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Food for all? Wildfire ash fuels growth of
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In December 2017, one of the largest wildfires in California history, the
Thomas Fire, created a large smoke and ash plume that extended over
the northeastern Pacific Ocean. Here, we explore the impact of Thomas
Fire ash deposition on seawater chemistry and the growth and composition
of natural microbial communities. Experiments conducted in coastal
California waters during the Thomas Fire revealed that leaching of ash in
seawater resulted in significant additions of dissolved nutrients including
inorganic nitrogen (nitrate, nitrite and ammonium), silicic acid, metals
(iron, nickel, cobalt and copper), organic nitrogen and organic carbon.
After exposure to ash leachate at high (0.25 g ash l−1) and low (0.08 g ash
l−1) concentrations for 4 days, natural microbial communities had 59–154%
higher particulate organic carbon concentrations than communities without
ash leachate additions. Additionally, a diverse assemblage of eukaryotic
microbes (protists) responded to the ash leachate with taxa from 11 different
taxonomic divisions increasing in relative abundance compared with control
treatments. Our results suggest that large fire events can be important
atmospheric sources of nutrients (particularly nitrogen) to coastal marine
systems, where, through leaching of various nutrients, ash may act as a
‘food for all’ in protist communities.
1. Introduction
Worldwide, many regions are experiencing changing wildfire activity due to
both climatic and anthropogenic forcings [1–3]. Recent occurrences of large
wildfires in many locations around the world and their apparent increasing fre-
quency demonstrate the need to better understand the impacts of these events
on both local and global biogeochemical processes [1]. In California specifically,
observations and modelling studies show that fires will continue to increase in
frequency and severity as the climate changes and humans continue to live near
and encroach on fire-prone ecosystems [4–6]. In December 2017, the Thomas
Fire became the largest California fire in modern history, though it has
since been surpassed by seven other fires [7]. The Thomas Fire ignited in
Ventura County (CA, USA) on 4 December 2017, and burned approximately
1140 km2 of coastal terrain dominated by chapparal and oak woodland as
well as over 1000 structures before being fully contained on 12 January 2018
[8,9]. Satellite imagery showed a large plume of smoke and ash that extended
more than 1000 km offshore near the Santa Barbara Channel (SBC) and led
to persistent but spatially variable ash deposition into the SBC throughout
December (figure 1). Although atmospheric aerosols from sources such as
dust, volcanos and anthropogenic pollution are known to provide a variety
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Figure 1. Thomas Fire smoke and ash plume. Aerosol optical thickness (AOT) gridded data (SNPP/VIIRS) and true colour imagery (MODIS Terra) of the Thomas Fire
plume on 6 and 13 December 2017. The two incubation water collection locations are indicated as red circles with SD and SBC located outside and within the plume,
respectively.
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of chemical compounds to oceanic systems that significantly
alter marine biogeochemical cycles, wildfire sources have
rarely been considered.

Wildfire ash is a complex chemical mixture of particulate
material remaining after the burning of wildland fuels that
consists of both minerals and charred organic components
[10]. California wildfires have been shown to alter the chem-
istry of freshwater runoff and streams by increasing pH and
the concentrations of nutrients (e.g. nitrate, ammonium and
phosphate), metals and hydrocarbons [11–13]. Owing to the
complex chemistry of ash and variability in composition
based on fire conditions and fuel sources, it is difficult to pre-
dict if dissolution in seawater will result in fertilizing or toxic
effects and how these effects might vary based on ash concen-
tration and biological community composition. In a limited
number of studies on marine systems, wildfires have been
suggested to supply critical nutrients required for primary pro-
duction with observed increases in atmospheric deposition
of metals [14–16] or macronutrients (e.g. nitrogen and
phosphorus) [17] in wildfire-adjacent coastal marine systems.
Additionally, a study on the 2019–2020 Australian wildfires
concluded that increased iron concentrations due to deposition
of wildfire aerosols led to anomalously high chlorophyll
concentrations thousands of kilometres away in the Southern
Ocean [16]. In freshwater systems, several studies have demon-
strated that wildfire ash and post-fire runoff can be toxic to a
variety of organisms across multiple trophic levels [18–22].
Toxic effects on somemarinemicrobes have also been observed
during exposure to dust or volcanic aerosols presumably
due to high copper concentrations [23,24]. While these studies
have suggested that phytoplankton productivity may be
enhanced by nutrient deposition from wildfires [15–17,25]
or that aerosols or wildfire ash can be toxic to organisms
[18–24], the mechanisms and short-term responses of natural
microbial communities remains largely unknown.

