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Insects with restricted diets rely on obligate microbes to fulfil nutritional

requirements essential for biological function. Tsetse flies, vectors of African

trypanosome parasites, feed exclusively on vertebrate blood and harbour the

obligate endosymbiont Wigglesworthia glossinidia. Without Wigglesworthia,

tsetse are unable to reproduce. These symbionts are sheltered within special-

ized cells (bacteriocytes) that form the midgut-associated bacteriome organ.

To decipher the core functions of this symbiosis essential for tsetse’s survival,

we performed dual-RNA-seq analysis of the bacteriome, coupled with metabo-

lomic analysis of bacteriome and haemolymph collected from normal and

symbiont-cured (sterile) females. Bacteriocytes produce immune regulatory

peptidoglycan recognition protein ( pgrp-lb) that protects Wigglesworthia,

and a multivitamin transporter (smvt) that can aid in nutrient dissemination.

Wigglesworthia overexpress a molecular chaperone (GroEL) to augment their

translational/transport machinery and biosynthesize an abundance of B vita-

mins (specifically B1-, B2-, B3- and B6-associated metabolites) to supplement

the host’s nutritionally deficient diet. The absence of Wigglesworthia’s contri-

butions disrupts multiple metabolic pathways impacting carbohydrate and

amino acid metabolism. These disruptions affect the dependent downstream

processes of nucleotide biosynthesis and metabolism and biosynthesis of

S-adenosyl methionine (SAM), an essential cofactor. This holistic fundamental

knowledge of the symbiotic dialogue highlights new biological targets for the

development of innovative vector control methods.
1. Introduction
The nature of symbiotic associations between microorganisms and animals range

from mutualistic to parasitic interactions [1]. Many insects that subsist on diets

with limited nutrients have evolved relationships with obligate symbionts that

provide essential nutrients lacking in their diet [2]. Aphids and tsetse flies, two

well-studied systems, feed exclusively on plant sap and vertebrate blood, respect-

ively. The symbiotic association in both insects was established over 50 Ma [3],

and, in both cases, led to unique cellular and biochemical adaptations that benefit

both partners. Pea aphids rely on Buchnera aphidicola for essential amino acids low

in plant phloem [4], while tsetse obtain specific blood-deficient nutrients (such as

B vitamins) from Wigglesworthia glossinidia [5,6]. The functional contributions of

each symbiosis are reflected in the modern-day Buchnera and Wigglesworthia gen-

omes. Both endosymbionts are relatives of Escherichia coli in the g-protebacteria

class and their genomes have undergone dramatic erosion because of the initial
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association with their host insects. Despite this genomic

reduction, the small genome of Buchnera (about 445 kb in

size) has retained the ability to synthesize all essential amino

acids [7,8], while the genome of Wigglesworthia (about 700 kb

in size) encodes the enzymes of pathways involved in the syn-

thesis of many B vitamins [9,10]. In exchange, the intracellular

symbionts are protected from hostile gut immune responses

and are provided with a steady supply of nutrients and an

efficient vertical transmission route to progeny.

A holistic view of the molecular and biochemical dialogue

between the two partners is lacking. Hence, we investigated

this dialogue between Wigglesworthia and its partner, the

tsetse fly. Tsetse females are viviparous, which is defined as

reproduction via obligate intrauterine embryogenesis and

larvigenesis, as well as the production and provisioning of all

larval nutrition in the form of milk secretions by milk glands

(differentiated accessory glands) [11]. Wigglesworthia lie free

in the cytosol of specialized epithelial cells in the midgut (bac-

teriocytes), which collectively form the bacteriome organ [12].

To prevent the induction of antibacterial immune cascades that

can damage Wigglesworthia, bacteriocytes produce high levels

of the immune protein peptidoglycan recognition protein

(PGRP-LB), which degrades the immune eliciting peptido-

glycan [13]. In contrast to the bacteriome organ where the

symbiont is intracellular, Wigglesworthia are extracellular in

the lumen of the female’s milk gland [14,15], and are trans-

mitted during pregnancy to the intrauterine larva via the

milk. Differential expression of Wigglesworthia genes have

been noted from the bacteriome organ and the female milk,

such as those that encode flagella-associated proteins which

are produced only by extracellular Wigglesworthia [9], and

may facilitate symbiont transmission to the larva [9,15].

