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1. Introduction

Traditional fast-ion diagnostics and analysis procedures 
provide only incomplete information about the 2D fast-ion 
velocity distribution function. Usually, only a 1D function 
of the velocity distribution function can be measured. Here 
we use fast-ion αD  (FIDA) spectroscopy measurements that 
measure the intensity of Doppler-shifted αD  light as function 
of wavelength [1, 2]. Using velocity-space tomography it is 
possible to combine data from several such measurements 
to infer the 2D fast-ion velocity distribution function [3–10]. 
With this approach it should even be possible to combine 
measurements from different diagnostics which is beneficial 
as they are sensitive to different regions of velocity-space [6]. 
This velocity-space sensitivity is quantified by velocity-space 
sensitivity functions, also called weight functions, which have 

been developed for FIDA [11, 12], collective Thomson scat-
tering (CTS) [4], fast-ion loss detectors (FILD) [13], neutron 
emission spectrometry (NES) [14, 15] and gamma-ray spectr-
oscopy (GRS) [16]. The weight functions, ( )φw x x E p, , , ,1 2 , 
relate a measurement, ( )φs x x, ,1 2 , to the fast-ion velocity dis-
tribution function, ( )f E p, , where x1 and x2 define a range in 
the specific measurement variable, φ is the angle between the 
projection direction and the magnetic field, E is the fast-ion 

energy and p is the pitch defined as ∥=p
v

v
. Here ∥v  is the ion 

velocity parallel to the magnetic field and v is the ion speed. 
p  is defined positive in the co-current direction. In FIDA 
weight functions the measurement variable is the wavelength, 
λ, of the measured light:

s w E p f E p E p, , , , , , , d d .1 2 1 2( ) ( ) ( )∫∫λ λ φ λ λ φ= (1)
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Examples of FIDA weight functions are shown in figure 1. The 
shapes of the weight functions are determined by the angle, φ, 
between the line-of-sight of the diagnostic and the magnetic 
field in the measurement volume, as well as the wavelength 
range in which the signal is detected.

By discretizing equation (1) a linear system of equations is 
obtained:

=S WF. (2)

S and W are normalized by the measurement uncertainties 
as described in [6]. S and F are vectors of length m and n, 
respectively, and W is an ×m n matrix dubbed the transfer 
matrix. Calculating F from equation (2) is a mathematically 
ill-posed inverse problem. An ill-posed problem is one for 
which a unique solution might not exist. Furthermore, any 
solution might be extremely sensitive to small changes in the 
data. The sensitivity with respect to the data is suppressed by 
regularizing the problem. Many different inversion methods 
have been developed and applied in many scientific fields. 
Here we compare five inversion methods to measure fast-
ion velocity distribution functions by tomographic inversion: 
truncated singular value decomposition, maximum entropy, 
zeroth- and first-order Tikhonov regularization and minimum 
Fisher information. These methods have previously been 
compared for position-space tomography in fusion plasmas 
[17, 18]. Here we test these methods for velocity-space 
tomography. In our comparison we use a transfer matrix 
describing FIDA measurements taken simultaneously in five 
views at ASDEX Upgrade in discharge #31557. This large 
number of FIDA views makes ASDEX Upgrade particularly 
suitable for tomographic inversions of fast-ion velocity dis-
tribution functions. This diagnostic set-up (i.e. this transfer 
matrix) is used, firstly, with synthetic measurements to cal-
culate inversions for known velocity distribution functions 
and, secondly, with real five-view FIDA measurements taken 
just before and just after a sawtooth crash. The synthetic 
measurements enable us to quantify the performance of the 

different methods for assumed measurement uncertainties 
since the true solution is known. The real measurements 
allow us to investigate the redistribution of fast ions due to 
a sawtooth crash resolved in 2D velocity space for ion ener-
gies above 20 keV.

The paper is organised as follows. The FIDA diagnostic 
set-up is described in section  2. Section  3 explains the 
different inversion methods. In section  4 we quantify the 
performance of the inversion methods by inverting synth-
etic data based on known test functions. In section  5 the 
methods are used to investigate the effect of a sawtooth 
crash on the central fast-ion population. The results are 
discussed in section 6 and conclusions are summarized in 
section 7.

2. ASDEX upgrade FIDA system

A FIDA diagnostic set-up measures Doppler-shifted deu-
terium Balmer-alpha light from the plasma. It is exten-
sively used to diagnose fast ions at ASDEX Upgrade [19, 
20], DIII-D [21, 22], NSTX [23], MAST [24, 25] and LHD 
[26]. The newly upgraded set-up at ASDEX Upgrade now 
consists of five different views, each with several lines of 
sight measuring at different radial locations. We use one line 
of sight from each view, each intersecting the beam path 
of neutral beam injector (NBI) Q3 in the plasma centre as 
shown in figure 2. The grey line is the Q3 NBI beam and 
each coloured line is a single FIDA line-of-sight. These orig-
inate from different positions in the plasma wall and inter-
sect the NBI beam at approximately the same position. The 
measurement volume is placed slightly on the low-field side. 
Each view has a different angle between its line of sight and 
the magnetic field. Thereby, they probe different regions in 
velocity space as described by their weight functions [12]. In 
the plasma centre, the respective angles are 14°, 73°, 103°, 
133° and 153°. A description of the upgraded FIDA system 
is found in [10].