Here, we used wildfire ash derived from the Thomas Fire
and natural microbial communities collected from coastal
California waters (figure 1) to explore the impacts of wildfire
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ash on seawater chemistry and single-celled eukaryotic
plankton (protist) community composition. We focus on dry
deposition of wildfire ash as a major driver of biogeochemical
changes in the marine environment, but we acknowledge that
there are various additional mechanisms for wildfires to affect
marine systems that depend on combined processes on land,
in the atmosphere and in the ocean (figure 2). Through short-
term experimental incubations, we show that dry deposition
of wildfire ash has the potential to fertilize coastal marine
microbial communities by leaching a diverse mixture of inor-
ganic nitrogen species and other nutrients when deposited
in seawater. Additionally, our findings suggest that wildfire
ash addition results in the growth of a diverse assemblage of
marine protists rather than only a few opportunistic species.
Thus, we conclude that wildfire ash can be an important
source of nutrients, particularly nitrogen, to coastal ecosystems
where we hypothesize that ash serves as a ‘food for all’ in
marine protist communities by supplying various types of
nutrients in small pulses.
2. Material and methods
(a) Environmental setting and experimental setup
Thomas Fire ash was collected at several locations near actively
burning areas. Ash leachate was created by mixing 20 g of
bulk, homogenized Thomas Fire ash to 1 l of filtered seawater
(20 g ash l−1) and subsequently filtering to remove particulate
material (electronic supplementary material, Materials and
Methods). Incubation experiments exposing natural microbial
communities to wildfire ash leachate were conducted on the
RV Sally Ride from 16 to 21 December 2017 using seawater
collected offshore of San Diego, California (SD) (32.867°,
−117.734°) and seawater from within the SBC (34.250°,
−119.906°) (figure 1). To create the experimental treatments,
ash leachate was added to bottles containing 200 µm prefiltered
SD or SBC seawater to obtain high ash (H) concentrations
(0.25 g ash l−1), low ash (L) concentrations (0.08 g ash l−1) or no
ash controls (C). Each experiment was conducted deckboard
in replicate approximately 2.3 l polycarbonate bottles over
4 days with samples for particulate organic carbon (POC) con-
centrations (representing approximate community biomass),
nutrient (nitrate, nitrite, phosphate, silicic acid) concentrations
and single-celled eukaryotic plankton (protist) community com-
position (18S rDNA metabarcoding) collected at the start of each
experiment and on days 2 and 4.

(b) Sampling and analysis
The ash leachate used for the experiments conducted here plus
additional ash leachate created by mixing Thomas Fire ash
with filtered SBC seawater (electronic supplementary material,
Materials and Methods) was used to analyse chemical changes
in seawater due to ash addition. Aliquots of ash leachate were
stored at −20°C until analysis for concentrations of inorganic
nutrients (nitrate + nitrite, nitrite, ammonium, phosphate and
silicic acid), total dissolved nitrogen (TDN) and phosphorus
(TDP), dissolved organic carbon (DOC) and trace metals (Fe,
Zn, Pb, Ni, Cd, Mn, Co and Cu) (electronic supplementary
material, Materials and Methods). Changes in concentration
due to ash addition were analysed by subtracting concentrations
in the background seawater from the ash leachate concentrations.

Triplicate incubation bottles were sampled sacrificially at
each time point for POC concentrations, inorganic nutrient
concentrations (nitrate + nitrite, nitrite, phosphate and silicic
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Figure 3. Nutrient and biomass dynamics in response to ash leaching. (a) Mean ± s.d. additions of nitrate (NO�3 ), nitrite (NO
�
2 ), ammonium (NHþ4 ), phosphate

(PO3�4 ) and silicic acid (Si(OH)4) (µmol g(ash)
−1 ). (b) Mean ± s.d. (n = 3 except n = 2 for SD H) concentrations of POC over time in ash and control treatments of the SD

