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Many others, in this volume and elsewhere, have and will comment on the political, 

social, economic, cultural and ethical implications of Big Data. (1) I strongly agree that those 

implications are important. Indeed, I believe they are the most urgent aspects of Big Data with 

which critically engaged social science must grapple. There is a good fight to be fought in the 

public arena over the many worrying directions in which the political-economic impulses driving

Big Data are pointing. The complicated ways in which the Big Data movement (if we can call it 

that) is entangled with a burgeoning, authoritarian and surveillant state, simultaneously enabling 

and in thrall to a rhetoric of free-market 'disruption', demand our close attention, if they are to be 

countered by more humane alternatives. There is, of course, a substantial literature that refuses to

roll over before the technological triumphalism (or is it fatalism?) of work such as Too Big To 

Know (Weinberger, 2011) and Big Data (Mayer-Schönberger and Cukier, 2013). Many of the 

concerns raised by the current moment are ably dissected in Digital Disconnect (McChesney, 

2013), The Filter Bubble (Pariser, 2011), You Are Not A Gadget (Lanier, 2010) Who Owns The 

Future? (Lanier, 2014), and To Save Everything, Click Here (Morozov, 2013) among others. 

Given the centrality of geographical data of one kind or another to the data deluge, it is surely 

important that geographers become more visible in this public conversation (Farmer and 

Pozdnoukhov, 2012). Substantial contributions like Code/Space (Kitchin and Dodge, 2011) 



remain firmly academic in tone, but nevertheless provide a foundation for future contributions 

that tackle more specifically spatial aspects of Big Data and its impacts.

Recognizing the importance of these wider debates, I nevertheless want to focus on 

narrower methodological concerns. Whatever else Big Data has accomplished, it has placed 

quantitative and computational methods firmly on the social science agenda (Barnes, 2009; 

Barnes and Sheppard, 2009; Burrows and Savage, 2014; Johnston et al., 2014; Wyly, 2009). I 

welcome that development, and see it as providing an opening for a more plural vision of 

geography and other social sciences. However, it is unlikely that opening will lead us anywhere 

new if we persist in understanding Big Data as primarily about the novelty of the data 

themselves. Data however 'big' are severely limited in how they represent processes. Given the 

centrality of process to developing any sophisticated understanding of how the world works, this 

is more than a limitation of Big Data. If understanding, explaining and effectively intervening in 

the world are the goals then we must ask questions about the style of computational social 

science we ought to be aiming for. Yet there is every sign that (over-)excitement and hype around

Big Data is in danger of causing us to lose sight of such matters. This would be unfortunate both 

for opponents and proponents of the potential of Big Data for social science; drawing attention to

these issues is therefore my aim.

In the next section, I set out my understanding of the epistemology of Big Data, and 

suggest why Big Data has been so successful; successful, that is, as a widely adopted technology,

not necessarily as a way to understand the world. From there, I move on to consider a persistent 

dualism in how computational tools have been deployed in the sciences, namely a distinction 

between top-down, aggregate or statistical approaches to explanation (among which Big Data 

can be placed), and bottom-up, emergentist approaches, often associated with complexity science



(Coveney and Highfield, 1995; Manson, 2001; Mitchell, 2008; O’Sullivan, 2004; Thrift, 1999; 

Waldrop, 1992). While these two traditions share substantial elements in their intellectual 

heritage, they yield sharply divergent perspectives on explanation, understanding, and prediction,

and suggest very different intellectual styles and methodological directions for computational 

social science. Further, the two traditions tackle the central issue of process very differently. The 

current openness to greater use of computers and (secondary) quantitative data is an opportunity 

for better, more effective social science that we are in danger of missing if the Big Data paradigm

remains dominant. That danger has both scientific and ethical dimensions, the latter returning the

argument to the broader context considered at the outset. 

