
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Efficient algebraic soft-decision decoding of Reed-Solomon codes

Permalink
https://escholarship.org/uc/item/0rn6329f

Author
Ma, Jun

Publication Date
2007
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rn6329f
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Efficient Algebraic Soft-Decision Decoding
of Reed-Solomon Codes

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Communications Theory and Systems)

by

Jun Ma

Committee in charge:

Professor Alexander Vardy, Chair
Professor Ilya Dumer
Professor Alon Orlitsky
Professor Paul H. Siegel
Professor Jack K. Wolf

2007



Copyright

Jun Ma, 2007

All rights reserved.



The dissertation of Jun Ma is approved, and it is ac-

ceptable in quality and form for publication on micro-

film:

Chair

University of California, San Diego

2007

iii



To my family

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Re-Encoding Coordinate Transformation Technique . . . . 2
1.1.2 Reduced Complexity Lee-O’Sullivan Interpolation Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Divide-and-Conquer Interpolation Method . . . . . . . . . 4
1.1.4 High-Speed Interpolation Architecture . . . . . . . . . . . 4
1.1.5 Low-Latency Factorization Architecture . . . . . . . . . . . 4
1.1.6 Re-Encoder Design for the (255, 239) Reed-Solomon Code 5

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Interpolation-Based Decoding of Reed-Solomon Codes . . 7

2.1 Two Definitions of Reed-Solomon Codes . . . . . . . . . . . . . . . 8

2.2 The Bivariate Polynomial Interpolation Problem . . . . . . . . . . 11

2.3 Brief Survey of Existing Interpolation Algorithms . . . . . . . . . 14

2.4 Koetter’s Interpolation Algorithm . . . . . . . . . . . . . . . . . . 15

Chapter 3 Divide-and-Conquer Interpolation Method . . . . . . . . . . 18

3.1 Matrix Interpretation of Koetter’s Interpolation Algorithm . . . . 18

3.2 Algebraic-Geometric Interpretation of Koetter’s Interpolation al-
gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



Chapter 4 The Re-Encoding Coordinate Transformation Technique . . 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Birational Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Complexity Reducing Transformation . . . . . . . . . . . . . . . . 30
4.3.1 Re-Encoding and Shift . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Coordinate Transformation . . . . . . . . . . . . . . . . . . 39

4.4 The Factorization Procedure . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Appendix:Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . 50

Chapter 5 Reduced Complexity Lee-O’Sullivan Interpolation Algorithm
56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Re-Encoding Coordinate Transformation Revisited . . . . . . . . . 59

5.3 Basis Construction Algorithms . . . . . . . . . . . . . . . . . . . . 63

5.4 Properties of the Bases . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 6 Re-Encoder Design for an (255,239) Reed-Solomon Code . . 87

6.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . 87

6.2 The Classification Algorithm and Implementation . . . . . . . . . 90

6.3 Computation of the Birational Mapping . . . . . . . . . . . . . . . 92

6.4 Erasure Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . 92

6.5 Coordinate Shift and Transformation . . . . . . . . . . . . . . . . . 97

6.6 Overall Hardware Complexity and Latency Estimate . . . . . . . 98

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 7 Fast Interpolation Architecture . . . . . . . . . . . . . . . . . 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . 102

7.3 Interpolation Architecture . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.1 Architecture for Discrepancy Coefficient Computation . . 106
7.3.2 Architecture for Polynomial Update . . . . . . . . . . . . . 118
7.3.3 Polynomial Update Controller . . . . . . . . . . . . . . . . 122

vi



7.3.4 Concurrent Discrepancy Coefficient Computation and Poly-
nomial Update . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.5 Architecture for Re-encoded Interpolation . . . . . . . . . 126

7.4 Example: Interpolation Architecture for a (255, 23 9) Reed-Solomon
Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.1 Algorithm-Level Interpolation Complexity . . . . . . . . . 131
7.4.2 Area and Latency Estimate of Discrepancy Coefficient C-

omputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.3 Area and Latency Estimate of Polynomial Update . . . . . 134
7.4.4 Area and Latency Estimate of Polynomial Update Controller134
7.4.5 Overall Area and Throughput Estimate of the Interpola-

tion Architecture . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Chapter 8 Factorization Architecture . . . . . . . . . . . . . . . . . . . . 139

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Factorization Algorithm and Fast Shift Transform . . . . . . . . . 143

8.3 Direct Root Computation for Polynomials of Degree Lower than
Five . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3.1 Direct Root Computation for Affine Polynomials over F2p 147
8.3.2 Solving Binary Linear Equation Array . . . . . . . . . . . . 148
8.3.3 The Linear, Quadratic, Cubic and Quartic Polynomials . . 158
8.3.4 Root Order Determination . . . . . . . . . . . . . . . . . . . 164

8.4 Overall Factorization Architecture . . . . . . . . . . . . . . . . . . 168

8.5 Example: Factorization Architecture for a (458, 410) Reed-Solomon
Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5.1 Algorithm-Level Factorization Complexity . . . . . . . . . 174
8.5.2 Hardware Complexity and Factorization Latency Estimate 174

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.7 Appendix: Arithmetics in F210 . . . . . . . . . . . . . . . . . . . . . 177
8.7.1 Multiplier Complexity . . . . . . . . . . . . . . . . . . . . . 177
8.7.2 Conversion Matrix for Composite Field Representation of

F210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.7.3 Direct Inversion in F25 . . . . . . . . . . . . . . . . . . . . . 183
8.7.4 F210 Inversion in Composite Field . . . . . . . . . . . . . . 183
8.7.5 Conversion between Standard Basis and Normal Basis in

F210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

vii



Chapter 9 Conclusions and Future Research . . . . . . . . . . . . . . . . 188

9.1 Divide-and-Conquer Interpolation . . . . . . . . . . . . . . . . . . 188

9.2 Re-encoding through n Points . . . . . . . . . . . . . . . . . . . . . 189

9.3 Multivariate Interpolation . . . . . . . . . . . . . . . . . . . . . . . 192

9.4 More Efficient Decoder Architecture . . . . . . . . . . . . . . . . . 192

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

viii



LIST OF FIGURES

Figure 1.1 Block Diagram of the Soft-Decision Reed-Solomon Decoder 2

Figure 6.1 Block Diagram of the Soft-Decision Reed-Solomon Decoder 88
Figure 6.2 Block diagram of the implementation of re-encoding coor-

dinate transformation algorithms . . . . . . . . . . . . . . . . . . . 90
Figure 6.3 Timing Diagram for the Reencoding Process . . . . . . . . 90
Figure 6.4 Architecture for evaluation of V(X) at the interpolation X

coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 6.5 Architecture for construction of Λ(X) and ∆’s . . . . . . . 95
Figure 6.6 Architecture for construction of Ω(X) . . . . . . . . . . . . 96
Figure 6.7 Architecture for computation of Ω(x−1

ir
) . . . . . . . . . . . 97

Figure 6.8 Architecture for computation of x−1
ir
Λ′(x−1

ir
) . . . . . . . . 98

Figure 6.9 Architecture for computation of the Z coordinates for the
interpolation points . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 7.1 Implementation of
(
x̃[s − a] + ỹ[t − b]
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ABSTRACT OF THE DISSERTATION

Efficient Algebraic Soft-Decision Decoding
of Reed-Solomon Codes

by

Jun Ma

Doctor of Philosophy in Electrical Engineering

(Communications Theory and Systems)

University of California San Diego, 2007

Professor Alexander Vardy, Chair

Algebraic soft-decision decoding of Reed-Solomon codes delivers promising

gain over conventional hard-decision decoding. The major computational steps

in algebraic soft-decoding (as well as Sudan-type list-decoding) are bivariate

polynomial interpolation and factorization. In this thesis, we present techniques

from both algorithmic and VLSI architectural level that greatly reduce the im-

plementation complexity of a soft-decision Reed-Solomon decoder.

A divide-and-conquer approach to perform the bivariate polynomial inter-

polation procedure is discussed in Chapter 3. This method can potentially re-

duce the interpolation complexity of algebraic soft-decision decoding of Reed-

Solomon code.

In Chapter 4, a computational technique, based on re-encoding coordinate

transformation, is derived that can significantly reduces complexity of bivariate

interpolation procedure. With this technique, the original interpolation problem

is transformed into another reduced interpolation problem, which could be orders

of magnitude smaller than the original one. A rigorous proof is presented to

show that the two interpolation problems are equivalent. In addition, an effi-

cient factorization procedure that applies directly to the reduced interpolation

problem is given.

xvi



We apply the re-encoding coordinate transformation technique to the Lee-

O’Sullivan interpolation algorithm in Chapter 5. A new basis construction algo-

rithm is developed and it takes into account the additional constraints imposed

by the interpolation problem that results upon the re-encoding transformation.

The re-encoding coordinate transformation reduces the computational and stor-

age complexity of the Lee-O’Sullivan algorithm by orders of magnitude, and

makes it directly comparable to Koetter’s algorithm in situations of practical

importance.

Chapter 6 presents a VLSI design example of the re-encoding coordinate

transformation technique introduced in the previous chapter. A fast and op-

timal algorithm to determine the re-encoding positions and an architecture that

enables concurrent processing and eliminates idle time of the various hardware

units are proposed. The entire design is synthesized using SMIC’s 0.18−µm li-

brary to a total area of 0.51mm2. It has a throughput of approximately 500Mbps.

A high-speed interpolation architecture is presented in Chapter 7. This novel

architecture applies hybrid data format to represent a finite field number, thus

breaks the long critical path delay bottleneck associated with existing architec-

tures. The proposed architecture also enables maximum overlap in time be-

tween computations at adjacent iterations. It is estimated that the proposed

architecture can achieve significantly higher throughput than conventional de-

signs with equivalent or lower hardware complexity.

Partial factorization of bivariate polynomial is also an important step of al-

gebraic soft-decision decoding of Reed-Solomon codes, and it contributes to a

significant portion of the overall decoding latency. In Chapter 8, a novel ar-

chitecture based on direct root computation is proposed to greatly reduce the

factorization latency. Compared with existing works, not only does our new ar-

chitecture have a significantly smaller worst-case decoding latency, but it is also

more area efficient since the large amount of hardware consumption for routing

polynomial coefficients can be completely avoided.

xvii



CHAPTER 1

Introduction

Reed-Solomon (RS) codes are the most widely used error-correcting codes

in digital communications and data storage. Standard hard-decision decoders cor-

rect up to n−k
2 symbol errors for an (n, k) Reed-Solomon code. Recently, several

breakthroughs have been achieved in improving the error-correction capabil-

ity of a RS decoder. Sudan [Sud97] showed that list-decoding of Reed-Solomon

codes can be viewed as a bivariate interpolation problem, thereby correcting

more errors than previously thought possible. Specifically, for a (n, k) Reed-

Solomon code, the algorithm of [Sud97] produces all codewords whose distance

to the received hard-decision vector do not exceed roughly n−√2kn. The algo-

rithm of [Sud97] was later extended to decoding of algebraic-geometric codes

by Shokrollahi-Wasserman [SW99]. A more careful analysis showed that the

list-decoding algorithm of [Sud97] is asymptotically better than the standard

hard-decision decoding only if the k
n ≤ 1

3 . This limits the applicability of Su-

dan’s algorithm since most practical Reed-Solomon codes are high rate codes.

The second step was taken in the work of Guruswami-Sudan [GS99] which

showed that one can correct even more errors by interpolating through each

point not once, but m times, where m is an arbitrary integer. For m → ∞, the

list-decoding algorithm of [GS99] corrects up to n−√nk errors. However, the

asymptotic improvement of the Guruswami-Sudan algorithm degenerates to

nothing at all for high-rate and finite length Reed-Solomon codes of practical in-

terests. The next key achievement was the work of Koetter and Vardy [KV03a],

1



1.1. SUMMARY OF CONTRIBUTIONS

2

who extended Guruswami-Sudan’s technique, and more importantly, showed

how the interpolation multiplicities in the algorithm of [GS99] should be chosen

to achieve algebraic soft-decision decoding of Reed-Solomon codes. The algo-

rithm of [KV03a] produces substantial gains for high-rate Reed-Solomon codes

of finite length and significantly outperforms hard-decision list-decoding.

The goal of this research work is to bridge the gap between the high com-

putational complexity associated with the new class of decoding algorithms

and the high-throughput requirement of a practical Reed-Solomon decoder. As

shown in Figure 1.1, a typical algebraic soft-decision RS decoder consists of 3

major function blocks, namely multiplicity assignment, interpolation and fac-

torization. The multiplicity assignment block generates the set of interpolation

points and their associated multiplicities based on the received soft informa-

tion from the channel, and it determines the performance of the algebraic soft-

decision decoder. On the other hand, most of the computational complexity of

the decoder comes from bivariate polynomial interpolation and factorization,

which are the focus of this thesis, where techniques from both algorithmic level

and VLSI architecture level are investigated.

Multiplicity 

Assignment 

Frontend

Interpolation Factorization
List of 

decoded 

codeword

Soft 

Received 

Symbol

Figure 1.1: Block Diagram of the Soft-Decision Reed-Solomon Decoder

1.1 Summary of Contributions

1.1.1 Re-Encoding Coordinate Transformation Technique

It is widely recognized that bivariate polynomial interpolation is the most

computationally intensive step in algebraic soft-decision decoding (or, more

generally, in algebraic list-decoding) of Reed-Solomon codes. Consequently,
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many different algorithms for bivariate polynomial interpolation have been pro-

posed in the past decade — see [LO06b] for a recent survey.While all these algo-

rithms are polynomial-time, they fall short of making the required computation

feasible in practical applications, involving long high-rate Reed-Solomon codes.

In this thesis, we present a re-encoding coordinate transformation based tech-

nique that drastically reduce the space and time complexity of the interpolation

process. The re-encoding coordinate transformation transfers the original in-

terpolation problem into another reduced interpolation problem, which is orders

of magnitude smaller than the original one. A rigorous proof is presented to

show that the two interpolation problems are equivalent. An efficient factoriza-

tion procedure that applies directly to the reduced interpolation problem is also

given.

1.1.2 Reduced Complexity Lee-O’Sullivan Interpolation Algo-

rithm

Recently, Lee and O’Sullivan proposed a new interpolation algorithm for al-

gebraic soft-decision decoding of Reed-Solomon codes. In some cases, the Lee-

O’Sullivan algorithm turns out to be substantially more efficient than alterna-

tive interpolation approaches, such as Koetter’s algorithm. Herein, we combine

the re-encoding coordinate-transformation technique, originally developed in

the context of Koetter’s algorithm, with the interpolation method of Lee and

O’Sullivan. To this end, we develop a new basis construction algorithm, which

takes into account the additional constraints imposed by the interpolation prob-

lem that results upon the re-encoding transformation. This reduces the compu-

tational and storage complexity of the Lee-O’Sullivan algorithm by orders of

magnitude, and makes it directly comparable to Koetter’s algorithm in situa-

tions of practical importance.
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1.1.3 Divide-and-Conquer Interpolation Method

In [Fen99], a divide-and-conquer interpolation algorithm was proposed. This

algorithm, though reducing asymptotic interpolation complexity, is still sequen-

tial in nature. Thus the divided interpolation problems can not be solved in-

dependently in parallel. In this thesis, we devise another divide-and-conquer

method by utilizing some algebraic-geometric properties of the solution to the

interpolation problem. Our new divide-and-conquer approach enables parallel

implementation of bivariate polynomial interpolation and can potentially re-

duce the interpolation complexity.

1.1.4 High-Speed Interpolation Architecture

The most computationally demanding step in soft-decision decoding of RS

codes is bivariate polynomial interpolation. In this thesis, we present a novel in-

terpolation architecture which uses hybrid format representation of finite field

numbers and has significantly lower complexity than the architectures proposed

in [GKKG05, AKS04b] and can achieve significantly higher processing speed

than all known designs for the interpolation process. We will demonstrate that

the architecture can be extensively pipelined. Combined with the proposed

timing scheme, the average iteration time for the interpolation process can be

maximally reduced, which makes it well suited for high speed applications. In

addition, the new architecture is inherently scalable. Thus it can be applied to

various applications with different speed requirements.

1.1.5 Low-Latency Factorization Architecture

Existing factorization architecture [AKS03a, ZP05] uses exhaustive search

based method to compute polynomial roots. In Chapter 8, a novel architecture

based on direct root computation is proposed to greatly reduce the factorization

latency. Direct root computation is feasible because in most practical applica-

tions of algebraic soft-decision decoding of RS codes, enough decoding gain can
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be achieved with a relatively low interpolation cost, which results in bivariate

polynomial with low Y-degree. Compared with existing works, not only does

our new architecture have a significantly smaller worst-case decoding latency,

but it is also more area efficient since the large amount of hardware consump-

tion for routing polynomial coefficients to various polynomial update engines

is completely avoided.

1.1.6 Re-Encoder Design for the (255, 239) Reed-Solomon Code

Prior to this work, there were no reported implementations of the re-encoding

coordinate transformation technique. Here we present such a implementation

for a (255, 239) Reed-Solomon code. Key features of our implementation in-

clude: a fast algorithm to determine the re-encoding points, an area-efficient

erasure-only decoding architecture and a scheduling scheme that enables con-

current processing of different steps of re-encoding and coordinate transforma-

tion process. Preliminary synthesis results show that the proposed implemen-

tation has a throughput of approximately 500Mbs with an area of 0.5mm2.

1.2 Outline of the Thesis

The thesis is organized as follows.

In Chapter 2, we review the bivariate polynomial interpolation based Reed-

Solomon decoding algorithm. The re-encoding coordinate transformation tech-

nique is introduced in Chapter 4, where a rigorous proof of the equivalence be-

tween the original interpolation problem and the reduced interpolation problem

is also provided. We apply the re-encoding coordinate transformation technique

to the Lee-O’Sullivan algorithm in Chapter 5. Chapter 6, Chapter 7 and Chapter

8 present architectures that can be used for practical implementation of Reed-

Solomon decoders. In Chapter 6, a re-encoding front end design is presented for

a (255, 239) Reed-Solomon code. Chapter 7 describes a high-speed architecture

for VLSI implementation of the interpolation process. A low-latency factoriza-
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tion architecture based on direct-root computation for low-degree polynomials

is given in Chapter 8. Finally we summarize the thesis in Chapter 9 and point

out open problems for future research.



CHAPTER 2

Interpolation-Based Decoding of

Reed-Solomon Codes

It was recognized early on that decoding Reed-Solomon codes is equivalent

to the problem of reconstructing univariate polynomials from their noisy evalu-

ations. Conventional Berlekamp-Massey decoding [Mas69] attempts to solve

this problem using univariate polynomial interpolation. Specifically, suppose a

codeword
(

f (x1), f (x2), . . . , f (xn)
)

of a Reed-Solomon code Cq(n, k) was trans-

mitted and a vector (y1, y2, . . . , yn)∈Fn
q was received. Then the Berlekamp-

Massey algorithm essentially tries to construct a univariate polynomial of de-

gree less than k that passes through as many as possible of the received points

y1, y2, . . . , yn. The breakthrough achieved by all algebraic list-decoding algo-

rithms [Sud97,GS99,KV03a] is due in large part to the transition from univari-

ate to bivariate polynomial interpolation. In general, the algorithms first construct

a nonzero bivariate polynomial Q(X, Y) of least (1, k−1)-weighted degree that

passes through all the points (x1, y1), (x2, y2), . . . , (xs, ys)∈P with prescribed

multiplicities {mxi ,yi}, then find all polynomials f (X) of degree < k such that

Q(X, f (X)
) ≡ 0.

7
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2.1 Two Definitions of Reed-Solomon Codes

In the original paper published by Reed and Solomon [RS60], the RS code

is defined via polynomial evaluation as follows. Let Fq be the finite field with

q elements. The ring of polynomials over Fq is denoted Fq[X]. Reed-Solomon

codes are obtained by evaluating certain subspaces of Fq[X] in a set of points

D = {x∗1, x∗2, . . . , x∗n} ⊆ Fq. Specifically, the RS code Cq(n, k) of length n and

dimension k is defined as follows:

C̃q(n, k) def=
{

( f (x∗1), . . . , f (x∗n)) : x∗1, . . . , x∗n ∈D, f (X)∈Fq[X], deg f (X) < k
}

(2.1)

Later on, it was realized that RS code is a special case of BCH code, belonging

to the family of cyclic code. Along these lines, the RS code can be defined as

follows.

Cq(n, k) def=
{

u(X)g(X) : u(X)∈ Fq[X], deg u(X) < k
}

(2.2)

where the generator polynomial g(X) is given by g(X) = ∏n−k−1
l=0 (X −αb+l),

and b is an arbitrary integer.

Note that when n < q− 1 in the 1st definition above, the resulting RS code

is referred to as truncated RS code. Correspondingly, the condition n < q− 1

leads to a shortened RS code with the 2nd definition. However, the code is no

longer cyclic.

Thanks to the fact that a systematic encoder can be easily implemented by

using LFSR’s (linear feedback shift registers), the 2nd definition is used in all

practical applications of RS codes. However, in view of the newly-devised alge-

braic list decoding algorithms, the original definition of RS code, i.e. (2.1), has

to be used.

Fortunately, there exists the following one-to-one mapping between the 2

definitions of RS code given above.

C̃q(n, k) =
{

(ψ0c0, . . . ,ψn−1cn−1) : (c0, . . . , cn−1)∈Cq(n, k)
}

, (2.3)
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whereψ0, . . . ,ψn−1 are n constants in Fq. With this mapping, a shortened Reed-

Solomon codeword c(X) = u(X)g(X), where deg u(X) < k and g(X) = ∏n−k−1
l=0

(X−αb+l), can be converted into a truncated RS codeword c̃(X) = ∑i=n−1
i=0 f (αi)

Xi, and vice versa. Let us now determine the values of ψ0, . . . ,ψn−1.

Lemma 2.1 If c̃(X) = ∑i=n−1
i=0 f (αi)Xi is a codeword of the truncated RS code,

then c(X) = ∑i=n−1
i=0 f (αi)φ(αi)αi(1−b)Xi is a codeword of the shortened RS

code, whereφ(X)def= ∏q−2
i=n (X −αi).

Proof. It is sufficient to show that {Xb+l : l = 0, 1, ..., n− k− 1} are roots of c(X).

From the definition ofφ(X), we have

c(X) =
i=n−1

∑
i=0

f (αi)φ(αi)αi(1−b)Xi =
i=q−2

∑
i=0

f (αi)φ(αi)αi(1−b)Xi,

as φ(αi) is 0 for i = n, n + 1, ..., q− 2. Let us now define h(X) = f (X)φ(X) =

∑k−1+q−1−n
j=0 hjX j, thus we have

c(αb+l) =
i=q−2

∑
i=0

k−1+q−1−n

∑
j=0

hjα
i jαi(1−b)αi(b+l)

=
k−1+q−1−n

∑
j=0

hj

i=q−2

∑
i=0

αi( j+1−b+b+l)

=
k−1+q−1−n

∑
j=0

hj

i=q−2

∑
i=0

αi( j+1+l)

Since 0 ≤ j ≤ k− 1 + q− 1− n and 0 ≤ l ≤ n− k− 1, we have

0 < j + 1 + l ≤ q− 2,

i.e.,α j+1+l 	= 1, and thus the sum ∑i=q−2
i=0 αi( j+1+l) is always 0 for l = 0, 1, ..., n−

k− 1.

Based on this lemma, the ψi’s can be computed as follows

ψi =
αi(b−1)

φ(αi)
for i = 0, . . . , n− 1.
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To better understand how the lemma is constructively formulated, the following

steps can be taken. First of all, it is well known that the codeword space of non-

shortened RS(q− 1, k) code is equivalent between the 2 definitions for narrow-

sense RS code, i.e., b = 1 in the generator polynomial. Next, one realizes that

an auxiliary polynomial of degree q− 1− n that evaluates to 0 at αn, . . . ,αq−2

can bridge the gap between n and q− 1. In the end, another factor is required

to convert between general (non narrow-sense) RS code and narrow sense RS

code.

The lemma leads to the following corollary.

Corollary 2.2 If c(X) = ∑i=n−1
i=0 ciXi is a codeword of the shortened RS code,

then c̃(X) = ∑i=n−1
i=0

ci
φ(αi)αi(1−b) X

i is a codeword of the truncated RS code, where

φ(X)def= ∏q−2
i=n (X −αi). In other words, there exist f (X) with deg f (X) < k,

such that f (αi) = ci
φ(αi)αi(1−b) for i = 0, 1, ..., n− 1.

Now we can freely convert a codeword from one definition to the corre-

sponding codeword in the other definition. let us discuss how the f (X) in (2.1)

can be computed from c̃(X). Apparently, once c̃(X) is known, we can pick any k

out of n coefficients, which correspond to f (X) evaluated at k of the n values of

α0,α1, ...,αn−1, and apply the Lagrange interpolation method. We now present

another method to compute f (X), where the Fourier transform in finite fields

is used. Let us assume that we know the full codeword c′(X) obtained by eval-

uating f (X) at all q − 1 non-zero numbers of the field. Note that c′i = c̃i, for

0 ≤ i < n. Then f (X) is the inverse Fourier transform of c′(X), i.e.,

fi = c′(α−i), for 0 ≤ i < q− 1.

It’s easy to see that fi = 0 for i ≥ k.

Thus the key is to compute the full codeword c′(X) and we have to apply the

equivalence between the 2 full (n = q− 1) code definitions. The full codeword

c′(X) can also be generated from the following generator polynomial

g∗(X) =
q−1−k

∏
i=1

(X −αi).
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From g∗(X) and c̃(X), we can compute a quotient polynomial q(X), such that

c′(X) = q(X)g∗(X). Since q(X) only has k coefficients, it is possible to compute

it from k lowest-degree coefficients of c̃(X) and g∗(X). This can be seen from

the following: Since c′(X) = q(X)g∗(X), we have

c′0 = q0g∗0
c′1 = q0g∗1 + q1g∗0

...

c′i =
i

∑
j=0

qjg
∗
i− j

...

c′k =
k

∑
j=0

qjg
∗
k− j

Given the equivalence between the 2 definitions we have established in this

section, we assume, throughout the rest of the thesis that the polynomial evalu-

ation definition of (2.1) is used.

2.2 The Bivariate Polynomial Interpolation Problem

In order to describe the bivariate polynomial interpolation problem, we need

the following definitions. As in [GS99, KV03a, NH98, RR00], we define the wei-

ghted degree as follows.

Definition 2.1. LetA(X, Y) = ∑∞

i=0 ∑∞

j=0 ai, jXiY j be a bivariate rational function

over Fq and let wX , wY be real numbers. Then the (wX , wY)-weighted degree

of A(X, Y), denoted degwX ,wY
A(X, Y), is defined as the maximum over all real

numbers iwX + jwY such that ai, j 	= 0.

Throughout this thesis, we only consider cases where wX = 1. Thus we can use

the following simplified definition of (1, w)-weighted degree of A(X, Y)

degwA(X, Y) = max {i + jw : ai, j 	= 0}. (2.4)
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We let X-degA(X, Y), Y-degA(X, Y) denote the X-degree, respectively the Y-

degree, of A(X, Y). In addition, we will use the following definition of weighed-

degree order for bivariate monomials: XiYj≺wXaYb iff(
i + wj < a + wb

)
or
(
i + wj = a + wb and j < b

)
Note that if w < 0, then ≺w is not a monomial order on the monomials of

Fq[X, Y], since there is no least element. Yet, ≺w is always a monomial order

on the set of monomials in〈
Fq[X, Y]

〉
r

def=
{

A∈Fq[X, Y] : Y-deg A ≤ r
}

. (2.5)

Following Lee-O’Sullivan [LO06a,LO06b], we view
〈
Fq[X, Y]

〉
r as a free module

over Fq[X] generated by the basis 1, Y, Y2, . . . , Yr.

For reasons that will become clear in Chapter 4, we do not restrict the def-

inition of weighted degree to the usual case [GS99, KV03a, NH98] where w is

a nonnegative integer. Thus the weighted degree of a polynomial A(X, Y) can

assume negative values.

We define Kα,β as follows

Kα,β
def= the ring of rational functions in Fq(X, Y) (2.6)

without poles at the point (α,β)∈Fq×Fq.

A rational function A(X, Y)∈Kα,β has a power-series expansion in basis func-

tions of type (X −α)i(Y−β) j. Thus

A(X, Y) =
∞

∑
i=0

∞

∑
j=0

ai, j (X −α)i(Y −β) j (2.7)

Based on (2.7), we also define the following function:

coef
(A(X +α, Y +β), XiYj) def= ai, j

Definition 2.2. The functionA(X, Y) is said to pass through the point (α,β) with

multiplicity m if ai, j = 0 for all i + j < m in (2.7). Define the multiplicity function

µα,β : Kα,β → N as follows:

µα,β
(A(X, Y)

) def= max{m∈N : ai, j = 0 ∀ i + j < m}
where ai, j are the coefficients in (2.7) and N is the set of natural numbers.
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The following observations are obvious from the definition given above: for any

two functions A(X, Y) and B(X, Y) in Kα,β, we have

µα,β(A(X, Y)B(X, Y)) = µα,β(A(X, Y)) + µα,β(B(X, Y)) (2.8)

µα,β(A(X, Y)) = µ0,0(A(X +α, Y +β)) (2.9)

µα,β(A(X, Y) + B(X, Y)) ≥ min {µα,β(A(X, Y)),µα,β(B(X, Y))} (2.10)

Our interest in the foregoing definitions and results is motivated by the fact that,

as a consequence of Bezout’s theorem [Sha95], two polynomials A(X, Y) and

B(X, Y) cannot both pass through an arbitrary large number of points without

having a common factor. In particular, the polynomial Y− f (X), with deg f (X)

< k, passes through the n points (x∗1, c1), (x∗2, c2), . . . , (x∗n, cn), where ci = f (x∗i )
may be thought of as the n transmitted symbols. Then Bezout’s theorem implies

that any nonzero polynomial Q(X, Y) such that
n

∑
i=1
µx∗i ,ci

(Q) > deg1,k−1Q(X, Y)

is divisible by Y − f (X). This leads to the interpolation-based decoding algo-

rithms of [Sud97], [GS99], [NH98], [KV03a]. The central idea of all these decod-

ing algorithms is to construct a polynomial Q(X, Y) that passes through a pre-

scribed set of points P = {(x1, y1), (x2, y2), . . . , (xs, ys)}, where x1, . . . , xs ∈D
and y1, y2, . . . , ys ∈Fq, with prescribed multiplicities mx1,y1, mx2,y2 , . . . , mxs ,ys∈N.

If these points and multiplicities agree “sufficiently well” with the n points

(x∗i , ci) that define the transmitted codeword, then the divisibility of Q(X, Y)

by Y − f (X) is guaranteed [KV03a]. How the two sets P and M = {mx1,y1 ,

mx2,y2 , . . . , mxs ,ys} are determined from the channel output is out of the scope

of this thesis. Interested readers can find answers to this question in [GS99],

[KV03a], [Nie03], [PV03]. In all cases, a key part of the decoding algorithm con-

sists of solving the following interpolation problem.

Original interpolation problem: Given a set of points P =

{(x1, y1), (x2, y2), . . . , (xs, ys)} and a set of multiplicities M = {mx1,y1 ,

mx2,y2 , . . . , mxs,ys}, find a nonzero polynomial Q(X, Y) of minimal (1, k−1)-

weighted degree, such that µxi ,yi(Q) ≥ mxi ,yi for i = 1, . . . , s.
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We shall refer to this interpolation problem as IP1,k−1(P , M), and say thatQ(X,

Y) is a solution to IP1,k−1(P , M). Observe that xi and xj in the set P = {(x1, y1),

(x2, y2), . . . , (xs, ys)} do not have to be distinct, all we require is that they be-

long to D. In fact, in soft-decision decoding, we often interpolate through dif-

ferent points having the same X-coordinate [KV03a, KMVA03]. By definition,

requiring that a polynomial Q(X, Y) passes through a point with multiplicity

m imposes 1/2m(m+1) linear constraints on the vector space of polynomials in

two variables (cf. (2.7)). Hence, solving IP1,k−1(P , M) is tantamount to solving

a system of N(M) = 1/2 ∑s
i=1 mxi ,yi(mxi ,yi + 1) linear (although not necessarily

linearly independent) equations. As shown in [GS99,KV03a], there are

ν1,k−1(δ) =
⌈
δ+1
k− 1

⌉(
δ− k−1

2

⌊
δ

k−1

⌋
+ 1
)

monomials XiYj with i + (k−1) j ≤ δ. Hence, choosing δ to be large enough

will guarantee a solution to IP1,k−1(P , M). Let δ∗ be the smallest integer such

that ν1,k−1(δ∗) > N(M). Then deg1,k−1Q(X, Y) ≤ δ∗, and the Y-degree of

Q(X, Y) can be estimated as r = 
δ∗/(k−1)�. In principle, IP1,k−1(P , M) is a

linear problem that can be solved in a number of ways. In the next section, we

present a brief survey of existing works that solve the interpolation problem.

2.3 Brief Survey of Existing Interpolation Algorith-

ms

The material to be presented in this section is somewhat borrowed from

the prior work in [LO06a]. Koetter’s algorithm [Koe96b], later presented by

McEliece [McE03a], is the first solution to the interpolation problem. It solves

the interpolation problem by iteratively building a minimal solution for the lin-

ear constraints of the interpolation problem. Later, Nielsen and Høholdt came

up with an algorithm [NH98] of similar nature, and a divide-and-conquer ap-

proach was proposed by Feng in [Fen99]. Based on the theory of Groebner

bases, O’Keeffe and Fitzpatrik [OF02] and Farr and Gao [FG05] generalized



2.4. KOETTER’S INTERPOLATION ALGORITHM

15

the interpolation algorithm to decode linear codes. Olshevsky and Shokrol-

lahi [OS99] formulated the interpolation problem as a problem of finding a

nonzero element of the kernel of a certain structured matrix and devised an

algorithm that solved the problem. Kuijper and Polderman [KP04] proposed an

algorithm solving the interpolation problem recast from a system theory point

of view. Ruatta and Trebuchet found a general and efficient approach for implic-

itization [RT03], and it can be applied to the interpolation problem as a specific

case. In [Ale06], Alekhnovich generalized the classical Knuth-Schoenhage algo-

rithm computing the greatest common divisor of two polynomials for solving

arbitrary linear Diophantine systems over polynomials. The generalized algo-

rithm is effective in solving weighted algebraic curve fitting problem, which is

closely related to the interpolation problem. Another interpolation algorithm

is proposed by Lee and O’Sullivan [LO06a], [LO06b]. This algorithm adopts a

strategy, different from that of [Koe96b], [NH98], [Fen99], to compute the Groeb-

ner basis for the polynomial module defined by the interpolation problem.

2.4 Koetter’s Interpolation Algorithm

Koetter’s algorithm can be described as follows:

Koetter’s Interpolation Algorithm

• Initialization:

Qv(X, Y) = ∑r
t=0 qv,t(X)Yt, for 0 ≤ v ≤ r.

• Iteration:

Input: {(xi, yi, mxi ,yi) : (xi , yi)∈P}

– For each triple (xi , yi, mxi ,yi),

Ov = degwQv(X, Y), for 0 ≤ v ≤ r.

for a = 0 to mxi ,yi − 1

for b = 0 to mxi ,yi − 1− a

Discrepancy Computation:
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for v = 0 to r

d(a,b)
v = coef

(Qv(X + xi, Y + yi), XaYb
)

end

Polynomial Update:

if there exist η = argmin 0≤v≤r

d
(a,b)
v 	=0

{Ov}

for v = 0 to r

if v 	= η and d(a,b)
v 	= 0

Qv(X, Y) := Qv(X, Y) + d(a,b)
v

d(a,b)
η

Qη(X, Y)

end

end

Qη(X, Y) := Qη(X, Y)(X − xi), and Oη := Oη + 1

end

end

end

• Result: Q(X, Y) = {Qη(X, Y)}, where η = argmin0≤v≤r{Ov}. So that

Q(X, Y) =
r

∑
t=0

qt(X)Yt

As it becomes clear later, with appropriate initialization and different w val-

ues, the algorithm can also be used to efficiently solve the reduced interpolation

problem (RIP1,−1(P′ , M)) defined in Chapter 4. It has been shown [McE03a]

that the above algorithm actually computes a Groebner basis for the F[X]-sub-

module of all bivariate polynomials of Y-degree not larger than r that pass the

interpolation point set with prescribed multiplicities. Proposition 11 of [LO06b]

shows that the bivariate polynomials obtained by carrying out Koetter’s algo-

rithm actually form a Groebner basis for the ideal of all bivariate polynomials

that satisfy the constrains of the interpolation problem. Thus we can treat the in-

terpolation problem in the regime of F[X, Y]-ideals or F[X]-modules. However,
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the discussion of RIP1,−1(P′ , M) has to be limited to modules since ≺w is not

an appropriate monomial order for bivariate polynomial ideals when w < 0.

Fortunately, it is always a well-defined monomial order for an F[X]-module.



CHAPTER 3

Divide-and-Conquer Interpolation

Method

The complexity of Koetter’s algorithm (Chapter 2) is proportional to the num-

ber of polynomials being updated and to 2nd power of the total cost of inter-

polation points. Thus one may expect to reduce the complexity if the original

interpolation problem is split into a number of smaller ones and later merge the

solutions. This is the idea of divide-and-conquer, which is based on splitting

the original set of interpolation points into a number of subsets, independently

computing their interpolation polynomials and later merging the results. In ad-

dition to the desired complexity reduction, this divide-and-conquer approach

enables parallel processing in interpolation. Note that the divide-and-conquer

approach to be discussed is different from the one proposed in [Fen99], where

the smaller interpolation problems are solved sequentially.

3.1 Matrix Interpretation of Koetter’s Interpolation

Algorithm

Lemma 3.1. Let Q j(X, Y), j = 0, ..., r be a set of polynomials, produced by

Koetter’s interpolation algorithm after processing the set P of interpolation

18
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points with corresponding multiplicities M. Then all polynomials Q(X, Y) :

wdeg(0,1)Q(X, Y) ≤ r pass through points in P with corresponding multiplici-

ties M can be represented as

Q(X, Y) =
r

∑
j=0

pj(X)Q j(X, Y)

Proof. LetQ(X, Y) : wdeg(0,1)Q(X, Y) ≤ r be a polynomial having points from

P as roots of corresponding multiplicities from M. The following procedure is

very similar both to the multivariate polynomial division [CLO96] and matrix

polynomial division algorithms [Kai80,Gan88].

1. OrderQ(X, Y) terms accordingly to deg1,k−1 and let R(X, Y) = 0, pj(X) =

0.

2. Let LTQ(X, Y) = αxayb and LTQb(X, Y) = xcyb. (Note that the Koetter’s

interpolation algorithm guarantees that LTQb(X, Y) = XcYb through-

out the whole iterative procedure.) If a ≥ c, then pb(X) := pb(X) +

αxa−c, Q(X, Y) := Q(X, Y)−αxa−cQb(X, Y). Otherwise, R(X, Y) := R(X,

Y) + LTQ(X, Y), Q(X, Y) := Q(X, Y)− LTQ(X, Y).

3. Repeat step 2 until Q(X, Y) = 0.

Clearly, this procedure would lead to Q(X, Y) = ∑ j p j(X)Q j(X, Y) + R(X, Y).

Since all Q j(X, Y) have points from P as roots of corresponding multiplicities

M, these points will be roots of the same multiplicity of R(X, Y). Thus we have

obtained a polynomial with degree j = wdeg(0,1) R(X, Y) ≤ r in y, having

roots of multiplicities in M at all points of P such that deg1,k−1 R(X, Y) <

deg1,k−1Q j(X, Y), which contradicts to the property of Qj(X, Y) minimality

(see [NH98] for proof). Thus R(X, Y) = 0. This lemma proves that theQj(X, Y)

polynomials form a basis of a polynomial module and any polynomial Q(X, Y)
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as described in Lemma 3.1 may be represented as algorithm is

Q(X, Y) = YQ(X)P(X) = (3.1)

(
1 y . . . yr

)



q00(X) q01(X) . . . q0 r(X)

q10(X) q11(X) . . . q1 r(X)

· · ·
qr 0(X) qr 1(X) . . . qr r(X)







p0(X)

p1(X)

. . .

pr(X)




Then each step of Koetter’s interpolation algorithm may be represented as mul-

tiplication of matrix polynomialQ(X) obtained during previous steps by matrix


1 0 . . . 0 . . . 0

0 1 . . . 0 . . . 0

. . .

− ∆0
∆ j0

− ∆1
∆ j0

. . . (x− xi) . . . − ∆r
∆ j0

. . .

0 0 . . . 0 . . . 1




. (3.2)

Note that the determinant of this matrix equals to δ(x − xi), δ ∈GF(q)\{0},
which implies that for each extension of the original field GF(q) it is singular

only for x = xi. Thus Koetter’s interpolation algorithm may be considered as a

process of sequential construction of a matrix polynomialQ(X) whose columns

form a basis of a polynomial module.

It can be easily proved that application of Koetter’s interpolation algorithm

with different order of interpolation points leads to equivalent results. Let us

assume that {Q(1)
j (X, Y)} and {Q(2)

j (X, Y)} are interpolation polynomials ob-

tained for the sets P1,P2 : P1
⋂P2 = ∅ of interpolation points with associ-

ated multiplicities M1 and M2, respectively. Then application of Koetter’s in-

terpolation algorithm to the set of points P = P1
⋃P2, with multiplicity set

M = M1
⋃

M2 would lead to polynomials {Q j(X, Y)} such that

Q(X) = Q(1)(X)P1(X) = Q(2)(X)P2(X), (3.3)

where Q(X),Q(s)(X) are matrix polynomials obtained from Q j(X, Y) and Q(i)
j

(X, Y), i = 1, 2 respectively, while Pi(X) are equal to products of matrices (3.2)



3.2. ALGEBRAIC-GEOMETRIC INTERPRETATION OF KOETTER’S
INTERPOLATION ALGORITHM

21

and some uni-modular matrices (i.e. matrices with determinants in GF(q)\{0})
of linear transformations required to obtain an equation. Thus the problem of

”merging” two sets of interpolation polynomials may be considered as finding a

least common right multiple of the respective matrix polynomials. Unfortunately,

even the most recent algorithms for performing this task (e.g. [BL00]) appear to

be too computationally expensive.

