes ceased oscillation after fasting, respectively, emphasizing

the notion that the feeding- fasting cycle is a major environmental cue for peripheral tissues

[51, 274, 302]. Strikingly, a number of genes, particularly in skeletal muscle, gained oscillation

after fasting. The overall amplitude of hepatic oscillating genes in FAST mice was dampened,

whereas that of muscle rhythmic genes was enhanced, as compared to FED mice. Moreover,

phase analysis of the cycling genes revealed that the peak phase in skeletal muscle from

FAST mice was highly centered around ZT12, while that in liver was more evenly distributed.

Although some genes remained rhythmic both in FED and FAST mice, their peak phase was

redistributed after fasting. Collectively, these data illustrate that fasting elicits tissue-specific
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responses along the circadian cycle. Gene ontology analyses of the identified oscillatory

genes revealed unique biological processes enriched in a tissue-specific manner. Notably,

electron transport chain was highly enriched in FAST liver, in keeping with the pivotal

role of mitochondrial oxidative metabolism under fasting [170]. Likewise, protein catabolic

processes were enriched in FAST muscle, a well-documented metabolic adaptation upon

fasting in the skeletal muscle [195]. In order to gain insight into whether lack of food

operates as a metabolic cue, we compared hepatic genes cycling under time-restricted feeding

[302], with genes oscillating in our FAST mice. Remarkably, only a small portion of genes

display rhythmic expression in both groups, indicating that fasting is a metabolic cue distinct

from time-restricted feeding. Furthermore, we investigated whether skeletal muscle from

FAST mice shares transcriptional signatures with muscle from treadmill-exercised mice [231].

Intriguingly, approximately half of the exercise-induced genes and exercise-repressed genes

in skeletal muscle were also induced and repressed by fasting, respectively. Supporting this

notion, locomotor activity during fasting was enhanced particularly during the active phase,

as described previously [1]. It has been shown that post-transcriptional regulation plays

an important role in circadian gene expression in vivo [145]. Since gene ontology analysis

of our fasting transcriptome data showed that RNA processing is enriched in cycling genes

upon fasting, we tested whether post-transcriptional regulation participates in rhythmic gene

expression upon fasting.

To address this question, we implemented Exon Intron Split Analysis (EISA) on our RNA-

seq dataset to compare rhythmicity between intronic reads as a surrogate for precursor

mRNA and exonic reads being representative of mature mRNA [84]. A large number of

intronic and exonic transcripts displayed distinct oscillatory expression both in liver and

skeletal muscle. Approximately 77% of the cycling exonic transcripts in FED liver were

oscillatory only in exonic reads, which is in agreement with previous analysis [145]. By

and large, this proportion appeared to be conserved in FED skeletal muscle as well as in

FAST liver and skeletal muscle, suggesting a crucial role of post-transcriptional control in
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circadian gene rhythmicity. We also focused on groups of genes oscillating both in intronic

and exonic regions, and compared the peak phases between these two groups to explore the

delay in the phase of exonic transcripts in comparison to that of intronic transcripts. The

lag of peak phase disappeared after fasting in the liver, while becoming present after fasting

in skeletal muscle, suggesting the presence of tissue-specific response of post-transcriptional

control upon fasting. Overall, fasting appears to reprogram a number of cyclic genes through

transcriptional and post-transcriptional mechanisms acting in a tissue-specific manner.

4.3.1 Fasting Targets Core Circadian Clock

Nutritional challenges in the form of high-fat [67] or ketogenic [288] diets reprogram circadian

gene expression in the liver without an apparent effect on core clock components. Yet,

because of the drastic effect on circadian transcription after fasting, we reasoned that lack

of food could instead have a direct influence on core clock genes and proteins. Given the

tissue-specific subset of cyclic genes in FED and FAST conditions, we compared the number

of overlapping oscillating genes between liver and skeletal muscle. Only a small portion of

cyclic genes were common in liver and skeletal muscle in any condition, manifesting tissue-

specificity in circadian gene expression [185]. Among these genes, circadian regulation of gene

expression was enriched in a group of genes oscillating in both tissues and both conditions,

underscoring the resilient nature of the core clock oscillator. Therefore, we next explored the

expression profiles of the core clock components in liver and skeletal muscle. Remarkably,

gene expression of BMAL1-target genes was significantly attenuated (Dbp, Nr1d1, Bhlhe40,

Per2, Per3), while REV-ERBa-target genes were de-repressed both in liver and skeletal

muscle (Arntl, Cry1, Npas2, Nfil3). Phosphorylation of BMAL1 displays robust rhythmicity

in FED mice, and is associated with active transcription of its target genes as reported in a

previous study [285]. Rhythmic BMAL1 protein phosphorylation is significantly dampened in

FAST mice, both in liver and skeletal muscle, in keeping with the attenuated gene expression
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profiles of BMAL1-target genes. Furthermore, rhythmic acetylation of hepatic BMAL1 was

mitigated in FAST mice, presumably as a result of increased deacetylation of BMAL1 by

SIRT1 under fasting [205]. In support of this notion, acetyl-CoA synthetase 1 (ACS1) in

liver, a known target of SIRT1 [97, 251], also exhibited dampened circadian acetylation in

FAST mice. This dual alteration of cyclic phosphorylation and acetylation of BMAL1 could

relate to the link between BMAL1 phosphorylation and acetylation [285]. Additionally, REV-

ERBa and CRY1 protein expression in liver and skeletal muscle as well as hepatic PER2

expression were also dampened in rhythmicity in FAST mice. Thus, core clock components

are significantly affected under fasting.

Fasting results in the activation of several nutrient-sensing factors, such as GR, CREB,

FOXO, TFEB, and PPARs [177, 262]. We examined the expression levels of these regulators

along the circadian cycle in FED or FAST mice, both in liver and muscle. Fasting induces

these TFs in both tissues, though with distinct circadian patterns that implicate both gene

and protein expression levels. In order to decipher whether the fasting-induced changes

in the core clock impinge on temporal patterns of gene expression in concert with fasting-

sensitive TFs on a genome-wide level, we examined publically available datasets. To do so, we

analyzed gene targets for hepatic BMAL1 [145], REV-ERBa [72], and muscle BMAL1 [64],

as well as hepatic GR [78], CREB [241, 329], FOXO [95], TFEB [263], PPARa [199], CREB

[226], FOXO [195], TFEB [179], and PPARb [85]. We also paralleled muscle REV-ERBa

target genes from muscle-specific Hdac3 -/- mice, based on the notion that muscle HDAC3

is primarily regulated by REV-ERBa [112]. We first explored the rhythmicity of target

genes under the control of fasting- responsive TFs in liver and skeletal muscle. In the liver,

most fasting-sensitive targets correspond to genes cycling in the FED condition, presumably

because of the naturally occurring feeding-fasting cycle in ad libitum feeding. Furthermore,

hepatic GR, CREB, and FOXO target genes oscillating in the FED condition were prone to

peak at ZT8-12, consistent with the fasting phase in ad libitum feeding. Conversely, most

fasting-sensitive targets in the muscle parallel a higher number of oscillatory genes in FAST
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Figure 4.2: Overall Oscillation in Fasting Liver and Muscle. Specific Core Clock Repression
in Liver and Muscle

condition and peak sharply at ZT12, since the response to fasting in skeletal muscle appears

highly circadian. Collectively, these results suggest that each fasting-responsive TF drives

rhythmic genes in a tissue-specific and phase-specific manner.

Next, we postulated that expression of BMAL1 target genes is likely to be higher in FED

mice, since BMAL1 is a transcriptional activator [86] and its phosphorylation and acetyla-

tion display a stronger peak in FED mice. Also, we predicted that expression of REV-ERBa

target genes may be higher in FAST mice because REV-ERBa is a transcriptional repressor

[99] and its levels decrease under fasting. To validate our hypothesis, we carried out Gene

Set Enrichment Analysis (GSEA) to test whether expression of BMAL1 and REV-ERBa

gene targets is actually higher in FED and FAST mice at their peaks, respectively. Indeed,
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hepatic BMAL1 target genes were significantly induced in FED mice at ZT8, although those

at ZT12 were prone to be enriched, but not significantly. This observation was strength-

ened by the result showing that two- thirds of differentially expressed liver BMAL1-target

genes displayed higher expression in FED mice both at ZT8 and ZT12. Similarly, muscle

BMAL1-target genes were significantly enriched in FED mice both at ZT8 and ZT12, and

approximately 70% of differentially expressed muscle BMAL1 targets also exhibited higher

gene expression in FED mice at both time points. Notably, about 30% of differentially

expressed BMAL1-target genes in both liver and muscle showed higher expression under

fasting. These groups of genes have a significantly higher proportion of GR, CREB, FOXO,

TFEB, hepatic PPAR, or muscle PPARa targets than those showing higher expression in

FED mice, suggesting that a subgroup of BMAL1 target genes is also jointly regulated by

fasting-sensitive TFs. Conversely, hepatic and muscle REV-ERBa target genes at ZT12

were significantly enriched in FAST mice, and approximately 60% of differentially expressed

REV-ERBa targets displayed higher gene expression in FAST mice. These REV-ERBa target

genes whose expression is induced by fasting are proportionally more likely to be GR, CREB,

FOXO, TFEB, hepatic PPARa, or muscle PPARa targets. Among these fasting-sensitive

TFs, PPAR was particularly enriched in hepatic REV-ERBa target genes, in keeping with

the central role of REV-ERa in lipid metabolism [29, 42, 74]. In fact, known metabolic target

genes of hepatic and muscle REV-ERBa were de-repressed under fasting [160]. Interestingly,

it has been shown that REV- ERBa is also tethered to the genome by tissue-specific TFs

such as HNF6 in liver [330]. Indeed, several HNF6/REV-ERBa targets, including Apoa4

and Cd36, are upregulated under fasting in the liver. Notably, hepatic Onecut1 (Hnf6) gene

expression declined dramatically upon fasting, which could also expedite de-repression of

HNF6/REV-ERBa target genes in liver. Taken together, these results support our hypothe-

sis that attenuation of BMAL1 and REV-ERBa by fasting mediates changes in the temporal

pattern of expression of their target genes on a genome-wide scale.
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4.3.2 Fasting Sensitive Genes

As revealed by the transcriptome analysis, there is a group of BMAL1 target genes whose

expression is enhanced by fasting and another group of BMAL1 target genes that instead

displayed repression both in liver and skeletal muscle. In order to discern how BMAL1

and fasting-sensitive TFs coordinate gene transcription upon fasting, we classified genes into

three groups according to the following criteria:

Class I BMAL1 target genes whose expression is repressed by fasting.

Class II BMAL1 target genes activated by fasting

Class III non-BMAL1 target genes whose expression is activated by fasting

Based on this classification, the number of genes in each class was similar between ZT8

and ZT12 both in liver and skeletal muscle, although the overall number of Class III genes

is much higher than the other groups. We sought to examine whether this classification

corresponds to unique transcriptional control mechanisms specific for each class of genes.