Figure 1. Examples of FIDA weight functions calculated for ASDEX Upgrade discharge #31557 for two different φ-angles and a 
wavelength of 662 nm. The weight functions are shown on a linear scale. (a) φ = 80°, (b) φ = 10°.

Plasma Phys. Control. Fusion 58 (2016) 045016
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3. Inversion methods

3.1. Singular value decomposition

Truncated singular value decomposition (SVD) has been 
used previously to calculate velocity-space tomographies in 
fusion plasmas [5–9]. The ×m n transfer matrix, W, can as 
any matrix be written as the product of three matrices:

= ΣW U V ,T (3)

where the columns of the ×m m matrix U are the eigenvectors 
of the matrix WWT and the columns of the ×n n matrix V are 
the eigenvectors of the matrix WT W [27]. U as well as V are 
orthogonal matrices. Σ is a diagonal ×m n rectangular matrix. 
The values in the diagonal are called the singular values. They 
are the square roots of the non-zero eigenvalues of both WWT 
and WT W [28]. The values in the diagonal of Σ are ordered in 
a decreasing manner.

Given equation (1) the solution, FSVD, is found as

= +F W S,SVD (4)

where W+ is called the pseudoinverse of W [28]. W+ can be 
calculated using the SVD factorization:

= Σ+ +W V U ,T (5)

where Σ+ is a rectangular diagonal matrix with the reciprocals 
of the diagonal elements of Σ on the diagonal. Equation (3) 
can be written as a sum

( )∑ σ=
=

W u v ,
j

r

j j j
T

1
 (6)

where r is the number of non-zero singular values, uj and vj 
are the j’th columns of U and V, respectively, and σj is the j’th 

singular value. vj
T indicates the transpose of the j’th column of 

V. FSVD can likewise be expressed as a sum:

( )
∑ σ

=
=

F
u S

v .
j

r
j
T

j
jSVD

1
 (7)

Experimental data always contain some form of noise. Here 
we define

= +S S e,exact (8)

where Sexact is the idealized measurement without noise and 
e is the noise. Inserting equation (8) in equation (7) we get

( ) ( ) ( )
∑ ∑ ∑σ σ σ

= + = +
= = =

F
u S

v
u e

v F
u e

v ,
j

r
j
T

j
j

j

r
j
T

j
j

j

r
j
T

j
jSVD

1

exact

1
exact

1

 
(9)

where Fexact is the exact solution we seek and the last sum 
describes the effect of the noise. For very small singular 
values, the SVD solution can be completely dominated by 
the noise. To reduce its influence, a possibility is to truncate 
the sum after k terms. However, this makes it impossible to 
reconstruct Fexact completely. This method is called truncated 
SVD. Truncated SVD introduces the problem of choosing the 
optimum truncation level, k. Here we use the L-curve method 
to choose k [29]. In the L-curve method, we calculate a tomog-
raphy for every truncation level. For each, the norm of the 
tomography ( ( )αR x ) and the goodness of fit to the data ( ( )χ αx2 ) 
are calculated. When plotting the norm and the goodness of fit 
in a loglog plot, a plot in the shape of an L is obtained as seen 
in the left part of figure 3. The right part shows the associated 
curvature. The point with maximum curvature is the corner 
point. The corner is chosen as optimal because it represents a 
balance between fitting the data and regularizing the solution.

Figure 2. Sketch of the geometry of the FIDA diagnostic set-up. (a) Top view of the ASDEX Upgrade tokamak showing the NBI beam in 
grey and the FIDA lines-of-sight in colours. Only the lines-of-sight used here are shown. (b) Poloidal cross-section showing that the FIDA 
measurement volume used here is slightly on the low-field side of the ASDEX Upgrade tokamak.

Plasma Phys. Control. Fusion 58 (2016) 045016
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3.2. Tikhonov regularization

The inverse problem posed in equation (2) can be formulated 
as a least squares problem, i.e. find the solution F which mini-
mizes the norm of the residual:

{∥ ∥ }−WF Sminimize .2 (10)

Well-posed problems can be solved using the normal 
equations:

( )= −F W W W S.T T1 (11)

However, for ill-posed problems a small change in S can have 
a significant impact on F. In Tikhonov regularization, the ill-
posed least squares problem is replaced by a closely related 
well-posed least squares problem

{∥ ∥ ∥ ∥ }α− +WF S LFminimize ,2 2 (12)

where L is a regularization matrix of size ×n n and α is a 
non-negative number determining the weight of the regular-
ization term. As for truncated SVD, we determine the value 
of α using the L-curve method [30]. The Tikhonov solution, 
αF , becomes

( )α= +α
−F W W L L W S.T T T1 (13)

The choice of regularization matrix determines the nature 
of the regularization. Common choices of L penalize the 
magnitude of f or its derivative to different orders. Therefore, 
Tikhonov regularization is also sometimes called linear regu-
larization. The simplest regularization matrix is

=L I, (14)

where I is the ×n n identity matrix so that LT L  =  I and equa-
tion (13) becomes

( )α= +α
−F W W I W S.T T1 (15)

This penalizes large absolute values of f and is called zeroth-
order regularization.