The mysterious rise of Big Data

Big Data has seemingly come out of nowhere, very quickly, but this is illusory. Iconic 

magazine covers on the topic such as Nature's 'Big Data: Science in the Petabyte Era' (September

2008) and The Economist's 'Data Deluge' (February-March 2010) popularized the term 'Big 

Data', but were testament to developments already well under way. Even so, the speed with 

which such a media-detected (and inevitably, amplified) 'trend' has morphed into a prime 

directive for all of science has been surprising. Living in New Zealand until the end of 2013 

somewhat shielded me from this juggernaut, but even there, by early 2013, Big Data was 

unavoidable as a series of Royal Society of New Zealand and National Library sponsored 

discussions on the topic broadcast by the state-funded National Radio NZ makes clear.(2) As has 

happened elsewhere, national science funding and infrastructure initiatives were quickly hitched 

to this latest, urgent strategic imperative, opening profitable opportunities for private companies 

building New Zealand's Ultra-Fast and Rural Broadband Initiatives. As has happened in many 

other jurisdictions these developments are often explicitly connected to the parallel evolution of 



'smart cities'.(3) The details of New Zealand's experience of the Big Data and smart cities 

movement are geographically, politically and culturally specific (as Kitchin, 2014 reminds us we 

should expect), but the commonalities with what is unfolding elsewhere are striking. 

The New Zealand case immediately brings to the fore the oft-discussed question of what 

exactly it is that makes Big Data 'big'. Certainly, the volume of data generated in New Zealand 

would not qualify as 'big' in many other contexts. The by now overly-familiar three 'V's—

volume, velocity, and variety—supposedly definitive of Big Data, were appropriately enough 

purloined from a business intelligence report (Laney, 2001). They have proven insufficiently 

descriptive for many tastes, leading to an academic cottage industry proposing and debating 

additional attributes (preferably ones starting with the letter 'V'). Rather than add to that debate, I

consider Big Data to be primarily an epistemological stance (boyd and Crawford, 2012). That 

stance, can be crudely sketched as a claim that, given sufficient data, the world can be known (if 

not completely, then well enough for any particular purpose), and that we are currently on the 

threshold of an era where the technological capacity to assemble such complete datasets has (at 

last!) arrived (Anderson, 2008). As such, this moment heralds the realization of a dream of 

certain kinds of deterministic positivism (Wyly, 2014b). This is, of course, philosophically 

extremely shaky ground (Pigliucci, 2009), although it appears that  epistemological difficulties 

are not a deterrent to adoption of the approach. In many contexts, where Big Data are deployed 

the point is not, after all to understand the world, but simply to know it well enough to make a 

profit (Wyly, 2014a); or, an even lower bar, to be plausibly able to claim that a profit might some

day be made using insights gleaned from data (Wilson, 2012).  Suffice to say, along with many 

geographers, while intrigued by the possibilities such datasets may open up, I am unpersuaded by

the grandiose claims made for Big Data. Understanding the world still demands that we carefully



develop theories, consider the implications of those theories for what we expect to observe in the

world, and subject those expectations to scrutiny through empirical observation, using multiple 

methods, only a few of which are enhanced by the dragnet of Big Data collection.

In spite of its unconvincing epistemological claims, how is it that this particular 

computational approach to studying the world has come to dominate so much recent thinking 

about using computation to learn about the world? At least three answers come to mind. First, it 

(retroactively) justifies data collection that rests on questionable ethical and legal foundations. 

Never mind how we came to be in possession of these vast data repositories, just think about 

what we can do with them! A case of ends justifying means on a societal scale. 

Second, the Big Data techno-social regime is feasible in a context where collecting more 

data became necessary as a matter of everyday business practice. It is not clear that what has 

emerged was deliberately planned by any of the leading protagonists. For example Brin and Page

in an early paper on the Google search engine note that “we expect that advertising funded 

search engines will be inherently biased towards the advertisers and away from the needs of the 

consumers” (Brin and Page, 1998, page 18), suggesting that building a data gathering, 

advertising company was not their original intention. However, in a business environment where 

building an audience took priority over the difficult task of selling often not obviously useful 

services, it was imperative for those services to be free at the point of use, leaving targeted 

advertising and the attendant surveillance as one of the few viable, sustainable business models.