3.2 Algebraic-Geometric Interpretation of Koetter’s

Interpolation algorithm

As it can be seen from (3.3), the divide-and-conquer interpolation method

may be considered as intersection of two modules. However, these modules

possess certain additional properties which may be used to simplify computa-

tions:

1. It is possible to introduce the multiplication operation for two module el-

ements. However, its result belongs to a module of higher dimension.

2. The module may be considered as a subset of bivariate polynomial ideal.

Thus one can perform intersection operation in an ideal which is a superset of a

module, and then convert its result back into the module. Actually we have the

following lemma.

Lemma 3.2. LetQ j(X, Y), j = 0, ..., r be a set of polynomials, produced by Koet-

ter’s interpolation algorithm after processing the set P of interpolation points

with corresponding multiplicities M. If LTQr(X, Y) = Yr, then 〈Q0(X, Y), ...,

Qr(X, Y)〉 is a basis (actually a Groebner basis) for ideal of polynomialsQ(X, Y)

that pass through points in P with corresponding multiplicities M.

Proof. Similar to the proof of Lemma 3.1, thus omitted here.

It is possible to generalize the definition of affine variety to accommodate the

case of roots with high multiplicity. Then Koetter’s interpolation algorithm may
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be considered as a process of adding interpolation points to an affine variety

defined by the ideal of interpolation polynomials. Thus the operation of module

intersection may be replaced with intersection of two ideals. But again, the ideal

intersection algorithm [CLO96] appears to be too complex. However, in some

cases computation of ideal intersection may be replaced with computation of

their product.

LetR = Fq[X, Y] denote the ring of bivariate polynomials over Fq. Let I ⊆ R
be a polynomial ideal. Then the quotient ringR/I is isomorphic to the Fq-vector

space spanned by the set {
XaYb : XaYb 	∈ 〈LT(I)〉

}
where 〈LT(I)〉 denotes the ideal generated by the leading terms of the elements

of I . This is Proposition 4 of [CLO96, p. 229]. We let dimFqR/I denote the

dimension of this vector space. The footprint ∆(I) of I , also called the deltaset

of I , can be defined as the set of all monomials in R that are not the leading

monomials of elements of I . It is known [HvLP98] that dimFqR/I = |∆(I)|,
provided ∆(I) is finite. However, we will not need this result.

Theorem 3.3 Let P = {(x1, y1), (x2, y2), . . . , (xs, ys)} be a set of s distinct points

in F2
q and let M = (m1, m2, . . . , ms) be a sequence of positive integers, called the

multiplicities of the points in P . Consider the ideal

〈I(P , M)〉 def=

{
Q(X, Y)∈R : coef

{
Q(X+xi, Y+yi), XaYb} = 0

for a + b < mi

}
(3.4)

Following [KV03a], define the cost of M as C(M) = 1
2 ∑s

i=1 mi(mi + 1). Then

|∆(I)| = C(M). That is, the dimension of R/I as a vector space over Fq is

equal to the cost of M.

Proof. Let C(M) = n. We will construct a bijection between the quotient ring

R/I and an n-dimensional vector space over Fq. To this end, let us introduce a

map Φ : R → Fn
q , defined as follows

Φ(Q) def=
(
c0,0;1(Q), c1,0;1(Q), . . . , c0,0;s(Q), c1,0;s(Q), . . . , c0,ms;s(Q)

)
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where ca,b;i(Q) def= coef{Q(X + xi, Y + yi), XaYb} for all nonnegative integers

a, b such that a + b < mi and for all i = 1, 2, . . . , s. ThusΦ(Q) is precisely the set

of coefficients in (3.4), arranged in a fixed order. Specifically, ca′,b′; j(Q) precedes

ca,b;i(Q) in the n-dimensional vector Φ(Q) iff j < i or j = i and (a′ , b′) ≺ (a, b),

where ≺ is the graded lex order on N2 (actually, any graded order on N2 would

suffice for our purposes). Now let us define the following polynomials:

Ga,b;i(X, Y) def= (X− xi)a(Y− yi)b ∏
xl 	=xi

(X− xl)mi(Y− yl)mi ∏
xl=xi
yl 	=yi

(Y− yl)mi (3.5)

for all nonnegative integers a, b such that a + b < mi and for all i = 1, 2, . . . , s. By

definition, these polynomials satisfy ca,b;i(Ga,b;i) 	= 0. Moreover, ca′,b′; j(Ga,b;i) =

0 if j 	= i or if j = i and either a > a′ or b > b′ — in particular, if (a′ , b′) ≺
(a, b). Let us arrange the n polynomials Ga,b;i in (3.5) in the same order as the n

coefficients ca,b;i(Q) in the vector Φ(Q), and consider the n× n matrix A having

Φ(Ga,b;i) as its rows. It follows from the properties of the polynomials Ga,b;i that

the matrix A is upper triangular. Hence its rows constitute a basis for Fn
q . This

implies that for each vector v∈Fn
q , we can construct a polynomial Q(X, Y)∈R

such that Φ(Q) = v. Indeed, if v is expressed as a linear combination of the

rows of A, then Q(X, Y) is just the corresponding linear combination of the

polynomials Ga,b;i in (3.5). This shows that the mapping Φ is surjective.

Now consider the mapping Ψ : R/I → Fn
q defined by Ψ([Q]) = Φ(Q),

where [Q] is the equivalence class of Q in R/I . It follows from [CLO96, Chap-

ter 5] that the mapping Ψ is well-defined. Moreover, since Φ is surjective, then

so is Ψ. The mapping Ψ, on the other hand, is also injective. Indeed, if Ψ([Q]) =

Φ(Q) = 0 in Fn
q , then Q∈I by (3.4) and the definition ofΦ(Q). HenceΨ([Q]) =

0 if and only if [Q] = [0] = I . Together with the linearity of Ψ, this shows that

Ψ is an injection, as claimed. We thus conclude that Ψ is a bijection fromR/I to

Fn
q . Hence dimFqR/I = n.

Remark. The mapping Ψ constructed in the proof above is, in fact, a vector

space isomorphism betweenR/I and Fn
q . ThusR/I � Fn

q , for n = C(M).

Corollary 3.4 The affine variety V(I) defined by the ideal I in (3.4) is equal to
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P .

Proof. Clearly P ⊆ V(I) by definition. Assume to the contrary that there

exists a point P such that P∈V(I) but P 	∈ P . Let P′ = P ∪ P, let M′ =

(m1, m2, . . . , ms, 1), and let I′ be the ideal defined as in (3.4) in terms of P′ and

M′. Then the fact that P∈V(I) implies that I′ = I . However, this contradicts

Theorem 1, since C(M′) 	= C(M).

Theorem 3.5 Let I(P , M) denote the ideal defined in (3.4) with respect to the

point set P and multiplicity vector M. Suppose P1, M1 and P2, M2 are such that

P1 ∩ P2 = ∅. Then

I(P1, M1) ∩ I(P2, M2) = I(P1, M1) · I(P2, M2) (3.6)

Proof. Let I1 = I(P1, M1) and I2 = I(P2, M2). Then V(I1) = P1 and V(I2) =

P2 by Corollary 2. It follows that

V(I1 + I2) = V(I1) ∩V(I2) = P1 ∩ P2 = ∅

Hence, by the weak Nullstellensatz [CLO96, p. 168], we have I1 + I2 = F̄[X, Y],

where F̄ is the algebraic closure of Fq. Thus I1 and I2 are co-prime, which

implies (3.6) by the Chinese Remainder Theorem.

Suppose that the original interpolation point set P is split into 2 sets, namely

P1 andP2. The multiplicity set M is divided into set M1 and M2, which are asso-

ciated with P1 and P2, respectively. Apparently, we have I(P , M) = I(P1, M1)

∩I(P2, M2). Furthermore, according to Theorem 3.5 of Chapter 2, we can com-

pute cI(P , M) as I(P , M) = I(P1, M1) · I(P2, M2). Based on [CLO96], the

basis of I(P , M) can be constructed by taking pairwise product of basis poly-

nomials for ideals I(P1, M1) and I(P2, M2). However, the basis created this

way is no longer a Groebner basis. Thus one can perform interpolation as fol-

lows: Apply Koetter’s algorithm to the disjoint sets P1 and P2 of interpola-

tion points and obtain basis polynomials Q1 = {Q(1)
j (X, Y) > j = 0..r} and

Q2 = {Q(2)
j (X, Y), j = 0..r} (they actually are Groebner bases!). Compute their

pairwise product to get a basis of the ideal product and apply an elimination

algorithm to reduce this basis to a Groebner basis.
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The Divide-and-Conquer Interpolation Algorithm

SplitInterpolation(s,P , M)

P1 := {(xi , yi)}, M1 := {mi}, i = 1, ..., 
s/2�;
P2 := {(xi , yi)}, M2 := {mi}, i = 
s/2�+ 1, ..., s;

Q1 := SplitInterpolation(
s/2�,P1, M1);

Q2 := SplitInterpolation(s − 
s/2�,P2, M2);

Q′ := {Q(1)
j1

(X, Y)Q(2)
j2

(X, Y),Q(i)
ji
∈Qi};

Q := Eliminate(Q′);
Return Q

3.3 Conclusions

The main difference between our approach and the one suggested in [Fen99]

is that interpolation subproblems are solved independently and only afterward

their solutions are “merged.” This allows one to solve these subproblems in

parallel. Moreover, each of the subproblems has a much smaller dimension than

the original problem. However, further analysis is required to find an efficient

way for eliminating the redundant entries in module bases obtained during the

merging step.

Chapter 3 has been presented, at 2004 International Symposium on Information

Theory (ISIT), Ma, Jun; Trifonov, Peter; Vardy, Alexander. The dissertation au-

thor was the primary investigator and author of the paper.



CHAPTER 4

The Re-Encoding Coordinate

Transformation Technique

Algebraic soft-decision decoding of Reed-Solomon codes delivers promis-

ing coding gains over conventional hard-decision decoding. As mentioned in

Chapter 2, the main computational steps in algebraic soft-decoding (as well as

Sudan-type list-decoding) are bivariate polynomial interpolation and factoriza-

tion. In this chapter, we introduce a computational technique, based on re-

encoding coordinate transformation, that significantly reduces complexity of

bivariate interpolation procedure in algebraic soft decoding. The re-encoding

coordinate transformation transfers the original interpolation problem into an-

other reduced interpolation problem, which is orders of magnitude smaller than

the original one. A rigorous proof is presented to show that the two interpola-

tion problems are equivalent. An efficient factorization procedure that applies

directly to the reduced interpolation problem is also given.

4.1 Introduction

Both list-decoding and algebraic soft-decision decoding use interpolation

and factorization of bivariate polynomials, which is much more computation-

ally intensive than hard-decision decoding. Various efficient algorithms for in-

26
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terpolation and factorization have been proposed by Augot-Pecquet [AP00],

Feng [FG01], Nielsen-Høholdt [NH98], Olshevsky-Shokrollahi [OS99], Roth-

Ruckenstein [RR00], and Wu-Siegel [WS01], among others. While polynomial-

time, these algorithms fall short of making the required computation feasible

in practical applications, involving long high-rate Reed-Solomon codes. In this

chapter, we present a series of transformations that drastically reduce the space

and time complexity of the interpolation process, by a factor of at least n2

(n−k)2 .

The main goal of this chapter is to give a streamlined formulation of this trans-

formation process and of the corresponding factorization procedure.

Koetter’s algorithm given in Chapter 2 computes Q(X, Y) in time O(rN2),

where N = N(M) is the total number of linear equations. While this is sub-

stantially faster than straightforward Gaussian elimination, the problem is that

the number of equations N is often too large to make an O(rN2) computation

feasible in practice. The following example sheds some light on the magnitude

of this problem.

Example 4.1. Let C be a RS code of length n = 255 and dimension k = 239

over F256. A typical interpolation problem arising in the algebraic soft-decision

decoding [KV03a] of Cq(n, k) might involve the following multiplicities:

multiplicity # of points cost
7 238 6654
6 1 21
6 14 294
5 2 30
4 2 20
3 1 6
2 1 3
1 3 3

for a total of N = 7, 031 linear equations. The “cost” column illustrate the

number of linear equations associated with all points of the multiplicities given

in the “multiplicity” column. The corresponding value of δ∗ can be found to

be 1711, and the required Y-degree of Q(X, Y) is r = 7. Computing Q(X, Y)

with the fast algorithms of [FG01] [NH98] [AKS03a] [GKKG05] thus takes about
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4× 108 finite-field operations. �
This example illustrates a major problem with interpolation-based decoding.

While, for a fixed maximal multiplicity, the complexity of decoding is bounded

by a polynomial in the length of the code, the actual complexity of computing

Q(X, Y) is prohibitively large in practice. In the next section, we will introduce

a technique based on reencoding and coordinate transformation that drastically

reduce this complexity. Before describing the technique in detail, we use follow-

ing example to illustrate the magnitude of savings in computational complexity

that can be achieved with the technique .

Example 4.2. Consider again the situation of Example 4.1. Judiciously choosing

the re-encoding point set, we can eliminate the first 3 rows of the interpolation

point list table in Example 4.1, i.e., the 238 interpolation points of multiplicity 7,

and 1 out the 15 points of multiplicity 6. In other words, rather than solving the

7, 031 linear equations, we have reduced the problem to efficiently solving only

356 equations, which requires approximately 8.9 × 105 finite-field operations.

This is a much more feasible task. This reduction in complexity by a factor of

390 is augmented by a corresponding reduction in memory requirements, due

to the fact that the polynomials carried in the interpolation procedure have very

small degree. In this case, the resulting polynomials have a maximum degree of

about 50, instead of about 1711 before the complexity reduction approach. �

The chapter is organized as follows: In Section 4.2, we present a birational

mapping, which is the foundation of the transformation technique to be intro-

duced in this chapter. The re-encoding and coordinate transformation technique

is introduced in Section 4.3. Section 4.3 also presents a rigorous proof of the va-

lidity of the complexity reduction technique. In Section 4.4, we show how the

factorization procedure involved in the decoding shall be carried out to take

advantage of the complexity-reduced interpolation procedure. Conclusions are

drawn in Section 4.5.
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4.2 Birational Mapping

The transformation technique to be introduced later utilizes the following

mappings between points in space and bivariate rational functions. bivariate

rational functions can be considered as a generalization of bivariate polynomi-

als.

Definition 4.1. Fix a polynomial g(X) of degree k over Fq. Let Z be the set

of α ∈Fq such that g(α) = 0. We define the following mapping pair between

points in (Fq−Z )× Fq:

ϕg: (x, y)→ (x,
y

g(x)
)

(4.1)

ϕ−1
g : (x, z)→ (x, zg(x)

)
(4.2)

It is easy to see thatϕg andϕ−1
g are birational isomorphisms. We also define the

following mapping between rational functions.

Definition 4.2. Given the g(X) and Z defined above. We define the following

mapping pair between rational functions:

Φg : A(X, Y) =
∞

∑
j=0

∞

∑
i=0

qi, jX
iY j → B(X, Z) =

∞

∑
j=0

∞

∑
i=0

qi, jX
ig(X) jZ j

Φ−1
g : B(X, Z) =

∞

∑
j=0

∞

∑
i=0

qi, jX
iZj → A(X, Y) =

∞

∑
j=0

∑∞

i=0 qi, jXi

g(X) j Y j

We say that B(X, Z) is the image of A(X, Y) under Φg and write B(X, Z) =

Φg(A(X, Y)), and correspondingly for the inverse mapping we writeΦ−1
g (B(X,

Z)) = A(X, Y).

Theorem 4.3 For all points (α,β)∈ (Fq−Z ) × Fq, and for all A(X, Y)∈ Kα,β,

let (α,γ) = ϕg(α,β) and B(X, Z) = Φg(A(X, Y)), we have µα,β(A(X, Y)) =

µα,γ(B(X, Z)).

The proof of the theorem is given in the appendix. Based on our proof, McEliece

formulated a more systematic proof in [McE03b].
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4.3 Complexity Reducing Transformation

In this section, we introduce the idea of re-encoding coordinate transforma-

tion step by step. A detailed examples is given to illustrate the procedures in-

volved.

4.3.1 Re-Encoding and Shift

Rather than seeking an efficient way to solve IP1,k−1(P , M), we will modify

the interpolation problem itself, by means of a shift and a coordinate transfor-

mation. Our approach is similar to the re-encoding idea of the Berlekamp-Welch

[WB86]. Given the set P = {(x1, y1), (x2, y2), . . . , (xs, ys)}, we will identify

some k points (xi1 , yi1), (xi2 , yi2), . . . , (xik , yik) in P such that xi1 , xi2 , . . . , xik ∈D
are all distinct. DefineR = {(xi1 , yi1), (xi2 , yi2), . . . , (xik , yik)}. Observe that if P
contains at most n− e < k points with distinct X-coordinates, then the result-

ing polynomialQ(X, Y) will have at least qe−(n−k) factors of type Y− f (X). This

situation corresponds to e > n−k erasures, in which case the transmitted code-

word cannot be uniquely determined. This shows that, unless the interpolation

problem IP1,k−1(P , M) is ill-conditioned by too many erasures, a set R with

the required property always exists. In fact, there will usually be exponentially

many ways to chooseR from P . As far as the theory developed in this chapter is

concerned with, the choice ofR is arbitrary. In practice, the setRwill be chosen

to consist of the points with the highest possible multiplicities (cf. Example 2).

To simplify notation in what follows, we assume without loss of generality that

R consists of the first k points of P , that isR = {(x1, y1), (x2, y2), . . . , (xk, yk)}.
The set R = {(x1, y1), (x2, y2), . . . , (xk, yk)} determines a re-encoding polyno-

mial h(X) of degree < k, defined by

h(xi) = yi for all (xi, yi)∈R (4.3)

Note that the codeword c′ obtained by evaluating h(X) at x∗1, x∗2, . . . , x∗n agrees

with the “given” values y1, y2, . . . , yk at the k positions corresponding to x1, x2,
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. . . , xk. Thus computing h(X) is equivalent to re-encoding through k given val-

ues at some k positions. If these k positions are consecutive and Cq(n, k) is

cyclic, this can be achieved through division by the generator polynomial for

Cq(n, k). Otherwise, such re-encoding is tantamount to correcting n−k erasures

in Cq(n, k). Various efficient algorithms for this purpose are known. Given the

set P = {(x1, y1), (x2, y2), . . . , (xs, ys)} and the re-encoding polynomial h(X),

we define

P′ def=
{(

x1, y1−h(x1)
)
, . . . ,

(
xk, ys−h(xs)

)}
(4.4)

Notice that, by the definition of h(X) in (4.3), the first k points in P′ are of the

form (x1, 0), (x2, 0), . . . , (xk, 0).

Theorem 4.4. LetQ′(X, Y) be a solution to IP1,k−1(P′ , M). ThenQ′(X, Y−h(X))

is a solution to IP1,k−1(P , M).

Proof. Consider an arbitrary point (α,β) ∈ P and the corresponding point (α,β′)
∈P′, whereβ′ = β− h(α). SinceQ′(X, Y) is a solution to IP1,k−1(P′, M), (α,β′)
can not be a pole of Q′(X, Y). Similar to (2.7), the polynomial Q′(X, Y) can be

expanded as
Q′(X, Y) =

∞

∑
i=0

∞

∑
j=0

q′i, j
(
X −α)i (Y−β′) j

where q′i, j = 0 for all i + j < mα,β. Since h(X)− h(α) vanishes atα, the function

hα(X) = (h(X)−h(α))
(X−α) is a polynomial. Let Q(X, Y) = Q′(X, Y−h(X)). Then

Q(X, Y)=
∞

∑
i, j=0

q′i, j
(
X−α)i(Y− h(X)− (β−h(α)

) j

=
∞

∑
i, j=0

q′i, j
(
X−α)i((Y−β)− (h(X)−h(α)

) j

=
∞

∑
i, j=0

q′i, j
(
X−α)i((Y−β)− (X−α)hα(X)

) j

Since q′i, j = 0 for all i + j < mα,β, each nonzero term above passes through

the point (α,β) with multiplicity at least i + j ≥ mα,β. Therefore, for each

(α,β) ∈ P , the polynomialQ(X, Y) = Q′(X, Y−h(X)) passes through the point

(α,β) with multiplicity at least mα,β.
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What remains to be proved is thatQ(X, Y) is of minimum (1, k− 1)-weighted

degree. It is easy to observe that deg1,k−1Q(X, Y) = deg1,k−1Q′(X, Y) since

deg h(X) ≤ k − 1 thus deg1,k−1 Y = deg1,k−1 (Y − h(X)). Let us assume that

there exists B(X, Y), which passes all points in P with required multiplicities

and is of smaller (1, k − 1)-weighted degree than Q(X, Y). Thus we can de-

termine another polynomial B′(X, Y) = B(X, Y + h(X)) that passes all points

in P′ with required multiplicities. This is because by our assumption, we can

write B(X, Y) = ∑∞

i=0 ∑∞

j=0 bi, j(X − α)i(Y − β) j with bi, j = 0 for all i + j <

mα,β. Then we have B′(X, Y) = B(X, Y + h(X)) = ∑∞

i=0 ∑∞

j=0 bi, j(X −α)i(Y +

h(X)−β− h(α) + h(α)
) j = ∑∞

i=0 ∑∞

j=0 bi, j(X−α)i((Y−β′) + h(X)− h(α)
) j =

∑∞

i=0 ∑∞

j=0 bi, j(X−α)i((Y−β′)+ (X−α)hα(X)
) j. In addition, we have deg1,k−1

B′(X, Y) = deg1,k−1 B(X, Y) and thus deg1,k−1 B′(X, Y) < deg1,k−1Q′(X, Y)

by our assumption. This contradicts the fact that Q′(X, Y) is the minimal solu-

tion to the shifted interpolation problem.

From the proof of the above theorem, we actually can obtain the following corol-

lary.

Corollary 4.5 Q′(X, Y) is a solution to IP1,k−1(P′ , M) if and only if Q(X, Y) =

Q′(X, Y − h(X)) is a solution to IP1,k−1(P , M).

Example 4.6 Let q = 23, so that Fq = F8 = {0, 1,α,α2,α3,α4,α5,α6}, where α

is the primitive element of F8 defined by primitive polynomial X3 + X + 1. We

take D = {1,α,α2,α3} and consider the RS code C8(4, 2) defined as

C8(4, 2) def=
{

( f (1), f (α), f (α2), f (α3)) : f (X) = a + bX with a, b∈ F8

}
(4.5)

Suppose that the codeword c = (1,α4,α3,α) corresponding to f (X) = α6 +

α2X was transmitted, and we receive the following maximum-likelihood hard-

decision vector r = (α,α4,α6, 1), which corresponds to hard-decision errors

in positions 1, 2 and 4. For the special case of our example, the soft-decision
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demodulator produces the following interpolation point set P :

point (x, v) (α,α4) (α2,α6) (α3, 1) (α3,α) (1,α) (1, 1) (α2,α3)

multiplicity 2 1 1 1 1 1 1
(4.6)

From the number of constrains defined in (4.6), we can determine that the Groeb-

ner basis in the algorithm given in the previous section has to be initialized with

4 bivariate polynomials, i.e., r = 3 as following:

A0(X, Y) = 1;A1(X, Y) = Y;A2(X, Y) = Y2;A3(X, Y) = Y3

We have w = 1, and the Groebner-basis interpolation algorithm proceeds as

follows.

i (xi , yi, mxi ,yi) Av(X, Y) for v = 0, 1, 2, 3 after each iteration
1 (α,α4, 2) A0(X, Y) = (α + X)

A1(X, Y) = α4 + Y
A2(X, Y) = α + Y2

A3(X, Y) = α5 + Y3

A1(X, Y) = α4 + Y
A0(X, Y) = (α2 + X2)
A2(X, Y) = α + Y2

A3(X, Y) = α5 + Y3

A0(X, Y) = (α2 + X2)
A1(X, Y) = (α5 +α4X) + Y(α + X)
A2(X, Y) = α + Y2

A3(X, Y) = Y(α) + Y3

2 (α2,α6, 1) A1(X, Y) = (α6 +α4X +α6X2) + Y(α + X)
A2(X, Y) = (α3 +α5X2) + Y2

A0(X, Y) = (α4 +α2X +α2X2 + X3)
A3(X, Y) = (α6 +α4X2) + Y(α) + Y3
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3 (α2,α3, 1) A2(X, Y) = (α4 +α4X +αX2) + Y(α + X) + Y2

A0(X, Y) = (α4 +α2X +α2X2 + X3)
A1(X, Y) = (α +α2X2 +α6X3) + Y(α3 +α4X + X2)
A3(X, Y) = (α3 +α2X) + Y(α5 +α5X) + Y3

4 (α3, 1, 1) A0(X, Y) = (1 +α3X + X3) + Y(α2 +αX) + Y2(α)
A1(X, Y) = (α5 +α6X +α5X2 +α6X3) + Y(αX + X2)

+Y2(α2)
A2(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2)

+Y2(α3 + X)
A3(X, Y) = (α3 +α2X) + Y(α5 +α5X) + Y3

5 (α3,α, 1) A1(X, Y) = (α4 +α4X +α5X2 +α2X3) + Y(α2 + X2)+
Y2(α4)

A2(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2)
+Y2(α3 + X)

A3(X, Y) = (α4 +α6X3) + Y(α6 +α4X) + Y2 + Y3

A0(X, Y) = (α3 +α2X +α3X2 +α3X3 + X4)
+Y(α5 +αX +αX2) + Y2(α4 +αX)

6 (1,α, 1) A2(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2)
+Y2(α3 + X)

A3(X, Y) = (α5 + X +αX2 +αX3)
+Y(α +α4X +α3X2) + Y3

A0(X, Y) = (α2 +α3X +α4X2 + X4)
+Y(α2 +αX) + Y2(1 +αX)

A1(X, Y) = (α4 + X2 +α3X3 +α2X4)
+Y(α2 +α2X + X2 + X3) + Y2(α4 +α4X)

7 (1, 1, 1) A2(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2)
+Y2(α3 + X)

A3(X, Y) = (α5 + X +αX2 +αX3)
+Y(α +α4X +α3X2) + Y3

A1(X, Y) = (α4 + X2 +α3X3 +α2X4)
+Y(α2 +α2X + X2 + X3) + Y2(α4 +α4X)

A0(X, Y) = (α2 +α5X +α6X2 +α4X3 + X4 + X5)
+Y(α2 +α4X +αX2) + Y2(1 +α3X +αX2)

After the last iteration in the above interpolation procedure, we select the fol-

lowing polynomial with the minimum (1, 1)-weighted degree in the list as a

solution to the original interpolation problem.

A(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2) + Y2(α3 + X)

The total number of iterations required is 9. It is easy to verify that A(X, Y)
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passes all points listed above with associated multiplicities and that Y − (α6 +

α2X) is a factor of A(X, Y). Actually a complete factorization of A(X, Y) is as

follows:

A(X, Y) = (α3 + X)
(
Y− (α6 +α2X)

)(
Y− (α5 +α6X)

)
Now let us apply the re-encoding technique discussed in this section. We can

find h(X) = α5 +α6X, such that cR = (h(1), h(α), h(α2), h(α3)) = (α,α4,α6,α3)

agrees with r in position 1, 2, and 3. Correspondingly the original interpolation

point set P are modified to the shifted interpolation point set P′ as following:

point (x, y) (α, 0) (α2, 0) (α3,α) (α3, 1) (1, 0) (1,α3) (α2,α4)

multiplicity 2 1 1 1 1 1 1
,

(4.7)

where yi = vi − h(xi), for i = 1, 2, ..., 7. The Groebner-basis interpolation algo-

rithm can be carried out as follows.

i (xi, yi, mxi ,yi) B′v(X, Y) for v = 0, 1, 2, 3 after each iteration
1 (α, 0, 2) B′0(X, Y) = α+ X

B′1(X, Y) = Y
B′2(X, Y) = Y2

B′3(X, Y) = Y3

B′0(X, Y) = α+ X
B′1(X, Y) = (α + X)Y
B′2(X, Y) = Y2

B′3(X, Y) = Y3

B′0(X, Y) = α2 + X2

B′1(X, Y) = (α + X)Y
B′2(X, Y) = Y2

B′3(X, Y) = Y3

2 (α2, 0, 1) B′0(X, Y) = α4 +α2X +α2X2 + X3

B′1(X, Y) = (α + X)Y
B′2(X, Y) = Y2

B′3(X, Y) = Y3
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3 (α3,α, 1) B′2(X, Y) = Y(α2 +αX) + Y2

B′0(X, Y) = (α4 +α2X +α2X2 + X3) + Y(α5 +α4X)
B′1(X, Y) = Y(α4 + X + X2)
B′3(X, Y) = Y(α3 +α2X) + Y3

4 (α3, 1, 1) B′0(X, Y) = (α4 +α2X +α2X2 + X3) + Y(α + X)
+Y2(α4)

B′1(X, Y) = Y(α4 + X + X2)
B′2(X, Y) = Y(α5 +αX +αX2) + Y2(α3 + X)
B′3(X, Y) = Y(α2 +αX) + Y2(α3) + Y3

5 (1, 0, 1) B′1(X, Y) = Y(α4 + X + X2)
B′2(X, Y) = Y(α5 +αX +αX2) + Y2(α3 + X)
B′3(X, Y) = Y(α2 +αX) + Y2(α3) + Y3

B′0(X, Y) = (α4 +αX +α6X3 + X4) + Y(α +α3X + X2)
+Y2(α4 +α4X)

6 (1,α3, 1) B′2(X, Y) = Y(α4 + X + X2) + Y2(α3 + X)
B′3(X, Y) = Y(α +α3X + X2) + Y2(α3) + Y3

B′0(X, Y) = (α4 +αX +α6X3 + X4) + Y(α +α3X + X2)
+Y2(α4 +α4X)

B′1(X, Y) = Y(α4 +α5X + X3)
7 (α2,α4, 1) B′2(X, Y) = Y(α4 + X + X2) + Y2(α3 + X)

B′3(X, Y) = Y(α +α3X + X2) + Y2(α3) + Y3

B′1(X, Y) = (α4 +αX +α6X3 + X4)
+Y(α2 +α2X + X2 + X3) + Y2(α4 +α4X)

B′0(X, Y) = (α6 +α6X +αX2 +αX3 + X4 + X5)
+Y(α3 +α6X +α5X2 + X3)
+Y2(α6 +α3X +α4X2)

After the last iteration in the above interpolation procedure, we can obtain the

following B′(X, Y) with the minimum (1, 1)-weighted degree.

B′(X, Y) = Y(α4 + X + X2) + Y2(α3 + X)

And it is easy to verify that B′(X, Y) passes through all points in (4.7) with

associated multiplicities. B′(X, Y) can be factorized as follows:

B′(X, Y) = (α3 + X)Y
(
Y− (α + X)

)
Let us now shift B′(X, Y) with the re-encoding polynomial h(X) to obtain the

following polynomial:

B(X, Y) = B′(X, Y − h(X)) = B′(X, Y − (α5 +α6X)
)

= (1 +α5X +αX3) + Y(α4 + X + X2) + Y2(α3 + X)
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The resulting B(X, Y) is the same asA(X, Y) found by direct interpolation throu-

gh the original point set P . �
It is worth mentioning that we have used the following monomial order to

break ties between monomials in Koetter’s interpolation algorithm when their

weighted degree is identical

Xi1Yj1 > Xi2Yj2 if i1 + (k− 1) j1 = i2 + (k− 1) j2 and j1 > j2.

This monomial order ensures that the mapping Y → Y − h(X), or vice versa,

preserves the monomial order. Otherwise, Q′(X, Y) = Q (X, Y− h(X)) would

have different monomial order fromQ(X, Y). And the solution to the IP1,k−1(P ,

M) obtained by applying the mapping to a solution to the IP1,k−1(P′, M) may be

different from the solution obtained by carrying out Koetter’s interpolation al-

gorithm directly on the points defined by IP1,k−1(P, M). For example, if mono-

mial order X > Y, instead of Y > X, is used in example 4.6, it is very likely

that the resulting B(X, Y) is different from the A(X, Y). Correspondingly, the

following monomial order is applied in later discussion of interpolation after

re-encoding coordinate transformation:

Xi1Zj1 > Xi2Zj2 if i1 − j1 = i2 − j2 and j1 > j2.

Let the symbol [·]+ be defined as [i]+ = max{i, 0}. We can now proceed with

the complexity reducing transformations. Let us start with a lemma.

Lemma 4.7. The polynomial A(X, Y) = ∑∞

j=0 a j(X)Yj passes through a point

(α, 0) with multiplicity m if and only if the univariate polynomials aj(X) are

divisible by (X −α)[m− j]+.

Proof. Expand a j(X) in the basis functions (X − α) j, that is write aj(X) as

a j(X) = ∑∞

i=0 ai, j(X −α)i. Then the expansion (2.7) of A(X, Y) at the point

(α, 0) is given by

A(X, Y) =
∞

∑
i, j=0

ai, j(X −α)i(Y− 0) j =
∞

∑
i, j=0

ai, j(X −α)iY j
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Clearly, the polynomial aj(X) is divisible by (X−α)[m− j]+ if and only if ai, j = 0

for all i < [m− j]+. This is just a reformulation of the definition of multiplicity.

Lemma 4.7 can be easily extended to the following corollary.

Corollary 4.8. The polynomial A(X, Y) = ∑∞

j=0 a j(X)Yj passes through the

k points (x1, 0), (x2, 0), . . . , (xk, 0) with multiplicities mx1,y1 , mx2,y2 , . . . , mxk ,yk if

and only if all the polynomials aj(X) are divisible by ∏k
i=1(X − xi)[mxi ,yi− j]+.

From Corollary 4.8, we know that the solution Q′(X, Y) to the interpolation

problem IP1,k−1(P′ , M) must have the form

Q′(X, Y) =
r

∑
j=0

(
bj(X)

k

∏
i=1

(X − xi)[mxi ,yi− j]+
)

Yj (4.8)

This hints us that we can save the number of required iterations in the Groebner-

basis interpolation algorithm, if we initialize the Groebner-basis polynomial as

follows

Q′v(X, Y) =
k

∏
i=1

(X − xi)[mxi ,yi−v]+Yv, for 0 ≤ v ≤ r,

where r =
⌊
δ∗

k−1

⌋
is the Y-degree of Q′(X, Y) as defined in Section 2.2 of Chap-

ter 2.

Example 4.9 (Continue from Example 4.6) In this case, the Groebner basis poly-

nomials should be initialized as following

B′0(X, Y) = (X −α)2(X −α2)

B′1(X) = (X −α)Y

B′2(X, Y) = Y2;B′3(X, Y) = Y3

It is easy to observe that the Groebner basis polynomials above are directly ini-

tialized to be equal to the polynomials obtained after 4 iterations in Example

4.6. Thus in this case, the Groebner-basis interpolation algorithm proceeds as
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iterations 5 to 9 in Example 4.6. And we can finally obtain the same polynomial

solution

B′(X, Y) = Y(α4 + X + X2) + Y2(α3 + X)

However, the number of iterations required is only 5 instead of 9. �

4.3.2 Coordinate Transformation

Now, let the auxiliary polynomials g(X), Φ(X), and the “tail” polynomials

Tj(X) be defined as follows:

g(X) def=
k

∏
i=1

(X − xi) (4.9)

Φ(X) def=
k

∏
i=1

(X − xi)mxi ,yi (4.10)

Tj(X) def=
k

∏
i=1

(X − xi)[ j−mxi,yi ]
+

for j = 0, 1, . . . , r

where r = 
δ∗/(k−1)� is the Y-degree of Q(X, Y), as defined in Section 2.2

of Chapter 2. From Corollary 4.8, we know that the solution Q′(X, Y) to the

interpolation problem IP1,k−1(P′ , M) must have the form

Q′(X, Y) =
r

∑
j=0

(
bj(X)

k

∏
i=1

(X − xi)[mxi ,yi− j]+
)

Yj

= Φ(X)
r

∑
j=0

bj(X)Tj(X)
(

Y
g(X)

) j

(4.11)

for some polynomials bj(X). Computing Q′(X, Y) and thereby solving both

IP1,k−1(P′ , M) and IP1,k−1(P , M) (in view of Theorem 4.4) reduce to finding

bj(X). The following two propositions show that computing bj(X) is equivalent

to solving a much smaller interpolation problem! In the following, the birational

mapping defined in (4.1) and (4.2) are used.

Proposition 4.10. Let (α,β) ∈ P′ be such that g(α) 	= 0. Then Q′(X, Y), as

defined in (4.11), passes through (α,β) with multiplicity m if and only if the

polynomial Q′′(X, Z) = ∑r
j=0 bj(X)Tj(X) Zj passes through the point

(
α,γ =

β
g(α)

)
with multiplicity m.
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Proof. We require that µα,β
(Q′(X, Y)

)
= µα,γ

(Q′′(X, Z)
)
. Note that in view of

(4.9) and (4.10), we have µα,β(Φ(X)) = 0 whenever g(α) 	= 0. Hence it follows

from (4.11) and (2.8) that µα,β(Q′′(X, Y
g(X) ) must be equal to µα,β

(Q′(X, Y)
)
. We

now consider the birational mappingϕg(x, y) = (x, y
g(x) ) with inverseϕ−1

g (x, z)

= (x, zg(x)). By assumption g(α) 	= 0, so the mappingϕg(x, y) is well-defined

at (x, y) = (α,β). Then by Theorem 4.3, we have

µα,β
(Q′′(X,

Y
g(X)

)
)

= µ
α, β

g(α)

(
Q′′(X, Z)

)
.

Proposition 4.10 can be applied to those points (α,β) ∈ P′ for which g(α) 	= 0.

The next proposition achieves the same goal for the case g(α) = 0.

Proposition 4.11. Let (α,β) ∈ P′ be such that g(α) = 0 while β 	= 0 (if β = 0,

then (α,β) is among the first k points of P′). Let

Q′′α(X, Z) def=
r

∑
j=0

bj(X)(X−α)mα,0− jTj(X) Zj

Then the polynomialQ′(X, Y) passes through the point (α,β) with multiplicity

m if and only if Q′′α(X, Z) passes through the point (α, β
gα(α) ) with multiplicity

m, where polynomial gα(X) = g(X)
(X−α) .

Proof. Q′(X, Y) in (4.11) can be rewritten as

Q′(X, Y) = Φα(X)
r

∑
j=0

bj(X)(X−α)mα,0− jTj(X)
(

Y
gα(X)

) j

,

whereΦα(X)def= ∏k
i=1
xi 	=α

(X− xi)mxi ,yi . The rest of the proof follows the same way

as that of Proposition 4.10. First it can be observed that µα,β(Φα(X)) = 0, thus

from (2.8) µα,β
(Q′(X, Y)

)
= µα,β

(Q′′α(X, Y
gα(X) )

)
. Then the birational mapping

ϕgα(x, y) = (x, y
gα(X) ) with inverse ϕ−1

gα (x, z) = (x, zgα(X)) can be utilized. So

from Theorem 4.3, we get µα,β
(Q′′α(X, Y

gα(X) )
)

= µ
α, β

gα(α)

(Q′′α(X, Z)
)
.

Propositions 4.10 and 4.11 are the cornerstone of our complexity reducing trans-

formation, which is key to transforming the original interpolation problem to

the reduced interpolation problem defined below.
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Reduced interpolation problem: Suppose we are given a set of points P′ =
{(x1, y1), (x2, y2), . . . , (xs, ys)}, such that y1 = y2 = . . . = yk = 0 and

x1, x2, . . . , xk are all distinct. We are furthermore given a set of associated

multiplicities M = {mx1,y1 , mx2,y2 , . . . , mxs,ys}. Let the polynomials g(X),

and Tj(X) be defined follows:

• Tj(X) = ∏k
i=1(X − xi)[ j−mxi,yi ]

+

• g(X) = ∏k
i=1(X − xi)

Then the reduced interpolation problem consists of finding a nonzero poly-

nomial Q′′(X, Z) = ∑r
j=0 bj(X)Tj(X)Zj of minimal (1,−1)-weighted de-

gree, such that for all (xk+1, yk+1), (xk+2, yk+2), . . . , (xs, ys), we have

� if g(xi) 	= 0, then

µxi ,
yi

g(xi)

(
Q′′(X, Z)

)
≥ mxi ,yi (4.12)

� if g(xi) = 0, then

µxi ,
yi

gxi (xi)

(
Q′′xi(X, Z)

)
,≥ mxi ,yi (4.13)

where gxi(X) = g(X)
(X−xi)

and

Q′′xi(X, Z) =
(

(X−xi)
mxi ,0Q′′

(
X, Z

X−xi

))
.

We shall refer to the reduced interpolation problem above as RIP1,−1(P′, M).

The next theorem summarizes our results and establishes the connection be-

tween RIP1,−1(P′, M) and the original interpolation problem IP1,k−1(P , M).