Wigglesworthia are essential for the proper functioning of

multiple host physiologies. The presence of the endosymbionts

during juvenile development enhances tsetse’s immune

system maturation [16,17]. In the absence of Wigglesworthia,

emerging adults are deficient in cellular immune responses

and are more susceptible to trypanosome infections [18,19].

Besides immune enhancement, Wigglesworthia is required

for tsetse’s fecundity, as without this bacterium females are

unable to support the development of their intrauterine

larva. Loss of fecundity in the absence of Wigglesworthia can

be rescued by dietary supplementation with yeast extract or

to a lesser extent by supplementation with B vitamins [19].

One B vitamin, vitamin B6, is an essential cofactor for the

enzyme alanine-glyoxylate aminotransferase (AGAT), which

is required for biosynthesis of proline—the major soluble

energy source in tsetse [20].

Here, we use transcriptomic and metabolomic analyses to

develop a holistic understanding of the symbiotic dialogue

that supports the fitness of the partnership at the molecular

and biochemical levels. We discuss the core functions of the

obligate symbiosis and the host physiological pathways

dependent on this relationship to maintain the optimal host

and symbiont homeostasis.
2. Results and discussion
We used a ‘dual RNA-seq’ approach to identify gene products

putatively produced by both Wigglesworthia and tsetse bac-

teriocytes. Analysis of prokaryotic transcriptomes (bacteria

and archaea) constitute a technical challenge because microbial
mRNAs lack the 30 poly(A) tail that is used to enrich eukaryotic

mRNA. As rRNAs account for over 80% of cellular RNA,

sequencing of total RNA without mRNA enrichment yields

mostly non-mRNA sequences [21,22]. This issue is exacerbated

when measuring gene expression of obligate intracellular

symbionts residing in host tissues, and typically yields a low

proportion of bacterial RNAs. Here, we enriched for both

prokaryotic and eukaryotic mRNAs using an rRNA subtrac-

tion method to capture both host and symbiont transcripts

from dissected intact bacteriome organs of Glossina morsitans
morsitans (hereafter called Glossina).

(a) Host – symbiont dialogue promotes symbiont
well-being and nutritional homeostasis

We obtained 22 million high-quality reads from each of the three

biological bacteriome replicates. On average 36% of the reads

mapped to the Wigglesworthia genome and 17% to the predicted

Glossina transcriptome (GmorY1.4 obtained from VectorBase)

(electronic supplementary material, figure S1 and table S2).

A significant proportion of reads (16%) mapped to unannotated

regions of the Glossina genome suggesting expression of unan-

notated genes. The de novo assembly of the remaining

unmapped reads into contigs revealed that some of these

reads (1.34%) are homologous to viral genes (electronic sup-

plementary material, table S3). The majority of the reads

mapping to the Wigglesworthia genome (approx. 88%) and

Glossina transcriptome (approx. 98%) were associated with

mRNA coding sequences (CDSs), which confirms the efficiency

of the rRNA elimination process.

We identified bacteriocyte-enriched transcripts by

comparing bacteriome transcriptomes to whole midgut tran-

scriptomes [23], and then mined this dataset to unravel

bacteriocyte-associated adaptations and symbiont contribu-

tions to host physiology. Principal component analysis of

the expression data shows clear differentiation between the

bacteriome and gut samples with little variance between

the replicates (electronic supplementary material, figure S2). To

identify bacteriocyte-enriched genes, we used the LOX (Level

Of eXpression) software package to compare bacteriome and

midgut transcriptome data. LOX uses a Markov chain Monte

Carlo algorithm to calculate and compare gene expression

levels and can compare for differential/enriched expression

between transcriptomes from different tissues or between those

that use different sequencing methods [24]. We identified 252

Glossina transcripts that are enriched in bacteriocytes (LOX

p-value , 0.025 and greater than fivefold RPKM ratio in Bac/

Gut comparison) and determined the putative molecular func-

tions of these gene products by gene ontology (GO) analysis

(electronic supplementary material, figure S3 and table S4).

The most abundant bacteriocyte-enriched products are

associated with the ion binding, molecular function and

transmembrane transporter activity categories. These include

a putative lectin (salivary C-type lectin GMOY000466), two

sodium/potassium pumps (GMOY004651, GMOY003579), a

metalloprotease (GMOY009531), two putative proteins

related to vesicular transport/exocytosis (a homologue of

an exosome component: GMOY011640 [25] and Ras signal-

ling pathway (14-3-3 zeta, isoform D - GMOY006173)) and

the immune regulatory PGRP-LB (GMOY006730).