(4) This path is one premised on a financial speculation that the data will eventually pay off 

(Wilson, 2012), but regardless of the eventual correctness of that speculation, once a company 

starts down this path, more data about users can only be better, and available technology has 

made the assembly of vast data sets possible.



Third, from the perspective of making a profit, there is little doubt that Big Data can 

work. Indeed, from this perspective, profit (or more generally efficiency) is the only metric that 

matters. “The capitalist correlation imperative is clear: spurious correlation is fine, so long as it is

profitable spurious correlation” (Wyly, 2014a, page 681 emphasis in the original). This leads to a

stance on knowledge that is unconcerned with explanation: just as I don't need to understand how

my phone works to use it, corporations and governments don't need to understand how or why 

the algorithms they use work to operate them, or at any rate, not until they plainly don't work 

(see Flood, 2011; and earlier work by Wallace and Wallace, 2001 on which he draws).

Big Data as method

So much for a schematic explanation of the rise of Big Data. In practical terms, what does

Big Data as method consist of? Given the loose way in which the term is used, it is not easy to 

pin this down, but given the salience of the quantity of data in the approach, the emphasis is on 

large scale data analysis methods, of various statistical kinds. It bears emphasizing that this 

orientation immediately places data ahead of theory, since data and the world they are assumed 

to illuminate come before any consideration of the questions to be addressed. In any case, 

speaking very generally, statistical models are fit to data to identify factors accounting for 

variations in the data. To be sure a wider range of methods are available now than at any earlier 

time, including machine learning, data mining and pattern recognition methods, alongside more 

exploratory approaches, particularly interactive visualization (see Miller and Han, 2009 for a 

survey of these developments in geography). In an ideal case, a single researcher, analyst, or 

small team of analysts might use exploratory visualization methods to develop familiarity with a 

dataset. This in turn might prompt some ideas about the patterns there to be found, the methods 

most likely to emphasize those patterns, and from there the statistical models most suited to 



advancing understanding of the phenomena represented by the dataset. For many scientists 

working today with much larger datasets than ever before, this is a reasonable description of how

they would proceed. It is also not very new or different from how they would have proceeded in 

the past.

But data volume and velocity do matter. When datasets are very large and rapidly 

changing, then the scope for an exploratory approach is limited, since the computational 

demands are potentially limitless. Problems must be rendered tractable by pre-defining what 

constitutes a pattern of interest in terms of the data known to be available. In corporate, or other 

environments where timely, 'actionable intelligence' is prized, much more constrained, automated

approaches are likely to prevail. In these contexts, much of the decision-making about what 

patterns to attend to must be delegated to the diagnostic statistics generated by whatever methods

are deployed. In a visionary piece, Stan Openshaw (1994) (with some excitement) anticipated the

type of continuous monitoring that this approach implies, along with a major drawback: the 

identification of many spurious patterns and correlations. Such considerations demand that the 

criteria specifying what is interesting and what is not be narrowed further, forestalling the open-

ended search for patterns that might inspire the collection of extensive data in the first place.

It would be absurd to argue that there is no potential in more detailed, more frequently 

updated data, for describing better how social change unfolds over time. Perhaps previously 

unknown social phenomena can be observed as a result of the improved temporal resolution in 

such data. Loose analogies with the advances made possible in other fields by the invention of 

the telescope or microscope (Brynjolfsson and McAfee, 2011) do not seem completely 

misguided. Particularly when used in conjunction with other approaches, there are surely 

grounds for (guarded) optimism about the social scientific possibilities of Big Data. In a 



specifically geographical context, Miller and Goodchild (2014) identify some of what is exciting 

about this approach, and point to interesting continuities with previous work in quantitative 

geography. Geography's longstanding challenge of bridging from the local and particular to the 

global and general is central to their argument that when thoughtfully and carefully deployed the 

Big Data approach holds promise for a 'data-driven geography' particularly in the abductive early

'discovery' phase of research when the aim is to develop good ideas and candidate explanations. 