Theorem 4.12. LetQ′′(X, Z) be a solution to RIP1,−1(P′, M). Then a solution to

IP1,k−1(P′ , M) is given by

Q′(X, Y) = Φ(X)Q′′
(

X,
Y

g(X)

)
(4.14)

And thus a solution to, IP1,k−1(P , M) is given by

Q(X, Y) = Φ(X)Q′′
(

X,
Y− h(X)

g(X)

)
(4.15)
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Proof. From Propositions 4.10 and 4.11, we know thatQ′(X, Y) as given in (4.14)

passes through all points {(xi, yi) : k < i ≤ s} with corresponding multiplici-

ties. Plug the definitions of Φ(X), g(X) and Tj(X)’s in (4.14), we get

Q′(X, Y) = Φ(X)
r

∑
j=0

bj(X)Tj(X)(
Y

g(X)
) j

=
r

∑
j=0

bj(X)
k

∏
i=1

(X − xi)mxi ,yi− j+[ j−mxi,yi ]
+
Yj

=
r

∑
j=0

bj(X)
k

∏
i=1

(X − xi)[mxi ,yi− j]+Yj

The last equality in the above equation follows from the fact that, for any integer

m and n,

m− n = [m− n]+ − [n−m]+

Thus by Corollary 4.8,Q′(X, Y) also passes through points {(xi, yi) : 1 ≤ i ≤ k}
with the corresponding multiplicities.

What is left to be proved is that Q′(X, Y) is of minimum (1, k − 1)-weighted

degree. Let us first prove the following Lemma.

Lemma 4.13. There exist the following weighted degree relationship between

Q′(X, Y) and Q′′(X, Z) as defined above:

deg1,k−1Q′(X, Y) = degΦ(X) + deg1,−1Q′′(X, Z)

Proof. From the definition of g(X),Φ(X), and Tj(X)’s given in (4.9) and (4.10),

we know that
Φ(X)b j(X)Tj(X)

g(X) j is a well-defined polynomial for all j. Thus

deg1,k−1Q′(X, Y) = max
0≤ j≤r

{deg
Φ(X)bj(X)Tj(X)

g(X) j + (k− 1) j}

= max
0≤ j≤r

{degΦ(X)bj(X)Tj(X)− deg g(X) j + (k− 1) j}
= max

0≤ j≤r
{degΦ(X) + deg bj(X)Tj(X)− j}

= degΦ(X) + max
0≤ j≤r

{deg bj(X)Tj(X)− j}
= degΦ(X) + deg1,−1Q′′(X, Z)
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The proof of the Theorem can now be resumed. Let us assume that solution

Q′(X, Y) is not minimal, thus there exist A′(X, Y), that passes all points in P′
with associated multiplicities and also satisfies the following equation:

deg1,k−1A′(X, Y) < deg1,k−1Q′(X, Y). (4.16)

According to Corollary 4.8, we know that any solution to IP1,k−1(P′, M) must

have the form as in (4.8). Combining this with the definitions of Φ(X), g(X)

and Tj(X)’s, we know that A′(X, Y) can be expressed as:

A′(X, Y) = Φ(X)
l

∑
j=0

pj(X)Tj(X)
Yj

g(X) j

Note that in the above equation, the upper limit of sum, l, does not have to be

the same as in the expression ofQ′(X, Y), however, this does not affect the proof

of the theorem. Let us construct A′′(X, Z) as follows:

A′′(X, Z) =
l

∑
j=0

pj(X)Tj(X)Zj

For any point (xi, yi)∈P′ such that i > k and g(xi) 	= 0, we know, from Proposi-

tion 4.10, thatA′′(X, Z) satisfies condition given by (4.12). For point (xi, yi)∈P′
such that i > k and g(xi) = 0, we have

(X − xi)
mxi ,0A′′(X,

Z
X − xi

) = (X − xi)
mxi ,0

l

∑
j=0

pj(X)Tj(X)(
Z

X − xi
) j

=
l

∑
j=0

pj(X)(X − xi)
mxi ,0

− jTj(X)Zj

Thus from Proposition 4.11, we know thatA′′(X, Z) satisfies condition given by

(4.13). From Lemma 4.13, we know that deg1,−1A′′(X, Z) = deg1,k−1A′(X, Y)−
degΦ(X). Combined with (4.16), we have

deg1,−1A′′(X, Z) < deg1,−1Q′′(X, Z). (4.17)

However, (4.17) contradicts the fact that Q′′(X, Z), is the minimal solution to

RIP1,−1(P′, M). So we conclude thatQ′(X, Y) is the minimal solution to IP1,k−1
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(P′ , M). Given equation (4.14), the 2nd part of the Theorem, i.e., equation (4.15),

follows directly from Theorem 4.4.

The RIP1,−1(P′, M) can be solved by Koetter’s algorithm given in Section 2.2 of

Chapter 2, too. In this case, w = −1, which is apparent from the proof of Lemma

4.13, and the Groebner basis polynomials should be initialized as follows:

Q′′v (X, Z) = Tv(X)Zv , for 0 ≤ v ≤ r

Example 4.14 (Continue from Example 4.6) Here the g(X) and Ti(X)’s are, by

definition, determined as following

g(X) = (X −α)(X−α2)

T0(X) = 1

T1(X) = 1

T2(X) = (X −α2)

T3(X) = (X −α)(X −α2)2 = α5 +α4X +αX2 + X3

Thus the Groebner-basis polynomials should be initialized as following

Q′′0 (X, Z) = T0(X) = 1

Q′′1 (X, Z) = T1(X)Z = Z

Q′′2 (X, Z) = T2(X)Z2 = (X −α2)Z2

Q′′3 (X, Z) = T3(X)Z3 = (α5 +α4X +αX2 + X3)Z3

As in Example 4.9, only 5 points remain to be interpolated and these points

are converted from points in set P′ via coordinate transformation. Out of these

5 points, 4 of them listed in equation (4.18) have the property that g(xi) 	= 0,

point (xi , zi) (α3,α3) (α3,α2) (1, 0) (1,α)

multiplicity 1 1 1 1
, (4.18)



4.3. COMPLEXITY REDUCING TRANSFORMATION

45

where zi = yi
g(xi)

, for i∈ {3, 4, 5, 6}. The last point (x7, z7) given in equation

(4.19) is converted from corresponding (x7, y7) in setP′, where g(x7) = g(α2) =

0
point (xi , zi) (α2, 1)

multiplicity 1
, (4.19)

The coordinate transformation is carried out as z7 = y7
gx7(x7)

= y7
g
α2(α2) . The

iterations of the interpolation procedure can be carried out as following:

i (xi, zi) Q′v(X, Z) for v = 0, 1, 2, 3 after each iteration
3 (α3,α3) Q′′2 (X, Z) = Z(α) + Z2(α2 + X)

Q′′0 (X, Z) = 1 + Z(α4)
Q′′1 (X, Z) = Z(α3 + X)
Q′′3 (X, Z) = Z(α2) + Z3(α5 +α4X +αX2 + X3)

4 (α3,α2) Q′′0 (X, Z) = 1 + Z(1) + Z2(α6 +α4X)
Q′′1 (X, Z) = Z(α3 + X)
Q′′2 (X, Z) = Z(α4 +αX) + Z2(α5 +α5X + X2)
Q′′3 (X, Z) = Z(α) + Z2(α5 +α3X) + Z3(α5 +α4X +αX2 + X3)

5 (1, 0) Q′′1 (X, Z) = Z(α3 + X)
Q′′2 (X, Z) = Z(α4 +αX) + Z2(α5 +α5X + X2)
Q′′3 (X, Z) = Z(α) + Z2(α5 +α3X) + Z3(α5 +α4X +αX2 + X3)
Q′′0 (X, Z) = (1 + X) + Z(1 + X) + Z2(α6 +α3X +α4X2)

6 (1,α) Q′′2 (X, Z) = Z(α3 + X) + Z2(α5 +α5X + X2)
Q′′3 (X, Z) = Z(1 + X) + Z2(α5 +α3X)

+Z3(α5 +α4X +αX2 + X3)
Q′′0 (X, Z) = (1 + X) + Z(1 + X) + Z2(α6 +α3X +α4X2)
Q′′1 (X, Z) = Z(α3 +αX + X2)

7 (α2, 1) Q′′2 (X, Z) = Z(α3 + X) + Z2(α5 +α5X + X2)
Q′′3 (X, Z) = Z(1 + X) + Z2(α5 +α3X)

+Z3(α5 +α4X +αX2 + X3)
Q′′1 (X, Z) = (1 + X) + Z(α +α3X + X2)

+Z2(α6 +α3X +α4X2)
Q′′0 (X, Z) = (α2 +α6X + X2) + Z(α2 +α6X + X2)

+Z2(α +αX +α4X2 +α4X3)

After the last iteration in the above interpolation procedure, we select the fol-

lowing polynomial with the minimum (1,−1)-weighted degree.

Q′′(X, Z) = Z(α3 + X) + Z2(α5 +α5X + X2).
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And correspondingly

Q′′x7
(X, Z) = Q′′

α2(X, Z) = Z(α2 + X) + Z2(α3 + X)

It is easy to verify that the polynomial

Q(X, Y) = (1 +α5X +αX3) + Y(α4 + X + X2) + Y2(α3 + X)

obtained by using Theorem 4.12 is the same as the original polynomial A(X, Y)

obtained in Example 4.6. �
In summary, we conclude that the efficient interpolation algorithms of [NH98,

FG01, AKS03a, GKKG05] can be easily adapted to solve RIP1,−1(P′, M). While

RIP1,−1(P′, M) appears to be more convoluted than the original problem IP1,k−1

(P , M), its complexity is often orders of magnitude lower. This is due to the

fact that we do not even need to consider the first k points of P′ in computing

Q′′(X, Z). In other words, these k interpolation points (which are chosen to

have the largest multiplicities) are effectively pre-solved.

4.4 The Factorization Procedure

The reductions in complexity obtained in Section 4.3 would be less signif-

icant if one has to actually compute the original polynomial Q(X, Y) (using

(4.14), say) in order to find a factor of type Y − f (X). Fortunately, the lemma

below shows that rather than factoringQ(X, Y), we can directly factor the much

smaller polynomial Q′′(X, Z) to recover the transmitted codeword.

Lemma 4.15. If Q(X, Y), the solution to IP1,k−1(P, M) has a factor of Y− f (X),

where f (X) is the information polynomial, then the solution to RIP1,−1(P′, M)

Q′′(X, Z) has a factor Z− ω(X)
σ(X) , where σ(X) is the error-locator polynomial for

the re-encoding positions in the received codeword.

Proof. If Q(X, Y) has a factor equal to Y − f (X), where f (X) is the informa-

tion polynomial, then Q′(X, Y) = Q(X, Y + h(X)) must have a factor equal
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to Y−( f (X) − h(X)), where h(X) is the re-encoding polynomial as defined in

(4.3). Let us introduce η(X) = f (X) − h(X) and from the definitions of f (X)

and h(X), we know that deg η(X) = k− 1. It is easy to observe that η(X) eval-

uates to zero in exactly those positions i where yi was the transmitted symbol,

for all i = 1, 2, . . . , k. Thus, with the substitution Z = Y
g(X) , a factor of type

Y−η(X) in Q′(X, Y) translates into a factor of type Z−η(X)
g(X) in Q′′(X, Z). The

Roth-Ruckenstein factorization procedure of [RR00] can be applied to reveal

the power-series expansion of the rational function η(X)
g(X) . Let us assume that

there are ν correctable errors occurred among the k re-encoded positions of the

RS codeword and denote the indices of these positions as a set Ie
def= {i′ : yi′ 	=

f (xi′) and 1 ≤ i′ ≤ k}. Due to the re-encoding procedure defined early in the

chapter, it is easy to see that η(X) evaluates to 0 at all those non-error positions,

thus η(X) can be written as

η(X) = ω(X) ∏
i′ /∈ Ie
1≤i′≤k

(X − xi′) (4.20)

Given g(X) as defined in (4.9) and the above equation, we have, by canceling

common terms,
η(X)
g(X)

=
ω(X)

∏i′ ∈ Ie(X − xi′)

It now becomes clear that the denominator of the right side of the above equa-

tion can be treated as the error-locator polynomial, σ(X), whose roots are the X

coordinates of the error locations.

Given the error locations, the corresponding error magnitudes can be found by

observing that ei = yi − f (xi) = h(xi)− f (xi) = η(xi) for i∈ Ie. In addition, we

have η(X)
g(X) = ω(X)

η(X) . Since g(xi) = η(xi) = 0, we have, by the L’Hôpital rule:

ei =
g′(X)ω(X)
σ ′(X)

∣∣∣∣
xi

whenever σ(xi) = 0. And finally after obtaining all f (xi)’s for 1 ≤ i ≤ k, re-

encoding can be applied again to recover the entire transmitted codeword. Note

thatω(X),σ(X) can be found from the power-series expansion of ω(X)
σ(X) by a Padé
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approximation procedure, such as the Berlekamp-Massey algorithm. In prac-

tice, a reasonable bound of the maximum number of errors intended to be cor-

rected by the soft-decision decoder can be set to be n− k, thus degσ(X) ≤ n− k.

According to [Mas69], only the first 2(n − k) coefficients in the expansion of

rational function ω(X)
σ(X) need to be generated. This is similar to applying the

Berlekamp-Massey algorithm to the hard-decision decoding of Reed-Solomon

codes, where the maximum number of correctable errors is equal to n−k
2 and

(n − k) syndromes are used to compute the error-locator polynomial. Let us

define the power series S(X) = ∑∞

i=0 SiXi def= ω(X)
σ(X) and here we refer Si’s as syn-

dromes, too. In the following, a formal description of the reduced factorization

algorithm is presented.

The Reduced Factorization Algorithm

Input: Q′′(X, Z) = ∑r
j=0 bj(X)Tj(X)Zj.

• Apply the Roth-Ruckenstein algorithm [RR00] to generate the first 2(n −
k) coefficients of all Z-roots of Q′′(X, Z) and store them in the following

power series St(X), for t = 0, 1, ..., r.

• Initialize NR = 0. For t = 0, 1, ..., r

1. NR = NR + 1;

2. Use St(X) = ∑2(n−k)−1
i=0 St,iXi as syndrome polynomial and apply

Berlekamp-Massey algorithm to obtain σt(X). If degσt(X) > n− k,

go to 6.

3. Use Chien search to find the roots xt,i’s. If the number of valid roots

is smaller than degσt(X), go to 6.

4. Computeωt(X) = σt(X)St(X). If degωt(X) ≥ degσt(X), go to 6.

5. Compute ηt(X) = g(X)ωt(X)
σt(X) .

6. NR = NR − 1.
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end

• Return: All valid ηt(X)’s.

Not all power series returned from the Roth-Ruckenstein factorization algo-

rithm correspond to valid Z-root, where by valid Z-root, we refer to the power

series which can be mapped to a valid codeword. Similar to the Berlekamp-

Massey algorithm based hard-decision decoding, usually the following 3 con-

ditions indicate that the power series whose first 2(n− k) coefficients are gener-

ated from the Roth-Ruckenstein factorization algorithm does not map to a valid

Z-root:

• degσt(X) > (n− k);

• σt(X) has fewer number of roots in Fq than its own degree;

• degωt(X) > degσt(X).

All 3 conditions are used as false root detector in the factorization algorithm

given above. Most of the time, only 1 polynomial η(X) and 1 set of roots xi’s

are returned from the reduced factorization algorithm. When the factorization

procedure defined above returns multiple candidate polynomials, the spurious

roots can be eliminated by applying the soft information to determine which

root evaluates to the codeword with the largest maximum likelihood probabil-

ity. The following example illustrate how the reduced factorization algorithm

works.

Example 4.16 (Continue from Example 4.14) Performing factorization on Q′′(
X, Z) = αZ +(α2X + X2)Z2 +(α5 +α4X +αX2 + X3)Z3 as described in [RR00],

we can get the following 3 syndrome power series:

S0(X) = 0

S1(X) = α5 +α3X +αX2 +α6X3 +α4X4 +α2X5 + X6 + . . .
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S2(X) = α5 +α6X +α6X2 +αX3 +α5X4 +αX5 + . . .

Applying the Berlekamp-Massey algorithm to the 3 syndrome polynomials given

above, we can obtain the following 3 solutions:
t σt(X) ωt(X) g(x)

σt(X) ηt(X)
0 1 0 α3 +α4X + X2 0
1 α5(X −α2) α5 α3 +α2X α+ X
2 α4(X −α)(X−α2) α5 α3 α

In this case, η1(X) = α + X is the desired root, since it is easy to verify that

the true information polynomial f (X) = h(X)+ η1(X), where f (X) = α6 +α2X

and h(X) = α5 +α6X are given in Example 4.6.

4.5 Conclusions

A proof of the applicability of the re-encoding coordinate transformation

technique to bivariate polynomial interpolation process of the algebraic soft-

decision decoding of Reed-Solomon codes is presented. A detailed example

is also given to illustrate the entire re-encoding coordinate transformation pro-

cess and its saving in interpolation complexity. In addition, we show how the

factorization procedure should be modified to accommodate the reduced inter-

polation problem. Factorization complexity is also significantly reduced for high

rate Reed-Solomon codes, since the number of iterations required is reduced

to 2δ from n− k, where δ is the number of errors to be corrected in a received

codeword of length n.

4.6 Appendix:Proof of Theorem 4.3

In the appendix, we give a proof of Theorem 4.3. Proof. The proof of the

theorem consists of 2 parts. In the 1st part, we prove that µα,β(A(X, Y)) ≥
µα,γ(B(X, Z)). We then prove that µα,β(A(X, Y)) ≤ µα,γ(B(X, Z)) in the 2nd

part.
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Lemma 4.17. For any given non-negative integer m, if µα,γ(B(X, Z)) = m, then

µα,β(A(X, Y)) ≥ m.

Proof. We start by writing B(X, Z) as

B(X, Z) =
∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(Z− γ) j (4.21)

By definition of the multiplicity function, we have

qi, j = 0, ∀ i + j < m (4.22)

From the mapping defined in section 4.2, rational function A(X, Y) can be ex-

pressed as following

A(X, Y) = ϕ−1
g (B(X, Z)) =

∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(
Y

g(X)
− γ) j

=
∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(
Y − γg(X)

g(X)
) j (4.23)

By definition of the mappingφg, g(α) 	= 0. In addition, X−α | g(X)− g(α), so

we can define h(X)def= g(X)−g(α)
X−α and obviously deg h(X) = k− 1. Thus g(X) can

be expressed as

g(X) = g(α) + (X −α)h(X) (4.24)

Let us apply (4.24) to (4.23) and we get

A(X, Y) =
∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(
Y − γ(g(α) + (X −α)h(X))

g(X)
) j

=
∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(
Y −β− γ(X−α)h(X)

g(X)
) j

=
∞

∑
j=0

(Y −β− γ(X−α)h(X)) j ∑
∞

i=0 qi, j(X −α)i

(g(X)) j ,

where β = γg(α). From above, we can get

A(X +α, Y +β) =
∞

∑
j=0

(Y− γXh(X +α)) j ∑∞

i=0 qi, jXi

(g(X +α)) j (4.25)
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By definition, g(X) is a polynomial of degree k, so we can write (g(X +α)) j in

the following form

(g(X +α)) j =
jk

∑
s=0
λ j,sXs = λ j(X) for all j (4.26)

Also from definition of g(X), g(α) 	= 0. Thus in (4.26), we have λ j,0 	= 0 for all j,

which implies that

µ0,0(λ j(X)) = 0 for all j (4.27)

Let us plug (4.26) into (4.25), we get

A(X +α, Y +β) =
∞

∑
j=0

(Y− γXh(X +α)) j ∑
∞

i=0 qi, jXi

λ j(X)

=
∞

∑
j=0

(Y− γXh(X +α)) j
∞

∑
i=0
ρi, jX

i, (4.28)

where obviously rational function ρj(X) = ∑∞

i=0 ρi, jXi = ∑∞

i=0 qi, jXi

λ j(X) . From (4.22),

we can get

µ0,0(
∞

∑
i=0

qi, jX
i) = [m− j]+ for all j.

Combining with (4.27) and applying the property of the multiplicity function as

given in (2.8), we get

µ0,0(ρ j(X)) = µ0,0(
∞

∑
i=0

qi, jX
i)−µ0,0(λ j(X)) = [m− j]+.

By property (2.8), we also have the following obvious observation

µ0,0((Y − γXh(X +α)) j) = jµ0,0(Y − γXh(X +α)) = j for all j.

Thus applying another property of the multiplication function defined in

(2.10), we have

µ0,0(A(X +α, Y +β)) ≥ min
j
{µ0,0((Y − γXh(X +α)) j) + µ0,0(

∞

∑
i=0
ρi, jX

i)}

= min
j
{ j + [m− j]+} = m
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Finally by applying property (2.9), we can conclude that µα,β(A(X, Y)) ≥ m.

So far we have proved Lemma 4.17, which shows that

µα,β(A(X, Y)) ≥ µα,γ(B(X, Z)).

Lemma 4.18.For any given non-negative integer m, if µα,γ(B(X, Z)) < m, then

µα,β(A(X, Y)) < m.

Proof. As we have done in the proof of Lemma 4.17, we start by writing B(X, Z)

as

B(X, Z) =
∞

∑
i=0

∞

∑
j=0

qi, j(X −α)i(Z− γ) j (4.29)

And similarly, we can apply the mapping to find

A(X +α, Y +β) =
∞

∑
j=0

(Y − γXh(X +α)) j
∞

∑
i=0
ρi, jXi (4.30)

Since µα,γ(B(X, Z)) < m, by definition, there exist at least one qi, j in (4.29), such

that qi, j 	= 0 and i + j < m. And since µ0,0(ρ j(X)) = µ0,0(∑∞

i=0 qi, jXi), there exist

at least one ρi, j in (4.28), such that ρi, j 	= 0 and i + j < m. Let us expand (4.30)

further to the following form

A(X +α, Y +β) =
∞

∑
j=0

j

∑
b=0

∞

∑
i=0

(
j
b

)
Yb(−γh(X +α)) j−bX j−bρi, jX

i

=
∞

∑
j=0

j

∑
b=0

∞

∑
i=0

(
j
b

)
YbX j−bρi, jXiv j,b(X) (4.31)

Note that in the 2nd equality of the above equation, we have implicitly defined

a new rational function, i.e.,

vj,b(X)def= (−γh(X +α)) j−b.

Let us write

vj,b(X) = ∑
r≥0

vj,b,rX
r (4.32)

and clearly the following holds for all vj, j(X)’s:

vj, j(X)def= (−γh(X +α))0 = vj, j,0 = 1 for all j (4.33)
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Plugging (4.32) back to (4.31), we get

A(X +α, Y +β) =
∞

∑
j=0

j

∑
b=0

∞

∑
i=0

∑
r≥0

(
j
b

)
ρi, jv j,b,rX

i+ j−b+rYb

By a substitution of variables δ = j− b and a = i + δ+ r, we get

A(X +α, Y +β) =
∞

∑
a=0

∞

∑
b=0

a

∑
δ=0

∑
r≥0

(
δ+ b

b

)
ρa−δ−r,δ+bvδ+b,b,rX

aYb

=
∞

∑
a=0

∞

∑
b=0

πa,bXaYb

where

πa,b =
a

∑
δ=0

∑
r≥0

(
b + δ

b

)
ρa−δ−r,b+δvb+δ,b,r. (4.34)

Definition 4.3. “≺” is an order on the coefficients ρi, j’s such that

ρi1, j1≺ρi2, j2 if




i1 + j1 < i2 + j2
or

i1 + j1 = i2 + j2 and i1 < i2

As we concluded above that there exist at least one nonzero ρi, j such that i + j <

m. Let us now order all such coefficients (if there are more than one) ρi, j by the

order defined above, and select

ρσ ,τ = min≺ {ρi, j : i + j < m and ρi, j 	= 0}. (4.35)

Let us now examine the corresponding coefficient πσ ,τ s as given in (4.34), and

we have

πσ ,τ = ∑
r≥0
ρσ ,τvτ ,τ ,r +

σ

∑
δ=1

∑
r≥0

(
τ + δ
τ

)
ρσ−δ−r,τ+δvτ+δ,τ ,r

= ∑
r≥0
ρσ ,τvτ ,τ ,r (4.36)

= ρσ ,τ . (4.37)

The 2nd equality follows from (4.35) and the fact that all ρσ−δ−r,τ+δ’s in the

double sum term are 0, because ρσ−δ−r,τ+δ≺ρσ ,τ according to Definition 4.3.
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The 3rd equality above follows from equation (4.33). Thus we conclude that

πσ ,τ 	= 0. Thus A(X +α, Y +β) contains monomial with degree less than m, so

we conclude µα,β(A(X, Y)) < m.

Lemma 4.18 infers that µα,β(A(X, Y)) ≤ µα,γ(B(X, Z)). Thus combining these

2 Lemmas, we conclude that µα,β(A(X, Y)) = µα,γ(B(X, Z)).

The material of Chapter 4 has been presented, in part, at 2003 International

Symposium on Information Theory (ISIT), Koetter, Ralf; Ma, Jun; Vardy, Alexander;

Ahmed, Arshad. The dissertation author was a joint investigator and co-author

of the paper.



CHAPTER 5

Reduced Complexity Lee-O’Sullivan

Interpolation Algorithm

Recently, Lee and O’Sullivan proposed a new interpolation algorithm for al-

gebraic soft-decision decoding of Reed-Solomon codes. In some cases, the Lee-

O’Sullivan algorithm turns out to be substantially more efficient than alterna-

tive interpolation approaches, such as Koetter’s algorithm. Herein, we combine

the re-encoding coordinate-transformation technique, originally developed in

the context of Koetter’s algorithm, with the interpolation method of Lee and

O’Sullivan. To this end, we develop a new basis construction algorithm, which

takes into account the additional constraints imposed by the interpolation prob-

lem that results upon the re-encoding transformation. This reduces the compu-

tational and storage complexity of the Lee-O’Sullivan algorithm by orders of

magnitude, and makes it directly comparable to Koetter’s algorithm in situa-

tions of practical importance.

5.1 Introduction

It is widely recognized that bivariate polynomial interpolation is the most

computationally intensive step in algebraic soft-decision decoding (or, more

generally, in algebraic list-decoding) of Reed-Solomon codes. Consequently,

56
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many different algorithms for bivariate polynomial interpolation have been pro-

posed in the past decade — see [LO06b] for a recent survey.While all these al-

gorithms are polynomial-time, they fall short of making the required computa-

tion feasible in practical applications, involving long high-rate Reed-Solomon

codes. In all cases that we are aware of where algebraic soft-decision decod-

ing of Reed-Solomon codes has been reduced to practice — either in software

or in hardware — the bivariate interpolation is carried out using the algorithm

of Koetter [Koe96b]. This is due in large part to the fact that Koetter’s algo-

rithm is amenable to the re-encoding coordinate transformation, developed

in [KV03b, KMVA03], which reduces the complexity of the interpolation prob-

lem by orders of magnitude.

Recently, Lee and O’Sullivan [LO06a, LO06b] proposed a new algorithm for

bivariate polynomial interpolation. Unlike Koetter’s algorithm, which incre-

mentally constructs a Groebner basis for the ideal of Fq[X, Y] defined by the

interpolation constraints, the Lee-O’Sullivan algorithm computes a Groebner

basis for the corresponding module over Fq[X] in two steps. The first step pro-

duces a basis, which is not necessarily a Groebner basis but can be quickly

computed, while the second step iteratively reduces this basis to a Groebner

basis with respect to the desired monomial order. Notably, for high-rate Reed-

Solomon codes, the Lee-O’Sullivan algorithm is often more efficient than Koet-

ter’s algorithm. This is illustrated in the following example.

Example 5.1. Let C be the (255, 239, 17) RS code over GF(28). A typical inter-

polation problem arising in algebraic soft-decision decoding of C might involve

the following multiplicities:

multiplicity 7 6 5 4 3 2 1

# of points 229 12 10 4 3 10 10

# of constraints 6412 252 150 40 18 30 10

(5.1)

for a total of 6912 linear constraints. Using Koetter’s algorithm to solve this

interpolation problem requires 159.56×106 finite field multiplications. In com-

parison, the Lee-O’Sullivan algorithm accomplishes this task using only 45.37×
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106 finite-field multiplications. Of these, 32.11×106 multiplications are expend-

ed in Step 1 (basis construction) while 13.26×106 multiplications are expended

in Step 2 (basis reduction) of the algorithm. The figures above are precise; they

were obtained by actually implementing both algorithms, and counting the

number of finite-field multiplications in software. �
The foregoing example shows that the Lee-O’Sullivan algorithm is about 3.5

times more efficient than Koetter’s algorithm in this case. However, both algo-

rithms are clearly infeasible in practice: there is simply no way to solve a system

of 6912 linear equations in reasonable time with reasonable cost. This is where

the re-encoding coordinate transformation of [KMVA03] and [KV03b] comes in.

This transformation, briefly reviewed in the next section, converts the original

interpolation problem to a reduced interpolation problem, which is orders of mag-

nitude smaller.

Example 5.2. Consider again the situation in Example 5.1. Judiciously choosing

the re-encoding point set, we can eliminate from (5.1) the k = 239 points with

the highest multiplicities: the 229 points of multiplicity 7 as well as 10 of the 12

points of multiplicity 6. This leaves only 290 linear equations to solve, rather

than the original 6912. �
The resulting reduced interpolation problem can be solved using Koetter’s

algorithm, as explained in [KV03b, KMVA03]. However, as illustrated in Ex-

ample 1, the Lee-O’Sullivan algorithm is potentially much more efficient. Can

this algorithm be applied to solve the reduced interpolation problem? This is

precisely the subject of the present chapter.

While the second step of the Lee-O’Sullivan algorithm is generic, it is not at

all clear how to construct a basis for the relevant module in the first step. In ad-

dition to the usual multiplicity constraints, the reduced interpolation problem

imposes two more types of constraints (equations (5.13) and (5.15) of the next

section) on the interpolation polynomial. Herein, we develop an efficient basis

construction algorithm which takes all three types of constraints into account

(Algorithm 2). Using this algorithm in conjunction with the Lee-O’Sullivan ba-
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sis reduction method, we can solve the reduced interpolation problem.

Example 5.3. Consider the situation described in Example 2. Using Algorithm 2

of Section 5.3 to compute a basis for the relevant module requires 86×103 finite-

field multiplications. The second step (basis reduction) of the Lee-O’Sullivan

algorithm then takes 544×103 multiplications. To summarize, we have:

Step 1 Step 2 Total

Original Lee-O’Sullivan 32.11 13.26 45.37

This Paper 0.086 0.544 0.63

The reduction in total complexity by a factor of ∼72 is augmented by a corre-

sponding reduction in memory requirements, due to the fact that the polynomi-

als we need to deal with in the interpolation procedure now have much smaller

degree. �
The rest of this chapter is organized as follows. In the next section, we review

the re-encoding coordinate transformation technique of [KMVA03, KV03b]. In

Section 5.3, we develop an efficient basis construction algorithm (Algorithm 2)

for the resulting reduced interpolation problem, and prove its correctness. In Sec-

tion 5.5, we compare the complexity of the Lee-O’Sullivan and Koetter’s algo-

rithms, as applied to the reduced interpolation problem, and conclude with a

brief discussion of the results.

5.2 Re-Encoding Coordinate Transformation Revis-

ited

In this section, we review the re-encoding coordinate transformation tech-

nique presented in Section 4.3 of Chapter 4. This is necessary as some new nota-

tion has to be introduced for exposition of the algorithms to be discussed in this

chapter. Throughout this chapter, we will use the definitions of weighted degree
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degwA(X, Y) of a bivariate polynomial, weighed-degree order for bivariate mono-

mials of weighed-degree order for bivariate monomials, and multiplicity function

µα,β(·) for polynomials in Fq[X, Y] as given in Chapter 2. A brief review of the

interpolation and coordinate transformation technique (Chapter 4) is given be-

low. Note that to accommodate the algorithms to be described in this chapter, we use

slightly different notation from that used in Chapter 2 and Chapter 4.

The interpolation problem that arises in algebraic soft-decision decoding of

C can be formulated as follows.

Definition 5.1. (Interpolation problem). Let �1, �2, . . . , �n be positive intergers,

and consider a set P of �1+�2+ · · ·+�n ≤ nq distinct points in Fq×Fq given by

P def=
{

(xi, yi, j) : i = 1, 2, . . . , n and j = 1, 2, . . . , �i

}
(5.2)

Let M =
{

mxi ,yi, j : (xi , yi, j) ∈ P
}

denote the associated multiplicities, which are

positive integers. The interpolation problem consists of computing a polynomial

Q(X, Y) 	≡ 0 such that

µxi ,yi, j

(Q(X, Y)
) ≥ mxi ,yi, j for all (xi , yi, j) ∈ P (5.3)

and degk−1Q(X, Y) is minimal among all bivariate polynomials that satisfy the

interpolation constraints (5.3). Note that multiplicity function µxi ,yi, j is defined

in Definition 2.2

We let I(P , M) denote the ideal of Fq[X, Y] consisting of all the polynomials

that satisfy (5.3). It is easy to see that

〈I(P , M)〉r def= I(P , M) ∩ 〈Fq[X, Y]
〉

r (5.4)

is a submodule of
〈
Fq[X, Y]

〉
r, where

〈
Fq[X, Y]

〉
r is defined in (2.5). Clearly, if

the Y-degree of the interpolation polynomial Q(X, Y) is at most r, thenQ(X, Y)

belongs to this submodule. Most bivariate interpolation algorithms, including

those of Koetter [Koe96b] and Lee-O’Sullivan [LO06a,LO06b] solve the interpo-

lation problem by computing a Groebner basis for 〈I(P , M)〉r with respect to

the ≺k−1 monomial order.

The re-encoding coordinate transformation of [KMVA03,KV03b] begins with

a setR⊂P consisting of some k interpolation points with distinct X-coordinates.
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We call the k points inR the re-encoding points. Although any k points in P with

distinct X-coordinates can be chosen as the re-encoding points, one usually se-

lects the k points with the highest multiplicity (cf. Example 5.2). The re-encoding

process consists of computing the unique polynomial h(X) ∈ Fq[X] of degree

≤ k− 1 such that

h(xi) = yi, j for all (xi, yi, j) ∈ R. (5.5)

and then shift the Y-coordinates of all (xi, yi, j)∈P by the following operation:

yi, j := yi, j − h(xi).

In the rest of the chapter, we still use P to denote the set of interpolation points after

the “shift” operation defined above. Correspondingly, R now contains the re-encoding

points whose Y-coordinates have been “shifted” to zero. Since the equivalence between

the interpolation problem defined on the original interpolation point set and the shifted

interpolation point set has been established in Theorem 4.4 of Chapter 4, the latter one

is used throughout the rest of the chapter.

To describe the coordinate transformation, we need some more notation. Let

A def= the set of points in P\R whose X-coordinates

differ from those of the re-encoding points

B def= the set of points in P\R whose X-coordinates

coincide with those of the re-encoding points

Thus the sets A and B form a partition of P\R. Given a subset S of P , let

{S}X⊆ {1, 2, . . . , n} denote the set of indices of the X-coordinates of the points

in S , so that {B}X⊆ {R}X while {A}X = {1, 2, . . . , n}\{R}X. We define

ψ(X) def= ∏
i∈ {R}X

(
X− xi

)
, (5.6)

andφ(X)def= ∏
i∈ {R}X

(X − xi)νi . (5.7)

In addition, we use ψ′(X) to denote the first-order Hasse derivative of ψ(X).

The coordinate transformation consists of converting the set P in (5.2) into the



5.2. RE-ENCODING COORDINATE TRANSFORMATION REVISITED

62

set P′ = {(xi , zi, j) : (xi, yi, j) ∈ P\R
}

, where

zi, j
def=




yi, j

ψ(xi)
if (xi, yi, j) ∈ A

yi, j

ψ′(xi)
if (xi, yi, j) ∈ B

(5.8)

We let A′ and B′ denote the sets of points in P′ transformed from the points in

A and B, respectively.

A′ def= the set of points in P′\R whose X-coordinates (5.9)

differ from those of the re-encoding points

B′ def= the set of points in P′\R whose X-coordinates (5.10)

coincide with those of the re-encoding points

Let M′ ⊂ M denote the multiplicities of these points. Thus

M′ def=
{

mxi ,zi, j = mxi ,yi, j : (xi, zi, j) ∈ P′
}

(5.11)

For the multiplicities of the k re-encoding points (xi, yi, j) ∈ R, we will introduce

the simplified notation νi
def= mxi ,yi, j. Finally, we need to define the polynomials

T0(X), T1(X), . . . , Tr(X). These are known as tail polynomials, and given by

Tj(X) def= ∏
i∈ {R}X

(
X− xi

)[ j−νi]+ for j = 0, 1, . . . , r (5.12)

where the operation [·]+ is defined by [a]+ = max{a, 0}. We are now ready to

define the reduced interpolation problem.

Definition 5.2. (Reduced interpolation problem). Given the sets P′ and M′, the

reduced interpolation problem consists of computing a polynomial Q′(X, Z) 	≡ 0

which can be expressed as

Q′(X, Z) =
∞

∑
j=0

qj(X) ZjTj(X) (5.13)

and satisfies

µxi ,zi, j

(Q′(X, Z)
) ≥ mxi ,zi, j ∀(xi, zi, j) ∈ A′ (5.14)

µxi ,zi, j

((
X−xi

)νiQ′
(
X, Z

X−xi

))
≥ mxi ,zi, j ∀(xi, zi, j)∈ B′ (5.15)

such that deg−1Q′(X, Z) is minimal among all bivariate polynomials that sat-

isfy the constraints (5.13), (5.14), and (5.15).
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Due to the elimination of the k re-encoding points in R, the reduced inter-

polation problem is often orders of magnitude smaller than the original inter-

polation problem (cf. Examples 5.2 and 5.3). It is shown in Chapter 4 that the

solution to the “shifted” interpolation problem (or, better yet, the correspond-

ing list of codewords of C) can be efficiently reconstructed from the solution

Q′(X, Z) to the reduced interpolation problem. In particular, we have

Q(X, Y
)

= φ(X)Q′
(

X,
Y

ψ(X)

)
(5.16)

where ψ(X), and φ(X) are as defined in (5.6) and (5.7). We let ξ denote the

mapping in (5.16), and use χ to denote its inverse mapping. Thus Q(X, Y) =

ξ
(Q′(X, Z)

)
and

Q′(X, Z
)

= χ
(Q(X, Y)

) def=
Q(X, ψ(X)Z

)
φ(X)

(5.17)

In principle, the mappings ξ and χ are defined on the field of bivariate rational

functions over Fq, but in the case of Q(X, Y) andQ′(X, Z), they take polynomi-

als to polynomials.

Our goal herein is to use (an appropriate modification of) the Lee-O’Sullivan

algorithm [LO06a, LO06b] for the solution of the reduced interpolation prob-

lem. Let J (P′, M′) denote the set of all polynomials in Fq[X, Z] that satisfy

the constraints (5.13), (5.14), (5.15). Observe that J (P′, M′) is no longer an ideal

of Fq[X, Z] (e.g. if A(X, Z) ∈ J (P′, M′), then ZA(X, Z) is not necessarily in

J (P′, M′), since (5.13) could be violated). Nevertheless, the set〈J (P′, M′)
〉

r
def= J (P′, M′) ∩ 〈Fq[X, Z]

〉
r (5.18)

can be still regarded as a free module over Fq[X]. In order to apply the Lee-

O’Sullivan algorithm to the reduced interpolation problem, we need to con-

struct a basis for this module.

5.3 Basis Construction Algorithms

We assume that an upper bound r on the Z-degree of the solution Q′(X, Z)

to the reduced interpolation problem is known. Several such bounds can be
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found in the literature [KV03b]. Given r, the Lee-O’Sullivan algorithm would

proceed as follows.

Step 1: Construct a basis G = {G0, G1, . . . , Gr} for the module 〈J (P′, M′)〉r
in (5.18), with the additional property that Z-deg Gs = s for all s = 0, 1, . . . ,

r.

Step 2: Reduce G to a Groebner basis with respect to the monomial order

≺−1. Output as Q′(X, Z) the minimal (with respect to ≺−1) element of

this Groebner basis.

This general approach was developed by Lee and O’Sullivan [LO06a,LO06b] in

the context of the original interpolation problem (cf. Definition 5.1). Step 2 of the

Lee-O’Sullivan algorithm is generic, in the sense that it works for any module

over Fq[X] and any monomial order. Step 1 of the algorithm is easy in the case of

the module 〈I(P , M)〉r.
Step 1 of the algorithm is relatively easy in the case of the original interpola-

tion problem. Let

li(X) def=
n

∏
j=1
j 	=i

X − xj

xi − xj
for i∈{1, 2, . . . , n} (5.19)

be the relevant Lagrange interpolation polynomials. Lee and O’Sullivan [LO06a]

construct a basis for 〈I(P , M)〉r as follows.

Algorithm 1 (The Lee-O’Sullivan Basis Construction)

Initialize the sets P0 and M0 as follows P0:=P and M0:= M. Set s := 0, and proceed

iteratively through the steps below for s = 0, 1, . . . , r (until exiting with s = r + 1 at

Step 4).

1 For each code position i in {Ps}X, find the largest multiplicity in this position.

That is, set
mi

def= max
j
{mxi ,yi, j(s)} for all i∈ {Ps}X (5.20)
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where mxi ,yi, j(s)are elements of Ms. Let yi be the Y-coordinate of the point in Ps

with this largest multiplicity.

2 First, compute the polynomials as(X) and bs(X) defined as follows:

as(X) def= ∏
i∈ {Ps}X

(
X− xi

)mi and bs(X) def= ∑
i∈ {Ps}X

yili(X)

Note that the empty product should be interpreted as one and the empty sum as

zero, throughout. Next, compute

Bs(X, Y) def= as(X)
s−1

∏
i=0

(
Y− bi(X)

)
(5.21)

3 Decrease by one the multiplicity of those points that were processed at the current

iteration. That is, set

mxi ,yi, j(s + 1) :=


mxi ,yi, j(s)− 1 if yi, j = yi

mxi ,yi, j(s) if yi, j 	= yi

(5.22)

If for some points (xi, yi, j), this results in a zero multiplicity (i.e. mxi ,yi, j(s +1)=

0) remove these points from Ps. Let Ps+1 and Ms+1 denote the sets thereby

obtained.