We performed chromatin immunoprecipitation followed by real-time qPCR (ChIP-qPCR)

in liver so as to explore the molecular mechanisms of genomic regulation by BMAL1 and

fasting-induced TFs. Hepatic BMAL1 was less recruited to Class I genes such as Dbp and

Per2 under fasting conditions, which was coherent to hepatic Dbp and Per2 gene expression,

respectively. Notably, BMAL1 recruitment to Class II genes such as Cpt1a, Cidec, Acot4,

and Gpt2 was still reduced by fasting despite increased expression of those genes upon

fasting. Similarly, recruitment of BMAL1 to the Per1 promoter was also decreased upon

fasting, despite induction of Per1 expression upon fasting. The induction of gene expression

observed in Class II genes or Per1 is instead achieved through PPARa or CREB, whose

recruitment to these promoters was increased by fasting. Recruitment of CREB and PPARa

to the promoters of Class III genes, such as G6pc and Acot2 was also increased by fasting.
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Although BMAL1 is known to occupy G6pc genomic region, deletion of Bmal1 in the liver

does not alter G6pc gene expression, indicating that BMAL1 binding to the G6pc site is

unlikely to be functional, leading to the categorization of G6pc as a non-BMAL1 target gene

[145]. These results suggest that a temporal pattern of genomic recruitment of clock and

fasting-sensitive TFs coordinately regulate specific classes of genes under fasting.

Next, we investigated the role of the circadian clock in fasting-induced gene regulation in

liver and skeletal muscle. In order to address this question, we subjected Bmal1 -/- mice and

their wild type (WT) littermates to 24-hr fasting or ad libitum feeding, and harvested liver

and gastrocnemius muscle at ZT8, a time when BMAL1 recruitment to target promoters is

at its peak. We explored the expression of genes belonging to the three classes we identified

in fasted Bmal1 -/- mice. Expression of genes within Class I, such as Dbp, Nr1d1 (Rev-

erba), and Per3, was abrogated by Bmal1 ablation as expected. Remarkably, genes within

Class II were activated by fasting in a BMAL1-dependent manner despite the decreased

recruitment of BMAL1 to their promoters under fasting. On the other hand, genes within

Class III appeared to be activated by fasting in a BMAL1-independent fashion. We also

confirmed that gene and protein expression of BMAL1 was abolished both in Bmal1 -/-

liver and skeletal muscle. Under fasting, FOXO1 and GR expression in the hepatic nuclear

fraction and PPARa and pCREB/CREB expression in skeletal muscle appeared higher in

Bmal1 -/- mice. Conversely, hepatic nuclear PPARa expression was lower in Bmal1 -/-

mice, presumably because hepatic PPARa is a direct target of BMAL1 [31, 212]. These

results indicate that fasting sensing pathways are modulated by the circadian clock in a

tissue-specific manner.
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4.3.3 Implications in Disease

Circadian homeostasis is essential for the adaptation of all organisms to environmental

changes as well as to nutritional challenges, pathologies and aging [2, 181, 182, 218, 228].

Food intake is considered as a major zeitgeber for clocks located in peripheral tissues

[51, 274, 302]. Here we focused on the effect of fasting on circadian gene regulation to

test whether lack of food merely reflects free running conditions, as observed in the SCN

under constant darkness, or if rather fasting is capable of entraining a specific set of gene

oscillations on its own. Our findings demonstrate that a significant number of genes gain

rhythmicity upon fasting in a tissue-specific manner. Specifically, skeletal muscle gained

almost twice as many newly oscillating genes after fasting as the liver, while a much higher

number of hepatic genes are rhythmic when compared to skeletal muscle in FED mice, in-

dicating that the skeletal muscle has an increased, intrinsic plasticity to fasting compared

to the liver. Conversely, only 20% and 34% of hepatic and muscle cycling transcripts in

FED mice preserved their rhythmicity under fasting. Among them, only a small fraction of

genes were cyclic and in phase between FED and FAST (137 hepatic and 36 muscle genes,

respectively). These resilient genes were presumably driven by a tissue-intrinsic clock, SCN

derived systemic pathways, or the combination of both. As most cycling genes fail to sustain

rhythmicity or to free-run under fasting, even in the presence of an intact SCN and functional

clock, fasting appears to be a strong metabolic cue to entrain circadian gene expression.

Based on our observation that fasting attenuated the core clock oscillator, fasting appears to

be a suppressive signal for the circadian clock. This may be partly accomplished by increased

NAD+ levels and subsequent enhanced sirtuin activity by fasting [33, 247], that we have

previously demonstrated to hinder BMAL1 recruitment to its genomic targets and BMAL1-

dependent gene activation [184, 205]. Moreover, an additional layer of regulation by fasting

could control clock protein translation, post-translational modifications, and degradation [12,

156]. Intriguingly, Per1 activation upon fasting is somewhat reminiscent of the effect elicited
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by light, although it is still unclear whether Per1 induction by fasting contributes to the

mitigation of BMAL1-dependent gene activation [266]. Feeding or insulin alone induces Per2

expression, suggesting that a switch from sufficient fasting to feeding could synergistically

act as an entrainment signal by activating Per1 and Per2 [256].

Recent findings regarding chromatin accessibility demonstrated that PPAR, C/EBP, GR,

and CREB motifs are particularly enriched in hepatic fasting-induced enhancers [90]. More-

over, CREB, FOX, and GR motifs are enriched in hepatic DNase I hypersensitive sites during

the fasting phase of temporal feeding restriction even in Bmal1-null mice [270]. Therefore,

it can be envisioned that these fasting-sensitive TFs may work in concert or independently

of the circadian machinery. Taking these observations into account, we investigated the role

and molecular mechanism of GR, CREB, FOXO, TFEB, and PPARs in the temporal pattern

of differential gene expression upon fasting in concert with BMAL1 in the liver and skeletal

muscle. This lead to a classification of fasting-dependent genes based on their differential

gene expression. Our analysis revealed that there is a group of genes whose expression is

dually controlled by fasting-sensitive TFs and BMAL1, both in liver and skeletal muscle.

BMAL1 appears to play a dominant role in the expression of these genes in ad libitum fed

condition, while fasting-responsive TFs take over BMAL1 upon nutritional deprivation to

achieve a highly efficient gene induction. Notably, gene induction by fasting is dependent on

BMAL1, suggesting that a functional clock is still necessary for the robust activation of these

genes. Since physiological fasting is supposed to occur around ZT8-12, it could be speculated

that BMAL1 and fasting-responsive TFs cooperatively produce robust oscillation in these

dually controlled genes especially in the context of dark phase restricted feeding. On the

other hand, the majority of genes activated by fasting are non-BMAL1 targets, supporting

the notion that a number of genes would potentially be able to become oscillatory under

forced feeding-fasting regimens, even without a functional intrinsic clock [302].

Accumulating evidence also suggests that post-transcriptional control plays an important
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role in circadian gene expression [145, 83, 146, 193, 287]. A number of distinct genes were

cycling only in exonic reads under fasting, indicating that nutrient-sensing signals could con-

trol the RNA processing machinery. Interestingly, the RNA editing activity on Apob mRNA

and the excretion of small molecular weight ApoB are suppressed after fasting, though fasting

does not affect the relative levels of Apob mRNA, indicating that RNA editing could sense

fasting signals [102, 164]. Fasting also alters circadian alternative splicing and contributes to

the temporal pattern of gene expression [188]. Intriguingly, peroxisome proliferator-activated

receptor gamma co-activator 1a (PGC-1a) interacts with components of the RNA process-

ing machinery, suggesting that PGC-1a could mediate fasting signal to post-transcriptional

gene control [198, 303]. Since transcription and RNA processing are tightly coupled, it is

tempting to speculate that fasting-sensitive TFs such as PPARs and FOXO also modulate

post-transcriptional gene regulation in the context of fasting by employing co-activators and

could use them to bridge transcription with post-transcriptional processes [22, 139].

Overall, our study shows that fasting entrains circadian gene expression through temporal

reprograming of the circadian clock and fasting-sensitive TFs. This dramatic reorganization

of gene regulation by fasting could prime the genome to a more permissive state to anticipate

upcoming food intake and thereby drive a new rhythmic cycle of gene expression. Therefore,

optimal fasting in a timed manner would be strategic to confer robust circadian oscillation

that ultimately benefits health and protects against aging-associated diseases.
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Chapter 5

Circadian Reprogramming and

Development

5.1 Mir-132/212 and Depth Perception Development

5.1.1 MiR-132 Affects Visual Cortical Transcriptome

To investigate miRNA expression during postnatal development we performed RNA se-

quencing of small RNAs extracted from the visual cortex of P10 and P28 mice. A total of

176,228,828 raw reads were generated. On average 94.5% (SD = 0.64) of the reads could

be aligned. 2,164 isomiRs and 299 precursors were found to have age-regulated expres-

sion. Mir-29a, miR-219, miR-338 and miR-132 were the miRNAs undergoing the strongest

upregulation during development, a result confirmed by reverse transcription PCR and in

agreement with previous data8, whereas miR-298, miR-149 and miR-331 were the top down-

regulated miRNAs. The corresponding miRNA families were also the strongest regulated

families. Among the members of the miR-132 family, miR-132-3p and miR-212-5p were the
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only miRNAs represented at high levels.

Then, we investigated the impact of developmental regulation of miR-132-3p and miR-212-

5p on gene expression by analysing the transcriptome in the same samples used for the

small RNA sequencing. 4,339 genes were significantly upregulated and 5,429 genes were

downregulated in the P28 visual cortex with respect to the P10 cortex. Kyoto Encyclope-

dia of Genes and Genomes (KEGG) pathway analysis revealed that some pathways were

in common between upregulated and downregulated genes, whereas other pathways were

significantly enriched only in one of these groups. Many pathways previously involved in

cortical development and plasticity were affected [165, 17, 294, 28, 143] strengthening the

predictive validity of our analysis. Indeed, MAPK signalling, neurotrophin signalling, gluta-

matergic synapse, neuroactive ligand-receptor interaction, insulin signalling pathways were

significantly enriched in both upregulated and downregulated genes; regulation of actin cy-

toskeleton, circadian rhythmmammal and chemokine signalling pathways were present only

in upregulated genes; axon guidance, RNA transport, gap junction, long-term potentiation,

long-term depression and mTOR signalling pathways were present only in the downregulated

genes. Many of the developmentally regulated genes were predicted targets of multiple miR-

NAs. Importantly, there was a highly significant and specific overlap between the predicted

targets of miR-132-3p and the genes downregulated with age (181 genes, odds ratio 2.10;

Fisher exact test p-value = 0.0001). MiR-212-5p targets were also significantly enriched in

age-downregulated genes albeit with a minor odds ratio than miR-132-3p (132 genes, odds

ratio = 1.74; Fisher exact test p-value = 0.0001). This result is in agreement with the hy-

pothesis that miR-132/212 age-regulated increase contributes to repress the expression of a

significant number of genes during visual cortical development.

To independently test this hypothesis, we performed RNA sequencing on P28 visual cortical

samples obtained from mice with germ-line deletion of the miR-132/212 locus. 1698 genes

were differentially expressed between mutant and WT mice. Intriguingly, KEGG pathway
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analysis revealed that 53 out of the 61 KEGG categories enriched with genes upregulated

in miR-132/212 null mice were also present in the KEGG categories downregulated during

normal development, suggesting that a substantial part of the rearrangement in molecular

pathways occurring during normal development is altered in miR-132/212 mutants. More-

over, a significant enrichment in miR-132-3p targets was present in the genes upregulated in

the miR-132/212 mutant cortex (54 genes, odds ratio 5.07; Fisher exact test p-value ¡ 0.0001),

whereas the enrichment in miR-212-5p targets was not significant (14 genes, odds ratio 1.50;

Fisher exact test p-value = 0.13). Importantly, there was an overlap (39 genes) between

the miR-132-3p targets and genes that were both downregulated by age and upregulated by

miR-132/212 deletion. This gene set included genes important for brain development such as

MeCP2, Sox5, Sox11 and Pten. Thus, in the absence of miR-132 family the developmental

downregulation of a significant number of miR-132-3p targets does not occur, confirming the

importance of miR-132-3p developmental regulation in defining the transcriptomic changes

occurring between P10 and P28 in the visual cortex.

