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Highlights

What do Reinforcement Learning Models Measure? Interpreting
Model Parameters in Cognition and Neuroscience

Maria K. Eckstein, Linda Wilbrecht, Anne G.E. Collins

• “Reinforcement Learning” (RL) refers to different concepts in machine
learning, psychology, and neuroscience.

• In psychology and neuroscience, RL models have provided successful
methods for describing and predicting complex behavioral processes
and brain activity.

• However, RL variables often do not generalize from one task to another
and need to be interpreted in context.

• RL computations also do not always reflect the same underlying cog-
nitive and neural processes.

• A more nuanced understanding of RL and its variables (e.g., reward
prediction errors, parameters) is necessary to move the field forward.
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Abstract

Reinforcement learning (RL) is a concept that has been invaluable to fields
including machine learning, neuroscience, and cognitive science. However,
what RL entails differs between fields, leading to difficulties when interpret-
ing and translating findings. After laying out these differences, this paper
focuses on cognitive (neuro)science to discuss how we as a field might over-
interpret RL modeling results. We too often assume—implicitly—that mod-
eling results generalize between tasks, models, and participant populations,
despite negative empirical evidence for this assumption. We also often as-
sume that parameters measure specific, unique (neuro)cognitive processes,
a concept we call interpretability, when evidence suggests that they capture
different functions across studies and tasks. We conclude that future com-
putational research needs to pay increased attention to implicit assumptions
when using RL models, and suggest that a more systematic understanding
of contextual factors will help address issues and improve the ability of RL
to explain brain and behavior.

Keywords: Reinforcement Learning, Computational Modeling,
Generalizability, Interpretability
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1. Introduction

Reinforcement learning (RL) is an exploding field. In the domain of
machine learning, it has led to tremendous progress in the last decade, rang-
ing from the creation of artificial agents that can beat humans at complex
games, such as Go [1] and StarCraft [2], to successful deployment in indus-
trial settings, such as the autonomous navigation of internet balloons in the
stratosphere [3]. In cognitive neuroscience, RL models have been used suc-
cessfully to capture a broad range of latent learning-related phenomena, at
the level of both behavior [4, 5] and neural signals [6]. However, the impres-
sion that RL can help us identify reasonable and predictive latent variables
hides heterogeneity in what RL variables reflect, even within cognitive neu-
roscience. The success of RL has fed a notion of omniscience that RL can
peer into the brain and behavior and surgically isolate and measure essential
functions. As this notion grows with the popular uptake of RL methods, it
sometimes leads to overgeneralization and overinterpretation of findings.

Here, we argue that a more nuanced view is better supported empirically
and theoretically. We first discuss how RL is used in distinct subfields, high-
lighting shared and distinct components. Then, we examine where cognitive
neuroscience may be overstepping in its interpretation, and conclude that,
when properly contexualized, RL models retain great value for the field.

Preprint submitted to Current Opinion in Behavioral Sciences June 15, 2021



# prev. rewards

Ac
cu

ra
cy

Action

Feedback

Action

Feedback

Dopamine ramping [10],
Dopamine &
motivation [22],
Motor control [21]

Strategy games [1],
Text translation,

Robotics [85]
Distributional RL [39]

Dopamine reward
prediction errors [19],
Hierarchical RL [12]

Working memory [25, 26, 27],
Episodic memory [23]

Value-independent
learning [10],

Representation of
expected value [11]

Successor
representation [86],

Model-based /
model-free RL [61]

[8]