Even so, a larger point here is that the methods associated with Big Data start from the 

aggregate level and deploy statistical methods to identify relationships among data attributes, in 

more or less traditional ways. The mode of explanation is inferential statistical, based on a 

constant conjunction model of causality, rather than on a realist, mechanistic or process-oriented 

account (Sayer, 1992).  Contemporary large datasets, particularly those which are frequently 

updated, give an impression of dynamism and by extension may be considered to offer us a rich 

representation of process. In truth this is little more than an impression. Large datasets, even 

frequently updated ones embody no concept of process.  Sometimes, it is implied that the 

velocity of such datasets, their currency, and frequency of update somehow captures process. In 

fact, most such data are simply rapidly updating snapshots of events. Nothing recorded in the 

data captures the processes or mechanisms that drive the changes occurring in the data. Process 

and change are thus rendered as 'one damn thing after another' with no notion of process or 

mechanism in the data themselves.  

Instead, data impose rather rigid concepts of identity on people and places, reducing 

process from 'becoming' to mere change in attribute values associated with otherwise unchanged 

social entities (whether individuals or institutions). This distinction, and the need for a different 

approach to data that taking process, time and change seriously entails has been a focus in the 



geographical information science community for many years (O’Sullivan, 2005). It is hard to 

conceive of any means by which process can be 'retrofitted' to Big Data as data. Rather, it is in 

creative use and practice, through analysis from a theoretically informed perspective that 

concepts of process are 'added' to data. Ironically, such explicitly theoretically informed analysis 

is one of the approaches most loudly eschewed by the more aggressive advocates of Big Data.

Bifurcated computation

Regardless of its epistemological limitations and process-blindness, Big Data is clearly in

the ascendant, at least for now. For my present purposes, it is instructive to consider Big Data as 

the latest development in the deployment of computation in commerce and government, and to 

pay particular attention to alternative computational approaches to understanding the world, not 

currently so strongly favored. The origins of modern computation lie in the Second World War 

(Ceruzzi, 2003; Dyson, 2012). That context saw computers and the closely related field of 

operations research applied to the solution of the practical production and logistical challenges of

mounting modern warfare on a large scale (DeLanda, 1991 offers a critical historical overview; 

while Shrader, 2006, in a three volume official history, gives a feel for the scope).  Of particular 

importance to the development of computing were the demanding mathematical problems that 

arose in these contexts, such as code-breaking, complex optimization problems, and the 

simulation of nuclear reactions.

From their origins, we can identify two broad applications of computers. First, are 

applications of computation to datasets too large for calculation by hand, to produce closed-form 

solutions to mathematically well-defined problems, using various types of numerical analysis. 

Such calculations rely on algorithms for manipulating large matrices, on interpolation and 

approximation methods, and on the mathematics of linear algebra and optimization (Aspray and 



Gunderloy, 1989). While routine, such computation is more demanding of computing resources 

particularly as datasets grow in size, when the associated computational requirements may grow 

with the square, cube or even higher-order powers of the problem size (Cormen, 2013). In 

principle, such calculations are not difficult, but they are computationally intensive. This domain 

of computation is associated with the more efficient management of logistical systems, the 

optimization of resource allocations in productions systems, and the field generally known as 

operations research (Light, 2003). The Big Data phenomenon sits squarely in this tradition.

A second broad area of applications can be identified where computation is iteratively 

applied to prospectively simulate real or hypothetical systems. Here the applications themselves 

may not be very data intensive, but repeatedly iteratively performing (often) simple calculations 

over time and/or space leads to substantial computational demands in the aggregate. Such 

computation is deployed in simulating target systems of interest, in meteorology, product design, 

military applications (flight and combat simulators), and perhaps most familiar to a general 

audience, in computer gaming (Crogan, 2011). 