5.1.2 Impaired Binocular Matching

We investigated whether the lack of miR-132/212 cluster was able to influence functional

development of the visual cortex. We first analysed monocular tuning properties in sorted

units recorded by multisite silicon electrode tetrodes inserted at depths sampling from layers

III to V in binocular visual cortex of P27-28 WT and null mice. Orientation and direction

selectivity was measured on responses to drifting sinusoidal gratings calculating three differ-

ent parameters: orientation selectivity index (OSI), orientation tuning width and direction

selectivity index (DSI) [114, 209]. Each index was separately computed for the contralateral

and ipsilateral eye responses. No difference between WT and null mice was present for all

these indexes (One-way analysis of variance (ANOVA), p-value = 0.159, p-value = 0.595

and p-value = 0.262 respectively) indicating that the maturation of these properties does
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not require miR-132/212.

Previous data showed that after orientation selectivity completes its developmental trajec-

tory, there is a process of binocular matching of preferred orientation19. To further analyse

the role of miR-132/212 in visual cortical development, we assessed binocular matching of

orientation preference in P27-28 null and WT mice. We found that mutant mice had a signif-

icantly worse binocular matching of orientation preference with respect to WT age-matched

littermates (Two-way ANOVA, effect of genotype p-value = 0.001; post hoc Holm-Sidak

test, p-value = 0.01), suggesting that the lack of miR-132 family specifically disrupts this

late developing property of visual cortical neurons while keeping monocular tuning proper-

ties intact. Intriguingly, the defective binocular matching of orientation preference present

in P27-28 miR-132/212 null mice persists into adulthood. Indeed, we measured binocular

matching in adult P60 mutant and WT mice and we found that also at this age binocular

matching was dramatically impaired in miR-132/212 null mice (post hoc Holm-Sidak test,

p-value = 0.001), despite a normal orientation selectivity of visual cortical neurons (Two-way

ANOVA, effect of genotype p-value = 0.133).

Single-unit data pooled from many animals can be biased towards those individual animals

in which the largest number of units were studied. Therefore, we next analysed the results by

case. Even with this analysis, binocular matching resulted to be strongly impaired in miR-

132/212 null mice both at P27-28 and P60 (Two-way ANOVA, effect of genotype p-value

= 0.001; post hoc Holm-Sidak test, WT versus KO: P27-28 p-value = 0.01, P60 p-value =

0.001).

Visual cortical neurons can be classified into simple and complex cells based on their re-

sponse properties [209, 268]. Since it has been recently reported that during physiological

development simple cells fulfil the process of binocular matching of orientation preference

before complex cells [305, 255, 152, 153, 304], we studied the degree of binocular matching

in simple and complex cells of null mice. Simple cells of null mice only showed a statis-
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tically nonsignificant trend for binocular mismatching with respect to WT animals (t-test,

P=0.07), while the binocular matching of complex cells was significantly disrupted (t-test,

p-value = 0.01). Consistently with the results reported for the whole-cell population, monoc-

ular orientation tuning properties of both simple and complex cells were normal (One-way

ANOVA P=0.624 and P=0.524, respectively). These results are in line with the hypothesis

that miR-132 family is particularly important for the late development of binocular neuronal

properties.

Since narrow-spiking units are known to be poorly orientation selective [209], an abnormally

high presence of narrow-spiking units in miR-132/212 null mice could contribute to the low

binocular matching of orientation preference observed in mutant mice. To test this possibility

we classified neuronal units into two different classes, narrow spiking and broad spiking, on

the basis of their spike waveform. This waveform signature is used to distinguish putative

excitatory and fast spiking inhibitory neurons [209]. We found that 5.4% of miR-132/212

mutant units belonged to the narrow-spiking class. This percentage was not significantly

different from that detected in the cortex of WT animals (8.4%; Fishers exact test p-value

= 0.36) and in line with previous studies on mice of the same age [114, 142, 141]. These

data show that the deletion of miR-132/212 locus does not impinge on the development of

narrow-spiking units suggesting that the disruption of binocular matching in null mice was

not due to an alteration of narrow-spiking inhibitory neurons. Consistently, the analysis

of binocular matching of orientation preference exclusively in broad-spiking cells showed a

significant disruption of this property in miR-132/212 mutants (t-test, p-value = 0.01) with

no change in orientation selectivity (One-way ANOVA p-value = 0.165). These results also

suggest that miR-132 could be mainly involved in the maturation of response properties of

excitatory cortical neurons.
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5.1.3 Ocular Dominance Placticity

It has been reported that binocular matching of orientation preference is an experience-

dependent process [305] sharing molecular regulatory mechanisms with OD plasticity23.

Thus, we decided to investigate whether OD plasticity was blocked in miR-132/212 null

animals and whether the effects of MD on binocular matching could be occluded by miR-

132/212 deletion. Previous work had already shown that miR-132 is necessary for OD

plasticity [192], however a temporally restricted block of miR-132 availability using a miR-132

sponge was adopted. Therefore, we first controlled whether OD plasticity was also blocked

by our genetic deletion of miR-132/212. We recorded visual evoked potentials (VEPs) and

single units in WT and null mice MD for 3 days from P24-25. VEP recordings showed that

non-deprived null mice have a normal OD ratio compared to age-matched WT littermates

(Two-way ANOVA on rank transformed data, post hoc Holm-Sidak test p-value = 0.566),

and that three days of MD were not able to induce OD shift in mutant mice (Two-way

ANOVA on rank transformed data, post hoc Holm-Sidak test p-value = 0.958). MD in

WT animals led to a significant decrease in the C/I VEP ratio (Two-way ANOVA on rank

transformed data, genotype and condition interaction p-value = 0.01; post hoc Holm-Sidak

test p-value = 0.001).

Single-unit analysis of the ocular dominance index (ODI) confirmed the lack of OD plastic-

ity in null mice. ODI of null mice was not significantly different from that of WT animals

(Two-way ANOVA, post hoc Holm-Sidak test p-value = 0.210) and from that of MD null

mice (Two-way ANOVA, post hoc Holm-Sidak test p-value = 0.652), whereas MD WT mice

displayed the typical OD shift towards the open eye (Two-way ANOVA, genotype condition

interaction p-value = 0.05; post hoc Holm-Sidak test p-value = 0.01). Contralateral bias

index (CBI) expressing the strength of contralaterally driven responses for each animal con-

firmed the results of unit-based analysis (Two-way ANOVA, genotype condition interaction

p-value = 0.05; post hoc Holm-Sidak test: WT versus ko p-value = 0.96, ko versus ko-md
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P=0.97, WT versus WT-md p-value = 0.05).

Then, we analysed the influence of visual experience on binocular matching level in P27-

28 miR-132/212 null and WT mice subjected to a 3-days MD. We found that the effect

of MD on binocular matching was occluded by the deletion of miR-132/212: while WT-

md animals displayed a significant impairment of binocular matching with respect to non-

deprived mice (Two-way ANOVA, genotype condition interaction p-value = 0.05, post hoc

Holm-Sidak test p-value = 0.001), the closure of one eye did not further deteriorate the

mismatch of orientation preference observed in miR-132/212 null animals (post hoc Holm-

Sidak test P=0.767). The same conclusion emerged from the analysis of binocular matching

by case (Two-way ANOVA, genotype condition interaction p-value = 0.01; post hoc Holm-

Sidak test: WT versus WT-md p-value = 0.01, ko versus ko-md p-value = 0.795). These

results demonstrate that miR-132/212 is necessary for experience-dependent development of

binocular processes in the visual cortex.

5.1.4 Depth Perception Impairment

We then asked whether the disruption of binocular matching for orientation preference caused

by miR-132/212 deletion in the visual cortex could affect animals perception abilities. We

first performed an electrophysiological assessment of visual acuity (VA) in P27-28 miR-

132/212 null mice [235]. No VA difference was present between mutant and WT animals

(t-test, P=0.781), confirming that molecular mechanisms underlying experience-dependent

regulation of binocularity of cortical neurons can be dissociated from those involved in VA

maturation and plasticity [143, 305, 109, 187, 273].

We then focused on depth perception, given the importance of binocular cues for this visual

function. We employed the visual cliff task to explore the effects of miR-132/212 deletion on

stereoscopic visual abilities. This test exploits the spontaneous tendency of rodents to avoid
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the deep side of a visual cliff arena. The construct validity of the visual cliff exploration

test was first assessed investigating the behaviour of mice in monocular condition (that is,

subjected to the closure of one eye obtained through eyelid suture). As previously reported38,

animals in binocular condition (bin) spent a longer period of time on the shallow side of the

arena, while monocular condition (mon) led to a significantly lower preference for the shallow

side (t-test, p-value = 0.01). Total distance moved and velocity were comparable between

the two groups (t-test, p-value = 0.123 and p-value = 0.142 respectively). These results

confirmed that binocular vision is required for discrimination between the deep and the

shallow side. To exclude the contribution of non-visual cues to the preferential exploration

of the shallow side, we analysed the behaviour of binocular WT animals in the same visual

cliff arena with the two visual stimuli placed at the same height immediately below the glass

plates. In this condition, the differential exploration of the two sides of the arena shown by

binocular WT mice in the visually cued version was completely eliminated (t-test, p-value =

0.01). Indeed, WT mice equally explored the two sides of the arena (one-sample t-test versus

50%; WT p-value = 0.514). The same was true for miR-132/212 null animals (one-sample

t-test versus 50%; ko p-value = 0.622). These data demonstrate the tight relevance of visual

cues in visual cliff test. No difference was present between WT and mutant mice in the

time spent in the centre of the arena (t-test, p-value = 0.663) indicating similar levels of

anxiety-like behavior in the two genotypes.

Next, we evaluated depth perception abilities of miR-132/212 null mice. We found that

miR-132/212 mutant mice showed a significantly reduced preference for the shallow side with

respect to WT mice (KruskalWallis One-way ANOVA on ranks, post hoc Dunns method,

p-value = 0.05). Interestingly, the impairment in stereoscopic abilities detected in miR-

132/212 null mice was reminiscent of that observed in animals subjected to a 3-day MD and

tested after the restoration of binocular vision (that is, 2h after the reopening of the deprived

eye, WT-md; KruskalWallis One-way ANOVA on ranks, post hoc Dunns method). To rule

out the possibility that the significant difference in visual capacities reflect changes in the
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ability to cope with stress in challenging task conditions, we analysed general activity and

anxiety-related behaviour of WT and miR-132/212 mutant mice in the visual cliff arena. We

found that total activity levels of animals were not affected by the deletion of miR-132/212

(distance moved: t-test, p-value = 0.285; velocity: t-test, p-value = 0.303). Moreover,

the time spent by miR-132/212 mutant mice in the central portion of the apparatus was

not different from that recorded for WT animals (t-test, p-value = 0.126), excluding the

hypothesis that a combination of abnormal anxiety and activity levels might be related to

their altered performance in the visual cliff arena.

