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A methylation risk score for chronic 
kidney disease: a HyperGEN study
Alana C. Jones 1,2*, Amit Patki 3, Vinodh Srinivasasainagendra 3, Bertha A. Hidalgo 2, 
Hemant K. Tiwari 3, Nita A. Limdi 4, Nicole D. Armstrong 2, Ninad S. Chaudhary 5, 
Bré Minniefield 6, Devin Absher 7, Donna K. Arnett 8, Leslie A. Lange 9, Ethan M. Lange 9, 
Bessie A. Young 10, Clarissa J. Diamantidis 11, Stephen S. Rich 26, Josyf C. Mychaleckyj 12, 
Jerome I. Rotter 13, Kent D. Taylor 13, Holly J. Kramer 14, Russell P. Tracy 15, 
Peter Durda 15, Silva Kasela 16, Tuuli Lappalinen 16, Yongmei Liu 17, W. Craig Johnson 18, 
David J. Van Den Berg 19, Nora Franceschini 20, Simin Liu 21, Charles P. Mouton 22, 
Parveen Bhatti 23, Steve Horvath 24,25, Eric A. Whitsel 20 & Marguerite R. Irvin 2

Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans 
(AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA 
methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and 
may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the 
epigenome, environment, and disease, AAs may be especially sensitive to environment-driven 
methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to 
predict disease across multiple racial groups. In this study, we developed a methylation risk score 
(MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be 
associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies 
to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic 
mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple 
sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In 
summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent 
CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and 
progression.
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More than 37 million adults (~ 15%) in the US are estimated to have chronic kidney disease (CKD), and ~ 800,000 
have kidney failure1. There are significant racial disparities within CKD and kidney failure, particularly among 
African American (AA) adults, who experience a disproportionately higher burden of disease. AA adults are 
more likely to have CKD and develop organ failure at a rate nearly four-fold higher than white adults2. Addi-
tionally, while CKD often progresses asymptomatically in early disease, it is an independent risk factor for 
cardiovascular disease (CVD)2. Structural inequities contribute to these disparities (e.g., access to healthcare, 
socioeconomic status), as well as individual stress due to discrimination and racism. Yet the observed dispari-
ties are not fully explained by these factors, highlighting the need to understand the contributing biological 
influences on CKD3–5.

Heritability estimates of kidney traits are high, e.g., 44% for estimated glomerular filtration rate (eGFR) in a 
cohort of adults in the Netherlands6–8. Genetic markers associated with kidney function have been identified, and 
risk variants in some of these loci have been shown to have a higher prevalence in populations of African ancestry 
(e.g., APOL1). Still, known genetic variants account for < 10% of CKD phenotypic variation7,9,10. Furthermore, 
polygenic risk scores (PRS) that can incorporate up to millions of genetic variants associated with kidney dis-
ease—both known and unknown—are in development; yet, these risk models similarly explain a small fraction 
of the variation of kidney disease11–15. Therefore, it is important to consider the role of non-genetic heritable 
factors, such as epigenetics, in the unexplained, or “missing” heritability of CKD.

Epigenetic modifications are chemical alterations to DNA that can impact gene expression without chang-
ing the DNA sequence. These modifications are dynamic and may serve as biomarkers for the mechanisms by 
which one can understand health disparities due to harmful exposures. DNA methylation, a type of epigenetic 
modification, has been linked to CKD and other kidney traits in epigenome-wide association studies (EWAS)16–20. 
Moreover, EWAS have identified altered DNA methylation patterns at cytosine-phosphate-guanine (CpG) sites 
in association with stressful life events, air pollution, and neighborhood factors21–24. Notably, a study in 1.5 mil-
lion individuals showed that DNA methylation explains a higher proportion of the heritability of kidney disease 
than gene expression25. And a Mendelian randomization analysis in ~ 35,000 adults identified multiple CpG sites 
that causally affected kidney function20. Thus, as a consequence of structural racism and social stress, AAs may 
be uniquely susceptible to epigenome-modifying exposures that increase CKD risk. Yet AAs are understudied 
with respect to CKD epigenomics.