It is useful to consider these two computational approaches as they have played out in a 

particular discipline (geography) to provide a more specific account of the differences between 

them. Geography's quantitative revolution witnessed its own somewhat related bifurcation, in the

divergence between theoretical model-oriented methods (Chorley and Haggett, 1967) and more 

pragmatic applications of inferential statistics to primary and secondary data, typified by the 

coverage of texts such as Leslie King's Statistical Analysis in Geography (King, 1969). It was 

not long before the peculiar challenges of spatial data complicated and compromised the latter 

enterprise considerably (Gould, 1970). Meanwhile, beyond a few specialized areas and subfields 

such as urban modeling, the model-oriented approach found only limited acceptance, before the 



dramatic epistemological upheavals of the 1970s and 1980s. As Thrift notes, this “ghettoizing of 

complexity theory in geography was a tragedy, since the potentialities for much wider interaction

were there.” (1999, page 60 note 2). The marginalization of complexity oriented approaches in 

geography, within quantitative geography, is instructive, because it emphasizes the extent to 

which any attempt to map methodological approaches onto political or other predispositions is 

doomed to failure. 

Even from a computational perspective, the distinction I am drawing is somewhat 

artificial, since many of the same computational tools and algorithms are equally applicable to 

either Big Data or complexity science, the point of general purpose computing being precisely its

mutable, reprogrammable nature. The truth is more complicated and nuanced than any simple 

binary account would suggest. On the one hand, simulation depends on repetitive, often routine 

calculation, not achievable by hand. On the other, applying closed-form solutions to small 

datasets can enable iterative and interactive exploration of many possible solutions, and lead 

from there to the concept of a solution space, and ultimately, to a more nuanced understanding of

the original problem. When numerical analysis is applied in this way it can transform the 

questions asked of data. This more exploratory stance toward datasets has initiated the trend 

toward interactive visualization of larger, more complicated datasets. 

Two cultures of  computation?

It is tempting to map these two computational styles (closed solutions and open-ended 

exploration) directly onto two cultural manifestations of computing: authoritarian, corporate, 

statist, big brother, Big Data on the one hand, and liberatory, individual-empowering, personal 

computing on the other.(5) The dualism is deeply etched into many accounts of the history of 

computing (see, for example Barbrook, 2007; Levy, 1984 or consider the 1984 Apple Superbowl 

ad; see Golumbia, 2009). The duality is particularly emphasized by self-styled 'revolutionary' or 



'disruptive' Silicon Valley startups, deploying their own version of the complex cultural politics 

of the post-1960s counter-culture (Frank, 1998) These contradictions are brilliantly dissected by 

Fred Turner (2008) in his From Counterculture to Cyberculture, and many of the contradictory 

oddities of high tech's self-consciously liberal (often libertarian) yet conservative elite are 

entertainingly recounted in Pauline Borsook's enduringly relevant Cyberselfish (2000).

A similarly odd clash of cultures is evident in the contrast between a 'new age' holism in 

the language and iconography around chaos and complexity science, and the more authoritarian, 

establishment and business agendas both funding and consuming this science (Thrift, 1999). 

Thus, one important center of complexity science has been the Santa Fe Institute (SFI), which 

according to Helmreich “is sometimes considered the good twin of Los Alamos, concerned with 

the technology of life, rather than the technology of death” (1998, page 43),(6) and established in 

part through the efforts of George Cowan a former director of the Los Alamos laboratory (see 

Waldrop, 1992, pages 53–69). Or again: “[m]ost scientists at SFI are wary of any association 

with New Age movements” (page 41); and yet books such as Stuart Kauffman's At Home in the 

Universe (1995) struggle (for the most part failing) to stay on the scientific side of a surprisingly 

fine line between 'new age-y' flakiness and detached scientific rigor, when it comes to the more 

grandiose claims of complexity science. Such odd intellectual (if not cultural) contradictions may

be the inevitable outcome when reductive scientific methods, so successful at explaining 

phenomena that are timeless at human scales (e.g., the Solar System, evolution), are applied to 

systems where historical modes of explanation with their attendant contingencies and chance 

events have been predominant.