Lectins are carbohydrate-binding proteins that can recog-

nize bacterial surface glycoproteins to facilitate symbiont

specificity, localization and recognition [1]. In the marine
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nematode Laxus oneistus, lectins are predicted to mediate the

specific recruitment of its symbionts [26]. In the octocoral Sinu-
laria lochmodes, lectins play a role in the acquisition of an

endosymbiotic dinoflagellate and its subsequent transform-

ation into a non-motile symbiotic form [27]. In addition,

recent work in mosquitoes shows lectins are associated with

the colonization and protection of gut microbiota [28].

Abundant expression of PGRP-LB in tsetse’s bacteriome

was previously noted, and functional experiments confirmed

the protein’s role as an immune modulator, a symbiont safe-

guard [13,29] and a trypanocidal effector molecule that

enhances tsetse’s resistance to fitness reducing parasite infec-

tions [29]. A similar immunoregulatory role for PGRP-LB was

described in symbioses associated with the weevil Sitophilus
zeamais [30] and the squid Vibrio fischeri [31]. The role of

PGRPs in mediating host tolerance to symbiosis, inflam-

mation and immune system maturation is now being

recognized in multiple eukaryotic systems [32].

Transmembrane proteins are another dominant category of

bacteriocyte-enriched gene products, and include amino acid

transporters ( proton-coupled amino acid transporter, excitatory
amino acid transporter 1), Naþ /Kþ pumps, a transient receptor

potential cation channel (trpm) as well as the sodium-

dependent multivitamin transporter (smvt or Slc5a8) and

sodium-coupled solute transporter 1 (electronic supplementary

material, figure S3 and table S4). In the pea aphid, bacteriocytes

also preferentially express mitochondrial transporters, amino

acid transporters and Rab, a protein that regulates vesicular

transport [33,34]. In the weevil bacteriocytes, transcripts

essential for trafficking gene products, such as SNARE and

Rab, have also been noted [35]. Thus, the bacteriocytes appear

to enhance the symbiosis by sheltering Wigglesworthia and

ensuring that symbiont-produced compounds are effectively

mobilized for utilization by other host tissues.
Long-term symbiosis poses a number of challenges

for symbiotic fitness, such as the population bottlenecks

experienced during the process of vertical transmission to

progeny, and the functional erosion resulting from genomic

reductions common in obligate symbionts. As noted pre-

viously in the tsetse/Wigglesworthia [36,37], aphid/Buchnera
[38] and weevil/Sodalis [39] symbioses, transcripts encoding

GroEL/GroES (associated with ‘chaperone and folding

catalysts’) are the most abundant in the bacteriome data

(figure 1a; electronic supplementary material, table S5).

Beyond chaperonins, almost 10% of Wigglesworthia reads

matched to a non-coding transfer–messenger RNA

(tmRNA, or ssrA) and its unique binding protein (smpB) (elec-

tronic supplementary material, table S2), which are involved

in the degradation of non-functional peptides [40]. Thus, the

high expression of chaperons and tmRNP can alleviate the

negative effects accumulating nucleotide substitutions can

have on protein function(s) in the absence of rigorous DNA

repair systems retained in the functionally eroded obligate

symbiont genomes [41]. The next most abundant category

in the Wigglesworthia transcriptome encodes functions asso-

ciated with ‘metabolism of cofactors and vitamins’, the

majority of which are associated with vitamin B-related

products, including vitamin B7 biotin (bioB and bioF), B1 thia-

mine (thiC, thiE, thiF and thiG), B2 riboflavin (ribB and ribC)

and B5 pantothenate ( panB) (figure 1b; electronic supplemen-

tary material, table S5). Two other abundant nutrient

biosynthesis-related transcripts were metK, essential for meth-

ionine–cysteine metabolism, and acpP, involved in fatty acid

biosynthesis (electronic supplementary material, table S5).