In tight accordance with binocular matching results, depth perception impairment in miR-

132/212 null mice persisted in adulthood: stereoscopic abilities of mutants at P60, indeed,

appeared markedly altered with respect to age-matched WT animals (t-test, p-value = 0.05).

Time spent in the central part of the arena, total activity and velocity of animals were

comparable between genotypes also in this case (t-test, p-value = 0.767, p-value = 0.431 and

p-value = 0.349, respectively). These results demonstrate that disruption of the binocular

orientation tuning properties of neurons in the primary visual cortex is associated with

behavioural deficits in depth perception.

Previous studies showed that miR-132 family is preferentially expressed by excitatory cells39.

Moreover, we found that miR-132/212 deletion mainly affected the response properties of

broad-spiking cells and morphological analysis of miR-132/212 null mice crossed with mice

expressing green fluorescent protein in layer V pyramidal neurons showed a small but signif-

icant reduction spine density with respect to WT littermates (t-test, p-value = 0.05), sug-

gesting that excitatory cells could be a specific cellular target of miR-132 family. To directly

investigate this possibility, we generated a novel mouse model (Emx1:Cre-miR-132/212/) in

which floxed miR-132/212 alleles are specifically deleted in forebrain glutamatergic neurons

and in some glial cells by using the Emx1 promoter to drive Cre-recombinase expression

[121]. The electrophysiological characterization of these mutants at P27-28 revealed no dif-
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ferences in monocular properties, with OSI, tuning width and DSI being not significantly

different between Emx1:Cre-miR-132/212/ mice and their age-matched littermates express-

ing exclusively the floxed miR-132/212 allele (miR-132/212fl/fl mice) or the Cre-recombinase

allele (Emx1:Cre-WT mice; One-way ANOVA, p-value = 0.167, p-value = 0.300 and p-value

= 0.893 respectively). In contrast, binocular orientation matching appeared to be signifi-

cantly impaired in Emx1:Cre-miR-132/212/ animals (One-way ANOVA p-value = 0.01, post

hoc Holm-Sidak test p-value = 0.01), thus recapitulating the phenotype of ubiquitary null

mice. Analysis of average binocular matching of single mice confirmed the presence of an

impairment exclusively in Emx1:Cre-miR-132/212/ mice (One-way ANOVA p-value 0.05,

post hoc Holm-Sidak test, miR-132/212fl/fl versus Emx1:Cre-miR-132/212/ p-value= 0.05;

Emx1:Cre-WT versus Emx1:Cre-miR-132/212/ p-value = 0.05; Emx1:Cre-WT versus miR-

132/212fl/fl p-value = 0.808). These data indicate that the action of miR-132 family in

excitatory forebrain cells is required for the normal development of binocular matching of

orientation preference in the primary visual cortex.

5.1.5 Developmental Implications

During the first month of postnatal life the mouse visual cortex undergoes dramatic mor-

phological and functional changes that leads to adult-like neuronal receptive fields17 and

the maturation of visual function [32, 128]. We show that these changes are paralleled by

a considerable transcriptome rearrangement: many miRNAs undergo a remarkable change

of expression between P10 and P28 with the top hits being miR-29, that was previously in-

volved in regulating epigenetic enzymes important for cortical plasticity [289]; miR-338 and

miR-219, that were suggested to be key players in myelination; and miR-132/212, a miRNA

family previously involved in synaptic plasticity [291, 192, 289, 290, 242, 110, 98, 307]. The

combined analysis of miRNAs and mRNAs in the visual cortex of WT and miR-132/212 null

mice revealed that genes downregulated with age and upregulated by miR-132/212 deletion
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are highly enriched with miR-132-3p targets and, to a much lesser extent, with targets of

miR-212-5p, the only two members of the miR-132 family abundantly expressed in the visual

cortex. Taken together, these data demonstrate that miR-132 family contributes to shape

the developmental regulation of visual cortex transcriptome and prompted us to analyse the

effects of genetic deletion of the miR-132/212 locus on functional development of the visual

cortex. We observed a specific deficit in the maturation of binocular matching of orientation

preference in neurons of the binocular visual cortex of mutants accompanied by a remarkable

impairment in depth perception.

OD plasticity is one the most studied models to understand how experience regulates brain

development. A flurry of molecular mediators have been shown to be regulated by vi-

sual experience and involved in OD plasticity [165]. However, very little is known about

the role of molecular factors involved in OD plasticity in normal visual development of

non-deprived animals. A reasonable expectation would be that in absence of these factors

visual development should be dramatically impaired. However, many studies have shown

that functional development of cortical units is a multi-faceted process involving experience-

independent and experience-dependent aspects occurring at specific time windows of devel-

opment [141, 70, 128]. Thus, it is difficult to predict which features could be regulated by

factors mediating experience-dependent plasticity. Recent work showed that a late occurring

developmental process is the binocular matching of orientation preference [305, 152, 153, 304].

This process occurs in coincidence with the rise of miR-132 expression in the visual cortex8,

with simple cells reaching adult levels of binocular matching of orientation preference before

complex cells [304]. Importantly, this process is also temporally coincident with the CP for

OD plasticity and is disrupted by MD19 suggesting that mechanisms underlying OD plastic-

ity in deprived mice might overlap with those involved in development of binocular matching

of orientation preference. Our data support this possibility by showing that the absence of

miR-132/212, that resulted in no OD plasticity, was associated with a specific impairment

of binocular matching of orientation preference. By contrast, early developing features of
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cortical neuron RF, like orientation and direction selectivity, were unaffected. Moreover,

the effects of MD on binocular matching were occluded by miR-132/212 deletion suggesting

that MD might act on binocular matching by reducing miR-132/212 levels. This hypothe-

sis is based on previous data showing that miR-132 and its primary precursor are strongly

downregulated by MD. A possible scenario emerging from these observations is that visual

experience after eye opening endows cortical cells with plasticity mechanisms, such as the

post-transcriptional target regulation by miR-132/212, necessary for refinement of binocular

connections onto visual cortical neurons. These mechanisms would overlap with those in-

volved in changing OD in MD animals. MiR-132 family is expressed in an activity-dependent

manner also in the monocular visual cortex [291] therefore it seems unlikely that these miR-

NAs are specifically dedicated to the formation of binocular cells. A more likely possibility

is that miR-132 family could be involved in experience-dependent processes occurring also

in this region [141] at the age when miR-132/212 is expressed.

Our data show that miR-132/212 mutants display an impaired maturation of binocular

depth perception revealed using the visual cliff test that relies on binocular vision. This is

the first time that an impairment of binocular matching of orientation preference of cortical

neurons has been related to a behavioural failure, suggesting a physiological requirement of

this neuronal feature in mouse vision.

We can exclude the contribution of non-visual cues to the preferential exploration of the

shallow side because when we placed visual stimuli at the same height immediately below

the glass plates, we did not detect any difference in the exploration of the two sides of

the apparatus. In addition, the effect reported was not due to abnormal levels of anxiety

or general exploratory activity in mutant mice as indicated by the equal time spent in

the central and peripheral portion of the apparatus, and the comparable path length and

locomotion velocity shown by WT and miR-132/212 null mice. Finally, the similar VA of

WT and mutant mice excludes the possibility that the different performance in the visual
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cliff test was due to blurring of the patterned visual stimuli in mutants.

It is well-known that depth perception exploits multiple visual cues, however binocular cues,

such as disparity, are known to be particularly important also in mice [258]. It has been

proposed that the response of visual cortical neurons to the inputs from the two eyes need

to be tuned to similar orientations to encode binocular disparity of stimulus phase [305,

23], suggesting that impaired matching of binocular orientation preference induced by miR-

132/212 deletion underlies the defective depth perception of mutants.

Our data also show that the impairment of binocular matching and depth perception due to

miR-132/212 deletion is comparable to that observed in MD WT mice. By contrast, OD of

cortical neurons is differentially affected by these two manipulations, suggesting that depth

perception preferentially reflects the state of binocular interactions rather than the strength

of the inputs of the two eyes onto cortical neurons.

How could the transcriptional regulation of miR-132/212 cluster control experience-dependent

development of functional properties of visual cortical neurons? A series of in vitro and in

vivo studies revealed that miR-132 family has an active role in brain structural plasticity.

Indeed, miR-132 has been flagged as an important regulator of activity-dependent shaping

of dendritic morphology and arborization, and spine density [291, 98, 301] acting through

the activation of the Pac1-PAK-actin remodelling pathway [307, 119]. Moreover, miR-132

was found to mediate synaptic plasticity in the hippocampus [155, 312] and in the cortex

[242], and alteration of its expression has been documented in several neuropsychiatric dis-

orders [197, 233]. Most importantly, among the miR-132 target genes downregulated with

age in WT mice, but remaining at significant high levels in miR-132/212 null mice, there are

genes potentially involved in binocular matching like MeCP2, the mediator of brain-derived

neurotrophic factor (BDNF) signalling Sos1, and phosphatase and tensin homolog (PTEN),

an antagonist of the plasticity and groWTh mTOR/Akt pathway [28].
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In conclusion, our study represents the first characterization of a miRNA role from its in

vivo transcriptional and target regulation to its moulding action on cortical receptive fields

and on its behavioural consequences on vision. Many microRNAs were found to be strongly

regulated with age suggesting that they might contribute to the molecular regulation of the

cortical transcriptome and eventually to functional development. Their number is likely to

be underestimated by our study considering that cell-specific analyses could reveal addi-

tional regulated miRNA with highly selective expression. Thus, we surmise that miRNAs

likely represent a novel molecular layer of control of postnatal cortical development. The

pathogenetic relevance of miR-132 regulated processes during development is further sup-

ported by the presence of brain disease related genes among the developmentally regulated

miR-132 targets altered in the miR-132/212 mutant including MeCP2, Pten, Ras-regulating

genes Sos1 and Rasa1, Mmp16, Runx1t1, Sox11, Sox5, and Gpd2. Since many neurodevel-

opmental disorders including autism are related to alterations of neuronal connectivity and

synaptic plasticity, miR-132 dysregulation and subsequent abnormal expression of miR-132

target genes could contribute to some pathological traits present in these diseases. Thus, a

strategic modulation of miR-132/212 expression may offer a new therapeutic approach for

these severe disorders.

5.2 Reprogramming Human Fibroblast to Myogenic

Lineage

Genome architecture is important in transcriptional regulation, but its dynamics and role

during reprogramming are not well understood. Over a time course, we captured genome-

wide architecture and transcription during MYOD1-mediated reprogramming of human fi-

broblasts into the myogenic lineage. We found that chromatin reorganization occurred prior

to significant transcriptional changes marking activation of the myogenic program. A global
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bifurcation event delineated the transition into a myogenic cell identity 32 hours after exoge-

nous MYOD1 activation, an event also reflected in the local dynamics of endogenous MYOD1

and MYOG. These data support a model in which master regulators induce lineage-specific

nuclear architecture prior to fulfilling a transcriptional role. Interestingly, early in repro-

gramming, circadian genes that are MYOD1 targets synchronized their expression patterns.

After the bifurcation, myogenic transcription factors that are MYOG targets synchronized

their expression, suggesting a cell-type specific rhythm. These data support roles for MYOD1

and MYOG in entraining biological rhythms.

5.2.1 Cell Fate Determination

A comprehensive understanding of cell identity, how it is maintained and how it can be

manipulated, remains elusive. Global analysis of the dynamical interplay between genome

architecture (form) and transcription (function) brings us closer to this understanding [236].