A simplistic mapping of the cultural origins of the two computational 'traditions' under 

discussion onto particular political or economic agendas is plainly unsustainable.  Science and 



technology studies in numerous fields have repeatedly and convincingly demonstrated the highly

contingent nature of the relationships between technologies and the politics they embed and 

produce (Feenberg, 1991; Latour and Woolgar, 1979; Winner, 1986). So, while it is tempting to 

suggest that complexity-oriented, bottom-up modeling is inexorably associated with anti-

authoritarian and more open approaches to knowledge, while Big Data, top-down, classificatory 

and inferential statistical approaches are aligned with powerful interests, it is demonstrably 

untrue. There is nothing intrinsic to either approach that determines the ends to which they can or

should be deployed. Closed-form calculation might be used to optimize the efficient production 

and equitable distribution of medical or other public services, while simulation can be (and 

almost certainly has been) used to explore possible strategies for the illegal invasion and 

occupation of another country. 

Contrasting computational epistemologies

The lack of a one-to-one mapping from computational approach onto particular political 

or economic agendas notwithstanding, it should nevertheless be clear that these two broad 

approaches as distinctive scientific practices embed different thinking about process. They also 

each sit more easily with contrasting attitudes to the use of computation in furthering 

understanding of socioeconomic, political and cultural systems. Indeed it is my argument here 

that we ought to choose which approaches to the use of computation are more likely to advance 

our understanding of the world, and adopt them for that reason. It is likely that such pragmatism 

would see Big Data de-emphasized in favor of complexity models and other computational 

approaches more attuned to process and explanation, as in the digital humanities (Burdick et al., 

2012). This contrast between complexity science and Big Data is schematically elaborated in 

Table 1. 



Table 1 The differing methodological, representational and epistemological approaches of

complexity science and Big Data

Complexity science Big Data

Embeds theory in models Correlation and classification

Represents process Temporal snapshots

Open-ended exploration of 
process implications

Exploration of already-
collected data

Bottom up Top down

Multiple levels and scales Two levels: aggregate and 
individual

Many alternative histories (or 
futures)

'Just the facts' (or optimal 
solutions)

Complexity-oriented model-based approaches are precisely about process. It is a 

representation of process (however limited) that drives the dynamics of such models, and open-

ended investigation of model behaviors can be considered as an exploration of the conditions of 

possibility of the system being modeled.  Before getting too excited about this it should be 

acknowledged that in many cases the notion of 'process' embodied in such models is not greatly 

richer than that implied by the historical snapshots of Big Data. Change is most often cast in 

terms of changing attribute values of otherwise fixed and stable entities. Nevertheless, the focus 

is on change, and the circumstances that produce change, a perspective that forces users of 

models to consider processes and mechanisms directly. Interesting model structures that combine

both attribute change and systemic structural change (Gross and Blasius, 2008) are one possible 

advance in this regard. 



Open-ended exploration of dynamic models(7) engenders a different, more humble and 

provisional attitude to knowledge, compared to pre-defining and then identifying 'optimal' 

solutions or patterns of interest. Simulative computation, posits 'possible worlds' (in the form of 

simulation results under different scenarios or model configurations) and implicitly 

acknowledges the speculative nature of the exercise (Casti, 1997). Speculative computer 

modeling in this vein has led to the recognition in parts of the mathematical sciences (and more 

widely) of limits to knowledge and prediction, in the form of dynamic effects such as chaos 

(Gleick, 1987), and properties such as emergence, path dependence, positive feedback and 

adaptivity, all of which are likely to preclude reliable prediction of a system's behavior over time.

