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ABSTRACT OF THE DISSERTATION

ESSAYS ON ASSET PRICING AND CRYPTOCURRENCY

By

Joy Diana Xiuyao Yang

Doctor of Philosophy in Economics

University of California, Irvine, 2022

Professor Gary Richardson, Chair

This dissertation is composed of a theoretical chapter and an empirical chapter on asset

pricing and cryptocurrency asset pricing.

The first chapter is a theoretical study and is motivated by the recent multiplication of

privately produced cryptocurrencies and the questions raised about the dynamics of their

prices. Through a New Monetary approach, I investigate a prominent question, which is,

“What causes enormous price volatility in cryptocurrency?” Specifically, I study this question

using a random matching search model and relax the assumption of rational expectation

by introducing an adaptive learning algorithm. My model builds on Choi and Rocheteau

(2021), who study the price dynamics of monies that are privately-produced through time-

consuming mining technologies under rational expectation. They extended the Lagos-Wright

model by adding a time-consuming mining technology and an occupation choice, to show

that there exists a unique equilibrium where a positive money value reaches to steady state.

Although their model has desirable results, the extreme price volatility in empirical data can

not be explained in their rational expectation version of the model. I use bounded rational

expectation to explore monetary theory price dynamics. my paper contributes to this under-

explored study using an adaptive learning approach. The primary contribution of this study

is that I use a constant-learning-gain to demonstrate how the learning gain affects monetary

ix



equilibria, their dynamics and their stabilities. The main results are that with a relative

high learning gain in the adaptive learning algorithm, a period of doubling bifurcation can

occur, which can lead to chaos or explosive paths. These endogenous dynamic results shed

some light on the intensity of cryptocurrency’s price volatility. In addition, when buyers

have higher bargain power, the price of cryptocurrency converges to a positive value. Ceteris

paribus, however, when producers have higher bargain power, the price converges to zero

equilibrium. The feedback effect, which plays a significant role in cryptocurrency’s price

volatility, provides the intuition behind this model.

The second chapter examines the cross-sector comovements that occurred in the U.S. stock

market during the COVID-19 pandemic. This study constructs a dynamic factor model

to illuminate the sources and implications of these comovements. Estimation of the model

using a Markov Chain Monte Carlo method reveals that the latent sentiment is the driving

force behind financial market behaviors. In addition, the latent factor had a weak daily

oscillation pattern with a -0.09 autoregressive coefficient in an AR(1) process. This pattern

explains the stock market’s extreme comovements and high volatility. Moreover, this study

estimates the impact of the monetary policy interest rate on each stock market sector. The

results indicate that when the Fed Effective Funds Rate was reduced by one percentage point,

utilities and non-durable goods stock returns substantially jumped by 11.35% and 7.328%,

respectively. In addition, this study explores the impact of news shocks, including monetary

policy news, fiscal stimulus news, and unemployment news, on cross-sector equity returns.

For any given sector, the conventional and unconventional monetary policy news shocked

the sector in opposite directions. Of the positive monetary news shocks, the strongest shocks

were from the interest rate policy surprises, while unconventional monetary policy news had

a more sluggish impact on stock returns. Conversely, fiscal stimulus news had the most

substantial positive impact and triggered all sectors to rebound from the bear market at the

end of March 2020. Furthermore, by applying Natural Language Processing (NLP) sentiment

analysis, this study sheds light on the positive correlation between comovements and news
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sentiment. Using the Wall Street Journal headlines as proxies of the market sentiment, the

study finds a positive correlation, 0.31, at the 95% statistically significant level, between the

comovements and market news sentiment. Finally, in estimating the associations between

the cross-sector asset returns and the government’s social distancing policy, this study finds

that the stay-at-home orders and restrictions on transit have positive associations with asset

returns. Conversely, increases in retail and recreation activities have negative associations

with asset returns in general. Owing to the government’s policies and restrictions enacted to

protect public health by slowing the spread of COVID-19, some economic activities have been

curtailed in the short term. However, in the long term, these government restrictions help the

public’s welfare and the economy. Future studies to explore the different impacts between

government restrictions and voluntary social distancing could provide fruitful results.
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Chapter 1

Adaptive Learning and

Cryptocurrency’s Price Volatility

This paper studies a question in monetary theory: Why is cryptocurrency extremely volatile?

To investigate this question, I use a New Monetary model with an adaptive learning assump-

tion. Specifically, using the baseline framework of Choi and Rocheteau (2021), this paper

relaxes their perfect foresight assumption by replacing it with an adaptive learning assump-

tion. I find that, under the adaptive learning assumption, the stability of steady state can be

altered. With a high learning gain parameter in the adaptive learning algorithm, a period

of doubling bifurcation can occur, which in turn can lead to chaotic regimes or explosive

paths. These price dynamics from the model help explain the phenomena of the extreme

price volatility in cryptocurrency.

Keywords: Cryptocurrency, Money Search, Expectations, Adaptive Learning, E-Stability
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1.1 Introduction

The first cryptocurrency, Bitcoin, was introduced in 2009 and it took about ten years for it

to go from an abstract idea to a multibillion-dollar market. Bitcoin started in early 2017 at

$998 1 and reached $19,783.06 2 by December 17, 2017. Meanwhile, the total cryptocurrency

market experienced phenomenal growth, rocking from $18 billion to $813 billion within 12

months. After this unprecedented boom in the cryptocurrency market, the capitalization

collapsed 80% from its peak value back in January 2018, making the 2018 cryptocurrency

crash worse than the Dot-com bubble crash. The market’s boom and bust cycle and intense

price volatility have sparked attention in both investment and academic fields. The market

offers no consensus about its value. In academic areas, a growing body of literature has

emerged studying this intrinsically worthless fiat money, and presenting with some heated

debates.3 However, few scholars have studied its extreme price volatility, leaving both the

value of cryptocurrency and its high price volatility puzzles. The goal of my paper is to shed

some light on these puzzles.

Through a New Monetary approach, I investigate a prominent question, which is, “What

causes enormous price volatility in cryptocurrency?” Specifically, I study this question us-

ing a random matching search model and relax the assumption of rational expectation by

introducing an adaptive learning algorithm. Most research papers in the New Monetary

search field depend on rational expectation assumption; this assumption is standard and re-

quires agents to have full knowledge of the equilibrium distribution of all economic variables,

have complete information about other agents’ preference and beliefs, and have unlimited

computational power. Market clearing conditions are also assumed in rational expectation.

1In this paper, all monetary references are represented in the US dollar.
2Data from https://www.coindesk.com/sell-news-bitcoin-price-tests-20k-ahead-cmes-futures-launch
3A few Nobel laureates and famous economists are pessimistic about Bitcoin. For example, professor

Joseph Stiglitz has described Bitcoin as “a bubble and should be outlawed.” Professor Paul Krugman com-
mented on Bitcoin as a bubble wrapped in techno-mysticism inside a cocoon of libertarian ideology.
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Although rational expectation assumption can provide some robust results, it seems it is

unrealistic and strong.

My paper builds on Choi and Rocheteau (2021) who study the price dynamics of monies that

are privately-produced through time-consuming mining technologies under rational expecta-

tion. They extended the Lagos-Wright model by adding a time-consuming mining technology

and an occupation choice, to show that there exists a unique equilibrium where a positive

money value reaches to steady state. Although their model has desirable results, the extreme

price volatility in empirical data can not be explained in their rational expectation version of

the model. I use bounded rational expectation to explore monetary theory price dynamics.

To the best my knowledge, few studies investigate cryptocurrency volatility based on agents’

beliefs using the monetary search model, and my paper contributes to this under-explored

study using an adaptive learning approach.

1.1.1 Empirical Motivation

From the empirical data, there exists substantial evidence to support that high price volatil-

ity is a salient characteristic of cryptocurrency. For example, Bitcoin’s 60-day price historical

volatility (See Figure (1.1)). The average one-year volatility of cryptocurrency is approx-

imately six times that of gold and about 20 times that of the FOREX USD/EUR. Nobel

Laureate Richard Thaler (2018) emphasizes, “ The extremely high volatility in Bitcoin’s

price is due to irrationality.” 4In monetary theoretic studies, whether to assume rational

expectation depends on the research question. A rational expectation version of the mone-

tary model is unable to explain such price volatility; therefore, to reveal the cause of price

4Richard Thaler (2018) discusses the irrationality in the Bitcoin market that has led to the bubble,
demonstrating the irrationality with the example of firms by adding the word “ blockchain” to their names
had largely increases their stock prices.
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Figure 1.1: Daily Bitcoin Price and Historical Volatility (July 2010 - July 2021)

volatility in cryptocurrency, an alternative expectation assumption is imperative.

I analyze the monetary equilibrium in two settings. In the first setting, I adopt the standard

framework from the monetary search literature of Lagos and Wright (2005) as the benchmark

approach, in which results multiple equilibria: non-monetary and monetary equilibrium. I

use discrete time instead of continuous time in my model. The only money in the econ-

omy is cryptocurrency, perfectly divisible, and it plays the role of facilitating trade. On the

money supply side, I assume an exogenous supply path and based on the presumed mining

technology5, the numbers of miners required can be determined exogenously. On the money

demand side, buyers and sellers have heterogeneous preferences and specialization in pro-

5For example, in Bitcoin mining, the block time (the time to mine a block to solve a Proof of Work puzzle)
is relatively consistent at about 10 minutes, while in Ethereum with the Proof of Stake (PoS) algorithm, the
block time is between 10 and 19 seconds.

4



duction, which creates a need for money. Buyers and sellers are randomly matched in the

model, and the terms of trades are determined by Kalai bargaining. The conditions for the

steady state equilibrium in perfect foresight are derived in the benchmark approach.

In the second setting of my paper, I extend the basic framework to bounded rational ex-

pectation instead of rational expectation. The expectation formation is influenced by the

adaptive learning literature (e.g., Marcet and Sargent (1989); Evans and Honkapohja (2001).

In the literature, agents are assumed to maximize their utility, and according to the cognitive

consistent principle, agents follow an adaptive learning rule in which they make forecasts, at

any given time, in the same way as econometricians do, formulating rules based on the avail-

able data and revising forecast over time as new data becomes available. Specifically, there

are two main choices for the gain sequence in adaptive learning algorithms: (i) Decreasing-

learning-gain algorithm, such as gt =
1
t
, which is in line with standard recursive least squares

algorithms, and (ii) Constant-learning-gain algorithm with gt = g, where g ∈ (0, 1). The key

difference between the two cases is that for the constant-learning-gain algorithm, it is possi-

ble to have endogenous fluctuations, as the economy occasionally escapes from the basin of

attraction of one steady state to the basin of attraction of another steady state (Evans and

Honkapohja (2001)). Furthermore, a point emphasized in Hansen and Sargent (1990) and

Sargent (1999) that it is possible in the constant-learning gain case, adaptive learning does

not converge to the forecast rule and they can give rise to additional “persistent learning

dynamics” not found in an REE. In my model, I use the constant-learning-gain algorithm,

where the stability of the steady states is determined by the eigenvalues of the Jacobian

matrix refers to Hommes (2013), convergences, chaos or bifurcations can occur.

The novelty of this paper is that I use a simple adaptive learning algorithm to shed light

on the intense price volatility in cryptocurrency. The study of adaptive learning provides

5



a check on the robustness of the equilibrium. In a nutshell, the learning gain in adaptive

learning plays a key role in this model, and the stability of price equilibrium can be altered

with different learning gains. Adaptive learning offers a way of selecting among multiple

equilibria, which can be a puzzle for many rational expectations models. My results show

that with a relatively high learning gain in the adaptive learning algorithm, a period doubling

bifurcation can occur, which can lead to a chaotic regime or to an explosive path. These

dynamics from the model help to explain the phenomena of extreme price volatility in cryp-

tocurrency. My work contributes to the literature on the price volatility of cryptocurrency.

1.1.2 Related Literature

The benchmark model builds on the monetary search-theoretic model of Lagos and Wright

(2005), who built a tractable framework to analyze how frictions can impact the role of

money as a medium of exchange. They showed that in bilateral trades, buyers and sellers

with rational expectation negotiate via Nash bargaining. The Friedman Rule is still optimal,

but it does not achieve the first best unless the buyer’s bargain power is one. There are two

steady states, a monetary and non-monetary steady state. A continuum of perfect foresight

path converges from non-monetary steady state to the monetary steady state. I follow the

framework of Choi and Rocheteau (2021), who extended the Lagos-Wright model by adding

an occupation choice and a time-consuming mining technology. They used continuous time

setting, which allows the model to eliminate some chaotic dynamics. They also showed

that under perfect foresight, there exists a unique equilibrium where a positive money value

reaches to steady state; and on the dynamics equilibrium path, prices can inflate and burst

gradually overtime.
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The literature on the existence of cycles and non-linear dynamics in monetary models is

also well-known, such as Lagos and Wright (2005) and Rocheteau and Wright (2013). Nosal

and Rocheteau (2011) have shown periodic cycles or chaos can be generated in a non-linear

model. Gu et al. (2013) have shown non-linear perfect foresight dynamics in a model with

endogenous debt limits. In essence, the perfect foresight model require a non-monotonic

price equation to generate equilibrium dynamics in price.

Expectation plays the essential role for equilibrium stability. The tenuousness of monetary

equilibria, originally studied by Wallace (1980), shows that in general, there exists a non-

monetary equilibrium where fiat money values zero and a positive monetary equilibrium.

Monetary equilibrium can always break down due to self-fulfilling beliefs. There are re-

searchers focus on bounded rational and learning in macroeconomic models. The study of

learning includes Bray and Savin (1986), Woodford (1990), Evans and Honkapohja (1999),

and Hommes (2013). The adaptive learning rule is in the spirit of Marcet and Sargent (1989)

and Evans and Honkapohja (2001), where agents behave like econometricians forming their

forecast based on available data and revising their forecast to account for recent data. Under

adaptive learning, Branch and McGough (2016) demonstrated that with the endogenous dis-

tribution of heterogeneous expectations, the stability can break down; as a result, complex

dynamics can be created. There exists extensive literature that incorporates adaptive learn-

ing in an OLG model, such as Lucas (1986), Woodford (1990), and Evans and Honkapohja

(2001). There are several similarities between the OLG and the monetary search models,

however, the environments are different: agents in the monetary search model live forever

and match randomly and bargain on trade. Therefore, the market structures are different.

Rocheteau and Wright (2005) illustrated that variety of pricing mechanisms have different

equilibria and monetary policy effects.
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There is a growing literature on cryptocurrency and blockchains. Chiu and Koeppl (2019)

used a search model to study the optimal design of a cryptocurrency protocol. Garratt and

Wallace (2018) studied in an OLG setting, the competition and indeterminacy of exchange

rates between cryptocurrencies and central bank currencies. In a model of an infinite hori-

zon, Schilling and Uhlig (2019) discussed equilibrium where agents hold the cryptocurrency

for appreciation purpose but not for payments. Pagnotta and Buraschi (2018) used a strate-

gic oligopolistic game to model how miners incorporate the probability of earning mining

rewards to their investment. Biais et al. (2019) formally analyzed the proof-of-work protocol

as a dynamic coordination game for miners and showed the existence conditions required

for an equilibrium path. Glaser et al. (2014) discussed how media coverage and sentiment

impact Bitcoin’s price volatility.

1.2 Economic Environment

This model builds on Lagos and Wright (2005). Time is discrete, extends forever and is

indexed by t ∈ N . Each period is divided into two sub-stages, a decentralized market (DM)

stage followed by a centralized market (CM) stage, in which different economic activities

take place. There is a continuum of infinitely lived identical agents. There are two cate-

gories of goods: DM goods and CM goods. Agents can not consume their own produced

DM good, but are able to produce a variety of DM goods that other agents can consume,

which creates a need for trade. Money is perfectly divisible and storable, and the price of

fiat money (in terms of the numeraire) is ϕ. Agents discount between the second stage CM

and the following day DM at the rate of r = 1
β
− 1, where β ∈ (0, 1).

There is a unit measure of agents in the model and each agent is a potential buyer with
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the assumption that he can not consume his own goods in the DM and his initial money

holding is a0 > 0. At time t, there is a pool of mt measure of miners who work on solving

the Proof-of-Work (PoW) blockchain and the rest 1 − mt measure of agents who work on

producing goods. In addition, mt is assumed as an exogenous variable, and an agent can be

either a miner or a producer, but not both. In the DM, the random bilateral meetings and

matching take place. The matching technology in the DM is described as follows. Let α(·)

be the matching function. As in the standard condition, α′ > 0, α′′ ≤ 0. Let τ denote the

market tightness, seller per buyer, thus τ = 1 −mt. The single coincidence that one agent

likes the other’s production DM goods is given by σ. As a result, the probability of matching

a seller for each buyer is α(τ)σ, and for each seller, the probability of matching a buyer is

[α(τ)/τ ]σ. Agents are anonymous and can not commit, as a result, no credit is available

in this economy. The model also assumes no double-coincidence-of-wants matches, and all

goods are non-storable and can not be transferred to later. To overcome all these frictions

and to facilitate the trades, the miners create a medium of exchange called cryptocurrency.

Cryptocurrency is the only money in this model and is mined in the DM. Let ãt be the sup-

ply of cryptocurrency at any time t and Ā be the total cap of money supply. Let d̃t denote

the amount of new mined cryptocurrency during each period t and therefore d̃t = ãt+1 − ãt.