and SBC incubations. (c) Mean ± s.d. concentrations of nitrate + nitrite over time in ash and control treatments of the SD and SBC incubations. Measurements are
from triplicate bottles (n = 3), except at time 0 where values are from a single sample (C) or the average of a single sample and estimated concentrations from the
leachate (ash treatments) (n = 2). Values in the shaded area represent measurements below the analytical limit of detection (0.2 µM).
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acid) and 18S DNA metabarcoding. Samples for POC (500 ml)
were vacuum filtered onto pre-combusted glass fibre filters
(0.7 µm, 25 mm, Whatman) and stored in pre-combusted
glass scintillation vials at −20°C. Acidified POC filters were ana-
lysed using the Dumas combustion method in an automated
elemental analyser (model CE-440HA, Exeter Analytical) at
the University of California, Santa Barbara (UCSB)Marine Science
Institute (MSI) Analytical Laboratory. Inorganic nutrient samples
(approx. 15 ml) were filtered through a 0.2 µm polycarbonate
filter (Isopore, EMD-Millipore) into sample-rinsed plastic
scintillation vials and frozen at −20°C until analysis. Inorganic
nutrients were analysed by flow injection analysis (QuikChem
8000, Zellweger Analytics) at the UCSB MSI Analytical
Laboratory. Samples for DNA metabarcoding (1–2 l) were
vacuum filtered onto 1.2 µm polycarbonate filters (Isopore,
EMD-Millipore), placed in 4 ml cryovials, and submerged in
liquid nitrogen less than 15 min after collection. Samples were
stored at −80°C until DNA extraction. Extraction of DNA from
the filters followed the AllPrep Mini Kit (Qiagen) protocol after
lysis of cells by bead beating in lysis buffer. Amplification of the
V9 hypervariable region of the 18S rRNA gene and Illumina
library preparation followed protocols described by Catlett et al.
[26] (electronic supplementary material, Materials and Methods).
Library sequencing was performed using a MiSeq PE150 v2 kit
(Illumina) at the DNA Technologies Core of the University of
California Davis Genome Center. Demultiplexed sequencing
data were processed with the DADA2 pipeline (v1.16.0) [27]
and followed procedures described in Catlett et al. [26] (electronic
supplementarymaterial, Materials andMethods). Before analysis,
non-protistan amplicon sequence variants (ASVs) and ASVs that
only appeared in a single sample were removed and sequences
were subsampled without replacement to the minimum library
size (15 818 reads per sample).

(c) Statistical analysis
Statistical analyses were conducted using R (v4.0.1) and JMP
Pro 15. Statistically significant additions ( p < 0.05) of inorganic
nutrients in ash leachate samples were determined using t-tests
or Alexander–Govern tests after testing for normality of residuals
(Shapiro–Wilk test) and homogeneity of variances (Levene test).
Statistically significant additions ( p < 0.05) of organic nutrients
and metals in the leachate samples were determined using
a paired t-test (or paired Wilcoxon signed-rank test) after analys-
ing the distributions for normality. To determine differences
in POC or nutrient concentrations between treatments at
each time point or across incubations, data were analysed for
normality of residuals and homogeneity of variances before con-
ducting analysis of variance (ANOVA) tests and Tukey HSD
post-hoc pairwise comparisons when necessary. For nutrient
concentrations measured as below the analytical limit of detec-
tion (LOD) (nitrate + nitrite: 0.2 µM, nitrite: 0.1 µM, phosphate:
0.1 µM, ammonium: 0.2 µM, silicic acid 1.0 µM), values were
replaced with ½ LOD and only used in statistical analyses
when just 1 replicate was below the LOD.

Analysis of protist communities and sequence relative abun-
dances (RAs) of taxonomic and trophic groups were conducted
in R (v4.0.1) using the Phyloseq (v1.32.0), Vegan (v2.5.6), pairwi-
seAdonis (v0.0.1) and DESeq2 (v1.28.1) packages. Significant
differences ( padjusted< 0.05) in major taxonomic groups between
treatments at days 2 and 4 were initially tested with one-way
ANOVAs and followed up with pairwise t-tests for individual
treatments (either H or L compared with C) for taxonomic
groups that significantly differed (ANOVA p < 0.05) and p-values
were adjusted for multiple testing across all tests at a given time
point according to the Benjamini–Hochberg method. Differential
RA of individual ASVs (prevalence > 1, maximum RA> 0.01%)
in ash treatments (H or L) compared with the C treatment across
both days 2 and 4 were analysed separately for each incubation
with DESeq2 (α = 0.05).
3. Results
(a) Seawater chemistry and nutrient leaching from

Thomas Fire ash
Addition of ash to seawater caused leaching of major
inorganic nutrients (figure 3a; electronic supplementary
material, table S1). Thomas Fire ash addition significantly
increased concentrations of nitrite (7:3+0:1mmolNO�

2 g
�1
ðashÞ),

ammonium (6:1+ 0:2 mmol NHþ
4 g�1

ðashÞ), nitrate (1:9+
0:1 mmol NOþ

3 g�1
ðashÞ) and silicic acid (1.2 ± 0.2 µmol

Si(OH)4 g(ash)
−1 ) (t-tests orAlexander–Govern tests p < 0.01).How-

ever, phosphate concentrations (0:01+ 0:03 PO3�
4 g�1

ðashÞ) were
not significantly increased (t-test p= 0.328). Subsequent leaching
tests using Thomas Fire ash also revealed increased con-
centrations of DON, DOC and metals (iron, nickel, cobalt
and copper) following leaching in seawater (electronic
supplementary material, tables S2 and S3).