The recognition of these system characteristics under the banner of complexity science (Coveney

and Highfield, 1995; Manson, 2001; O’Sullivan, 2004), calls, at least potentially, for greater 

humility on the part of scientists, and a recognition of limits to knowledge inherent in the nature 

of the systems under study (Cilliers, 1998; Richardson et al., 2001). Understood this way, 

complexity science underwrites a pluralistic approach to knowledge, that acknowledges the 

importance of understanding systems at multiple levels, from multiple perspectives, and using a 

variety of methods (Harvey and Reed, 1996). Recognizing that social systems are composed of 

complex individuals, organized into households, at the same time playing multiple roles in a 

range of institutions of varying organizational structure, that themselves have a range of aims and

goals, when seen through a complexity science lens ought to provoke realization that no single-

level, top-down understanding of how society works will do; and furthermore, different methods 

are likely to be appropriate for getting at what is going on in each of these diverse contexts 

(Manson and O’Sullivan, 2006).



It is important to note that Big Data and complexity science are not as far removed from 

one another as they at first appear. Both are about fitting simple models to observations: 

statistical models derived from observational data on the one hand, synthetic simulation models 

on the other. At the same time, the important differences in epistemology sketched here, are real, 

particularly if care is not . A complexity-oriented modeling approach to knowledge allows us to 

think of data not as hard, precise evidence of reality, but as a set of patterns that constrain a space

of plausible, speculative models whose structure and mechanisms can account for those patterns 

(Grimm et al., 2005), and which may therefore be useful in building process-oriented, 

theoretical, explanations for the existence of those patterns. Data in this context become an 

intermediate step in the development of explanations.  By contrast, under the model most often 

adopted in the world of Big Data, data themselves are the phenomena, and explanation is less 

about understanding processes and mechanisms—that is, explaining the world—and more about 

describing the data, at which point the phenomena themselves are taken to have been understood.

Conclusions

As I have tried to show an orientation to process is absent from the epistemology of Big 

Data, yet is surely central to any coherent approach to explanation in geography and the social 

sciences more generally. Other computational approaches offer more in this regard, but have 

been less prominent in recent years. As much as anything this may be symptomatic of intellectual

'fashions' in science. Chaos and complexity theory both had their own times 'in the sun', and 

complexity remains a much-trafficked buzzword. Perhaps, these approaches were tried but failed

to deliver on their initial promise, as I am suggesting Big Data is likely to? There may be some 

truth in this view, although it depends on an odd, fashion-conscious perspective on how we 

should evaluate scientific method. More seriously, it fails to appreciate how great a challenge 



taking seriously the uncertainties introduced by complexity poses, for conventional modes of 

scientific explanation. The complexity enterprise points to a much wider remit for historical and 

narrative modes of explanation, which go against the grain of dominant modes of scientific 

explanation. The tension is exacerbated by the 'simple rules, complicated behavior' mantra so 

often used to 'sell' complexity science, which present simple models as the end point of 

complexity-oriented approaches, when, really they are only the beginning. Just as it is foolish to 

believe that data-mining Big Data can provide answers to every social science question, it would 

be foolish to argue that simple complexity science models can answer every question. 

Recognizing and valuing pluralism in methods is key to the complexity-oriented 

computational approaches I favor. That implies two things. First, that there is, of course, a place 

for Big Data (Miller and Goodchild, 2014). It would be absurd to argue otherwise. Without 

doubt, when contemporary datasets and data-mining methods are applied to questions of genuine

social scientific interest, new phenomena will be identified, and new perspectives on old 

questions will emerge. But understanding those new phenomena will demand approaches other 

than those of Big Data. Which leads immediately to the second point, that other approaches to 

geography and social science remain vital to any coherent way forward. What is disturbing about

much of the hype around Big Data is the apparent desire to advance on all fronts simultaneously:

Big Data, not content with being a 'revolutionary' approach to social science, must become a 

whole 'system for living', a societal lifestyle choice, a new mode of governance, of business, and 

of science.