Furthermore, while individual CpG sites may explain a small fraction of variance of their respective traits, 
studies have shown that incorporation of multiple methylation markers—similar to PRS—into risk algorithms 
may provide clinical utility26,27. Methylation risk scores (MRS) are an emerging tool unique from PRS given 
the potential for environmental exposures that may alter methylation levels. By computing risk based on the 
methylation level of relevant CpG sites, MRS can capture the potential impact of the exposome on gene expres-
sion. Because DNA methylation has been linked to CKD, MRS may be an important method of capturing both 
heritable and environmentally-driven risk for disease. To this end, we sought to develop and validate MRS for 
CKD. Because previous literature suggests that some social determinants of health (SDOH) may be linked to 
modifications in DNA methylation, we also assessed relationships between the CpG sites that comprised the 
optimized MRS and SDOH28–30.

Results
Figure 1 provides an overview of the study. Baseline characteristics of the study cohorts are presented in Table 1. 
In HyperGEN, the prevalence of CKD was 6%; in validation cohorts, CKD prevalence ranged from ~ 1 to 8%. The 
proportion of Stage G2 individuals ranged from 3 to 31%. HyperGEN EWAS summary statistics are presented 
in Supplemental Table 1. Selected CpG sites for each MRS are presented in Supplemental Table 2, and perfor-
mance metrics of all MRS are summarized in Supplemental Table 3. The following CpG sites were used to con-
struct the optimal MRS: cg02090160, cg11098259 (AQP9), cg12116137 (PRPF8), cg17944885 (ZNF788; ZNF20), 
cg00994936 (DAZAP1), cg02304370 (PHRF1), cg04460609 (LDB2), cg00501876 (CSRNP1), and cg04864179 
(IRF5). MRS weights, selected from published eGFR EWAS, are summarized in Table 2.

In HyperGEN, CKD cases had higher MRS than controls (p = 3.28E − 05, Fig. 2). In the continuous model, a 
1 standard deviation (sd) increase in MRS was associated with 5.07 (95% CI 2.48–10.38, p < 0.0001) greater odds 
of CKD. Additionally, the prevalence of CKD increased with higher thresholds of MRS (Supplemental Fig. 1). 
Odds ratios showed even further stratification upon exclusion of G2s (Supplemental Table 4), and associations 
were robust after accounting for CKD risk factors (Supplemental Table 5). Results were consistent for eGFR, 
such that a 1 sd increase in MRS was associated with a 6.98 ± 1.75 mL/min/1.73 m2 decline in baseline eGFR 
(Supplemental Table 6). In the full model, the MRS explained 1.6% of the variance in CKD and 5.7% when G2s 
were excluded. Similarly, inclusion of the MRS improved the covariate model AUC from 0.88 to 0.92, with the 
MRS-only model boasting an AUC of 0.71.

Among the validation cohorts, the continuous MRS was a modest predictor of CKD in JHS (OR[95% CI] 
1.52[1.02,2.26], p = 0.038) and eGFR in WHI-AS311 (β(SE): − 8.84(4.06), p = 0.030) and WHI-BAA23 (β(SE): 
− 2.93(1.30), p = 0.024), excluding G2s. In MESA, GOLDN, and WHI-EMPC, MRS was not significantly associ-
ated with CKD or eGFR. In AA-only WHI models, MRS was not significantly associated with CKD or eGFR . 
Complete metrics of MRS performance among individual validation cohorts are summarized in Supplemental 
Table 7. In the meta-analysis of the validation cohorts, the MRS was significantly associated with CKD (OR[95% 
CI] 1.66[1.20,2.30], p = 0.003) and eGFR (β(SE): − 2.28(0.72), p = 0.002) for a 1 sd increase and at top 10 and 20% 
thresholds, but not the top 5% threshold (Fig. 3). Findings were consistent when we restricted analyses to AAs—
OR[95% CI] 1.55[1.06,2.26], p = 0.029 for CKD and β(SE): − 2.19(1.17), p = 0.08 for eGFR for a 1 sd increase 
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(Supplemental Table 7). We were unable to obtain threshold-specific estimates for the AA-only meta-analysis, 
as models for multiple cohorts did not converge in smaller strata.