Correct

Try again 0 8
0.7

1.0

3 stimuli
5 stimuli

action

reward,
state

RL in neuroscience RL in machine learning

RL in psychology

Figure 1: The meaning of “RL” differs between neuroscience, machine learning, and psy-
chology, reflecting a specific brain network, a family of problems and algorithms, and a
type of learning, respectively. The concepts are related: RL models successfully capture
aspects of RL behavior and brain signals, and some RL behaviors rely on the RL brain
network. The dopamine reward prediction error hypothesis combines ideas from all three
fields. However, there are also significant discrepancies in what RL means across fields,
such that activity in the brain’s RL network might not relate to RL behavior and might
not be captured by RL models (e.g., dopamine ramping in neuroscience). Importantly,
RL behavior may rely on non-RL brain systems and may or may not be captured by
RL algorithms. Recent trends have aimed to increase communication between fields and
emphasize areas of mutual benefits [7, 8]. RL in neuroscience inset shows the neurosynth
automated meta-analysis for “reinforcement learning” (x=10, y=4, z=-8), highlighting
striatal function [9]. RL in cognition inset shows that participants become more likely to
select a rewarded choice the more previous rewards they have experienced (data replotted
from [5]). RL in machine learning shows the agent-environment loop at the basis of RL
theory [10].
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2. RL in Machine Learning, Psychology, and Neuroscience

In machine learning, RL is defined as a class of learning problems and
a family of algorithms that solve these problems. An RL agent can be
in any of a set of states, take actions to change states, and receive re-
wards/punishments (Fig. 1, top-right). RL agents are designed to optimize
a specific objective: the expected sum of discounted future rewards. A wide
family of RL algorithms offers solutions that achieve this objective [10], for
example model-free RL, which estimates the values of actions based on re-
ward prediction errors (Fig. 2A, top).

In psychology, RL defines a psychological process and a method for its
study. RL occurs when an organism learns to make choices (or predict out-
comes) directly based on experienced rewards/punishments (rather than in-
directly through instructions, for example). This includes simple situations,
such as those historically studied by behaviorists (classical [6, 11] and instru-
mental conditioning [12]), as well as more complex ones, such as learning
over longer time horizons [13, 14], meta-learning [15], and learning across
multiple contexts [16, 17].

Neuroscientists investigating RL usually focus on a well-defined network
of regions that implements value learning. These include cortico-basal-ganglia
loops, and in particular the striatum (Fig. 1A), thought to encode RL val-
ues, and dopamine neurons, thought to signal temporal-difference reward-
prediction errors (RPEs ; Fig. 2A) [6, 9, 18, 19, 20, 21].

The meaning of “RL” overlaps in these three communities (Fig. 1), and
RL algorithms from AI have been successful at capturing biological RL be-
havior and neural function. However, there are also important discrepancies.
For example, many functions of the brain’s RL network do not relate to RL
behavior, such as dopamine’s role in motor control [22] or cognitive effort
[23]. On the other hand, some RL brain functions that do relate to RL be-
havior are poorly explained by classic RL models, such as dopamine’s role
in value-independent learning [11]. Furthermore, many aspects of learning
from reward do not depend on the brain’s RL network, whether they are cap-
tured by RL algorithms or not. For example, hippocampal episodic memory
[24, 25] and prefrontal working memory [26, 27, 28] contribute to RL behav-
ior, but are often not explicitly modeled in RL, obscuring the contribution
of non-RL neural processes to learning.

Because of these differences in meaning, the term “RL” can cause ambi-
guity and lead to misinterpretations. Fig. 2 provides an example in which an
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RL model leads to conflicting conclusions as to how RL parameters change
with age when applied to two slight variants of the same task. This conflict is
reconciled, however, by recognizing that working memory contributes most
learning in one variant, whereas RL does in the other [5].

Because RL’s meaning is ambiguous, it is often unclear how RL model
variables (e.g., parameters such as learning rates or decision noise; reward
prediction errors; RL values) should be interpreted in models of human and
animal learning. In the following, we show that the field often optimistically
assumes that model variables are readily interpretable and naturally gener-
alize between studies. We then show that these beliefs are oftentimes not
well supported, and offer an alternative interpretation.