At the time of the Thomas Fire, surface seawater in the area
was relatively low in macronutrient concentrations (electronic
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supplementarymaterial, table S4) with apparent deficiencies in
nitrogen relative to phosphorus or iron (N : P < 16 : 1 mol N :
mol P and N : Fe < 2133 : 1 mol N :mol Fe) [28]. Initial ratios
of nitrate + nitrite to phosphate in the control surface seawater
from SD and the SBC were approximately 1 : 1 and 1.5 : 1 mol
N :mol P, respectively (electronic supplementary material,
table S4) while in samples taken on 14 December during
another study in the SBC [15], ratios of nitrate + nitrite to iron
were found to range from approximately 24 : 1 to 500 : 1 mol
N :mol Fe. By contrast, the Thomas Fire ash leachatewas nitro-
gen-rich compared with phosphorus and iron (N : P > 16 :
1 mol N :mol P and N : Fe > 2133 : 1 mol N :mol Fe) [28]. The
ratio of TDN to TDP added to seawater from ash leaching
was approximately 240 : 1 mol N :mol P with non-significant
additions of TDP and phosphate (figure 3a; electronic
supplementary material, tables S1 and S2). Additions of
dissolved inorganic nitrogen (nitrate + nitrite + ammonium)
equal to approximately 15 µmol g(ash)

−1 compared with iron
additions of 0.3 ± 0.1 nmol g(ash)

−1 resulted in N : Fe of approxi-
mately 50 000 : 1 mol N :mol Fe due to ash leaching
(figure 3a; electronic supplementary material, tables S1–S3).
(b) Particulate organic carbon and nutrient trends in
experimental incubations

All incubations with natural microbial communities exhibited
increased POC concentrations as nitrate + nitrite and phosphate
concentrations decreased over time, but POC concentrations
increasedmore in communities exposed to Thomas Fire ash lea-
chate (figure 3b,c; electronic supplementarymaterial, figure S1).
Over the first 2 days of the incubations, the increase in POC
in ash treatments relative to the control was more than twofold
higher in the SBC compared with the SD incubations (H: t-test
p = 0.02, L: t-test p = 0.02), but between days 2 and 4 increases
in POC relative to controls were not significantly different
between the SD and SBC incubations in either the H (t-test
p = 0.4) or L (t-test p = 0.5) treatments, revealing a lagged
growth response of the SD microbial communities to ash lea-
chate. By the end of the incubations (day 4), POC in the SD
and SBC incubations were 154% and 126% greater (H) and
84.5% and 59% greater (L) compared with the controls, respect-
ively (Tukey HSD p < 0.05) (figure 3b). Initial concentrations of
nitrate + nitrite in the H and L treatments were increased by
approximately 2.0–2.4 µM and 0.6–0.9 µM, respectively, com-
pared with controls, while phosphate concentrations were
similar across treatments (figure 3c; electronic supplementary
material, figure S1). By day 4, the concentrations of nitrate +
nitrite and phosphate in ash-leachate-amended treatments
were depleted (concentrations decreased by approx. 0.6–2 µM
and approx. 0.1–0.2 µM, respectively) and oftentimes were
below detection limits (figure 3c; electronic supplementary
material, figure S1). By contrast, C treatments had very low
initial nitrate + nitrite concentrations (approx. 0.2–0.4 µM)
and were depleted to below detection limits (less than
0.2 µM) by day 2 while phosphate concentrations decreased
much less than in the ash-leachate-amended treatments
(decreases of only approx. 0.03–0.05 µM) (figure 3c; electronic
supplementary material, figure S1).

(c) Protist community response to ash
Amplicon sequencing of the 18S-V9 rRNA gene revealed
significant changes in protist community composition after
exposure to Thomas Fire ash leachate (figures 4 and 5; elec-
tronic supplementary material, figures S2 and S3). The initial
composition of the SD and SBC protist communities differed
resulting in distinct changes in the communities in response
to ash addition, although we also observed several commonal-
ities in the responses of protist groups. When considering POC
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increases in conjunction with these results, the addition of ash
appeared to enhance the growth of many members of the pro-
tist community simultaneously (figures 4 and 5; electronic
supplementary material, figure S4).