First-order regularization penalizes large gradients. In 2D 
velocity space ( )∥ ⊥v v, , the penalty operator is

∥ ∥= ∇ ∇ +∇ ∇
⊥ ⊥L L .T

v
T

v v
T

v (16)

Here ∥∇v  and ∇⊥v  are matrix representations of finite difference 
operators. In (E, p)-coordinates, the velocity-space gradient is

( ) ˆ ( ) ˆ∇ = ∇ + − ∇F mE F e
m

E
p F e2

2
1 .E E p p

2 (17)

The derivation of equation (17) is included in appendix A. In 
(E, p)-coordinates the penalty operator becomes

( )= ∇ ∇ + − ∇ ∇L L mE
m

E
p2

2
1 .T

E
T

E p
T

p
2

 (18)

3.3. Minimum Fisher information regularization

The principle of minimum Fisher information has been used 
to compute inversions in soft x-ray tomography in tokamak 
plasmas [17]. In reference [17] the minimum Fisher infor-
mation principle is effectively built in as a Tikhonov penalty 
function. It can therefore be seen as a variant or extension of 
the general Tikhonov regularization method. The minimum 
Fisher information method penalizes large gradients divided 
by the function values. The normalization with the distribu-
tion itself means that the smoothing effect is strongest where 
the distribution has low values.

The minimum Fisher information method is implemented 
here as an iterative algorithm [17]. First a solution F(1) is found 
using Tikhonov regularization with a first-order linear penalty 
function. In the subsequent iterations, the penalty function in 
( )∥ ⊥v v, -coordinates becomes

( ) ( )
∥ ∥= ∇ ∇ +∇ ∇⊥ ⊥L L M M ,T

v
T n

v v
n

v (19)

where

( )
( )

( )δ= >−
−M

F
F

1
if 0i j

n

i
n i j i

n
, 1 ,

1
 (20)

⩽( ) ( ) ( )δ= −M M Fif 0.i j
n n

i j i
n

, max ,
1 (21)

Figure 3. Example of how to chose the regularization strength based on the L-curve method.
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( )M n
max is the largest M(n) for Fi  >  0. In (E, p)-coordinates the 

penalty function becomes

( )( ) ( )= ∇ ∇ + − ∇ ∇L L mE M
m

E
p M2

2
1 .T

E
T n

E p
T n

p
2

 (22)

In each iteration, the corresponding Tikhonov solution with 
the appropriate minimum Fisher information penalty function 
is found. We find that the solution converges after only a few 
iterations.

3.4. Maximum entropy regularization

The last inversion method we have implemented is maximum 
entropy regularization. In the case of maximum entropy reg-
ularization it is assumed that the object that is to be recon-
structed from data is positive ( ) ⩾f E p, 0. The other inversion 
methods can produce unphysical negative values which are 
then set to zero. The specific formulation of maximum entropy 
regularization adopted here can be found in references [17, 
31]. Maximum entropy regularization can be formulated as a 
minimization problem of the form

{ }∥ ∥ α− +WF S Hminimize
1

2
.2 (23)

where α is a free parameter controlling the strength of our 
assumptions similar to the free parameter introduced in 
Tikhonov and minimum Fisher information regulariza-
tion. We determine the optimal value of α using the L-curve 
method [30]. H is the Shannon information entropy given by

( ( ))∑= − − −
=

H F m F F mln / .
i

N

i i i i i
1

 (24)

The entropy H is minimized when =F mi i. Thus mi is called 
the default model as it is the value Fi will take when there 
is no information or data influencing it. While the default 
model is usually set to be constant in phase-space to prevent 
biasing of the solution, we may choose to set the default 
model to be given by a theoretical model. For this work, the 
default model is set to be constant. The solution of this min-
imization problem, called the maximum entropy solution, 
is found using a general non-linear optimization library 
[32–34].

4. Tomographies using synthetic measurements

In this section we calculate tomographies using synthetic data 
obtained using equation (1) and known distribution functions. 
Inversions of synthetic spectra calculated from known distri-
bution functions enable us to compare the performance of the 
inversion methods by quantitative figures of merit since we 
know the true solution.