4 Set s := s + 1. If s ≤ r, go back to 1 . Otherwise, stop and output the set

{
B0(X, Y), B1(X, Y), . . . , Br(X, Y)

}
.

It is proved in [LO07] that the set of polynomials produced by Algorithm 1

constitutes a basis for the module 〈I(P , M)〉r of (5.4).

However, in the case of 〈J (P′, M′)〉r, it is not at all clear how to construct

the required basis. The situation is rather more complicated than in the interpo-

lation problem of Definition 5.1, in view of the additional constraints (5.13) and

(5.15). In this section, we develop a basis construction algorithms appropriate

for the reduced interpolation problem.
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In oder to describe Algorithm 2, let us first define the following Lagrange

interpolation polynomials:

hi(X) def= ∏
j∈ {A}X

j 	=i

X − xj

xi − xj
for all i∈ {A}X (5.23)

gi(X) def= ∏
j∈ {A}X

X − xj

xi − xj
for all i∈ {B}X (5.24)

where the sets A and B and the notation {·}X are as defined in the previous

section. In addition, let

Θ j(X) def= ∏
i∈D

(
X− xi

)[ j−νi]+ for j = 0, 1, . . . , r (5.25)

where D= {R}X\{B}X. Thus D⊂{1, 2, . . . , n} is the set of the X-coordinate

indices of those re-encoding points which are alone in their code position: there

are no other points in P with these X-coordinates. Algorithm 2 can be now

stated as follows.

Algorithm 2 (The New Basis Construction Algorithm)

Initialize the sets of points A0, B0 as A0 :=A′ and B0 :=B′, where A′ and B′ are as

in (5.10) and (5.11). Let M0 := M′ where M′ is given by (5.11), and νi(0) := νi for

all i∈ {R}X. Set s := 0, and proceed through the steps below for s = 0, 1, . . . , r (until

exiting with s = r + 1 at Step 4).

1 For each code position i in {As}X ∪ {Bs}X, find the largest multiplicity in this

position. That is, set

m(s)
i

def= max
j
{mxi ,zi, j} for all i ∈ ({As}X ∪ {Bs}X

)
(5.26)

where mxi ,zi, j are the elements of Ms. Let zi be the Z-coordinate of the point

with the largest multiplicity, that is zi is such that m(s)
i = mxi ,zi . For every

position i ∈ {Bs}X, also check whether νi(s) ≥ m(s)
i , where νi(s) is the (current)

multiplicity of the corresponding re-encoding point. If so, set zi := 0 and νi(s +

1) := νi(s)− 1. Finally, let

Es
def= {Bs}X \

{
i ∈ {Bs}X : zi = 0

}
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(if ν(s)
i ≥ m(s)

i , we decrease ν(s)
i by one and do not process the i-th position in

{Bs}X at the current iteration). In addition, define the set Fs
def= {B′}X\Es. Thus

Fs⊂{1, 2, . . . , n} is the set of indices of the X-coordinates of those points in B′
that are not processed at the current iteration.

2 First, compute the polynomials vs(X) and ws(X) defined as follows:

vs(X) def=

{
∏i∈ Es(X − xi) if Es 	= ∅
1 otherwise

, (5.27)

and

ws(X) def= ∑
i∈ {As}X

zihi(X)vs(X) + ∑
i∈ Es

zigi(X)
vs(X)

(X−xi)
(5.28)

Note that the empty product should be interpreted as one and the empty sum as

zero, throughout.

For i ∈ {B}X, let σ (s)
i be the largest integer such that (X− xi)σ

(s)
i divides ∏s−1

j=0

vj(X). Define the auxiliary polynomials

u′s(X) def= ∏
i∈ Fs

(
X− xi

)[s−νi−σ (s)
i ]+ (5.29)

u′′s (X)def= ∏
i∈ Es

(
X− xi

)[m(s)
i +s−νi−σ (s)

i ]+ (5.30)

where νi is the original multiplicity of the re-encoding point at the i-th code

position. Then define us(X) as follows:

us(X) def= u′s(X) u′′s (X) ∏
i∈ {As}X

(
X − xi

)m(s)
i Θs(X) (5.31)

With us(X) defined by (5.29) – (5.31), the basis polynomials can be computed as

follows:

Gs(X, Z) def= us(X)
s−1

∏
i=0

(
Zvi(X)− wi(X)

)
(5.32)

3 Update the sets of points and multiplicities, as follows. First, decrease by one the

multiplicity of those points that were processed at the current iteration, that is

mxi ,zi, j :=


mxi ,zi, j if zi, j 	= zi

mxi ,zi, j − 1 if zi, j = zi



5.3. BASIS CONSTRUCTION ALGORITHMS

68

If for some points (xi, zi, j) this results in a zero multiplicity (mxi ,zi, j = 0), remove

these points from As and Bs. Also purge the corresponding zero multiplicities

from Ms. Let As+1, Bs+1, and Ms+1 denote the sets thereby obtained.

4 Set s := s + 1. If s ≤ r, go back to 1 . Otherwise, stop and output the set{
G0(X, Z), G1(X, Z), . . . , Gr(X, Z)

}
.

Actually at any iteration s of Algorithm 2, we always have m(s)
i + s−νi−σ (s)

i ≥
0 for all i∈ Es. This can be derived from the following properties of the algo-

rithm: The value represented by (s −σ (s)
i ), which is always non-negative, in-

dicate how many iterations, out of the s iterations, that the re-encoding point

at xi is the one with the largest remaining multiplicity. Thus νi − (s−σ (s)
i ) de-

notes the remaining multiplicity of the re-encoding point at xi. Since i∈ Es at

iteration s, we must have m(s)
i ≥ (νi − (s−σ (s)

i )), where m(s)
i is the remaining

multiplicity of point (xi, zi). Thus throughout the rest of this chapter, we write

(m(s)
i + s− νi −σ (s)

i ) instead of [m(s)
i + s− νi −σ (s)

i ]+.

Hereafter, let G =
{

G0(X, Z), G1(X, Z), ..., Gr(X, Z)
}

denote the set of poly-

nomials produced by Algorithm 2. It is obvious from (5.32) that Z-deg Gs(X, Z)

= s for s = 0, 1, . . . , r. This property also implies that the r + 1 polynomials

in G are linearly independent over Fq[X]. Now we need to prove that 〈G〉 =

〈J (P′, M′)〉r. We start by showing that Gs(X, Z) belongs to J (P′, M′) for all

s = 0, 1, . . . , r. This is established in a series of lemmas in what follows.

Lemma 5.4. Write Γs(X, Z) def= Zvs(X) − ws(X), where vs(X) and ws(X) are as

defined in Algorithm 2. Suppose that a point (xi, z∗) ∈ A′ is processed at iter-

ation s of the algorithm (that is, i∈{As}X and zi = z∗ at this iteration). Then

Γs(xi, z∗) = 0.

Proof. It should be obvious from (5.24) that gj(xi) = 0 for all j ∈ {Bs}X.

Similarly, hj(xi) = 0 for all j 	= i and hi(xi) = 1 in view of (5.23). Hence

ws(xi) = zihi(xi)vs(xi) = z∗vs(xi), and Γs(xi , z∗) = z∗vs(xi)− ws(xi) = 0.

Lemma 5.5. Each of the polynomials produced by Algorithm 2 satisfies (5.14).
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That is, for all s = 0, 1, . . . , r, we have

µxi ,zi, j

(
Gs(X, Z)

) ≥ mxi ,zi, j ∀(xi , zi, j) ∈ A′
Proof. Throughout the proof of this lemma, mxi ,zi, j denotes the original mul-

tiplicity of point (xi, zi, j)∈B′. Suppose that a point (xi, zi, j) ∈ A′ was pro-

cessed η times during iterations 0, 1, . . . , s − 1 of Algorithm 2. Then the mul-

tiplicity of this point during iteration s is mxi ,zi, j− η, which implies that m(s)
i ≥

mxi ,zi, j − η. It now follows from (5.31) that µxi ,zi, j

(
us(X)

)≥ mxi ,zi, j − η. On the

other hand

µxi ,zi, j

(
s−1

∏
t=0

(
Zvt(X)−wt(X)

))
= µxi ,zi, j

(
s−1

∏
t=0
Γt(X, Z)

)

is at least η by Lemma 5.4. Hence, the lemma follows from (5.32) together

with the fact that µα,β
(
AB
)

= µα,β
(
A
)

+ µα,β
(
B
)

for all A, B ∈ Fq[X, Z] and

allα,β ∈ Fq.

Lemma 5.6. Let Γs(X, Z) be as defined in Lemma 5.4, and suppose that a point

(xi, z∗) ∈ B′ is processed at iteration s of Algorithm 2 — that is, i∈Es and zi =

z∗ at this iteration. Define Γ ′s(X, Z) = Γs
(
(X, Z/(X − xi)

)
. Then Γ ′s(X, Z) is a

bivariate polynomial, and moreover Γ ′s(xi, z∗) = 0.

Proof. The fact that Γs
(
(X, Z/(X − xi)

)
is indeed a well-defined polynomial

follows immediately from the observation that X− xi is a factor of vs(X) for all

i∈E . Also notice that vs(xi) = 0, and therefore

ws(xi) = zigi(xi) ∏
j∈ E\{i}

(xi − xj) = z∗ ∏
j∈ E\{i}

(xi − xj) (5.33)

where the second equality follows from the fact that gi(xi) = 1 in view of (5.24).

Evaluating the polynomial Zvs(X)/(X − xi) at (xi, z∗), we get exactly the ex-

pression on the right-hand side of (5.33), and the lemma follows.

Lemma 5.7. Each of the polynomials produced by Algorithm 2 satisfies (5.15).

That is, for all s = 0, 1, . . . , r, we have

µxi ,zi, j

((
X−xi

)νi Gs

(
X, Z

X−xi

))
≥ mxi ,zi, j ∀(xi , zi, j)∈ B′
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Proof. Throughout the proof of this lemma, mxi ,zi, j denotes the original mul-

tiplicity of point (xi, zi, j)∈B′. For iteration s of the algorithm, depending on the

value of i, there are 2 cases to be considered.

Case 1. Suppose that i∈ Es, and we also assume that this point has been pro-

cessed η times during iterations 0, 1, . . . , s− 1 of Algorithm 2. Let us define the

following auxiliary polynomial

us,i(X) =
us(X)

(X − xi)(m(s)
i +s−νi−σ (s)

i )
.

From the definition of us(X) given in (5.31) and the fact that i∈ Es, we can see

that us,i(X) is a well-defined polynomial. Let us also define Λ(X, Z) as follows:

Λ(X, Z) = ∏
0≤t<s

Γt
(
X,

Z
X− xi

)
(X − xi)(m(s)

i +s−νi−σ (s)
i )+νi , (5.34)

where Γt(X, Z)’s are as defined in Lemma 5.4.

Thus according to (5.32), (X − xi)νi Gs(X, Z
X−xi

) can be written as follows:

(X − xi)νi Gs(X,
Z

X− xi
) = Λ(X, Z)us,i(X)

To facilitate the proof, we define the following index sets

S = {i : 0 ≤ i < s} (5.35)

S′ = {i : 0 ≤ i < s and a point with X-coordinate

equal to xi is processed at iteration i} (5.36)

S′′ = {i : 0 ≤ i < s and the point (xi, zi, j)

is processed at iteration i} (5.37)

By their definitions, we have

S′′ ⊆ S′ ⊆ S ,

and |S′| = σ
(s)
i , |S′′| = η.

Apparently (X − xi)νiGs(X, Z
X−xi

) is a well-defined bivariate polynomial if

we can establish that Λ(X)) is one. According to the definitions of vi(X)’s
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and S′, (X − xi) |vt(X) for t∈S′, so
(

∏t∈ S′
(

Z
X−xi

vt(X)−wt(X)
))

is a well-

defined bivariate polynomial. In addition, one can verify that

(m(s)
i + s− νi −σ (s)

i ) + νi − (s−σ (s)
i ) ≥ m(s)

i , (5.38)

so ∏t∈ S\S′ Γt
(
X, Z

X−xi

)
(X − xi)(m(s)

i +s−νi−σ (s)
i )+νiis also a well-defined bivariate

polynomial. Thus Λ(X)) is a well-defined bivariate polynomial.

We now proceed to prove the lemma for all points (xi, zi, j)∈B′ such that

i∈ Es, while distinguishing between the following 2 sub-cases:

Sub-Case 1.1. Suppose that zi, j = zi, i.e., the point (xi, zi, j) is processed at

iteration s. Thus we have m(s)
i = mxi ,zi, j − η. It follows from (5.38) that

µxi ,zi, j

(
∏

t∈ S\S′
Γt

(
X,

Z
X− xi

)
(X − xi)(m(s)

i +s−νi−σ (s)
i )+νi

) ≥ m(s)
i

On the other hand, since S′′ ⊆ S′, we have

µxi ,zi, j

(
∏

t∈ S′
Γt(X, Z)

)
≥ µxi ,zi, j

(
∏

t∈ S′′
Γt(X, Z)

)
.

And the right hand side of the above equation is at least η by Lemma 5.4. Hence

for points considered in this sub-case, the lemma follows from (5.34) together

with the fact that µα,β
(
AB
)

= µα,β
(
A
)
+ µα,β

(
B
)

for all A, B ∈ Fq[X, Z] and all

α,β ∈ Fq.

Sub-Case 1.2. Suppose that zi, j 	= zi, i.e., the point(xi , zi, j) is not processed

at iteration s. The enumeration of all points (xi, zi, j) with the same X coordinate

in the algorithm dictates that m(s)
i ≥ mxi ,zi, j − η. Hence for points considered in

this sub-case, the lemma follows from the same arguments applied in Sub-Case

1.1.

Case 2. Suppose i /∈ Es, or equivalently, i∈Fs, and we also assume that this

point has been processed η times during iterations 0, 1, . . . , s− 1 of Algorithm

2. Let us define the following auxiliary polynomial

us,i(X) =
us(X)

(X − xi)[s−νi−σ (s)
i ]+

.
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From the definition of us(X) given in (5.31) and the fact that i∈Fs, we can see

that us,i(X) is a well-defined polynomial. Let us also define Λ(X, Z) as follows:

Λ(X, Z) = ∏
0≤t<s

Γt
(
X,

Z
X− xi

)
(X − xi)[s−νi−σ (s)

i ]++νi , (5.39)

where Γt(X, Z)’s are as defined in Lemma 5.4.

Thus according to (5.32), (X − xi)νi Gs(X, Z
X−xi

) can be written as follows:

(X − xi)νi Gs(X,
Z

X− xi
) = Λ(X, Z)us,i(X)

Here we adopt the index sets defined in (5.35), (5.36), and (5.37). Apparently

(X − xi)νiGs(X, Z
X−xi

) is a well-defined bivariate polynomial if we can establish

thatΛ(X)) is one. According to the definitions of vi(X)’s and S′, (X− xi) |vt(X)

for t∈S′, so
(

∏t∈ S′
(

Z
X−xi

vt(X)− wt(X)
))

is a well-defined bivariate polyno-

mial. In addition, since (s−σ (s)
i ) is positive, one can verify that

[s− νi −σ (s)
i ]+ + νi − (s−σ (s)

i ) = [νi − (s−σ (s)
i )]+, (5.40)

so ∏t∈ S\S′ Γt
(
X, Z

X−xi

)
(X− xi)[s−νi−σ (s)

i ]++νiis also a well-defined bivariate poly-

nomial. Thus Λ(X)) is a well-defined bivariate polynomial.

We now proceed to prove the lemma for all points (xi, zi, j)∈B′ such that

i∈Fs, while distinguishing between the following 2 sub-cases:

Sub-Case 2.1. Suppose that the remaining multiplicity of point (xi, zi, j) is 0

at iteration s. The correct execution of Algorithm 2 guarantees that this point has

been processed exactly mxi ,zi, j times in the previous s iterations, i.e. η = mxi ,zi, j.

Since S′′ ⊆ S′, we have

µxi ,zi, j

(
∏

t∈ S′
Γt(X, Z)

)
≥ µxi ,zi, j

(
∏

t∈ S′′
Γt(X, Z)

)
.

And the right hand side of the above equation is at least η by Lemma 5.4. Hence

for points considered in this sub-case, the lemma follows from (5.39).
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Sub-Case 2.2. Suppose that the remaining multiplicity of point (xi, zi, j) is

greater than 0 at iteration s. It follows from (5.40) that

µxi ,zi, j

(
∏

t∈ S\S′
Γt

(
X,

Z
X − xi

)
(X − xi)[s−νi−σ (s)

i ]++νi
)

= [νi − (s−σ (s)
i )]+.

Similar to the previous cases, since S′′ ⊆ S′, we have

µxi ,zi, j

(
∏

t∈ S′
Γt(X, Z)

)
≥ µxi ,zi, j

(
∏

t∈ S′′
Γt(X, Z)

)
.

And the right hand side of the above equation is at least η by Lemma 5.4.

Ifσ (s)
i = 0, then [νi− (s−σ (s)

i )]+ = [νi − s]+, so no point at xi has been pro-

cessed up to iteration s. This happens only if the following condition is satisfied

νi − s ≥ mxi ,zi, j ,

thus the lemma follows from from (5.39) together with the fact that µα,β
(
AB
)

=

µα,β
(
A
)
+µα,β

(
B
)

for all A, B ∈ Fq[X, Z] and allα,β ∈ Fq. .

Otherwise, if σ(s) > 0, then we must have

(s−σ (s)
i )− η = νi −mxi ,zi, j , (5.41)

since (s − σ (s)
i ) is the number of times, during the previous s iterations, that

the re-encoding point with X coordinate xi has a remaining multiplicity that is

not smaller than that of any other point with the same X coordinate. Then the

lemma follows due to the fact that

η+ [νi − (s−σ (s)
i )]+

= η+ [mxi ,zi, j − η]+

= mxi ,zi, j ,

where the 1st equality above is derived from (5.41).
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Lemma 5.8. Each of the polynomials produced by Algorithm 2 satisfies (5.13).

In other words, for all s = 0, 1, . . . , r, the polynomial Gs(X, Z) in (5.32) can be

expressed as

Gs(X, Z) =
r

∑
i=0

qi(X) ZiTi(X)

Proof. For i = 0, 1, . . . , s, let pi(X)∈Fq[X] denote the coefficient of Zi in

Gs(X, Z). Thus

ps(X) = u′s(X) u′′s (X)Θs(X) ∏
i ∈ {As}X

(
X− xi

)m(s)
i

s−1

∏
j=0

vj(X)

We first show that Ts(X) divides ps(X). To this end, we consider the k terms in

the product of (5.12) and prove that each of them divides ps(X), while distin-

guishing between three cases.

Case 1. Suppose that i ∈ D. Then the term (X− xi)[s−µi]+ divides Θs(X) by

(5.25); hence, it also divides ps(X).

Case 2. Suppose that i ∈ Fs. Then (X− xi)[s−µi−σ (s)
i ]+ divides u′s(X), while

(X− xi)σ
(s)
i divides ∏s−1

j=0 vj(X) by the definition of σi. Since [s− µi −σ (s)
i ]+ +

σ
(s)
i ≥ [s−µi]+, it follows that the term (X− xi)[s−µi]+ divides ps(X).

Case 3. Suppose that i ∈ Es. Then (X− xi)(m(s)
i +s−µi−σ (s)

i ) divides u′′s (X) and

(X− xi)σ
(s)
i divides ∏s−1

j=0 vj(X). Again, since

(m(s)
i + s− µi −σ (s)

i ) +σ (s)
i ≥ [s− µi]+

it follows that the term (X− xi)[s−µi]+ divides ps(X). This exhausts all the pos-

sible cases for a code position i ∈ {R}X.

We are still required to show that Tj(X) divides pj(X) for all j = 1, 2, . . . , s−1

(note that T0(X) = 1). This follows by the same argument as above, along with

the following observation. Let S be an arbitrary subset of {0, 1, . . . , s−1} of

size s− δ; if (X− xi)σi divides ∏s−1
j=0 vj(X), then (X− xi)σi−δnecessarily divides

∏ j∈ S vj(X). Hence the foregoing argument is applicable for all j = s− δ, with

δ = 1, 2, . . . , s− 1.

We can summarize the lemmas proved so far into the following theorem.
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Theorem 5.9 The Gs(X, Z)’s constructed from Algorithm 2 has the following

property

〈G〉 ⊆ 〈J (P′, M′)
〉

r.

We now proceed to show that 〈J (P′, M′)〉r ⊆ 〈G〉.

Lemma 5.10 Any bivariate polynomial A(X, Z) that passes point (x, z) with

multiplicity m can be written as

A(X, Z) = (Z− z)B(X, Z) + (X − x)mb(X).

Proof. Divide A(X, Z) by (Z − z), we get A(X, Z) = (Z − z)B(X, Z) + a(X).

Since A(X + x, Z + z) = ZB(X + x, Z + z) + a(X + z) and the 1st term on the

right hand side of this equation does not have any monomials in X only, we

must have Xm |a(X + z) , i.e. (X − x)m |a(X) .

Lemma 5.11 For any bivariate polynomial A(X, Z)∈ 〈J (P′, M′)〉r of Y-degree

s, where 0 ≤ s ≤ r. If we write A(X, Z) as A(X, Z) = ∑s
j=0 qj(X)Zj, we must

have

us(X)
s−1

∏
i=0

vi(X) |qs(X) ,

where us(X) and the vi(X)’s are defined in Algorithm 2.

Proof. By definitions of us(X) and vi(X)’s given in Algorithm 2, and the fact

that Es
⋃Fs = B′, we have

us(x)
s

∏
i=0

vi(X) (5.42)

= ∏
i∈ {As}X

(X − xi)m(s)
i ∏

i∈Fs

(X − xi)[s−νi−σ (s)
i ]++σ (s)

i

∏
i∈ Es

(X − xi)(m(s)
i +s−νi−σ (s)

i )+σ (s)
i ∏

i∈D
(X − xi)[s−νi]+

We will show that every (X − xi)(•) term in the above equation divides

qs(X, Z). To this end, we fix i in the rest of the proof while distinguishing be-

tween the following cases. let us define the following series of sub-modules, for
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t = 0, 1, . . . , s,

Jt(xi)
def=

{
Q(X, Z)

∈ 〈Fq[X, Y]
〉

r

∣∣∣∣∣ µxi ,zi, j

(
Q(X, Z)

) ≥ mxi ,zi, j

for all (xi, zi, j)∈At or B′
}

, (5.43)

where the At’s, B′’s and mxi ,zi, j’s are as in Algorithm 2.

Case 1. Suppose that i∈ {As}X. We need to show that (X− xi)m(s)
i |qs(X, Z). For

the fixed i, let m(s)
i be as defined in (5.26) for each iteration. Since A(X, Z)∈ 〈J (

P′, M′)〉r, it is also in J0(xi). We can write A(X, Z) as

A(X, Z) = (Z − zi, j)A0(X, Z) + (X − xi)m(0)
i a0(X),

according to Lemma 5.10. We should emphasize that the m(0)
i is as in itera-

tion 0 of Algorithm 2. Apparently the 2nd term on the right hand side of the

equation above belongs to J0(xi), thus we can subtract it from A(X, Z). Now

we have Y-deg A0(X, Z) = s− 1 and A0(X, Z)∈J1(xi), where J1(xi) is as de-

fined in (5.43). Now we can write A0(X, Z) as A0(X, Z) = (Z− zi, j)A1(X, Z) +

(X − xi)m(1)
i a1(X), and here m(1)

i is as in iteration 1 of Algorithm 2. Repeat

the argument s− 1 times, and we finally have As−1(X, Z)∈Js(xi). Thus (X −
xi)m(s)

i |A(X, Z).

Case 2. Suppose that i∈ {B′}X. We still need to differentiate between the fol-

lowing 2 sub-cases.

Sub-Case 2.1. Suppose that i∈ Es and let A′(X, Z) = (X − xi)νi A(X, Z
X−xi

).

Here we need to prove that (X − xi)(m(s)
i +s−νi−σ (s)

i )+σ (s)
i |qs(X)

Since A(X, Z)∈ 〈J (P′, M′)〉r, we must have A′(X, Z)∈J0(xi) as well. Given

Lemma 5.10, we can write A′(X, Z) as follows

A′(X, Z) = (Z− zi, j)A′0(X, Z) + (X − xi)m(0)
i a0(X).

Applying the same arguments as for Case 1, we can prove that

(X − xi)m(s)
i
∣∣A′(X, Z) .

Let us write A′(X, Z) = ∑s
j=0 q′j(X)Zj, thus (X − xi)m(s)

i

∣∣∣q′j(X) for 0 ≤ j ≤ s.

Since A(X, Z) = ∑s
j=0 qj(X)Zj, qj(X) must have the following form

qj(X) = q′j(X)(X − xi) j−νi .
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The fact that (X − xi)m(s)
i

∣∣∣q′j(X) leads to (X − xi)m(s)
i + j−νi

∣∣qj(X) for 0 ≤ j ≤ s.

In particular, we have (X − xi)m(s)
i +s−νi |qs(X) as the desired result.

Sub-Case 2.2. Suppose that i∈Fs. Here we need to prove that

(X − xi)[s−νi−σ (s)
i ]++σ (s)

i |qs(X) .

The arguments to be used here are similar in spirit to those used in Sub-Case

2.1. There are 2 possibilities:

If σ (s)
i = 0, i.e., no point in B′ at xi has been processed in the previous s

iterations, we must have s ≤ νi, thus [s − νi − σ (s)
i ]+ + σ (s)

i = 0 and there is

nothing to be proved.

Otherwise, if σ(s)
i > 0, it is still true that s− νi −σ (s)

i ≤ 0. Thus [s − νi −
σ

(s)
i ]+ + σ (s)

i = σ
(s)
i . Let A′(X, Z) = (X − xi)νi A(X, Z

X−xi
). By applying the

same arguments as we have for Case 2.1, we can show that

(X − xi)(m(s)
i +s−νi) |qs(X) .

To see that

m(s)
i + s− νi = σ

(s)
i , (5.44)

we can write m(s)
i + s− νi =

(
m(s)

i − (νi − (s−σ (s)
i ))

)
+σ (s)

i . As we have men-

tioned earlier, the value (s−σ (s)
i ) represents the number of times that the reen-

coding point at xi has the largest multiplicity during the previous s iterations,

and the value (νi − (s−σ (s)
i )) denotes the remaining multiplicity of the corre-

sponding re-encoding point. The enumeration of Algorithm 2 at i, where the

re-encoding point is always given priority when a tie in multiplicity occurs,

guarantees that
(
m(s)

i − (νi − (s−σ (s)
i ))

)
= 0, so (5.44) follows.

Case 3. Suppose that i∈D. Given that A(X, Z)∈ 〈J (P′, M′)〉r, it can be ex-

pressed in the form of (5.13). Thus (X − xi)[s−νi]+ must be a factor of qs(X).

In summary, we have shown that every (X − xi)(•) term in (5.42) divides

qs(X), thus the lemma is proved.

The lemma is key to the proof of the following theorem.
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Theorem 5.12. For any A(X, Z)∈ 〈J (P′, M′)〉r, it can expressed as a linear com-

bination of the Gs(X, Z)’s constructed from Algorithm 2, i.e., A(X, Z)∈ 〈G(X, Z)〉
.

Proof. . Without loss of generality, let us assume that Y-deg A(X, Z) = t. Given

Lemma 5.11, we know that A(X, Z) can be written as follows

A(X, Z) = at(X)ut(X)
t

∏
s=0

(
Zvs(X)− ws(X)

)
+ At−1(X, Z)

= at(X)Gt(X, Z) + At−1(X, Z).

Since Gt(X, Z)∈ 〈J (P′, M′)〉r, we have At−1(X, Z)∈ 〈J (P′, M′)〉r and Y-deg

At−1(X, Z) < t, thus the theorem is proved by induction on t.

Given Theorem 5.9 and Theorem 5.12, it immediately follows that

〈J (P′, M′)
〉

r = 〈G0, ..., Gr〉 . (5.45)

5.4 Properties of the Bases

The basis computed from the new basis construction algorithm (Algorithm

2) and the one constructed by the original Lee-O’Sullivan algorithm (Algorithm

1) are closely related. This is the subject for the rest of the section.

Lemma 5.13. Let the polynomials vs(X) and ws(X) be as defined in Algorithm 2.

Let bs(X) be the polynomial defined in Algorithm 1. Then for all s = 0, 1, . . . , r,

we have
ws(X)ψ(X)

vs(X)
= bs(X) (5.46)
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Proof. From the definition of ws(X) given in (5.28), we can write the left hand

side of (5.46) as follows

ωs(X)
ψ(X)
vs(X)

= ∑
j∈ {As}X

z jh j(X)ψ(X)

+ ∑
j∈ Es

z jg j(X)
ψ(X)

(X − xj)

= ∑
j∈ {As}X

z jψ(xj)
hj(X)ψ(X)
ψ(xj)

+ ∑
j∈ Es

z jψ
′(xj)gj(X)

ψ(X)
ψ′(xj)(X − xj)

.

In addition, from the definitions of ψ(X), hj(X) and g j(X) given by (5.6),

(5.23) and (5.24), we can get the following

hj(X)ψ(X)
ψ(xj)

= ∏
l∈ {A}X ,l 	= j

X − xl

x j − xl

∏l′ ∈ {R}X
(X − xl′)

∏l′ ∈ {R}X
(xj − xl′)

gj(X)ψ(X)
ψ′(xj)(X − xj)

= ∏
l∈ {A}X

X− xl

x j − xl

∏ j′ ∈ {R}X , j′ 	= j(X − xj′)

∏ j′ ∈ {R}X , j′ 	= j(xj − xj′)
.

Thus by definition of li(X)’s given by (5.19), we have

l j(X) =




hj(X)ψ(X)/ψ(xj) for i∈{A}X

gj(X)ψ(X)/ψ′(xj)(X−xj) for i∈{B}X

. (5.47)

Combining all of above, we obtain

ws(X)ψ(X)
vs(X)

= ∑
j∈ {As}X

z jψ(xj)l j(X) + ∑
j∈ Es

z jψ
′(xj)l j(X) (5.48)

We now use the inverse of (5.8) to express ziψ(xi) and ziψ
′(xi) as yi, where

yi is as defined in Algorithm 1. Note that the difference between {Ps}X and

{As}X ∪ Es corresponds precisely to the re-encoding points, for which yi = 0 by

(5.5). Hence, the right-hand side of (5.48) can be expressed as ∑i∈ {Ps}X
yili(X),

and the lemma follows from the definition of bs(X) in Algorithm 1.
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Lemma 5.14. Let the polynomials us(X) and vs(X) be as defined in Algorithm 2.

Then for all s = 0, 1, . . . , r, we have

us(X)φ(X)(
ψ(X)

)s

s−1

∏
i=0

vi(X) = ∏
i∈ {Ps}X

(
X− xi

)mi = as(X) (5.49)

Proof. From the definitions of vi(X)’s given in (5.27), we can write ∏s−1
i=0 vi(X)

as
s−1

∏
i=0

vi(X) = ∏
l′ ∈ Fs

(X − xl′)
σ

(s)
l′ ∏

l∈ Es

(X − xl)σ
(s)
l .

Combining with the definition of us(X), ψ(X) and φ(X) in (5.31), (5.6) and

(5.7), we can write out the leftmost term in (5.49) as follows

us(X)φ(X)(
ψ(X)

)s

s−1

∏
i=0

vi(X)

= ∏
l′ ∈ Fs

(X − xl′)
[s−νl′−σ (s)

l′ ]++σ (s)
l′ +vl′−s

∏
l ∈ Es

(X − xl)(ml+s−νl−σ (s)
l )+σ (s)

l +vl−s

Θs(X) ∏
j∈ {As}X

(X − xj)mj

As we have shown before,

σ
(s)
l′ + vl′ − s + [s− vl′ −σ (s)

l′ ]+ = [vl′ +σ
(s)
l′ − s]+,

andσ (s)
l + vl− s + (ml + s− vl′ −σ (s)

l ) = ml for all l′ ∈ Fs and l ∈ Es respectively,

the equation above can be rewritten as

us(X)φ(X)(
ψ(X)

)s

s−1

∏
i=0

vi(X)

= ∏
l ∈Fs

(X − xl)[νl+σ
(s)
l −s]+ ∏

l∈ Es

(X − xl)ml

∏
l ∈D

(X − xl)[νl−s]+ ∏
j∈ {As}X

(X − xj)mj .

We can write ∏l ∈D(X− xl)[νl−s]+ as ∏l∈Ds(X− xl)νl−s, whereDs = {l ∈D :

vl > s}. A careful examination of the enumeration of points at each index re-

veals that {Ps}X = {As}X
⋃Ds

⋃ Es
⋃Fs, and the lemma follows.
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Lemma 5.15. The basis polynomials produced by Algorithm 1 and Algorithm 2

are related via the mapsξ and χ in (5.16) and (5.17). That is, for all s = 0, 1, . . . , r,

we have

Bs(X, Y) = ξ
(
Gs(X, Z)

)
and Gs(X, Z) = χ

(
Bs(X, Z)

)
(5.50)

Proof. Let Hs(X, Y) def= ξ
(
Gs(X, Z)

)
. Combining the definition of Gs(X, Z) in

(5.32) with the definition of the mapping ξ in (5.16), we find that Bs(X, Y) can

be expressed as

us(X)φ(X)(
ψ(X)

)s

s−1

∏
i=0

vi(X)
s−1

∏
i=0

(
Y− wi(X)ψ(X)

vi(X)

)

It now follows from Lemma 5.13 and Lemma 5.14, along with (5.21), that Hs(X, Y

) = Bs(X, Y) as claimed. Note that, once again, ξ and χ take polynomials to

polynomials in this case.

If G(X, Y) = a(X)Gs(X, Y) + b(X)Gt(X, Y) and B(X, Y) = a(X)Bs(X, Y) +

b(X)Pt(X, Y), for arbitrary a(X) and b(X),it’s easy to verify that

B(X, Y) = φ(X)G(X,
Y

ψ(X)
). (5.51)

Thus the mapping ξ and χ define an isomorphism between the 2 submodules:

〈I(P , M)〉r = 〈B0(X, Y), ...Br(X, Y)〉〈J (P′, M′)
〉

r = 〈G0(X, Y), ..., Gr(X, Y)〉 .

Let us assume that the Gs(X, Y)’s and the Bs(X, Y)’s can be expanded as

follows, for 0 ≤ s ≤ r:

Gs(X, Z) =
s

∑
i=0

gs,i(X)Zi ,

Bs(X, Z) =
s

∑
i=0

ps,i(X)Yi .

Apparently we have

ps,i(X) =
φ(X)gs,i(X)
ψ(X)i . (5.52)
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Thus we have

deg1,k−1 ps,i(X)Yi (5.53)

= deg
φ(X)gs,i(X)
ψ(X)i + (k− 1)i

= degφ(X)gs,i(X)− degψ(X)i + (k− 1)i

= degφ(X) + deg gs,i(X)− ki + (k− 1)i

= degφ(X) + deg gs,i(X)− i

= degφ(X) + deg1,−1 gs,i(X)Zi

Let us use LTa,b() to denote the leading term of a bivariate polynomial, with

respect to the (a, b)-weighted monomial order. From (5.53), we can further de-

rive that, for 0 ≤ s ≤ r,

y-deg
(
LT1,k−1(Bs(X, Y))

)
= y-deg

(
LT1,−1(Gs(X, Y))

)
(5.54)

The following curious property of the basis produced by Algorithm 1 was

apparently overlooked by Lee and O’Sullivan [LO06a].

Theorem 5.16. The basisB= {B0(X,Z), B1(X,Z), . . . , Br(X,Z)} produced by Al-

gorithm 1 is a Groebner basis for the module 〈I(P , M)〉r with respect to the

≺n−1 monomial order.

Proof. By Proposition 12 of Lee and O’Sullivan [LO06b], it would suffice to

show that the Y-degrees of the leading terms of the polynomials B0(X, Y), B1(X,

Y), . . . , Br(X, Y) with respect to≺n−1 are all distinct. But since deg bi(X)≤ n− 1,

the leading term of Bs(X, Y) with respect to ≺n−1 is as(X)Ys.

Theorem 5.17. The basis G = {G0(X,Z), G1(X,Z), ..., Gr(X,Z)} produced by Al-

gorithm 2 is a Groebner basis for the module 〈J (P′, M′)〉r with respect to the

≺n−k−1 monomial order.

Proof. Again, in view of Proposition 12 of [LO06b], it would suffice to show

that for all s = 0, 1, . . . , r, the Z-degree of the leading term of Gs(X, Z) is pre-

cisely s. To this end, let us analyze the degree of the polynomials wi(X) in (5.32).
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By (5.23), we have

deg hi(X) = |{A}X |−1 = n− |{R}X |−1 = n− k− 1

for all i ∈ {A}X . Hence, the degree of the first sum in (5.28) is at most deg vs(X)

+n− k − 1. Similarly, we conclude from (5.6) that deg gi(X) = n− k for all i.

Hence, the degree of the second sum in (5.28) is also bounded by deg vs(X) + n

−k − 1. It follows that deg wi(X) ≤ deg vi(X) + (n− k− 1) for all i, so that

wi(X)≺n−k−1 Zvi(X). Therefore, the leading term of Gs(X, Z) with respect to

≺n−k−1 is us(X)Zs∏s−1
i=0 vi(X).

Thus in both cases, Step 2 of the Lee-O’Sullivan algorithm converts a Groeb-

ner basis with respect to a “wrong” monomial order (either ≺n−1 or ≺n−k−1)

into a Groebner basis with respect to the desired monomial order (either ≺k−1

or ≺−1). The algorithm is repeated below.

Algorithm 3 (Groebner Basis Algorithm) Input: Bs(X, Y) for s = 0, 1, ..., r.

I1. Set l ← 0.

I2. Set l := l + 1. If l ≤ r, then proceed; otherwise go to step I6.

I3. Find s = y-deg(LT(Pl)). If s = l, then go to step I2.

I4. Set d← deg (pl,s)− deg (ps,s) and c← LC(pl,s)
LC(ps,s)

.

I5.

(
Pr

Bs

)
:=




(
1 −cXd

0 1

)(
Pr

Bs

)
if d ≥ 0

(
X−d −c

1 0

)(
Pr

Bs

)
else

, then go back to step I3.

I6 Let P(X, Y) be the Bs(X, Y) with the smallest leading term. Output P(X, Y)

and the algorithm terminates.

In the following, we show that the above algorithm has the following property:
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Theorem 5.18 For any 2 sets of polynomials Bs(X, Y)’s and Gs(X, Y)’s related

by the mappings χ and ξ, when the Groebner basis algorithm is applied to

Bs(X, Y)’s with respect to (1, k− 1)-weighted degree, and applied to Gs(X, Y)’s

with respect to (1,−1)-weighted degree, the resulting Bs(X, Y)’s and Gs(X, Y)’s

still have the relationship as defined by (5.50). In addition, all intermediate

Bs(X, Y)’s and Gs(X, Y)’s have the same relationship.

Proof. The theorem essentially says that the mappings χ and ξ are preserved

throughput the execution of the algorithm. Let us now examine a side-by-side

application of the algorithm, with appropriate weighted-degree, to Bs(X, Y)’s

and Gs(X, Y)’s. In step I3, due to (5.54), the same s will be found on both sides.

In step I4, we have

deg pl,s(X)− deg ps,s(X)

= deg
φ(X)gl,s(X)
ψ(X)s − deg

φ(X)gs,s(X)
ψ(X)s

= deg gl,s(X)− deg gs,s(X)

Thus the same d will result from both sides. In addition, we have

LC(pl,s)
LC(ps,s)

=
LC(φ(X)gl,s(X)

ψ(X)s )

LC(φ(X)ps,s(X)
ψ(X)s )

=
LC(φ(X))LC(gl,s(X))

LC(ψ(X)s)
LC(φ(X))LC(gs,s(X))

LC(ψ(X)s)

=
LC(gl,s)
LC(gs,s)

This shows that the same c will be obtained from both sides. Since d and c

computed at both sides are identical, the mapping remains after the operation

done at step I5 if we further apply the property of (5.51). In summary, since

(5.50) holds for the input to both sides and it is preserved after each iteration of

the algorithm, the mapping certainly holds for the output from both sides.

5.5 Final Remarks

As we can see from Example 5.3, significant savings in computational com-

plexity can be achieved with the modified Lee-O’Sullivan algorithm. However,
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the reduction in complexity is less impressive than for Koetter’s algorithm. Ac-

tually, it only takes 350×103 multiplications for Koetter’s algorithm to solve the

reduced interpolation problem in Example 5.2. So why is the Lee-O’Sullivan al-

gorithm more efficient in solving the original interpolation problem but loses

to Koetter’s algorithm with respect to the reduced interpolation problem? A

heuristic explanation for this is given below.

Example 5.3, shows that more reduction in complexity can be achieved for

Step 1 (basis construction) than for Step 2 (basis reduction) of the Lee-O’Sulli-

van algorithm. Without the re-encoding coordinate transformation, Step 1 of

the algorithm takes many more multiplications than Step 2. However, after

re-encoding, the majority of the modified Lee-O’Sullivan algorithm’s compu-

tational complexity comes from the second step. With the re-encoding coordi-

nate transformation, the basis construction algorithm presented in Section 5.3

requires the same number of iterations as the original basis construction algo-

rithm of [LO06a]. In addition, in the process of proving Theorem 5.18, we have

shown that the number of iterations required for the Groebner basis algorithm

in solving the reduced interpolation problem is the same as what is required

to solve the original interpolation problem. In other words, when the modi-

fied Lee-O’Sullivan algorithm is applied to the reduced interpolation problem,

the complexity reduction only comes from the fact that the polynomials become

much smaller. However, this is not the case for Koetter’s algorithm, wherein

the number of iterations are also significantly reduced when the algorithm is

applied to the reduced interpolation problem.