Money supply is assumed to follow an exogenous path and the growth of production is de-

signed to gradually decrease. For example, the total limit of Bitcoin is 21 million, the time

to solve a proof-of-work (PoW) and validate one block is approximately 10 minutes and the

reward per block is gradually reduced 6 7. One of the properties in cryptocurrency is that

6The number of Bitcoins rewarded per block is created to be reduced every four years, starting from 50
coins per block, halved to 25 coins, and currently miners have been receiving 12.5 Bitcoins for each block
successfully processed.

7In another example, the block reward on Ethereum blockchain also has a decreasing algorithm. Initially,
the block reward was 5 ETH per block in 2016 and was reduced to 3 ETH, then to 2 ETH after the
Constantinople hard fork in 2019. This reduction from 3 ETH to 2 ETH is a -33% adjustment, hence also
called “Thirdening”.
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successful miners receive the network’s native tokens 8. Incentives are paid to the first solver

of the puzzle, either a single miner or a pool of miners, for which each miner receives a

fraction of the total reward. Let d̃t
mt

= Λ be the average number of tokens rewarded to each

miner, and for simplicity, Λ is assumed as constant.

The Centralized Market (CM) is a Walrasian market, in which all agents can produce or

consume general goods. Buyers and sellers can re-balance their asset portfolios. The linear-

ity of the utility and cost functions ensures that agents have the same money holdings at

the end of the CM eliminating wealth effects.

An agent’s preference is given by,

U(x, y,X, h) = u(x)− c(y) + U(X)− h (1.1)

where x is the specialized consumption goods, y is the production goods in the DM, X and

h are consumption and production labor of the general goods in the CM.9 In general, x and

y both depend on the money holdings of buyers and sellers. Later, I will use the numeraire

good q to represent these DM goods. Let u(·) and U(·) be the utility functions in the DM

and CM, respectively, and assume u(0) = c(0) = 0, u′ > 0,c′ > 0, u′(0) = +∞, u′′ < 0,

c′′ ≥ 0, and U ′ = 1. There exists a q̄, such that u(q̄) = q̄ and q̄ < +∞.

The timing of this model is as follows (also see Figure (1.2)). Before the beginning of the

first sub-period DM opens, based on the available information {ϕi}t−1
i=0, agents form their

pre-determined expectations, (rational expectation in the benchmark model and adaptive

8There are different types of incentives in crypto blockchain mining: the native tokens, transaction fees,
different form of tokens, privilege, and so forth.

9Refer to Lagos and Wright (2005), who comment on this: “although separability is not critical and is
made merely to ease the presentation.”

10



learning expectation in section 4). In the DM, agents are matched with the match function

τ and the single coincidence σ, then Kalai bargaining follows. Trade price is based on the

expected value of money ϕe
t formed at the beginning of this period and trades take place at

the end of the DM. Agents then enter into the second sub-period CM observing the realized

value ϕt. Based on the formed expectation ϕe
t+1 at the beginning of this period, agents need

to re-balance their money holdings by trading the general goods in the CM. Between closing

the CM and the next day opening the DM, agents need to update their forecasts for ϕe
t+1

and ϕe
t+2 as the price ϕt is revealed in the CM. Note that, agents only update their forecast

once at the end of each CM. Timing is an important assumption in the learning literature

and change of the timing assumptions, such as price revelation and forecast updating, can

cause variations of results.

Figure 1.2: DM-CM

1.3 Equilibrium

1.3.1 Centralized market (CM) Bellman Equation

Agents enter the second sub-stage CM with at unit of money with price ϕt. A buyer from the

first sub-stage DM would use labor to produce CM goods to increase his asset holdings, and
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a producer or miner would purchase CM goods to reduce his asset holdings. By assuming

that both the production cost and the utility function of CM goods are linear, the wealth

effect is eliminated, and all agents readjust their asset holdings to leave CM stage with the

same units of money, at+1.

Let Wt(at, ϕt) denote the value function for an agent, who holds at ∈ R+ unit of money at

the beginning of the CM in the period time t.

Wt(at, ϕt) = max
Xt,ht,at+1

{U(Xt)− ht + βV e
t+1(at+1, ϕt+1)} (1.2)

s.t. atϕt + ht = at+1ϕt +Xt (1.3)

where ϕt is the value of cryptocurrency, atϕt represents the real balance, and V e
t+1 is the

expected value of DM for the period t+1.

1.3.2 Decentralized market (DM) Bellman Equations

The producer’s DM value function,

V p
t (at, ϕt) = α(τ)σ

{
u[q(at, ϕt)] +W e

t [at − p(at, ϕt)]

}
+
α(τ)

τ
σ

{
− c[q(ãt, ϕt)] +W e

t [at + p(ãt, ϕt)]

}
+

[
1− α(τ)σ − α(τ)

τ
σ

]
W e

t (at, ϕt)

(1.4)

Note, ãt appears in the second term, which represents the number of tokens held by other

agents, who can buy goods from the producer. The reason why it is ãt, but is not a is due
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to there being no credit in this economy, therefore, the trade payment is essentially limited

by the buyer’s assets, not the seller’s. I use ãt to represent that it is the other agents’ assets,

which are not controlled by the producer.

The value function for a producer in the DM has three components. The first term on the

right hand-side represents that anyone who holds asset a can potentially be a buyer as long

as he does not run into a miner. Therefore, the probability of being a buyer is α(τ)σ. The

terms of the trade (q, p) means that a buyer pays p unit of money for q units of DM goods.

The second term is that a producer with a probability of α(τ)
τ
σ to meet a buyer chooses to

produce goods, costing c(q) but earning p. The last term means that an agent chooses to be a

producer, however, he does not meet a trading partner so trades do not occur; consequently,

he ends up with the same asset a with which he entered the DM..

The miner’s DM value function,

V m
t (at, ϕt) = α(τ)σ

{
u[q(at, ϕt)]+W e

t

(
[at−p(at, ϕt)+Λ], ϕt

)}
+[1−α(τ)σ]

[
W e

t

(
(at+Λ), ϕt

)]
(1.5)

where Λ is the average number of new coins rewarded to each miner.

The value function equation (1.5) for a miner in the DM can be broken down into two com-

ponents: matched with a trade partner, thus trade; and not matched with any trade partner.

The first term on the right-hand-side represents that a miner, holding asset a, is matched

with a trade partner; consequently, he becomes a buyer while at the same time he engages in

the mining activity. Therefore, with a probability α(τ)σ, he can trade with the term (q, p),

spending p units of money, consuming goods, enjoying the utility of u(q). He also knows
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that success in mining is not guaranteed, but on average each miner is expected to get Λ

units of new coins. The second term simply means when a miner is not matched with a

trade partner, he engages in mining only and acquires the reward of Λ without consuming

any goods in the DM.

Using the linearity of W (·), simplify function (1.4) and (1.5),

V p
t (at, ϕt) = α(τ)σ

{
u[q(at, ϕt)]− p(at, ϕt)ϕt

}
+ σ

α(τ)

τ

{
− c[q(ãt, ϕt)] + p(ãt, ϕt)ϕt

}
+ atϕt

(1.6)

V m
t (at, ϕt) = α(τ)σ

{
u[q(at, ϕt)]− p(at, ϕt)ϕt

}
+ ϕtΛ + atϕt (1.7)

Therefore, at the beginning of the CM the agent’s maximum problem is,

Wt(at, ϕt) = max
Xt,ht,at+1

{U(Xt)− ht + βV e
t+1(at+1, ϕt+1)} (1.8)

s.t. atϕt + ht = at+1ϕt +Xt (1.9)

V e
t+1(at+1, ϕt+1) = pmt+1V

m
t+1(at+1, ϕ

e
t+1) + (1− pmt+1)V

p
t+1(at+1, ϕ

e
t+1) (1.10)

where pmt+1 is the probability of an agent to be a miner at time t + 1. Note, since the to-

tal population is a unit, mt is exogenous and agents have the information of the mt path,

pmt+1 = mt+1.
10

Agents’ maximum problem for either miners or producers is the same, and it is simplified as

10I want to emphasize the fact that even if the probabilities are unknown, at+1 does not depend on the
probabilities. See Appendix A
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below. (Details are illustrated in Appendix A.)

max
at+1

{
− (

ϕt

βϕe
t+1

− 1) at+1ϕ
e
t+1 + α(τ)σ{u[q(at+1)]− p(at+1)ϕ

e
t+1}

}
(1.11)

It is obvious that from (1.11) the choice of the next period asset holdings at+1 is independent

of the current assets at. If V
e
t+1(at+1) is strictly concave, there is a unique solution to maxi-

mize the current value of Wt(at, ϕt). Therefore, in equilibrium when forward-looking agents

make decisions for tomorrow, regardless of their occupations and the current asset holdings,

miners and producers choose to hold the same assets at+1 at the end of CM.

1.3.3 Kalai Bargaining

The terms of the bilateral trade, quantity, and payment (q, p) in the DM are determined

according to the Kalai (1977) proportional bargaining rule. Buyers’ and sellers’ bargain

power is assumed as θ and 1− θ, respectively, where θ ∈ [0, 1).11

The buyer’s problem is,

max
q≥0,p≤a

{
u(q) +W e

t [a− p]−W e
t (a)

}
s.t. (1− θ)

[
u(q)− pϕe

t

]
= θ

[
− c(q) + pϕe

t

]
(1.12)

From (1.12), Kalai proportional bargaining rule specifies a constant fraction of the total

social surplus split between buyers and sellers based on their bargain power. During the

bargaining process, both sides have common knowledge and same expectation of ϕe
t .

11Kalai Bargaining has several desired features that can not be achieved in Nash Bargaining, as discussed
in Aruoba et al. (2007). I do not assume take-it-or-leave-it offer from buyers, because sellers would have no
incentive to produce, there will be no trade at all, and all agents choose to mine.
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As a result, output of the production q solves the buyers’ problem,

q ∈ argmax θ

{
u(q)− c(q)

}
s.t. pϕe

t ≡ (1− θ)u(q) + θc(q) ≤ aϕe
t (1.13)

The bargain simply says, when a ≥ p∗, in an abundance liquidity economy, q∗ is simply the

first best solution to p∗ϕe
t = (1− θ)u(q∗) + θc(q∗), and agents will bring the right amount of

a to purchase the first best q∗. In a scarce economy, a < p(q∗), buyers will spend all of their

assets that they bring into the DM, therefore, q is the solution to aϕe
t = (1− θ)u(q) + θc(q).

Consequently,

p = min

{
(1− θ)u(q∗) + θc(q∗)

ϕe
t

, a

}
(1.14)

Similarly, the sellers’ problem is as follows,

q ∈ argmax(1− θ)

{
u(q)− c(q)

}
s.t. pϕe

t ≡ (1− θ)u(q) + θc(q) ≤ aϕe
t (1.15)

1.3.4 Mining - Money Supply

The growth of money supply in the economy is exogenous,

ãt+1 − ãt = λ(Ā− ãt) (1.16)

Where ãt+1 − ãt represents the number of new cryptocurrency that is minted during the

period of t. On the right side of the equation (1.16), Ā is the total limited supply, and the

amount of cryptocurrency left to mine is (Ā − ãt) at any given time t accordingly. The
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parameter λ can be understood as a parsimonious representation of mining speed. Thus,

the dynamics of the money supply path is exogenous with a decreasing growth rate. This

decreasing-rate algorithm is chosen because it keeps the inflation rate low while also mim-

icking Bitcoin and gold growth.

In addition, as explained in the environment, the mining technology can be assumed as,

mtΛ = ãt+1 − ãt (1.17)

where Λ is the average reward for each miner and is assumed as constant.

This equation implies that at any given time the total reward to miners, mtΛ, equates the

total of new minted coins. For example, one property of Bitcoin is that the network’s native

token is rewarded either to the first miner who discovers the solution or to a pool of miners,

in which each miner receives a fraction of the total reward. On average, ãt+1−ãt
mt

= Λ units of

incentives are rewarded to each miner for investing his time and equipment.

Now, combining (1.16) and (1.17), the supply of money follows the rule below,

mtΛ = λ(Ā− ãt) (1.18)

1.3.5 Equilibrium Definition

Definition 1 Given the initial money a0 and the expectation ϕe
t=1, an equilibrium is a list

of measure of miners {mt}∞t=0, money demand {at}∞t=1, money supply {ãt}∞t=0, money val-

ues{ϕt}∞t=0 and money value expectations{ϕe
t+1}∞t=1 and terms of trade {qt, pt}∞t=0, such that,
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1. {qt, pt}∞t=0, solves the bargaining problem (1.13)(1.15).

2. Given a0, {mt}∞t=0, {ãt}∞t=0 and {at}∞t=1 solve the money growth equation (1.18).

3. Given a0 and ϕe
t=1, {ϕt}∞t=0 and {ϕe

t+1}∞t=1 solve the first difference equation (1.22) .

4. Market clearing, at = ãt.

Taking the F.O.C of (1.11) with respect to at+1, and recall that the matching function is

α(τ), the solution to the buyer’s problem is,

−{ ϕt

βϕe
t+1

−1}ϕe
t+1+α(1−mt+1)σθ

[
u′(qt+1(at+1, ϕ

e
t+1))−c′(qt+1(at+1, ϕ

e
t+1))

]
∂qt+1(at+1, ϕ

e
t+1)

∂at+1

= 0

(1.19)

then, from (1.13), the marginal benefit of holding one extra unit of numeraire asset gives,

∂q(a, ϕ)

∂a
=

ϕ

(1− θ)u′(q) + θc′(q)
(1.20)

thus, divided by ϕe
t+1 on both sides (1.19) becomes,

ϕt = βϕe
t+1

{
1+ α(1−mt+1)σθ

u′(qt+1(at+1, ϕ
e
t+1))− c′(qt+1(at+1, ϕ

e
t+1))

(1− θ)u′(qt+1(at+1, ϕe
t+1)) + θc′(qt+1(at+1, ϕe

t+1))

}
(1.21)

In equilibrium, market is clear at = ãt and money supply is exogenous and given, therefore

(1.21) can also be rewritten as follows,

ϕt = βϕe
t+1

{
1 + α(1−mt+1)σθ

u′(qt+1(ãt+1, ϕ
e
t+1))− c′(qt+1(ãt+1, ϕ

e
t+1))

(1− θ)u′(qt+1(ãt+1, ϕe
t+1)) + θc′(ãt+1, qt+1(ϕe

t+1))

}
(1.22)

≡ F (ãt+1, ϕ
e
t+1) (1.23)
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The price of money today equals the discounted expected price of money tomorrow plus a

liquidity premium. The liquidity premium is as following,

βϕe
t+1α(1−mt+1)σθ

u′(qt+1(at+1, ϕ
e
t+1))− c′(qt+1(at+1, ϕ

e
t+1))

(1− θ)u′(qt+1) + θc′(qt+1)
≥ 0 (1.24)

which is the expected benefit of bringing one extra unit of numeraire asset into DM.

Now, let us look at the aggregate level on the demand side. Let Ad(ϕt) be the aggregate

money demand for the whole population. There are two cases, and they can be expressed

as follows,

Ad(ϕe
t+1) =

[(1− θ)u(q∗) + θc(q∗)

ϕe
t+1

, Ā
]

if ϕt = βϕe
t+1 (1.25)

= {at+1} where at+1 solves (1.22) if ϕt > βϕe
t+1 (1.26)

If buyers expect that money is too costly to hold, they will bring just enough money to

spend in the CM. As a result, pt+1 = at+1. If buyers expect that money is cost-less to hold,

ϕt

ϕe
t+1

= β, buyers will bring enough money in order to purchase q∗ units of goods in the CM

and maximize the match surplus, thus any amount of at+1ϕt+1 ≥ (1 − θ)u(q∗) + θc(q∗) is a

solution to the demand side. In this paper, I focus on the price paths for the case of ϕt

ϕe
t+1

> β,

so that I can use F.O.C to determine the money demand. While the closed form solution

does not exist in general, simulation can be used to solve money demand function.

Here I do not impose an initial condition ϕ0, because the dynamics of equation (1.21) are

forward looking, and the price of the money is not determined by the past; instead, it

entirely depends on the future. In other words, ϕ0 is an endogenous variable. I will discuss

the expectation in the next section.
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1.3.5.1 Perfect Foresight Equilibria

If agents hold perfect foresight beliefs, ϕt+1 = ϕe
t+1 (rational expectations), a non-explosive

equilibrium is a sequence {ϕt} that satisfies the equilibrium condition, ϕt ≡ F (ϕe
t+1), where

F (·) is a non-linear function, whose shape depends on the specific property of utility, cost

function and the value of the parameters. Thus, equilibria can take different forms, such as

steady states, cycle or sunspot which depends on the initial conditions, the specific shape of

F (·) and beliefs.

In a rational expectation steady state, money demand and supply are constant over time,

a = ã; there is no mining, m = 0; and ϕt = ϕe
t+1 = ϕss. There are two types of steady state

equilibrium: autarky equilibrium, where money has no value, ϕss = 0, and a positive value

monetary steady state equilibrium with ϕss > 0.