3. Interpretability and Generalizability of RL Model Variables

3.1. What do “Cognitive” Models Measure?

RL models attempt to approximate behavior by fitting free parameters
[30, 31, 32, 33], and are used by most researchers to elucidate cognitive
and/or neural function (Box 1): RL “has emerged as a key framework for
modeling and understanding decision-making”1 [34]. The reason why models
of behavior are used as “cognitive models” is that they implement hypotheses
about cognition. Therefore, the good fit of a model to behavior implies
that participants could have employed the modeled algorithm cognitively.
Nevertheless, stronger conclusions are often drawn: For example, the good
fit of inference algorithms to human behavior and brain function has been
taken as evidence that human brains implement inference [17]. However,
there always is an infinite number of alternative algorithms that would fit
behavior equally well, such that inferring participants’ cognitive algorithms
through model fitting is impossible [33, 35, 36].

3.2. Interpretability and Generalizability

This notion that computational models—astonishingly—isolate and mea-
sure intrinsic (neuro)cognitive processes from observable behavior has con-
tributed to their attractiveness as a research method. However, we believe
we need to temper our optimism in two areas: interpretability and general-
izability (Fig. 3).

1emphasis added
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Figure 2: Fitting standard RL models can lead to the wrong impression that cognitive
processing is purely based on RL. (A) Update equations for the RL-WM model. Q(a|s)
indicates the RL state-action value of action a in state s, which is updated based on the
reward prediction error RPE. W (a|s) is the working-memory weight of a in s, and φ is
a forgetting parameter, β is the decision noise, and η the mixing parameter combining
RL and working memory processes. For model details, see [5, 29]. (B) When separate
standard RL models are fit to different contexts within the same task (here, the number
of stimuli [6]), they provide different answers as to how age affects RL model parameters
(decision noise β, top; learning rate α, bottom). Contexts with fewer stimuli (“Set size 3”,
left) suggest that age does not affect learning rates, whereas contexts with more stimuli
(“Set size 5”, right) suggest that learning rates increase with age. Inset statistics show
non-parametric Spearman correlation coefficients ρ and p-values (N=187, * p < 0.05, **
p < 0.01, *** p < 0.001). (C)-(E) When using a model that fits all contexts jointly by
combining RL processes with working memory (“RL-WM” model), these discrepancies
are resolved [5]. (C) The RL-WM model reveals that the relative contributions of RL
compared to working memory differ between contexts. A standard RL model would falsely
attribute working-memory processes in contexts with small sizes to the RL system, in this
example suggesting that learning rates do not change with age (A, set size 3). (D) Working
memory capacity in the RL-WM model was not related to participants’ ages, explaining
why learning rates did not increase with age in (A, set size 3), in which working memory
contributed most to learning. (E) RL learning rates in the RL-WM model increased with
age. Since RL contributed more to learning in set size 5 (C), this was detected in the
standard RL model of only set size 5 (B). Data reanalyzed from [5].
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Interpretability means that model variables (e.g., parameters, reward
prediction errors) isolate specific, fundamental, and invariant elements of
(neuro)cognitive processing: Decomposing behavior into model variables is
seen as a way of carving cognition at its joints, producing model variables
that are of essential nature. Generalizability means that model variables
capture inherent individual characteristics (e.g., a person with a high learn-
ing rate), such that we can robustly infer the same parameter for the same
person across different contexts, tasks, and model variants.

Though rarely stated explicitly, assumptions about interpretability and
generalizability lie at the heart of much current computational cognitive re-
search (including our own), as we show in the literature survey below (Box
1), and play a consequential role in interpreting and guiding future research.
However, we also show that empirical support for interpretability and gen-
eralizability is ambivalent at best, and often negative. We highlight a recent
multi-task within-participants study from our group that explores precisely
when model parameters do and do not generalize between tasks, and how
dissimilar the cognitive processes are they capture (interpretability).

Box 1: Representative statements from the literature that im-
ply interpretability and generalizability.a

• Interpretability: Computational models have been described as
“illuminating [...] cognitive processes or neural representations that
are otherwise difficult to tease apart” [37]; clarifying “the neural
processes underlying decision-making” [18]; and revealing “what
computations are performed in neuronal populations that support
a particular cognitive process”b [38]. This highlights the common
assumption that computational models can reveal cognitive and
neural processes and identify specific, “theoretically meaningful”
[39] elements of (neuro)cognitive function.