Thus with the re-encoding coordinate transformation, Koetter’s algorithm

appears to be more efficient than the modified Lee-O’Sullivan algorithm. How-

ever, this assumes that polynomial multiplication, which is the main operation

in the second step of the Lee-O’Sullivan algorithm, is done in the naı̈ve way.

An interesting open problem for future research is whether such polynomial

multiplication can be made more efficient (in the non-asymptotic sense). We

should also mention that even in the case of solving IP1,k−1(P ,M), the Lee-

O’Sullivan’s algorithm is not always more efficient than Koetter’s algorithm.
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Actually, it has larger computational complexity when the RS code of interest

has a much lower code rate.

The results of the Chapter 5 have been presented, in part, at 2007 Interna-

tional Symposium on Information Theory (ISIT), Ma, Jun; Vardy, Alexander. The

dissertation author was primary investigator and author of the paper.



CHAPTER 6

Re-Encoder Design for an (255,239)

Reed-Solomon Code

The most computationally demanding step in soft-decision decoding of RS

codes is bivariate polynomial interpolation. The re-encoding and coordinate

transformation based technique can significantly reduce the computation com-

plexity of the original interpolation problem, thus making the algebraic soft-

decision decoder practically feasible. In this chapter, an implementation of the

re-encoding coordinate transformation procedure is presented. The novelties of

our design include a fast algorithm to determine the re-encoding points, an area

efficient erasure-only RS decoding architecture, and an overlapped scheduling

of the various procedures required for the re-encoding process to reduce the

overall latency. The synthesis result shows that the proposed design is suffi-

ciently fast for any existing or developing interpolation architecture.

6.1 Introduction and Background

Algebraic soft-decision decoding of Reed-Solomon (RS) codes delivers prom-

ising coding gains over conventional hard-decision decoding. The most com-

putationally demanding step in soft-decision decoding of RS codes is bivari-

ate polynomial interpolation. The re-encoding coordinate transformation based

87
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technique [KMVA03] can significantly reduce the computation complexity of

the interpolation problem. Though a number of literatures have presented ef-

ficient architectures for the interpolation and factorization algorithms, there is

no prior work on implementation of the re-encoding coordinate transforma-

tion techniques, which is a crucial first-step of any practical soft-decision RS

decoders. In this chapter, an efficient implementation of the re-encoding coor-

dinate transformation function of a (255, 239) soft-decision RS decoder is pre-

sented. The proposed design can be easily extended to RS codes of other rates

and is sufficiently fast for practical applications.

Multiplicity 
Assignment 

Frontend
Interpolation Factorization Decoded 

codeword

Soft 
Received 
Symbol

Reencoding
&

Coordinate 
Transformation

Figure 6.1: Block Diagram of the Soft-Decision Reed-Solomon Decoder

A block diagram of soft-decision RS decoder is shown in Figure 6.1. In

our implementation, the re-encoding coordinate transformation block assumes

that the original set of interpolation points are generated by a multiplicity-

assignment function such that there are at most 2 interpolation points with

the same X coordinate. This has been shown to have very negligible perfor-

mance loss compared to schemes with no limitations on the number of inter-

polation points for the same X coordinate. Let {xi, i = 0, 1, ..., 254} denote

the set of X coordinates, {yi, j, i = 0, 1, ..., 254, j = 0, 1} for the set of the Y

coordinates, and {mi, j : i = 0, 1, ..., 254, j = 0, 1} denote the corresponding

multiplicities and we assume mi,0 ≥ mi,1, i.e., (xi, yi,0) is of higher multiplic-

ity than (xi, yi,1) for all i. The re-encoding coordinate transformation block first

determines 239 interpolation points of highest multiplicities with distinct X co-

ordinates. Let us denote the indices i of the 239 X coordinates as a set {R}X
and denote the rest of the 255 indices as a set {A}X. Apparently we have

{R}X � {A}X = {i : i = 0, ..., 254}. We also assume in the scope of this

work that mi,1 = 0 for all i∈ {R}X. In the rest of the chapter, we refer points

{(xi , yi,0) : i∈ {R}X} as re-encoding points, X coordinates {xi : i∈ {R}X} as
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re-encoding X coordinates and indices {i : i∈ {R}X} as re-encoding indices

or re-encoding positions. Correspondingly, we refer {(xi , yi,0) : i∈ {A}X},
{xi : i∈ {A}X} and {i : i∈ {A}X} as interpolation points, interpolation X co-

ordinates and interpolation indices, respectively. The re-encoding function then

finds a valid codeword C′(X) = ∑i=254
i=0 c′iX

i such that c′i = yi,0 for all i∈ {R}X.

This can be achieved with an erasure-only decoding algorithm as suggested

in [GKKG05]. After this the Y coordinates for all of the original interpolation

points are shifted as follows:

(xi , yi, j)→ (xi, y′i, j = yi, j − c′i). (6.1)

As can be seen, points (xi , y′i, j) have a non-zero Y coordinate only for i∈ {A}X.

We then carry out a coordinate transform for these points with non-zero Y coor-

dinates as follows:

(xi, y′i, j)→ (xi , zi, j =
y′i, j

V(xi)
), (6.2)

where i∈ {A}X and V(X)def= ∏i∈ {R}X
(X − xi).

An architectural block diagram of our implementation of the re-encoding

coordinate transformation algorithm is given in Figure 6.2. We assume that the

two Y coordinates and associated multiplicities of each interpolation point are

generated by a multiplicity-assignment block and stored in a 256× 24 FERAM

(front-end RAM) as shown. The overall re-encoding coordinate transformation

algorithm consists of 4 sub-function blocks and they are implemented as differ-

ent hardware processors and a central controller. An optimal scheduling scheme

that enables maximum parallel processing among different hardware proces-

sors is illustrated in Figure 6.3. In Section 6.2, we describe a novel classification

algorithm. Section 6.3 shows how the evaluation of V(X) at the 16 interpola-

tion X coordinates is implemented. The erasure-only decoding algorithm and

its implementation are presented in Section 6.4. In Section 6.5, we describe how

the coordinate shift and transformation are implemented. An overall hardware

complexity and latency estimate, including synthesis results, are given in Sec-

tion 6.6. Finally, conclusion is drawn in Section 6.7.
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FERAM (dual-port 256X24)

address 
RAM 

(256X8)

classificationsyndrom

Inversion 
ROM 

(256X8)

Exponentiation 
ROM

(256X8)

Erasure-only 
Decoder

controller

Computation of 
V(xi)’s

Figure 6.2: Block diagram of the implementation of re-encoding coordinate
transformation algorithms

Syndrome computation

classfication s' of ncomputatio )( ixV

Rest of erasure-only ecoding
Z coordinate 
computation

Figure 6.3: Timing Diagram for the Reencoding Process

6.2 The Classification Algorithm and Implementa-

tion

The classification block determines the 239 re-encoding indices correspond-

ing to points of largest multiplicities, as well as the 16 interpolation indices. To
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avoid prohibitively complex sorting of the 255 indices, {i : i = 0, ..., 254}, ac-

cording to their associated multiplicities, i.e., the mi,0’s, we apply the following

algorithm. Without loss of generality, we assume the maximum multiplicity is

mmax.

The Classification Algorithm

• Initialization:

c[i] = 0, for 0 ≤ i ≤ mmax, s = 0 and t = 0.

• Iteration:

Input: {(xi, yi,0, mi,0) : i = 0, 1, ..., 254}

– First loop

for i = 0 to 254

c[mi,0] := c[mi,0] + 1;

end

– Decide the boundary multiplicity mb

for i = mmax to 0

s := s + c[i];

if s ≥ 239 break;

end

mb = i;

– Second loop

for i = 0 to 254

if mi,0 > mb, assign i to {R}X;

else if mi,0 = mb, and t < 239, assign i to {R}X ;

else assign i to {A}X ;

t := t + t;

end
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• Result: {R}X and {A}X with |{R}X| = 239 and |{A}X| = 16.

When the classification engine stores the last 16 indices into the address

RAM, it also converts the indices into X coordinates and stores the 16 X co-

ordinates into 16 8-bit registers for future use. The conversion is defined as an

antilogarithm function in F28 :

xi = αi (6.3)

This can be implemented as a 256× 8 ROM-based look up table (LUT).

6.3 Computation of the Birational Mapping

As can be seen from (6.2), we need to compute the polynomial V(X) and

evaluate it at each of the {xil : for l = 0, ..., 15, and il ∈ {A}X} to carry out the

coordinate transformation. This can be done after we finish the classification

process and the 16 interpolation X coordinates are stored in a 16-element 8-bit

register array. We compute

vl =
238

∏
m=0, jm∈ {R}X

(xjm − xil), for each of the 16 il ∈ {A}X

in parallel with 16 F28 multipliers as illustrated in Figure 6.4. This computation

require 239 clock cycles. However, since the computation is done in parallel

with the construction of Λ(X) and Ω(X) in the erasure decoding function and

the same antilogarithm circuit is shared between these two functions, 16 more

clock cycles are required. After evaluation, the 16 vl’s given in the equation

above are stored in another 16-element 8-bit register array.

6.4 Erasure Decoding Algorithm

Most erasure decoding algorithms consist of 3 steps, namely computing syn-

dromes, solving key-equations and computing the values of erasure symbols.
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Figure 6.4: Architecture for evaluation of V(X) at the interpolation X
coordinates

Due to the nature of the algorithms applied to the 2nd step and 3rd step, we

simply refer the 2nd step as the “construction” step and the 3rd step as the

“evaluation” step.

The 1st step, syndrome computation, is as follows:

si = Y(αi) (6.4)

where αi’s are roots of the generator polynomial and Y(X) = y0,0 + y1,0X +

... + y254,0X254 represents the received hard-decision word. This procedure can

be carried out in parallel with the classification step and reuse the multipliers

an adders used to compute V(xi)’s.

In the construction step, we treat the 16 indices {i∈ {A}X} as erasure loca-

tions. The iterative erasure decoding algorithm to be presented in the following

is derived from the Berlekamp decoding algorithm in [Bla02]. Let us define syn-

drome polynomial S(X), erasure locator polynomial Λ(X) and erasure evalua-

tor polynomial Ω(X) as follows

S(X) =
16

∑
i=1

siXi (6.5)

Λ(X) = ∏
i∈ I

(1− xiX) (6.6)

Ω(X) = S(X)Λ(X) mod X17 (6.7)

Both polynomialΛ(X) and polynomialΩ(X) can be constructed iteratively and

stored in an array of 16 shift registers. (Although both polynomials have a de-
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gree of 16, there is no need to store their constant coefficients.) Let us define

Λ(r)(X) = ∏r
j=1(1− xi j X), where i j ∈ {A}X, and defineΩ(r)(X) = S(X)Λ(r)(X)

mod Xr+1, both for r = 1, 2, ..., 16. In addition, we introduce a new variable

∆(r−1), which is defined as follows

∆(r−1) = coef{Λ(r−1)(X)S(X), Xr} =
r

∑
j=1

s jλ
(r−1)
r− j (6.8)

The iterative algorithm is given below.

The Iterative Algorithm

• Initialization: Ω(0)(X) = 0 and Λ(0)(X) = 1.

• Iteration:

For r = 1 to 16, compute the following:

∆(r−1) = ∑r
j=1 s jλ

(r−1)
r− j

Λ(r)(X) = (1− xir X)Λ(r−1)(X)

Ω(r)(X) = (1− xir X)Ω(r−1)(X) +∆(r−1)Xr

• Output: Λ(X) = Λ(16)(X),Ω(X) = Ω(16)(X)

As can be seen from above, both Λ(X) and Ω(X) can be constructed after 16

iterations. By definition, the coefficients of Λ(r)(X) can be computed from those

of Λ(r−1)(X) as follows:

λ
(r)
i =



λ

(r−1)
i−1 xir for i = r

λ
(r−1)
i−1 xir + λ

(r−1)
i for i = 2, ..., r− 1

xir + λ(r−1)
i for i = 1

(6.9)

Thus a total of r− 1 multiplications and r− 1 additions are required to com-

pute all r coefficients of Λ(r)(X) during the rth iteration. If we have a total of

15 multipliers and 15 adders to accommodate for the computation of Λ(16)(X)

during iteration 16, we can finish all iterations in 16 clock cycles. However, this
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Figure 6.5: Architecture for construction of Λ(X) and ∆’s

iterative procedure is carried out in parallel with evaluation of V(X) at the 16 in-

terpolation X coordinates, which takes at least 239 clock cycles. This means that

the 15 multipliers and 15 adders are idle most of the time. Since all λ(0)
i ’s are

initialized to 0, we can make slight modification on (6.9) to obtain the following

update formula for coefficients of Λ(r)(X):

λ
(r)
i =

{
λ

(r−1)
i−1 xir + λ(r−1)

i for i = 2, ..., 16

xir + λ(r−1)
i for i = 1

(6.10)

This modification leads to a very regular and area-efficient architecture, where

only 1 multiplier and 1 adder are used. Similarly for the computation of the

coefficients of Ω(r)(X), we can do the following:

ω
(r)
i =

{
ω

(r−1)
i−1 xir +ω(r−1)

i for i = 2, ..., 16

xir +ω(r−1)
i for i = 1

(6.11)

ω
(r)
r = ω

(r)
r +∆(r−1) (6.12)
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The equations above suggest that at iteration r, computation ofΩ(r)(X)’s coeffi-

cients consists of 2 parts. The 1st part is exactly the same as the Λ(X) update. In

the 2nd part, we add a correction factor toω(r)
r . Equation (6.8) can be modified

as follows:

∆(r−1) =
16

∑
j=1

s jλ
(r−1)
(r− j)16

= sr +
15

∑
j=1

s(r+ j)16
λ

(r−1)
16− j , (6.13)

where (x)16
def= x mod 16. The equations (6.10) (6.11) (6.12) (6.13) enable us to

compute Λ(X) and Ω(X) with the architecture shown in Figure 6.5 and Figure

6.6.
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Figure 6.6: Architecture for construction of Ω(X)

In the evaluation step, the Forney’s algorithm [Bla02] is applied to generate

erased symbols as follows:

c′i =
xiΩ(x−1

i )
Λ′(x−1

i )
+ yi,0 for i∈ {A}X (6.14)

Since Λ(X) can be expressed as Λ(X) = λ0 + λ1X + λ2X2 + ... + λ16X16, we

have Λ′(X) = λ1 + λ3X2 + ... + λ15X14. Thus (6.14) can be expressed as

c′ir =
Ω(x−1

ir
)

x−1
ir
Λ′(x−1

ir
)

+ yir ,0 =
∑16

j=1ω jx
− j
ir

∑15
j=1 λ jx

− j
ir

+ yir ,0 for ir ∈ {A}X (6.15)
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The circuit computing Ω(x−1
ir

) and x−1
ir
Λ′(x−1

ir
) are illustrated in Figure 6.7 and

Figure 6.8. To simplify the notation, we define Nr
def=Ω(x−1

ir
) and Dr

def= x−1
ir
Λ′(x−1

ir
).

Horner’s rule is applied for evaluating these 2 polynomials. In addition, this

architecture enables us to reuse the multipliers and adders used for the con-

struction of these 2 polynomials. Evaluating the 2 polynomials at the inverse

of each of the interpolation X coordinates requires 16 clock cycles and due to

the fact that deg XΛ′(X) = degΩ(X) − 1 and the pre-shift of λ j’s at the end

of “construction” procedure, the computation of x−1
ir
Λ′(x−1

ir
) is finished 1 clock

cycle ahead of the computation of Ω(x−1
ir

). This ensures that the reciprocal of

x−1
ir
Λ′(x−1

ir
), which is obtained by a 256X8 ROM based LUT, and Ω(x−1

ir
) are

available at the same time. They can then be multiplied together and added

to yir ,0 to obtain the codeword symbol c′ir at the interpolation position ir of the

re-encoding codeword.
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16ω
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ri
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Figure 6.7: Architecture for computation of Ω(x−1
ir

)

6.5 Coordinate Shift and Transformation

Once symbol c′ir is available, the “shift” operation is carried out by adding

symbol c′ir to Y coordinates yir ,1 and yir ,0, which is pre-fetched from the FERAM.

The 2 shifted Y coordinates y′ir ,1 and y′ir ,0 are then multiplied with the inverse of

the corresponding V(xir) to get the 2 Z coordinates. Note that this computation
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is pipelined with the circuits shown in Figure 6.7 and Figure 6.8. In addition,

the multiplier with label 2 is a reuse of the multiplier used in computation of

V(xi15) shown in Figure 6.4. The inversion of the 16 V(xir)’s is done using the

circuit shown in the upper left part of Figure 6.9. It should be emphasized that

though it seems, from Figure 6.9, that 2 inversion LUTs are required, actually

only 1 inversion LUT is used and is time-shared among multiple computations.

After the coordinate “shift” and transformation, the words in the interpolation

addresses of FERAM are modified such that the original Y coordinates are re-

placed with the re-encoded and coordinated transformed Z coordinates.

6.6 Overall Hardware Complexity and Latency Esti-

mate

A macro-level estimate of the hardware units required to implement the re-

encoding coordinate transformation is given in Table 6.6. In the 2nd row of the

table, the estimate is given for general (n, k) RS codes defined on F28 . Plugging

in n = 255 and k = 239 for this example, we can obtain the estimate shown in

the 3rd row of the table. Note that the required hardware for the classification

engine and the controller is not included. We have synthesized the entire design,

including the 256× 24 FERAM, with SMIC 0.18µm library. The overall number
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Figure 6.9: Architecture for computation of the Z coordinates for the interpola-
tion points

of cells used is 9812, and the total area is 0.51 mm2.

The synthesis tool is run with a clock frequency constraint of 250MHz. As

shown in Section 6.2, it takes about 510 clock cycles for the classification engine

to finish its processing. The erasure decoding step takes 272 + 256 = 528 clock

cycles. The computation of the 16 syndromes are done in parallel with the clas-

sification process and the computation of the V(xi)’s are carried in parallel with

the construction of Λ(X) andΩ(X) as shown in Figure 6.3, thus they don’t con-

tribute any more delay to the re-encoding process. In addition, the coordinate

“shift” and transformation are pipelined with the erasure decoding, thus they

do not add any more delay to the whole process either. In summary, the total

number of clock cycles required to finish the re-encoding coordinate transfor-

mation is 1038, which translate to a throughput equal to 255×8×250
1038 ≈ 500Mbps.

This throughput can satisfy requirement of any existing or developing interpo-
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Table 6.1: Macro-Level Hardware Estimate for the Datapath
F28 multiplier F28 adder 256× 8 ROM 256× 8 RAM 8-bit register

(n− k) 2(n− k) 2 1 4(n− k)
+5 +7 +11
21 39 2 1 75

lation processors to our best knowledge.

6.7 Conclusion

An efficient implementation of the re-encoding coordinate transformation

process for the soft-decision decoding of Reed-Solomon codes has been pre-

sented for the first time. The proposed architecture, though illustrated for a

practical example, can be easily extended to other Reed-Solomon codes. High-

lights of our design include:

• An novel fast “classification” algorithm to determine the reencoding points.

• An area-efficient erasure-only RS decoder architecture.

• Parallel processing of various tasks to reduce the overall re-encoding la-

tency.

Future work will be focused on scalability of the design so that different soft-

decision decoding throughput requirement can be met with minimum area.

The material of Chapter 6 has been presented, in part, at 2006 International

Symposium on Circuits and Systems (ISCAS), Ma, Jun; Vardy, Alexander; Wang,

Zhongfeng. The dissertation author was the primary investigator and author of

this paper.



CHAPTER 7

Fast Interpolation Architecture

Algebraic soft-decision decoding of Reed-Solomon (RS) codes delivers pro-

mising coding gains over conventional hard-decision decoding. The most com-

putationally demanding step in soft-decision decoding of RS codes is bivariate

polynomial interpolation. In this chapter, we present a hybrid data format based

interpolation architecture that is well suited for high-speed implementation of

the soft-decision decoders. It will be shown that this architecture is highly scal-

able and can be extensively pipelined. It also enables maximum overlap in time

for computations at adjacent iterations. It is estimated that the proposed architec-

ture can achieve significantly higher throughput than conventional designs with equiv-

alent or lower hardware complexity.

7.1 Introduction

Reed-Solomon (RS) codes are the most widely used error-correcting codes

in digital communications and data storage. Recently Sudan [Sud97] and Gu-

ruswami and Sudan [GS99] discovered hard-decision list decoding algorithms,

which have larger decoding radius than conventional hard-decision decoding

algorithms, such as the Berlekamp-Massey algorithm. The hard-decision list-

decoding algorithms were later extended by Koetter and Vardy [KV03a] to an

algebraic soft-decision decoding algorithm. All of these algorithms involve in-

101
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terpolation and factorization of bivariate polynomials. The interpolation step

has been shown to be the most computation-intensive process for all list de-

coders. Thus it is crucial to develop efficient hardware architectures to im-

plement the interpolation procedure, which will enable practical applications

of the list decoding algorithms. However, among existing literatures, only a

few [AKS03a] [AKS03b] [GKKG05] are devoted to study VLSI architectures to

implement the interpolation process. In this chapter, we discuss a novel ar-

chitecture which has significantly lower complexity than the architectures pro-

posed in [AKS04b] and can achieve significantly higher processing speed than

all known designs for the interpolation process. We will demonstrate that the

architecture can be extensively pipelined. Combined with the proposed timing

scheme, the average iteration time for the interpolation process can be maxi-

mally reduced, which makes it well suited for high speed applications. In ad-

dition, the new architecture is inherently scalable. Thus it can be applied to

various applications with different speed requirements. Part of this work is also

presented in [MVW06a].

This chapter is organized as follows: Section 7.2 gives some background in-

formation. The interpolation algorithm and the proposed interpolation archi-

tecture are discussed in Section 7.3. Section 7.4 presents a soft-decision decoder

design example for a (255,239) Reed-Solomon code with the proposed interpo-

lation architecture. Conclusions are drawn in Section 7.5.

7.2 Background and Preliminaries

As shown in Figure 1.1 of Chapter 1, the soft-decision Reed-Solomon de-

coder consists of three major blocks. They are usually referred to as the mul-

tiplicity assignment block, the interpolation block and the factorization block,

respectively. It is well-known that the interpolation block has an order of mag-

nitude higher computation complexity than other blocks and thus is the focus of

this chapter. For a description of the multiplicity assignment and factorization

algorithms, interested readers may refer to [PV03] [RR00]. Since the interpo-
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lation problem and Koetter’s interpolation algorithm have been discussed in

detail in Chapter 2, we will not repeat them here. All definitions and notation

given in Chapter 2 apply to this chapter.

We now briefly discuss representation of numbers in a finite field. All prac-

tical RS codes are defined in finite fields with characteristic equal to 2. Hence,

in the rest of the chapter, the discussion will be limited to finite field with 2p

elements denoted as F2p . Most commonly, a number in F2p is represented as a

binary polynomial of degree (p− 1) or a p-tuple binary vector. It is also possi-

ble to express a finite field number as a power of the primitive element in the

field. With the former representation, implementation of addition operation in

the field is straightforward as it only requires bitwise exclusive-or operation.

However, implementation of multiplication operation in the field is more com-

plicated as it usually involves large combinational circuit for bit-parallel imple-

mentation or significant number of clock cycles for bit-serial implementation.

If the latter representation is used instead, multiplication operation can be im-

plemented as addition with modulo operation. However, implementation of

addition operation will be complicated. ¿From now on, we refer the 1st rep-

resentation as regular representation and the 2nd representation as power repre-

sentation. The power representation for F2p numbers is rarely used in existing

Reed-Solomon codec implementations. In this chapter, we show that represent-

ing the F2p numbers in both regular and power formats, i.e. hybrid-format, can

lead to an efficient decoder architecture. For the rest of the chapter, we use lower

case letter for regular representation of a finite field number and the same lower

case letter with a tilde symbol on top for power representation of the same finite

field number. For example, if x and y are regular representations of finite field

numbers, then x̃ and ỹ are corresponding power representations. The power

representations and regular representations are related as follows: x̃def= logα x

and ỹdef= logα y, or equivalently x = α x̃ and y = α ỹ. In the formula above,

logα(.) represents the operation to convert a finite field number in regular rep-

resentation to the power of the field’s primitive element α, where α(.) denotes

the operation to convert a finite field element represented as power of the prim-
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itive element back to its regular representation. We refer these 2 operations as

logarithm and antilogarithm, respectively. To make the definition “complete”, we

use value (2p − 1) as power representation for finite field number 0.

7.3 Interpolation Architecture

The most computationally complex step in algebraic soft decision decoding

of Reed-Solomon codes is bivariate polynomial interpolation. This step is car-

ried out by applying Koetter’s interpolation algorithm, which is presented at

Chapter 2 and repeated as follows.

Koetter’s Interpolation Algorithm

• Initialization:

Qv(X, Y) = Yv, for 0 ≤ v ≤ r.

• Iteration:

Input: {(xi, yi, mxi ,yi) : (xi , yi)∈P}

– For each triple (xi , yi, mxi ,yi),

Ov = degwQv(X, Y), for 0 ≤ v ≤ r.

for b = 0 to mxi ,yi − 1

for a = 0 to mxi ,yi − 1− b

Discrepancy Coefficient Computation:

for v = 0 to r

d(a,b)
v = coef

(Qv(X + xi, Y + yi), XaYb)
end

Polynomial Update:

if there exist η = argmin 0≤v≤r

d(a,b)
v 	=0

{Ov}

for v = 0 to r

if v 	= η and d(a,b)
v 	= 0

Qv(X, Y) := d(a,b)
η Qv(X, Y)+
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d(a,b)
v Qη(X, Y)

end if

end

Qη(X, Y) := Qη(X, Y)(X − xi), and

Oη := Oη + 1

end if

end

end

• Result:

Q(X, Y) = {Qη(X, Y)}, where η = argmin0≤v≤r{Ov}.
So that

Q(X, Y) =
r

∑
t=0

qt(X)Yt

The algorithm presented above can solve the interpolation problem given in

Section 7.2 iteratively, one constraint at a time, thus it is referred to as constraint-

serial interpolation algorithm. Another version of the iterative algorithm called

point-serial interpolation algorithm is introduced in [AKS04b]. This algorithm is

more efficient only when all constraints associated with an interpolation point

need to be enforced in the interpolation procedure. In addition, the point-serial

interpolation algorithm favors certain architectures as shown in [AKS04b], thus

it is less flexible than the constraint-serial interpolation algorithm. In this chap-

ter, we will focus on the constraint-serial interpolation algorithm. The benefits

will be evident from later discussion.

Recently, revolutionary algorithmic changes applying re-encoding and coor-

dinate transformation techniques [GKKG02] [KMVA03] are proposed to reduce

the original interpolation problem to a much smaller counterpart. The reduced

interpolation problem can also be solved with a slight variant of the iterative in-

terpolation algorithm presented above. In this section, we start with discussing

interpolation architecture to solve the original interpolation problem. But it can
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be shown that small modifications can be made to the architecture to solve the

reduced interpolation problem. For a detailed description of the reduced inter-

polation problem and its solution, interested readers can refer to [KMVA03]. In

the iterative algorithm given above, each iteration involves two major opera-

tions, namely the discrepancy coefficient computation (DCC) and polynomial update

(PU). Subsection 7.3.1 will present a novel architecture for the DCC operation.

Subsection 7.3.2 will discuss architectures for the PU operations. Between the

DCC and PU operations at each iteration, one needs to determine which polyno-

mial has the minimum weighted degree among all polynomials with non-zero

discrepancy coefficient. This necessary step that connects the DCC and PU pro-

cesses has been ignored by all previous works. In this chapter, an implemen-

tation of this step will be presented in Subsection 7.3.3. Following that, Sub-

section 7.3.4 will discuss how maximum concurrency can be achieved between

DCC and PU processes. Finally, Subsection 7.3.5 will show that adjustments can

be made to the interpolation architecture to accommodate re-encoded interpo-

lation. For the discussion throughout the rest of the chapter, it is assumed that

a total of (r + 1) polynomials are used for the interpolation algorithm.

7.3.1 Architecture for Discrepancy Coefficient Computation

Existing architecture for the DCC operation [AKS04b] applies Horner’s rule

to evaluate bivariate polynomials at a certain point (x, y). It has a MAC unit

in the critical path. Due to the recursive nature of Horner’s rule, it is mean-

ingless to directly pipeline the MAC operation to reduce the critical path delay.

Thus the critical path delay is always lower bounded by the delay associated

with the MAC unit. For Reed-Solomon codes defined on a large finite field,

the delay associated with a MAC unit is significant. A folded-pipelined archi-

tecture for DCC operation is also proposed in [AKS04b]. This folded-pipelined

architecture, though fast and area-efficient for DCC, is bonded with the point-

serial interpolation algorithm [AKS04b], and it requires that the multiplicity as-

sociated with each interpolation point is less than but close to the value of p.
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The folded-pipelined architecture is efficient only when all (m + 1)m/2 con-

straints associated with one interpolation point with multiplicity m need to be

enforced. Thus it can not be applied to other variants of the interpolation al-

gorithm, which might require the interpolation constraints to be solved in a

different order. For example, it was shown in [AKS04a] that carrying out in-

terpolation with gradually-increasing number of constraints for each interpo-

lation point and performing factorization on intermediate interpolation results

improve decoder performance with lower overall interpolation complexity. The

point-serial interpolation algorithm and the folded-pipelined architecture can

not be applied in this case. In addition, when the DCC and PU operations are

carried out concurrently as proposed in Section 7.3.4, the folded-pipelined ar-

chitecture can not reduce the overall latency of the interpolation process, which

is lower bounded with latency of the PU process. Thus it is desirable to have a

flexible interpolation architecture that is high-speed and not tied to any specific

order of the interpolation constraint enforcement. In this chapter, we present

a novel architecture to implement the DCC operation, which applies hybrid

representation of the finite field numbers used in the computation. This new

approach effectively breaks the high-speed bottleneck formed by the MAC-unit

with the Horner’s rule based recursive method. A detailed description of the

architecture will be presented in the following.

The equation used for discrepancy coefficients computation can be expressed

as follows:

d(a,b)
v = coef

(Qv(X + x, Y + y), XaYb)
= ∑r

t=b ∑wv,t
s=a (s

a)(
t
b)q

(v)
s,t xs−ayt−b for v = 0, 1, ..., r.

(7.1)

Instead of applying Horner’s rule, we can evaluate each monomial, i.e.,

q(v)
s,t Xs−aYt−b, for s ≥ a and t ≥ b, independently at point (x, y) and then sum

them up to obtain the final coefficient d(a,b)
v . Please note that evaluation of mono-

mial xs−ayt−b is only valid for s ≥ a and t ≥ b as defined in (7.1), so in the rest

of the section, we implicitly assume that s ≥ a and t ≥ b whenever we use no-

tation (s − a) or (t − b). A direct realization of xs−ayt−b is not easy, especially

when the value of (s− a) gets very large. This is because it requires (s− a) con-
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secutive multiplication of x in the finite field. One way around it is to convert

x and y from their regular representation to power representation. Let us also

define {i}m
def= i mod m, where i and m are non-negative and positive integers,

respectively. This leads to the following evaluation formula.

d(a,b)
v =

r

∑
t=b

wv,t

∑
s=a

(
s
a

)(
t
b

)
q(v)

s,t α
{(s−a)x̃+(t−b)ỹ}(2p−1)

for v = 0, 1, ..., r,

(7.2)

where α is the primitive element of the Galois field, and x̃ = logα x and ỹ =

logα y are as defined at the end of Section 7.2. As it is declared at the beginning

of the chapter, we assume the following condition is true: x 	= 0. However,

the Y coordinate y could be zero. Let us define [s− a]def= max (s− a, 0) and [t−
b]def= max (t− b, 0). We also define the following boolean function c(a, b, s, t, ỹ)

as

c(a, b, s, t, ỹ) =

{
(s

a)(
t
b)
}

2 if ỹ 	= (2p − 1) or ỹ = (2p − 1) and t = b,

0 otherwise.

(7.3)

Thus we can slightly modify (7.2) as follows:

d(a,b)
v =

r

∑
t=0

wv,t

∑
s=0

c(a, b, s, t, ỹ)q(v)
s,t α

{[s−a]x̃+[t−b]ỹ}}2p−1

for v = 0, 1, ..., r.

(7.4)

In (7.4), the polynomial coefficients are still represented with their regular

form because this eases the implementation of polynomial update process. With

this formula, computation of xs−ayt−b only takes 2 integer multiplications, 1

modulo addition and 1 conversion operation to convert xs−ayt−b, from its power

representation, i.e., {x̃(s − a) + ỹ(t − b)}(2p−1) back to regular representation.
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Though the X and Y coordinates of the interpolation points have to be con-

verted from regular representation to power representation and convert the in-

termediate result, {x̃(s − a) + ỹ(t − b)}(2p−1) from power representation back

to normal representation, evaluating all xs−ayt−b’s independently in logarithm

domain eliminates the need for Horner’s rule based recursive algorithm, which

makes it easier to pipeline the circuit. Depending on the speed requirement,

multi-stage pipeline can be introduced to integer multiplication, integer addi-

tion and finite field multiplication operations. In fact, it will be shown later

in the chapter that only p-bit adders and fixed-coefficient p-bit integer multi-

plier, which has significantly smaller area than regular p-bit integer multiplier,

is required to implement (7.4). In the rest of this subsection, an efficient way

to implement {x̃[s− a] + ỹ[t− b]}(2p−1) is discussed first, then the implemen-

tation of the antilogarithm operation mentioned above is discussed and finally

the architecture for the overall DCC operation is presented. It is assumed that

the operation of converting the X and Y coordinates of the interpolation points

from regular representation to power representation is combined into the mul-

tiplicity assignment block shown in Figure 1.1 of Chapter 1, thus its discussion

is omitted in this chapter.

Implementation of
(
x̃[s− a] + ỹ[t− b]

)
modulo (2p − 1) operation

A straightforward implementation would use two regular integer multipli-

ers and one adder followed by a circuit that implements modulo (2p− 1). How-

ever, one may observe, from (7.4), that s is a running index and that, for practi-

cal applications of the soft-decision algebraic decoder, the value of r is usually a

small number. Thus the circuit shown in Figure 7.1 can be used to implement it.

In the figure above, the integer adders with a square box around it repre-

sents p-bit modulo (2p − 1) integer adder. However, these two adders are of

different types, thus different subscripts are assigned to them in the figure. A

detailed description of the implementation of the these two types of adders will

be given later. The (r− 1) multipliers in the figure are p-bit modulo (2p − 1) in-

teger multipliers. Note that these (r− 1) multipliers have a fixed multiplicand
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Figure 7.1: Implementation of
(
x̃[s− a] + ỹ[t− b]

)
modulo (2p − 1) operation.

as input, and the fixed multiplicand is usually a smaller number. Therefore

these multipliers normally cost significantly less hardware than a regular p-bit

multiplier. Instead of using a regular multiplier, here we choose to use (r− 1)

such “small” multipliers with a MUX to implement {ỹ[t− b]}(2p−1) because it

will be shown in Subsection 7.3.1 that these “small” multipliers can be shared

for simultaneously computing the discrepancy coefficients for all (r + 1) poly-

nomials. In addition, since r is a fixed number, all {ỹl} for l = 2, 3, ..., r can be

pre-computed and stored in the registers shown in Figure 7.1. In the follow-

ing, we describe the implementation of the 3 types of devices embedded with

modulo (2p − 1) operation.

We start with describing a circuit that implements w = { f + g}(2p−1), where

f and g are both non-negative integers and satisfy f , g < 2p. This guarantees

that { f + g}2p + 1 ≤ 2p − 1, or equivalently, { f + g + 1}2p ≤ 2p − 1. In other

words, there is no carry out signal for this adding 1 operation. Thus we have

w =



{ f + g + 1}2p if f + g > (2p − 1),

f + g if f + g < (2p − 1),

0 otherwise.

The equation above can be mapped to the block diagram shown in Figure 7.3.1.

Note that the portion represented by dotted lines ensures that the output is zero

when (g + f ) = (2p − 1). However, this may not be necessary as it will be
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Figure 7.2: Implementation of modulo (2p − 1) addition.

shown later that an output equal to (2p − 1) can be appropriately handled by

the antilogarithm unit. Thus to reduce the overall delay, the dotted portion can

be omitted. Now the delay of the circuit is equal to the sum of the delay of the

adder and the delay of a 2:1 MUX. Fast adders, such as the ones based on carry-

look-ahead architecture, should be used in the circuit. In addition, if the modulo

(2p − 1) addition circuit is not placed within a loop, pipelining technique can

be used to reduce the critical path delay.

Note that if both f and g are equal to (2p − 1), the output from the circuit

shown in Figure 7.3.1 generates (2p − 1) at its output.

Now let us first describe the implementation of the modulo (2p − 1) multi-

plier that produces {ỹl}(2p−1) for l = 2, 3, ..., r. As it is mentioned earlier, r is

usually a small number for practical applications of the algebraic soft-decision

decoding algorithm. Here we assume that the fixed multiplicand l satisfy the

condition l < 10. In binary format, l can be represented as l3l2l1l0. We can also

assume the p > 3 as most practical Reed-Solomon codes are defined over large

Galois field. Thus we have

{ỹl}(2p−1)

=
{{23l3 ỹ}(2p−1) + {22l2 ỹ}(2p−1) + {2l1 ỹ}(2p−1) + l0 ỹ

}
(2p−1)

(7.5)
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and modulo (2p − 1) multiplication in form of {2i ỹ}(2p−1) can simply be im-

plemented by cyclically shifting p-bit number ỹ left by i bits. The cyclic shift

operation can be justified as follows: Let ỹ = ỹ22p−i + ỹ1, i.e., ỹ2 is the num-

ber represented by the i msb’s of ỹ while ỹ1 is the number represented by the

(p − i) lsb’s of ỹ. Note that {2p ỹ2}(2p−1) = ỹ2, we then have {2i ỹ}(2p−1) ={{2p ỹ2}(2p−1) + 2i ỹ1
}

(2p−1) = 2i ỹ1 + ỹ2.

Figure 7.3 shows an implementation example of ỹ ∗ 7 mod (28 − 1), where

ỹ = Y[7..0], S[7..0] and C[7..0] represent the sum and carry out components,

respectively, for the carry-save operation (see top “+” sign in the figure). The

modulo operation is easily handled by moving some most significant bits to

least significant positions as shown in the figure. Since l < 10, we will, in any

case, have no more than 3 partial products as we have in this example. This

means (7.5) takes at most one full adder delay and the delay to compute two

p-bit addition with modulo (2p − 1) operation, which can be implemented as

shown in Figure 7.3.1. Note that if ỹ = (2p − 1), all modulo (2p − 1) multipliers

will generate (2p − 1) at its output. However, as it will become clear at the end

of this subsection, this output will be “filtered” out by another modulo (2p − 1)

addition implemented as the modulo (2p − 1) adder with subscript 2 in Figure

7.1.

Y3 Y2 Y1 Y0Y7 Y6 Y5 Y4

Y3 Y2 Y1 Y0Y5 Y4

Y3 Y2 Y1 Y0Y4

Y6

Y5

S3 S2 S1 S0S7 S6 S5 S4

C3 C2 C1 C0 C7C6 C5 C4C7

+

+

Y7

Y7 Y6

Y7

Y7 Y6

Figure 7.3: Implementation example of {ỹ ∗ 7}(28−1).
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Figure 7.4: Implementation of (a) {x̃(s − a)}(2p−1) and (b) {x̃(s − a) + ỹ(t −
b)}(2p−1).

Next we discuss the implementation of the modulo (2p− 1) embedded accu-

mulator that recursively generates {x̃[s− a]}(2p−1), i.e., the modulo adder with

subscript 1 shown in Figure 7.1. Let us define Ax̃(s)
def= {x̃[s − a]}(2p−1), then

Ax̃(s + 1) = {(Ax̃(s) + x̃)}(2p−1). So Ax̃(s + 1) can be computed with the mod-

ulo (2p − 1) addition circuit shown in Figure 7.3.1 with f = Ax̃(s) and g = x̃.

However, as it is mentioned earlier, the delay of the circuit shown in Figure

7.3.1 can be quite large, thus placing it in the accumulator loop will significantly

limit the clock frequency of the entire design. This can be tackled by applying

the “carry-and-save” method, which is described as follows. At each cycle, only

1-bit full addition is performed as illustrated in Figure 7.4 (a). The temporary

sum σ = σp−1...σ1σ0, and carry out, {c = cp...c1}, are both stored in p-bit regis-

ters. Note that bothσ and c are equal to (2p− 1) if and only if x̃ = (2p − 1). The

accumulator output Ax̃(s) can be expressed as Ax̃(s) =
{
σ + {2c}(2p−1)

}
(2p−1)

and since {2c}(2p−1) = cp−1...c1cp, this leads to the implementation shown in

Figure 7.4 (a), where bit cp is pulled back as an input to the last full adder.

At last, the implementation of the modulo (2p − 1) adder with subscript 2

shown in Figure 7.1 is described. This adder takes 3 numbers as input which

are the temporary sum σ , cyclicly left-shifted carry bits, i.e., cp−1...c1cp, and
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{ỹ[t − b]}(2p−1). The former two come from the modulo (2p − 1) adder with

subscript 1 and the third one comes from the selected output from one of the

modulo (2p − 1) multipliers described earlier. The implementation of this 3-

input adder is illustrated in Figure 7.4 (b), where u = up−1...u1u0 represents

the selected modulo (2p − 1) multiplier output. The carry-and-save method is

used here as well to reduce the complexity and delay of the circuit. The modulo

(2p− 1) addition circuit shown in Figure 7.3.1 is used to carry out modulo (2p−
1) addition of the two numbers f and g produced from the p 1-bit full adders.