1.3.5.2 Autarky Equilibrium

Here I briefly discuss autarky equilibrium under rational expectation. Generally, an autarky

equilibrium steady state is an equilibrium where money has no value, ϕt = ϕt+1 = ϕss = 0,

money demand and supply are all zero, a = ã = 0 and trade would not take place. In this

model, in addition to money, the number of miners is also zero, m = 0. The intuition is

clear: no miners would choose to mine when cryptocurrency is worth nothing, resulting in no

agent wanting to hold cryptocurrency and no trade happening. In short, no cryptocurrency

exists in this economy. This implies that the value of the very first coin of cryptocurrency

must be traded at more than zero, otherwise, cryptocurrency will not exist.
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1.3.5.3 Monetary Equilibrium

The money market equilibrium (and so equilibrium price ϕt) depends on agents’ ex-ante

expectation of tomorrow’s price, and agents will based on the information available at that

time to choose to hold money in the centralized market.

Proposition 1 (Steady-state Monetary Equilibrium) Under perfect foresight (rational expec-

tation) assumption, the existence of a monetary equilibrium requires agents to be sufficiently

patient that r < σθ
(1−θ)

.

This is consistent with the standard “folk theorem” in monetary theory. The intuition is that

when r is very small, agents have ample patience; consequently, as long as the steady-state

supply has not been reached, all agents would like to mine continuously if the occupation

condition is satisfied. This will gradually lead to a monetary equilibrium steady state.

Rational expectation says that tomorrow’s price is the same as the expected price based on

all available information at t, ϕe
t+1 = ϕt+1, as shown in the (1.22), the ϕss can be solved by

the following,

σθ
u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
= r (1.27)

where ϕss > 0 and r = 1
β
− 1.

Specifically, when utility and cost functions are assumed, the unique monetary equilibrium

steady state can be solved by the following. Assume c′(·) = 1, (1.22) becomes,
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σθ
u′(qss)− 1

(1− θ)u′(qss) + θ
= r (1.28)

In the steady state, holding a real balance is costly ϕt

ϕt+1
= 1 > β. Agents will bring only

enough assets that they expect to spend on q∗ unit of goods in the CM. The maximization

problem requires u′(q∗) = c′(q∗), and the concave assumption gives, u′(·) > 0.

So it requires,

u′(qss) =
σθ + σr

σθ + σr − r
> 0 (1.29)

Therefore, it requires ασ
1−σ

> r to have a positive solution of qss, i.e., the existence of a mon-

etary equilibrium requires agents to be sufficiently patient ασ
1−σ

> r. For example, assuming

c(q) = q, and c′(q∗) = 1, it is straightforward that when ασ
1−σ

> r, σθ+σr
σθ+σr−r

= u′(qss) >

u′(q∗) = 1, thus, the level of trade and output in a steady state are less than that of social

optimal, qss < q∗.

1.3.6 General Equilibrium Dynamics

Now, let us look at the transitional dynamic equilibria. Given ã0 and ϕ
e
1, the sequences {ϕt,

ϕe
t+1, qt, pt, at, at+1, ãt, ãt+1, mt} are the equilibria solutions to the system of equations

(1.13) or (1.15)(1.18)(1.22) and the market clearing condition at = ãt. Notice the number

of variables are more than the number of equations. Thus, although closed form solutions

might not exist in general, non-zero equilibrium solutions do exist under some restrictions,

and I show the equilibrium path by simulation.

The equilibrium path is time consistent, so without loss of generality, I characterize all mone-
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tary dynamic equilibria starting with the lowest initial condition that cryptocurrency supply

is zero, ã0 = 0. At any time t, ãt on the equilibrium path is the same as starting from ã0 = 0

on the path reaching to ãt. When the initial cryptocurrency supply ã0 = 0, demand a0 = 0,

and therefore cryptocurrency worth nothing ϕ0 = 0. As a result, miners m, and goods q in

the steady states are also zeros. This is the so-called non-Monetary stationary equilibrium.

When new cryptocurrency is expected to be issued at a positive value ϕe
t+1 > 0, miners will

choose to mine on the condition that the value of the mining occupation is greater than or

equal to producing goods (∆(ãt) ≤ 0). Hence, the result of the equilibrium values of the

cryptocurrency is a nonempty, left-closed interval.

Let me derive the process of solving for the monetary equilibrium in general equilibrium. The

money supply is exogenous, at each time period, the new cryptocurrency, ãt+1− ãt, is created

according to the transition function (1.16) and the number of miners mt is determined by the

mining technology (1.18), which depends on how much is left to mine (Ā − ãt). Therefore,

the matching function α(1 − mt) on that account is also determined exogenously. On the

demand side, agents have perfect foresight ϕe
t+1 and choose to bring the optimal at+1 units

of money to the next day. In equilibrium, market clearing ãt+1 = at+1, thus, the equation

(1.21) changes to below, which is not a function of at+1, but a function of ãt+1.

ϕt = βϕe
t+1

{
1+ α(1−mt+1)σθ

u′
(
qt+1(ãt+1, ϕ

e
t+1)

)
− c′

(
qt+1(ãt+1, ϕ

e
t+1)

)
(1− θ)u′

(
qt+1(ãt+1, ϕe

t+1)
)
+ θc′

(
qt+1(ãt+1, ϕe

t+1)
)} (1.30)

One thing to note is the causality intuition in the general equilibrium. On the demand side,

agents take the price as given, using the F.O.C to determine the demand for liquidity at+1,

and the causality is that knowing the price determines the demand. However, on the sup-

ply side, at any given time the money supply is exogenous, and the equilibrium prices are

the results, which are determined endogenously based on the money supply. The causality
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is that the quantity of the money supply determines the equilibrium price. Therefore, in

general equilibrium, the solutions of the money supply ãt+1, demand at+1, and prices ϕt are

determined simultaneously at any time. As mentioned it is possible to numerically solve for

the system of equations and the solution depends on the initial values.

There are three cases to analyze the equilibrium solutions.

1. Money supply is abundant and it can satisfy the optimal solution q∗ for all time t.

2. Money supply is scarce, and agents bring whatever available to the next period, the equi-

librium solution is that ãt+1 = pt+1 ≤ p∗t+1 and qt+1 ≤ q∗t+1.

3. Money supply can be scarce in the beginning then it can become abundant or vice versa.

The state of scarcity or abundance of the money supply relative to money demand can change

along the equilibrium path, because ϕt+1 and at+1 together determine the bargaining budget,

and both are endogenous variables.

Figure 1.3: Simulation vs. Actual

Figure (1.3) shows the actual Bitcoin prices (2013-2019) vs. a simulation of the price equi-

librium path. As shown in two figures, the prices movements are similar before the Bitcoin

crash in January 2018. Intuitively, the value of money must appreciate over time to induce

agents to mine because more money in circulation leads to mining speed decreases, therefore,
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miners require higher value of the money to be compensated. Mining speed and scarcity of

money left to mine is the main reasons that prices rise.

Perfect foresight, ϕe
t+1 = ϕt+1, assumes that agents have full knowledge of the equilibrium

distribution of all economic variables and unlimited computational power, know other agents’

preference and beliefs, and also assumes market clearing conditions. Although rational ex-

pectation can bring desirable results, it seems unrealistic. In addition, once the agents’

foresight changes, the equilibrium path can be altered and the steady states can be broken

down at any time due to self-fulfilling beliefs, therefore, the monetary steady state is tenuous

and not always “stable”. I follow the definition of local stability for rational expectation of

Van Zandt and Lettau (2003). They applied the usual definition of stability, however, its

interpretation is no longer “robustness to small perturbations” but “indeterminacy”, because

the concept of “robustness to small perturbations” is inconsistent with rational expectations.

Their definition of local stability is that for each neighborhood of the steady state, there is

an open set of equilibria, for which the equilibrium path does not leave this neighborhood

and the equilibrium path converges to the steady state ϕss.

Empirically, the boom-and-bust features of cryptocurrency’s price can be reviewed as trig-

gered by optimistic or pessimistic self-fulfilling beliefs. A shift in expectation can lead agents

to change trade contracts and consumption, then the realized price will reinforce future ex-

pectations. During this process, extreme price volatility can arise. This phenomenon can

not be explained in the canonical rational expectation version of the model. In the following

sections, I discuss replacing the rational expectation assumption with a learning mechanism

expectation which will add more benefit generating price volatility and better explain the

data.
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1.4 Adaptive Learning

The rest of the paper models adaptive learning expectations by assuming forward-looking

agents who act like econometricians and form beliefs to forecast prices. Agents use the “adap-

tive learning forecast rule” by which, agents extrapolate historical data, forecast prices and

adjust forecast prices when new data becomes available. As Evans and Honkapohja (2001)

explained, this belief structure has self-referential properties and can generate extremely

volatile prices. The logic is that the forecast of tomorrow’s price affects the current market

price, and once the new current price is realized and observed, agents update their beliefs and

the parameters in the forecast model; this in return will affect the next round of the current

price. Therefore, in this environment, greater volatility can be generated as a response to

economic change due to the self-referential property.

1.4.1 Learning rule

First, I begin to assume agents have a basic Perceived Law of Motion (PLM). The following

equation illustrates how PLM works,

b̂t = b̂t−1 + gt−1(ϕt−1 − b̂t−1) (1.31)

where b̂t = ϕe
t and g is the weight put on the forecast error ϕt−1 − b̂t−1.

In the literature, there are two ways to model the weight or learning gain g, either constant

gt = g or decreasing gt = 1/t. The intuition of the decreasing learning gain is that agents

mainly focus on the most recent economics structure. The key difference between the two

ways is that for the constant-learning-gain algorithm in stochastic models, it is possible to

have endogenous fluctuations, as the economy occasionally escapes from the basin of at-
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traction of one steady state to the basin of attraction of another steady state (Evans and

Honkapohja (2001)). For simplicity, I also assume at time t ϕe
t+1 = ϕe

t , which interpreted as

tomorrow’s expected price is the same as today’s expected price. As explained in the Eco-

nomic Environment section, agents only update their forecasts ϕe
t+1 once during one period

of time (including two sub-stages DM and CM), ϕe
t+1 = ϕe

t is the simplest way to forecast

future t+1 at the beginning of period t, and ϕe
t+1 will be updated at the beginning of the next

day, period t+1, but when tomorrow arrives, the notation will be automatically changed to

ϕe
t .

Using (1.22), PLM becomes the actual law of motion (ALM),

ϕt = βb̂t

{
1 + α(1−mt+1)σθ

u′(b̂t)− c′(b̂t)

(1− θ)u′(b̂t) + θc′(b̂t)

}
≡ F (b̂) (1.32)

1.4.2 E-Stability

Following Evans and Honkapohja (2001), the condition of stability of the REE under adap-

tive learning requires that the parameter slowly adjusts from mapping of the PLM to ALM.

Under Learning and the assumption of forecast (1.31), when the algorithm has sufficiently

small constant gain gt = g or decreasing gain, there exits a continuum of equilibria b converg-

ing to ϕss, and ϕss is locally stable, if and only if |1+g[F ′(b)−1]| < 1, i.e iff F ′(b) ∈ (−2
g
+1, 1).

The derivative of F (b) at the steady state is,

F ′(b) =β
{
1 + σθ

[ u′(qss)− c′(qss)

(1− θ)u′(qss) + θc′(qss)
ϕss

[u′′(qss)− c′′(qss)][(1− θ)u′(qss) + θc′(qss)]− [u′(qss)− c′(qss)][(1− θ)u′(qss) + θc′(qss)]

[(1− θ)u′′(qss) + θc′′(qss)]2

]}
(1.33)
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Using (1.28) and the derivative becomes,

F ′(b) = β
{
1 +

1

β
− 1 + σθ

u′′(qss)

[(1− θ)u′′(qss) + θc′′(qss)]2

}
(1.34)

Due to the concavity assumption, u′′(qss) < 0, F ′(b) could be less than 1, with some assump-

tions such as linearity of cost function. (The detailed steps are given in Appendix.)

Proposition 2 (Steady-state monetary equilibria) Under the adaptive learning rule (1.31),

there exists at least two steady-state equilibria, an autarky steady state where ϕss = 0 and a

monetary steady state with ϕss > 0, when learning gain is sufficiently small or decreasing, b

asymptotically converges to ϕss, b→ ϕss. The monetary steady-state monetary equilibrium

is locally stable if and only if |F ′(ϕss)| < 1.

Corollary 1: There exists a sufficient constant gain, such that, F ′(b) < 1 and g < 2
1−F ′(b)

,

monetary steady state ϕss = b is locally stable.

Following Evans and Honkapohja (2001), under perfect foresight, as long as −1 < F ′(ϕss) <

1, the monetary steady state equilibrium is always locally stable. Under adaptive learning,

that the monetary steady-state monetary equilibrium is locally stable requires |1+ g[F ′(b)−

1]| < 1, which can be interpreted as F ′(b) < 1 and g < 2
1−F ′(b)

. When g is very small, the

equilibrium outcome is not affected but the stability can be altered. When F ′(b) < −1, g

can reach very close to 1, so the monetary steady state equilibrium will not be stable.

I demonstrate through numerical simulation examples of complex dynamics that arise from

the learning gain parameter 12. Figure (1.4)) shows a simulation example in which the mon-

12More simulation examples can be found in Section 1.4.3
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Figure 1.4: g = 0.05, (Left) Price diagram, (Right) Price simulation

Figure 1.5: g = 0.914 (Left) Price diagram, (Right) Price simulation

etary steady state is learnable and locally stable with g = 0.05. When the learning gain

parameter is large, chaotic cycles or bifurcation can be generated. This indeed appears to be

the case shown in Figure (1.5) where g is set to 0.914. Prices move between a high and a low

price level and it seems the oscillations permanently persist. Intuitively, learning captures

the expectations feedback, as explained in Hommes (2013), where there are two different sets

of feedback, and the realized price depends positively or negatively on the price forecast. In

the case of positive (negative) feedback, an increase of forecast price causes the realized

market price to go slightly up (down). As shown in Figure (1.5), it seems that the positive

feedback and negative feedback alternatively dominates, therefore prices do not converge to

29



rational expectation equilibrium, but persistently oscillate.

1.4.3 Numerical Examples of the Economic Environment

Based on the adaptive learning theoretical analysis, I now seek to use examples to show

the parameterization effects on the equilibrium paths, steady states and their stabilities. I

will briefly examine different market structures, such as variations of bargain power, interest

rates and discount rates, which are captured in the shape of F (·).

Bargaining power is defined as the ability to obtain the most favorable price possible under

conditions prevailing in a market. Bargaining power variations could be one of the reasons for

extreme price volatility. Assume a buyer’s bargain power is θ, which implies that a miner’s

bargain power is also θ, and his trading partner, a producer, has (1 − θ) bargain power.

In Kalai bargaining, bargain power is the proportional share of which the agents split and

obtain from the total social surplus. Therefore, θ is the share of surplus that buyers obtain,

while (1 − θ) is the share sellers obtain. Fig.(1.6) shows numerical examples to illustrate

how the bargain power affects the price equilibrium path in this learning framework. Even

if the initial prices are the same, after some periods of learning, the equilibrium paths lead

to different steady states. The underlying intuition is due to feedback effect. The equilib-

rium price of the cryptocurrency is analogous to a miner’s wage. With a higher bargain

power against their trading partners, miners extract a higher portion of the social surplus,

resulting in higher values from mining and holding money. Due to the feedback effect, the

higher value of money attracts agents who want to engage in mining; however, by the law

of motion of money supply, money increase is at a decreasing rate and this in turn urges

miners to demand a higher price; therefore, money converges to a positive steady state value
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eventually. As shown in the simulation, with the bargain power θ = 0.9 in the left panel,

the price converges to a positive value, while with θ = 0.4 in the right panel, it seems that

the price decreases and then shifts to a different regime, which eventually converges to a

small but positive number. It makes sense empirically that the market power is not constant

across a long time, therefore, the learning model can shed new light on the high volatility of

cryptocurrency.

Figure 1.6: Price simulation with different bargain powers

The impact of the discount factor on the equilibrium price path is another example I examine.

Figure (1.7) shows that even if the cryptocurrency starts at the same price, with different

discount rates, the two equilibrium paths and steady state prices can be different. These

price paths are actually numerical examples of Proposition 2. On the left side of the panel,

agents live in an environment that has a higher discount rate β = 0.98, as demonstrated

in the graph, price eventually converges to a positive steady state equilibrium; while with a

very low discount rate of β = 0.1 shown on the right side of the panel, price converges very

quickly to zero. The intuition is consistent with the “folk theorem” mentioned previously in

rational expectation. When β is large, agents exhibit ample patience; consequently, under

some constraint, this will gradually lead to a monetary equilibrium steady state. When β is

very small, agents do not value too much of the future’s consumption, holding money for the
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distant future is actually not worth it and therefore money will eventually become worthless.

Figure 1.7: Price simulation with different discount rate

1.5 Conclusion

This paper relaxes the fundamental perfect foresight assumption (rational expectation), re-

places it with a bounded rational in the Lagos and Wright (2005) and Choi and Rocheteau

(2021) framework, and studies the following question: “What causes cryptocurrency’s ex-

treme price volatility?” Inspired by Evans and Honkapohja (2001), all agents use the adaptive

learning rule to form their price expectations in this monetary search model, engage mining

cryptocurrency to trade or produce goods to trade.

The primary contribution of this paper is that I use a constant-learning-gain to demonstrate

how the learning gain affects monetary equilibria, their dynamics and their stabilities. The

main results are that with a relative high learning gain in the adaptive learning algorithm,

a period of doubling bifurcation can occur, which can lead to chaos or explosive paths.