4.1. Test velocity-distribution functions

Three different velocity distributions will be investigated in 
this analysis. A Gaussian distribution, a bi-Maxwellian dis-
tribution and a simulated NBI-distribution from TRANSP/
NUBEAM [35]. The three distributions are shown in figure 4. 
We choose these three distribution functions as they pose 
different challenges to the inversion methods. The Gaussian 
distribution represents a localized source of fast particles typ-
ical for the peaks at the injection energies for neutral beam 
heating. The bi-Maxwellian is a wide function covering the 
entire pitch range. Here the challenge is to recreate the large-
scale undulation. Lastly, we study a distribution function typ-
ical for neutral beam injection as simulated by TRANSP. This 
is an important test case as it should be very similar to the 
distribution functions in experiments with NBI heating. The 
challenge here is the structural complexity on both small and 
large scales. The NBI distribution used in this study is typical 
for a DIII-D discharge rather than for ASDEX Upgrade which 
does not have counter-injection beams.

4.2. Modelling of measurement noise

The photon noise of FIDA light scales approximately with the 
square root of the signal. However, in the absence of FIDA 
light the photon noise is dominated by bremsstrahlung set-
ting a lower limit on the noise level. These two effects are 
modelled as

η= +S S k S ,noisy exact exact (25)

where Snoisy is the noisy spectrum, Sexact is the exact noise-free 
spectrum,  denotes the mean and k is a scaling constant that 
allows us to vary the noise level. η denotes a normally-distri-
buted random deviate with mean zero and standard deviation 

Figure 4. Test velocity distributions functions as a function of energy and pitch of the ions. The functions are given in units of  
[ions/keV cm−3]. (a) Gaussian. (b) Bi-Maxwellian. (c) NBI.

Plasma Phys. Control. Fusion 58 (2016) 045016
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e Smax ,min exact( ), i.e. the larger value of the bremsstrahlung 

level and Sexact . By varying the noise level we can investi-
gate how robust the methods are against noise. Figure 5 shows 
examples of the standard deviation of the synthetic spectra 
calculated using the NBI test distribution for k  =  0.1, k  =  0.5 
and k  =  0.9. The noise level of actual FIDA measurements 
depends on the plasma parameters. A k value in the range 
0.3–0.5 represents the noise level in a typical discharge. When 
calculating the synthetic spectra, wavelengths blocked by 
impurity emission in ASDEX Upgrade discharge #31557 are 
included as the impurity emission is discharge-specific and 
here we wish to compare the inversion methods for a generic 
discharge.

4.3. Variance and bias of the solution

Using equation (25) noisy spectra can be calculated. In order 
to determine how the noise propagates from the spectra to the 
tomographies, 25 noisy spectra are calculated for every value 
of k. A tomography is calculated for each spectrum. Thereby, 
an ensemble of tomographies is obtained for each k-value. 
The propagation of the uncertainties from the measurements 
to the tomographies is found by calculating the variance of the 
ensemble of tomographies for each velocity-space coordinate. 
This variance corresponds to the propagation of the uncertain-
ties through the regularized inverse of the transfer matrix as 
explained in [6].

A forward model can itself contain uncertainties. The for-
ward model here is given by the FIDA weight functions. These 
are calculated numerically based on profiles of several nuisance 
parameters. The weight functions are most sensitive to the ion 
temperature and rotation velocity, the electron temperature 
and density and the effective charge Zeff. Hence we consider 
the impact of these parameters on the tomographic inversion 
results for the different regularization methods. The uncertain-
ties in the bulk plasma parameters lead to uncertainties in the 

weight functions, δW . Assuming a Gaussian error distribution 
of the bulk plasma parameters, we calculate the uncertainty 
in the forward model (i.e. in the weight functions) by sam-
pling a population of weight functions calculated varying one 
nuisance plasma parameter at a time and keeping the other 
parameters fixed. The total variance of the weight function 
is then obtained by summing up the variances obtained from 
each plasma parameter. The corresp onding error, em, from the 
forward model error is

δ=e WF .m true (26)

em depends on the (often unknown) true distribution func-
tion. However, if an estimate of Ftrue can be obtained, em can be 
estimated. The combined uncertainty due to uncertainty in the 
forward model and measurement uncertainty is then

= +e e e .mdata ph
2 2 (27)

where eph is the photon noise. In the case of synthetic measure-
ments, eph is calculated using equation (25). Ftrue is approxi-
mated by the sum of a Maxwellian for the bulk ions and a 
TRANSP/NUBEAM simulation to estimate the NBI ions. 
The Maxwellian is calculated using measured ion temper-
ature and density. The forward model error is included in the 
analysis using real measurements but not for the synthetic 
measurements.

As mentioned above, uncertainties in the measurements 
propagate through to the tomography. However, this effect is 
attenuated by the regularization methods as the tomographies 
would otherwise be completely dominated by the noise in the 
measurements. The regularization itself introduces an error in 
the tomography though. Here we calculate this as the bias of 
the tomography. It is given as the difference of the mean of the 
ensemble of calculated tomographies for a given k and the true 
test distribution:

= −µF Fbias ,true (28)

Figure 5. Examples of the average noise levels in the synhtetic spectra calculated usign the NBI test distribution and equation (25) for 
k  =  0.1, 0.5 and 0.9. The width of the spectra corresponds to the standard deviation of the noise for the given k-value.