Note that the number f consisting of the carry bits fp... f1 is also cyclically shifted

left by one bit to carry out an inherent modulo (2p − 1) operation as explained

earlier in this subsection.

The total delay of the circuit presented in this subsection that computes{
x̃[s − a] + ỹ[t − b]

}
(2p−1) for a particular pair of s and t can be estimated as

follows. The delay associated with computing all {ỹl}(2p−1)’s can be ignored

due to the fact that they can be pre-computed. The total delay is equal to the

delay of the modulo (2p − 1) adder with subscript 2 and the delay associated

with the modulo (2p− 1) adder with subscript 1 in Figure 7.1. Note that here we

purposely ignored the delay associated with the (r+1):1 MUX, because it will be

shown later in Subsection 7.3.1 that we can get around using any MUX to select

the appropriate {ỹl}(2p−1) to send to the modulo (2p − 1) adder with subscript

2. Thus the total delay is equal to the sum of the delays associated with circuits

shown in (a) and (b) in Figure 7.4, which is equal to two times of the delay of a

1-bit full adder plus the delay of the circuit shown in Figure 7.3.1.

Implementation of antilogarithm

As shown in 7.2, the coefficients of the polynomials are represented in reg-

ular format, thus an antilogarithm operation is required. The most straightfor-

ward way to implement the antilogarithm operation in F2p is to use a 2p-entry

LUT. However, for large p, a ROM-based 2p-entry table implies long critical-

path delay, which is undesirable. Combinational logic based implementation

with pipeline can reduce the critical-path delay, however, when p is a large num-
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ber, a p-bit input p-bit output combinational logic also infers large gate count.

In order to reduce the hardware consumption, non-negative integer i, where

i < 2p, can be expressed as i = 2p′ i′ + i′′, where i′′ < 2p′ and p′ = 
 p
2 �. We then

have αi = α2p′ i′ αi′′. This enables us to use a (p − p′)-bit input combinational

logic to realize α2p′ i′ and a p′-bit input combinational logic to implement αi′′.

Then a finite field multiplier is needed to compute αi as shown in Figure 7.5.

Note that both the combinational logic blocks and the finite field multiplier can

be pipelined to meet any critical-path delay requirement.

Comb. logic
to implement

p

p-p' 'i

⊗
p' ''i

iαi

D
'2 ' ip ⋅α

''iαD

'2 ' ip ⋅α

Comb. logic
to implement

''i⋅α

Figure 7.5: Implementation of the antilogarithm based on LUT and multiplier.

Architecture for DCC operation

Now we have described the circuits used to implement the {x̃[s− a] + ỹ[t−
b]}(2p−1) and the antilogarithm operations, the architecture shown in Figure 7.6

can be used to evaluate the discrepancy coefficients for one bivariate polyno-

mial. The coefficients of a bivariate polynomial Qv(X, Y) = ∑r
t=0 bv

t (X)Yj =

∑r
t=0 ∑wv,t

s=0 q(v)
s,t XsYt can be stored in (r + 1) banks of RAM. In the figure, the

multiplier and adder with double circle represent finite-field multiplier and

adder. An efficient implementation of {(s
a)(

t
b)}2 can be found in [GKKG05],

thus the computation of c(s, b, s, t, x̃, ỹ) can be implemented with combinational

logic. Apparently the circuit can be extensively pipelined to ensure that the

critical-path delay is less than a certain desired amount. It can be assumed that

the hybrid multiplication, which includes computing x̃[s − a] + ỹ[t − b] mod-

ulo (2p − 1) as described in Subsection 7.3.1 and LUT-based antilogarithm de-
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scribed in Subsection 7.3.1, uses ξ0-level pipeline. We further assume the rest of

the datapath, which includes the F2p multipliers, the F2p accumulator and the

(r + 1)-input F2p adder, uses ξ1 pipelining stages. Note that the delay associ-

ated with the combinational logic that computes c(s, b, s, t, x̃, ỹ) is not counted

because the computation can be carried out in parallel with the antilogarithm

operation. If the X-degree of the polynomial is dX, the total number of clock

cycles required to finish 1 DCC operation is ξ0 +ξ1 + dX.
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Figure 7.6: Architecture of the DCC for Qv(X, Y).

Let us assume that there are a total of r + 1 bivariate polynomials used in the

iterative interpolation algorithm and each bivariate polynomial has a Y-degree

equal to r. We may further assume r < 10 for all practical applications of the

soft-decision decoder. To implement DCC operations for all bivariate polynomi-

als in parallel, we actually do not need (r + 1)2 copies of the PE’s (processing en-

gine) shown in Figure 7.6. This is because a lot of hardware sharing is possible.

Since all monomials in a bivariate polynomial are computed sequentially for all

(r + 1) bivariate polynomials, the (r + 1)2 PE’s can share the accumulator with

embedded modulo operation that is used compute {x̃[s− a]}(2p−1), and only 1

copy of the array of smaller finite field multipliers with one fixed multiplicand
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used to compute {ỹ[t− b]}(2p−1) is needed and are shared among the PE’s. This

translates into the following required arithmetic hardware units. A total of p 1-

bit full adders are needed to compute {x̃[s− a]}(2p−1) as shown in Figure 7.4 (a).

We also need (2r + 1) copies of modulo (2p − 1) adder shown in Figure 7.3.1.

Out of these (2r + 1) modulo (2p− 1) adders, at most r of them are used to com-

pute {ỹl}(2p−1) for l = 2, ..., r since 2 of them are needed to compute {7ỹ}(2p−1).

The rest (r + 1) of them are used in computing {x̃[s − a] + ỹ[t − b]}(2p−1) as

shown in Figure 7.4 (b). Note that each hardware unit shown in Figure 7.3.1 con-

tains two p-bit carry-look-ahead adders. Thus a total of (4r + 2) p-bit carry-look-

ahead adders are needed. In addition, p ∗ (r + 1) 1-bit full adders are required

for (r + 1) copies of the hardware unit shown in Figure 7.4 (b). In the same

manner, only (r + 1) copies of the hardware module used to carry out antiloga-

rithm as shown in Figure 7.5 are needed. In summary, the proposed architecture

requires the following arithmetic units: (r + 1)(r + 2) p-bit finite-field multipli-

ers and (r + 1)r p-bit finite-field adders, p(r + 2) 1-bit full adders, (4r + 2) p-

bit integer carry-look-ahead adders. In addition, 2(r + 1) combinational logic

units are needed to implement the LUT’s used in the antilogarithm operation

as described in Section 7.3.1. This architecture is shown in Figure 7.7. In this

architecture, the hardware module computing all monomial (s
a)(

t
b)xs−ayt−b’s is

called HME (hybrid multiplication engine) and the rest is divided into (r + 1)

MACE (multiplication accumulation engine). In Figure 7.7, there are r MUXes

in the HME with incremental input sizes that are used to select the desired ỹl

for l = 0, 1, ..., r. These MUXes are put in the figure only for illustrative purpose

as they can be avoided from implementation due to the following property of

the Groebner-basis interpolation algorithm. At each interpolation point (xi, yi)

with multiplicity mxi ,yi , a double loop of iterations is performed with an outer

loop on b and an inner loop on a. It is easy to observe the regularity at the out-

put of the r MUXes as the value of b traverse from 0 to (mxi ,yi − 1). Thus the r

registers that store ỹl for l = 0, 1, ..., r should be implemented as shift registers,

which at the end of each inner loop, should downshift by one entry and a zero

should be stuffed into the top register.



7.3. INTERPOLATION ARCHITECTURE

118

( )⋅α

( )⋅α

( )⋅α

+
y~

+
r

[ ]asx −~
x~

( )0
0,sq

⊗
( )0
,rsq

⊗

( )0
1,sq

⊗

( )1
0,sq

⊗
( )1
,rsq

⊗

( )1
1,sq

⊗

( )r
sq 0,

⊗
( )r

rsq ,

⊗

( )r
sq 1,

⊗

0

D⊕
D⊕

D⊕

D⊕
D⊕

D⊕

D⊕
D⊕

D⊕

( )bad ,
0

( )bad ,
1

( )ba
rd ,

⊕

⊕

⊕

MACE0

HME

[ ]b−1

[ ]br −

0

X

t

[ ]bt −

+ D

( ) ( )Xb 0
0

( )( )Xbr
0

( )( )Xb 1
0

( )( )Xbr
1

( ) ( )Xb 0
0

( )( )Xbr
0

D

D

DX

( )yxsba ~,~,0,,,c

( )yxsba ~,~,1,,,c

( )yxrsba ~,~,,,,c

MACE1

MACEr

1

2

2

+
2

Figure 7.7: Architecture of the overall DCC Processor.

We also want to mention that the proposed DCC architecture is very scalable.

With our hybrid representation of the F2p number, the DCC operation consists

of evaluating all monomials independently at a certain point as shown in (7.4).

Thus scaling the architecture is a matter of how many monomial evaluations

one wants to perform in parallel. So the DCC architecture can be easily adapted

to different decoding speed requirement.

7.3.2 Architecture for Polynomial Update

In this subsection, we propose a fast and scalable polynomial update archi-

tecture. It can be shown that our architecture achieves a smaller latency than
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prior efforts [AKS04b]. In addition, a new memory access scheme is presented

so that requirement on storage area can be greatly reduced.

The equation used for polynomial update in the Groebner-basis interpola-

tion algorithm is reiterated as follows.

Qv(X, Y) :=
d(a,b)

η Qv(X, Y) + d(a,b)
v Qη(X, Y) if v 	= η

XQv(X, Y) + xQv(X, Y) if v = η

for v = 0, 1, ..., r.

(7.6)

In this chapter, the polynomial with index η is referred to as the “pivot”

polynomial and note that the “pivot” polynomial may change from iteration

to iteration. An architecture implementing (7.6) with a total of (r + 1) PUE’s

(polynomial update engine) operating in parallel is shown in Figure 7.8. Each

PUE consists of 2(r + 1) + 1 F2p multipliers and (r + 1) + 1 F2p adders. This

architecture has a redundant update for the “pivot” polynomial, Qη(X, Y), at

each iteration as the “pivot” polynomial is also updated as a ”non-pivot” poly-

nomial. This redundancy costs 2 extra multipliers and 1 extra adder for each

PUE. However, the amount of multiplexing and routing required is greatly re-

duced compared with “non-redundant” implementation. Without the ”redun-

dant” update, for each PUE in Figure 7.8, p copies of (r + 1) : (r + 1) MUXes

are required to route the appropriate polynomial coefficients to the multipliers

and another p copies of (r + 1) : (r + 1) MUXes are required to route the up-

dated coefficients back to the appropriate RAM banks, where p is the number

of binary bits needed to represent one polynomial coefficient in F2p . A standard

implementation of the (r + 1) : (r + 1) MUX requires (r + 1), (r + 1) : 1 MUXes.

For example, let us assume that r = 5 and p = 8, as in the example we will fully

develop in Section 7.4. An 6 : 1 MUX is equivalent to 5, 2 : 1 MUXes. The total

number of 2:1 MUXes required to route polynomial coefficients to the multipli-

ers amounts to 2× 8× 6× 5 = 480 for each PUE. If our “redundant” approach

is applied, only 2× 8× 5 = 80, 2 : 1 MUXes are needed to route the polynomial
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coefficients to the multipliers and 8× 6 = 48, 2 : 1 MUXes are needed to route

the update polynomial coefficients back to the corresponding RAM banks. The

2 “redundant” multipliers and 1 “redundant” adder consume 2× 77 + 8 = 162

2-input XOR gates and 2× 64 = 128 2-input AND gates. Thus in addition to the

number of arithmetic operators required by equation (7.6), our method requires

80 + 48 = 128, 2 : 1 MUXes, 162 2-input XOR gates and 128 2-input AND gates

in total, which is, in general, smaller in area compared with 480 2 : 1 MUXes, as

a 2 : 1 MUX is comparable in area with a 2-input XOR gate.

The coefficients of the (r + 1) polynomials are stored in (r + 1)2 banks of

RAM as the coefficients of monomials with the same Y-degree in a polynomial

are stored in the same bank. From Figure 7.8, it seems that the RAM’s need to be

implemented as dual-port RAM’s because coefficients are read from the RAM’s

by the PUE’s and, at the same time, updated coefficients are written back to

the RAM’s. The dual-port RAM solution is also used in polynomial update

architecture of [AKS04b]. Since dual-port RAM usually costs significantly more

area than its single-port counterpart, a single-port solution is desirable. The

word size of each RAM can be doubled to store 2 coefficients at the same location

and introduce an input buffer and an output buffer to each bank of RAM. With

a simple controller, the following RAM access schedule can be applied: At an

even clock cycle, 2 coefficients are read from each bank of RAM, one of them is

sent to the corresponding PUE and the other one is stored in the output buffer.

At the same time, the updated coefficient is temporarily buffered at the input.

At an odd clock cycle, the coefficient stored at the output buffer is sent to the

corresponding PUE. At the same time, the newly updated coefficient, combined

with the coefficient previously stored in the input buffer, is written in to the

bank of RAM. For fast application, the finite-field multipliers and the MUXes

shown in Figure 7.8 can all be properly pipelined to meet a desired critical-path

delay requirement. Here let us assume that a total of ξ2 stages of pipelining

is used for the F2p multiplier and the (r + 1) : 1 MUX . In addition, another

(r + 1) : 1 MUX sits at the input of each bank of RAM and it can be assumed

that ξmux stages of pipeline is used for those MUXes. Thus if the maximum X-
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degree of all (r + 1) polynomials is equal to dX at a certain iteration, the number

of clock cycles required to update all polynomials is approximately equal to

dX +ξ2 +ξmux.
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Figure 7.8: Polynomial Update Architecture-I

It should be mentioned that the PU architecture is very scalable. Here we

choose to update (r + 1)2 coefficients for monomials with the same X-degree in

parallel. But the degree of parallelism can be easily scaled up or down to meet

different update speed requirement.

The polynomial update architectures presented in [AKS04b] is based on a

reformulation of equation (7.6) as follows.

Qv(X, Y) :=

Qv(X, Y) + d(a,b)

v

d(a,b)
η

Qη(X, Y) if v 	= η

XQv(X, Y) + xQv(X, Y) if v = η

for v = 0, 1, ..., r.

(7.7)

Compared with our newly proposed architecture, the architectures based on

(7.7) has 1 more F2p inverter and 1 more F2p multiplier in the longest path. If we
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assume that ξinv levels of pipelining is used for the inverter, then with the same

level of parallelism, the architectures given in [AKS04b] have ξinv + ξ2 more

clocks of latency in each interpolation iteration than our architecture. Since

hundreds of iterations are usually needed in soft-decision decoding of a single

received codeword, this ξinv + ξ2 clocks of latency in each iteration translates

to a huge decoding latency. However, architectures presented in [AKS04b] can

lead to hardware area savings compared to our new architecture, thus those PU

architectures should be chosen in an area-constraint driven design.

7.3.3 Polynomial Update Controller

The polynomial update engines shown in the previous section assumes, as

an input, the index of the minimum weighted degree polynomial, among all

polynomials with non-zero discrepancy coefficients, i.e., the “pivot” polyno-

mial. This index, η, needs to be computed based on the output of the computed

d(a,b)
v ’s and the weighted degrees of the polynomials. Here the hardware module

performing this function is referred to as PUC (polynomial update controller).

Since the index η has to be computed for each iteration of the interpolation pro-

cess, efficient design is important to ensure that it only introduces the minimum

overhead clock cycles to the whole interpolation process. Let us assume, with-

out loss of generality, that an (r + 1)-entry register array is allocated to store

the weighted degrees and the indices of the (r + 1) polynomials used in the

interpolation process with each register storing the (Ov, v) pair (Ov represents

the weighed degree of polynomialQv(X, Y) as shown in our algorithm descrip-

tion). In order to minimize the computation delay that is required to generate

the index η, we propose an PUC architecture assuming that the polynomial in-

dices are sorted according to their associated weighted degrees before the final

selection. Obviously the sorting operation can be performed in parallel with the

DCC operation. It is known that only one polynomial will increase its weighted

degree at each iteration. The sorting operation at each iteration is equivalently

to one round bubble sort process, which consists of comparison and data swap-
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ping operations. Since the total number of polynomials used in the interpolation

algorithm is usually a small number, thus the sorting operation will not intro-

duce any further delay in general. Once all (r + 1) discrepancy coefficients are

ready, each sorted index needs to be “labeled” to rule out all indices associated

with polynomials with zero discrepancy coefficients for this iteration. This can

be performed with the circuit shown in Figure 7.9 (a), where the πv’s represent

registers that store the sorted polynomial indices with π0 storing the one asso-

ciated with the minimum weighted degree among all polynomials and the lv’s

represent the 1-bit registers that store flags indicating whether the correspond-

ing polynomial has a zero discrepancy coefficient at this iteration. For example,

if l0 = 1 after the “labeling” operation, we know that the polynomial whose

index is stored in register π0 has a non-zero discrepancy coefficient at this iter-

ation. The overall delay of this circuit is a sum of the delay of the logic used to

decide whether the corresponding discrepancy coefficient is non-zero, which is

essentially a p-input OR gate, and the delay of a (r + 1) : 1 MUX.

0 
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r+1

 

0lrl 1l r+1
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index
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d_0(a,b)=0?

d_r(a,b)=0?

Figure 7.9: Implementation of the “labeling” and “select” operations.

After the labeling operation, the index η can be determined by selecting the

1st register, among the π0, π1, ...., πr sorted list, with non-zero labeling. This can

be implemented with the following circuit shown in Figure 7.9 (b). The overall

delay of this circuit is equal to the delay of (r + 1) serially concatenated 2 : 1
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MUXes. When r is large, the delay may be longer than desired. In this case, an

alternative parallel architecture shown in Figure 7.9 (c) can be used. This imple-

mentation reduces the delay of the circuit to (�r/2�+ 1) serially concatenated

2 : 1 MUXes. Actually this architecture can be further extended all the way to a

binary tree type of MUX array to reduce the delay to a minimum.

With the implementation of “labeling” and “select” functions given above, a

total ofξ3 stages of pipelining is needed. Thus it takesξ3 clock cycles to generate

the index η of the polynomial with minimum weighted degree and non-zero

discrepancy coefficient.

7.3.4 Concurrent Discrepancy Coefficient Computation and Poly-

nomial Update

From the architectures for DCC and PU given in previous subsections, the

polynomial coefficients are generated sequentially from the PUE’s. Once a co-

efficient is generated, it is no longer needed for this iteration of the polynomial

update procedure. In addition, the MACE’s also expect sequential input of the

polynomial coefficients. Thus the DCC and polynomial update processes can

be carried out concurrently, i.e., once a coefficient of a polynomial has been up-

dated for the current iteration, it can be immediately used for next generation’s

discrepancy computation of the corresponding polynomial. This can be illus-

trated with the following block diagram in Figure 7.10. Note that the same level

of parallelism should be used for the DCC architecture and the PU architecture

in order to achieve the maximum overlapping between these two operations in

consecutive interpolation iterations.

Now let us estimate the number of clock cycles required for each iteration

of the interpolation process. As it is mentioned earlier, if we adopt the architec-

ture shown in Figure 7.8 for polynomial update process, there is ξ2 clock cycles

of pipeline overhead. Note that the pipeline overhead ξmux associated with the

(r + 1) : 1 MUXes at the input to the coefficient RAM banks is not counted

because after ξ2 clock cycles, coefficients are available for use in discrepancy co-
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Figure 7.10: Overall Interpolation Architecture with concurrent DCC and PU
operations.

efficient computation. From our discussion of the DCC architecture, the DCC

procedure has ξ0 +ξ1 clock cycles of pipeline overhead. Among the these clock

cycles, ξ0 cycles are caused by the pipeline overhead of the HME’s. Since the

computation in the HME’s does not depend on the polynomial coefficients, but

only depend on the X and Y coordinates, these computations don’t have to wait

until the coefficients are available from the PUE’s to start but can be carried out

in parallel with the lastξ0 clock cycles of the polynomial update procedure. This

enables a significant saving of required clock cycles for each iteration of the in-

terpolation process. With this saving, it takes dX +ξ1 +ξ2 +ξ3 cycles to finish 1

iteration of the interpolation algorithm assuming the maximum X-degree of the

polynomials in this iteration is equal to dX. This can be illustrated with the tim-
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ing diagram shown in Figure 7.11. With the above estimate, we can now further

estimate the total number of clock cycles required to implement the iterative

interpolation algorithm. Let us assume the total number of interpolation con-

straints to be enforced is C, usually referred to as the interpolation cost [KV03a],

thus a total of C iterations are needed for the iterative interpolation algorithm.

The interpolation algorithm has the property that at each iteration, at most 1 of

the (r + 1) polynomials grows its X-degree by 1. Thus when the interpolation

process stops, the maximum X-degree among all (r + 1) polynomials is at most

� C
r+1�. Due to the uniform growth property of the X-degrees of the polynomials

in the interpolation process, we can assume that on average, the X-degree of

the polynomials involved in the DCC operation is equal to � C
2(r+1)�. Thus the

total number of clock cycles required for all interpolation operations is approx-

imately (� C
2(r+1)�+ξ1 +ξ2 +ξ3)C.

dX

dX mux dX+ mux+1

dX+1

PUC

PUE

HME

DCCE

3ξ

0ξ

2ξ

1ξ

Figure 7.11: Concurrent DCC and PU Timing Diagram.

7.3.5 Architecture for Re-encoded Interpolation

The re-encoding coordinate transformation techniques have been presented

in [GKKG02] [KMVA03]. In this subsection, we first highlight the algorithmic

changes from the iterative interpolation algorithm point of view and then dis-

cuss modifications that can be made to the interpolation architecture presented

in earlier subsections to handle re-encoded interpolation.
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First of all, in the re-encoded interpolation, the bivariate polynomial sets are

usually initialized with some “tail” polynomials as follow

Qv(X, Z) = Tv(X)Zv f or v = 0, 1, ..., r,

where the ”tail” polynomials depend on the X coordinates and multiplicities

of the re-encoding interpolation points and the value of v. Secondly, after re-

encoding coordinate transformation techniques are applied to the original in-

terpolation point set P , the remaining interpolation points can be classified into

two sets: Set I and Set II. Set I includes the points whose X coordinates are dif-

ferent from all re-encoding points’ X coordinates. For these points, the DCC op-

eration for polynomial Qv(X, Z) uses exactly the formula as its non-re-encoded

counterpart, i.e.,

d(a,b)
v = coef

(Qv(X + x, Z + z), XaZb)
=

r

∑
t=b

wv,t

∑
s=a

(
s
a

)(
t
b

)
q(v)

s,t xs−azt−b

for v = 0, 1, ..., r.

(7.8)

When computing the discrepancy coefficients for points in Set I, the weighted

degree is defined as followsOv = deg1,−1Qv(X, Z). Set II include points whose

X coordinates coincides with the re-encoding points’ X coordinate. For a point

(x, z) in this set, the DCC operation for polynomialQv(X, Z) uses the following

formula

d(a,b)
v
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= coef
(Q(x)

v (X + x, Z + z), XaZb)
=

r

∑
t=0

coef{Qv,t(X + x)(Z + z)t, Xa−(m−t)Zb}

=
r

∑
t=t0

coef{Qv,t(X + x)(Z + z)t, Xa−(m−t)Zb}

=
r

∑
t=t0

coef{
t

∑
t′=0

(
t
t′

)
zt−t′Zt′

wv,t

∑
s=0

q(v)
s,t (X + x)s, Xa−(m−t)Zb}

=
r

∑
t=t0

wv,t

∑
s=s0

(
s

a− (m− t)

)(
t
b

)
q(v)

s,t xs−
(

a−(m−t)
)
zt−b

for v = 0, 1, ..., r. (7.9)

In the equation shown above, t0 = max([m − a], b) and s0 = a − (m − t).

Qv,t(X) = ∑wv,t
s=0 q(v)

s,t Xs is a polynomial in X such thatQv(X, Z) = ∑r
t=0Qv,t(X)Zt.

Q(x)
v (X, Z) = ∑r

t=0(X − x)m−tQv,t(X)Zt is a “scratch” polynomial and needs

not to be stored and m is the multiplicity assigned to the re-encoding point with

X coordinate equal to x. The second equality above follows from the trivial

observation that coef{P(X)Xi , X j} = coef{P(X), X j−i} for any integer i, j as

long as P(X)Xi is a valid polynomial. The third equality, with the index to the

summation changed to t0 from 0, follows from the fact that if t < m− a, then

a − (m − t) < 0, and Qv,t(X + x)(Z + z)t does not have any monomial with

negative X power, and that if t < b, Qv,t(X + x)(Z + z)t does not have any

monomial with Y degree equal to b. It is easy to verify that in the expression of

last equality above, all powers of x and z are non-negative since it is always true

that a + b < m. When computing the discrepancy coefficients for points in Set

II, we need to use the weighted degree Ov = deg1,0Q(x)
v (X, Z).

For re-encoded interpolation, it can be assumed that a hardware block called

“re-encoding frontend” that performs the re-encoding coordinate transforma-

tion operations described in [KMVA03]. An example implementation of the “re-

encoding frontend” is given in [MVW06b]. This block also transforms all X and

Z coordinates from regular representation to power representation as needed

for the HME block. In addition, the re-encoding frontend initializes the interpo-

lation polynomials with the appropriate tail polynomials as shown earlier. The
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“re-encoding frontend” can be combined into the multiplicity-assignment block

shown in Figure 1.1 of Chapter 1 and operates in a pipelined fashion with the

interpolation block, i.e., it works on the most recently received codeword while

the interpolation engine works on the previously received codeword. From (7.8)

and (7.9), it can be seen that the HME and MACE presented in Section 7.3.1 can

also be applied to re-encoded interpolation. For interpolation points in set I, no

change needs to be made to the HME and MACE’s. For interpolation points in

set II, (r + 1) copies of the accumulator are required to compute x̃[s− a′(t)], for

a′(t)def= a − (m − t) and t = 0, 1, ..., r. This is because this accumulator can no

longer be shared for all PE’s shown in Figure 7.6 as the power of x is a function

of both running index s and t.

In summary, a new interpolation architecture is presented in this section and

an estimate of its latency and hardware complexity is given in Table 7.1. In the

table, C denotes the total number of interpolation constraints, r is the largest Y-

degree of the interpolation polynomials. (note that r is, in general, proportional

to the square root of the value of C.) ξ0, x1, x2 and x3 are the number of pipelin-

ing stages used for the HME’s, the MACE’s, the PUE’s and the PUC, respec-

tively. In addition, the number L represents the degree of parallelism that can

be applied to the scalable architecture. The proposed architecture has the fol-

lowing advantages over prior efforts [AKS04b] [GKKG05] [GKKG02] [GKG04].

• The architecture can be highly pipelined and is very scalable. It has smaller

overall interpolation latency.

• With our architecture, the DCC and PU operations can be overlapped to

the maximum extent.

• The architecture requires less storage area as single-port RAM, instead of

dual-port RAM [AKS04b] or registers [GKG04], is used to store the poly-

nomial coefficients.
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Table 7.1: Latency and Hardware Complexity Estimate of the Interpolation
Architecture

latency Hardware
Device Quantity

DCC (� C
2(r+1)L� F2p multiplier (r + 1) + (r + 1)2L

F2p adder r(r + 1)L
+ξ0 +ξ1)C 1-bit full adder p(r + 2)

p-bit CLA 4r + 2
Antilog LUT 2(r + 1)
MUX (2:1) p(r + 1)

1-bit register
p(r + 1)ξ0

+p(r + 1)2ξ1L
SRAM (bit) p(r+1)C

PU (� C
2(r+1)L� F2p multiplier (r + 1)(2r + 3)L

F2p adder (r + 1)(r + 2)L

+ξ2 +ξ3)C MUX (2:1)
p(r + 1)(3r + 1)L
+r(r + 1 + log2 r)

1-bit register
p(r + 1)2ξ2L
+(r + 1)2ξ3

7.4 Example: Interpolation Architecture for a (255, 23

9) Reed-Solomon Code

In this section, the new interpolation architecture presented in Section 7.3 is

applied to the soft-decision decoder for a (255,239) RS code defined on F28 . Our

new architecture is also compared with other existing ones in terms of hard-

ware complexity and decoding latency. This section is organized as follows: The

algorithm-level interpolation complexity associated with the Groebner-basis in-

terpolation algorithm is estimated first. we then present the hardware require-

ment and latency estimate for DCC, PU and PUC blocks, respectively. Finally

an overall gate count and decoding throughput estimate are given and are com-

pared with prior works. In this section, without specific mentioning, all logic

gates are assumed to be 2-input gates.
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7.4.1 Algorithm-Level Interpolation Complexity

Previous simulations [AKS04a] have shown that soft-decision decoder with

a total interpolation cost, i.e., the total number of constraints to be enforced,

equal to 3800 can provide more than 0.5dB coding gain at a codeword error rate

of 10−5 over the conventional hard-decision decoder. The number of bivariate

polynomials required for the Groebner-basis interpolation algorithm shown in

Section 7.3 can be computed as follows.

r = min{t∈Z : (t + 1)(
t(k − 1)

2
+ k) > C}

where Z represents the set of all integers and C is the targeted interpolation

cost. Plugging k = 239 and C = 3800 in the above equation, we obtain r = 5.

Thus a total of 6 bivariate polynomials are needed for the iterative interpola-

tion procedure, which translates to 6 × 6 banks of RAM as described in Sub-

section 7.3.2. For the re-encoding coordinate-transformation based technique,

it has been shown in [KMVA03] that the total number of required bivariate

polynomials required is the same as the regular interpolation procedure. In

the worst case, the remaining constraint, after interpolation, can be estimated as

CRE = C× n−k
n = 3800× 16

255
∼= 239. Thus the expected X-degree of all polyno-

mials at the end of the re-encoded interpolation is around CRE
(r+1) = 239

6 ≈ 40. Let

us conservatively assume that the maximum X-degree is 50, which translates to

6× 6× 50 = 1800 bytes of RAM required to store all coefficients.

7.4.2 Area and Latency Estimate of Discrepancy Coefficient C-

omputation

As it has been mentioned in Subsection 7.3.1, a total of (r + 1)(r + 2) = 42 F28

multipliers, (r + 1)r = 30 F28 adders, p(r + 2) = 56 1-bit full adders and (2r +

1) = 11 8-bit modulo 255 adders as shown in Figure 7.3.1 are required. Due

to the application of re-encoding coordinate transformation, pr = 40 extra 1-bit

full adders have to be used to accommodate the fact that the accumulator with

modulo operation can not be shared as explained in the end of Subsection 7.3.5.
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Let us assume that the primitive polynomial that defines F28 is p(X) = 1 + X2 +

X3 + X4 + X8, a straightforward bit-parallel F28 multiplier can be implemented

in combinational logic with 77 XOR and 64 AND gates and the longest path

consists of 1 AND gate and 6 XOR gates. Since addition in F28 can simply be

implemented by bitwise XOR operation, each F28 consists of 8 parallel XOR

gates. A 1-bit full adder can be realized with 2 AND gates, 2 XOR gates and 1

OR gate with the longest path consisting of 1 XOR gate, 1 AND gate and 1 OR

gate. Each 8-bit modulo 255 adder consists of 2 8-bit carry-look-ahead adders

(CLA) and 8 MUXes. It is a common practice to break large CLA into parallel

concatenated smaller ones to reduce the longest path delay. Thus we propose

the following architecture shown in Figure 7.12 for the 8-bit modulo 255 adder

based on CLA’s. The architecture works as follows. The two 8-bit numbers,

namely f and g, are partitioned into two parts with each part consisting of two

4-bit numbers. We compute the summations for each part independently while

considering two possible carry-in’s, i.e., 0 and 1, for each summation. The final

result depends on the output of MUX3 and that of MUX2. The output of MUX3

indicates if there is a carry out from the original addition, i.e., f + g. The output

of MUX2 tells which carry in signal should be used for the upper 4-bit addition.

As can be seen for the figure, the overall computation delay for this part is equal

to a 4-bit CLA delay and 3 MUX delay. It can be shown that 21 AND gates, 10 OR

gates and 8 XOR gates are required to implement a 4-bit CLA with the longest

path consisting of 3 AND gates, 3 OR gates and 1 XOR gate.

In addition to the arithmetic units described above, 12 combinational logic

based LUT’s are required for the antilogarithm operation. Each LUT has 16

entries and the synthesis reports show that the top LUT in Figure 7.5 requires

an area about 25% of an F28 multiplier and the bottom LUT in Figure 7.5 maps to

an area about 31% of an F28 multiplier. The longest paths of both LUT’s have a

delay that is about 50% of that of the F28 multiplier. Thus we may conservatively

assume that the top LUT has 35 XOR gates and the bottom LUT has 43 XOR

gates in area, and that both of them have 4 XOR gates in their longest paths.

In summary, the longest path of the HME unit consists of 2 1-bit full adders,
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Figure 7.12: Architecture for Fast 8-bit Modulo 255 Addition.

1 4-bit CLA and 3 MUXes, 1 combinational-logic LUT, 1 F28 multiplier and 1

AND gate, which translates to 7 AND gates, 5 OR gates, 13 XOR gates, and

3 MUXes. Thus 6 pipelining stages can be applied to ensure that the critical

path does not contain more than 4 serially-concatenated XOR gates’ equivalent

delay. Note that the pipelining overhead associated with the HME unit does not

contribute to the overall delay of the interpolation process as it has been shown

in Subsection 7.3.4 that the HME unit can finish its computation in parallel with

previous iteration’s polynomial update. We may assume that (r + 1) = 6 8-bit

numbers need to be stored for each pipelining stages, thus the total number of

registers required is equal to 6× 8× 6 = 288. The longest path of the MACE

unit consists of a F28 multiplier, a F28 adder and a 6-input F28 adder, which

amounts to 10 XOR gates and 1 AND gate. a total of 3 pipelining stages can be

applied to the MACE units, i.e., we have ξ1 = 3. For each pipelining stages in

MACE, (r + 1)2 = 36 8-bit numbers need to be stored. Thus a total of 36× 8×
3 = 864 registers have to be used.
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7.4.3 Area and Latency Estimate of Polynomial Update

When r = 5, each PUE shown in Figure 7.8 requires 16 6:1 MUXes, which

in area, is equivalent to 16 × 5 = 80, 2:1 MUXes. Each PUE also includes 13

F28 multipliers 7 F28 adders. Besides the 6 PUE’s, 288 MUXes are required to

appropriately route the updated coefficients back to the coefficient RAM banks.

The longest path from where the coefficients are read out from the RAM’s to

after they have been updated consists of 1 6:1 MUX, 1 F28 multiplier and 1 F28

adder, which translates to 3 MUXes, 7 XOR gates and 1 AND gate. Thus we

may choose ξ2 = 3 pipelining stages in our architecture and a total of 36× 8×
3 = 864 registers are needed to store the intermediate results of the pipelining

stages.

7.4.4 Area and Latency Estimate of Polynomial Update Con-

troller

The major role of the PUC unit is to figure out, after the DCC operation,

which polynomial is the “pivot” polynomial. The PUC works on sorted weight-

ed degrees of the polynomials. As we mentioned earlier, the worst-case X-

degree can be at most 50, thus 8 bits are enough to store the weighted degrees.

With r = 5, the “labeling” operation requires 6 6:1 MUXes and 6 8-input AND

gates. Note that the 8-input AND gate is used to decide whether a computed

discrepancy coefficient, dv(a, b), is equal to 0 or not. They can be mapped to 30,

2 : 1 MUXes and 42 AND gate with the longest path consists of 3 MUXes and 3

AND gates. From Figure 7.9 (c), the “select” operation requires 15 MUXes and

longest path has 3 MUXes on it. Overall, the delay of the PUC unit is equal to

that of 6 MUXes and 3 AND gates. We can choose ξ3 = 2 pipelining stages. it

can be assumed that the 1st pipelining stage is inserted into the 6:1 MUXes of

the “labeling” operation thus requires no more than 6 × 6 = 36 registers. In

addition, 3 registers are required to store the value of η at the output of the 2nd

pipelining stage.
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Table 7.2: Estimation for Gate Counts and Critical Paths
area longest path pipeline

stages

F28 multiplier 77XOR+64AND 6XOR+1AND N/A

F28 adder 8XOR 1XOR N/A

1-bit full adder 2XOR+2AND+1OR 1XOR+1AND+1OR N/A

4-bit CLA 8XOR+21AND+10OR 1XOR+3AND+3OR N/A

Comb. Logic LUT1 35XOR 4XOR N/A

Comb. Logic LUT2 43XOR 4XOR N/A

8-bit Mod. 255 Adder 32XOR+84AND+40OR+10MUX 1XOR+3AND+3OR+3MUX N/A

HME 1362XOR+1280AND 13XOR+7AND 6

+408OR+80MUX +5OR+3MUX

MACE’s 3252XOR+2304AND 10XOR+1AND 3

PUE’s 1057XOR+832AND+768MUX 7XOR+1AND+3MUX 3

PUC 42AND+45MUX 3AND+6MUX 2

total 5713XOR+4416AND N/A N/A

+408OR+893MUX

7.4.5 Overall Area and Throughput Estimate of the Interpola-

tion Architecture

Table 7.4.4 gives the gate count and critical path of each building block, ex-

cept the memory and control block, for our proposed interpolation architecture.

In the table, the gate count and critical path of fundamental hardware modules,

such as the F28 multiplier, is given first, followed by those of large building

blocks, such as the HME. All building blocks are pipelined such that their re-

sulting critical path is no longer than 4 concatenated XOR gates. In Table 7.3, we

give an estimate of the register storage required for the pipelining stages asso-

ciated with the hardware blocks given in Table 7.4.4. With start-of-the-art 90nm

CMOS technology, our architecture can support a clock frequency of over 1.5

GHz considering the critical path delay is only 4 XOR operations. As we have

mentioned in Subsection 7.3.4, the total number of clock cycles required to fin-

ish the interpolation process with a cost equal to C is (� C
2(r+1)�+ξ1 +ξ2 +ξ3)C.

In this example, we have C = 239, r = 5 and ξ1 +ξ2 + ξ3 = 8, thus we need
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Table 7.3: Storage Requirement Estimate
Block HME MACE’s PUE’s PUC Total

Register Count 288 864 864 39 2095

(� 239
12 � + 8)239 = 6692 clock cycles to finish the interpolation process. Thus

the throughput of the interpolation architecture is at least 1.5∗109×8×255
6692 ≈ 450

Mbps.

We would like to mention that the proposed interpolation architecture is

highly scalable, thus it is possible apply more parallelism to both the discrep-

ancy computation and polynomial update engines to obtain even faster de-

sign. For instance, we can process 6 adjacent coefficients in both DCC and

PU operations, the overall processing time for the above example is reduced to

(8 + [239/(12 ∗ 6)]) ∗ 235 = 2820 cycles. Therefore, the throughput is increased

to 6692/2820 ∗ 450Mbps ≈ 1.1 Gbps.

As we have not completed a real design (FPGA or ASIC) using the proposed

architecture, we can only provide a rough comparison with other published

works.

For the design presented in [GKG04], the PU process for each candidate

polynomial is completed in one cycle while different candidate polynomials

are updated sequentially. For the same example discussed above, a total of

235 ∗ 6 = 1410 cycles is needed for the PU process. There was no technical de-

tails given about the DCC process in the paper. We optimistically assume that

their DCC process only contributes 30% of time that their PU process used to the

overall computation delay. Thus the design requires a total of 1410 ∗ 1.3 = 1833

cycles. However, the critical path of the design is quite long. The paper re-

ported a maximum clock speed of 35 Mhz with Xilinx Virtex II 8000. With 90nm

CMOS technology, the maximum clock speed of the corresponding ASIC design

will hardly exceed 500 Mhz. Therefore, the maximum throughput with their ar-

chitecture is no more than 2390/1833 ∗ 500/1800 ∗ 1.5 = 543 Mbps. On the

other hand, their architecture requires significantly more hardware in the PU

part and consumes more power in the overall process. This can be explained as
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follows. As the X degrees of all candidate polynomials incrementally grow, the

hardware utilization efficiency (HUE) would be approximately 50% on average

if we update an entire candidate polynomial at one cycle, where the hardware

has to accommodate for the possibly largest X degree. In our design, we serially

update a small number of adjacent X coefficients for each candidate polyno-

mial. The HUE is very close to 100%. Due to the significantly higher HUE with

our design, we can save nearly 50% hardware and thus 50% power consump-

tion as well for the same target throughput. In addition, as the critical path of

our design is significantly shorter than that of the design presented in [GKG04],

we can further save power by lowering the supply voltage, which will lead to

quadratically reduced power consumption.

Now a comparison between our new interpolation architecture and the ar-

chitecture given in [AKS04b] is provided. First of all, the new architecture

presented in this chapter can be extensively pipelined, while the architecture

in [AKS04b] has an F28 multiplier, an F28 adder and a 2 : 1 MUX in its critical

path, thus the new architecture can support a much higher clock frequency. Sec-

ond of all, the architecture in [AKS04b] does not use overlapped DCC and PU

operations. According to the data provided in Table 3 of [AKS04b], the com-

putation delay of the DCC operation is comparable to that of the PU opera-

tion and is completely added to the overall computation delay. This scenario

is generally true. However, due to the maximally overlapped decoding, the

DCC part in our design only contributes a very small portion in the overall

computation delay for pragmatic cases. Note that the PU operation is basically

straightforward. Although the proposed PU architecture is faster than the one

presented in [AKS04b], we could use the same PU architecture without chang-

ing the overall data flow. In other words, we can assume both designs take the

same amount of cycles in the PU process with equivalent hardware. Overall,

our design will, in general, require less number of cycles for an entire interpo-

lation process. Considering the shorter critical path of the proposed design, we

can fairly claim that our design can generally achieve more than twice higher

throughput than the one presented in [AKS04b]. Another minor point is that
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the DCC process presented in [AKS04b] generally requires more hardware than

the proposed one.