These endogenous dynamic results shed some light on the intensity of cryptocurrency’s price
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volatility. In addition, when buyers have higher bargain power, the price of cryptocurrency

converges to a positive value. Ceteris paribus, however, when producers have higher bargain

power, the price converges to zero equilibrium. The feedback effect, which plays a significant

role in cryptocurrency’s price volatility, provides the intuition behind this model.
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Chapter 2

Cross-Sector Comovements in the

COVID-19 Stock Market

Abstract

U.S. equity returns comoved remarkably during the COVID-19 pandemic. This study con-

structs a dynamic factor model to illuminate the sources and implications of these comove-

ments. Estimation of the model using a Markov Chain Monte Carlo method reveals that the

comovements had a weak daily oscillation pattern. Within that pattern, monetary policy

significantly impacted the equity returns of several key sectors. In addition, cross-sector

equity returns were shaped by news of monetary policies, fiscal stimulus, and unemploy-

ment. News about conventional and unconventional monetary policy shocked each sector in

opposite directions. Interest-rate policy surprises had a stronger positive impact on equity

returns than other unconventional monetary policy shocks. News about fiscal stimulus had

the most substantial impact and triggered all sectors to rebound from the bear market at the

end of March 2020. Applying Natural Language Processing sentiment analysis, this study

also sheds light on the positive correlation between comovements and news sentiment.
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Keywords: Comovements, Monetary Policy, Dynamic Factor Model, Markov Chain Monte

Carlo, Bayesian Inference, Text Mining

2.1 Introduction

The turbulence in the U.S. stock market during the COVID-19 pandemic has sparked re-

newed interest in the long-time study of financial market comovements. Two different views

on comovements of excess returns have been proposed in the literature: the traditional

view attributes comovements to the expected fundamental values while an alternative view

is sentiment- or friction-based. During the COVID-19 pandemic, the traditional view is

inadequate to explain the comovement phenomena in the U.S. stock market. This empir-

ical study constructs a Dynamic Factor Model (DFM) and decomposes the stock excess

returns into fundamental and non-fundamental components. The model reveals that the

non-fundamental components mainly drive the stock comovements during the pandemic.

Correlations in cross-sector returns are expected because macroeconomic conditions affected

all sectors’ expected earnings. What is puzzling is that despite the pandemic’s disparate

impacts on each sector, stocks from all sectors remained to comove excessively. For example,

the left panel of Figure (2.1) shows that durable consumer goods production declined by 51%

from February 2020 to April 20201, while the electric and gas output only decreased by 1.3%.

The top right panel of Figure (2.1) shows that the hospitality industry’s unemployment rates

jumped from 5.7% in February 2020 to 39.3% in April 2020 due to the government’s restric-

1Unemployment and GDP data are retrieved from http://fred.stlouisfed.org. Daily excess re-
turn data are retrieved from the Fama-French database library http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/data_library.html
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tions, while the finance industry only suffered an increase from 1.6% to 5.4%. Conversely,

cross-sectors of the stock market moved closely together, especially during the beginning

of the pandemic. (See the cross-sector excess returns in the bottom panel of Figure (2.1).)

Additionally, at the end of March 2020, when the economy was still in recession, all sectors

in the stock market comoved and rebounded together.

This study aims to explain the puzzle by measuring the latent non-fundamental forces that

drove the comovements of stock returns. In this paper the non-fundamental force is mar-

ket sentiment or latent sentiment, which propels the economy into periodic booms and busts.

Figure 2.1: Cross-sector monthly unemployment, GDP, and daily stock indices from January
1, 2020 to August 31, 2020.

The main results of this study is that it reveals the size and patterns of the latent sentiment.
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By controlling the known fundamental factors in a dynamic factor model, the unknown latent

factor can be identified and measured. Using Bayesian Markov chain Monte Carlo (MCMC)

approach, the study finds that, between January 1, 2020, and August 31, 2020, the latent

sentiment has a weak daily oscillation pattern with an autoregressive coefficient of -0.09 in

an AR(1) process. This result helps explain the stock market’s extreme comovements, as

well as the high volatility during the pandemic, especially in the beginning.

In addition, the study identifies and measures the impact of monetary policy and various

news shocks on stock returns by controlling fundamentals and the latent factor variable.

In particular, the model contains 43 fundamental variables (including macroeconomics vari-

ables, financial market variables, COVID-19 related variables), four dummy variables for

shocks (conventional and unconventional monetary announcements, fiscal stimulus news,

and unemployment news shocks), and one latent variable. The identifying assumption is

that conditioning on the above controls, the impact of monetary policy and news shocks can

be isolated and measured.

The results indicate that when the Fed cut its benchmark interest rates by 100 basis points,

stock prices in all sectors rose immediately. The more prominent jumps were observed in

the utilities and non-durable goods sectors, which are 11.35% and 7.33%, respectively. For

any given sector, the conventional and unconventional monetary policy news shocked the

sector in opposite directions. Of the positive monetary news shocks, the strongest shocks

were from the interest rate policy surprises, while unconventional monetary policy news had

a more sluggish impact on stock returns. Conversely, fiscal stimulus news had the most

substantial positive impact and triggered all sectors to rebound from the bear market at the

end of March 2020.
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Furthermore, this study finds evidence of the positive linkage between the latent factor and

the sentiment of the Fed’s communication or media news, respectively. Wall Street Journal

headlines are used as a proxy of the market sentiment. This study finds a positive correlation,

0.31, at the 95% statistically significant level by exploiting the Natural Language Processing

(NLP) approach — Valence Aware Dictionary for Sentiment Reasoning (VADER) algorithm.

Finally, this paper explores the associations between community mobility and stock returns

and finds that different mobility data categories (e.g., visiting parks or staying in residential

houses) have opposite associations with stock returns.

To the best of my knowledge, this paper is the first to examine comovements combined with

monetary policy effects and policy news shocks during the COVID-19 pandemic. The exist-

ing finance literature suggest that the increased comovements are due to increased shared

sentiment more than increased shared economic fundamentals. For example, Shiller (1989),

using a simple present value model, shows that the comovements in stock prices cannot be

accounted for by those in dividends. This argument provides an alternative view to the Ef-

ficient Markets Hypothesis (EMH) (see Fama (1970)). Pindyck and Rotemberg (1993), Vijh

(1994), and Barberis et al. (2005), among others, examine the excess comovements between

industry indices in the US and find significant excess comovements.

From a methodological viewpoint, this study is closely related to the DFM estimation lit-

erature. The method was initially developed by Geweke (1977) as an extension of the time

series model for analyzing cross-sectional data. The influential work by Sargent and Sims

(1977) develop the dynamic index models and provide evidence that one “index” can explain

a large fraction of the variance in macroeconomic variables. Stock and Watson (1989) and

Sargent (1989) using maximum likelihood and the Kalman filter estimate the DFM. Stock

and Watson (2002) develop a static Principal Component Analysis (PCA) estimation. The
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factor is essentially a weighted average with the eigenvectors of the sample variance matrix

as the weights. There a few advantages of the PCA method, for example, it can deal with

high dimensional data. In addition, the results of principal components are consistent and

robust (see Bai and Perron (2003), Bai and Ng (2006)). Although its advantages, the PCA

method remains limited. First, the principal components are computed ex-ante, treated as

given in the estimation, therefore not suit for dynamics. Second, PCA method is not suitable

for models have covariables. Chib and Greenberg (1996) and Chib et al. (2006) introduce

blocking in the Markov Chain Monte Carlo (MCMC) method, which combines the efficient

state space and the consistent nonparametric estimates approach. This blocking method

allows MCMC to reduce correlations between draws efficiently by separating certain sets

of parameters. Chan and Jeliazkov (2009) further improve the efficiency of the collapsed

MCMC sampling by implementing a new blocking technique for the state space models.

This study follows the collapsed MCMC method in Chan and Jeliazkov (2009) to investigate

the puzzling comovements in the equity returns during the pandemic.

This study contributes to the emerging literature that investigates the impact of the COVID-

19 pandemic on the economy. For example, Gormsen and Koijen (2020) develop a model of

crisis that shows dividend futures can be a valuable tool for studying the evolving growth

expectations in response to the coronavirus outbreak and subsequent policy responses. Cox

et al. (2020) develop a dynamic asset pricing model to investigate the causality of stock

market fluctuations. Different from those studies, this study adds to this growing body of

literature related to the study of monetary and fiscal policy effects by providing evidence

of the policy impact on the equity returns during the COVID-19 recession. In particular,

this empirical study highlights monetary policy effects and the impact of conventional, un-

conventional monetary and fiscal policy shocks. Therefore, it is also related to the following

research. Jinjarak et al. (2020) study both fiscal and monetary policies in the Euro-zone.

Levin and Sinha (2020) assess the effectiveness of monetary forward guidance. Benmelech

39



and Tzur-Ilan (2020) and Bianchi et al. (2020) study both fiscal and monetary policies dur-

ing the COVID-19 pandemic.

The remainder of the paper proceeds as follows. In Section 2, the Dynamic Factor Model is

set up. Section 3, the model is derived, and the estimation steps are described. Section 4

describes the data sets, including financial market data, macroeconomics data, COVID 19

related information, policy announcements, and restrictions related data. Section 5 presents

the estimation results, and policy implications. The linkage between the latent factor and

news sentiment is also studied. The final section concludes.

2.2 Model

To illuminate the sources of the comovements and their implications, I construct a dynamic

factor model (DFM). Let yi,t be the dependent variable, stock market excess returns or

risk premia at the end of time t for sector i, where i ∈ [1, 2, ..., n]. Let t = 1...T and

yt = [y1,t, y2,t, ..., yn,t]
′. Let Xt represent the independent variables, which include wt−1, yt−1,

zt−1 and dt
2. Let wt−1 be the COVID-19 public health variables and community move-

ment/mobility variables. Let zt−1 be the observed macro variables for all sectors lagged in

time, which includes monthly GDP by sector, monthly unemployment rates by sector, M1

money stock, monthly Consumer Price Index, monthly Consumer Sentiment Index, and the

daily Effective Federal Funds rate. Let dt be a vector that includes four dummy variables

representing conventional and unconventional monetary announcement shocks, fiscal stimu-

lus news shocks, and unemployment news shocks. Let ft be the unobservable comovement,

which affects the dynamics of the excess returns of the stock market.

2Notation convention - we assume the values at the end of t − 1 is equal to the values at the beginning
of t and dt is the contemporaneous shock during the day t.
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The DF model takes the State Space representation as below,

Observation equation:

yt = Xtβ + Aft+t, t ∼ N(0,Ω) (2.1)

State equation:

ft = γft−1 + µt, µt ∼ N(0, σ2) (2.2)

where Xt =



(1, w′
t−1, y

′
t−1, z

′
t−1, d

′
t)

(1, w′
t−1, y

′
t−1, z

′
t−1, d

′
t)

. . .

(1, w′
t−1, y

′
t−1, z

′
t−1, d

′
t)


,

β is a vector containing the corresponding parameters ordered equation by equation, β =

vec ([c : λw : λy : λz : λd]′), vec(·) is a vectorization operator, which stacks the columns of

a matrix one underneath the other into a vector. Let c be the intercept n × 1 vector and

λw, λz, λy, and λd be the regression coefficients in the observation equation. The factor

loading A is a n × 1 vector. γ is the autoregressive correlation of the state equation. Let

t and µt denote the idiosyncratic errors that are in the zero-mean Gaussian distribution

N(0,Ω) and N(0, σ2). Assume σ2 is a scalar and Ω is a n × n diagonal covariance matrix

with (ω11, ..., ωnn) on the diagonal and zeros on the off diagonal, which implies there is no

concurrent correlation between i,t and j,t for all i ̸= j3.

3The concurrent correlation effects from cross sectors are absorbed by y−i,t
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Now stack equation (2.1) over time t, for t = 1...T , and we have,

y = Xβ + Af+, ∼ N(0, IT ⊗ Ω) (2.3)

where, A = IT ⊗ A, and

y =


y1
...

yT

 , X =


X1

...

XT ,

 , f =


f1
...

fT ,

 , =


1

...

T



2.3 Estimation

In a DFM, both parameters and latent factors are regarded as random variables whose pos-

teriors need to be sampled from. This study follows Chan and Jeliazkov (2009) as they

improve the efficiency of the Markov Chain Monte Carlo (MCMC) sampling by implement-

ing the integrated likelihood sampling. Instead of using the Kalman filter, they propose

a new blocking technique by exploiting collapsed MCMC, sampling the loading parameter

marginally over the factor vector f , and then drawing the factor f from its full-conditional

distribution.

As the most challenging part in this estimation consists of sampling A and f from the

posterior distribution, it is worthwhile to provide details of the derivation for factor f ′s

conditional distribution before outlining the whole sampling procedure. First, the likelihood

function π(y|f, β, A,Ω, γ, σ2) is shown, followed by the conditional density π(f |γ, σ2). By

Bayes’ theorem, the posterior probability density π(f | y, β, A,Ω, γ, σ2) can be immediately

derived (See Koop (2003)). For compact writing, let θ represents {β,A,Ω, γ, σ2} including

all model parameters. Also, the covariant matrix X is regard as given, in this paper I drop
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X from the conditioning set π(f |y,X, θ) to simplify the notation. By Bayes’ theorem,

π(f | y, θ) = π(y|θ, f)π(f |θ)
π(y|θ)

(2.4)

the posterior probability density π(f | y, θ) ∝ π(y|θ, f)π(f |θ).

As in (2.3) is Gaussian distribution, the conditional likelihood function is straightforward

and also a Gaussian distribution,

π(y|θ, f) ∼ N (Xβ + Af, IT ⊗ Ω) (2.5)

Now, to explain the conditional density f |γ, σ2, first rewrite equation (2.2),

ft − γft−1 = µt, µt ∼ N(0, σ2) (2.6)

Subsequently, stack equation (2.6) over time t = {1, 2, 3, ..., T}, and rewrite as following,

Hf = u (2.7)

where

H =



1

−γ 1

. . .

−γ 1


, f =


f1
...

fT ,

 , S =



σ2

1−γ2

σ2

. . .

σ2


,

and,
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u =


µ1

...

µT

 ∼ N(0, S), (2.8)

The first top-left element in the covariance matrix S is the variance of the initial f1, which is

assumed distribute at the steady state of a first order autoregressive AR(1) process. Please

refer to Chib and Greenberg (1994) for more details. The distribution is as below,

f1 ∼ N(0,
σ2

1− γ2
) (2.9)

Following Fahrmeir and Kaufmann (1991), the conditional density of f can be derived as,

f |γ, σ2 ∼ N

(
0, (σ−2K)−1

)
(2.10)

where the precision σ−2K = H ′S−1H, and K =



1 −γ

−γ 1 + γ2 −γ
. . . . . . . . .

−γ 1 + γ2 −γ

−γ 1


.

Now to express the conditional posterior, combine both (2.5) and (2.10),

[f |y, θ] ∼ N(f̂ , P−1)] (2.11)
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where the mean and precision are given as below,

P = σ−2K + A′(IT ⊗ Ω−1)A (2.12)

f̂ = P−1[A′(IT ⊗ Ω−1)(y −Xβ)] (2.13)

Following Chan and Jeliazkov (2009), this study employs their estimation method Metropo-

lis– Hastings-within-Gibbs. The steps are as follows,

Step 1: Draw β from the conditional posterior marginalized out of f for the

observation equation.

It is helpful to rewrite the model. Assume ψ = Af+; subsequently, the equation (2.3)

becomes to the following,

y = Xβ + ψ, ψ ∼ N(0,Σ) (2.14)

where Σ is a nT ×nT covariance matrix, Σ = [(IT ⊗Ω)+ (IT ⊗A)σ2K−1(IT ⊗A)′] obtained

from equations (2.3) and (2.10).

After a few steps of derivation (Please see Appendix B.7 for more details), the conditional

posterior distribution of β is obtained:

[β| y, A,Σ, γ, σ2] ∼ N(β,B) (2.15)
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where the mean β and variance B are given by,

B =

(
B−1

0 +
T∑
t=1

X ′
tΩ

−1Xt − X̃ ′
tP

−1X̃t

)−1

(2.16)

β = B

(
B−1

0 β0 +
T∑
t=1

X ′
tΩ

−1yt − X̃ ′
tP

−1ỹ

)−1

(2.17)

where the compact notations P = [σ−2K + IT (A
′Ω−1A)], X̃t = A′Ω−1Xt and ỹt = A′Ω−1yt.

Step 2: Draw from the joint conditional posterior of A and f for the observation

equation.

To generate draws of A and f from the joint distribution [A, f |y, β,Ω, γ, σ2], two substeps

are required.