Plasma Phys. Control. Fusion 58 (2016) 045016
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where µF  is the mean of the calculated tomographies. Thus the 
bias also depends on Ftrue.

We define a measure of the total uncertainty in the tomog-
raphy as the mean squared error, MSE, given by

= +MSE variance bias .2 (29)

4.4. Figures of merit

We define two different figures of merit. The first is the total 
mean squared error. This is a measure of the total uncertainty 
in the obtained tomography. It is calculated by summing the 
MSE of every pixel. For this figure of merit the smallest values 
correspond to the best performance of the inversion method.

The second figure of merit is the ratio of the inferred fast-
ion density to the true fast-ion density which is calculated as 
the integral of the tomography normalized by the integral of 
the true distribution,

∫ ∫
∫ ∫

F E p

F E p

d d

d d
.

tomography

true
 (30)

Optimally, this figure of merit is one.

4.5. Inversion results

Figure 6 shows tomographies of the Gaussian distribution 
shown in figure  4(a) calculated with the different inversion 

methods for various noise levels. All methods reconstruct 
the position of the Gaussian distribution well. The charac-
teristic widths of the Gaussians are approximately right but 
tend to be slightly larger than in the original test distribution. 
Measurement noise enhances this trend. We further observe 
the appearance of jitter in the inversions throughout velocity 
space. The minimum Fisher information and maximum 
entropy regularization methods stand out from the other 
methods in that they resemble the original function the most 
and exhibits the least jitter. This suggests superior resolu-
tion performance of these methods. Table 1 contains the true 
center coordinates and width of the Gaussian distribution in 
both energy and pitch. Furthermore, it contains the values 
obtained from the k  =  0.5 tomographies calculated using the 
five different methods. All methods find the center coordi-
nates well. The minimum Fisher information and maximum 
entropy methods produce significantly more peaked distribu-
tions which is seen in their ability to match the true width of 
the Gaussian better.

Figure 7 shows the reconstructions of the bi-Maxwellian 
distribution function. The large-scale shape of the distribu-
tion is reproduced by all five inversion methods. The pitch 
angle symmetry with respect to p  =  0 is reproduced well and 
the larger perpendicular temperature compared with the par-
allel temperature is reflected in the large fast-ion densities 
for pitches close to zero. The first-order Tikhonov, minimum 
Fisher information and maximum entropy methods reproduce 

Figure 6. Tomographies of the Gaussian distribution from figure 4(a) in units of [ions/keV cm−3] based on synthetic measurements using 
various inversion methods and noise levels. The noise level k is defined in equation (25).

Table 1. Parameters of the Gaussian test distribution.

True SVD T0 T1 MFI ME

µE [keV] 50 ±49.37 0.22 ±49.55 0.19 ±48.57 0.21 ±48.45 0.06 ±50.78 0.07
σE [keV] 10 ±15.16 0.32 ±15.34 0.27 ±16.61 0.30 ±11.24 0.08 ±8.87 0.10
µp [-] 0 ±0.008 0.005 − ±0.001 0.004 − ±0.001 0.004 − ±0.011 0.001 ±0.035 0.002
σp [-] 0.25 ±0.325 0.007 ±0.329 0.006 ±0.317 0.006 ±0.228 0.02 ±0.242 0.003

Plasma Phys. Control. Fusion 58 (2016) 045016
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the distribution particularly well. Table  2 contains the true 
parallel and perpendicular temperatures used in calculating 
the bi-Maxwellian and the values obtained from the k  =  0.5 
tomographies. For the bi-Maxwellian distribution, the min-
imum Fisher information method most closely recreates the 
true values.

Figure 8 shows reconstructions of the NBI distribution func-
tion for various noise levels and inversion methods. This fast-
ion distribution function is typical for neutral beam injection 
with two co-current beams with injection energies at 80 keV 
and 70 keV and one counter-current beam with an injection 
energy of 70 keV. Therefore, this distribution function is a 
more difficult test case than previously presented reconstruc-
tions of distribution functions which are more typical for a 
single NBI beam. The overall shape of the NBI distribution 
function is well reproduced by all five inversion methods. 
The protrusion at pitches of about 0.7 originates from the co-
current beam injection, and the weaker protrusion at pitches 
of  −0.7 from the counter-current beam injection. All recon-
structions show that the full energy beam injection peak for 
co-current injection (positive pitch) is at larger energies than 
that for counter-current injection (negative pitch). The first-
order Tikhonov, minimum Fisher information and maximum 
entropy regularization results in smooth tomographies. This 
makes the overall shape of the function with protrusions at 
positive and negative pitches stand out most clearly. The local 
maxima due to the beam injection peaks at full, half and third 
energies are recreated by the maximum entropy method in the 
case of low noise (k  =  0.1). They are also visible in the SVD 

and zeroth-order Tikhonov tomographies at low noise. For 
larger noise levels, none of the methods are able to resolve 
more than one peak.

