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Devices: Insights into Structure – Property

Relationships

Adlai Katzenberg1,2, Anamika Chowdhury2, Minfeng Fang1, Adam Z. Weber2,

Yoshiyuki Okamoto1, Ahmet Kusoglu2, and Miguel A. Modestino1

1Tandon School of Engineering, New York University, Brooklyn, 11201, NY 

2Lawrence Berkeley National Laboratory, Berkeley, 94720, CA

Abstract

Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have

been driven by the development of commercially available ion-conducting polymers

(ionomers) that are employed as membranes and catalyst binders in membrane-

electrode  assemblies.  Commercially  available  ionomers  are  based  on  a

perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that

imparts  low  gas  permeability  and  high  mechanical  strength  but  introduces

significant mass-transport losses in the electrodes. These transport losses currently

limit PEFC performance, especially for low Pt loadings. In this study, we present a

novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2-

methylene-4-methyl-1,3-dioxolane)  (PFMMD)  backbone.  The  novel  backbone

chemistry induces structural  changes in the ionomer, restricting ionomer domain

swelling  under  hydration  while  disrupting  matrix  crystallinity.  These  structural
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changes  slightly  reduce  proton  conductivity  while  significantly  improving  gas

permeability.  The  performance  implications  of  this  tradeoff are  assessed,  which

reveal the potential for substantial performance improvement by incorporation of

highly  permeable  ionomers  as  the  functional  catalyst  binder.  These  results

underscore  the  significance  of  tailoring  material  chemistry  to  specific  device

requirements, where ionomer chemistry should be rationally designed to match the

local transport requirements of the device architecture.

Introduction

The thrust to develop efficient solutions for energy conversion has produced

substantial improvements in polymer-electrolyte fuel-cell (PEFC) performance in the

past decades1. These improvements have largely been driven by the remarkable

transport  properties  of  a  class  of  perfluorinated  ion-conducting  polymers,  or

ionomers2,3.  A  range  of  perfluorinated  sulfonic-acid  (PFSA)  ionomers  are

commercially available and share two key chemical components: a PTFE backbone

and a sulfonic-acid pendant side chain4,5. The PTFE backbone microphase separates

from  the  sulfonic-acid  side  chains,  leading  to  a  network  of  interconnected

hydrophilic  ion-conducting  domains  in  a  hydrophobic  semicrystalline  matrix6–10.

Crystallites in the PTFE matrix reduce fractional free volume (FFV), add tortuosity,

and  ultimately  limit  gas  diffusion  through  the  matrix5,11–17.  These  structural

properties  give  traditional  PFSAs  the  remarkable  ionic  conductivity  and  low gas

permeability that make them ideal PEFC membranes. The same ionomers are often

employed as the catalyst binder in the electrodes, despite the different transport

requirements. While membranes require low permeability to limit crossover of fuel

(oxygen and hydrogen gas), the catalyst binder requires high gas permeability to

maximize the flux of  these gaseous species to active catalyst  sites.  It  is  widely
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believed that PEFC power density is limited by oxygen mass transport to the local

reaction site in the cathode2,18,19, due to the low permeability of the ionomer catalyst

binder15–17.  These limitations are exacerbated by changes in transport  properties

and structure of  the ionomer confined to nanometer thicknesses in the catalyst

layers20. 

A promising strategy to lower the gas-transport resistance in catalyst layers

is  the  development  of  ionomer  binders  with  enhanced  gas  permeability.  Such

materials design strategies include substituting the linear PTFE backbone of state-

of-the-art PFSA ionomers with different substituents21 or side-chains22 that disrupt

the crystallinity of the matrix and increase its FFV. Previous work on perfluorinated

membranes  demonstrated  that  asymmetric  dioxolane  homopolymers,

poly[perfluoro(2-methylene-4-methyl-1,3-dioxolane)]  or  poly(PFMMD),  exhibit  an

amorphous internal morphology with high FFV (i.e.   0.23)23,  which results in gas

permeabilities (i.e. ~240 barrer for hydrogen) that are an order of magnitude higher

than  PTFE  homopolymers24,25.  Work  on  dioxolane-derived  polymers  derived  from

copolymerization of PFMMD with other perfluorinated vinyl monomers26,27 inspired

our  current  study  where  we  explore  a  new  family  of  perfluorinated  ionomers