7.5 Conclusions

In this chapter, a novel interpolation architecture for soft-decision Reed-

Solomon decoders is presented. Based on the hybrid data representation, the

proposed architecture not only breaks the bottleneck of the recursive compu-

tation with Horner’s rule, but also enables a maximum overlapping in time

between sequential iteration steps of the interpolation algorithm. By explor-

ing the inherent property of interpolation polynomial growing, the proposed

architecture is very efficient in both area and power. It was also shown that the

proposed architecture is highly scalable and is thus well suited for applications

with various speed requirement. Analysis has been provided to show that the

proposed architecture can achieve significantly higher throughput than other

published works with equivalent or lower hardware complexity.

We have presented the results of Chapter 7, in part, at 2006 International

Symposium on Circuits and Systems (ISCAS), Ma, Jun; Vardy, Alexander; Wang,

Zhongfeng, and IEEE Transactions on VLSI Systems, September 2006 pp. 937-950.

Wang, Zhongfeng; Ma, Jun, The dissertation author was a joint investigator and

co-author of both papers.



CHAPTER 8

Factorization Architecture

Bivariate polynomial factorization is an important step of algebraic soft-

decision decoding of Reed-Solomon codes and contributes to a significant por-

tion of the overall decoding latency. With the exhaustive search based root com-

putation method, factorization latency is dominated by root computation, es-

pecially for RS codes defined over very large finite fields. The root-order pre-

diction method proposed by Zhang and Parhi only improves average latency,

but does not have any effect on the worst-case latency of the factorization pro-

cedure. Thus neither approach is well-suited for delay-sensitive applications.

In this paper, a novel architecture based on direct root computation is proposed

to greatly reduce the factorization latency. Direct root computation is feasible

because in most practical applications of algebraic soft-decision decoding of RS

codes, enough decoding gain can be achieved with a relatively low interpola-

tion cost, which results in a bivariate polynomial with low Y-degree. Compared

with existing works, not only does our new architecture have a significantly

smaller worst-case decoding latency, but it is also more area efficient since the

corresponding hardware for routing polynomial coefficients is eliminated.

139
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8.1 Introduction

Reed-Solomon (RS) codes are the most widely used error-correcting codes

in digital communications and data storage. Recently Sudan and Guruswami

made a breakthrough discovery of a list decoding algorithm [Sud97], [GS99],

which has larger decoding radius than conventional hard-decision decoding

algorithms, such as the Berlekamp-Massey algorithm. The hard-decision list-

decoding algorithm was later extended by Koetter and Vardy [KV03a] to an

algebraic soft-decision decoding algorithm. The Koetter-Vardy (KV) algorithm

has polynomial complexity in codeword length and can achieve significant cod-

ing gain for RS codes of all rates. All of these algorithms involve interpolation

and factorization of bivariate polynomials. The interpolation procedure nor-

mally is more computationally complex than factorization. Thus more research

has been directed at efficient hardware implementation of the interpolation pro-

cedure [AKS03b], [AKS04b], [GKKG02], [GKG04], [MVW06a].

In conventional KV decoding, factorization is performed only once after

all interpolation constraints have been enforced. It has been shown recently

in [AKS03a] that attempting factorization of judiciously selected intermediate

interpolation results multiple times leads to significantly reduced interpolation

complexity in algebraic soft-decision decoding of RS codes. This can be seen

from Fig. 8.1, where simulation results for a (458, 410) RS code defined over F210

are shown. The simulations assume BPSK modulation over the AWGN chan-

nel. If factorization is performed over intermediate interpolation results, the KV

decoder can achieve 0.4dB decoding gain, over the Berlekamp-Massey decoder,

at codeword error rate of 10−6 with a maximum multiplicity value of four. Oth-

erwise, the maximum multiplicity value needs to be at least six. According

to [KV03a], the interpolation cost is approximately n(m+1)m
2 = 458×5×4

2 = 4580

in the former case, while it amounts to 458×7×6
2 = 9618 in the latter case. Thus

about 52 percent reduction in interpolation complexity can be achieved by per-

forming factorization on intermediate interpolation results. With the advent of

this iterative interpolation and factorization technique, the computational com-
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plexity is more balanced between interpolation and factorization, and factoriza-

tion latency becomes a more significant portion in the overall decoding latency.

Thus a low-latency factorization architecture is of great practical value.

One major step of the factorization procedure is root computation for poly-

nomials. The factorization architecture of [AKS04b] uses Chien search to find

roots of a polynomial at the beginning of each iteration. This approach is very

time consuming, especially for RS codes defined over a large finite field. In

[ZP05], a root-order prediction based method was proposed by Zhang and Parhi,

who observed that the orders of roots seldom change between factorization iter-

ations. The VLSI architecture based on this observation can improve the average

factorization latency. However, the worst case latency of [ZP05] is not any better

than that of [AKS04b], because the root-order prediction has a non-zero failure

rate and one has to resort to Chien search after detecting a root-order predic-

tion failure. Thus the root-order prediction based architecture cannot be used in

applications with a stringent latency requirement.

In this paper, we present a fast factorization architecture based on direct

computation of polynomial roots. Direct root computation is only feasible for

low-degree polynomials. Fortunately, this is not a problem for most practi-

cal applications of algebraic soft-decision decoding, where significant decoding

gain can be achieved with relatively low interpolation cost. Low interpolation

cost results in bivariate polynomials with Y-degree lower than five. This is espe-

cially true when the repeated interpolation and factorization method [AKS03a]

is applied. For soft-decision decoding RS codes with a fixed cost C, the high-

est Y-degree of candidate bivariate polynomials, r, can be computed from the

following formula [KV03a]:

r = min{t∈Z : (t + 1)(
t(k − 1)

2
+ k) > C}

For C = 4580 and k = 419 in the previous example of decoding the (458, 410)

RS code, we obtain r = 4. Actually, interpolation costs up to 6139 can be sup-

ported with this choice of r.

Now the applicability of the direct root computation method to bivariate
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Figure 8.1: Decoding performance of a (458, 410) RS code over AWGN channel
with BPSK modulation.

polynomial factorization in practical soft-decision decoding of RS code is estab-

lished. Let us assume, through out the rest of this paper, that we work on a finite

field of 2p elements, i.e., F2p . Chien search based root computation has a latency

on the order of 2p, which is very inefficient for solving low-degree polynomial

equations in a large finite field. As will be shown later, the direct root compu-

tation can be implemented in hardware with a latency on the order of only 2p.

Another advantage of using the direct root finding method over the conven-

tional exhaustive search method is that the order (multiplicity) of each root can

be precisely determined. This leads to a factorization architecture where only

roots of polynomials need to be routed to desired hardware resources. Com-

pared to the architecture of [ZP05], where large number of MUXes are used to

route both roots and polynomial coefficients, our new architecture is more area

efficient.

The rest of the paper is organized as follows. In Section 8.2, we give some

background information on the factorization procedure. Direct root computa-
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tion methods for quadratic, cubic and quartic polynomials defined over F2p are

presented in Section 8.3. An efficient VLSI architecture for direct root compu-

tation is also introduced there. An overall factorization architecture is given in

Section 8.4. Section 8.5 gives an example of factorization architecture for decod-

ing a (458, 410) RS code. Conclusions are drawn in Section 8.6.

Throughout the rest of the paper, only factorization of bivariate polynomials

with Y-degree lower than five are considered.

8.2 Factorization Algorithm and Fast Shift Transform

Currently, the most practical factorization algorithm was proposed by Roth

and Ruckenstein [RR00] and it is repeated below.

Algorithm 4 The Roth-Ruckenstein factorization algorithm

• Input: the bivariate polynomial A(X, Y) and total number of factorization level

∆ .

• Initialization: iteration level i = 0

• Reconstruct
(
A(X, Y), i

)
{
S1: find the largest integer l, such that Xl|A(X, Y).

Q(X, Y) := A(X, Y)/Xl

S2: find all roots γ(i)
0 ,γ(i)

1 , ... of Q(0, Y) in F2p .

if i = ∆− 1, exit;

else, for each root γ(i)
j , do

S3: Q̂(X, Y) = Q(X, Y + γ(i)
j ).

S4: Q̃(X, Y) = Q̂(X, XY) = Q(X, XY + γ(i)
j ).

S5: call Reconstruct(Q̃(X, Y), i + 1).

}

• Output: all sequences {γ(0)
j ,γ(1)

j , ...,γ(δ−1)
j }.
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Let us assume that the bivariate polynomial Q(X, Y) has a Y-degree equal to r

and it can be expressed as Q(X, Y) = ∑r
t=0 Yt ∑s qs,tXs. The two major steps

involved in the factorization algorithm given above are as follows:

1. Root Computation: Find all roots of Q(0, Y) in F2p , where the RS code is

defined.

2. Polynomial Update: For each rootγ of Q(0, Y), compute Q̂(X, Y) = Q(X, Y

+γ) and then Q̃(X, Y) = Q̂(X, XY) as follows:

q̂s,t =
r

∑
t′=t

(
t′

t

)
γt′−tqs,t′ (8.1)

q̃s,t = q̂s−t,t =
r

∑
t′=t

(
t′

t

)
γt′−tqs−t,t′ (8.2)
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Figure 8.2: Hardware architecture for the fast shift transform.

Step 1 will be discussed in detail in Section 8.3. For Step 2, an efficient

method, called FST (fast shift transform) is proposed in [AKS04b]. However,

the hardware architecture given in [AKS04b] only carries out the operation de-

fined by (8.1), while (8.2) is ignored. We present a complete FST architecture as

shown in Fig. 8.2 for bivariate polynomials of Y-degree four. The incremental

number of delay elements (registers) on the output lines are used to convert the

coefficients of Q̂(X, Y) to those of Q̃(X, Y). This can be illustrated with Fig. 8.3,
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where the contents of all registers in Fig. 8.2 of the FST architecture are shown

for the initial seven clock cycles of the polynomial update step. (The registers

represented by the darkened boxes store some intermediate results.) As one can

see, the coefficients of Q̃(X, Y) with the same Y degree always show up at the

rightmost column of the registers simultaneously. Thus Step S1 of the factoriza-

tion algorithm can be implemented by checking the contents of the registers in

the rightmost column of Fig. 8.3. And the first non-zero column of coefficients

are coefficients of Q(0, Y) of the next iteration. As proved in [RR00], when γ is

a root of order δ, it is always true that deg Q(0, Y) ≤ δ for the next iteration.

Thus depending on the multiplicity of the root γ (at most four in our case), it

may take from three to seven clock cycles for the first non-zero column to arise.

We should emphasize that even if δ = 4 for the root γ of a certain iteration, the

degree of the corresponding Q(0, Y) of the next iteration is still uncertain. Note

that all the delay elements should be initialized to 0 at the beginning of each

iteration.

Since only the q̃l,t’s, for t = 0, 1, ..., r, are required in computing the roots

for the next iteration level and all q̃l,t’s are generated together with the FST ar-

chitecture, we can start the root-finding process while the rest of the q̃s,t’s, for

s > l, are being computed. The index l is defined by Step S1 of the factorization

algorithm. This concurrency in the root finding and FST processes can signifi-

cantly reduce the latency associated with the root-finding procedure. Actually

the latency contribution from the root computation step can be completely dis-

counted, except for the very first iteration and for iterations when the polyno-

mial update takes fewer clock cycles than the root computation process. The

overlap in the root computation and polynomial update steps can be illustrated

in Fig. 8.4. In the figure, the number δ represents the number of clock cycles the

elapse before the coefficients are ready for the root computation process.
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Figure 8.3: The values stored in the registers of the FST architecture during the
first few clock cycles.

8.3 Direct Root Computation for Polynomials of De-

gree Lower than Five

A method for directly computing roots of affine polynomials over F2p is

given in [Ber68]. To find roots for a non-affine polynomial, one can apply a
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Figure 8.4: Timing diagram for the concurrent root computation and polynomial
update steps.

transformation to convert the non-affine polynomial to an affine polynomial or

derive the minimum affine multiple of the polynomial. The second approach is

usually very complicated and may not have any advantage in complexity over

the exhaustive search. Fortunately, for low degree(< 5) polynomials, the trans-

formation is sufficient. In this section, method and apparatus for solving poly-

nomial equations of degree lower than five are described. We will show that the

problem of finding roots of any cubic or quartic polynomial can be converted to

the problem of finding roots of a quartic affine polynomial by polynomial trans-

formation. This section is organized as follows: The direct root computation

for affine polynomials is discussed in Subsection 8.3.1. In Subsection 8.3.2, the

method and apparatus for solving simultaneous linear equations are presented.

Transformation of general cubic and quartic polynomials to affine quartic poly-

nomials is discussed in Subsection 8.3.3.

Any number β∈F2p can be expressed as β = ∑p−1
j=0 β jα

j, where α is the

primitive element of the field. Thus the binary vector β = [β0 β1 ... βp−1] can be

used to represent the number β. Throughout this section, an underlined symbol

denotes a binary vector and a double-underlined symbol denotes a matrix. In

logic function expressions, “&” and “|” are used to represent binary AND and

OR operations, respectively. A bar placed on top of a letter indicates a logic

inversion.

8.3.1 Direct Root Computation for Affine Polynomials over F2p

A polynomial f (Y), over F2p , is said to be an affine polynomial iff f (Y) can

be expressed as f (Y) = ∑ j≥0 f jY2 j
+ h. For an element y∈F2p , which can be
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represented with standard basis as y = ∑p−1
i=0 yiα

i, we have

f (y) = ∑
j≥0

f j(
p−1

∑
i=0

yiα
i)2 j

+ h

= ∑
j≥0

f j(
p−1

∑
i=0

yi(αi)2 j
) + h

=
p−1

∑
i=0

yi ∑
j≥0

f j(α2 j
)i + h.

The second equality can be derived from a property of the linearized polyno-

mial ∑ j≥0 f jY2 j
. If we define hi

def= ∑ j≥0 f j(α2 j)i for i = 0, 1, ..., p − 1, the above

equation can be rewritten as f (y) = ∑p−1
i=0 yihi + h. In other words, the roots of

polynomial f (Y) satisfy the following linear equation array

y




h0

h1

...

hp−1


 = h, (8.3)

where hi’s are the vector notation representation of hi’s defined above. Thus

the problem of finding roots of an affine polynomial f (Y) can be converted to

the problem of solving p simultaneous linear equations as shown in (8.3). Since

all α2i
’s are known a priori, the p× p binary matrix can be constructed with the

circuit shown in Fig. 8.5 once the coefficients fi’s are available.

8.3.2 Solving Binary Linear Equation Array

As discussed in the previous section, finding roots of an affine polynomial

with coefficients in F2p is equivalent to solving the following linear equation

array y M = z, where y and z are binary p-tuple row vectors and M is a binary

p-by-p matrix. An efficient algorithm for solving simultaneous linear equations

has been derived by Berlekamp [Ber68]. In this subsection, we present a fast

VLSI architecture to implement the algorithm.
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Figure 8.5: Circuit for constructing the p × p binary matrix for affine
polynomials.

According to [Ber68], the matrix M should be transformed to the reduced

triangular idempotent (RTI) form. A p-by-p matrix is in the RTI form iff every

entry below the main diagonal is 0, every entry on the main diagonal is either 0

or 1, and every entry in the same column as a main-diagonal 0 or the same row

as a main-diagonal 1 is 0. It can be easily proved that such a matrix M̂ has the

property that M̂
2 = M̂. Berlekamp [Ber68] also gives the following theorems:

Theorem 8.1. If M̂ is in RTI form, then the row vector y is a solution to the

equation y M̂ = 0 iff y is a linear combination of rows of the matrix (M̂ − I),

where I is the identity matrix. Similarly, the row vector y is a solution to the

equation y(M̂− I) = 0 iff y is a linear combination of rows of the matrix M̂ and

y is such a linear combination iff the product of each component of y and the

corresponding diagonal component of (M̂− I) is 0.

Proof. The theorem can be proved by re-writing the property of the RTI-form

matrix, i.e., M̂
2 = M̂, as M̂(M̂− I) = 0 or (M̂− I)M̂ = 0.

Theorem 8.2. Any square matrix can be transformed to the RTI form by appro-

priate column operations.

Theorem 8.2 can be proved in a constructive way by applying the matrix-

reduction algorithm given in [Ber68] and deduction. The matrix-reduction al-
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gorithm is outlined as follows:

Algorithm 5 The matrix-reduction algorithm For an p-by-p binary matrix, the pro-

cedure consists of repeating the following three steps p times:

1. If the topmost leftmost component is 1, do nothing. Otherwise, exchange the

leftmost column with the leftmost of columns whose top component is 1 and whose

main-diagonal component is 0. If no such column exists, exchange the leftmost

column with the leftmost of columns whose top component is 1 and whose main-

diagonal component is 1. If there is no column whose top component is 1, do

nothing. We refer the column chosen to exchange with the leftmost column the

pivot column.

2. Zero the top component of all columns whose top components is 1, except the

leftmost column, by adding (modulo 2) the leftmost column to these columns.

3. Circularly shift the rows upward and circularly shift the columns leftward.

Berlekamp [Ber68] gives the following lemma without a proof. In the fol-

lowing, the lemma and a complete proof is presented.

Lemma 8.3 After the three steps listed above have been performed k times, the

first p− k columns contain 0’s in their bottom k rows, and the lower right k-by-k

matrix is in RTI form.

Proof. The proof is carried out by induction on k. For k = 1, after Step 2, the top

row either has all 0’s or its leftmost component is 1 with the rest equal to 0. After

Step 3, the bottom row either has all 0’s or its rightmost component is 1 with the

rest equal to 0. Thus the condition is satisfied. Now let us assume that the

condition is satisfied for k = l > 1 and we use M(l) to represent the matrix after

l rounds of three-step operations defined above. When k = l + 1, we consider

the following three cases. Case 1, assume the top row is an all-zero row. In this

case, after Step 3, the top l rows of the lower left (l + 1)-by-(p − l − 1) matrix

are all 0’s since the components come from the lower left l-by-(p − l) matrix

after the l rounds of operations. And this matrix is an all-zero matrix from our
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assumption. The last row of the lower left (l + 1)-by-(p − l − 1) matrix are all

0’s since the components come from the top row, which is assumed to be all

0’s. For the lower right (l + 1)-by-(l + 1) matrix, its upper left l-by-l sub-matrix

comes from the lower right l-by-l RTI-form matrix in M(l) and components in its

bottom row and rightmost column are all 0’s since they come from the top row

and the l bottom components of the leftmost column of M(l). Thus by definition

of the RTI form, the lower right (l+1)-by-(l+1) matrix is still in the RTI form. Case

2, let us assume that either the topmost and leftmost component of M(l) is 1 or

the column chosen to exchange with the leftmost column is one of the (p − l)

leftmost columns. In either case, after Step 2, the top row of M(l) becomes all 0’s

except the leftmost component of the top row and the lower l rows of M(l) are

intact since the bottom l rows of the (p− l) leftmost columns of M(l) are all 0’s.

After the circular row and column shifts of Step 3, the only difference from Case

1 is that a 1 shows up in the bottommost and rightmost component. This still

makes the lower right (l + 1)-by-(l + 1) matrix RTI form by definition. Case 3,

assume that in Step 1 the leftmost column needs to be exchanged with a column

among the l rightmost columns. If the main-diagonal component of the pivot

column is 1, then after exchange, the corresponding column in the lower right

l-by-l matrix is replaced with an all-zero column from the bottom l components

of the leftmost column of M(l). Then in Step 2, only columns to the right of

the original pivot column may be added by the leftmost column and all such

columns have a 1 as their main-diagonal component since otherwise, the pivot

column would not have been chosen to be that one in first place! Thus after Step

2, the lower right l-by-l matrix is still in the RTI form. The lower l components

of the leftmost column are not all-zero but after the shifts, they become the top l

components in the rightmost column of the lower right (l + 1)-by-(l + 1) matrix

and all conditions of the lemma are satisfied. If the main-diagonal component

of the pivot column is 0, the lower l components of the pivot column are all

0’s according to the definition of the RTI form. This is no different from Case

2. Thus we conclude that after the (l + 1) rounds of three-step operations, the

conditions in the lemma are still satisfied.
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Therefore, Theorem 8.2 can be proved with a combination of Algorithm

5 and Lemma 8.3. The equation y M = z for z 	= 0 can be augmented as

[y 1]

[
M

z

]
= 0. Let us assume that p-by-p matrix M is transformed to a p-by-

p matrix M̂ of the RTI form and the same column operations are applied to row

vector z to transform it to ẑ. Solutions to the original equation are equivalent

to solutions of the transformed equation [y 1]

[
M̂

ẑ

]
= 0, or y M̂ = ẑ. If there

exists a non-zero element in ẑ, say zi, such that the corresponding column (the

ith column) of M̂ is an all-zero column, we have the following equation:

y00 + y10 + ... + yp−10 + zi = 0.

This equation is a contradiction, thus neither the original equation array nor the

transformed equation array has a solution. Otherwise, every all-zero column in

M̂ corresponds to a zero element in ẑ. This translates to the fact that the prod-

uct of each component of ẑ and the corresponding main-diagonal component

of (M̂− I) is 0, which, according to Theorem 8.1, infers that ẑ is a linear combi-

nation of the rows of matrix M̂. From the same theorem, we also get ẑ = ẑ M̂,

thus y = ẑ is a solution to equation y M̂ = ẑ. We also know that solutions to

the equation y M̂ = ẑ also include y = ẑ + y′, where y′ is a solution to equation

y M̂ = 0.

In summary, solving equation y M = z for z 	= 0 consists of three steps.

1. Apply Algorithm 5 to transform M to M̂ of the RTI form. Same column

operations are applied simultaneously to row vector z to convert it to ẑ.

2. Form matrix (M̂− I).

3. Check whether the products of all components of ẑ and the corresponding

main-diagonal component of (M̂− I) are 0. If not, declare “no solution”.

Otherwise, solutions consist of ẑ plus any linear combination of the rows

of matrix (M̂− I).
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The most computation-intensive step in the procedure given above is the

matrix reduction as described by Algorithm 5. It turns out that a key part of

the algorithm is to decide which column to exchange with the leftmost column

and this can be done with the method given in [Ber68]. To facilitate the descrip-

tion of the algorithm and its circuit implementation, we introduce the following

notation. Let {i : i = 0, 1, ..., p − 1} denote the indices of the columns of the

matrix, where the leftmost column has index 0, and define the following three

sets of variables:

• {Di} : the diagonal element on the ith column.

• {Ti} : the ith leftmost component on the top row.

• {Ei} : whether the ith column should be exchanged with the leftmost col-

umn (the 0th column).

In [Ber68], the Ei’s are computed from the Di’s and Ti’s. First, intermediate

variables Ai’s, for i = −1, 0, ..., 2p− 1, are introduced. Ai’, for i = 0, 1, ..., p− 1,

are set to 0 if no column with index less than or equal to i contains a 1 in the

top position and a 0 in the diagonal position . If the ith column has a 1 in the

top component and a 0 in the diagonal component, Ai is set to 1; otherwise, Ai

is set to be the same as Ai−1. Ai, for i = p, p + 1, ..., 2p − 1, is set to 0 iff all

A0 = A1 = ... = Ap−1 = 0 and no column with indices less than or equal to

i− p has a 1 in the top position. For i = p, p + 1, ..., 2p− 1, if column i− p has a

1 as its top component, Ai is set to 1; otherwise, Ai is set to be the same as Ai−1.

Thus the Ai’s can be computed with the following formula:


A−1 = 0 initialization

Ai = (Ti&D̄i)|Ai−1 if i = 0, 1, ..., p− 1

Ai = Ti−p|Ai−1 if i = p, p + 1, ..., 2p− 1

(8.4)

For the special case of i = 0, we define D0 = 0, thus we have T0&D̄0 = T0, and

the Ei’s can be generated by the following formula

Ei = (Ti&Āi+p−1)|((Ti&D̄i)&Āi−1), for i = 0, 1, ...p− 1.
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It is easy to verify that at most one of the Ei’s can be set as 1. The circuit [Ber68]

shown in Fig. 8.6 and Fig. 8.7 can be used to compute all Ei’s and decide which

column to exchange with the leftmost column. The circuit, though straightfor-

ward, has a long critical path delay. As can be seen from Fig. 8.6 and Fig. 8.7,

the longest path consists of 2p OR gates, two AND gates and two inverters.

Ti

Di

1−iA

1−+ piA piA +

iA
iE

Figure 8.6: Logic circuit design of one cell.

Cell 0 Cell 1

pA

0E

Cell (p-1)

0A
D1

T1

1−pA

01 =−A
D0

T0

22 −pA

2−pA
Dp-1

Tp-1

1E 1−mE

1+pA

1A

Figure 8.7: Logic circuitry for deciding which column of the binary matrix to
exchange with the leftmost column.

The long critical path delay results from the recursive computation of Ai’s

as given in (8.4). In the rest of the subsection, we present a faster implementa-

tion that significantly reduces the critical path delay of the design presented

in [Ber68]. First, let us define Si = Ti&D̄i, Vi = Ti&S̄i = Ti&Di for i =

0, 1, ..., p− 1. Instead of letting the Ai’s ripple across the longest path, we choose

to compute them all in parallel as follows:

A0 = S0

A1 = S0|S1

...
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Ap−1 = S0|S1|...|Sp−1

Ap = T0|S1|S2|...|Sp−1

Ap+1 = T0|T1|S2|S3|...|Sp−1

...

A2p−1 = T0|T1|...|Tp−1.

Thus the Ei’s can be computed as follows:

E0 = (T0&Āp−1)|(S0&Ā−1)

E1 = (T1&Āp)|(S1&Ā0)

= (T1&T̄0&S̄1&...&S̄p−1)|(S1&S̄0)

= (T̄0&V1&S̄2&...&S̄7)|(S1&S̄0)

...

Ep−1 = (Tp−1&Ā2p−2)|(Sp−1&Āp−2)

= (Tp−1&T̄0&T̄1&...&T̄p−2&S̄p−1)

|(Sp−1&S̄0&S̄1&...&S̄p−2)

= (T̄0&T̄1&...&T̄p−2&Vp−1)

|(Sp−1&S̄0&S̄1&...&S̄p−2).

It is easy to see that for the special case of i = 0, we have E0 = T0. Thus

the Ei’s can be generated from the circuitry shown in Fig. 8.8 and Fig. 8.9. The

AND array in Fig. 8.9 is made of binary-tree type AND gates of at most �log2 p�
levels. The longest path in this implementation consists of one inverter, one OR

gate, and �log2 p� + 1 AND gates, which is much shorter than the one in Fig.

8.7, especially for large p. The required hardware can be estimated as follows:

two inverters, two AND gates and one OR gate are required for one logic cell

shown in Fig. 8.8, which amounts to 2p inverters, 2p AND gates and p OR gates

for p such logic cells. The number of AND gates required for the binary-tree
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type AND gate array is equal to (p− 1)2 + 0.5p(p − 1) = 1.5p2 − 2.5p + 1. In

addition, (p− 1) OR gates have to be used. In summary, to compute all Ei’s, a

total of (1.5p2 − 0.5p + 1) AND gates, (2p − 1) OR gates and 2p inverters are

needed.

Di

Ti

iT

iS

iV

iS

Figure 8.8: Logic circuit design of one cell.
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1V
0S0S
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AND arrayAND array

Cell 0

0T

Cell 1

1T

AND array

Cell p-1

1E 1−pE0E

Figure 8.9: Logic circuit for deciding which column of the binary matrix to ex-
change with the leftmost column.

After all the Ei’s are determined by the logic circuit discussed above, the

column exchange operation and the other two steps of Algorithm 5 can be im-

plemented with the circuit shown in Fig. 8.10, where the Steps 2 and 3 in Algo-

rithm 5 are carried out in one clock cycle. These two steps are combined because

each of them has a shorter critical path delay than Step 1 of Algorithm 5. Com-

bining these two steps not only makes the design more balanced, in terms of
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Table 8.1: Hardware unit counts for implementation of the matrix reduction
algorithm

Unit Type Inverter AND OR
Count 2p 3.5p2 − 1.5p p2 + 2p− 2

Unit Type XOR MUX Register
Count p2 − p 2p2 + p− 1 p2 + p

critical path delay, but it also reduces the total number of clock cycles required

for the matrix reduction algorithm by 33%. In the figure, only the ith row of

the (p + 1)× p register matrix is shown and the rest of the circuitry is similar.

The input to each register in the figure is controlled by a 2:1 MUX, correspond-

ing to the two clock cycles required for each iteration. Astute readers might

have realized that for the pth row, all registers, except the rightmost one will be

loaded with 0’s at the end of the second clock cycle during each iteration. This

results from Step 2 of the algorithm. Thus we can save p − 1 copies of AND

and XOR gates used to generate input to the 2:1 MUX during the second clock

cycle. A careful counting shows that the circuit in Fig. 8.10 requires a total of

(p + 1)(p− 1) + p(p− 1) = 2p2− p− 1 AND gates, (p + 1)(p− 1) = p2− 1 OR

gates, p(p− 1) = p2− p XOR gates and (p + 1)p + (p + 1)(p− 1) = 2p2 + p− 1

MUXes. Combined with the logic required to compute all Ei’s and the (p + 1)p

registers used to store the matrix, an estimate of the number and type of hard-

ware units required to implement the matrix reduction algorithm is given in

Table 8.1.

From Figures 8.8, 8.9 and 8.10, we can see that the critical path of the en-

tire matrix reduction circuitry consists of one 2:1 MUX, �log2 p�+ 2 AND gates,

�log2 p�+ 1 OR gates, and one inverter.

At the end of the matrix reduction procedure, the solutions are embedded

in the resulting matrix M̂− I and vector ẑ. Since the quartic (or lower degree)

affine polynomial has at most four distinct roots, at most two out of the p rows

of matrix M̂ − I can be non-zero. However, the exact locations of these two

rows are unknown. If we use z0 and z1 to denote the two numbers represented

by the two non-zero rows, the architecture shown in Fig. 8.11 can be used to
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Mi+1,0

Mi,0

binary 
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E1 Ep-1

M0,1

Mi+1,1

M0,2M0,0 M0,p-1

E0

Figure 8.10: Architecture for the two-step matrix operations.

“extract” z0 and z1 from the matrix. In the figure, Mi’s denote the F2p numbers

represented by rows of the matrix M̂− I and Bi’s are binary variables such that

Bi =

{
1, if Mi 	= 0;

0, otherwise.

Note that z0 and z1 can be distinct or identical, and both of them can be

equal to 0, depending on the coefficients of the polynomial equation. Various

outcomes of z0 and z1 will be exploited in Subsection 8.3.4 to determine the root

conditions, such as total number of distinct roots and orders of each root found.

8.3.3 The Linear, Quadratic, Cubic and Quartic Polynomials

In this subsection, techniques described in earlier subsections are applied to

root computation for polynomials of degree lower than five. For a linear polyno-

mial, finding its root only takes a division operation. The quadratic polynomial

f (Y) = aY2 + bY + c, where a, b, c∈F2p , is affine in nature. Let us represent root

y of f (Y) = 0 as y = ∑p−1
i=0 yiα

i. From the property of linearized polynomial,
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Figure 8.11: Architecture for computing roots from the reduced triangular idem-
potent matrix.

one can write

ay2 + by =
p−1

∑
i=0

yi(aα2i + bαi).

Let hi = aα2i + bαi for i = 0, 1, ..., p − 1, then equation ay2 + by = c can be

re-written as

y




h0

h1

...

hp−1


 = c,

where




h0

h1

...

hp−1


 is a p by p matrix. Allα2i’s andαi’s can be pre-computed, once

a and b are known, the hi’s forming the matrix can be generated, thus finding

root translates into solving the linear binary equation array with p unknowns

above.

For a cubic polynomial f (Y) = f3Y3 + f2Y2 + f1Y + f0, f (Y) = 0 can be
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re-written as Y3 + f2
f3

Y2 + f1
f3

Y + f0
f3

= 0. This can be further modified as f 2
3 (Y +

f2
f3

)3 + ( f 2
2 + f1 f3)(Y + f2

f3
) + f1 f2 + f0 f3 = 0. A replacement of variable Z =

Y + f2
f3

and defining adef= f 2
3 , bdef= f 2

2 + f1 f3 and cdef= f1 f2 + f0 f3 lead to

aZ3 + bZ + c = 0.

The computation of a, b and c can be achieved with the circuit shown in Fig.

8.12.

3f
2f

1f
0f X

+

+

a

b

c

D D D

sqr D D D

2
2f 2

3f
2

3f

21 ff
30 ff31 ff

Figure 8.12: Architecture for transforming a general cubic polynomial to an
affine quartic polynomial.

Multiplying both sides by Z in the above equation, we get

aZ4 + bZ2 + cZ = 0.

This is a linearized polynomial and from its property, its root z = ∑p−1
i=0 ziα

i

satisfies

az4 + bz2 + cz =
p−1

∑
i=0

zi(aα4i + bα2i + cαi)

In matrix form, defining hi = aα4i + bα2i + cαi for i = 0, 1, ..., p− 1, the roots of

aZ4 + bZ2 + cZ = 0 satisfy the following equation

z




h0

h1

...

hp−1


 = 0
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All α4i’s, α2i’s and αi’s can be pre-computed, once a, b and c are computed

from the coefficients fi’s, the hi’s that form the matrix can be generated, thus

finding root z translates into solving the linear binary equation array with p

unknowns. Once a root z is found, it can be shifted to get root y for the original

cubic polynomial.

Even though a method and apparatus to convert a general cubic polynomial

to an affine polynomial is given here, we will show later that cubic polyno-

mial can be handled with the same hardware resource that transforms a general

quartic polynomial to an affine polynomial.

In the case of a quartic polynomial f (Y) = f4Y4 + f3Y3 + f2Y2 + f1Y + f0, if

f3 	= 0, f (Y) = 0 can be re-written as

Y4 +
f3
f4

(Y3 +
f2
f3

Y2 +
f1
f3

Y +
f0
f3

) = 0.

The following “shift” transformation can be applied:

Y4 +
f3
f4

(Y3 +
f2
f3

Y2 +
f1
f3

Y +
f0
f3

)

= Y4 +
f3
f4

((Y +

√
f1
f3

)3 + (

√
f1
f3

+
f2
f3

)Y2 + (

√
f1
f3

)3 +
f0
f3

)

= Y4 +
f3
f4

(
(Y +

√
f1
f3

)3 + (

√
f1
f3

+
f2
f3

)(Y +

√
f1
f3

)2 +
f2 f1
f 2
3

+
f0
f3

)

= (Y +

√
f1
f3

)4 +
f3
f4

(Y +

√
f1
f3

)3 +
f3
f4

(

√
f1
f3

+
f2
f3

)(Y +

√
f1
f3

)2

+
f3
f4

f2 f1
f 2
3

+
f0
f4

+ (
f1
f3

)2

Note that
√

f1
f3

always exists in the same field that the polynomial is defined

on due to the following reason. Let h = f1
f3

= αt, where α is the primitive

element that defines the field. If t is even, than
√

h = αt/2; otherwise, αt =

α(t+2p−1) and (t + 2p − 1) is an even number, thus
√

h = α(t+2p−1)/2. We now

define adef= f3, bdef=(
√

f1 f3 + f2), cdef= f2 f1
f3

+ f0 + ( f1
f3
)2 f4, and define the variable

substitution Zdef= 1

Y+
√

f1
f3

. Note that the variable substitution through shifting
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and reciprocation is valid only if y =
√

f1
f3

is not a root of polynomial f (Y),

or equivalently c 	= 0. In this case, finding roots y of f (Y) = 0 is equivalent

to finding roots z of polynomial g(Z) = cZ4 + bZ2 + aZ + f4 = 0 followed by

reciprocation and shifting operations. On the other hand, if c = 0, then y =
√

f1
f3

is a root of the original polynomial, and this root cannot be found by solving

g(Z) = 0. In this case, root y =
√

f1
f3

has a multiplicity of at least two. It may

have a multiplicity of three if b = 0 and a 	= 0, and it may have a multiplicity of

four if b = 0 and a = 0. In this case, roots other than y =
√

f1
f3

, if exist, can still

be derived from solutions of g(Z) = 0.

Polynomial cZ4 + bZ2 + aZ + f4 = 0 is an affine polynomial and its root

z = ∑p−1
i=0 ziα

i satisfies

cz4 + bz2 + az =
p−1

∑
i=0

zi(cα4i + bα2i + aαi) = f4

In matrix form, defining hi = cα4i + bα2i + aαi for i = 0, 1, ..., p− 1, the roots of

equation cZ4 + bZ2 + aZ = 1 satisfy the following equation

z




h0

h1

...

hp−1


 = f

4

Allα4i’s,α2i’s andαi’s can be pre-computed, once a , b and c are computed from

the coefficients fi’s, the hi’s that form the matrix can be generated, thus finding

root z translates into solving the linear binary equation array with p unknowns

above. Once a root z is found, it can be inverted and shifted to obtain root y for

the original quartic polynomial.

Note that the above transform is necessary only if f3 	= 0. If f3 = 0, i.e.,

the polynomial equation to be solved is f4Y4 + f2Y2 + f1Y + f0 = 0, which is

an affine polynomial in the first place. In matrix form, defining hi = f4α4i +

f2α2i + f1αi for i = 0, 1, ..., p − 1, the roots y = ∑p−1
i=0 yiα

i of the affine polyno-
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mial satisfy:

y




h0

h1

...

hp−1


 = f0.

The transform from general quartic to affine quartic polynomials can be per-

formed by the architecture given in Fig. 8.13, which is highly optimized for area

and latency. As shown by the timing diagram in Fig. 8.14, it takes only five clock

cycles for the architecture to complete the transform. The hardware complexity

is reduced to the minimum, as only one multiplier and one inverter are used.

The multiplier is time-shared among several multiplications required by the

transform, which are arranged in such an optimal way that no de-multiplexer

is required at the multiplier’s output and that the multiplier has an 80% uti-

lization efficiency. The inputs to the multiplier are selected by two 4:1 MUXes,

which can be controlled by the same set of signal.
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1f
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b

4f
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X
+
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Figure 8.13: Architecture for transforming a general quartic polynomial to an
affine quartic polynomial.

To optimize resource utilization, the quartic polynomial equation solver can

be configured to solve cubic polynomial equations. The MUXes at the input and

output of Fig. 8.13 serves this purpose. As will be shown in Section 8.4, there is

no need for a separate cubic polynomial equation solver. The control signals sin

and sout are defined as follows:

sin =

{
1, if deg Q(0, Y) = 3;

0, otherwise.
sout =

{
1, if f3 == 0;

0, otherwise.
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Figure 8.14: Timing diagram for transforming a general quartic polynomial to
an affine quartic polynomial.

8.3.4 Root Order Determination

The orders of the roots found at a certain iteration level of the factorization

algorithm are key to resource allocation and scheduling of the next iteration

level. In [ZP05], the order of each root found at a certain iteration is predicted

based on the statistics collected from simulations. Polynomial and root schedul-

ing for succeeding iterations are made accordingly. The prediction, though ac-

curate most of the time, has a non-zero failure rate. Thus a mechanism to check

the correctness of the prediction has to be applied. Once a prediction fails, an

exhaustive root search has to be carried out and hardware resources need to be

reallocated, which leads to longer latency for the factorization procedure. In

addition, a large number of MUXes are needed to route polynomial coefficients

to different polynomial update engines. This issue can be completely circum-

vented by using the direct root computation since the order of the roots found

by direct computation can be precisely determined. To illustrate this for a quar-

tic polynomial, we start with the following theorem.

Theorem 8.4 The roots of a quartic affine polynomial of the following form

X4 + µ2X2 + µ1X + µ0 = 0, where µ0,µ1,µ2 ∈F2p , have the following prop-

erties:

• The polynomial can have no root, one single root, two distinct roots, or

four distinct roots in F2p .

• If the polynomial only has one root, the root can only be of multiplicity

one or four.
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• If the polynomial has two distinct roots, either both roots are of multiplic-

ity one or both roots have a multiplicity of two.

Proof. From Section 8.3.2, if there is no solution to the binary linear equation

array, the polynomial X4 +µ2X2 +µ1X +µ0 = 0 does not have any root in F2p .

On the other hand, if a solution exists for X4 + µ2X2 + µ1X + µ0 = 0, matrix

(M̂− I) can have zero, one or two non-zero rows. These correspond to the one-

root, two-root and four-root cases, respectively. In other words, it is impossible

for the equation to only have three distinct roots in F2p .

If only one root, γ ∈F2p , is found, γ can certainly be a root of multiplicity

four, and a necessary condition is that µ1 = µ2 = 0. Let us now assume that

γ has a multiplicity of three. Thus X4 + µ2X2 + µ1X + µ0 can be factorized, in

a larger field, as X4 + µ2X2 + µ1X + µ0 = (X + γ)3(X + η) where η /∈ F2p .

However, we then have η = µ0
γ3 ∈F2p , which contradicts our assumption. Thus

the single root γ cannot have a multiplicity of three. If γ has a multiplicity of

two, then we have X4 + µ2X2 + µ1X + µ0 = (X + γ)2(X2 + η1X + η0) where

η0, η1 ∈F2p and X2 + η1X + η0 can not be further factorized in F2p . Apparently,

η1 	= 0 otherwise the square root of η0 always exists in F2p and X2 + η1X + η0

can be further factorized. Then it can be derived that

X4 +µ2X2 +µ1X + µ0 = (X2 + γ2)(X2 + η1X + η0)

= X4 + η1X3 + (γ2 + η0)X2 + γ2η1X + γ2η0

and a contradiction occurs since η1 	= 0 in the right hand side (RHS) but there

is no cubic term in the left hand side (LHS) of the equation above. At last, if a

single root γ exists and either µ1 	= 0 or µ2 	= 0, γ can only have a multiplicity

equal to one.