Figure 9 shows the behaviour of the performance para-
meters as a function of noise level for the tomographies of the 
three test functions. Figures 9(a), (c) and (e) show the total 
mean squared error. The mean squared error increases for 
larger noise levels for all inversion methods and test distribu-
tions. The minimum Fisher information regularization method 
has the lowest mean squared error for all test distributions. 
Figures  9(b), (d) and (f) show the density ratios calculated 
using equation (30). The general trend is that the methods pro-
duce a lower density ratio for large error levels. Thus, for very 
large noise levels the absolute values of an inferred density 
obtained from a reconstruction might be unreliable. For the 
Gaussian test distribution, the minimum Fisher information 
and maximum entropy methods are very good at recreating 
the correct density. The other three methods overestimate 
the amount of ions present. This is also the case for the bi- 
Maxwellian distribution but not to the same extent. For the 
NBI test distribution the spread in densities is smaller than for 
the other cases.

The uncertainties of the tomographies of the beam distri-
bution as defined in section  4.3 are shown in figure  10 for 
a noise level of k  =  0.5 in equation (25). Here we disregard 
the model uncertainty for simplicity. The top row shows the 
square root of the variance of the tomographies. Compared 
with the values of the tomographies in figure 8, the uncertain-
ties are about one order of magnitude smaller, and smallest for 

Figure 7. Tomographies of the bi-Maxwellian from figure 4(b) in units of [ions/keV cm−3] based on synthetic measurements using various 
inversion methods and noise levels. The noise level k is defined in equation (25).

Table 2. Parameters of the bi-Maxwellian test distribution.

True SVD T0 T1 MFI ME

∥E  [keV] 3 ±5.12 0.19 ±5.34 0.18 ±4.98 0.09 ±2.94 0.06 ±4.09 0.13

⊥E  [keV] 20 ±24.36 0.73 ±26.26 0.73 ±23.79 0.35 ±22.51 0.32 ±24.73 0.61
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first-order Tikhonov and minimum Fisher information regu-
larization. The middle row shows the bias. Negative values 
denote regions where too few ions are placed, positive values 
denote regions where too many ions are placed. The beam 
peaks are seen in the bias, especially for first-order Tikhonov, 
minimum Fisher information and maximum entropy regulari-
zation as these are only able to resolve the spiky nature of the 
peaks for low noise levels. The last row shows the square root 
of the mean squared error. The main contribution to the uncer-
tainty is the bias for this regularization level.

4.6. Tomographies using two to four views

ASDEX Upgrade is currently the only machine with five FIDA 
views whereas FIDA systems on other machines have fewer 
views. To test the influence of the number of views on the 
performance of the different inversion methods, we repeat the 
analysis using two, three and four views. Tomographies of 
the NBI distribution function calculated for k  =  0.5 are shown 
in figure 11. Even using only two views, it is possible to rec-
reate the overall shape of the NBI test distribution. Adding 
additional views improve the quality of the tomographies 
of all inversion methods, in agreement with the findings for 
truncated SVD in [5]. Furthermore, it is evident that the best 
results are obtained using the first-order Tikhonov, minimum 
Fisher information and maximum entropy regularization 
methods for any number of views.

5. Tomographies of a measured sawtooth crash

A sawtooth crash is a periodic plasma instability which can 
occur when the central safety factor drops below one. It 
changes the magnetic field topology and has been observed 
to redistribute particles and energy from the center of the 
plasma. It has furthermore been observed on several machines 

that passing fast ions are redistributed more strongly com-
pared to trapped ions [9, 36, 37]. Here we use the five different 
inversion methods to investigate the effect of a sawtooth on 
the central fast-ion population in ASDEX Upgrade. Figure 12 
shows time traces from AUG discharge #31557. The saw-
tooth crashes are evident in the central electron density as well 
as the central electron and ion temperatures. Figure 13 shows 
tomographies based on experimental data. They are calculated 
using the different inversion methods applied to FIDA spectra 
measured just before and after the sawtooth crash in ASDEX 
Upgrade discharge #31557 at 2.25 s.

Figure 14 shows the uncertainties of the tomographies of 
the pre-crash distribution. Again it seen that the bias domi-
nates the uncertainty. We stress again that the bias depends 
on the unknown true solution, for which we here use the 
TRANSP model.

Common for all regularization methods, the inferred fast 
ion density drops significantly during the sawtooth crash. 
By comparing the absolute values of the tomographies with 
the uncertainties, we can identify the velocity-space regions 
where we can be confident in the tomography. Figure  15 
shows the calculated tomographies normalized with MSE  
for the five different inversion methods. To calculate the bias 
after the sawtooth crash, the Kadomtsev model as imple-
mented in TRANSP is used to model the effect of the saw-
tooth crash on the fast ions. The parts of velocity space where 
the values are large correspond to regions where we are con-
fident in the results and regions with low values correspond 
to uncertain regions. It is seen that the part of velocity space 
at the full energy peak at 60 keV is very uncertain for all 
inversion methods. This is because the methods are not able 
to resolve the peak for the given regularization level.