Step 2.1 [a| y, β,Ω, γ, σ2], sample a first independent of f

Step 2.2 [f | y, β, A,Ω, γ, σ2], sample f and depends on a

This study follows Chan and Jeliazkov (2009) to generate the posterior density of Amarginal-

ized over f . By Bayes’ Theorem,

π(A| y, β, γ,Ω, σ2) =
π(A| y, f, β, γ,Ω, σ2)π(f | y, β, γ,Ω, σ2)

π(f | y, A, β, γ,Ω, σ2)
(2.18)
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As both loading A and factor f are unknown, there are potential sign and scale identification

issues for them. However, this can be solved by restricting the first element in the loading

vector to 1, that is, A = {1, a′}. More details can be found in the study of Chan and

Jeliazkov (2009). As the first element in the loading vector A is fixed as 1, replacing A with

a, the posterior density of a, given (y, β, γ,Ω, σ2) and marginalized over f , is as follows:

π(a| y, β, γ,Ω, σ2) =
π(a| y, f, β, γ,Ω, σ2)π(f | y, β, γ,Ω, σ2)

π(f | y, a, β, γ,Ω, σ2)
(2.19)

∝ π(a| y, f, β, γ,Ω, σ2)

π(f | y, a, β, γ,Ω, σ2)
(2.20)

Notice that the loading parameter a is not involved in the term π(f | y, β, γ,Ω, σ2) on the

numerator, which therefore can be relegated to a constant, and can be scaled proportionately

on both the denominator and numerator in calculating the acceptance ratio and eventually

canceled out.

According to (2.20), the next step is to derive the numerator π(a| y, f, β, γ,Ω, σ2). Please

see more details in Appendix B.2. This section also skips explaining of denominator π(f |y,

a, β, γ,Ω, σ2) as it has been derived in the equations (2.11), (2.12) and (2.13).

By Metropolis-Hastings (M-H) algorithm, a proposal density is tailored closely mimicking

the posterior density. In practice, it is extremely important for the candidate generating

density to have fatter tails than those of the target posterior. Let a∗ be the draw from

the tailored proposal, a student t distribution, of which, the mean â and negative inverse

of Hessian, Â, are obtained by Maximum Likelihood Estimation. Let df be the degree of

freedom, in general, df is chosen as a small number to ensure the fat details. The jumping

distribution q(a∗|a) represents the distribution for the current state a to jump to the next
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state a∗. Rewrite the tailored proposal density as follows for notation convenience.

q(a∗|a) = q(a∗|â, Â, df), q(a|a∗) = q(a|â∗, Â∗, df) (2.21)

Thus, the rate α(a, a∗) of accepting the next proposed draw a∗ is,

α(a, a∗) = min

{
1,
π(a∗| y, β, γ,Ω, σ2)q(a |â∗, Â∗, df)

π(a| y, β, γ,Ω, σ2)q(a∗|â, Â, df)

}
(2.22)

Please see more details in Appendix B.3.

The next step is step 2.2, which generates draws of f from [f | y, a, β, γ,Ω, σ2)] ∼ N(f̂ , P−1).

This study follows Chan and Jeliazkov (2009) and implement an efficient way to compute the

latent factors by employing forward and back substitution techniques. Usually, the variance

matrix P−1 is obtained by inverting the precision matrix P from (2.12). However, this study

uses Cholesky decomposition to avoid the daunting task of inverting a matrix and only invert

the Cholesky factor. Let C be the Cholesky factor, such that C ′C = P . Multiplying C ′C

on both sides, equation (2.13) becomes,

C ′Cf̂ = A′(IT ⊗ Ω−1)(y −Xβ) (2.23)

Apply the forward substitution to solve Cf̂ , and use the back substitution technique with

the assumption C ′m = ζ and ζ ∼ N (0, 1) to solve f̂ . Draw ζ, and solve m backward, which

is m = C−1ζ. This implies m is distributed in N (0, P−1), where it has the idea variance.

The subsequent step is to add the mean f̂ from (2.12) to the result of m. Now, a draw of

[f |y, a, β, γ,Ω, σ2] ∼ N (f̂ , P−1) is achieved.

Step 3: Draw from the conditional posterior of Ω for the observation equation.
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Assuming Ω is a diagonal covariance matrix with (ω11, ..., ωnn) on the diagonal, and the

conjugate inverse Gamma prior of the form, ωii ∼ IG(d0, D0), the study generates draws of

each variance ωii equation-by-equation, from the conditional posterior distribution, where

ii = {11, ..., nn}. The conditional posterior distribution [Ω|y, β, A, f, γ, σ2] is given by,

ωii ∼ IG(d,D) (2.24)

d =
d0 + T

2
(2.25)

D =
D0 + e′iei

2
(2.26)

where d0 and D0 are the inverse Gamma prior parameters, and ei is the residue vector with

T length from the ith observation equation.

Step 4: Draw from the conditional posterior of γ for the state equation.

To generate sample γ from the conditional posterior [γ|y, f, β, A,Ω, σ2], the study adapts

the usual time series Bayesian updating rules in Chib and Greenberg (1994) and Chib and

Jeliazkov (2001). Draws of γ from its distribution until the factor is found in the stationary

region; it is then subject to the usual M-H acceptance criterion. Specifically, let F ∗ =

[f1, f2, ..., fT−1] and F
∗∗ = [f2, f3, ..., fT ], and initial (γ0,Γ0). Draw a candidate γ∗ according
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to the distribution below,

γ∗ ∼ N(γ̂,Γ) (2.27)

γ̂ = Γ(Γ−1
0 γ0 + F ∗′F ∗∗σ−2)−1 (2.28)

Γ = (Γ−1
0 + F ′∗F ∗σ−2)−1 (2.29)

Accept the proposed value γ∗ with the M-H probability of move given by the ratio α(γ, γ∗),

i.e.

α(γ, γ∗) = min

{
1,
fN(f1|(0, σ2

1−γ∗2 ))

fN(f1|(0, σ2

1−γ2 ))

}
(2.30)

Step 5: Draw from the conditional posterior of σ2 for the state equation.

The way to generate draws of σ2 from [σ2| y, β, A, f,Ω, γ] is similar to step 3. From equations

(2.7) and (2.8), the conditional distribution of σ2 is given by an inverse Gamma distribution:

σ2 ∼ IG(g,G) (2.31)

g =
g0 + T

2
(2.32)

G =
G0 + u′u

2
(2.33)

where the conjugate prior of σ2 ∼ IG(g0, G0), u = Hf = fs−fp, fs = [f1(1−γ)1/2, f2, ..., fT ]′

and fp = [0, γf1, ..., γfT−1]
′.

50



MCMC Sampling Algorithm Summary

Step 1. Draw β from [β| y, A,Ω, γ, σ2] ∼ N(β,B).

Step 2. Draw A and f from the joint posterior distribution [A, f |y, β,Ω, γ, σ2] through the

following two sub-steps.

Step 2.1 Implement MH sampling, draw a from [a| y, β,Ω, γ, σ2] independently of f .

Step 2.2 Sample f from [f | y, β, A,Ω, γ, σ2] ∼ N(f̂ , P−1).

Step 3. Draw Ω from the conditional posterior distribution [Ω| y, β, A, f, γ, σ2] ∼ IG(d,D).

Step 4. Implement MH sampling, and draw γ from the conditional posterior distribution:

[γ| y, β, A, f,Ω, σ2].

Step 5. Draw σ2 from the conditional posterior distribution [σ2| y, β, A, f, γ,Ω] ∼ IG(g,G).

2.4 Data

There are 48 variables (including a latent variable) in the model, which are grouped into

four categories. They are as follows: financial market data by sector with daily frequency;

macroeconomics variables — comprising both daily and monthly frequency data; COVID-19

related data, including daily public health information and daily community mobility data;

and dummy variables representing the announcements or news shocks.

First, the financial market dataset includes daily excess returns by sector and daily trading

volume data, in total 11 variables. Daily excess returns are calculated by deducting the

daily risk-free rates from the daily stock returns in sectors4. Based on the Standard Indus-

4Daily return data are retrieved from the Fama-French database library http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html
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trial Classification (SIC) codes5, each stock in NYSE, AMEX, and NASDAQ is assigned to

one of the ten sectors: consumer non-durables; consumer durables; manufacturing; energy;

high-tech; telephone and television transmission; wholesale and retail; healthcare; utilities;

and other6. This study uses the daily NASDAQ market trading volume7 as one proxy to

capture the financial market sentiment (see Baker and Wurgler (2007)). The daily trading

volume reveals the underlying different opinions on the stock market between buyers and

sellers. However, having the trading volume variable as the only proxy to represent market

sentiment still cannot capture the majority share of variations in stock prices. The next

section explains that it is still necessary to include the latent factor as it is an essential

driver for the stock market returns.

The second category is macroeconomic data, which includes 25 variables comprising daily

Effective Federal Funds Rate (EFFR), monthly Gross Domestic Product (GDP) by sector,

monthly unemployment rates by sector, monthly Consumer Price Index (CPI), monthly Con-

sumer Sentiment Index, and monthly M1 money stock. All of these series are retrieved from

the Federal Reserve Economic Data library (FRED)8. These series of data encompass daily

or monthly frequency. The time-series literature comprises a few ways to handle this issue.

Econometricians usually either aggregate the higher frequency data to a lower frequency or

interpolate the lower frequency data to the higher frequency. However, these methods may

result in the loss of helpful information while smoothing. Therefore, the estimated results

can be biased. The study uses the original data only by keeping the monthly variables con-

stant during the month, with the justification that monthly variables can be observed and

updated once each month. However, it can cause a larger variance of the parameters on the

5SIC refers to https://www.osha.gov/data/sic-manual
6Other sector includes mines, construction, build management, transportation, hotels, entertainment,

and finance.
7The daily trade volume in NASDAQ is obtained from http://www.nasdaqtrader.com/
8https://fred.stlouisfed.org/
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monthly regressors than the daily regressors9.

Figure 2.2: Google community mobility changes to baseline in 2020.
Data source: https://www.google.com/covid19/mobility/

The third category dataset is COVID-19 related information, including community mobility

set and public health set, a total of seven variables. The subset of the community mobility

dataset for the U.S. is obtained from Google’s COVID-19 Global Community mobility data

center10. The mobility level of the community is measured by the number of visits and time

spent in a particular category of location. The six categories of the locations people visit

are retail and recreation, grocery and pharmacy, residential areas, transit, parks, and work-

places, as shown in Figure (2.2). The mobility dataset starts from January 3, 2020, before

COVID-19 was widespread worldwide. The initial five weeks (from January 3 to February

6, 2020) are issued as the baseline period11. The baseline values in each category are the

9This paper simulates 10,000 iterations with 3,000 burn-in to improve accuracy of the results
10https://www.google.com/covid19/mobility/. In their document, it also includes the data limitation.
11As one of the data limitations mentioned in the document of the data set, the chosen based line may

53

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/


median value of the five-week baseline period, which has seven different values representing

each day of a week. Google measures the mobility level in the degree of change by com-

paring it to the baseline values on the same day of a week. For example, Tuesday’s visit

to the grocery and pharmacy will only be compared to the baseline value of Tuesday visits

to the grocery and pharmacy. Further, as the financial market data are only for weekdays

except for holidays, the study uses the corresponding five weekdays for the mobility level

and ignores the weekend data.

The COVID-19 public health status — the daily death rate variable — is collected from

Our World In Data12, which combines information from multiple sources such as the World

Health Organization (WHO), Johns Hopkins University, and the European Center for Dis-

ease Prevention and Control. The study uses the daily new deaths attributed to COVID-19

smoothed per million people series in the data set. The first three deaths attributed to

COVID-19 in the U.S. reported as of March 2, 2020, stand at a rounding rate of 0.001 per

million13.

This study creates four dummy variables to identify and assess the impact of shocks from

monetary policy announcements, fiscal policy announcements, and government restrictions

for different sectors. They represent the shocks of conventional monetary policy announce-

ment, unconventional monetary policy announcement, fiscal news, and Unemployment rates

news. The Conventional monetary policy includes lowering the target range for the federal

funds rate and increasing the Federal Reserve’s holdings of Treasury securities and agency

Mortgage-Backed Securities (MBS). As the lower bound of the target range is near zero, the

not be the perfectly normal baseline days, because a short period of the year cannot represent normal for all
regions in the U.S.

12https://ourworldindata.org/coronavirus
13https://www.nytimes.com/2020/04/22/us/coronavirus-first-united-states-death.html, this

new information may shift the timeline of the virus’s spread through the U.S. a few weeks earlier than
previously believed on February 26, 2020.
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Federal Reserve has created several trillion dollars of loan facilities to support the economy,

and this is the unconventional monetary policy. See more details in Appendix B.1.

Finally, all data are transformed into stationary series. See Appendix B.5 for more details

of the data and the process of transformation.

2.5 Estimation Results

2.5.1 Latent Factor and Loading Parameters

Figure 2.3: Latent factor estimation at 5%, 50% and 95% quantiles from January 2020 to
August 2020.

The results of the estimated posterior distribution of the latent factor are presented in Figure
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(2.3). The black line in the middle indicates the median value of the posterior distribution

along with 5% and 95% quantile bands; the narrowness of the band suggests that the factor

is estimated rather precisely. Figure (2.3) shows that there are three dives on March 9,

March 12, and June 11, 2020, decreasing by 712%, 940% and 513% from the previous days,

respectively. These estimation results are consistent with the fact that the Dow Jones Index

dropped by -7.79%, -9.99%, and -12.93% on those three days. These three events also coin-

cide with world events and monetary policy news. On March 11, 2020, the WHO upgraded

the status of the coronavirus outbreak from an epidemic to a pandemic, and two days later,

on March 13, 2020, the president of the U.S. declared a national emergency. The results of

the latent factor, market sentiment, in those hectic events reflect the impact of these shocks

on investors. Unprecedentedly, the stock crash in March only caused a short-lived bear mar-

ket, and in April, the stock market rebounded into a bull market, indicating the extremely

restless pattern of the latent sentiment. On June 11, 2020, one day after the Fed announced

that interest rates would remain near zero to 2022, signaling a long road to recovery, the

U.S. stock market suffered its worst one-day sell-off since March. This phenomenon can be

explained by the possibility that forward guidance is also a negative signal to the market

in addition to the growing fears of a second wave of COVID-19 cases. Not coincidentally,

following each dive, the market shows a significant jump. The latent factor reflects this

high volatility behavior with two considerable spikes shown in Figure (2.3). These spikes are

on March 14 and March 24, 2020, with the values increasing by 204% and 312%, respectively.

On March 3 and March 15, 2020, FOMC announced lowering the benchmark rates by a

half and one percentage points, respectively, and ended at zero. The estimated results of

the latent sentiment on those announcement days suggest a decrease by 59% and 134%,

respectively,14 from their previous trading days. The decreasing comovements suggest that

14This number is calculated by comparing the factors between March 16, 2020, and March 13, 2020, due
to weekend announcement.
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collectively with other sources of shocks, the conventional monetary policy (lowering the tar-

get rate to zero and increasing holding Treasury securities and agency MBS) is not sufficiently

powerful to overcome the underlying restless latent sentiment to support the stock market.

Note: These declining comovements do not represent negative effects of the monetary policy.

These estimated results are the isolated comovements after controlling all macroeconomics

effects, including effects of various policies and news shocks. Effects of monetary policy are

explained in Section (2.5.2), and news impact is in Section (2.5.3).

2.5.1.1 Persistence Properties of the Dynamic Latent Sentiment

To measure the evolution of the latent factors, this study collects the autoregressive coeffi-

cients (2.2) at each step of the estimation procedure to obtain their distribution. The latent

factors have a negative and small autocorrelation, -0.0868; the 45% and 55% quantiles of this

distribution are -0.0936 and -0.0764, respectively. See Figure (2.4). These results can help

explain the volatility of the latent sentiment and weak mean reverse pattern. For example,

during the nine trading days (between March 9 and March 19, 2020), the market did not

simply tumble linearly, however, on four of the nine days, the market rose by nearly 5% after

the previous day crash. The estimated median of the variance of the dynamic latent factor

is 2.201 (see Figure (2.5)).

2.5.1.2 Loading Parameters

The loading parameter for each sector can be understood as a multiplier effect on the market

comovements. Figure (2.6) displays the estimated distributions for the loading parameters.

The first sector — non-durable goods — is assumed as the benchmark. The highest medium

values of the loading parameters are 1.91, the energy sector; 1.67, the durable sector; and
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Figure 2.4: Persistence properties of the dynamic factors.

Figure 2.5: Boxplot for variance of the dynamic latent factor

1.64, the other sector. As the comovements permeate the whole market across sectors, it is

valuable to consider the whole picture of the equity market to determine how sectors evolve

during the pandemic. Figure (2.7) gives a three-dimensional depiction of these comovements

across sector and time; the “sector” axis in this graph arrays the different sectors in the

order given in Figure (2.6). The vertical axis is the latent factor in each sector. The colors

illuminate the comovements and volatility of the market.
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Figure 2.6: Estimated loading vector
Coefficients in the figure NoDur, 1; Durbl, 1.67; Manuf, 1.48; Enrgy, 1.91; HiTec, 1.30;

Telcm, 1.15; Shops, 1.04; Hlth,1.01; Utils, 1.33; Other,1.64.

Figure 2.7: Comovements across sector and time. Sectors: 1-NoDur, 2-Durbl, 3-Manuf, 4-
Enrgy, 5-HiTec, 6-Telcm, 7-Shops, 8-Hlth, 9-Utils, 10-Other
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Figure 2.8: Boxplot for variance of the observation equation

Figure (2.8) displays the variances of the idiosyncratic risks in all ten sectors. After control-

ling the macroeconomic condition, monetary policy effects, news shocks, and their comove-

ments, the remaining risks are relatively small with a medium variance less than 2 for most

sectors, except for the high-risk energy and durable goods sectors.