In secondary analyses of MRS associations with SDOH, three MRS CpG sites in JHS were marginally associ-
ated with individual and neighborhood-level factors: cg12116137 (PRPF8), cg17944885 (ZNF288; ZNF20), and 
cg00501876 (CSRNP1). Interestingly, the methylation pattern of cg17944885 (ZNF788; ZNF20) showed inverse 
association with “protective” SDOH—e.g., health insurance and higher SES—and positive associations with 

Figure 1.   Study overview.

Table 1.   Baseline characteristics of MRS development and validation cohorts. *Indicates only AAs included. 
In GOLDN, all participants were EA. In WHI, selected participants were AA, EA, or Hispanic/Latino. CKD 
indicates individuals with eGFR < 60. Stage G2 indicates individuals with (60 ≤ eGFR < 90).

N (%)/Mean (SD)

Development Validation

HyperGEN*
(N = 608)

GOLDN
(N = 993)

JHS*
(N = 1709)

MESA-AA*
(N = 182)

WHI-AS311
(N = 145)

WHI-BAA23
(N = 2049)

WHI-EMPC
(N = 1172)

Age 48.4 (11.1) 49.4 (15.9) 56.2 (12.3) 60.9 (9.6) 66.3 (7.1) 64.5 (7.1) 62.5 (6.9)

Sex, Male 204 (33.6) 474 (47.7) 637 (37.3) 77 (42.3) 0 (0.0%)

Race, Black 608 (100) 0 (0) 1,709 (100) 181 (100) 51 (35.2) 665 (32.5) 416 (35.5)

Current Smoker 191 (31.4) 81 (8.2) 243 (14.2) 34 (18.7) 25 (17.2) 208 (10.2) 112 (9.6)

BMI 32.4 (8.2) 28.3 (5.5) 32.0 (7.4) 30.6 (5.6) 29.8 (7.3) 29.8 (6.1) 29.8 (5.9)

Diabetes 122 (20.1) 77 (7.8) 394 (23.1) 61 (33.5) 14 (9.7) 210 (10.2) 82 (7.0)

Hypertension 460 (75.7) 256 (25.8) 1,002 (58.6) 105 (57.7) 31 (21.4) 451 (22.0) 181 (15.4)

CKD 37 (6.1) 6 (0.6) 142 (8.3) 15 (8.2) 0 (0) 19 (0.9) 7 (0.6)

Stage G2 173 (28.5) 127 (12.8) 449 (26.3) 56 (30.8) 5 (3.4) 119 (5.8) 60 (5.1)

eGFR 102.4 (29.5) 123.0 (34.8) 92.1 (25.4) 90.9 (25.9) 134.4 (31.1) 136.5 (33.6) 136.7 (30.0)
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“detrimental” SDOH, e.g., violence and poverty. There was a similar pattern among associations with cg00501876 
(CSRNP1). Results are summarized in Table 3.

Table 2.   Overview of eGFR CpG sites selected for optimized MRS. *Causally associated w/ eGFR in 
Mendelian randomization. Direction refers to the direction of the association of the CpG methylation with the 
respective kidney trait in prior studies.