Thus, the transcriptome data validate previous physiological

studies, which predicted a role for Wigglesworthia produced

vitamin metabolites in host dietary supplementation and

fecundity [9,20,42].
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(b) Bacteriocyte enriched genes are differentially
expressed under aposymbiotic and trypanosome
infected conditions

To determine whether transcripts identified as bacteriocyte

enriched are responsive to different physiological states,

we analysed the expression profile of bacteriocyte enriched

genes in gut tissues (including bacteriome) of aposymbio-

tic (adults that have undergone juvenile development

in the absence of symbionts, termed aposymbiotic adults)

and trypanosome-infected flies, as both states result

in reduced host fecundity [19,43]. A positive correlation

exists between Wigglesworthia density during tsetse develop-

ment and expression of the fly’s resistance to trypanosomes

[29]. Additionally, aposymbiotic flies are highly susceptible

to trypanosomes [18]. We noted that of the 252 bacterio-

cyte-enriched transcripts, 182 are upregulated in both

aposymbiotic and parasitized conditions (electronic sup-

plementary material, figure S4 and table S6). The similarity

in the transcriptional response of these gene products could

result from the host’s response to the lack of specific nutrients

in the absence of Wigglesworthia, or in competition for nutri-

ents in the presence of trypanosomes. In fact, trypanosomes

in the tsetse midgut rely on L-proline as their main carbon

source [44], which is also used by the fly for lactation and

to fuel flight muscles [20]. Our analysis of haemolymph

from normal and infected flies showed a significant decrease

in proline levels in parasitized individuals [20], indicative of

this competitive nutritive interaction. Of interest, expression

of pgrp-lb and the salivary c-type lectin were both downregu-

lated in the absence of symbionts, but not in the presence

of parasites (figure 2). The downregulated expression profile

of these genes in the absence of Wigglesworthia could be due

to the putative roles these gene products have in fostering

and maintaining the symbiotic partnership in tsetse and

other organisms [13].
(c) Wigglesworthia provides vitamin B metabolites
to its partner

To understand the physiological roles of host and symbiont

products, we performed a metabolomic analysis of bacter-

iomes and haemolymph collected from normal (hereafter

called symbiotic) and tetracycline treated adults (hereafter

called symbiont-cured flies; figure 3). The metabolomic

analysis clearly validates that vitamin supplementation is

an essential core function of the symbiosis. For this analysis,

tissue samples were screened for the presence and quantity of

metabolites by mass spectrometry using a panel of appro-

ximately 1000 compounds that included a broad array of

metabolite classes such as amino acids, peptides, carbo-

hydrates, lipids, nucleotides, cofactors/vitamins and

xenobiotics. Relative differences between samples were deter-

mined by comparison of mean metabolite abundance across

four biological replicates. The analysis detected 38 com-

pounds designated as vitamins/cofactors and showed that

B vitamins are abundant in symbiotic bacteriomes and

significantly reduced in the symbiont-cured bacteriomes

(electronic supplementary material, table S7) and haemo-

lymph (electronic supplementary material, table S8). In

particular, metabolites and final products associated with

vitamins B1 (thiamine), B2 (riboflavin/FAD) and B6
(pyridoxal-phosphate) were reduced in symbiont-cured

samples (13%, 25% and 20% of the symbiotic levels, respect-

ively). The dramatically reduced levels of the vitamin

products detected in the haemolymph of symbiont-cured

flies indicate their provisioning by Wigglesworthia endosym-

bionts. The B-vitamin group includes a diverse array of

compounds that function as essential cofactors for enzymes

associated with multiple biochemical pathways. In particular,

we saw dysfunction in the glycogen metabolism and the

pentose phosphate pathways (PPP) as well as the nucleo-

tide biosynthesis and cysteine/methionine metabolism

pathways responsible for the biosynthesis of the cofactor

S-adenyl-methionine (SAM), as we describe further.

(d) Glycogen phosphorylase activity is impaired in the
absence of Wigglesworthia

The glycogen pathway catabolizes glycogen to glucose-6-

phosphate for use in downstream pathways (electronic

supplementary material, figure S5). In symbiont-cured bacter-

iomes, we observed an overabundance of the metabolite

maltopentaose and reduced levels of maltotetraose, malto-

triose and maltose. These changes indicate a disruption in

the flies’ ability to catabolize glycogen-derived metaboli-

tes (electronic supplementary material, table S7). Both the

glycolysis pathway and PPP are dependent on glycogen

catabolism for proper function. Glycogen phosphorylase

(EC:2.4.1.1, GMOY007990), which catalyses the rate limiting

step in the conversion of glycogen to glucose-6-phosphate sub-

units, is dependent on pyridoxal phosphate (vitamin B6) for its
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enzymatic function. Interestingly, the expression of the gene for

glycogen phosphorylase (EC:2.4.1.1, GMOY007990) was also

reduced in aposymbiotic fly guts to about 60% of control

levels (electronic supplementary material, table S9).