This dynamical interaction creates a genomic signature that we can refer to as the four-

dimensional organization of the nucleus, or 4D Nucleome (4DN) [39, 59, 77, 151]. Genome

technologies such as genome-wide chromosome conformation capture (Hi-C) are yielding ever

higher resolution data that give a more complete picture of the 4DN, allowing us to refine

cell types, lineage differentiation, and pathological contributions of cells in different diseases.

High time resolution on a global scale gives key insight into biological processes. Of interest in

regenerative medicine is understanding the dynamical process of cellular reprogramming. Pi-

oneering work by Weintraub et al. showed reprogramming of fibroblasts into muscle cells was

possible through overexpression of a single transcription factor (TF), MYOD1, thus demon-

strating that a different cell identity could supersede an established one [308, 309]. In 2007,

when Yamanaka and colleagues reprogrammed human fibroblasts into an embryonic stem

cell-like state with four TFs, POU5F1 (OCT4), SOX2, KLF4, and MYC, they showed that

a pluripotent state could also supersede an established cell identity [284]. These remarkable
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findings demonstrate the possibilities of controlling the genome and the cell identity through

TFs. However, how TFs dynamically orchestrate genome architecture and transcription as

a cell changes identities during reprogramming is not understood. One exciting finding in

recent reports was that Hi-C contact maps can be used to divide the genome into two major

compartments, termed A and B [39, 169]. Compartment A is associated with open chromatin

(transcriptionally active), and compartment B with closed chromatin (transcriptionally in-

active). The pattern of A/B compartmentalization is cell-type specific and reflects unique

gene expression signatures. Studies show that A/B compartment switching occurs during

differentiation and reprogramming, where genomic regions previously assigned to one com-

partment change to a different compartment to facilitate the gene expression associated with

a new cell state [39, 59, 77, 151]. These studies support conjecture that A/B compartments

have a contributory but not a deterministic role in establishing cell-type specific patterns of

gene expression [59]. Previously we introduced a new technique from spectral graph theory to

partition the genome into A/B compartments and identify topologically associating domains

(TADs) [40]. This motivated us to study the 4DN from a network point of view, where nodes

of the network correspond to genomic loci that can be partitioned at different scales: gene

level, TAD level, and chromosome level. The edges of the network indicate contact between

two loci, with contact weights given by Hi-C entries. Previous studies have extracted a sin-

gle topological feature from the Hi-C matrix (e.g. A/B compartments), and then combined

those results with gene expression [39, 56, 59, 77, 151, 169]. From the network perspective,

A/B compartments are identified as distinct connected components of a network. As will be

demonstrated here, other properties of the network topology, such as node centrality, can be

extracted from the Hi-C matrix to yield further information about chromatin spatial orga-

nization. The utility of network centrality allows one to identify nodes that play influential

topological roles in the network. A number of centrality measures exist, each specialized to

a particular type of nodal influence. For example, degree centrality characterizes the local

connectedness of a node as measured by the number of edges connecting to this node, while
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closeness centrality is a global connectedness measure that characterizes the average distance

of a given node to all other nodes. Eigenvector centrality is a neighborhood connectedness

property in which a node has high centrality if many of its neighbors also have high cen-

trality. Googles Page-rank algorithm uses a variant of eigenvector centrality [175]. In this

work we investigated dynamics of topological features of genome architecture and explored

how they varied with transcription during MYOD1-mediated reprogramming of human fi-

broblasts into the myogenic lineage. Sampling across a time course during reprogramming,

we captured architecture by Hi-C, transcription by RNA-seq, and proteomics data. By com-

bining different centrality measures we found important Hi-C features largely overlooked in

previous studies, and this approach facilitated coordinated form-function analysis of chro-

matin conformation and gene expression in genome-wide data. Analyses of form-function

dynamics revealed chromatin reorganization that occurred prior to changes in transcription.

In this work, we introduce the concept of bifurcation to describe a critical transition from one

cell identity to another. We detected a bifurcation in space-time 32 hours after activation

of exogenous MYOD1 in fibroblasts that suggests a definitive transition into the myogenic

lineage. Additionally we identified a core subset of myogenic genes that define this state.

We further found robust synchronization of circadian gene expression, and determined that

these genes are downstream targets of MYOD1, suggesting MYOD1 feedback onto circadian

gene circuits. After the bifurcation, MYOG was associated with synchronization of a subset

of important myogenic transcription factors. These findings support roles for MYOD1 and

MYOG in entraining biological rhythms. Finally, our analysis of genomic regulatory ele-

ments such as chromatin remodeling genes, super enhancer regions and microRNAs provides

additional clues toward understanding system-wide dynamics during reprogramming.
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Figure 5.1: MYOD1 and MYOG Oscillation After Bifurcation Leading to Myogenic Lineage

5.2.2 MYOD1-mediated Direct Reprogramming

We converted primary human fibroblasts into the myogenic lineage using the transcription

factor and master regulator MYOD1. In its native system, MYOD1 initiates the transcrip-

tional program that turns muscle cell precursors into multinuclear muscle fibers. Fibroblasts

were transduced with a lentiviral construct that expressed human MYOD1 fused with the

tamoxifen-inducible mouse ER(T) domain (L-MYOD1) [137]. With 4-hydroxytamoxifen (4-

OHT) treatment, transduced cells showed nuclear translocation of L-MYOD1 and morpho-

logical changes consistent with myogenic differentiation. We then validated the activation

of two key myogenic genes downstream of MYOD1 (MYOG and MYH1 ). These results

demonstrate successful conversion of fibroblasts into the myogenic lineage by L-MYOD1.

Subsequent analyses were carried out on 4-OHT treated, transduced cells, sampling at 8

hour (hr) intervals for RNA-seq, small RNA-seq, and Hi-C analyses, and at 24 hr intervals

for proteomics.

5.2.3 Synchronization of Circadian Rhythms

We observed that upon MYOD1 nucleus translocation, the population of cells exhibit robust

synchronization in circadian gene expression. Upon further inspection this finding can be
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interpreted as follows; a large portion of the core circadian gene network relies on E-box motif

targets and transcription factors for control, the same motif that the bHLH protein MYOD1

targets [296]. This is further supported by the observation that known core circadian genes

with E-box targets displayed the most profound synchronization initially, starting with an

uptick in gene expression post MYOD1 addition. JTK CYCLE confirmed this observation,

as all E-box circadian genes were found to have a period of 24 hrs, with a maximum lag

between any genes of 4 hrs (except for CRY1) [117].

Interestingly, the subset of transcripts displaying oscillatory behavior was different preand

post- our identified bifurcation point. MYOD1 and MYOG expression began around our

identified bifurcation point at 32 hrs and both transcripts displayed oscillatory expression.

Additionally, circadian transcript oscillations dampened at time point 40 hr, corresponding

with when the cells were given low-serum differentiation medium. We examined the subset of

transcripts that were found to be only oscillatory after the bifurcation point and synchronous

(in phase or antiphase) with MYOD1 and MYOG expression. Transcripts that were found

to be oscillating in phase are potentially interacting in an excitatory fashion, and vice versa.

Since both MYOD1 and MYOG are known transcription factors, we further investigated

which newly oscillating transcripts may have motifs for either MYOD1 or MYOG binding

sites in their promoter regions using MotifMap [48, 315]. For those genes that were found

to oscillate only after the bifurcation point, 51 oscillating transcripts possessed upstream

MYOG binding sites and were synchronous with MYOG. Similarly, 17 oscillating transcripts

with MYOD1 binding sites were found to be synchronous with MYOD1. We found 23 known

transcription factors to oscillate after the bifurcation point at our selected significance. Six

of these oscillating transcription factors were synchronous and targeted by MYOG. Only a

single oscillating transcription factor, ELF3, was found to be targeted and synchronous by

MYOD1. Several of the six oscillatory transcription factors targeted by MYOG or MYOD1

have been shown to be related to cell differentiation in literature. Numerous studies have

implicated the important role of SOX15 in muscle differentiation [190]. GATA6 has been
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Figure 5.2: MYOD1 and MYOG Target Synchronized Oscillation

shown to regulate vascular smooth muscle development in several studies [316]. ISL1 has been

shown to interact with CITED2 to induce cardiac cell differentiation in mouse embryonic

cells [216]. ELF3 is found to play a diverse role in several types of cell differentiation [24].

5.2.4 MYOD1 and Core Circadian Clock

A number of studies have explored the link between MYOD1 and circadian genes ARNTL

and CLOCK, revealing that ARNTL and CLOCK bind to the core enhancer of the MYOD1

promoter and subsequently induce rhythmic expression of MYOD1 [8]. We found that upon

introduction of L-MYOD1, the population of cells exhibits robust synchronization in circa-

dian E-box gene expression. Among these Ebox targets are the PER and CRY gene family,

whose protein products are known to repress CLOCK-ARNTL function, thus repressing their

own transcription. Additionally, E-box target NR1D1, which is synchronized upon addition

of L-MYOD1, competes with ROR proteins to repress ARNTL transcription directly. This

adds another gene network connection under MYOD1 influence, indirectly acting to repress

ARNTL, leading us to posit that MYOD1 can affect CLOCK-ARNTL function through

E-Box elements, in addition to CLOCK-ARNTLs established activation effect on MYOD1.

Furthermore, these oscillations dampen post-bifurcation point, after which MYOG entrains

the oscillations of a distinct subset of myogenic transcription factors. Therefore, MYOD1-
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mediated reprogramming and circadian synchronization are mutually coupled, as is the case

in many other studies of the reprogramming of cell fate [298].
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Chapter 6

Mechanisms of Circadian Oscillation

Reprogramming

6.1 Background

6.1.1 Oscillating Molecular Loops

The first observation is that a transcript (or any other molecular species) cannot oscillate

in isolation. What really oscillate are entire loops of interacting molecular species compris-

ing different kinds of interactions such as regulatory (transcriptional), proteinprotein and

enzymatic interactions. Oscillatory loops typically contain an odd number of negative in-

teractions. Biological network contain a large number of such directed loops and thus many

potential oscillators. For instance, in a network consisting of 21,826 genes/proteins with

120,988 edges (114,493 regulatory edges and 6,495 physical proteinprotein interactions), we

found over 3,600 directed loops of size 3 and over 71,100 directed loops of size 4. These

numbers are not meant to be precise, as it is well known that there are several sources of
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noise in reconstructed biological networks, but they are indicative of the general trends and

it is reasonable to estimate that the number of potential oscillators in the cell is in the 105

range.