Models are thereby often expected to provide the “linking proposi-
tions” [40] between cognition and neural function, “mapping latent
decision-making processes onto dissociable neural substrates” [41]
and “link[ing] cognitive mechanisms to [clinical] symptoms” [38].

These links are often assumed to be specific one-to-one mappings:
“Dopamine neurons code an error in the prediction of reward” [20];
“corticostriatal loops enable state-dependent value-based choice”
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[27]; “striatal areas [...] support reinforcement learning, and fron-
toparietal attention areas [...] support executive control processes”
[42]; “individual differences in DA clearance and frontostriatal co-
ordination may serve as markers for RL” [43]; and “BOLD ac-
tivity in the VS, dACC, and vmPFC is correlated with learning
rate, expected value, and prediction error, respectively” [44]. This
shows that computational variables are often interpreted as spe-
cific (neuro)cognitive functions, revealing an assumption of inter-
pretability.

• Generalizability: Empirical parameter distributions obtained in
one task were described as “fairly transferable” [45] and used as
priors when fitting parameters to a new task [46], revealing the
belief that model parameters generalize between studies, tasks, and
models.

Developmental research has aimed to illuminate “the tuning of the
learning rate parameter across development” and the “developmen-
tal change in the inverse temperature parameter” [37], suggesting
that parameters are person-specific but task-independent.

Many have aimed to find regularities in parameter findings be-
tween studies: “[D]ifferential learning rates tend to be biased in
the direction of learning from positive RPEs” [47]; “this finding
[supports] previous results on decreased involvement of the rein-
forcement learning system when cortical resources [...] support
task execution” [42]; from our own work: “there was [...] a bias
towards learning from positive feedback, which is consistent with
other work” [5].

aWe acknowledge that these statements may not represent the full complexity of
researchers’ knowledge, as many are aware of modeling limitations.

bAll emphases added.

3.2.1. Interpretability

Many research practices are deeply invested in the interpretability of RL
(Box 1). The computational neurosciences, for example, aim to link compu-
tational variables to specific neural functions, searching for one-to-one map-
pings that would allow the inference of one from the other [6, 12, 43, 48].
Prominent examples of interpretable mappings are the links between the
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midbrain-dopamine system and RL reward prediction errors [20, 49, 50],
and between striatal function and value learning [19, 51, 52, 53]. Compu-
tational psychiatry aims to map model variables onto psychiatric diagnoses
or symptoms, in an effort to obtain diagnostic tools and causal explana-
tions of aberrant processing [38, 39, 41, 54]. Developmental research aims to
map age-related changes in model variables onto developing neural function
and real-world behavior [37, 55, 56]. In sum, the conviction in model inter-
pretability is evident in the practice of interpreting model variables as specific
cognitive processes, unique neural substrates, and well-delineated psychiatric
symptoms.

3.2.2. Generalizability

Assumptions about parameter generalizability are also widespread. In
computational neuroscience, model variables are routinely expected to mea-
sure the same latent neural substrates, even when the underlying task, model,
or participant samples differ [18, 19, 20, 57, 58, 59, 60]. For example, fields
studying individual differences, such as clinical [38, 39] and developmental
psychology [37, 55, 56], aim to identify how model variables covary with other
variables of interest (e.g., age, traits, symptoms) in a systematic way across
studies, and review articles and discussion sections confidently compare mod-
eling variables between studies.

3.3. Evidence Against Interpretability and Generalizability

However, meta-reviews suggest that interpretability and generalizability
might be overassumptions, common in classic psychological research [61] and
RL modeling [41]. RL appears interpretable because multiple studies have
replicated mappings between RL variables and specific neural function. How-
ever, these mappings are not as consistent as expected: The famous map-
ping between dopamine / striatal activity and reward prediction errors, for
example, supported by classic and recent research [6, 20], varies considerably
between studies based on details of the experimental protocol, as shown in
several recent meta-analyses [57, 59, 62].