Now let us consider the case when two distinct roots γ1 and γ2 are found. If

one of them, say γ1, has a multiplicity of three and the other is of multiplicity

one, we have

X4 + µ2X2 +µ1X +µ0 = (X + γ1)3(X + γ2)

= X4 + (γ1 + γ2)X3 + (γ2
1 + γ1γ2)X2 + (γ3

1 + γ2
1γ2)X + γ3

1γ2
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Since the LFS of the equation above does not have any cubic term, we must

have γ1 = γ2 in the field of characteristic two, which contradicts the fact that

γ1 	= γ2. Now if both roots are of multiplicity two, it can be easily derived that

a necessary condition for this to happen is that µ1 = 0. In addition, if one of the

roots, say γ1, has a multiplicity of two and the other root γ2 has a multiplicity

equal to one, we must have the following factorization: X4 +µ2X2 +µ1X +µ0 =

(X +γ1)2(X +γ2)(X + η), where η /∈ F2p . By the same arguments used earlier,

there is a contradiction. At last, if two distinct roots exist and µ1 	= 0, both of

the roots must have a multiplicity equal to one.

Note that given the number of distinct roots already known, all necessary

conditions mentioned above are also sufficient conditions.

Now we apply the theorem above to the original polynomial f (Y) = f4Y4 +

f3Y3 + f2Y2 + f1Y + f0 of Subsection 8.3.3. Though f (Y) may not be affine in

nature, the condition of its roots can be inferred from the theorem and from z0,

z1 and ẑ. (One may recall from Subsection 8.3.2 that z0 and z1 are the two num-

bers “extracted” from matrix M̂− I, which, as well as vector ẑ, are outcome of

the matrix reduction procedure.) Let us define binary variables {Ci, i = 0, ..., 6}
as follows:

C0 =

{
1, if equation y M̂ = z has solution;

0, otherwise.

C1 =
{

1, if z0 = z1;
0, otherwise. C2 =

{
1, if z0 = 0;
0, otherwise.

C3 =
{

1, if f3 = 0;
0, otherwise. C4 =

{
1, if a = 0;
0, otherwise.

C5 =
{

1, if b = 0;
0, otherwise. C6 =

{
1, if c = 0
0, otherwise.

For the case of deg Q(0, Y) = 4, the resulting roots and their associated or-

ders from solving quartic equation f (Y) = f4Y4 + f3Y3 + f2Y2 + f1Y + f0 = 0

are listed in the following table. In a word, the root conditions can be derived

from evaluating the logic functions in the second column of the table. To keep

the brevity of the paper, the combinational logic circuit used to evaluate those

logic functions is not given. Since the quartic polynomial equation solver is also
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Table 8.2: Root conditions for quartic polynomials
Case Condition Root(s) and Order(s)

0 (C0&C3&C4&C5&C̄6) 1 root (ẑ) of order 4

1 (C̄0&C̄3&C4&C5&C6) 1 root (
√

f1
f3

) of order 4

2 C̄0&C̄3&C̄5&C6 1 root (
√

f1
f3

) of order 2

3 C0&C1&C2&C3&C̄6 1 root (ẑ) of order 1

4 C0&C1&C2&C̄3&C̄6 1 root (1
ẑ +
√

f1
f3

) of order 1
5 2 roots (ẑ and ẑ + z0)

(C0&C1&C̄2&C3&C4&C̄6) both of order 2

6 (C0&C1&C2&C̄3&C4&C6) 2 roots (
√

f1
f3

and 1
ẑ +
√

f1
f3

)
both of order 2

7 C0&C̄3&C5&C6 2 roots, one (
√

f1
f3

) of order 3

and the other (1
ẑ +
√

f1
f3

) of order 1
8 2 roots (ẑ and ẑ + z0)

C0&C1&C̄2&C3&C̄4&C̄6 both of order 1

9 C0&C1&C̄2&C̄3&C̄4&C̄6 2 roots (1
ẑ +
√

f1
f3

and
1

ẑ+z0
+
√

f1
f3

) both of order 1

10 C0&C1&C̄2&C6 3 roots, one (
√

f1
f3

) of order 2,

the other two (1
ẑ +
√

f1
f3

and 1
ẑ+z0

+
√

f1
f3

) of order 1
11 4 roots (ẑ, ẑ + z0, ẑ + z1, and

C0&C̄1&C̄2&C3 ẑ + z0 + z1), all of order 1

12 C0&C̄1&C̄2&C̄3 4 roots (1
ẑ +
√

f1
f3

, 1
ẑ+z0

+
√

f1
f3

,
1

ẑ+z1
+
√

f1
f3

, and
1

ẑ+z0+z1
+
√

f1
f3

), all of order 1

13 C̄0&C̄6 no roots
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used to find roots for lower-degree polynomials, similar tables can be obtained

for the cases of deg Q(0, Y) < 4.

The architecture shown in Fig. 8.15 can then be used to generate the roots of

the polynomial under consideration. Depending on the degree and coefficients

of the polynomial, the total number of roots and the orders of the roots are

different. As will become clear in the context of the overall factorization archi-

tecture, the control signal of the switch in Fig. 8.15 should be designed in such

a way that appropriate roots are routed to the four output ports, γ0 through γ3.

In the worst case, four 5:1 MUXes for p-bit inputs are needed to implement the

switch.
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Figure 8.15: Root computation from results of the matrix reduction procedure.

8.4 Overall Factorization Architecture

A parallel factorization architecture, where root computation and polyno-

mial update by FST (fast shift transform) for all Q(X, Y) in the same itera-

tion level are carried out simultaneously, is given in Fig. 8.16. Since we only

deal with bivariate polynomials of Y-degree four, a maximum of four copies of

the bivariate polynomial coefficient buffer and corresponding FST engines are
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needed. In Fig. 8.16, the superscript (i) in Q(i)
j (X, Y), Q(i)

j (0, Y) and γ(i)
j, j′ indi-

cates the iteration level, the subscript j identifies the bivariate polynomial at the

iteration level, and the second subscript j′ in γ(i)
j, j′ is used as root indices. For

example γ(i)
1,1 refers to the second root found from solving equation Q(i)

1 (0, Y)

at iteration level i. There are three types of equation solvers in our architecture,

namely, linear, quadratic and quartic equation solvers. As mentioned in Subsec-

tion 8.3.3, the quartic equation solver unit can be configured to compute roots

for lower degree polynomials. Though it is more area efficient to solely use the

quartic equation solver to handle all polynomial equations of degree lower than

five, applying the quartic polynomial equation solver to linear polynomial is

certainly an “overkill” and causes unnecessary delay. In addition, our simula-

tions indicate that, with a high probability, only linear equations arise in subse-

quent iteration levels. Thus a linear equation solver is used as a “slave” engine

to the quartic equation solver. By doing so, the worst-case factorization latency

is not improved, but the average factorization delay is greatly reduced. The

same argument applies to the linear equation solver bundled with the quadratic

equation solver in Fig. 8.16. In summary, a total of four linear equation solvers,

one quadratic equation solver and one quartic equation solver are used in our

architecture. For the linear equation solver, the RC1 architecture of [ZP05] can

be used. As one can see, the two extra linear equation solvers only cost two

F2p inverters and multipliers, two 2:1 MUXes and two p-bit registers. The root

condition check block associated with the quartic equation solver consists of

combinational logic used to evaluate the logic functions given in the second col-

umn of Table 8.2. It takes the polynomial coefficients (a, b and c), results of the

matrix reduction procedure (ẑ, z0 and z1), f3, etc., as inputs and generates a con-

trol signal for the switch given in Fig. 8.15. A similar root condition check block

is used for the quadratic equation solver as well. In addition, the root MUX

controller block is used to generate controlling signals, to be defined later, for

the MUXes that select the roots at the input of the four FST engines. At last, the

four root buffers store all possible factorization output sequences.

It should be emphasized that in our new architecture, each of the four FST
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Figure 8.16: Factorization architecture for bivariate polynomial of Y-Degree
four.

engines is tied to a polynomial coefficient buffer. Compared to the architecture

of [ZP05], where a large number of MUXes and DeMUXes are used in the root

and polynomial scheduling and de-scheduling blocks to route polynomial co-

efficients from polynomial buffers to FST engines, our new architecture only

needs to route appropriate roots from the equation solvers to FST engines, thus

significantly reducing MUX consumption. At each iteration of the factorization

procedure, the appropriate root is routed to each FST engine and bivariate poly-

nomial coefficients at the output of the FST engine are stored back to the same

buffer. Our factorization architecture utilizes the following root routing scheme.

The root routing algorithm

• At the beginning of the factorization procedure, the coefficients of the bi-

variate polynomial A(X, Y) are “broadcast” to the four coefficient buffers.

• In the ensuing iteration level i, the following cases are possible for Q(i)
0 (0, Y).

– Case 1: deg Q(i)
0 (0, Y) = 4
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∗ If a single root of order four is found, this root is applied to all of

the four FST engines.

∗ If two roots, both of order two are found, one root is sent to both

FST0 and FST3 and the other root is sent to both FST1 and FST2.

∗ If two roots, one of order three and the other of order one, are

found. The order three roots are sent to FST0, FST1 and FST2,

while the order one root is used by FST3.

∗ If three roots, one of order two and the other two of order one,

are found, the order two roots are sent to FST1 and FST2, while

the other two roots are sent to FST0 and FST3, respectively.

∗ If four distinct roots are found, they are sent to the four FST en-

gines, respectively.

∗ If none of the above, not all roots of Q(i)
0 (0, Y) are in F2p . The

valid roots can still be sent to a subset of the FST engines follow-

ing the principle used by the previous cases. And some, or all, of

the FST engines can be disabled for the ensuring iterations.

– Case 2: deg Q(i)
0 (0, Y) = 3

∗ If a single root of order three is found, it is sent to FST0, FST1 and

FST2.

∗ If two roots, one of order two and the other of order one, are

found. The order two roots are sent to FST1 and FST2, while the

other root is sent to FST0.

∗ If three distinct roots are found, they are sent to FST0, FST1 and

FST2, respectively.

∗ If none of the above, not all roots of Q(i)
0 (0, Y) are in F2p . The

valid roots can still be sent to a subset of the first three FST en-

gines following the principle used by the previous cases. And

some, or all, of the FST engines can be disabled for the ensuring

iterations.

– Case 3: deg Q(i)
0 (0, Y) = 2
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∗ If a single root of order two is found, it is sent to both FST0 and

FST3.

∗ If two distinct roots are found, they are sent to FST0 and FST3,

respectively.

∗ If none of the above, both FST0 and FST3 can be disabled for the

ensuring iterations.

– Case 4: deg Q(i)
0 (0, Y) = 1, the root (computed from the “slave” linear

equation solver) is sent to FST0.

• In the ensuing iteration level i, the following cases are possible for Q(i)
1 (0, Y).

– Case 1: deg Q(i)
0 (0, Y) = 2

∗ If a single root of order two is found, it is sent to both FST1 and

FST2.

∗ If two distinct roots are found, they are sent to FST1 and FST2,

respectively.

∗ If none of the above, both FST1 and FST2 can be disabled for the

following iterations.

– Case 2: deg Q(i)
0 (0, Y) = 1, the root (computed from the “slave” linear

equation solver) is sent to FST1.

• For linear equation solver 2 and 3, their roots are always sent to FST2 and

FST3, respectively.

• Since multiple roots may be sent to a FST engine from multiple equation

solvers, the final root input to the FST engines are selected by the four

MUXes with the following control signals:

s(i)
0 =

{
0, if deg Q(i)

0 (0, Y) == 1;

1, otherwise.
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s(i)
1 =




0, if deg Q(i)
0 (0, Y) > 2;

1, else if deg Q(i)
1 (0, Y) == 2;

2, otherwise.

s(i)
2 =




0, if deg Q(i)
0 (0, Y) > 2;

1, else if deg Q(i)
1 (0, Y) > 1;

2, otherwise.

s(i)
3 =

{
0, if deg Q(i)

0 (0, Y) > 1;

1, otherwise.

The validity of the routing algorithm given above is guaranteed by the Corol-

lary 6.3 of [RR00] that if a root of order r is found at iteration i, the degree of cor-

responding Q(0, Y) in the ensuing iteration cannot be larger than r. The imple-

mentation of the routing algorithm is feasible because of the precise knowledge

of the root conditions from the direct root computation method given in Section

8.3. Accordingly, a switch can be designed so that appropriate roots appear at

the four output ports of Fig. 8.15.

8.5 Example: Factorization Architecture for a (458,

410) Reed-Solomon Code

As an illustrative example, our new factorization architecture is applied to

soft-decision decoding of a (458, 410) RS code defined on F210 . This code is

used in some magnetic recording products. A reason for selecting this code as

an example is that the large field size makes it easier to demonstrate the superi-

ority of our direct root computation based factorization architecture over prior

works. Throughout this section, without specific mentioning, all logic gates are

assumed to be two-input gates.
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8.5.1 Algorithm-Level Factorization Complexity

As shown in [KMVA03], [KMV06], the re-encoding and coordinate transfor-

mation technique also significantly reduces factorization complexity for high-

rate RS codes. At most 2∆ iterations are needed in the factorization process,

where ∆ is the maximum number of errors to be corrected in the received hard-

decision vector. Otherwise, at least k, the number of information symbols in

a codeword, iterations are required for the factorization algorithm. According

to our simulations carried out for the (458, 410) RS code in a binary AWGN

channel, as many as 32 symbol errors, eight more than a hard-decision de-

coder’s error-correcting capability, can be corrected by the soft-decision decoder

at codeword error rate of 10−6. Thus for practical applications of soft-decision

decoding to this RS code, we may assume that ∆ = 32, thus a total of 64 itera-

tions are required for the factorization procedure.

8.5.2 Hardware Complexity and Factorization Latency Estimate

In this section, we provide an area and latency estimate for our factorization

architecture. For area estimate, the gate counts of all building blocks shown in

Fig. 8.16, except the controller blocks, are given. The factorization procedure

involves many arithmetic operations in F210 , such as multiplication, inversion,

squaring, finding the square roots, etc. Detailed information regarding their

VLSI implementation, including hardware complexity estimate, are discussed

in the Appendix.

The critical path of our factorization architecture is determined by the critical

path of the matrix reduction block discussed in Section 8.3.2. In this case, there

are six AND gates, five OR gates, one inverter and one MUX in the critical path,

which is comparable to the critical path in earlier designs [AKS04b], [ZP05].

Necessary pipelining is implemented for all blocks that have longer critical path.

A summary of gate counts and critical paths of all building blocks, except the

controllers, are given in Table 8.3.

Based on Table 8.4 of the Appendix, we see that at most three stages of
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Table 8.3: Gate counts and Critical Path for the Building Blocks in Factorization
Architecture

Unit Area Critical Path
Converting General Quartic
Polynomial to Affine Quartic

Polynomial (Fig. 8.13)

373XOR+260AND
+36OR+5INV

+90MUX+100REG
7XOR+1AND

Matrix Construction (Fig. 8.5) 27XOR+130REG 3XOR

Matrix Reduction (Fig. 8.10)
90XOR+335AND
+118OR+20INV

+209MUX+110REG

6AND+5OR
+1INV+1MUX

Linear Equation
Solver

265XOR+260AND
+36OR+5INV

+10MUX+10REG
6XOR+1AND

Quadratic Equation
Solver

127XOR+335AND
+118OR+20INV

+299MUX+240REG

6AND+5OR
+1INV+1MUX

Quartic Equation
Solver

1265XOR+1570AND
+416OR+65INV

+758MUX+450REG

6AND+5OR
+1INV+1MUX

FST Engine
(Fig. 8.2)

567XOR+500AND
+260REG 6XOR

Equation Solver
to FST MUXes 60MUX –

total
4720XOR+4945AND

+678OR+105INV
+1157MUX+1770REG
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pipelining are required for the datapath that includes the 2:1 MUX and F210 in-

verter, thus transforming a general quartic equation to an affine quartic polyno-

mial takes six clock cycles. Constructing the matrix with the architecture shown

in Fig. 8.5 needs 10 clock cycles. Matrix reduction needs 20 clock cycles. With

the architecture shown in Fig. 8.15, it takes four clock cycles to route appropri-

ate roots to the output ports. Thus a total of 6 + 10 + 20 + 4 = 40 clock cycles

are required to solve the quartic equation and route the appropriate roots to the

FST engines.

We now present a worst-case latency estimate for the new factorization ar-

chitecture. Since, at any iteration level, polynomial update step defined by (8.1)

and (8.2) only needs to be applied to the coefficients required for root com-

putation in future iterations, the number of clock cycles required for polyno-

mial update decreases linearly. Section 8.2 shows that up to seven clock cy-

cles are required for the FST engines to generate Q(0, Y) for the next iteration

level. Thus in the worst case, polynomial update takes 64 + 7 = 71 clock cy-

cles at iteration level i = 0 and requires seven clock cycles for the last itera-

tion. Since root computation and routing by the quartic equation solver takes

40 clock cycles, it can completely overlap with polynomial update from iter-

ation level i = 0 up until iteration level i = 24. For the rest 38 iterations,

each iteration needs 7 + 40 = 47 clock cycles as solving quartic equation domi-

nates the total delay. Thus the worst case clock cycle count can be estimated as

40 + ((7 + 64) + (7 + 40)) × 25/2 + (7 + 40) × 38 = 3301. If exhaustive root

search based architectures [AKS03a], [ZP05] are applied, without any overlap

between root computation and polynomial update, the worst-case latency is at

least 1024 + ((1024 + 7 + 64) + (1024 + 7 + 1))× 63/2 = 680245 clock cycles.

Our simulations indicate that high order roots are very rare in practice, and

with a very high probability, roots of order one are the only roots from the initial

root computation. In this case, root computation takes only one clock cycle

with the linear equation solver, from iteration level i = 2 and onwards. Thus it

takes 40 + ((4 + 63)+ (4 + 1))× 63/2 = 2308 clock cycles to finish factorization

procedure most of the time.
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8.6 Conclusion

A novel architecture based on direct root computation is proposed to speed

up the factorization process of algebraic soft-decision decoding of RS codes.

Even though direct root computation can only be applied to bivariate polynomi-

als with Y degree lower than five, it is sufficient for most practical applications

of algebraic soft-decision decoding. With the new architecture, there is only a

small variation in decoding latency and the worst-case latency is significantly

reduced compared to previous architectures. Due to precise knowledge of root

orders from direct root computation, there is no need to multiplex polynomial

coefficients to multiple parallel polynomial update (FST) engines, which can

cost a large amount of MUXes. Thus the new architecture should be more area

efficient as well.

8.7 Appendix: Arithmetics in F210

Throughout the appendix, we assume that primitive polynomial p(X) =

X10 + X3 + 1 is used to generate F210 and α is a root of p(X). As it should be

clear from the context, “a⊕ b”, “a + b” and “ab” denote binary XOR, OR and

AND operations, respectively.

8.7.1 Multiplier Complexity

In this subsection, we show how the gate count for various types of F210

multipliers used in the factorization architecture is obtained. There are three

types of constant multipliers. Let b∈F210 and define c = α4b, d = α2b, and

e = αb. It can be derived that:

c0 = b6 c1 = b7 c2 = b8 c3 = b6 ⊕ b9

c4 = b0 ⊕ b7 c5 = b1 ⊕ b8 c6 = b2 ⊕ b9

c7 = b3 c8 = b4 c9 = b5
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d0 = b8 d1 = b9 d2 = b0 d3 = b1 ⊕ b8 d4 = b2 ⊕ b9

d5 = b3 d6 = b4 d7 = b5 d8 = b6 d9 = b7

e0 = b9 e1 = b0 e2 = b1 e3 = b2 ⊕ b9 e4 = b3

e5 = b4 e6 = b5 e7 = b6 e8 = b7 e9 = b8

Thus the three constant multipliers only use four, two and one XOR gates,

respectively. The general multiplier c = ab, where a and b are arbitrary numbers

in F210 , can be implemented with the following combinational logic:
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t0 = a0b0

t1 = a0b1 ⊕ a1b0

t2 = a0b2 ⊕ a1b1 ⊕ a2b0

t3 = a0b3 ⊕ a1b2 ⊕ a2b1 ⊕ a3b0

t4 = a0b4 ⊕ a1b3 ⊕ a2b2 ⊕ a3b1 ⊕ a4b0

t5 = a0b5 ⊕ a1b4 ⊕ a2b3 ⊕ a3b2 ⊕ a4b1 ⊕ a5b0

t6 = a0b6 ⊕ a1b5 ⊕ a2b4 ⊕ a3b3 ⊕ a4b2 ⊕ a5b1 ⊕ a6b0

t7 = a0b7 ⊕ a1b6 ⊕ a2b5 ⊕ a3b4 ⊕ a4b3 ⊕ a5b2 ⊕ a6b1

⊕ a7b0

t8 = a0b8 ⊕ a1b7 ⊕ a2b6 ⊕ a3b5 ⊕ a4b4 ⊕ a5b3 ⊕ a6b2

⊕ a7b1 ⊕ a8b0

t9 = a0b9 ⊕ a1b8 ⊕ a2b7 ⊕ a3b6 ⊕ a4b5 ⊕ a5b4 ⊕ a6b3

⊕ a7b2 ⊕ a8b1 ⊕ a9b0

t10 = a1b9 ⊕ a2b8 ⊕ a3b7 ⊕ a4b6 ⊕ a5b5 ⊕ a6b4 ⊕ a7b3

⊕ a8b2 ⊕ a9b1

t11 = a2b9 ⊕ a3b8 ⊕ a4b7 ⊕ a5b6 ⊕ a6b5 ⊕ a7b4 ⊕ a8b3

⊕ a9b2

t12 = a3b9 ⊕ a4b8 ⊕ a5b7 ⊕ a6b6 ⊕ a7b5 ⊕ a8b4 ⊕ a9b3

t13 = a4b9 ⊕ a5b8 ⊕ a6b7 ⊕ a7b6 ⊕ a8b5 ⊕ a9b4

t14 = a5b9 ⊕ a6b8 ⊕ a7b7 ⊕ a8b6 ⊕ a9b5

t15 = a6b9 ⊕ a7b8 ⊕ a8b7 ⊕ a9b6

t16 = a7b9 ⊕ a8b8 ⊕ a9b7

t17 = a8b9 ⊕ a9b8

t18 = a9b9

The ti’s, for i = 0, ..., 18, are intermediate variables and the final outputs
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can be expressed as follows:

c0 = t0 ⊕ t10 ⊕ t17 c1 = t1 ⊕ t11 ⊕ t18

c2 = t2 ⊕ t12 c3 = t3 ⊕ t10 ⊕ t13 ⊕ t17

c4 = t4 ⊕ t11 ⊕ t14 ⊕ t18 c5 = t5 ⊕ t12 ⊕ t15

c6 = t6 ⊕ t13 ⊕ t16 c7 = t7 ⊕ t14 ⊕ t17

c8 = t8 ⊕ t15 ⊕ t18 c9 = t9 ⊕ t16

The general multiplier requires 100 AND gates and 101 XOR gates in area

with one AND gate and five XOR gates in the critical path. For squaring opera-

tions, if we define c = a2 for any a∈F210 , then we have

c0 = a0 ⊕ a5 c1 = a9 c2 = a1 ⊕ a6 c3 = a5

c4 = a2 ⊕ a7 ⊕ a9 c5 = a6 c6 = a3 ⊕ a8 c7 = a7

c8 = a4 ⊕ a9 c9 = a8

The squaring operation only takes six XOR gates to implement with two XOR

gates in the critical path.

8.7.2 Conversion Matrix for Composite Field Representation of

F210

In this section, the method of [SSK03] is used to convert an element of F210

represented by standard polynomial basis to composite field representation. In-

stead of usingα, the root of p(X) = X10 + X3 + 1 to construct a primitive poly-

nomial over F25 , we choose to use another primitive element of F210 , namely,

α̃ = α343. The minimal polynomial of the later with respect to F25 has a linear

coefficient equal to 1 as shown below.

M25,α343(X) = (X +α343)(X +α343×25
) (8.5)

= X2 + (α343 +α746)X +α66

= X2 + X +α66.

And B(25)2 =
[
1 α̃
]

is a basis of F(25)2 over F25 . From Theorem 1 of [SSK03],

γ = α343×33 = α66 is primitive in F25 . Thus a standard basis of F25 can be
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defined as

B25 =
[
1 γ γ2 γ3 γ4] =

[
1 α66 α132 α198 α264]. (8.6)

The primitive polynomial that generates this field can be computed as the min-

imal polynomial of γ with respect to F2.

(X + γ)(X + γ2)(X + γ4)(X + γ8)(X + γ16) (8.7)

= (X2 + (γ + γ2)X + γ3)(X2 + (γ4 + γ8)X + γ12)(X + γ16)

= (X2 + (α66 +α132)X +α198)

(X2 + (α264 +α528)X +α792)(X +α33)

= X5 + X4 + X3 + X2 + 1.

With the primitive polynomial given above, it can be easily established that

general multiplication in F25 requires 25 AND gates and 29 XOR gates, with

the critical path consisting of one AND and four XOR gates. For an element

β∈F210, it has two different representations:

β =
9

∑
i=0
βiα

i (8.8)

β =
1

∑
i=0
β̃iα̃

i, (8.9)

where βi ∈F2 and β̃i ∈F25 . Since β̃i’s belong to F25 , they can be represented by

the basis given in (8.6), i.e.,

β̃i =
4

∑
j=0
β̂i, jα

66 j. (8.10)

Substituting (8.10) back into (8.9), we get

β =
1

∑
i=0

4

∑
j=0
β̂i, jα

66 jα̃i =
1

∑
i=0

4

∑
j=0
β̂i, jα

343i+66 j (8.11)

= β̂0,0 + β̂0,1α
66 + β̂0,2α

132 + β̂0,3α
198 + β̂0,4α

264

+ β̂1,0α
343 + β̂1,1α

409 + β̂1,2α
475

+ β̂1,3α
541 + β̂1,4α

607.
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Thus by applying (8.8) and (8.9), we get

[β̂0,0 ... β̂0,4 β̂1,0 ... β̂1,4]Π[1 α ... α9]t

= [β0 β1 ... β9][1 α ... α9]t.

The matrix Π that converts an element from its composite field representa-

tion to a direct representation, can be expressed as follows:

Π =




1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 1 1

1 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 1 1 1

1 1 0 1 1 0 0 1 0 1

1 0 1 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 1 0 1




.

Correspondingly, the matrix Ψ that converts an element from the direct rep-

resentation to its composite field representation can be expressed as follows:

Ψ = Π−1 =




1 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0 0 1

0 1 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 0 1 0

1 1 1 1 0 1 1 0 1 1

0 0 1 1 0 1 0 1 1 1

0 1 0 0 0 1 1 0 0 0

1 1 1 0 1 1 0 1 1 0

1 1 0 0 1 0 1 1 1 1

1 0 1 0 0 0 0 1 1 0




.

Implementation of multiplication by Π requires 28 XOR gates; and implemen-

tation of multiplication by Ψ requires 32 XOR gates. The critical path in both

multiplication circuits consists of three XOR gates.
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8.7.3 Direct Inversion in F25

With p25(X) = X5 + X4 + X3 + X2 + 1 serving as the generating polynomial

for F25 , the direct inversion, b = a−1 for any a∈F25 , can be expressed with the

following logic equations:

b0 = ā1a3a4 + ā1 ā2a3 + ā0(a1 ā2 ā3 + a1 ā2a4)

+ a0(ā1 ā2 + ā1a4 + ā1a3 + a1 ā3 ā4 + a2a3a4)

b1 = a2 ā3a4 + a1 ā2 ā3 + a1 ā2a4 + a0a1 ā3

+ ā0(ā1a2 + ā1a3 ā4 + a2a3 ā4)

b2 = a1a2a3a4 + a0(ā1 ā3a4 + ā1 ā2a4 + a1 ā2 ā4)

+ ā0(a2 ā3 + a1a2 + ā1 ā2a3 + a1 ā3a4 + a1a3 ā4)

b3 = ā1a2 ā4 + a1 ā2a3 + a0(ā1 ā3 + ā1 ā2a4 + a1a3 ā4)

+ ā0(ā1a3 ā4 + ā1a2a3 + a1a2 ā3a4)

b4 = ā1 ā2 ā3a4 + a0(ā1a2 + a2a4 + a1 ā2a3)

+ ā0(a1a2 ā4 + a2 ā3 ā4 + a1 ā2 ā3 + a1 ā2a4).

The logic functions given above can be implemented with 17 + 14 + 19 + 18 +

17 = 85 AND gates, 8 + 6 + 8 + 7 + 7 = 36 OR gates, and five inverters.

Note that further area optimization is possible by taking advantage of common

subexpressions. The critical path in this implementation has one inverter, three

AND gates and three OR gates.

8.7.4 F210 Inversion in Composite Field

Let us assume that β∈F210 can be represented in the composite field as

β = β̃0 + β̃1X and its inverse is η = η̃0 + η̃1X, where β̃0, β̃1, η̃0, η̃1 ∈F25 . The
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following equation

ηβ = (η̃0 + η̃1X)(β̃0 + β̃1X) mod M25,α343(X)

= (η̃0β̃0 + η̃1β̃1α
66) + (β̃1η̃0 + β̃0η̃1 + β̃1η̃1)X

= 1,

needs to be satisfied. Thus η̃0 and η̃1 can be computed as

η̃0 =
β̃0 + β̃1

β̃0(β̃0 + β̃1) + β̃2
1α

66
(8.12)

η̃1 =
β̃1

β̃0(β̃0 + β̃1) + β̃2
1α

66
.

In F25 , it can be estimated that general multiplication needs 25 AND gates

and 29 XOR gates with the critical path consisting of one AND gate and four

XOR gates, and multiplication by constant α66 takes three XOR gates with only

one XOR gate on the critical path. For the squaring operation of any number

a∈F25 , let us define c = a2, then with the primitive polynomial given in (8.8),

we have
c0 = a0 ⊕ a3 c1 = a3 c2 = a1 ⊕ a3 ⊕ a4

c3 = a4 c4 = a2 ⊕ a4.

Thus squaring in F25 only requires four XOR gates with the critical path consist-

ing of two XOR gates.

8.7.5 Conversion between Standard Basis and Normal Basis in

F210

Computing the square root of a number in a finite field can be carried bout

by first converting the number from its standard basis representation to normal

basis representation followed by a cyclic shift and a conversion back to stan-

dard basis representation. It has been shown in [MS81] that any finite field F2p

contains an element γ such that {γ,γ2, ...,γ2p−1} is a normal basis of the field.
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Table 8.4: Gate counts and critical paths of function blocks in the implementa-
tion of F210 composite field inversion

number of gates critical path
×Ψ 32XOR 3XOR
×Π 28XOR 3XOR
×α66 3XOR 1XOR

squaring in F25 4XOR 2XOR
general multiplier 25AND+29XOR 1AND+4XOR
inversion in F25 85AND+36OR 3AND+3OR

+5INV +1INV
total 160AND+164XOR 5AND+3OR

+36OR+5INV +1INV+16XOR

However, γ may not be a primitive element of the field, or even if γ is a prim-

itive element, it may not be the root of primitive polynomial that generates the

field. For example, if p(X) = X10 + X3 + 1 is used to generate F210, the root of

this polynomial, α, cannot be directly used to construct a normal basis. Using

an exhaustive search method, we find that γ = α7 can be used to form a normal

basis. In this case, let us introduce two binary 10 × 10 matrices Ξ and Γ such

that

[γ γ2 ... γ29
]t = Ξ[1 α ... α9]t

[1 α ... α9]t = Γ [γ γ2 ... γ29
]t.
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In this case, the standard to normal basis conversion matrix Ξ is:

Ξ =




0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 1 1 1 1

0 1 1 0 0 1 1 1 0 1

1 1 0 1 1 1 0 1 1 0

0 0 1 1 1 0 0 1 1 1

0 1 0 0 1 0 0 1 0 1

0 1 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0




,

and the normal to standard basis conversion matrix Γ can be computed as fol-

lows:

Γ = Ξ−1 =




1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 1

1 1 1 0 0 0 1 1 1 0

1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1 0

0 1 1 1 0 0 0 1 1 1

1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 1 1




.

If βn is the representation of an element β∈F210 on a normal basis, then the

standard basis representation βs can be computed as βs = βn Ξ. This vector

and matrix multiplication can be implemented with 22 XOR gates. On the other

hand, the standard to normal representation conversion has the form βn = βs Γ ,

and 19 XOR gates are needed for this vector and matrix multiplication, too.

As a summary, gate counts and critical paths of all F210 arithmetic operators

discussed in the Appendix are presented in Table 8.5.



8.7. APPENDIX: ARITHMETICS IN F210

187

Table 8.5: Gate counts and critical paths of arithmetic units for F210

Unit Area Critical Path
General Multiplier 101XOR+100AND 5XOR+1AND
α Multiplier 1XOR 1XOR
α2 Multiplier 2XOR 1XOR
α4 Multiplier 4XOR 1XOR

Inverter 160AND+164XOR 5AND+3OR
+36OR+5INV +1INV+16XOR

Square 6XOR 2 XOR
Square Root 41XOR 7XOR

The material of Chapter 8, in part, is published in proceedings of 2007 In-

ternational Conference Acoustics, Speech and Signal Processing (ICASSP), Ma, Jun;

Vardy, Alexander; Wang, Zhongfeng; Chen Qinqin, and proceedings of 2007 In-

ternational Symposium on Circuits and Systems (ISCAS), Ma, Jun; Vardy, Alexan-

der; Wang, Zhongfeng; Chen Qinqin. It is also to be published in IEEE Transac-

tions on VLSI Systems Ma, Jun; Wang, Zhongfeng; Vardy, Alexander. The disser-

tation author was the primary investigator and author of both papers.



CHAPTER 9

Conclusions and Future Research

In this chapter, we conclude the thesis by discussing some open problems.

9.1 Divide-and-Conquer Interpolation

One can see that the complexity of the divide-and-conquer algorithm pre-

sented in Chapter 3 is

C(n, r,ρ) = 2C(n/2, r,ρ/2) + Cm + Ce, , (9.1)

where Cm is the cost of polynomial multiplication and Ce is the cost of the elim-

ination step. The sum if Cm and Ce can be considered as the cost of “merge”

step in the divide-and-conquer approach. The divide-and-conquer is practical

only if Cm and Ce are not too large to offset the complexity reduction achieved

by dividing the original interpolation problem into smaller ones. For the multi-

plication step there is a problem of efficient multiplication of large polynomials

which may appear after processing of many interpolation points. For the elimi-

nation step, the task is to find a Groebner basis of the polynomial ideal. Design

of such an elimination algorithm remains an open problem. In addition, how

to combine the divide-and-conquer approach with the re-encoding coordinate

transformation techniques presented in Chapter 4 is also not clear at all.
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9.2 Re-encoding through n Points

In Chapter 4, a re-encoding coordinate transformation technique is proposed

to reduce the interpolation complexity of algebraic soft decoding of Reed-Solo-

mon code. The key idea of Chapter 4 is to shift the interpolation points by a

polynomial of of degree < k, which then makes it possible to eliminate the k

points with the largest multiplicities from the interpolation problem. A natural

question to ask is: can we re-encode through n points, thereby eliminating n− k

more points from the interpolation problem? If this is possible, it will lead to

significantly more decoding complexity reduction for low-rate RS codes. Let us

see how this could be done.

The re-encoding point set will include 1 point for each of the X coordinates

that define the code, i.e., R = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The n Y coordi-

nates y1, y2, . . . , yn are precisely the hard-decision received vector.

First of all, one needs to find a polynomial h(X) of degree smaller than n,

such that

h(xi) = yi for all (xi, yi)∈R (9.2)

Then the original interpolation point set P can be modified into the following

“shifted” interpolation point set:

P′ def=
{(

x1, y1−h(x1)
)
, . . . ,

(
xk, ys−h(xs)

)}
(9.3)

Finding a bivariate polynomial that passes all points in P′ with prescribed

multiplicities is less complex than finding a bivariate polynomial that satis-

fies all constraints defined by the original interpolation point set P , since the

Groebner-basis polynomials can be initialized as

Q′v(X, Y) =
n

∏
i=1

(X − xi)[mxi ,yi−v]+Yv, for v = 0, 1, ..., r. (9.4)

Thus the constraints defined by the first n points in P′ are solved simply by

initialization. Next, Koetter’s iterative algorithm can be carried out as usual to

solve the interpolation problem defined by the rest of the points in P′ and their

prescribed multiplicities. Note that there might be several interpolation points
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with the same X coordinate. The one with the highest multiplicity is handled by

(9.4), but the interpolation constraints associated with the other points have to

be still enforced (via Koetter’s interpolation algorithm, for example). The end

result is a set of polynomials

Q′v(X, Y) =
r

∑
j=0

bv, j(X)
n

∏
i=1

(X − xi)[mxi ,yi− j]+Yj, for v = 0, 1, ..., r. (9.5)

Theorem 3 of Chapter 4 still holds – that is, the polynomials Qv(X, Y) =

Q′v(X, Y− h(X)), for v = 0, 1, ..., r satisfy the constraints defined by the original

set of interpolation points P and their prescribed multiplicities. However, does

the set Qv(X, Y), for v = 0, 1, ..., r contain a polynomial of minimum (1, k− 1)-

weighted degree that satisfies all the interpolation constraints? Unfortunately,

the answer is NO. Note that the Q′v(X, Y)’s are initialized in (9.4) to a set of

polynomials of minimal (1, n − 1)-weighted degree that satisfy the constraints

defined by the first n points in P′. Thus, no matter what monomial order is cho-

sen in the ensuing interpolation process for the remaining points inP′, Qv(X, Y)

won’t have the desired property.

What can be done? One can use, for example, the algorithm of [LO06a] can

be used to convert Qv(X, Y)’s from a Groebner basis, with respect to (1, n −
1)-weighted monomial order, to a Groebner basis with respect to (1, k − 1)-

weighted monomial order. The algorithm of [LO06a] is much simpler than the

general Buchberger’s algorithm.

In summary, the following algorithm can be applied to carry out the inter-

polation:

Step 1. Find a polynomial hr(X) of degree less than n such that hr(xi) = yi, for

i = 1, ..., n.

Step 2. Shift the points in set P as follows: yi := yi − hr(xi), which results in a

new point set P′.

Step 3. Initialize a set of basis polynomial as shown in (9.4) and then apply Koet-

ter’s algorithm to find a Groebner basis that satisfies all interpolation con-

straints defined by the points in P′.
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Step 4. Shift the resulting polynomials to obtain a new set of polynomials Qv(X, Y)

= Q′v(X, Y− hr(X)), for v = 0, 1, ..., r.

Step 5. Apply the algorithm of [LO06a], or alternatives, to compute a Groebner

basis, with respect to (1, k− 1)-weighted monomial order, for the polyno-

mial ideal defined by the Qv(X, Y)’s.

Step 6. Select the polynomial with minimal (1, k− 1)-weighted as the final output

of the interpolation.

Though the foregoing algorithm works, it is not simpler, in terms of arith-

metic complexity, than the re-encoding through-k-point method described in

Chapter 4.

The following steps of the algorithm described above are the major contrib-

utors to complexity. First of all, the polynomial set resulting from running Koet-

ter’s interpolation algorithm has to be “shifted” back in Step 4 by re-applying

the re-encoding polynomial. Secondly, a “reduction” algorithm such as [LO06a]

has to be performed in Step 5. So the questions remaining to be answered are as

follows:

Q1. Is is possible to somehow bypass step 4 of the algorithm described above?

Q2. Is there a simpler algorithm for step 5?

In Chapter 4, question Q1 is resolved by applying a coordinate transforma-

tion technique, then directly factoring polynomial obtained from solving the

“reduced” interpolation problem (without shifting back to the original point

set). Something similar would have to be developed for the re-encoding-through-

n-points method, if it is to be practical. However, the answer to Q1 is indepen-

dent of that to Q2. Thus one can postpone this issue for later, and focus on

Q2.
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9.3 Multivariate Interpolation

Multivariate interpolation is the enabling force behind the newly devised

techniques that correct errors beyond the Guruswami-Sudan list-decoding ra-

dius [PV04], [PV05]. The multivariate interpolation can be carried out by ex-

tending Koetter’s interpolation algorithm to multiple variables. The extended

Koetter’s algorithm still runs polynomial-time. However, it is much more com-

plex than the bivariate polynomial case. For example, in the case of trivariate

interpolation, it takes O(n2m8/R2/3) operations (additions and multiplications)

in Fq. Thus it will be of great practical value to reduce the complexity of mul-

tivariate interpolation. In principle, the re-encoding coordinate transformation

technique described in Chapter 4 should help. However, the details remain to

be worked out.

In addition, no VLSI architecture has been devised for multivariate inter-

polation. Thus it would be interesting to extend the architectures for bivariate

polynomials presented in this thesis to multivariate interpolation.

9.4 More Efficient Decoder Architecture

VLSI architectures for major computational blocks of algebraic soft-decision

Reed-Solomon decoder have been proposed in this thesis. However, further

improvement are possible for these architectures.

The re-encoding coordinate transformation frontend architecture proposed

in Chapter 6 is for a fixed choice of code parameters. A generic design would be

more interesting. In addition, we have ignored the interpolation points whose X

coordinates coincide with those of the re-encoding points. Interpolating through

those points actually provides further decoding gain. Thus future architectures

should handle those interpolation points.

The factorization architecture of Chapter 8 has a relatively large critical path

delay. And it is not clear how to pipeline the architecture, especially the Degree-

4 polynomial equation solver.
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Beyond all of these architecture-level improvement, implementing the entire

algebraic soft-decision Reed-Solomon decoder into an ASIC is a very challeng-

ing task.
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