In theSD incubation,ASVs fromdivisionsOchrophyta (class
Bacilliaryophyta and other Ochrophyta), Cercozoa and Psuedo-
fungi had significantly higher RA in the L or H treatments
compared with controls on either day 2 or day 4 (pairwise
t-tests, padjusted< 0.05), but not consistently across days
(figure 4). In the SBC incubation, only a single division (Sagen-
ista) displayed significantly higher RA in the H treatment
compared with C on day 2 (pairwise t-test, padjusted= 0.0005)
(figure 4). Across both incubation experiments the only consist-
ent responses were reduced RAs of Dinophyceae and
Syndiniales (divisionDinoflagellata) ASVs in ash exposed treat-
ments. After 4 days of ash exposure, the cumulative RA of
Dinophyceae and Syndiniales ASVs in ash treatments was 9–
13% and 4–8% lower than in controls, respectively (pairwise
t-tests, padjusted< 0.05) (figure 4). Additionally, 77% (SD) and
93% (SBC) of significantly differentially abundantDinoflagellata
ASVs had lower RA in ash than in control treatments (figure 5a;
electronic supplementary material, figure S3). To investigate
whether the reduction in dinoflagellate RA was driven by a
decrease in dinoflagellate biomass or less pronounced growth
relative to other protists, we scaled protistan RA to concurrent
estimates of POC concentrations (see electronic supplementary
material,Materials andMethods). Despite the reduction indino-
flagellate RA, estimated Dinophyceae and Syndiniales POC
increased slightly or was not significantly different in ash treat-
ments compared with controls on day 4 (pairwise t-tests,
padjusted< 0.05) (electronic supplementary material, figure S4).
Differential abundance testing of individual ASVs revealed
22 ASVs in the SD incubation and 30 ASVs in the SBC incu-
bation from a total of 11 different taxonomic divisions that
were determined to have significantly higher RAs in at least
one ash treatment compared with controls across both incu-
bations (figure 5a). Classification of ASVs to putative trophic
strategies revealed that across both the SD and SBC incu-
bations, ASVs with significantly higher RA in ash treatments
were more commonly photoautotrophic (SD = 41%, SBC=
43%) than ASVs with higher RA in control treatments (SD =
5%, SBC= 16%) (figure 5b). Further, several of the ash-associ-
ated phototroph ASVs were identified as putative pico- or
nano-phytoplankton (electronic supplementary material,
table S5 and dataset S1).
4. Discussion
(a) Nutrient fertilization via wildfire ash deposition

and leaching
The enrichment of inorganic and organic nutrients in the
Thomas Fire ash leachate was expected based on observations
of wildfire ash in freshwater systems [11–13,29–31] and
deposition of other atmospheric aerosols to marine systems
[32,33]. Although the chemical composition of wildfire ash is
known to vary based on factors including fire conditions,
fuel type and atmospheric processes [10,22,34,35], our results
from the Thomas Fire suggest that ash may be an important
source of nitrogen and other inorganic and organic compounds
that likely impact microbial community production and
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composition. Harper et al. [22] comparedwildfire ash leachates
(in deionized water) derived from six different fires around the
world and discovered the leachate chemistry was hugely vari-
able between sites [22]. Nitrate and phosphate additions in
the different leachates ranged from 0.4 to 3.7 µmol g(ash)

−1 and
0.01–6.5 µmol g(ash)

−1 , respectively, and the leachates were not
always nitrogen-rich relative to phosphorus and iron [22].
Additionally, the ash leachate chemistry results reported
here differed from the Thomas Fire ash leachate reported
by Harper et al. [22] which leached higher amounts of
nitrate (3.7 versus 1.9 µmol g(ash)

−1 ), phosphate (0.1 versus
0.01 µmol g(ash)

−1 ) and iron (0.01 versus 0.0003 µmol g(ash)
−1 ) com-

pared with our results but was still nitrogen-rich relative to
phosphorus, although not compared with iron (although
nitrite concentrations were not measured) [22].

The lack of phosphate and organic phosphorus leached
from Thomas Fire ash was surprising given that wildfires
have been shown to increase concentrations of atmospheric
phosphorus [36] and dissolved phosphorus in fire impacted
watersheds [12,37]. Although ash may contain significant
quantities of phosphorus containing compounds, phosphorus
in wildfire ash has low aqueous solubility [34,38–40] and the
solubility of phosphorus is lower in seawater compared with
freshwater [41,42]. Measurements during other fires have
suggested that low intensity fires may produce less atmos-
pheric phosphorus [43] while laboratory tests demonstrated
that ash had higher phosphorus concentrations at higher com-
bustion temperatures [40]. Therefore, despite almost all the
above-ground vegetation being consumed (basal area loss of
75–100% for approx. 75% of the Thomas Fire area) [44], the
low to moderate soil burn severity resulting from the Thomas
Fire [9] may suggest that fire intensity and temperature were
relatively low, and this may have contributed to the lack of
phosphorus leached from the ash. Furthermore, phosphorus
has been shown to bind to large ash particles which are not
transported far via the atmosphere [43,45,46] and therefore
are not likely to contribute significantly to ash deposition out-
side the burn area.Although our data revealed that the Thomas
Fire was not an important source of bioavailable phosphorus
to the SBC, it is possible that differences in fire conditions,
fuel type, and atmospheric transport may alter phosphorus
dynamics during different wildfire events [40,43]. A complex
combination of methodological (solubility differences in sea-
water, ash collection timing and location, creation of leachate,
etc. [22,47]) and physical (atmospheric processing, soil–ash
interactions, fuel type, fire conditions, etc.) factors probably
determine the chemical composition of ash-seawater leachate
and further study is urgently needed to determine how this
variability may influence coastal ocean biogeochemistry.