Lead author (EWAS N) CpG Chr Gene Location MRS weight Gene function

Qiu (181)31
cg02090160 2 – shore − 0.499

cg11098259 15 AQP9 open sea 0.501 Aquaporin, H2O & urea transport, osmotic 
stress response

Chu (4859)16

cg12116137 17 PRPF8 open sea 0.515 RNA splicing, mRNA processing, proteolysis

cg17944885 19 ZNF788;
ZNF20 shelf − 0.484 Pseudogene; transcription factor binding

cg00994936 19 DAZAP1 island 0.515 RNA binding, placental development & sper-
matogenesis, cell proliferation

Schlosser (33,605)20

*cg02304370 3 PHRF1 shore 1.09e−04 Enables RNA polymerase binding; SLE, preec-
lampsia, fasting glucose

*cg04460609 2 LDB2 open sea − 1.34e−04 Transcription complex, embryo development

*cg00501876 3 CSRNP1 shore − 8.98e−05 Transcription factor for Wnt signaling; apop-
tosis

*cg04864179 7 IRF5 shore − 8.58e−05 Transcription factor for interferon activity; SLE 
& IBD

Table 3.   Selected associations of SDOH with MRS CpG sites in JHS. Beta estimates presented for a CpG beta 
score ~ Trait. Linear mixed models were adjusted for age, sex, PC1-PC4, cell counts, and family (random). N.S.: 
not significant (p > 0.05).

Trait, B(SE) cg12116137 (PRPF8) cg17944885 (ZNF788; ZNF20) cg00501876 (CSRNP1)

Individual

Alcohol use n.s n.s − 0.0078 (0.0025)

Physical activity n.s n.s 0.0034 (0.0015)

Insured n.s − 0.0056 (0.0028) n.s

Depression n.s 0.0003 (0.0001) − 0.0004 (0.0002)

Perceived stress -0.0012 (0.0005) n.s n.s

Neighborhood

Problems n.s 0.0147 (0.0052) n.s

SES n.s − 0.0007 (0.0003) 0.0008 (0.0003)

Violence n.s 0.0203 (0.0077) n.s

Poverty n.s 0.0170 (0.0075) − 0.0226 (0.0095)

AA Density n.s 0.0195 (0.0036) − 0.0098 (0.0045)

Figure 2.   Distribution of optimized MRS in HyperGEN.
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Discussion
In this study, we utilized DNA methylation array data from 6,858 individuals who ranged from 18–85 years old, 
spanning from across the continental United States to develop MRS for CKD. Study-specific replication was not 
obtained in most of the validation cohorts, as the prevalence of CKD these cohorts (1–8%) is notably lower than 
national population estimates (~ 15%). Still, the meta-analyses suggests that the MRS is a significant predictor 
of prevalent CKD and eGFR for both AA and non-AA individuals. And to our knowledge, this study constitutes 
the first MRS developed for kidney function.

Unlike polygenic risk scores, which are commonly derived from genome-wide association study (GWAS) 
summary statistics using Bayesian methods and may include > 1 million variants, methods for developing MRS 
are less standardized and tend to apply a candidate-based approach for risk marker selection. For example, pre-
vious MRS in cancer studies have quantified absolute methylation at oncogenes via pyrosequencing of tumor 
tissue26,33,34. Another study derived CpG weights from model parameter estimates26. Other studies have utilized 
the least absolute shrinkage and selection operator (LASSO) penalized regression method and cross-validation 
to obtain MRS weights35–37. Furthermore, the type of methylation data used for MRS construction also varies 
from gene-based to CpG to mRNA methylation38. Still, the availability of array data (e.g., 450K and EPIC) allows 
CpG methylation to be one of the primary sources of MRS construction to date26,27,35–37,39–41.