composed of PFMMD-co-PFSA copolymers, where the PFMMD matrix is designed to

provide an  amorphous  domain  for  fast  gas  permeation  while  the PFSA ionomer

domains provide pathways for proton conduction (Figure 1). This strategy aims to

deconvolute  the  transport  pathways  for  proton-  and  gas-transport  by  rational

molecular design.
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Figure 1: Traditional PFSAs such as Nafion® (top) consist of a semicrystalline PTFE matrix
and  a  sulfonated  pendant  side  chain.  Crystallinity  in  the  matrix  results  in  low  gas
permeability, which induces substantial mass-transport limitations in fuel cells. PFMMD-co-
PFSA  (bottom),  a  novel  ionomer  developed  at  New  York  University,  incorporates  an
amorphous  dioxolane  group  in  the  matrix  to  disrupt  crystallinity  and  improve  gas
permeability.  The  ionomer  contains  the  same  characteristic  sulfonated  side  chain  to
preserve the mechanism for ion conduction in traditional PFSAs.

The  synthesis  of  PFMMD-co-PFSA  proceeds  via  a  facile  liquid-phase  free

radical  polymerization  of  PFMMD  and  perfluoro(4-methyl-3,6-dioxaoct-7-ene)

sulfonyl fluoride (PFSVE) under mild conditions, followed by the hydrolysis of the

resulting sulfonyl fluoride (Scheme 1). This facile two-step synthesis route provides

us unprecedented control over the ionomer composition and enables a systematic

study of the relationship between molecular design, nanostructure, and transport

properties.  By  exploring  the  impact  of  matrix  chemistry  and  sulfonic-acid

concentration on key transport properties (ionic conductivity and gas permeability)

we offer insights into the role of the molecular design in ionomer performance and

demonstrate the potential for rational design of the next generation of functional

catalyst binders.
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Scheme 1: PFMMD-co-PFSA is prepared by free radical polymerization of PFMMD and PFSVE
in a sealed reaction ampoule with a fluorinated initiator. The polymer composition can be
tuned  by  the  ratio  of  PFMMD  and  PFSVE  in  the  reaction  feed  stock.  After  free-radical
polymerization, the sulfonated side-chain is converted from the sulfonyl fluoride (-SO2F) to
sulfonic acid (-SO3H) form by base hydrolysis followed by protonation.

Results and Discussion

Synthesis of PFMMD-co-PFSA Ionomers

In  the  binary  copolymerization  of  PFMMD  and  PFSVE,  the  ionomer

composition is determined by the mole fractions of each monomer in the reaction

solution.  This  composition  varies  with  conversion  and  reactivity  ratios,  which

describe the relative rate constants for the incorporation of each monomer (Figure

2). The reactivity ratios, rPFMMD and rPFSVE, are system-dependent constants that must

be determined to predict and control ionomer composition. Reactivity ratios were

determined  by  performing  a  series  of  polymerization  with  varying  feedstock

compositions and measuring the resulting incorporation of the monomers into the

polymer by elemental  analysis  (Figure 2).  Reactivity  ratios  were extracted  from

Equation 2. 
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Figure 2: Four reactions occur simultaneously during chain propagation in binary free-radical
copolymerization (left). Each of these reactions has a characteristic rate constant,  kij. The
ratios of these constants,  ri,j, describe the probability of each monomer incorporating into
growing  chains.  For  copolymerization  of  PFMMD  (represented  as  “A”)  and  PFSVE
(represented as “B”),  rA > 1 >  rB. This disparity in reactivity ratios induces compositional
drift as the feedstock changes throughout the course of the reaction.

The consumption of each monomer i or j is given by:

−d [Mi ]
dt

=kii [Mi ] [ Mi
¿ ]+k ji [M i ] [M j

¿ ]+kXi [Mi ] [ X ]
(Equation

1)
where i ≠j, [Mi] is the concentration of monomer i, kii is the respective rate constant,

[Mi
*] is the concentration of active centers, and [X] is the initiator concentration. By

assuming  that  the  concentration  of  radical  intermediates  is  at  steady  state

(d[M1
*]/dt = d[M2

*]/dt = 0), the copolymer composition equation becomes28,29:

F i=
d [M i ]

d [Mi ]+d [ M j ]
=

r if i
2
+f i f j

r if i
2
+2f i f j+r j f j

2

(Equation

2)

where ri = kii/kij, fi is the mole fraction of monomer i in the feed, and Fi is the mole

fraction of monomer i in the polymer. For the case of PFMMD-co-PFSVE, it was found

that rPFMMD > 1 > rPFSVE. This indicates a much higher probability of growing chains to

incorporate PFMMD over PFSVE. As a result, the relative concentration of PFMMD in

the  reaction  solution  will  decrease  over  the  course  of  the  polymerization  with
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respect to PFSVE, leading to compositional drift in the polymer chains. This implies

that chains which grow early in the reaction will encounter higher fPFMMD than chains

which grow at a later stage. The resulting polymer is a blend of chains with different

compositions  reflecting the changing feedstock.  As proton transport  in  ionomers

arises from their complex phase-separated nanostructure, which, in turn, is dictated

by the overall polymer composition and the distribution of monomers in the chains,

it  was important  to  develop a polymerization model  to  guide the synthesis  and

achieve control over the degree of compositional drift. While equation 2 provides a

description of the instantaneous polymer composition, the control of the synthesis

over  time  required  an  integral  polymerization  model  capable  of  predicting  the

monomer incorporation  as a function of  conversion.  In  terms of  conversion,  the

polymer composition is given by 

F i=
1

[M ]0

d [Mi ]
dX

(Equation

3)

where [M]0 is the initial  total  monomer concentration.  Given that the differential

conversion dX can be expressed in terms of the monomer concentration change

dX=
d [M i ]+d [M j ]

[M ]0

(Equation

4)

and following the analysis by Skeist30 and Meyer and Lowry31, we can derive that the

differential copolymer composition is given by

dX
df i

=(X−1)(
α
f i

−
β

1−f i

−
γ

f i−δ )
(Equation

5)

where

α=
r j

1−r j

β=
r i

1−r i

γ=
1−r i r j

(1−r i)(1−r j)
δ=

1−r j

2−r i−r j
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Integrating  equation  (5)  allows  predicting  the  feed  (fi)  and  polymer  (Fi)

compositions as a function of conversion. The integration results, shown in Figure

3(a), demonstrate that the composition changes drastically throughout the course

of a reaction. For feed stocks containing greater than 20 mol% PFMMD, the polymer

initially incorporates at least 80 mol% PFMMD, but this incorporation rapidly drops

to ~0 mol% as PFMMD becomes depleted. To visualize the impact of the dynamic

change in monomer incorporation better, the simulated compositional drift is shown

in  Figure  3(b),  described  as  the  deviation  of  the  polymer  composition  (in  mole

fraction) from its initial value at X = 0. This figure can be interpreted as a synthesis

phase  diagram  with  three  distinct  regions;  the  low-drift  (blue)  region,  where

monomers  are  statistically  distributed  across  propagating  chains;  the  drift-onset

region,  where  the  matrix  monomer  becomes  depleted  and  compositional  drift

becomes significant; and the severe-drift (red) region where the matrix monomer is

fully depleted and only PFSVE is available for reaction. 

A key observation from the compositional drift model is that the drift onset

occurs at  very low conversions for low  fPFMMD,  or high fractions of the sulfonated

monomer in the feed. Given the low reactivity of PFSVE, high feed fractions are

required to achieve sufficient incorporation of sulfonic acid in the final product. To

access the high PFSVE regions while ensuring statistical distribution of monomers,

all  syntheses (shown as white triangles in Figure 3(b)) were terminated prior to

reaching the drift-onset region. 
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Figure 3: Numerical simulation of compositional drift in the copolymerization of PFMMD and
PFSVE. (a) Polymer composition,  FPFMMD, for a given feed composition,  fPFMMD, changes with
conversion. (b) This can be expressed as the magnitude of compositional drift, or the change
in  FPFMMD from its initial value. Compositional drift becomes especially severe for low fPFMMD,
which  introduces  challenges  in  reaching  high  PFSVE  fractions  in  the  copolymer  while
maintaining  statistical  distribution  of  monomers.  White  triangles  indicate  the  synthesis
batches used to generate a range of statistical ionomer compositions.

Nanostructure and Ionic Conductivity

Using  a  series  of  PFMMD-co-PFSA copolymers  with  controlled  composition

allows for development of the relationships between chemical design, structure, and

transport  properties.  It  should  be  noted  that  the  water  sorption  and  proton

conductivity measurements presented here are of thin-films supported on planar

substrates. It is well known that these and other properties of PFSA ionomers (e.g.