Compared with other types of atmospheric aerosols, such
as volcanic ash and desert dust, which can be important
sources of iron and phosphorus [33,35,48], our results
from the Thomas fire ash suggest that fires may be a more
important nitrogen source to marine systems relative to other
nutrients. While iron, phosphorus or other nutrients may
sometimes limit primary production, many marine systems,
including the California Current System, are considered nitro-
gen limited relative to average biological requirements of
marine phytoplankton (N : P : Fe = 16 : 1 : 0.0075) [28,49,50].
Indeed, measurements of seawater nutrient concentrations
showed sub micromolar nitrate concentrations and nutrient
ratios indicated initial nitrogen deficiency relative to phos-
phorus and iron (N : P < 16 : 1 and N : Fe < 2133 : 1) [28] at the
time of the Thomas Fire. The incubation experiments demon-
strated that supplementary nitrogen provided by ash fuelled
primary production with significant increases in POC concen-
trations while phosphate and nitrate + nitrite were depleted in
ash-amended treatments (figure 3; electronic supplementary
material, figure S1). This suggests that any additional nitrogen
delivered to coastal marine waters at this time would enhance
primary production. Although inorganic nitrogen concen-
trations were low and the deficiency relative to other
nutrients suggest nitrogen limitation of microbial production,
the addition of ash leachate-derived DOC, DON andmicronu-
trients (e.g. iron) may have also contributed to the observed
POC increase in ash treatments.

The annual timing of wildfires and ash deposition to the
coastal ocean also probably impacts the response of these eco-
systems. Inorganic nitrogen concentrations along the
California coast display high seasonality with the highest
concentrations in the SBC occurring during spring upwelling
(March and April) and the lowest concentrations from July to
November (average < 0.5 µM) [51]. Fire season in California
typically coincides with times of the year with low overall
nutrient concentrations in nearby coastal marine systems
(summer through autumn). Wildfires in California may
thus be important episodic sources of bioavailable nitrogen
to nearby oceanic systems with the potential to relieve local
nitrogen limitation and enhance primary production.
(b) Estimated fertilizing effect of the Thomas Fire
Upwelling along the central and southern California coast is
the largest source of nitrogen to coastal surface waters with
estimated annual nitrogen fluxes of 7.5 × 108 kg N yr−1 to the
entire Southern California Bight [52] and 2.1 × 108 kg N yr−1

to the SBC [53]. On smaller regional scales, atmospheric depo-
sition and fluvial or wastewater discharge can be important
sources of nitrogen [52]. For example, in the nearshore SBC sur-
face waters, atmospheric nitrogen deposition from natural and
anthropogenic sources was estimated to account for the largest
annually integrated nitrogen flux (430 kg N km−2 yr−1) [52].
Spatio-temporal complexity of atmospheric aerosol deposition
precludes precise quantification of Thomas Fire ash deposition
to the SBC; however, based on the area burned [8], average
above-ground live biomass (4.2 kg m−2) [54], and assuming
75–100% of vegetationwas consumedwith 50–80% of biomass
undergoing complete combustion [40] we estimate that 0.7 ×
109–2.4 × 109 kg of ash was produced by the Thomas Fire. If
all ash produced was deposited throughout the SBC (approx.
100 km× approx. 40 km) [55], concentrations of ash in a 20 m
deep mixed layer would average 0.01–0.03 g ash l−1. This
range of values is slightly lower but comparable to the ash con-
centrations used here (0.08 g ash l−1 in the L treatment).
Therefore, our treatments are probably relevant to conditions
experienced during high deposition periods andmay represent
different surface ocean locations along a distance gradient from
the fire source.

In total, leaching of nitrogen from the maximum esti-
mated amount of ash based on our results (15 µM inorganic
N g(ash)

−1 ; figure 3a; electronic supplementary material,
table S1–S2) would have added approximately 5 × 105 kg N
or approximately 126 kg N km−2 (29% of the annually inte-
grated atmospheric flux) [52] to the SBC surface ocean
during the 40 days of the Thomas Fire. Although this value
is only 0.2% and 0.07% of the estimated nitrogen delivery
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to the SBC and the Southern California Bight via upwelling
respectively, the Thomas Fire occurred during low nutrient
(non-upwelling) conditions, representing an additional
nutrient pulse that probably enhanced productivity. Assum-
ing Redfield stoichiometry, this amount of nitrogen addition
could stimulate up to approximately 2.9 × 106 kg C of new
production which is equivalent to approximately 3.5–14
times the estimated new production from large (not post-
fire) river discharge events in the SBC [53]. Based on these
estimates, dry ash deposition from large coastal wildfires is
expected to fertilize adjacent marine ecosystems, especially
during periods of low nutrient concentrations in surface
waters, such as in the absence of upwelling.