6.1.2 Periodicity and Evolution

In the complex molecular circuitry of a cell, having many loops, and thus many potential

oscillators, does not explain why a large fraction of them would oscillate with a circadian

frequency. When a complex physical system with many components is perturbed in many

different ways, one does not expect to see each time a different subset of its component

oscillating at the same constant frequency, unless this frequency is deeply built-in into the

system as a resonant frequency. Indeed, high time resolution circadian data [116] show that

most oscillating genes have a period of about 24h, with some genes oscillating at harmonic

periods of about 12hours and 8hours. Very short periods (e.g. periodicity of one hour or

less) and periods not commensurate with the daynight cycle (e.g. periodicity of 7h) are not

observed as they are probably not physiological. The key question then is why so many

loops exhibit the same 24-h periodicity? We believe evolution provides the answer to this

question as the world is drastically different during the day and the night, for instance in

terms of temperature, light, winds and predators. Thus paying attention to these differences

is likely to have conferred major survival benefits to the corresponding organisms in the

course of evolution. It is important to note that some of the earliest unicellular precursors

of current living systems were highly circadian. For example, Cyanobacteria which were

present 3.4 billion years ago are highly circadian [299] since they use photosynthesis. Thus

circadian oscillations at the molecular level were discovered very early by evolution and

subsequently refined and propagated throughout the tree of life over two trillion daynight

cycles. Thus evolution has deeply sculpted the relentless circadian rhythm into many of the

molecular oscillators present in each cell, so that the circadian frequency is the main resonant
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frequency of these networks

6.1.3 Network of Coupled Oscillators

Armed with an understanding or what the oscillators are and why they may have a built-in

resonant period of 24h, we can now consider how these oscillators are coupled to each other

and how biological systems can manipulate the oscillatory landscape and its couplings to

adapt to internal or external perturbations.

Many different biological mechanisms couple these oscillators together, but at the root of the

coupling, there is always the sharing of vertices (or even edges or paths) between oscillating

loops forming an intricate network of coupled circadian oscillators. The couplings in such a

network are likely to be non-linear, heterogeneous and condition specific. Reprogramming

at the cellular level (obviously reprogramming occurs at many levels and may involve, for

instance hormonal signals triggered by the SCN and cell-to-cell communication within a

tissue) occurs by (i) suppressing existing molecular interactions thereby breaking loops; (ii)

enabling new molecular interactions thereby creating new loops or (iii) changing the sign of

existing molecular interactions thereby modifying the oscillatory behavior of existing loops.

There are several possible non-exclusive mechanisms by which the cell can create, suppress

or modify interactions between the different species to rapidly reprogram its oscillatory

repertoire. For instance, dynamic changes in the epigenome, like methylation, acetylation

and chromatin remodeling can play a central role in selecting the fraction of oscillating

species. An epigenetic modification in the promoter of a gene can prevent the expression

of a gene permanently, thus suppressing the oscillatory behavior of all the loops contain-

ing the corresponding transcript or protein. Removing the modification has the opposite

effect. Recent studies have also identified circadian long-range interactions [4] and the role

of CLOCK protein as a histone acetyltransferase [60]. Similarly, a post-translational mod-
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ification may enable the interaction of two proteins and thus the creation of corresponding

loops. Furthermore, nodes or edges associated with many loops act as hubs that can couple

and simultaneously influence many other oscillators.

Circadian rhythms are pervasive and play a key role in ensuring homeostatic balance with the

environment and coordinating many aspects of physiology including the sleep/wake cycle,

eating, hormone and neurotransmitter secretion and even memory and cognitive function

[65, 80, 87, 283]. Disruption of circadian rhythms has been directly linked to health problems

ranging from cancer, to insulin resistance, to diabetes, to obesity and to premature ageing [9,

80, 138, 156]. Research has shown that these circadian rhythms are genetically encoded by a

molecular clock found in nearly every cell, with a master clock located in the suprachiasmatic

nucleus (SCN) [200, 237] of the hypothalamus, coordinating and interacting with peripheral

clocks throughout the body [283, 324]. Central to the cellular clock and the rhythmicity

of SCN neurons as well as other cells are transcription factors that drive the expression

of their own negative regulators [219, 257]. This results in a negative transcriptional and

translational feedback loop, highly conserved across species, that perpetuates oscillations in

gene expression that occur every 24hours. In mammals, two bHLH transcription factors,

CLOCK and BMAL1 heterodimerize and bind to conserved E-box sequences in target gene

promoters, thus driving the rhythmic expression of mammalian Period (Per1, Per2 and Per3)

and Cryptochrome (Cry1 and Cry2) genes [277]. PER and CRY proteins form a complex

that inhibits subsequent CLOCKBMAL1-mediated gene expression [27, 57, 219]. In short,

the core of the clock is driven by only a dozen genes [321].

In contrast, gene expression experiments [68, 67, 116, 184, 196] reveal that a much larger

fraction, on the order of 10%, of all transcripts in the cell are oscillating in a circadian

manner and that the oscillating transcripts differ by cell or tissue type [217, 275, 321]. Thus,

the number of oscillating transcripts typically extends beyond the core clock. However,

the precise extent of this phenomenon, or its applicability to other molecular species such
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as metabolites, has not been investigated systematically. While researchers have looked

at the common denominator (the master clock genes and its interactors), little has been

done to systematically understand the unique and possibly novel oscillations observed in

a specific tissue or under a specific set of perturbations. In a recent study [67] where we

contrasted the circadian profiles of both transcripts and metabolites in the liver of mice

fed normal-chow and high-fat diets, we noticed considerable differences associated with a

massive reprogramming occurring within the cell. By analyzing not only the transcripts

and metabolites that lost their circadian oscillations as a result of the high-fat diet but also

the transcripts and metabolites that gained novel circadian oscillations as a result of the

perturbation, we were able to discover compensatory oscillations in important molecular

species like SREBP1, a transcription factor responsible for lipid synthesis.

In combination, these results raise several fundamental questions [223]. Exactly how per-

vasive are circadian oscillations at the molecular level, i.e. how far do they extend beyond

the core clock? What is the overlap in circadian oscillations across different tissues and

conditions? How flexible and programmable are these oscillations and what are the underly-

ing mechanisms controlling rhythmicity? To begin to address these questions, we conduct a

large-scale aggregated analysis of multiple circadian transcriptome and metabolome datasets.

6.1.4 Effects of Perturbation

We observe that genetic or environmental perturbations tend to disrupt circadian oscillations

in given system in several ways. As expected, such perturbations can:

1. Change the amplitude of pre-existing circadian oscillations for some of the molecular

species;

2. Change the phase of pre-existing circadian oscillations for some of the molecular species;
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3. Disrupt or even suppress the pre-existing oscillations of some of the molecular species.

Indeed, experiments involving genetic knockouts, diet changes or even simply different mice

strains, show these effects. For instance, when comparing gene expression in liver tissue

from Clock mutant and wild-type mice [196], about 1160 genes show a loss of circadian

rhythmicity. However, about 400 genes oscillate in both conditions but with a difference

in amplitude or phase. Similarly, when comparing gene expression and metabolite levels in

liver tissue from 10-week high-fat-fed versus normal-chow-fed mice [67], about 2200 genes

and about 40 measured metabolites show a loss of circadian rhythmicity, whereas about 1520

genes and about 60 measured metabolites oscillate in both conditions, but with a difference

in amplitude or phase.

6.2 Importance of the Core Circadian Clock

Molecular hubs associated with highly connected species usually affect many oscillating

loops and are capable of setting up cascades of changes in amplitude, phase and oscilla-

tory behavior. An example is provided by nicotinamide adenine dinucleotide+, a metabolite

that participates in many reactions and plays a central role in regulating circadian rhythms

[206, 227, 238]. Not surprisingly, transcription factors also tend to behave like hubs, and

the clock itself behaves as a central hub intersecting many loops and helping cellular repro-

gramming and the selection of a significant fraction of which loops actually oscillate under

a given set of internal and external conditions.

In particular, the main transcription factors in the clock, Clock and Bmal1, are densely

connected. They are known to bind to a single or pair of E-box sites. E-box sites are short

(canonical sequence CACGTG) and frequent in the genome. With a stringent Bayesian

Branch Length Score [315, 48] greater than 1, we found over 23800 conserved E-box sites
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in the mouse genome using MotifMap several of which are in the promoters of transcription

factors. Using time-resolved ChIP-seq data for BMAL1, Rey etal. (2011) identified 2049

E-box binding sites in mouse liver. Among these, about 60% (1319) showed a rhythmic

binding of BMAL1 and 13% of all BMAL1 sites had a pair of E-box elements with spacers of

67 base pairs. Thus, in a given environment, cells can reveal or hide a fraction of E-box sites

thereby controlling which loops are directly, or indirectly, affected and possibly entrained by

Clock and Bmal1.

To further understand the factors that confer to the cell its circadian reprogramming capa-

bilities, we analyzed the role of the core clock genes in the context of the underlying global

molecular network. Using a network with regulatory and proteinprotein interaction edges,

we calculated the distance of all nodes from Clock or Bmal1 and also the total number of

directed loops that contain Clock or Bmal1. We found that about 10% of genes are one hop

away and about 6070% genes are two hops away from Clock or Bmal1. In addition, about

10% of genes are connected to Clock or Bmal1 through a directed loop of size 6 or less. In

short, in this network of coupled oscillators, Clock and Bmal1 form a central hub coupling

and modulating many other circadian oscillators

6.3 Developing a Model of Transcriptional Organiza-

tion

To identify a model of organization for transcriptomic circadian oscillations, we perform a

series of analyses of increasing sophistication using novel computation metrics. To achieve

robustness and overcome noise in the data and incomplete knowledge, we present results

obtained consistently at different statistical threshold as well as results that are supported

by multiple lines of evidence. In total, 87 datasets from mouse were used to generate each
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Figure 6.1: Most Frequent Oscillating TFs and RBPs

set of results. The most represented tissues are liver (37 datasets), skin (14 datasets) and

brain (13 datasets). Aggregated results as well as tissue specific results were generated.

6.3.1 Frequency Analysis

The frequency at which a TF or RBP is found to oscillate in a collection of datasets provides

a simple metric for estimating its consistency in circadian oscillation. 6.1 illustrates this

frequency distribution for mouse at a BIO CYCLE p-value < 0.01. Additionally, 64 datasets

from Papio anubis (baboon) were used for comparison to validate the methods. Both analyses

show that TFs involved in the circadian core clock are found to be the most frequently

oscillating. This purely data-driven approach automatically discovers the circadian core

clock. Furthermore, it identifies additional TFs and RBPs that must play an important role

in circadian oscillation.
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Transcript frequency is defined as the total number of datasets where a given protein coding

transcript is found to be oscillating at a BIO CYCLE predicted p-value < 0.01. Protein-

coding transcripts were identified from BioMart ENSEMBL gene database [269].

6.3.2 Regulation Analysis

Measuring the circadian regulatory influence of the TFs and RBPs identified in the previous

analysis requires further investigation using more sophisticated computational methods. To

this end, a novel computational method was used to identify and score directed regulatory

edges in oscillating loops. The Circadian Regulatory Control (CRC) method can be under-

stood as a proxy for circadian regulation between a TF or RBP (source) and a transcript

(target). There are three major components of the CRC method. First, as a prerequisite,

the source and target must be oscillating, as assessed by BIO CYCLE. Second, the source

must have at least one high quality binding site on the target for transcriptional or post-

transcriptional regulation, as assessed by MotifMap and MotifMap-RNA [315, 48, 174]. For

a TF, binding sites were assessed at the promoter region of the target transcript. For an

RBP, binding sites were assessed at the introns or UTRs of the target transcript. Third,

there must be a correlative relationship between the phases of the source and the target.

Recent studies have shown a significant lag between the transcript expression and the con-

centration of the corresponding protein [246]. We addressed this issue by computing and

modeling the distribution of this lag, using transcriptomic and proteomic datasets produced

from the same study on CircadiOmics (Methods 4.2).