2.5.2 Monetary Policy Interest Rates Effect

First, the study briefly analyzes the effects of the monetary policy interest rates on the stock

returns during the sample data between January 1 and August 31, 2020. Subsequently, in

the next section, this paper examines the policy news shocks on the stock returns as part

of monetary policy impact analysis. The effects of the interest rates on stock returns are

reported in Table (2.1), and the quantile boxplot is reported in Figure (2.9). It shows that

utilities and non-durable consumer goods sectors are the most sensitive to interest rates.

The results show that if the Fed Effective Funds Rate is decreased by one percentage point,

specifically, the utilities and non-durable goods stock returns increase by 11.35% and 7.328%,

respectively; the overall market of ten sectors was a 4.18% increase. These estimation re-
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sults are in congruence with the empirical data — between March 16, 2020 and March 17,

2020, the stock market jumped up by 11.81% in utilities and 7.40% in non-durable goods,

were very close to my estimations 11.35% and 7.328%, when the Fed announced reducing

interest rates by one percentage point on the evening of March 15, 202015. These two sectors

are defensive sectors. Whether the economy and the stock market are good or bad, people

still need the necessities, such as food, water, and electricity. However, durable goods stock

prices are less responsive to lower interest rates. That households reduced durable goods

expenditures during the COVID-19 recession due to uncertainty about future income, made

the interest rate policy accommodation less responsive in the durable goods sector.

Table 2.1: Estimated Coefficients on the Effective Federal Funds Rate (EFFR)

NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

EFFR -7.328 -0.849 -4.522 -2.508 -2.990 -2.451 -3.250 -4.097 -11.35 -2.501

Note: The negative signs imply that the excess returns of stocks and EFFR move in opposite
directions.

Figure 2.9: Boxplot for the estimated βs on the Fed Funds Rate variable

15Since March 15 is a Sunday, this paper counts the next trading day as the monetary policy day for
prediction purpose.
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2.5.3 Announcement Shocks

Since the first coronavirus death that shocked the U.S. media at the end of February in 2020,

there was an enormous amount of news and information broadcasting every day. There was

collective news including spikes of new deaths and cases, oil price tank, government’s stay-

at-home and closure of business orders, monetary policy announcement, fiscal stimulus, and

unemployment rate announcements. When such news is released, it has a significant effect

on economic activities and the financial market. To attempt to separate the impact of an

amalgam of news, the constructed four dummy variables representing four types of shocks:

conventional, unconventional monetary policy announcement, fiscal stimulus announcement,

and unemployment rate announcement16.

2.5.3.1 Monetary Policy Announcement Shocks

Distinguishing the impact of announcements between a conventional monetary policy and an

unconventional monetary policy is one of the essential results of this study. A conventional

monetary policy in the U.S. refers to the Federal Reserve altering the target interest rate and

opening market operations, for instance, purchasing Treasury securities and agency MBS.

Conversely, an unconventional monetary policy is a situation where the Federal Reserve pur-

sues an alternative monetary policy, such as Large Scale Asset Purchase (LASP) or forward

policy guidance, when facing the Zero Lower Bound (ZLB) constraint, to influence interest

rates to reach its dual mandate of full employment and stable prices. At the beginning of

COVID-19, the Fed announced the conventional monetary policy of lowering the benchmark

interest rate to ZLB on March 3 and March 15, 2020, respectively. Immediately after reach-

16Dummy variables are either one or zero. One represents an announcement for that day. It is possible
that news leaks before the official day of the announcement, and it is also possible there are multiple sources
of shocks on that same day, but they capture the major shocks on the financial market of that day.
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Table 2.2: The impact of News shocks

Estimated Coefficients of The four dummy variables

Dummy Variable NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

Conventional MP News 1.711 -1.544 1.300 1.095 -0.856 0.786 -0.598 -0.464 1.440 -0.461

Unconventional MP News -0.006 0.783 -0.086 0.222 0.688 0.030 0.231 0.288 -0.371 0.447

Fiscal News 4.265 4.448 6.267 6.883 3.986 4.592 1.256 4.213 5.980 6.147

Unemployment News 0.475 -0.043 0.383 0.228 -0.666 0.157 -0.351 -0.127 0.010 0.189

ing the constrain, on March 17, 2020, the Federal Reserve Board announced establishment

of a Commercial Paper Funding Facility (CPFF) to support the flow of credit to households

and businesses. Subsequently, there were 15 announcements regarding unconventional mon-

etary policies establishing nine new lending facilities from the middle of March to May 2020

(See the event details in Appendix B.1). These interventions can also be reviewed as signals

that the Fed acknowledges the economy is suddenly heading toward the brink of recession

and “they will do whatever they can” to help support the economy.

Table (2.2) reports the estimated impact of four different news, including conventional and

unconventional monetary policy announcement, fiscal stimulus and unemployment news.

Coefficients are in units of percentage. For instance, the top left number 1.711 implies that,

on average, the conventional monetary policy announcement shock caused excess return on

the non-durable goods sector by 1.711% at the end of that announcement day. One caveat

is that it is “average” effects, because the FOMC cut half percent on March 3; on March 15,

2020, a full one percent is cut and reached ZLB. I also present the corresponding coefficients’

distribution in Figure (2.10) and Figure (2.11) for the non-durable and utility sectors17. As

shown in the quantile box plots, the coefficients’ inter-quantile ranges are all centered and

the variances are quite small, which imply the results are significant.

17Graphs for other sectors are also available upon request. Notched boxplot version is also available
implying results significance.
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Figure 2.10: Boxplot for the impact of news shocks in non-durable sector

Figure 2.11: Boxplot for the impact of news shocks in utilities sector

In addition to Table (2.2), Figure (2.12) helps us visually explain the differences between the

two types of monetary policy announcement impact. The bars labeled blue in Figure (2.12)

indicate the impact of the announcements regarding conventional monetary policy shocks,

while the bars labeled in red are the impact of the unconventional monetary policy shocks.
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The positive impact of the announcements of conventional monetary policy is 1.711% in

non-durable consumer goods, 1.440% in utilities, 1.300% in manufacturing, 1.095% in en-

ergy and 0.786% in communication sectors. These results are expected and similar to the

interest rate effects because defensive sectors in the stock market are sensitive to the inter-

est rate. Further, another reason that could contribute to the announcement impact is the

striking phenomenon of consumers’ panic-buying to stock-up essentials during the beginning

of the COVID-19 pandemic. For example, when the WHO advised that the best defense

against Coronavirus was hand soap, sanitizer, and wearing masks, many consumers imme-

diately began to purchase large quantities of these items. This led to a surge in demand,

prompting producers to increase their production. Therefore, with the announced cutting

interest rate, the non-durable goods sector responded to it positively. However, durable

goods and high-tech sectors responded to the announcement shock negatively on a relatively

larger scale. The GDP for durable consumer goods decreased by more than 26% between

March and April 2020. As mentioned in Section 2.5.2, the second conventional monetary

policy of cutting interest rates announced on Sunday morning (March 15, 2020) could be a

negative signal that the Fed Reserve acknowledges that a recession is coming in the near fu-

ture. Therefore, it is reasonable to believe that lowering the interest rates did not positively

impact durable goods and other sectors.

The red bars shown in Figure (2.12) present the impact of the unconventional monetary pol-

icy shocks on the stock market. There were overall 16 FOMC announcements, which have

created nine new lending facilities from the middle of March till that of May 2020. For the

same sector, the estimated effects for the unconventional monetary policy shocks have oppo-

site directions to the impact of the conventional monetary policy shocks18. As indicated in

Table (2.2), the magnitude of the impact is smaller for both positive or negative. For energy,

shops, health, and other sectors, there is essentially no impact. Durable goods and high-tech

18Except for the health sector, both are negative. However, unconventional policy shock is close to zero.
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Figure 2.12: The impact of conventional and unconventional monetary policy shocks on
stock market cross ten sectors.

sectors display 0.783% and 0.688% sluggish increases on risk premia from unconventional

monetary policy shocks, while those announced shocks negatively impact the rest sectors.

It seems reasonable to interpret the mixed signs of the coefficients demonstrating enormous

uncertainties and volatility on the stock market cross sectors during the first two months of

the COVID-19 crisis.

Table 2.3: Estimated coefficients of three dummy variables

Dummy Variable NoDur Durbl Manuf Enrgy HiTec Telcm Shops Hlth Utils Other

Monetary Policy News 0.262 0.402 0.119 0.334 0.453 0.140 0.123 0.152 -0.125 0.294

Fiscal News 4.481 4.254 6.387 7.074 3.751 4.714 1.200 4.133 6.242 6.003

Unemployment News 0.413 -0.003 0.320 0.180 -0.619 0.124 -0.325 -0.104 -0.074 0.224

Few announcements that are difficult to classify as conventional or unconventional only. For

example, on March 23, 2020, the Federal Reserve issued the FOMC statement that an-

nounced to continue purchasing Treasury securities and agency MBS can be regarded as an

open market operation or a forward guidance policy. In addition, on that same day, the Fed
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Figure 2.13: The impact of both conventional and unconventional monetary policy announce-
ments cross sector (with a total of three dummy variables).

also created three new facilities-the Primary Market Corporate Credit Facility (PMCCF),

the Secondary Market Corporate Credit Facility (SMCCF), and the Term Asset-Backed Se-

curities Loan Facility (TALF). Overall, as the main “surprise” is establishing new facilities,

this study classifies it as an unconventional monetary policy shock focused. Owing to these

reasons, the study attempts to investigate the overall effects of the shocks of the monetary

policy regardless of whether they are conventional and unconventional by re-estimating the

model (2.1) with three dummy variables in total: monetary policy, fiscal stimulus, and un-

employment shocks. See the results19 in Table (2.3) and Figure (2.13). As Figure (2.13)

shows, the overall monetary policy announcement shocks on stocks are positive (except the

utilities sector) during the sample period.

19As the number of total independent variables reduced by one, all coefficients estimation results changed,
but the changes for non-dummy variable coefficients are trivial. Therefore, I only report the coefficients for
the three dummy variables.
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(a) Fiscal Policy Announcements (b) Unemployment Announcements

Figure 2.14: Fiscal policy and unemployment news announcements impact
Left panel: The impact of the $2.2 trillion fiscal stimulus announcement. Right panel: The
impact of unemployment rate news from the Department of Labor.

2.5.3.2 Fiscal Stimulus Announcement Shocks

Conversely, the announcement of fiscal stimulus has a strong positive impact on all ten stock

market sectors. See the third row in Table (2.2) and left panel in Figure (2.14). There

is distinct focus between fiscal policy and monetary policy. Fiscal stimulus is regarded as

spending power that can directly help a business that suffers from the COVID-19 pandemic

or people who need financial support. Monetary policy, however, has lending powers that can

make secured loans to institutions, companies, or individuals to help the economy. Another

reason that can also explain the significant positive effect of the fiscal stimulus package is

timing. Before the fiscal stimulus package, the market of March 23 was at the lowest point,

where the S&P 500 has dropped by 31.32 % since the beginning of 2020. Concerning the

$2.2 trillion fiscal stimulus package passed by the Senate on the night of March 25, 2020 20,

the stock market responded to the news immediately and pivoted to a new direction with

a remarkable rebound from the bottom and manifested a strong positive impact on all ten

sectors.

20Even the final stimulus package was officially signed off on the late night of March 25, 2020,
some newspapers had leaking the news and announced “The Senate appeared close to reaching a deal
on a massive stimulus bill” since March 24, 2020. For example, https://www.cbsnews.com/news/

senate-coronavirus-economic-stimulus-package-bill-2020-03-24/
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2.5.3.3 Unemployment Rate News Shocks

The Bureau of Labor Statistics (BLS) releases the employment situation summary on the

first Friday of every month21. Historically, if this release comes in significantly different

from consensus estimates, it can lead to fluctuations in the stock market to fluctuate. The

impact of the unemployment rate news is reported in the last row in Table (2.2) and right

panel of Figure (2.14), where there are mixed positive and negative results across sectors.

There are five sectors, (e.g., durable goods and manufacturing) that have positive impacts

after the unemployment rates are announced. The remaining sectors (e.g., high-tech and

shops) have negative impacts due to the release. The nature of the shocks could explain

these findings. When presented with surprising news, optimist and pessimist investors have

different expectations and may have different market behaviors. In February 2020, the U.S.

unemployment rate of 3.5% was at the lowest in 50 years. When the coronavirus started

to spread quickly in the U.S., the unemployment rate in April 2020 surged from 10.3% to

14.7%, the largest over-the-month increase for all data available in history. The leisure and

hospitality industries’ unemployment rates were the worst and reached 39.3% in April 2020.

When these rates of unemployment were issued, the stock market tumbled immediately. The

durable goods and energy sector slumped by 6.36% and 6.33%, respectively, on that Friday.

However, as the stock market constantly involves investors’ different attitudes, a shock to

the opposite directions can also happen. For example, on June 5, 2020, although the unem-

ployment rates of the leisure and hospitality industry in May were still 35.9%, it was much

better than the market’s expectation. The Dow Jones jumped up by 6.8%, and S&P 500 rose

by 4.9% immediately. This hectic financial behavior during the COVID-19 pandemic also

substantiates that the latent factor is a vital variable in the model and play a crucial role in

21Job report is released at 8:30 a.m. EST on the first Friday of every month https://www.bls.gov/

schedule/news_release/empsit.htm
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explaining the hectic movements of the stock prices during the COVID-19 stock market.

2.5.4 Latent Factor and Sentiment Indicators

We do not know what the latent factor exactly includes, by definition, but we can explore it by

associating it with something we can measure. This section aims to use the sentiment analysis

technique to explore the linkage between the latent factor and the market sentiment, which is

extracted from the multi-dimensional aspects of information released. This paper examines

Federal Open Market Committee (FOMC) communications and Wall Street Journal daily

news. Notably, the study does not claim any causality due to data limitation but focuses on

the correlations between the estimated latent factor and market sentiment.

2.5.4.1 Text Mining Techniques

There is an emerging interest in text mining or Natural Language Processing (NLP) in big

data, and many soft computing methods and techniques have been developed. Although

text mining is widely applied in computer science, it is still relatively new in economics

and finance. This section applies two different techniques, sentiment lexicon and rule-based

model (in addition to sentiment lexicon). They both show that the latent factor and the

sentiment of the communications or news headlines are positively correlated.

The first technique is a sentiment lexicon term-frequency tool that identifies the sentiment

polarity of words and texts. Although many algorithms are built to construct a sentiment

lexicon with sentiment-aware word embedding, most of them focus on product reviews, movie

reviews, and emotional states. Loughran and McDonald (2011) have shown that dictionaries
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developed in other fields can be possibly ineffective for economics and finance texts and may

result in misclassification errors. Given the formal characteristics of the Fed’s communica-

tion, this study chooses to use Loughran and McDonald Sentiment Word Lists22 and build

the Dictionary Sentiment Score (DSS). This method is a common way of measuring market

sentiment in the finance literature, where word lists are chosen to reflect the positive and

negative tone and applied to text. See the literature Tetlock (2007), Tetlock et al. (2008),

Loughran and McDonald (2011), and Loughran and McDonald (2014).

The dictionary sentiment score is defined as,

DSS =
(Npos,t −Nneg,t)

Ntot,t

100% (2.34)

where Npos,t is the number of positive tone words in the context released at time t, Nneg,t is

the number of negative tone words released at time t, and Ntot,t is the total number of words

of the context released at time t. The formula gives a percentage measure, which can be

greater than zero, classified as a positive sentiment, less than zero, classified as a negative

sentiment, or equal to (round to) zero, classified as a neutral tone.

The second technique used in this study is called Valence Aware Dictionary for Sentiment

Reasoning (VADER), which combines both lexicon sentiment analysis and embodies gram-

matical and syntactical conventions that express and emphasize sentiment intensity. VADER

is an NLP algorithm created in 2014 and is a fully open source under the MIT License23. This

algorithm is sensitive to both polarity (positive/negative) and the intensity of emotions. It

is attuned to several domain contexts, such as NY Times editorials, movie reviews, product

22https://sraf.nd.edu/textual-analysis/resources/
23Hutto, C.J. Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis

of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann
Arbor, MI, June 2014.
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reviews, and performs exceptionally well in social media texts.

2.5.4.2 Event Study of FOMC Communication and Latent Factor

The Federal Open Market Committee (FOMC) holds eight regularly scheduled meetings

during one calendar year. During the sample period between January 2020 and August

2020, the FOMC holds seven meetings and six press conferences, including two unscheduled

meetings and one canceled scheduled meeting. FOMC meetings’ statements and the press

conference’s scripts that are always released on the same day as the events happen, therefore

can be used for sentiment analysis. The FOMC meetings’ minutes are not included because

minutes usually are released three weeks later after the date of the policy decision.

Figure 2.15: DSS Analysis of the Fed Communications

First, the study applies the DSS method to the text of FOMC statements and the press

conference transcripts downloaded from the Fed Reserve’s website24. This method demon-

24www.federalreserve.gov
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strates success in extracting sentiment from the text, and the results are presented in Figure

(2.15). Overall, FOMC statements are concise communications (total of 760 words on av-

erage from the sample), which have high quality in the sense that Committees use words

precisely, and the formats of the statements are also very consistent; all DSS appear positive.