The tragedy is that this stance toward Big Data could easily discredit all computational 

approaches to the social world. Not only by getting the science wrong (Lazer et al., 2014), but 

also by becoming a pervasive social surveillance system, the necessity for which is unclear, 



beyond the desire for profit of large corporate interests, and the data anxiety of a surveillant state 

(Crampton, 2014; Crawford, 2014).  The psychology of Big Data holds out an entirely false 

promise: that if only the data were bigger, we would know even more. There are certainly 

contexts where this might be true (astronomy’s Square Kilometre Array, for example, see Taylor, 

2012), but they are not social ones. Much of what is revealed by social Big Data we either 

already know, or is accessible in other ways that can place human actions and decisions in much 

richer social contexts. It seems likely that we would lose very little of genuine scientific interest 

by not recording and storing every person-machine micro-interaction. There are no scientific 

grounds for 'collecting it all', only commercial imperatives (and even those are founded on a wild

speculation), which returns us to the important political-economic issues I opened with.

There is a danger in focusing as I have on method, on means over ends. It is ethical 

positions, not methodological choices that most affect the impact of research (Lake, 2014). 

Ultimately, the two cannot be disentangled, and if the undoubted potential of computational 

methods in the social sciences is to be realized it is important that we learn what can be learned 

from past mistakes, recognize the limitations of all our data, and focus on developing 

computational approaches to geography and social science better aligned with handling those 

problems. Such a social science will not only be better science qua science, but will also be more

ethically defensible as a direct result of recognizing the explanatory limitations of data. In sum, 

we should not only be challenging the political economy of Big Data, we ought to be deeply (and

vocally) suspicious of its epistemology, not only from within critical traditions skeptical of 

quantification anyway, but from the perspective that more interesting quantitative and 

computational methods are available.



Notes

1. Big Data is a troublesome phrase to use correctly given its willful (and annoying) 

mixing of a singular adjective and a plural countable noun—'numerous data' would have been a 

more accurate, if less compelling coinage. Further, the phrase 'Big Data' has come to stand for a 

complex mix of technologies, ideas and practices, such that it may be considered a singular noun 

phrase. In a perhaps futile attempt to hold back the tide of offenses against grammar, where I 

consider the meaning to be 'many data' I treat 'data' as plural, whereas when the meaning is Big 

Data (the idea), I treat it as singular.

2. See http://www.radionz.co.nz/national/programmes/bigdata (accessed June 2, 2015) 

where the series is archived at the time of writing.

3. For information about the infrasructure investments, see 

http://www.med.govt.nz/sectors-industries/technology-communication/fast-broadband (accessed 

June 2, 2015). Some sense of the high priority given to Big Data in national science and 

innovation priorities is provided by the appointment and reports of the New Zealand Data 

Futures Forum http://www.nzdatafutures.org.nz/ (accessed June 2, 2015).

4. Some insight into how such intentions drifted is provided by Zuckerman (2014).

5. It is particularly tempting if you live in Northern California, perhaps even more so if 

you have only recently moved there!

6. Los Alamos is, of course, home to one of the United States National Laboratories most 

closely associated with past and ongoing development of nuclear weapons.

7. Of course, model building science is not always an open-ended exercise. A 

considerable amount of economic theory is built on reversing the sequence of model-building 

and exploration leading to the refinement of testable theory. Instead, models provide rhetorical 



support for theoretical positions already firmly established, and are refined to fit theory, rather 

than the other way around. In the process the models become more, not less divorced from 

reality (Lawson, 1997; Keen, 2011). I am concerned here with an approach to the use of 

simulation models, discussed in my recent book (O’Sullivan and Perry, 2013). The proper use of 

simulation in science is a difficult philosophical area, which remains under-explored by 

philosophers of science (but see Winsberg, 2010; Weisberg, 2013).
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