Although MRS development methods are becoming more sophisticated—e.g., machine-learning and prun-
ing and thresholding (P + T)—a consensus on methodological frameworks does not yet exist, in contrast with 
PRS41–44. Therefore, in the absence of these recommendations, we attempted to construct MRS using markers 
with substantial statistical and functional support. First, the selected CpG sites were among the top findings 
in their discovery EWAS and had to have a consistent direction of association in the development cohort. The 
only exceptions were CpG sites that had been causally linked to kidney function via Mendelian randomization; 
and even among those four markers, only one (cg00501876, CSRNP1) did not meet the first two criteria. While 
filtering CpG sites on the basis of similar effect direction in HyperGEN can contribute to overfitting, we also 
considered additional support and/or biological plausibility for top candidates for MRS construction: replication 

Figure 3.   Forest plot of meta-analyzed MRS associations in validation cohorts. (A) Meta-analysis results for 
CKD associations in validation cohorts. (B) Meta-analysis results for eGFR associations in validation cohorts.
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in at least 2 EWAS in the literature, causal effect on kidney function in Mendelian randomization, location near 
genes linked to kidney function, and/or significant association with traits or diseases that contribute to kidney 
function (e.g., aging, diabetes) in prior EWAS. Second, the published effect estimates served as CpG weights 
because of the large sample sizes of the discovery EWAS (N ~ 5000 to 35,000) compared to the MRS develop-
ment cohort (N ~ 600). Third, we derived multiple MRS and applied additional sensitivity analyses to obtain the 
optimal combination of CpG sites. The optimized risk model remained a significant predictor of CKD and eGFR 
in a large validation sample (N > 6,000).

There is a dynamic relationship between the environment, epigenome, and biological function. And previous 
studies have identified associations between psychosocial stressors and aberrant DNA methylation near genes 
relevant to cardiovascular disease and other metabolic processes29,30,46. Similarly, studies have demonstrated 
a link between neighborhood-level factors—e.g., violence and social disadvantage—and DNA methylation 
variations21,23. In JHS, we detected modest associations between health behaviors and SDOH and CpG sites 
included in our MRS, although these associations were not significant after accounting for multiple compari-
sons. Notably, cg00501876 (CSRNP1) has been causally linked to eGFR in prior studies, and its methylation was 
associated with most of the factors we assessed. The CpG site is located ~ 2 Kb upstream from a CpG island in an 
enhancer region. Further, cg12116137 (PRPF8) and cg17944885 (ZNF788; ZNF20) are in enhancer and alterna-
tive splicing regions, respectively; and both sites are mapped to genes involved in DNA transcription and mRNA 
processing. Thus, their methylation may contribute to altered gene expression in kidney disease. Additional 
studies, such as mediation analyses, are needed to ascertain causal and functional implications of these regions.

To our knowledge, this study is among the first to develop a methylation algorithm for CKD. Strengths of 
this study include the large sample size of the validation population, as well as the robustness of our findings in 
a multi-racial sample with significant representation of AAs, who are disproportionately burdened with CKD. 
Additionally, although prior EWAS weights were based on associations with the 2009 eGFRcr which contains a 
race coefficient, we optimized the MRS using the updated race-free equation. Furthermore, for multiple cohorts 
included in this analysis, severe kidney disease was an exclusion criterion of the parent studies, resulting in the 
smaller sample sizes and that affected the power of the analysis of CKD. We attempted to redress this by meta-
analyzing validation cohort results, as well as assessing MRS associations with eGFR as a continuous trait. And we 
observed consistent directions of effect in both overall and AA-specific meta-analyses. Still, previously established 
methylation associations with kidney traits should be reevaluated in the context of the new eGFR equations, as 
well as in studies with a kidney disease prevalence that is comparable to national estimates.

Future studies should evaluate the capacity of MRS to predict incident outcomes (e.g., end-stage renal dis-
ease). These algorithms should also be compared to existing clinical algorithms, such as the Kidney Failure 
Risk Eq. 47 And inclusion of other ‘-omics’ data, such as PRS, with MRS may also improve risk prediction. This 
multi-pronged approach may aid in the improvement of prevention of kidney failure and reduce disparities.