The FOMC press conference gives a market update and answers reporters’ questions after a

Fed’s monetary policy meeting. The transcripts have a longer length (a total of 8190 words

on average), and all the DSS appear as negative tones since the COVID-19 breakout. For

example, consider the following scripts excerpt from the March 15, 2020 conference:

“Against this favorable backdrop, the virus presents significant economic challenges. Like oth-

ers, we expect that the illness and the measures now being put in place to stem its spread will

have a significant effect on economic activity in the near term. Those in the travel, tourism,

and hospitality industries are already seeing a sharp drop in business. In addition, the effects

of the outbreak are restraining economic activity in many foreign economies, which is causing

difficulties for U.S. industries that rely on global supply chains. The weakness abroad will also

weigh on our exports for a time. Moreover, the energy sector has recently come under stress

because of the large drop in global oil prices. Inflation, which has continued to run below our

symmetric 2 percent objective, will likely be held down this year by the effects of the outbreak.”

This excerpt has a total of 139 words including one positive tone word, [‘favorable’], and 10

negative tone words, [‘against’, ‘challenges’, ‘drop’, ‘difficulties’, ‘weakness’, ‘under’, ‘stress’,

‘drop’, ‘below’, ‘down’]. The entire press conference scripts on March 15, 2020, has a -0.36%

DSS ratio, which has a total word count of 7471 with 140 positive tone words, and 167

negative tone words. See Figure (2.15).

Next, the study combines the contents from both statements and press conferences’ scripts
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Figure 2.16: Latent factor value and change in DSS of the Fed Communications

and study the links between FOMC communications and the latent factor. Figure (2.16)

visually shows the change in sentiment scores during the seven FOMC meetings. The most

significant positive change of the sentiment was on March 23, 2020, and only an FOMC

statement was released. The DSS is six times the last communication from FOMC, and the

stock market pivoted to a new direction on March 23, 2020, and ended the bear market. This

event is shown as a significant spike in Figure (2.16), where the study plots both changes in

DSS and the values of the latent factor together. The most significant negative change in

the DSS ratio was on March 15, 2020, when the FOMC announced reducing interest rates

by one percentage point. In the previous section, Figure (2.3) shows the latent movement

in the stock market plunged by 134% on the following trading day. Overall, it is evident

that the latent movement and the changes in the sentiment of the Fed communications are
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positively associated.25

2.5.4.3 Wall Street Journal Headlines And Latent Factor

FOMC communication textual data is scarce during the sample period. However, there are

incredibly abundant information and news from the internet and social media. The shortfall

of this type of data is that they are noisy26, and some might not be trustworthy. The study

scrapes the daily headline news from Wall Street Journal (WSJ) as a proxy of diversified

aspects of market news27. For example, here are some examples of WSJ headlines on March

15, 2020, and a full-day sample is presented in Appendix (B.8).

“U.S.

Top Health Official Urges Americans to Stay Home Amid Coronavirus

U.S. Economy

Fed Slashes Rates to Fight Coronavirus Slowdown Coronavirus Social-Distancing Forces

Painful Choices on Small Businesses

Schools

New York City Schools to Close Over Coronavirus

Economy

Fed Takes Emergency Actions as Virus Pushes Economy Toward Recession

Election 2020

Democratic Debate Between Sanders and Biden: The Moments That Mattered”

The bubble chart Figure (2.17) and (2.18) visually show sentiment scores using DSS or

25Due to the limitation of data, I do not draw any statistical inference.
26In the sample period, in addition to the COVID-19 pandemic, we also have news about the 2020 U.S.

presidential election, which can also impact the stock market.
27WSJ archive website: https://www.wsj.com/news/archive/years

75

https://www.wsj.com/news/archive/years


Figure 2.17: DSS for the WSJ headlines

Figure 2.18: VADER for the WSJ headlines

VADER algorithm. The bubbles’ diameters and the shade of the colors reflect the changes

in sentiment intensity of the WSJ headlines from January 1, 2020, to August 31, 2020. Fig-

ure (2.17) is the result from the DSS method showing a vague V-shaped trajectory. The

sentiment scores from the VADER algorithm are plotted in Figure (2.18), where negative

sentiments dominate throughout the sample period because this method estimates both
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sentiment valence (intensity) and sentiment polarity. Two regressions, regressing the daily

changes in the latent factor on the changes of the DSS ratios and the changes of VADER

scores, are constructed separately. The first regression obtains a positive coefficient of 0.184,

the second also obtains a positive coefficient, 0.315, and both are at the 95% statistic signif-

icant level. From both NLP techniques, results show that the positive correlations between

the latent comovement of the stock market and sentiment extracted from the WSJ headlines.

The results validate the contribution of having the latent factor in the model; without latent

factors, shown in Section 2.3, it becomes an omitted variable problem. As initially men-

tioned, this does not mean that the WSJ headlines trigger the stock market’s movements,

nor does the market causes some of the headlines reported. Owing to both the stock market

and the WSJ headlines data in low daily frequency, high-frequency data are required to

research their causality and bring more insights.

2.5.5 Government Restrictions

The COVID-19 impacts the economy through both direct and indirect channels. The direct

channel is that it impacted laborers’ health and their ability to work, especially during the

first half year of 2020. There are also various indirect channels, one of which is through the

government’s restrictions, such as stay-home orders or the closure of non-essential business.

Community mobility data can capture this kind of information. People’s voluntary activi-

ties, such as grocery shopping or visiting a park, reflect their psychological state during the

pandemic. Therefore, it is reasonable to assume that financial market returns are associated

with mobility levels because they are associated with economic activities and people’s psy-

chological states.

Table (2.4) reports the estimated coefficients on the six categories of mobility level for each
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Table 2.4: Estimated Coefficients On Mobility In Six Categories

Retail Rec Grocery Parks Transit Workplaces Residential

NonDur -0.42% -0.07% 0.05% 0.47% 0.20% 0.81%

Durbl -0.67% 0.03% 0.08% 0.82% 0.26% 1.46%

Manuf -0.47% 0.00% 0.06% 0.46% 0.26% 0.91%

Enrgy -0.53% 0.01% 0.09% 0.49% 0.49% 1.63%

HiTec -0.49% 0.00% 0.04% 0.39% 0.15% 0.29%

Telcm -0.26% -0.02% 0.01% 0.35% 0.10% 0.60%

Shops -0.38% 0.07% 0.01% 0.44% 0.06% 0.53%

Hlth -0.45% -0.03% 0.04% 0.47% 0.10% 0.46%

Utils -0.57% -0.02% 0.06% 0.60% 0.18% 0.80%

Other -0.49% 0.00% 0.07% 0.50% 0.30% 1.04%

Figure 2.20: Boxplot for mobility coefficients in non-durable sector

sector. All numbers are in percentage point shown in Table (2.4) and Figure (2.19). The

retail and recreation category coefficients are all negative, the grocery and pharmacy coeffi-

cients are close to zero, and the rest are all positive. I also include non-durable and utility

sectors’ boxplots, see Figure (2.20) and Figure (2.21). Graphs for other sectors are also

available upon request.

The community mobility level in the residential category has been increasing since March

2020 due to the stay-at-home order, and the average level for all states in the U.S. has

reached 20% more time relative to the baseline. Since May 2020, some states have eased up
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Figure 2.21: Boxplot for mobility coefficients in utility sector

and released lockdown orders. As of August 31, 2020, the level of staying-at-home is still

10% more than the baseline. The correlations between stay-home levels and stock returns

are positive for all sectors, with the highest correlations, 0.0163, in the energy sector, and

0.0146 in the durable goods sector. These results imply, respectively, that a one percent

increase in the stay-home level is correlated with a 1.63% and 1.46% rise in the energy and

durable goods sector.

Visits to workplaces and transit are remarkably similar because the local government highly

regulates them both. In the middle of March 2020, the government ordered the closure of

non-essential businesses to help prevent the spread of COVID-19. Both visits have declined

by 50% compared to the baseline at the end of March 2020 and the beginning of April

2020. Since May 2020, some state governments have slowly relaxed COVID-19 restrictions

on businesses to help the economy recover. Positive associations are shown in Table (2.4)

and Figure (2.19) between visits to work or transit and returns on the stock market. The

positive association mirrors the correlation between public health status and the public econ-

omy. The coefficients of the visit to the workplace are much smaller than those of visits to
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transit. One possible reason is that many jobs and economic activities can be conducted at

home. Therefore, the association between visiting the workplace and the economy is smaller.

Visits to parks have been dropped by 20% and picked up since the beginning of May. More-

over, in August, it has reached 60% more than the baseline before COVID times. The

coefficients on park visits are also positive in a smaller magnitude in all sectors. Positive

associations are due to visits that are voluntary activities; the more visits, the less people

are worried, and the more optimism there is about economic recovery. Therefore, more visits

to parks are correlated with increases in the stock market returns.

In the middle of March 2020, visits to the retail and recreation stores immediately declined

when the closures of non-essential businesses and social distancing protocols went into effect.

In the middle of April 2020, visits to retail shops decreased by 50% from the baseline level,

while the stock market rebounded. At the end of August 2020, visits to retail stores and

recreation are only at 87% of the baseline, while the stock market recovered and was in

a rally. Hence, the correlation between visits in the retail and recreation stores and stock

market returns are all negative across sectors.

Visits to grocery and pharmacy stores are considered essential trips. Since June 2020, the

visits are back to the baseline level. Without the coronavirus pandemic, the number of vis-

its should not be associated with asset returns. As shown in Table (2.4), manufacturing,

high-tech, and other sectors have zero coefficients. However, at the beginning of COVID-19,

grocery and drug store visits dramatically increased due to consumers’ panic-buying behav-

ior. Stock prices plummeted simultaneously, causing the non-durable goods sector stock

to show a negative association, -0.07%, while revenue grew in the shops sector, showing a

positive association, +0.07%, between stock returns in the shops sector and visits to grocery
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and pharmacy stores.

2.6 Conclusions

This study examines the cross-sector comovements that occurred in the U.S. stock market

during the COVID-19 pandemic. The findings confirm that the latent sentiment is the driv-

ing force behind financial market behaviors. In addition, the latent sentiment had a weak

daily oscillation pattern with a -0.09 autoregressive coefficient in an AR(1) process. This

pattern explains the stock market’s extreme comovements and high volatility.

Moreover, this study estimates the impact of the monetary policy interest rate on each stock

market sector. The results indicate that when the Fed Effective Funds Rate was reduced

by one percentage point, utilities and non-durable goods stock returns substantially jumped

by 11.35% and 7.328%, respectively. In addition, this study explores the impact of news

shocks, including monetary policy news, fiscal stimulus news, and unemployment news, on

cross-sector equity returns. For any given sector, the conventional and unconventional mon-

etary policy news shocked the sector in opposite directions. Of the positive monetary news

shocks, the strongest shocks were from the interest rate policy surprises, while unconven-

tional monetary policy news had a more sluggish impact on stock returns. Conversely, fiscal

stimulus news had the most substantial positive impact and triggered all sectors to rebound

from the bear market at the end of March 2020.

Furthermore, by applying Natural Language Processing (NLP) sentiment analysis, this study

sheds light on the positive correlation between comovements and news sentiment. Using the
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Wall Street Journal headlines as proxies of the market sentiment, the study finds a positive

correlation, 0.31, at the 95% statistically significant level, between the comovements and

market news sentiment.

Finally, in estimating the associations between the cross-sector asset returns and the govern-

ment’s social distancing policy, this study finds that the stay-at-home orders and restrictions

on transit have positive associations with asset returns. Conversely, increases in retail and

recreation activities have negative associations with asset returns in general. Owing to the

government’s policies and restrictions enacted to protect public health by slowing the spread

of COVID-19, some economic activities have been curtailed in the short term. However, in

the long term, these government restrictions help the public’s welfare and the economy. Fu-

ture studies to explore the different impacts between government restrictions and voluntary

social distancing could provide fruitful results.
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Appendix A

1

A.1 Appendix : Proof of at+1

This section proves that, regardless, if agents are producers or miners, they choose to hold

the same at+1 for tomorrow.

At the beginning of the CM, the agent’s problem,

Wt(at, ϕt) = max
Xt,ht,at+1

{U(Xt)− ht + βV e
t+1(at+1, ϕt+1)} (A.1)

s.t. atϕt + ht = at+1ϕt +Xt (A.2)

V e
t+1(at+1, ϕt+1) = pmt+1V

m
t+1(at+1, ϕ

e
t+1) + (1− pmt+1)V

p
t+1(at+1, ϕ

e
t+1) (A.3)

where pmt+1 is the probability of an agent to become a miner at time t + 1. Note that since

the total population is a unit, mt is exogenous and agents have the information of the mt

path, pmt+1 = mt+1. I emphasize that even if the probabilities are unknown, at+1 does not

depend on the probabilities.
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Let me first focus on the V e
t+1(at+1, ϕt+1) term,

V e
t+1(at+1, ϕt+1) = pmt+1V

m
t+1(at+1, ϕ

e
t+1) + (1− pmt+1)V

p
t+1(at+1, ϕ

e
t+1) (A.4)

Using the value functions (1.6) (1.7) indexed by t + 1, the expected value function (A.4)

becomes,

V e
t+1(at+1, ϕt+1) = (1− pmt+1)

{
α(τ)σ

{
u[q(at+1, ϕ

e
t+1)]− p(at+1, ϕ

e
t+1)ϕ

e
t+1

}

+ at+1ϕ
e
t+1 + σ

α(τ)

τ

{
− c[q(ãt+1, ϕ

e
t+1)] + p(ãt+1, ϕ

e
t+1)ϕ

e
t+1

}}
+

pmt+1

{
α(τ)σ

{
u[q(at+1, ϕ

e
t+1)]− p(at+1, ϕ

e
t+1)ϕ

e
t+1

}
+ at+1ϕ

e
t+1 + ϕe

t+1Λ

}
(A.5)

As mentioned in the DM section, ãt+1 appears in the producer’s third term, which repre-

sents the number of tokens held by other agents, who are buyers. The reason that it is

ãt+1, and not at+1, is that there is no credit in this economy; therefore, the trade payment

is essentially limited by the buyer’s assets, not the seller’s. Recall the Kalai proportional

bargaining (1.12), (1 − θ)

[
u(q) − pϕe

t

]
= θ

[
− c(q) + pϕe

t

]
, the payment is subject to the

combination of utility function, cost function and the buyer’s budget, reference to (1.14)

p = min

{
(1−θ)u(q∗)+θc(q∗)

ϕe
t

, abuyer
}
. With the linearity assumption of the cost function, the

trade term (q, p) is determined by the shape of u(·) and abuyer. Therefore I distinguish ãt+1

and at. The importance of this is that later I will be able to drop this term to make the

equation expression easier for the maximum problem.
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Continue simplifying,

V e
t+1(at+1, ϕt+1) = α(τ)σ

{
u[q(at+1, ϕ

e
t+1)]− p(at+1, ϕ

e
t+1)ϕ

e
t+1

}
+ at+1ϕ

e
t+1

+ (1− pmt+1)σ
α(τ)

τ

{
− c[q(ãt+1, ϕ

e
t+1)] + p(ãt+1, ϕ

e
t+1)ϕ

e
t+1

}
+ pmt+1ϕ

e
t+1Λ (A.6)

Then substitute (A.6) into (A.1), the agent’s maximum problem becomes,

max
at+1

{
− at+1ϕt + β

{
at+1ϕ

e
t+1 + α(τ)σ {u[q(at+1, ϕ

e
t+1)]− p(at+1, ϕ

e
t+1)ϕ

e
t+1}

+ (1− pmt+1)

{
σ
α(τ)

τ

{
− c[q(ãt+1, ϕ

e
t+1)] + p(ãt+1, ϕ

e
t+1)ϕ

e
t+1

}}
+ pmt+1ϕ

e
t+1Λ

}}
(A.7)

Divided by β and dropping the last two terms without at+1, the buyer’s problem reduces to,

max
at+1

{
− (

ϕt

βϕe
t+1

− 1) at+1ϕ
e
t+1 + α(τ)σ

{
u[q(at+1, ϕ

e
t+1)]− p(at+1, ϕ

e
t+1)ϕ

e
t+1

}}
(A.8)

Therefore, when forward looking agents make decisions of at+1 for tomorrow, regardless of

the probability of becoming of miners or producers, they eventually face the same maximum

problem, which is, they will always choose to hold the same assets at+1 at the end of the

CM.
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A.2 Appendix: Proof of Proposition 1

Proof of Proposition 1.

In steady state, ϕt = ϕe
t+1 and m = 0, therefore, (1.22) gives,

1 = β
{
1 + σθ

u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)

}
(A.9)

Simplify,

σθ
u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
=

1

β
− 1 (A.10)

where r = 1
β
− 1, therefore,

σθ
u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
= r (A.11)

∣∣∣∣∣σθ u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)

∣∣∣∣∣ = r (A.12)

where ϕss > 0.

Specifically, when utility and cost functions are assumed, the unique monetary equilibrium

steady state can be solved by the following. Assume c′(·) = 1, (1.22) becomes,

1 + σθ
u′(qss)− 1

(1− θ)u′(qss) + θ
=

1

β
(A.13)
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solving u′(qss) obtains,

u′(qss) =
σθ + σr

σθ + σr − r
> 0 (A.14)

where r = 1
β
− 1.