Discrepancies are also evident in the mapping between RL variables and
cognitive function. For example, learning rates are often interpreted as incre-
mental updating (dopamine-driven neural plasticity) in classical conditioning
[20], but also as reward sensitivity [63], sampling from (hippocampal) episodic
memory [25], the ability to optimally weigh decision outcomes [64], or ap-
proximate inference [4], in other tasks. There is substantial variance between
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studies in terms of which neural and which cognitive processes underlie the
same RL variables, contradicting the notion of interpretability.

Evidence for generalizability is also weak: Similar adult samples have dif-
fered strikingly in terms of their average estimated RL learning rates (0.05-
0.7) [44, 63, 65, 66] and “positivity bias” [47, 67, 68], depending on the
underlying task and model parameterization. In developmental samples, the
trajectories of RL learning rates have shown increases [5, 63, 69], decreases
[70], U-shaped trajectories [4], or no change [71] in the same age range.
Similar discrepancies have also arisen in the computational psychiatry liter-
ature [38, 39, 72, 73]. These inconsistencies would not be expected if model
variables were an inherent property of participants that could be assessed
independently of study specifics, i.e., if models were generalizable.

Many in our community have noticed such discrepancies and invoked
methodological differences between studies to explain them [12, 37, 44, 62,
74, 75]. However, this insight has rarely been put into practice, and model
variables keep being compared between studies (Box 1). To remedy this, we
assessed interpretability and generalizability empirically, comparing RL pa-
rameters from three tasks performed by the same subjects in a developmental
sample (291 subjects aged 8-30; Fig. 3B) [4, 5, 69, 76]. We found general-
izability but poor interpretability for decision noise, and a fundamental lack
of both interpretability and generalizability for learning rates (Fig. 3C).

A likely reason why generalizability and interpretability are lacking in
many cases is that computational models are fundamentally models of be-
havior, and not cognition. Because participants—reasonably—behave differ-
ently in different tasks (e.g., repeating non-rewarded actions in stochastic,
but not deterministic tasks [76]), estimated parameters (e.g., learning rates)
differ as well. Such differences do not necessarily reflect a failure of compu-
tational models to measure intrinsic processes, but likely the fact that the
same parameters capture different behaviors and different cognitive processes
when applied to different tasks (Fig. 3B, 3C) [76].

Another reason for lacking generalizability and interpretability is that
the design of computational models, a researcher degree of freedom [35, 36],
can impact parameters severely, as recent research has highlighted [47, 67,
68]. Because the same models can be parameterized differently [77], and
models with different equations can approximate similar processes [4], model
differences are a ubiquitous feature of computational modeling.

To explain parameter discrepancies, others have argued that participants
adapt their parameter values to tasks based on optimality [37], or that task
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characteristics (e.g., uncertainty) influence neural processing (e.g., dopamine
function), which is reflected in differences in model variables (e.g., reward pre-
diction errors) [78, 79]. Whether choices are aligned with participants’ goals
also fundamentally impacts neural RL processes [80], and so do other com-
mon task characteristics [59]. This shows that small task differences impact
behavior, neural processing, and computational variables. Even though RL
models might successfully capture behavior in each task, parameters likely
capture different aspects each time, leading to a lack of interpretability and
generalizability.

4. Conclusion and Outlook

A tremendous literature has shown RL’s potential and successes—this
opinion piece emphasizes some caveats, showing that RL is not a single con-
cept and that RL models are a broad family that reflects a range of cognitive
and neural processes.

A lack of interpretability and generalizability has major implications for
the comparison of model variables between tasks, a practice that forms the
basis for many review articles, meta-analyses, introduction and discussion
sections of empirical papers, and for directing future research. Evidence sug-
gests that in many cases, parameters cannot directly be compared between
studies, and capture different (neuro)cognitive processes depending on task
characteristics. Future research needs to determine which model variables do
and do not generalize, over which domain, and what the determining factors
are. In the meantime, researchers should be more nuanced when comparing
results between studies, and acknowledge contextual factors that might limit
generalizability. Lastly, what model variables measure might differ for each
task, and researchers should provide additional validation on a task-by-task
basis, relating variables to behavioral measures or individuals’ traits, and
using simulations to determine the role of model variables in specific tasks.