Methods
Study populations
The cohorts used for this study are summarized in Table 1. Complete descriptions of study design, enrollment, 
DNA methylation arrays, and quality control (QC) procedures are detailed in the Supplemental Methods. Briefly, 
a subset of AA participants who had been selected from the extremes of left ventricular mass for epigenomic 
profiling as part of ancillary study in the Hypertension Genetic Epidemiology Network (HyperGEN) were used 
to develop the MRS and optimize risk models. Participants from the Genetics of Lipid-Lowering Drugs and Diet 
Network (GOLDN), Jackson Heart Study (JHS), Multi-Ethnic Study of Atherosclerosis (MESA), and Women’s 
Health Initiative (WHI) with methylation data were used for external validation of the MRS.

The studies included in this analysis were conducted according to the guidelines of the Declaration of Helsinki 
and approved by the Institutional Review Board (IRB) of their respective institutions. Written informed consent 
to participate in epigenetic studies was obtained from all participants involved in all studies. Additionally, the 
specific use of these data was reviewed by the IRB of the University of Alabama at Birmingham (15 April 2021) 
and determined to be not human subjects research.

CKD phenotyping
Prevalent CKD status was defined as eGFR < 60 mL/min/1.73 m2, which is concordant with CKD Stage 3 or 
higher, as defined by the National Kidney Foundation’s (NKF) Kidney Disease: Improving Global Outcomes 
(KDIGO) guidelines48. We used the 2021 CKD Epidemiology Collaboration (CKD-EPI) equations to calculate 
eGFR as a function of participant age, sex, and serum creatinine at baseline visit49.

MRS development
We compiled published EWAS of CKD, eGFR, albuminuria, and urine albumin-to-creatinine ratio (UACR), 
conducted between 2014 and 202116–18,20,31,32,50,51. We then conducted EWAS for these traits in HyperGEN (Sup-
plemental Table 1). The criteria for selection in the MRS were as follows: if published CpG sites (1) were available 
in both Illumina 450K and EPIC methylation arrays; (2) demonstrated the same directions of effect in Hyper-
GEN EWAS at p < 0.1; and/or (3) had been causally linked to kidney function in prior Mendelian randomization 
analyses (n = 19 CpGs). We further prioritized CpG sites that had additional statistical support and/or biological 
plausibility: replication in multiple EWAS, location near genes linked to kidney function, and/or significant 
association with non-kidney traits or diseases that may contribute to kidney function (e.g., aging, diabetes) 
(n = 11 CpGs). We then derived multiple MRS as a weighted sum ( MRS =

∑
βkCpGk ) of the published parameter 

estimate for the CpG association multiplied by the beta score of the respective CpG for each participant (Sup-
plemental Table 2). For parameter estimates that were generated from models in which CpG methylation levels 
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had been transformed (e.g., M-value), the estimates were back-transformed to reflect a beta score weight. We 
obtained MRS using effect estimates from EWAS for CKD or eGFR (Supplemental Table 3). For MRS based on 
eGFR EWAS weights, we multiplied the MRS by − 1 to reflect a higher MRS association with decreasing eGFR. 
We then log-transformed MRS to have a normal distribution.

MRS optimization
We fit logistic and linear mixed effect regression models in SAS (version 9.4, ‘proc glimmix’ function) to evaluate 
associations between MRS and prevalent CKD and baseline eGFR in HyperGEN, respectively. In HyperGEN, 
eGFR was calculated from creatinine-only (2021 eGFRcr) equation. Models were adjusted for age, sex, recruit-
ment center, left ventricular mass index, the first four principal components (PCs) of ancestry, and Houseman-
estimated cell counts—CD4 T lymphocytes, CD8 T lymphocytes, natural killer (NK) cells, B cells, and mono-
cytes with granulocytes as the reference—as fixed effects, as well as family relatedness as a random effect52. In 
sensitivity analyses, we further adjusted models for CKD risk factors: obesity, as measured by body mass index 
(BMI); smoking status; hypertension; and diabetes. We also excluded KDIGO CKD Stage G2—participants with 
60 ≤ eGFR < 90 with mild kidney impairment who may already be on the pathway to severe disease—from the 
control group and refit the models with the same covariates as described.