To further investigate the velocity-space dependence of the 
change in the fast-ion distribution function, we calculate the 
relative change:

Figure 8. Tomographies of the beam distribution from figure 4(c) in units of [ions/keV cm−3] based on synthetic measurements using 
various inversion methods and noise levels. The noise level k is defined in equation (25).
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( )∆ =
−

F
F F

F
.rel

after before

before
 (31)

The relative change is calculated for every regularization 
method and plotted in figure  16. The top row shows the 

relative change as a function of energy and pitch. The bottom 
row shows the uncertainties of the relative change. The uncer-
tainties of the relative change are calculated by generating an 
ensemble of relative changes and then calculating its variance. 
Note that here only the variance is included in the uncertainty, 

Figure 9. Figures of merit of the reconstructions of the test distributions. The left column shows the total mean squared error. The right 
column shows the density ratio. (a) Total MSE, Gaussian. (b) Density ratio, Gaussian. (c) Total MSE, bi-Maxwellian. (d) Density ratio,   
bi-Maxwellian. (e) Total MSE, NBI. (f) Density ratio, NBI.
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i.e. similar to the top row of figure 14 and the corresponding 
variance of the distribution after the crash.

The velocity-space dependence of the relative change is 
especially clear in the first-order Tikhonov and the minimum 
Fisher information figures  as the amount of jitter in these 
tomographies is significantly smaller compared to the other 
methods. Both first-order Tikhonov and minimum Fisher 
information suggest that ions with large pitch values are redis-
tributed more compared to ions with pitch close to zero. This 
trend is also confirmed by the singular value decomposition, 
zeroth-order Tikhonov and maximum entropy in the regions 
where the tomographies are reliable. The unreliable regions 
are here shown as those with large standard deviation com-
pared with amplitudes of the tomographies. Similar trends 

were observed previously using singular value decomposi-
tion [9] and a variant of a first-order Tikhonov [10] where 
different regularization levels were chosen rather than set by 
the L-curve method. Figure  17 shows the ratio of the post-
crash distribution to the pre-crash distribution integrated over 
energy as a function of pitch for all five inversion methods. 
Thus it is a measure of the pitch dependence of the change 
in the fast ion distribution function. For pitch values close to 
zero all inversion methods except maximum entropy predict a 
redistribution level of between 10% and 20%. For pitch values 
above 0.4 the redistribution level increases to between 30% 
and 40% as seen by all five inversion methods. For negative 
pitch values where very few ions are present it is not possible 
to determine the amount of redistribution.

Figure 10. Uncertainties for the tomographies of the beam distribution in units of [ions/keV cm−3]. All uncertainties are calculated for a 
noise level of k  =  0.5.

Figure 11. Tomographies of the NBI distribution in units of [ions/keV cm−3] calculated using two, three and four FIDA views. All are 
calculated for k  =  0.5.
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6. Discussion

In order to calculate the true bias of a given tomography as 
defined in equation (28), it is necessary to know the true dis-
tribution. This makes it impossible to calculate the true bias 
of a tomography from experimental measurements. Here, we 
have used a TRANSP distribution and the Kadomtsev model 

to generate an estimate of the true distribution. However, in 
other cases it might not be possible to calculate a good quanti-
tative estimate. In these cases the best one can do is estimate 
a qualitative bias based on the general behaviour of a given 
method and regularization level. On the other hand, uncertain-
ties based solely on the propagation of measurement uncer-
tainties through a given regularization process only represents 

Figure 12. Time traces of AUG discharge #31557. (a) Toroidal magnetic field, total injected NBI power and the plasma current. (b) Ion 
and electron temperatures and electron density at ρ = 0.1p .

Figure 13. Tomographies before and after a sawtooth crash calculated using the different regularization methods in units of [ions/keV cm−3].

Figure 14. Measures of uncertainties using the different regularization methods in units of [ions/keV cm−3].
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the spread of obtainable solutions, and thus can be misleading 
since they can be made almost arbitrarily small, simply by 
over-regularizing.

It is seen that when the noise level is not too large, the first-
order Tikhonov, minimum Fisher information and maximum 
entropy regularization methods can reconstruct the overall 
shape of the true distribution function very well. However, 

the first-order Tikhonov and minimum Fisher information 
methods lack capability to resolve very fine and detailed fea-
tures. For large noise levels, the maximum entropy has a ten-
dency to produce spiky tomography. The maximum entropy 
method was often observed to generate solutions with a large 
variance. Truncated SVD and zeroth-order Tikhonov can 
resolve fine details, especially for measurements with low 

Figure 15. Tomographies of the ion velocity distribution normalized with MSE  before (top row) and after (bottom row) the sawtooth 
crash.

Figure 16. Relative change of the fast-ion velocity distribution function.

Figure 17. Ratio of the fast-ion velocity-space distribution functions before and after the crash integrated over energy shown as a function 
of pitch.
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noise levels. However, they often produce features in wrong 
parts of velocity space.