(e) Phosphoribosyl pyrophosphate levels are impaired
in the absence of Wigglesworthia

The PPP is a conserved multifunctional pathway that is central

to cellular biosynthetic metabolism and in maintaining oxi-

dative homeostasis [45] (figure 4). The primary input to this

pathway, glucose-6-phosphate, is converted to ribulose-5-

phosphate in a reaction that generates NADPH and helps to

buffer oxidative stress. Ribulose-5-phosphate, in turn, func-

tions as the primary substrate for the biosynthetic arm

of PPP and is converted to ribose-5-phospate or erythrose-

4-phosphate by the transketolase enzyme (EC: 2.2.1.1,

GMOY007053) [46]. Transketolase is dependent upon thiamine

as a cofactor, another of the B vitamins deficient in symbiont-

cured flies. The activity of this enzyme directs the biosynthesis

of precursors towards either nucleotide biosynthesis (ribose-

5-phosphate to phosphoribosyl pyrophosphate (PRPP)) or

aromatic amino acid biosynthesis (sedoheptulose-7-phosphate

to erythrose-4-phosphate). In the symbiont-cured state, PRPP

and sedoheptulose-7-phosphate are found at 0.62% and 18%

of the amount detected in control flies, respectively (figure 4

and electronic supplementary material, table S7). Under
aposymbiotic conditions, the expression of the majority of

genes coding for enzymes associated with PPP metabolism

are downregulated (electronic supplementary material, table

S9). One of these enzymes, phosphomannomutase (EC:

5.4.2.7, GMOY006432), also associated with the purine metab-

olism pathway, is enriched in the bacteriocytes (electronic

supplementary material, table S6). This enzyme converts

ribose-1-phosphate derived from catabolized pyrimidine

bases to ribose-5-phosphate which feeds into the production

of PRPP [47]. Glycogen metabolism dysfunction disrupts the

flow of glucose-6-phosphate molecules into the pathway and

thiamine deficiency disrupts transketolase function. Thus, in

symbiont-cured flies the PPP is negatively impacted in two

aspects, the reduced availability of precursor molecules and

enzyme functionality.

( f ) Nucleotide metabolism and salvage is impaired
in the absence of Wigglesworthia

The reduced levels of PRPP (0.62%) derived from the PPP in

symbiont-cured tsetse impacts the function of both the

purine and pyrimidine nucleotide metabolism pathways (elec-

tronic supplementary material, table S7a, figures S6 and S7).

We noted substantial reductions in multiple metabolites

associated with these pathways with the most dramatic

decreases evident in the levels of critical products of the

purine pathway: adenine (11%), adenosine (11%) and
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adenosine monophosphate (AMP) (28%) and the pyrimidine

pathway: orotate (0.02%) and uridine monophosphate (12%).

The observed reduction of AMP likely also results in reduced

cyclic AMP (cAMP) levels. This has implications for the glyco-

gen metabolic pathway as transcription of the gene for

glycogen phosphorylase (EC:2.4.1.1, GMOY007990) is regu-

lated by cAMP levels [48]. Gut gene expression associated

with the enzymes in these pathways also differed from control

flies as the majority were either up- or downregulated in rela-

tive transcript abundance in aposymbiotic flies (electronic

supplementary material, table S9). Gene expression for one of

these enzymes, adenine phosphoribosyltransferase (EC:

2.4.2.7, GMOY001635), is transcriptionally enriched in the bac-

teriocyte and is required for the salvage and recycling of

degraded nucleotides by combining PRPP with adenine to pro-

duce AMP [49]. The fact that two of the bacteriocyte-enriched

genes are associated with nucleotide salvage, phosphomanno-
mutase (in the PPP) and adenine phosphoribosyltransferase (in

the purine metabolism pathway), suggests that salvage and

recycling of nucleotides may be an important function in the

bacteriome. Transcript levels for both of these genes are down-

regulated in the aposymbiotic state (figure 5; electronic

supplementary material, S4 and table S9). Wigglesworthia’s
genome encodes the enzymes required for both purine and

pyrimidine biosynthesis suggesting that the bacterium may

be assisting with nucleotide production [10]. A similar symbio-

tic relationship is observed between the deep-sea tube

worm Riftia pachyptila and its bacterial endosymbiont. In this

relationship, the bacteria produce pyrimidines de novo and

intermediate metabolites for nucleotide salvage by host tissues

throughout the worm [50]. The dramatic depletion of
intermediate metabolites, such as PRPP and orotate, suggest

that Wigglesworthia may act as a source of de novo nucleotide

synthesis and producer of metabolic intermediates crucial for

the function of enriched nucleotide salvage pathways.