Wet deposition and runoff during or after precipitation
events would further increase wildfire-derived nitrogen
(and other nutrient) loads to marine environments
(figure 2). Measurements from burned watersheds feeding
into the SBC have significantly increased concentrations of
ammonium, nitrate and DON compared with unburned
watersheds, especially during the first few storm events
[12]. Wet deposition nutrient fluxes have also been estimated
to be significantly higher than dry deposition fluxes during
hazy, smokey conditions [17] indicating that rain can increase
the rate of removal of nutrients from smoke and ash in the
atmosphere and provide relatively larger nutrient pulses.
These nutrient contributions would be temporally separated
from dry deposition events because they depend on the
timing of the first precipitation event after a wildfire. Rain
also extinguishes wildfires, preventing further ash and
smoke production. In the case of the Thomas Fire, a large pre-
cipitation episode occurred on 9 January 2018, before the fire
was fully contained, resulting in a large debris flow event and
increased fluvial input into the SBC [9]. Kelly et al. [15]
reported increased concentrations of metals in river water
during this rain event, presumably due to mobilization of
fire derived materials, but suggested that the total amount
of metals delivered to SBC waters due to fluvial transport
was less than atmospheric deposition [15]. These additional
processes impacting delivery of fire derived materials to
coastal marine systems are probably significant and warrant
further study.
(c) Mechanism of ash fertilization; food for all?
The observed increase in total POC concentrations associated
with increased ash concentrations indicates that ash leachate
had an overall fertilizing effect on microbial communities.
Interestingly, no single taxonomic group consistently grew
to dominate the ash treatments. Rather, ASVs from many
different taxonomic divisions displayed increased RA in
ash-amended treatments and at a broad taxonomic level,
the RA of most groups did not differ from control treatments
despite the large increase in POC in ash-amended treatments.
Notably, several small phytoplankton displayed higher
RA in ash treatments compared with controls, potentially
suggesting that small, fast-growing, autotrophs had an
advantage over other protists. Although, more broadly, the
RAs of primarily phototrophic taxonomic groups (e.g. Ochro-
phyta, Chlorophyta and Haptophyta) were not consistently
higher in ash treatments compared with controls. Phyto-
plankton growth may also have been affected by enhanced
grazing activity in response to the ash-fuelled increase in pri-
mary and/or bacterial production as the RA (and POC-scaled
RA) of putative micrograzers (e.g. radiolarians and ciliates)
typically did not significantly differ between ash and control
treatments. The lack of a consistent taxonomic group display-
ing increased RA in response to ash exposure and the
associated POC increase was unexpected given that diatoms
(class Bacillariophyta) are often the dominant responders to
nutrient enrichment with high growth rates [56,57] and
form blooms following upwelling events off the coast of
California [58,59]. Based on our observations, we hypothesize
that pulsed deposition of wildfire ash acts as a ‘food for all’ in
coastal marine ecosystems via leaching of a diverse mixture
of inorganic nitrogen species (nitrate, nitrite and ammonium),
silicic acid, metals and organic compounds.

The leaching of various chemical forms of nitrogen may
have promoted the growth of multiple protistan taxonomic
groups simultaneously since nitrogen metabolism within
and across taxonomic groups varies based on the available
nitrogen source [60–62]. For example, diatoms are often con-
sidered nitrate opportunists with several physiological and
metabolic traits that allow for rapid nitrate uptake, assimila-
tion and storage [62], while other groups (e.g. chlorophytes,
cyanobacteria, dinoflagellates) are associated with more
reduced forms of nitrogen [61,62] and become proportionally
more abundant when ammonium rather than nitrate is sup-
plied to natural communities [63]. Indeed, nitrate dominates
the nitrogen supply delivered via upwelling [52] and usually
promotes the growth of diatoms over other protist groups.
Further, the magnitude of nutrient addition by wildfire ash
deposition is small relative to nutrient delivery via upwelling
events in the California Current. These short-term, small
pulses of nutrients may also help explain the lack of a domi-
nant ash-responder as favorable conditions may not persist
long enough to maintain high growth rates of a particular
group. Even with relatively small nutrient additions, some
aerosol deposition studies using natural polluted aerosols,
volcanic ash or desert dust report community shifts towards
diatom dominance [64–67], though community responses are
highly variable [32,64,68,69]. The response we observed after
wildfire ash addition is thus probably driven by a combi-
nation of the various chemical forms of nitrogen and other
nutrients leached by wildfire ash in addition to the magni-
tude of nutrient addition. It is also important to note that
we only observed short-term responses to a single ash
addition, so continuous pulses and longer-term impacts on
protist communities are unclear.
(d) No evidence of toxicity of wildfire ash
For the microbial community as a whole, it appears that any
negative or toxic effects on protists were outweighed by the
fertilizing effects of the ash leachate. Even though dinofla-
gellate RA was consistently decreased in ash treatments
compared with controls by the end of both experiments,
the estimated POC of Dinophyceae and Syndiniales suggests
that, as a group, dinoflagellate growth was not inhibited by
ash. It is, however, possible that toxic effects are present for
some dinoflagellate species as species-specific toxicity
responses have been reported for various phytoplankton
[70]. Many Dinophyceae species exhibit slower growth rates
than similarly sized cells from other taxonomic groups
[56,71,72], potentially explaining their decreased RA without
a concomitant decrease in POC in ash treatments. The class
Syndiniales includes understudied putative marine parasites
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that appear to be ubiquitous and abundant in many marine
systems [73,74]. Counterintuitively, we found that the RA of
Syndiniales ASVs decreased in treatments with increased
overall POC and (presumably) greater host density and a
higher probability of host encounters. However, positive
(possibly parasitic) associations of Syndiniales ASVs with
Dinophyceae ASVs have been shown to be more common
than with other protist groups [74], suggesting that Syndi-
niales primarily parasitize Dinophyceae species. Therefore,
the reduction in host (Dinophyceae) RA may explain the
reduced RA of Syndiniales ASVs.