After filtering on p-value for the first criteria, the remaining two criteria were combined into

two different CRC scores. The B-score is a binary indicator of circadian regulation at various

filtering thresholds for the number of high quality binding sites and the likelihood of phase

correlation. The E-score is an exponentially weighted combination of these two criteria. In
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Figure 6.2: Tables showing the ranking of circadian TFs and RBPs by CRC E-score in
different tissue types. The leftmost table shows ranking in mouse transcriptome across all
datasets. RBPs are labeled in red, while TFs are labeled in black. Core clock TFs have been
removed from the listing.

general, results generated using both scores tend to agree. However, B-score, as a binary

indicator, is more convenient for large scale analysis of graph structures. In contrast, E-score,

as a real valued metric, has more sensitivity and is used for ranking nodes and edges. For

each source TF or RBP, a CRC score was computed by aggregating all the CRC E-scores

from all its outgoing edges either in all experiments or in tissue-specific experiments. The

highest scoring TFs and RBPs are shown in Table 6.2.

When looking at aggregated results, core clock TFs such as CLOCK and BMAL1 were found

to have the largest scores, a finding consistent with both the frequency of oscillation and

previous literature [297]. Extended members of the core clock were also identified in the

ranking including THRA and BHLHE40 [275, 166].

In the results across all datasets, additional TFs and RBPs were identified that seem to

have a much broader regulatory role than what is reported in the literature. For instance,
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FUS and CIRBP have been reported to affect the core circadian factor PER2 via alternative

splicing, but only in the mouse liver [150, 201, 213]. In contrast, we find that FUS and

CIRBP are found to be high scoring also in both brain and skin. EIF4B has been identified

in the circadian regulation of translation in mouse liver [125]. We find that EIF4B is also top

scoring in skin. HNRPDL is listed as a potential target of circadian regulation via microRNA

in the brain [41]. Strikingly, these RBPs and TFs are found to have very high CRC scores

across all mouse datasets. This suggest that they play a broader, previously uncharacterized

role in circadian regulation.

When looking at tissue specific results, many additional TFs and RBPs with high CRC

scores are discovered. Although literature evidence has shown that these factors interact

with circadian pathways, they are not known to be regulators of oscillation. These TFs may

explain tissue specific circadian reprogramming. Within brain tissue, SFPQ is functionally

involved in the cell cycle pathway, which also includes NONO and PER2 [92]. EGR1 has

been found to oscillate and regulated by the core clock [162]. Within our results, EGR1

potentially regulates a large number of downstream transcripts in the brain. CHD1 is known

to be involved in circadian chromatin remodeling in brain [19]. KLF15 is well known to be

regulated by the peripheral clock in relation to circadian nitrogen homeostatis in liver and

muscle [123]. Within skin tissue, RUNX is a top TF and is known to be regulated in a

circadian fashion in epidermal cells [122]. E2F1 is regulated by circadian factors SIRT1 and

CLOCK[205]. BRCA1 is known to interact with core clock TFs such as PER2 [314]. Within

liver tissue, CEBPB is top ranking excluding core clock TFs. This agrees with the literature

finding that it interacts with the core clock through REV-ERB [115]. PCBP4 is known to

be involved in circadian alternative splicing in the liver [189].

Additionally, there are many other novel findings that have been linked to very few circadian

studies. These findings include: NFIC, RAD21, MXI1, and TARDBP across all tissues;

ZC3H11A, RBM28, and CEBPG in brain; HCFC1 and ETV5 in skin; and HNRNPK, ATF5,
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and BACH1/MAFK in liver, and may provide leads for investigations of previously unknown

circadian regulatory mechanisms.

While these results have focused on individual TFs and RBPs, the identification of a model

of transcriptomic organization requires a global view of circadian regulation. Using the CRC

method, we introduce the concept of a CRC graph. A CRC graph is a directed weighted

graph where nodes are defined as oscillating transcripts and edges are defined by a CRC

B-Score or E-Score. A dataset CRC graph was built for each of the 87 mouse datasets

separately. Additionally, a single aggregate graph was generated from the superimposition

of all individual dataset CRC graphs. Analysis of the CRC graphs explores the regulatory

relationship between oscillating transcripts within the network of coupled circadian oscilla-

tors.

The Circadian Regulation Control method is a measure of circadian regulation from a source

TF/RBP to a target transcript, consisting of three components of evidence. First, both the

source and the target are predicted to be oscillatory by BIO CYCLE [3] with p≤ 0.01.

Second, if the source is a TF, there exist at least one high quality binding site (BBLS ≥

1, NLOD ≥ 0.9 and FDR ≤ 0.25) in the promoter region of the targeted (defined as -

5,000 to +500 bp to the TSS) predicted by MotifMap [315, 48]. For RBP sources, there

are high quality binding sites (BBLS ≥ 1, NLOD ≥ 0.9) predicted by MotifMap-RNA

[174] in the introns or UTRs of target transcript. In both cases, the number of high quality

binding sites is aggregated for each individual regulatory edge per dataset. Third, the lag

between the expression phases of the source and the target is used to assess the degree of

phase matching. The distribution of experimental lag between the transcript and the protein

product of 2,400 genes [50] was modeled as a beta distribution with µ = 0.35, SD = 0.25.

Given a lag between any circadian source and target, we estimate the likelihood of positive

or inverse phase-correlation. In particular, the highest probability density interval (HPD)

of the given lag is calculated with respect to the mode of the beta distribution, which is a
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value between 0 and 1 (exactly at the mode).

Furthermore, the values of these two components are summarized in two ways. First, a

binary score, B-score, was calculated by imposing a specific threshold for each values. We

use a threshold of binding sites ≥ 1 and an HPD ≥ 0.8, which corresponds to 2-6 hourrs.

Second, an exponentially weighted score, E-score, is defined as E = 0.5 ∗ HPD − 0.5 ∗

exp(−NumberOfBindingSites). This score was shown in empirical testing to produce

reasonable rankings between core clock TFs and was used for ranking TFs and RBPs.

6.3.3 Correlation Analysis

While previous analysis was performed on nodes on a CRC graph, to further understand

the organization of circadian transcripts, it is necessary to study the regulatory edges. We

reduced the complexity of this analysis by focusing on the regulatory edges between TFs

and RBPs, which form a subgraph of the whole CRC graph.

A correlation analysis was performed using CRC E-scores associated with these edges. An

edge score matrix was constructed using the sum of CRC scores for all edges between inter-

acting TFs and RBPs in the aggregated CRC graph. The results compiled from all mouse

datasets are shown in Figure 6.3. The heatmap demonstrates strong correlation within core

clock TFs, as well as between the core clock and other top CRC scoring TFs and RBPs such

as FUS and CIRBP. Figure 6.3 B lists some of the top interactions. Many of the findings

are consistent with literature.

However, some top interactions are relatively unseen in circadian literature, such as the po-

tential regulation of PER2 by NFIX, or TEF by NFYA and RXRA. These novel interactions

may be important in circadian regulation. Overall, correlation analysis shows that most of

the top circadian regulation between factors centers around the core clock. However, the
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Figure 6.3: Correlation analysis. (A) Edge Score Heatmap of inter-regulator (TF/RBP)
circadian CRC score (E-score aggregates) in mouse with hierarchical clustering. The score
is calculated by aggregating CRC scores from the directed edges starting from row TF/RBP
to the column TF/RBP across all datasets. Stronger colors in the heatmap indicate higher
total scores (normalized for visualization). Color on row and column indicates the type of
regulators: blue indicates core clock TF, red indicates RBP and gray indicates regular TF.
There is a strong cluster of core circadian TFs and RBPs (e.g. CIRBP, FUS). (B) Ranking
of top regulations between TFs and RBPs. Regulations between core clock TFs have been
omitted.
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core clock only strongly interacts with a relatively small set of TFs.

For each dataset, the CRC score between a source TF or RBP and all its possible targets,

as quantified by E-score, are aggregated across all outgoing edges. Total results from all 87

mouse datasets are organized by tissue type (e.g. all, liver, brain, skin).

Regulatory correlation results are derived from a subgraph of the total CRC graph, where

only regulatory edges between TF and RBPs are included. Similarly, results from different

datasets are combined by aggregating the scores from individual datasets. Partial results

derived from E-scores are shown in 6.3.

6.3.4 CRC Graph

The CRC graph can be seen as representation of the structure of circadian transcriptomic

regulation based on the evidence presented in previous results. Here we analyze this repre-

sentation by combining results from both nodes and regulatory edges. The following results

were generated from both individual dataset CRC graphs and the aggregate CRC graph. The

CRC B-score was used in place of a weighted E-score to discretely determine the presence

of a regulatory edge.

Regulatory distance was computed as the length of the shortest directed path in the CRC

graph between a source TF or RBP and a target transcript. The set of oscillating transcripts

that are found to have a regulatory distance-one from the core clock were considered to be

directly regulated by the core clock. The mean percentage of distance-one transcripts across

all dataset CRC graphs is roughly 35%. While the majority of transcripts are not found

to be directly regulated by the core clock, almost any transcript can be connected through

a regulatory path in the CRC graph to the core clock. On average, greater than 80% of

oscillating transcripts in a dataset CRC graph can be connected within distance-three from
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Figure 6.4: Mean percentages of transcriptome explained by TF/RBP at fixed regulatory
distances from the core clock across mouse datasets.

the core clock. The mean percentage of oscillating transcripts found at increasing regulatory

distances across all mouse datasets is shown in 6.4.

Within a dataset CRC graph, each oscillating TF or RBP has an average branching factor of

nine. This large branching factor has an important implication in the global set of oscillating

transcripts found in any experiment. Perturbations in TFs and RBPs can potentially be

amplified to changes in over 700 transcripts over a regulatory distance-two. Regulatory

feedback that is known to exist within the core circadian clock can be identified within most

dataset CRC graphs. For the set of TFs or RBPs at regulatory distance-one or greater,

feedback exists between transcripts at the same regulatory distance and between transcripts

at lower regulatory distances. This feedback, on average, only extends backwards a single

regulatory step. In this way, the CRC graph can be seen as a cascading hierarchy of oscillating

regulatory loops.

Functional enrichment by Gene Ontology (GO) term was performed on the subset of tran-

scripts found at each regulatory distance. Transcripts found at regulatory distance-1 from
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the core clock exhibited significant enrichment for terms related to Circadian Rhythms, Cell

Cycle, Metabolic Processes, and Neuronal Processes. The sets of transcription factors found

at this distance were grouped into these broad functional categories including the set of

known RBPs. These functional related TFs and RBPs are found to regulate a much larger

set of downstream transcripts at increasing regulatory distances, which are not directly reg-

ulated by the core clock. TFs and RBPs with larger regulatory distances correlate strongly

with decreasing CRC scores (Supplementary Table 2). To observe the significant shifts in the

set of oscillating transcripts found in reprogramming events, a perturbation must occur in

the expression of TFs and RBPs with small regulatory distances and, consequently, a high

CRC score. Perturbations affecting low CRC scoring TFs and RBPs at large regulatory

distances can only induce changes in proportionally smaller sets of oscillating transcripts.

Therefore, it is reasonable to conclude that experimental conditions that relate to changes

in metabolism, neuron function, cell cycle and development, or RBP modification likely

instigate large reprogramming events through perturbations found in distance-one TFs or

RBPs.