(g) Haemolymph amino acid levels are impaired
in the absence of Wigglesworthia

We also analysed levels of free amino acids and associated

metabolites in the haemolymph of symbiont-cured tsetse.

This analysis showed an across the board decrease in these

compounds (electronic supplementary material, table S8).

Dysfunction in the PPP likely impacts the production of carbo-

hydrate-derived precursor molecules required for amino acid

biosynthesis, such as erythrose-4-phosphate. Although ery-

throse-4-phosphate was not detected in the metabolic panel,

the level of its precursor sedoheptulose-7-phosphate in sym-

biont-cured bacteriome and haemolymph is only 20% of that

of controls (electronic supplementary material, table S7 and

S8). If erythrose-4-phosphate levels are similarly reduced, it

would have negative implications for the biosynthesis of aro-

matic amino acids. We have previously shown that vitamin

B6 deficiency impacts the critical alanine/proline shuttle

system, which functions as the primary source of soluble

energy in tsetse and is dependent on the enzyme AGAT,

requiring vitamin B6 as a cofactor [20]. Vitamin B6 is also a

cofactor for all other transaminase and decarboxylase enzymes

involved in the metabolism of all amino acids [51]. These

results collectively indicate a large-scale negative impact on

the global metabolism of amino acids in the absence of critical

vitamin metabolites.
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(h) Production of the co-factor S-adenosyl methionine
is impaired in the absence of Wigglesworthia

Downstream of the purine pathway, the methionine–cysteine

metabolism pathway synthesizes the essential methylation

cofactor S-adenosyl methionine (SAM; figure 5). The usage of

SAM as a cofactor in metabolic reactions is second only to

that of ATP [52]. The biosynthesis of SAM is performed by

the methionine adenosyltransferase enzyme (EC 2.5.1.6,

GMOY012020), which joins methionine and ATP to produce

SAM. In aposymbiotic flies, gene activity associated with

enzymes in this pathway are down with the exception of

methionine adenosyltransferase, which is upregulated. In

mammals, transcription of the gene coding methionine adeno-

syltransferase is under negative regulation by methionine [53].

Although methionine levels in symbiont-cured bacteriome

samples are not significantly different from controls, methion-

ine levels in the haemolymph are only about 25% of that

of controls (electronic supplementary material, tables S7–S9).

Of interest, one of the most highly expressed genes in the

Wigglesworthia transcriptome (metK) also encodes methionine

adenosyltransferase (electronic supplementary material, table

S5), suggesting that Wigglesworthia may be assisting in the pro-

duction of this cofactor. This pathway also involves two

vitamin B6-dependent enzymes, cystathionine gamma-lyase

(EC 4.4.1.1, GMOY011763) and cystathionine beta-synthase

(EC 4.2.1.22 GMOY005979), that combine a-ketobutyrate and

cysteine to generate cystathionine and then cystathionine to

homocysteine. Homocysteine is then converted to methionine

with the assistance of folate (another B vitamin not included

in the panel of screened metabolites). In the symbiont-cured

bacteriome, the combined effect(s) of vitamin B deficiencies

on metabolism of amino acids and purines disrupt SAM
biosynthesis. Levels of SAM and its demethylated form, S-ade-

nosyl-L-homocysteine, in symbiont-cured bacteriomes are at

6% and 9% of that of control flies, respectively (figure 6 and

electronic supplementary material, table S7). Given that

methylation reactions are essential for amino acid biosynthesis,

creatine and phospholipid metabolic pathways among others,

the deficiency of this key cofactor results in negative impli-

cations for many downstream metabolic pathways in tsetse.