For each MRS we developed, we compared the distribution of the score between cases and controls. We 
compared the liability R2—the variance of the outcome explained by the predictor that also accounts for dis-
crepancies between cohort and population-level disease prevalence. We fit covariate-only models and calculated 
the area under the curve (AUC) to evaluate the extent to which inclusion of the MRS with known risk factors 
improved risk prediction. Finally, we calculated the sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). Additionally, PPV and NPV were adjusted for population prevalence of CKD 
(aPPV, aNPV), which was obtained from the United States Renal Data System (USRDS). USRDS prevalence was 
based on estimates from the National Health and Nutrition Examination Survey between 2017 and March 20202.

MRS validation
The optimal MRS was selected based on the liability R2 and area under the curve (AUC) in HyperGEN. In valida-
tion cohorts, the MRS was computed using the weighted sum equation as previously described. CpG sites that 
were not available in validation datasets were excluded from the MRS calculation. eGFR was calculated using the 
2021 eGFRcr equation. GOLDN and JHS models were adjusted for the same covariates as the primary HyperGEN 
model. However, in MESA and WHI, we performed fixed effect logistic and linear regression (‘proc logistic’ and 
‘proc genmod’ in SAS) because there were no related individuals in the methylation cohorts and thus, no random 
effect. Further, in MESA and WHI models, we conducted exact logistic regression due to small sample size and/or 
very low CKD prevalence. In all WHI analyses, we fit models without sex as a covariate (as all participants were 
female). We included study-specific covariates, e.g., study arm (clinical trial vs. observational study), as needed. 
Further, we subset WHI cohorts to obtain AA-specific estimates of MRS association with kidney function.

Once we obtained study-specific estimates for CKD and eGFR in the validation cohorts, we meta-analyzed 
the associations using the METASOFT program, totaling 6,250 individuals. We also evaluated AA-specific asso-
ciations in a second meta-analysis, totaling 3,023 individuals from JHS, MESA, and WHI. We applied random-
effects models to account for between-study heterogeneity, and we evaluated the MRS associations at 1 sd and 
thresholds of 5%, 10%, and 20%, as in the primary model. Studies whose models did not converge for a given 
outcome and/or threshold were excluded, and if more than two of the eligible cohorts were excluded, we did 
not conduct meta-analysis for that threshold. Due to these criteria, we only report 1 sd associations for the AA-
specific meta-analysis.

Secondary analyses
In secondary analyses, we evaluated associations with individual-level factors (alcohol use, physical activity, 
depression, insurance status, perceived daily discrimination, and perceived stress) and neighborhood-level fac-
tors (socioeconomic status (SES); social cohesion; favorable food stores; problems, e.g., excessive noise; violence; 
poverty rate; and density of AA residents) in JHS. We fit linear mixed models adjusted for age, sex, PC1-PC4, 
Houseman-estimated cell counts, and family relatedness (random). Neighborhoods were defined according 
to the 2000 US Census tract at baseline visit. SES was calculated according to the Diez-Roux et al. method, 
which is a composite of housing values, education, and income levels55. Social cohesion was calculated based 
on self-reported perceptions of close knitness, trust, values, and safety among neighbors. Favorable food stores 
represented the number of supermarkets and fruit and vegetable markets within 3 miles. The problems domain 
included self-reported noise, traffic, lack of access to shopping and parks, litter, and sidewalk condition. The 
violence domain was similarly based on self-reported frequency of violent activity. Poverty rate was calculated 
as the percent of persons living below the federal poverty level within a census tract, and density of AA residents 
was defined as the percentage of Black residents within a census tract.

Data availability
The raw epigenotypic and phenotypic data for HyperGEN, GOLDN, and MESA can be accessed upon request 
via the TOPMed Consortium. JHS and WHI data can be accessed upon approval from the respective coordinat-
ing centers.
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