It is seen that the absolute values of a derived quantity such 
as the fast-ion density depend on the noise level in the data. 
However, we find that the ratio of such quantities is less sensi-
tive to the specific noise level and amount of regularization. 
Hence we can make statements about changes in such quanti-
ties with greater confidence than about the absolute values 
themselves since systematic errors introduced by the inver-
sion methods will tend to cancel. For example, the bias in the 
tomographies tends to be similar before and after a sawtooth 
crash, and hence it partly cancels in the relative change.

7. Conclusion

We have compared the performance of five different inver-
sion methods for velocity-space tomography. In order to 
estimate the confidence in the presented analysis, uncertain-
ties of the tomographies are defined and calculated taking 
into account the photon noise, uncertainties in the forward 
model as well as uncertainty introduced by the inversion 
methods themselves. It is found that for the regularization 
level used here, the bias introduced by the inversion methods 
is the major contribution. The performance is tested using 
synthetic data calculated using a realistic transfer matrix 
from the five-view FIDA-system at ASDEX Upgrade. It is 
found that the first-order Tikhonov and minimum Fisher 
information regularization methods which penalize steep 
gradients as well as the maximum entropy method perform 
best for realistic test functions. The uncertainty analysis 
allows us to identify confidence regions in velocity space, 
and regions where the tomographies are not reliable for the 
given data and regularization level. Furthermore, the various 
methods are applied to actual FIDA measurements obtained 
in ASDEX Upgrade discharge #31557 just before and just 
after a sawtooth crash. Using velocity-space tomography it 
is possible to investigate the velocity-space dependence of 
the fast-ion redistribution in regions where we are confident 
in the tomography. We find that sawtooth crashes at ASDEX 
Upgrade affect ions with large pitch values more than ions 
with pitch close to zero.
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Appendix A. Derivation of velocity-gradient in  
(E, p)-coordinates

To calculate the velocity-space gradient in (E, p)-coordinates, 
the gradient is transformed from ( )∥ ⊥v v, -coordinates to (E, 

p)-coordinates. First-order regularization in ( )∥ ⊥v v, - coordinates 
can be achieved by setting

∥ ∥= ∇ ∇ +∇ ∇
⊥ ⊥L L ,T

v
T

v v
T

v (A.1)

where ∥∇v  and ∇⊥v  are finite difference matrix representa-
tions of the first-order differential operators. These have to 
be transformed to (E,p)-coordinates. It is apparent that the 
velocity-space gradient in (E, p)-coordinates has similarities 
to the real-space gradient in polar coordinates. The relations 
between the unit vectors ˆ ˆ ˆ∥ ⊥e e e, ,v v E and êp are illustrated graph-
ically in figure A1. The velocity-space gradient of f is

f f e f e a f e b f e ,v v v v E E p p( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ∥ ∥∇ = ∇ + ∇ = ∇ + ∇⊥ ⊥ (A.2)

where a and b are unknowns that must be calculated from 
the Jacobian. ∇E and ∇p are velocity-gradients along êE and êp 
respectively. Writing êE and êp as functions of ˆ ∥ev  and ˆ ⊥ev  gives

ˆ ( ) ˆ ( ) ˆ ˆ ˆ∥ ∥θ θ= + = + −⊥ ⊥e e e p e p ecos sin 1 ,E v v v v
2 (A.3)

ˆ ( ) ˆ ( ) ˆ ˆ ˆ∥ ∥θ θ= − = − −⊥ ⊥e e e p e p esin cos 1 ,p v v v v
2 (A.4)

where the relation ( )θ=p cos  has been used. The gradient in 
energy is now found by dotting equation (A.2) with êE:

⎛
⎝
⎜

⎞
⎠
⎟

f e f p f p a f

a f
v

E
f

v

E

1

,

E v v E

v v

2( ) ˆ ( ) ( ) ( )

( ) ( )∥

∥

∥

∇ ⋅ ⇒ ∇ + ∇ − = ∇

= ∇
∂
∂
+ ∇

∂
∂
⊥

⊥

⊥

 
(A.5)

To calculate the partial derivatives, the relations between 
∥ ⊥v v E, ,  and p are needed:

∥ =v p
E

m

2
 (A.6)
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The partial derivatives are:
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Figure A1. The relations between the unit vectors ˆ ˆ ˆ∥ ⊥e e e, ,v v E and êp.
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Inserting equations (A.8) and (A.9) in equation (A.5) gives
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Equation (A.10) is fulfilled for

=a mE2 . (A.11)

Similarly, b can be found by dotting equation (A.2) with êp:
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The partial derivatives are:
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Inserting equations (A.13) and (A.14) in equation (A.12) gives
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Equation (A.15) is fulfilled for

= −b
m
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Thus, the velocity-space gradient in energy-pitch coordinates 
becomes

( ) ˆ ( ) ˆ∇ = ∇ + − ∇f mE f e
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