Although at the community and broad taxonomic group
levels there is generally a positive impact of ash addition
on protist growth, it is possible that individual organisms
within the community are more sensitive to pollutants
released from the ash [22,23]. Paytan et al. [23] demonstrated
toxic effects of atmospheric aerosols on marine microbial
communities and attributed the toxicity to high concen-
trations of copper [23]. Differential sensitivities to copper
were observed between picoeukaryotes, Synechococcus and
Prochlorococcus while it has been suggested that larger cells
are more resistant to copper toxicity [23,75]. We did not
measure the growth or abundance of cyanobacteria, which
may be highly sensitive to copper, while several small phyto-
plankton showed increased RA during ash exposure. Thus
if toxic effects due to copper were present, it is not clear
from these data. We found that copper leaches in high con-
centrations compared with other metals and is increased
significantly in ash leachate (electronic supplementary
material, table S3), but the toxicity of copper is controlled
by the presence of Cu-binding organic ligands and the conco-
mitant addition of DOC by ash may bind copper and prevent
significant toxic effects [23,76]. Other toxic components
of ash, such as polycyclic aromatic hydrocarbons (PAHs),
may be affecting the growth of some species within these
incubations but we did not measure PAH concentrations
here and in previous work on wildfire ash, PAHs did not
appear to correlate with toxicity [19,22]. Additionally, in
studies on freshwater organisms that reported toxicity of
wildfire ash or ash leachate, significantly higher concen-
trations (greater than 10×) [21,22] were used compared with
those used here. These elevated concentrations are unlikely
to be ecologically relevant when considering atmospheric
ash deposition into a large ocean reservoir.

(e) Conclusions and considerations for future research
Our findings suggest that large wildfires can be important
sources of nitrogen and other nutrients to coastal marine
ecosystems where they can fuel productivity and maintain a
highly diverse protistan community assemblage. Near areas
of active burning, wildfires are probably the dominant atmos-
pheric source of nitrogen to coastal areas and under certain
conditions, they could contribute significantly to total marine
nitrogen inputs, a factor of increasing importance as fire fre-
quency and severity rises in a changing climate. The trends
observed here provide a basic understanding of how marine
protist communities respond to wildfire ash while shedding
light on the importance of an understudied mechanism of
nutrient delivery to marine ecosystems.

Future research should focus on characterizing wildfire
ash leaching in seawater across fire conditions, fuel sources
and environments. This will allow for estimates of wildfire
ash nutrient inputs at broader spatial scales with implications
for global ocean biogeochemical cycling. It is also critical to
measure and explore other processes influencing the delivery
of wildfire-derived materials to marine environments, includ-
ing atmospheric evolution and transport and terrestrial
debris flows. In the context of biological consequences of
wildfire impacts in the marine environment, we report only
on short-term responses of microbial communities to ash lea-
chate generated by a single wildfire in coastal CA, but longer-
term impacts and the mechanisms controlling the biological
responses should be further investigated. Tightly controlled
experiments on individual chemical components of ash
and different microbial or protist groups may help identify
specific mechanisms of biological responses. Additional bio-
logical effects of wildfires and ash including reduced light
availability due to smoke and ash cover and increased particle
concentrations in surface waters should also be considered.
Overall, links between wildfires and marine ecosystems
should be a priority for future studies as global climate
change is significantly altering wildfire dynamics and the
implications for marine systems are currently unknown.
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