Another solution is to explicitly model variability between features that
should be generalized over, including task characteristics (Fig. 2), models,
participants, and potentially even neural processes [61]. Several studies have
made strides in this direction, incorporating features that are intrinsic to
participants (working memory [5, 29], attention [28], development [37, 81,
56]), or extrinsic (task time horizon [13, 14], context changes [16]), thus
broadening the domain over which models generalize. However, infinitely
many features likely affect RL processes, rendering entirely general models
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infeasible. Researchers therefore need to select a domain of interest for each
model, and acknowledge this choice. As authors, reviewers, and editors, we
should balance our excitement about general statements with our knowledge
about the inherent limitations of all models, including RL. Future research
needs to determine whether similar issues arise for other model families, such
as sequential sampling [82, 83], Bayesian inference [4, 28, 84], and others.

We hope that this explicit discussion of assumptions and overassumptions
will help our field solve the mysteries of the brain as modeling—with its
limitations—is embraced by a growing audience.
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[80] R. Frömer, C. K. Dean Wolf, A. Shenhav, Goal congruency dominates re-
ward value in accounting for behavioral and neural correlates of value-based
decision-making, Nature Communications 10 (1) (2019) 4926, number: 1
Publisher: Nature Publishing Group. doi:10.1038/s41467-019-12931-x.
URL https://www.nature.com/articles/s41467-019-12931-x

[81] W. van den Bos, R. Hertwig, Adolescents display distinctive tolerance to
ambiguity and to uncertainty during risky decision making, Scientific Re-
ports 7 (1) (2017) 40962, number: 1 Publisher: Nature Publishing Group.
doi:10.1038/srep40962.
URL https://www.nature.com/articles/srep40962

[82] N. Sendhilnathan, M. Semework, M. E. Goldberg, A. E. Ipata, Neural Cor-
relates of Reinforcement Learning in Mid-lateral Cerebellum, Neuron 106 (1)
(2020) 188–198.e5. doi:10.1016/j.neuron.2019.12.032.

[83] S. D. McDougle, A. G. E. Collins, Modeling the influence of working memory,
reinforcement, and action uncertainty on reaction time and choice during
instrumental learning, Psychonomic Bulletin & Review 28 (1) (2021) 20–39.
doi:10.3758/s13423-020-01774-z.
URL https://doi.org/10.3758/s13423-020-01774-z

[84] A. Konovalov, I. Krajbich, Neurocomputational Dynamics
of Sequence Learning, Neuron 98 (6) (2018) 1282–1293.e4.
doi:10.1016/j.neuron.2018.05.013.
URL http://www.sciencedirect.com/science/article/pii/S0896627318303854

[85] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, S. Levine, QT-Opt: Scal-
able Deep Reinforcement Learning for Vision-Based Robotic Manipulation,
arXiv:1806.10293 [cs, stat]ArXiv: 1806.10293 (Nov. 2018).
URL http://arxiv.org/abs/1806.10293

23



[86] A. Bakkour, D. J. Palombo, A. Zylberberg, Y. H. Kang, A. Reid, M. Ver-
faellie, M. N. Shadlen, D. Shohamy, The hippocampus supports deliberation
during value-based decisions, eLife 8 (2019) e46080, publisher: eLife Sciences
Publications, Ltd. doi:10.7554/eLife.46080.
URL https://doi.org/10.7554/eLife.46080

[87] I. Momennejad, E. M. Russek, J. H. Cheong, M. Botvinick, N. D. Daw, S. J.
Gershman, The successor representation in human reinforcement learning,
Nature Human Behaviour 1 (9) (2017) 680–692. doi:10.1038/s41562-017-
0180-8.

24