In the steady state, holding a real balance is costly ϕt

ϕt+1
= 1 > β. Agents will bring only

enough assets that they expect to spend on q∗ unit of goods in the CM. The maximization

problem requires u′(q∗) = c′(q∗), and the concave assumption gives, u′(·) > 0.

So it requires,

u′(qss) =
σθ + σr

σθ + σr − r
> 0 (A.15)

It is obviously, the numerator σθ+σr > 0. Therefore, it requires the denominator σθ+σr−

r > 0, i.e

(1− σ)r < σθ (A.16)

r <
ασ

1− σ
(A.17)

Therefore, the existence of a monetary equilibrium requires agents to be sufficiently patient

ασ
1−σ

> r. For example, assuming c(q) = q, and c′(q∗) = 1, it is straightforward that when

ασ
1−σ

> r, σθ+σr
σθ+σr−r

= u′(qss) > u′(q∗) = 1, thus, the level of trade and output in steady state

are less than that of social optimal, qss < q∗.
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A.3 Appendix: Proof of Proposition 2

Proof of Proposition 2.

From Appendix B and the derivative of (A.11) is,

F ′(ϕss) = β + βασ
u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
+ βασϕss

(u′′(ϕss)− c′′(ϕss))((1− θ)u′(ϕss) + θc′(ϕss))− (u′(ϕss)− c′(ϕss))((1− θ)u′′(ϕss) + θc′′(ϕss))

(1− θ)u′(ϕss) + θc′(ϕss)2

(A.18)

Using the linearity property assumption of the cost function c′(ϕss) = 1, c′′(ϕss) = 0, simplify

this equation and obtain,

F ′(ϕss) = β

{
1 + σθ

u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
+ σθ

u′′(ϕss)

((1− θ)u′(ϕss) + θc′(ϕss))2

}
(A.19)

Using the fact (A.10)

σθ
u′(ϕss)− c′(ϕss)

(1− θ)u′(ϕss) + θc′(ϕss)
=

1

β
− 1 (A.20)

F ′(ϕss) = β

[
1 +

1

β
− 1 + σθ

u′′(ϕss)

((1− θ)u′(ϕss) + θc′(ϕss))2

]
(A.21)

Continue simplifying above, (A.21) becomes,

F ′(ϕss) = 1 + βσθ
u′′(ϕss)

((1− θ)u′(ϕss)
(A.22)

Using the property of u′(ϕss) > 0 and u′′(ϕss) < 0, it is clear that F ′(ϕss) < 1.
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Now, let us look at the condition for F ′(ϕss) > −1, we require

β
σθu′′(ϕss)

(1− θ)u′(ϕss)
> −2 (A.23)

Simplify above, give a sufficient learning parameter small g, the steady-state monetary equi-

librium is locally stable if and only if |F ′(ϕss)| < 1, i.e.,

u′′(ϕss)

u′(ϕss)
> −2

(1− θ)

σθβ
(A.24)

Now put everything together, according to Evans and Honkapohja (2001) under the learning

and the assumption of forecast (1.31), when the algorithm has sufficiently small constant

gain gt = g or decreasing gain, there exits a continuum of equilibria b converging to ϕss. And

ϕss is locally stable, if and only if |1+ g[F ′(b)− 1]| < 1, i.e iff F ′(b) ∈ (−2
g
+1, 1). Therefore,

the IFF local stability condition for the steady-state monetary equilibrium is,

g

[
β

σθu′′(ϕss)

(1− θ)u′(ϕss)

]
< 2 (A.25)
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Appendix B

2

B.1 Appendix: The conditional posterior of β

This part is to explain the detail steps of how to obtain (2.16) and (2.17) in the estimation

step 1. Starting from the equation (2.14) below,

y = Xβ + ψ, ψ ∼ N(0,Σ)

where,

Σ = [(IT ⊗ Ω) + (IT ⊗ A)σ2K−1(IT ⊗ A)′] (B.1)

As shown in Koop (2003), given Σ and assuming a natural conjugate prior π(β) ∼ N(β0, B0),

the posterior distribution of β are given by the following expressions,

[β| y, A,Σ, γ, σ2] ∼ N(β,B) (B.2)
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where,

B =
(
B−1

0 +X ′Σ−1X
)−1

(B.3)

β = B
(
B−1

0 β0 +X ′Σ−1y
)

(B.4)

The existence of the inverse matrix Σ−1 is the most tricky step in solving the mean and

variance in the posterior distribution. I follow the steps from Chan and Jeliazkov (2009)

employing Woodbury Matrix Identity formula as shown below,

(E + FGH)−1 = E−1 − E−1F (G−1 +HE−1F )−1HE−1 (B.5)

It is straight forward to obtain,

Σ−1 = [(IT ⊗ Ω) + (IT ⊗ A)σ2K−1(IT ⊗ A)′]−1

= (IT ⊗ Ω−1)− (IT ⊗ Ω−1)(IT ⊗ A)
[
σ−2K + (IT ⊗ A)′(IT ⊗ Ω−1(IT ⊗ A)

]−1

(IT ⊗ A)′(IT ⊗ Ω−1)

= (IT ⊗ Ω−1)− (IT ⊗ Ω−1A)
[
σ−2K + IT (A

′Ω−1A)
]−1

(B.6)

(IT ⊗ A′Ω−1)

Using the compact notation P = [σ−2K + IT (A
′Ω−1A)] and combining (B.3), (B.4) and

(B.6), the mean and variance for the posterior can be obtained as following,

B =

(
B−1

0 +X ′
[
(IT ⊗ Ω−1)− (IT ⊗ Ω−1A)P−1(IT ⊗ A′Ω−1)

]
X

)−1

(B.7)
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β = B
(
B−1

0 β0 +X ′
[
(IT ⊗ Ω−1)− (IT ⊗ Ω−1A)P−1(IT ⊗ A′Ω−1)

]
y
)

(B.8)

Simplify above and obtain,

B =

(
B−1

0 +
T∑
t=1

X ′
tΩ

−1Xt − X̃ ′
tP

−1X̃t

)−1

(2.16)

β = B

(
B−1

0 β0 +
T∑
t=1

X ′
tΩ

−1yt − X̃ ′
tP

−1ỹ

)−1

(2.17)

where X̃t = A′Ω−1Xt and ỹt = A′Ω−1yt.
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B.2 Appendix: Details of step 2.1 sample [a| y, β,Ω, γ, σ2]

This part is to explain the steps of how to obtain draw a from [a| y, β,Ω, γ, σ2] in details.

I follow Chan and Jeliazkov (2009) to generate the posterior density of A marginalized over

f . By Bayes’ Theorem,

π(A| y, β, γ,Ω, σ2) =
π(A| y, f, β, γ,Ω, σ2)π(f | y, β, γ,Ω, σ2)

π(f | y, A, β, γ,Ω, σ2)
(B.9)

Since both loading A and factor f are unknown, there is potential sign and scale identification

issues for them, however, this can be solved by restricting the first element in the loading

vector to 1, i.e. A = {1, a′}. More details can be found in Chan and Jeliazkov (2009). As the

first element in the loading vector A is fixed as 1, replacing A with a, the posterior density

of a, given (y, β, γ,Ω, σ2) and marginalized over f , is as follows,

π(a| y, β, γ,Ω, σ2) =
π(a| y, f, β, γ,Ω, σ2)π(f | y, β, γ,Ω, σ2)

π(f | y, a, β, γ,Ω, σ2)
(B.10)

∝ π(a| y, f, β, γ,Ω, σ2)

π(f | y, a, β, γ,Ω, σ2)
(B.11)

Notice the loading parameter a is not involved in the term π(f | y, β, γ,Ω, σ2) on the numera-

tor, which therefore can be relegated to a constant, and can be scaled proportionately on both

denominator and numerator in calculating the acceptance ratio and eventually cancelled out.

According to (B.11), the next step is to derive the numerator π(a| y, f, β, γ,Ω, σ2).
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The equation (2.3) can be rewritten as,

y = Xβ + FA+, ∼ N(0, IT ⊗ Ω) (B.12)

where F = diag(f1, f2, ..., fT ).

Assume a conjugate prior of a ∼ N(a0, A0), then the conditional posterior of a also follows

Gaussian distribution,

[a| y, f, β, γ,Ω, σ2] ∼ N(ā, Va) (B.13)

ā = Va[A
−1
0 a0 + F ′(IT ⊗ Ω)−1(y −Xβ)] (B.14)

Va = [A0 + F ′(IT ⊗ Ω)−1F ]−1 (B.15)

I skip explaining of denominator π(f | y, a, β, γ,Ω, σ2) as it has been derived in the equations

(2.11), (2.12) and (2.13).

By M-H sampling, a proposal density is tailored closely mimicking the posterior density.

In practice, it is very important for the candidate generating density to have fatter tails

than those of the target posterior. Let a∗ be the draw from the tailored proposal, a student

t distribution, of which, the mean â and negative inverse of Hessian, Â, are obtained by

Maximum Likelihood Estimation. Let df be the degree of freedom, in general, df is chosen

as a small number to ensure the fat details. The jumping distribution q(a∗|a) represents

the distribution for the current state a to jump to the next state a∗. Rewrite the tailored
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proposal density as below for notation convenience.

q(a∗|a) = q(a∗|â, Â, df), q(a|a∗) = q(a|â∗, Â∗, df) (B.16)

Thus, the rate α(a, a∗) of accepting the next proposed draw a∗ is,

α(a, a∗) = min

{
1,
π(a∗| y, β, γ,Ω, σ2)q(a |â∗, Â∗, df)

π(a| y, β, γ,Ω, σ2)q(a∗|â, Â, df)

}
(B.17)
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B.3 Appendix: The acceptance ratio of α

Metropolis-Hastings algorithm can take many different forms. The algorithm in this paper

is a special case, which is often referred to M-H within Gibbs. This appendix briefly explains

the M-H sampler in the algorithm step 2(1) and how the acceptance rate (B.17) is derived.

Let a∗ be the tailored proposed value, a draw from a student t distribution, of which the mean

â, and the variance as the negative inverse of the Hessian, Â obtained by using maximum

likelihood. The notation q(a∗|a), is the proposed density, representing if the current state

is a, then the proposed density q(a∗|a) generates a∗ in the next state. Thus, in the M-H

algorithm the probability accepting the proposed draw a∗ is,

α(a, a∗) = min

{
1,
π(a∗| y, β, γ,Ω, σ2)q(a|â∗, Â∗, df)

π(a| y, β, γ,Ω, σ2)q(a∗|â, Â, df)

}
(B.18)

Recall the posterior density of a marginalized over f is π(a| y, β, γ,Ω, σ2) ∝ π(a| y,f,β,γ,Ω,σ2)
π(f | y,a,β,γ,Ω,σ2)

,

hence, the probability of accepting the proposed draw a∗ becomes,

α(a, a∗) = min

{
1,

π(a∗| y,f,β,γ,Ω,σ2)
π(f | y,a∗,β,γ,Ω,σ2)

q(a|a∗)
π(a| y,f,β,γ,Ω,σ2)
π(f | y,a,β,γ,Ω,σ2)

q(a∗|a)

}
(B.19)
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B.4 Appendix: MCMC Sampling Algorithm Detailed

Summary

Step 1. Draw β from [β| y, A,Ω, γ, σ2] ∼ N(β,B), as specified by (2.15), (2.16) and (2.17).

Step 2. Draw A and f from the joint posterior distribution [A, f |y, β,Ω, γ, σ2] by the following

two sub-steps,

Step 2.1 Sample a first from [a| y, β,Ω, γ, σ2] independently of f . Implement M-H sam-

pling by drawing the proposed candidate a∗ from the student T (â, Â, df) with an

accepting rate at α from (B.17),

α(a, a∗) = min

{
1,
π(a∗| y, β, γ,Ω, σ2)q(a|â∗, Â∗, df)

π(a| y, β, γ,Ω, σ2)q(a∗|â, Â, df)

}

Step 2.2 Sample f from [f | y, β, A,Ω, γ, σ2] ∼ N(f̂ , P−1) as specified by (2.12) and (2.13).

I also make use to Cholesky decomposition and back substitution according to

(2.23).

Step 3. Draw Ω from the conditional posterior distribution [Ω| y, β, A, f, γ, σ2] ∼ IG(d,D) as

specified by (B.13), (2.25) and (2.26).

Step 4. Draw γ from the conditional posterior distribution [γ| y, β, A, f,Ω, σ2] as specified by

(2.27) (2.28) and (2.29), with an accepting rate at α(γ, γ∗) from (2.30),

α(γ, γ∗) = min

{
1,
fN(f1|(0, σ2

1−γ∗2 ))

fN(f1|(0, σ2

1−γ2 ))

}

Step 5. Draw σ2 from the conditional posterior distribution [σ2| y, β, A, f, γ,Ω] ∼ IG(g,G) as

specified by (2.31), (2.32) and (2.33).
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B.5 Appendix: Monetary Policy Announcement Shocks

Figure B.1: Federal Reserve Announcements

Note: If policy announced after the trading hours, the dummy variable will reflect on the

next trading day.
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Figure B.2
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Figure B.3
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B.6 Appendix: Data Transformation Summary

The column trans-code denotes the following data transformation for a series x: (1) No

transformation; (2) Change: ∆xt; (3) Growth rate: ∆log(xt); (4) Indexing: xt

benchmark
; (5)

Normalizing: xt−min
max−min

.

Figure B.4: Data Transformation
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Figure B.5: Data Transformation

Note: An asterisk is tagged these variables to indicate that they been adjusted from the

source.
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B.8 Appendix: Sample of Wall Street Journal head-

lines on March 15, 2020

This is a one-day sample to show that the sentiment analysis captures collective news shocks

during the sample period (January 1, 2020 - August 31, 2020). The news headlines include

all aspects of the society, i.e., health, education, economy, business, election, world news

shocks, etc.

Election 2020

Inside and Outside the Democratic Debate, a World Transformed

Election 2020

Biden, Sanders Split on Policy, Unite Against Trump

World

Coronavirus Measures Put New Limits on Daily Life

Business

United Starts Union Talks as Cuts Deepen

New York

De Blasio to Ban Dining at New York City Restaurants, Bars, Cafes

Election 2020
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Democratic Debate Between Sanders and Biden: The Moments That Mattered

Business

Wynn, MGM to Temporarily Close Las Vegas Strip Casinos Over Coronavirus

Journal Reports: Wealth Management

Travel vs. Environmentalism? Millennials Try to Do Both

Europe

European Nations Impose Stricter Novel Coronavirus Measures

U.S.

Top Health Official Urges Americans to Stay Home Amid Coronavirus

U.S. Economy

Fed Slashes Rates to Fight Coronavirus Slowdown

Health Policy

Census Worker Tests Positive for Novel Coronavirus

Markets

Biggest U.S. Banks Halt Buybacks to Free Up Capital for Coronavirus
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U.S.

Fliers Back From Abroad Face Long, Crowded Lines at Airports

U.S.

Trump Says He Is Considering Pardoning Michael Flynn

Review Outlook

Virus Relief but New Business Burdens

Review Outlook

The Federal Reserve Returns to 2008

Review Outlook

Mississippi’s Biggest Loser

State Street

Coronavirus Roils New York Election Plans

Commentary Don’t Credit the Minimum Wage for Growing Paychecks

Commentary

Let the Fed Administer an Antiviral Shot

Bookshelf
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‘Experimentation Works’ and ‘The Power of Experiments’ Review: Test, Test and Test Again

Notable Quotable

Notable Quotable: ISIS on the Coronavirus

Inside View

Crisis Means a New Business Era

The Americas

Economic Flu Stalks Latin America

Economy

Economy Week Ahead: Focus on Fallout From the Coronavirus

Election 2020

Joe Biden Nods to Liberals With College Tuition, Bankruptcy Proposals

Schools

New York City Schools to Close Over Coronavirus

Economy

Fed Takes Emergency Actions as Virus Pushes Economy Toward Recession
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U.S.

Despite Coronavirus, Some Religious Services Continue

Business

Coronavirus Prompts Abercrombie, Nike, Others to Close Shops

Middle East

Blue and White Leader Gantz to Get First Shot at Forming Israeli Government

Europe

Germany Accuses U.S. of Trying to Lure a Drug Maker Working on Coronavirus Vaccine

The A-Hed

Brine With a Dash of Beet Juice—A Pungent Cocktail for Icy Roads

New York

Gov. Cuomo Wants to Close New York City’s Public-School System

Business

Grocers Fail to Keep Up With Demand as Pandemic Spreads

Business

For Airlines, a Week That Went From Bad to Worse

114



TikTok to Stop Using China-Based Moderators to Monitor Overseas Content

World

As Virus Spreads, Governments Rush to Secure Ventilators

New York

Homemade Hand Sanitizer Hits New York Store Shelves

Business

Sports, Retailers, Airlines, Autos: The Damage Across Business

Politics

Adam Schiff Says Former Aide Tests Positive for Virus

Media Marketing

Domestic Box Office Suffers Worst Weekend in Nearly 20 Years

Letters

On the Readmission of Criminal Immigrants

Letters

Schumer’s Intimidating Supreme Court Rant
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Letters

Fed Actions Should Truly Promote Liquidity

Letters

Graduate-School Regression Had Other Compensations

Letters

The Fed Liquidity Stimulus Must Be Enough to Succeed

Business

Coronavirus Social-Distancing Forces Painful Choices on Small Businesses
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