The absence of Wigglesworthia’s metabolic contributions results

in an overall disruption of the fly’s nutritional homeostasis. This

disruption prevents the mother from providing the nutrients

required to support the growth of intrauterine larvae.
3. Conclusion
The symbiosis between tsetse and Wigglesworthia is ancient and

essential, as evidenced by the extensive adaptations each partner

has developed to optimize and preserve this relationship

(figure 6). The findings in this work expose previously unknown

details of the metabolic coevolution the symbiosis represents and

the integrated mutual dependence these organisms have foreach

other for survival. The absence of Wigglesworthia-derived B vita-

mins has a plethora of direct and indirect effects on Glossina
metabolism, physiology and ultimately on the survival of the

species. These effects highlight the dependencies of Glossina’s
physiology on processes, including nucleotide, amino acid and

cofactor biosynthesis. These dependencies are potentially exploi-

table for the purpose of vector control through the targeted

development of specific inhibitory compounds. Beyond vita-

mins, the genetic/physiological adaptations, such as reliance

on chaperonins for protein synthesis in Wigglesworthia, or the

enrichment of nutrient transport mechanisms by Glossina’s
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bacteriocytes, also have the potential for exploitation. The

relationship between Glossina and Wigglesworthia highlights an

obligate dependence on the microbial partnership that results

from reliance on a sole nutritional source, such as blood. The

long-term coevolutionary association has led to a multitude of

dynamic molecular and biochemical interactions that ensures

the optimal fitness of the partnership.
4. Material and methods
(a) Biological materials
Glossina m. morsitans wild-type (WT) flies, Glossina aposymbiotic

flies (Apo) and symbiont-cured (tetracycline treated flies) were

maintained as described in the electronic supplementary
material, Materials and methods. Mammalian bloodstream

form (BSF) parasites of Trypanosoma brucei rhodesiense (YTat 1.1)

were expanded in rats as described [54].

(b) Bacteriome transcriptomic analysis
Bacteriomes were dissected from females at around 20 days post-

eclosion. Three biological replicates of 10 bacteriomes were

collected. Dual RNA-seq libraries were prepared with ScriptSeq

Complete Gold Kit (Epidemiology) (Epicentre, Madison, WI)

and sequenced (75 bp single-end read) on Illumina HiSeq 2000

by Yale University Center of Genome Analysis (YCGA, New

Haven, CT). Reads were mapped to Wigglesworthia genome

(NC_016893) and to Glossina transcripts (version 1.4 obtained

from Vectorbase [55], respectively, using CLC Genomics Work-

bench (CLC Bio, Cambridge, MA). We used the RPKM as a

measure of relative gene expression [56]. Bacteriocyte-enriched
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Glossina genes were selected by comparing the ratio of RPKM

expression values of transcripts between bacteriome-specific

and previously published whole midgut transcriptomes [23].

Glossina transcripts were identified as enriched using the follow-

ing parameters: bacteriome RPKM/whole gut RPKM ratio of

greater than 5 and an average bacteriome RPKM of greater

than 50. Statistical significance of gene enrichment was evaluated

using the LOX software package [24]. Transcripts determined to

be bacteriocyte enriched were annotated with GO terms using

the Blast2GO software package [57]. Wigglesworthia-specific

gene expression profiles were performed with KEGG pathway

analysis [58]. Sequencing data are available in the Sequence

Read Archive (SRR3956922-7) and detailed study protocols are

described in the electronic supplementary material.

(c) Comparative analysis of bacteriocyte-enriched gene
expression in aposymbiotic- and trypanosome-
infected guts

Whole tsetse gut transcriptomes (including cardia, bacteriome

and midgut) were generated from control symbiotic females,

aposymbiotic females and trypanosome infected females,

respectively. Each treatment was represented by three replicate

datasets. The sequence data for these transcriptomes are

available in the Sequence Read Archive (aposymbiotic guts:

SRR207250–SRR207252, trypanosome infected guts and con-

trols: SRR3425153–SRR3425169). Detailed treatment and study

protocols are described in the electronic supplementary material.

(d) Metabolomic analysis
Tissues (bacteriome and haemolymph) were dissected from WT

flies that received normal blood meals for five weeks and from
WT flies that received four tetracycline supplemented blood

meals (25 mg ml– 1) post-eclosion followed by normal blood

meals for four weeks (termed symbiont-cured). At the time of

dissection all symbiont-cured flies had ceased larval deposition.

Samples were shipped to Metabolon (Morrisville, NC) and

analysis was performed using the DiscoveryHD4 global metabo-

lomics platform. Detailed study protocols are described in the

electronic supplementary material.
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the animal care and use protocols stipulated by the Yale University
Institutional Animal Care & Use Committee (IACUC) 2016-11154.
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