CRC Graphs are constructed for each of the 87 mouse datasets. Nodes are defined as

oscillating transcripts using a threshold BIO CYCLE p-value ≤ 0.01. Edges with a CRC

B-score = 1 are included. The shortest path length, used to define regulatory distance,

between a TF and RBP and a target transcript and the average branching factor for each TF

and RBP was computed by https://networkx.github.io/. Results for mouse liver, skin, and

brain tissue are provided in Supplementary Table 4. GO enrichment analysis and functional

annotation for transcripts found at each distance was completed using the Python library

https://github.com/tanghaibao/goatools using NCBI gene to GO term associations. The

enrichment results provided in Supplementary Table 1 were performed at an adjusted p-

value ≤ 0.01.
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Figure 6.5: Network view of TFs and RBPs that are found at regulatory distance = 0.
These TFs predominantly fall into three broad categories labeled from GO annotations that
includes Cell Cycle, Neuronal Function, and Metabolic Process.
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6.3.5 Interpretation

The question of how specific subsets of oscillators are selected under specific genetic, epige-

netic, and environmental conditions has remained an open question in the study of circadian

rhythms. An organizational model that allows this selection within the network of coupled

oscillators must exist on a spectrum from centralized organization orchestrated by the core

circadian clock and to complete self-organization through the competition of many circadian

oscillating loops. In order to determine where in this spectrum the network of coupled oscil-

lators operates, we obtained results using the CRC method and CRC graph with the large

collection of mouse transcriptomic data available on CircadiOmics. To begin, we analyzed the

frequency of all oscillating transcripts. With no prior information, this method identifies TFs

known to be components in the core circadian clock including CLOCK, BMAL1, CRY1/2,

PER1/2, NRD1D1/2, and DBP. This result was again reproduced using 64 transcriptomic

datasets from baboon tissues. Finally, many TFs and RBPs that must be important circa-

dian regulators are identified in both this analysis and subsequent analyses.

We formulated the Circadian Regulatory Control (CRC) method for identification of reg-

ulatory edges in circadian feedback loops. Two CRC scores, B-Score and E-score, incor-

porate multiple sources of evidence including statistical significant of transcript oscillation

and high quality predicted binding sites. These scores further take into account the delay

between transcript and protein abundance using available proteomic datasets included in

CircadiOmics. CRC scores provide evidence for circadian regulation from a TF or RBP to a

specific target. Additionally, an aggregated score provides a measure of the regulatory influ-

ence of a TF or RBP by combining the scores of all outgoing edges. Using aggregated CRC

scores, we conducted a robust quantitative analysis of the most influential circadian TFs

and RBPs across all 87 mouse datasets. These results identified multiple TFs and RBPs im-

portant to circadian regulation that were corroborated by literature evidence. Furthermore,

we identified multiple novel circadian TFs and RBPs with limited evidence for circadian
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regulation.

Using the CRC method, we introduced the concept of the CRC graph as a directed weighted

graph where nodes are oscillating transcripts and regulatory edges are measured by CRC

scores. We constructed CRC graphs from both single experimental datasets and the total

collection of 87 mouse datasets. We studied the correlation between top TFs and RBPs

using aggregated edge scores. We observed that the most influential TFs and RBPs interact

with the core circadian clock. However, the core clock directly regulates a relatively small set

of TFs and RBPs. This finding hints at a hierarchical organization of circadian regulation

centering around the core clock, where regulation can occur through steps represented as

edges in the CRC graph.

Oscillating transcripts within the aggregated CRC graph were separated by regulatory dis-

tances from the core circadian clock. At some regulatory distance, over 95% of all oscillating

protein coding transcripts can be connected to the core clock. Functional annotation by

GO terms reveals that at a regulatory distance-one, TFs can be grouped together into three

categories: Cell Cycle, Metabolic Process, and Neuronal Function. These sets, along with

the set of RBPs found at distance-one, are functionally related and highly influential circa-

dian regulators of a large collection of downstream oscillating transcripts. We conclude that

reprogramming events,, where the core circadian clock continues to oscillate, must originate

from perturbations of expression in these TFs and RBPs.
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[1] V. A. Acosta-Rodŕıguez, M. H. de Groot, F. Rijo-Ferreira, C. B. Green, and J. S.
Takahashi. Mice under caloric restriction self-impose a temporal restriction of food
intake as revealed by an automated feeder system. Cell metabolism, 26(1):267–277,
2017.

[2] Y. Adamovich, L. Rousso-Noori, Z. Zwighaft, A. Neufeld-Cohen, M. Golik, J. Kraut-
Cohen, M. Wang, X. Han, and G. Asher. Circadian clocks and feeding time regulate
the oscillations and levels of hepatic triglycerides. Cell metabolism, 19(2):319–330,
2014.

[3] F. Agostinelli, N. Ceglia, B. Shahbaba, P. Sassone-Corsi, and P. Baldi. What
time is it? Deep learning approaches for circadian rhythms. Bioinfor-
matics, 32(12):i8–i17, 2016. [PubMed:27307647] [PubMed Central:PMC4908327]
[doi:10.1093/bioinformatics/btw243].

[4] L. Aguilar-Arnal and P. Sassone-Corsi. The circadian epigenome: how metabolism
talks to chromatin remodeling. Current opinion in cell biology, 25(2):170–176, 2013.

[5] M. Ahmadian, J. M. Suh, N. Hah, C. Liddle, A. R. Atkins, M. Downes, and R. M.
Evans. Pparγ signaling and metabolism: the good, the bad and the future. Nature
medicine, 19(5):557, 2013.

[6] B. N. Albaugh, K. M. Arnold, and J. M. Denu. Kat (ching) metabolism by the tail:
insight into the links between lysine acetyltransferases and metabolism. Chembiochem,
12(2):290–298, 2011.

[7] J. Alvarez, A. Hansen, T. Ord, P. Bebas, P. E. Chappell, J. M. Giebultowicz,
C. Williams, S. Moss, and A. Sehgal. The circadian clock protein bmal1 is neces-
sary for fertility and proper testosterone production in mice. Journal of biological
rhythms, 23(1):26–36, 2008.

[8] J. L. Andrews, X. Zhang, J. J. McCarthy, E. L. McDearmon, T. A. Hornberger, B. Rus-
sell, K. S. Campbell, S. Arbogast, M. B. Reid, J. R. Walker, et al. Clock and bmal1
regulate myod and are necessary for maintenance of skeletal muscle phenotype and
function. Proceedings of the National Academy of Sciences, page 201014523, 2010.

[9] L. Antunes, R. Levandovski, G. Dantas, W. Caumo, and M. Hidalgo. Obesity and
shift work: chronobiological aspects. Nutrition research reviews, 23(1):155–168, 2010.

127

https://www.ncbi.nlm.nih.gov/pubmed/27307647
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908327/
http://dx.doi.org/10.1093/bioinformatics/btw243


[10] L. d. C. Antunes, M. N. d. Jornada, L. Ramalho, and M. P. L. Hidalgo. Correlation
of shift work and waist circumference, body mass index, chronotype and depressive
symptoms. Arquivos Brasileiros de Endocrinologia & Metabologia, 54(7):652–656, 2010.

[11] D. M. Arble, J. Bass, A. D. Laposky, M. H. Vitaterna, and F. W. Turek. Circadian
timing of food intake contributes to weight gain. Obesity, 17(11):2100–2102, 2009.

[12] G. Asher, D. Gatfield, M. Stratmann, H. Reinke, C. Dibner, F. Kreppel,
R. Mostoslavsky, F. W. Alt, and U. Schibler. Sirt1 regulates circadian clock gene
expression through per2 deacetylation. Cell, 134(2):317–328, 2008.

[13] G. Asher and P. Sassone-Corsi. Time for food: The intimate interplay be-
tween nutrition, metabolism, and the circadian clock. Cell, 161(1):84–92, 2015.
[PubMed:25815987] [doi:10.1016/j.cell.2015.03.015].

[14] A. Azzi, R. Dallmann, A. Casserly, H. Rehrauer, A. Patrignani, B. Maier,
A. Kramer, and S. A. Brown. Circadian behavior is light-reprogrammed by plastic
DNA methylation. Nature Neuroscience, 17(3):377–382, 2014. [PubMed:24531307]
[doi:10.1038/nn.3651].

[15] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen. Assessing the accu-
racy of prediction algorithms for classification: an overview. Bioinformatics, 16(5):412–
424, 2000.

[16] P. Baldi and P. J. Sadowski. Understanding dropout. In Advances in neural information
processing systems, pages 2814–2822, 2013.

[17] L. Baroncelli, M. C. Cenni, R. Melani, G. Deidda, S. Landi, R. Narducci, L. Cancedda,
L. Maffei, and N. Berardi. Early igf-1 primes visual cortex maturation and acceler-
ates developmental switch between nkcc1 and kcc2 chloride transporters in enriched
animals. Neuropharmacology, 113:167–177, 2017.

[18] J. Bass. Circadian topology of metabolism. Nature, 491(7424):348–356, 2012.
[PubMed:23151577] [doi:10.1038/nature11704].

[19] W. J. Belden, Z. A. Lewis, E. U. Selker, J. J. Loros, and J. C. Dunlap. Chd1 remodels
chromatin and influences transient dna methylation at the clock gene frequency. PLoS
genetics, 7(7):e1002166, 2011.

[20] D. Bell-Pedersen, V. M. Cassone, D. J. Earnest, S. S. Golden, P. E. Hardin, T. L.
Thomas, and M. J. Zoran. Circadian rhythms from multiple oscillators: lessons from
diverse organisms. Nature Reviews Genetics, 6(7):544, 2005.

[21] M. M. Bellet, E. Deriu, J. Z. Liu, B. Grimaldi, C. Blaschitz, M. Zeller, R. A. Edwards,
S. Sahar, S. Dandekar, P. Baldi, et al. Circadian clock regulates the host response
to salmonella. Proceedings of the National Academy of Sciences, 110(24):9897–9902,
2013.

128

https://www.ncbi.nlm.nih.gov/pubmed/25815987
http://dx.doi.org/10.1016/j.cell.2015.03.015
https://www.ncbi.nlm.nih.gov/pubmed/24531307
http://dx.doi.org/10.1038/nn.3651
https://www.ncbi.nlm.nih.gov/pubmed/23151577
http://dx.doi.org/10.1038/nature11704


[22] D. L. Bentley. Coupling mrna processing with transcription in time and space. Nature
Reviews Genetics, 15(3):163, 2014.

[23] B. Bhaumik and N. P. Shah. Development and matching of binocular orientation
preference in mouse v1. Frontiers in systems neuroscience, 8:128, 2014.
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[273] C.-É. Stephany, L. L. Chan, S. N. Parivash, H. M. Dorton, M. Piechowicz, S. Qiu, and
A. W. McGee. Plasticity of binocularity and visual acuity are differentially limited by
nogo receptor. Journal of Neuroscience, 34(35):11631–11640, 2014.

[274] K.-A. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker. Entrainment of the
circadian clock in the liver by feeding. Science, 291(5503):490–493, 2001.

[275] K.-F. Storch, O. Lipan, I. Leykin, N. Viswanathan, F. C. Davis, W. H. Wong, and C. J.
Weitz. Extensive and divergent circadian gene expression in liver and heart. Nature,
417(6884):78, 2002.

[276] M. S. Strable and J. M. Ntambi. Genetic control of de novo lipogenesis: role in diet-
induced obesity. Critical reviews in biochemistry and molecular biology, 45(3):199–214,
2010.

[277] M. Stratmann and U. Schibler. Properties, entrainment, and physiological functions of
mammalian peripheral oscillators. Journal of biological rhythms, 21(6):494–506, 2006.
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