Nafion)  may  change  when  the  polymer  is  confined  from  bulk  to  nanometer

thicknesses. To avoid convoluting confinement with chemical-composition effects,

the thicknesses used in this study were chosen well above the typical benchmark

thickness  for  confinement  in  ionomers  (i.e.,  >50  nm)5.  Further  detail  on  the

measurement  techniques  and  confinement  considerations  can  be  found  in  the

supporting information. 
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First,  we  characterized  the  ionic  conductivity  of  PFMMD-co-PFSA ionomers

through electrochemical impedance spectroscopy (EIS) on a set of polymers with

PFSA mass fractions ranging from 0.26 to 0.57 at relative humidity values of 23%,

43%, 75%, and 97% (Figure 5a).  As with state-of-the-art  PFSA ionomers,  proton

conductivity was highly sensitive to hydration and concentration of ionic groups in

the polymer. This is consistent with current understanding of the mechanism of ion

conduction of PFSAs, which is governed by the hydration of the ionic domains and

their  interconnectivity  at  longer  length  scales5,7,8,32.  As  water  diffuses  into  these

domains, they swell to form a percolated network of channels that act as pathways

for proton transport. The extent of swelling is determined by a chemical/mechanical

energy balance where the chemical potential of water in the external reservoir is in

equilibrium with the water in the ionic domains of the polymer that considers the

change  in  the  free  energy  induced  in  the  polymer  by  swelling.  Increasing  the

sulfonic-acid concentration shifts this equilibrium toward higher hydration states by

decreasing the chemical  potential  of  water in the ionomer and thus allowing for

higher water uptake.
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Figure 4: (a) Proton conductivity (measured by EIS) and (b) water sorption (measured by
ellipsometry) of PFMMD-co-PFSA thin-films are sensitive to the mass fraction of sulfonic-acid
groups. At high PFSA fraction, the ionic conductivity of PFMMD-co-PFSA approaches that of
Nafion. However, it remains lower by a factor of 2, even at higher PFSA fractions than Nafion
1100. Nafion data reproduced from reference 33. (b) Water sorption of PFMMD-co-PFSA thin
films shows similar dependence on PFSA fraction as the ionic conductivity. PFMMD-co-PFSA
swells less at a given PFSA fraction than Nafion.

At  high  hydration,  the  highest  PFSA  fraction  (0.57)  approached  the

conductivity of Nafion (0.4 PFSA fraction) but remained lower by a factor of two,

despite  the higher  PFSA fraction.  This  behavior  can  be explained by the glassy

matrix  of  PFMMD-co-PFSA  copolymers,  which  imposes  a  higher  resistance  to

deformation  during  swelling  and  is  consistent  with  the  swelling  measurements

presented  in  Figure  5b.  The  equilibrium swelling  fraction  at  high  humidity  was

strongly  dependent  on  PFSA  fraction,  as  higher  ionic  strength  in  the  polymer

increases the driving force for water sorption. However, PFMMD-co-PFSA exhibited

reduced swelling compared to Nafion at comparable PFSA fraction due to the higher

stiffness of the former imparted by its glassy matrix. 

Ion conduction and water sorption in PFSA ionomers are strongly connected

to  the  material’s  nanostructure.  To  gain  further  insights  into  the  morphological

effects on the macroscopic transport behavior, small-angle X-ray scattering (SAXS)
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was used to probe the effect of the incorporation of the PFMMD backbone on the

nanostructure of the copolymers. The morphology in hydrated PFSA ionomers and

swelling of their ionic domains has been widely studied by SAXS8,32,34. State-of-the-

art  PFSA ionomers  exhibit  two  characteristic  features  in  their  SAXS  profiles;  an

ionomer peak (scattering vector  q between 1 and 2.5 nm-1) corresponding to the

spatial correlation between ionic domains and a broad matrix peak (0.2 nm -1 to 1

nm-1)  corresponding  to  the  inter-crystallite  spatial  correlation5.  Higher  hydration

levels and PFSA fractions results in a shift in the position of the ionomer peak to

lower q-values due to the increased hydrophilic domain spacing. Similar to Nafion,

SAXS  profiles  for  PFMMD-co-PFSA  ionomers  equilibrated  in  water  show  a  single

broad peak at q-values close to 2 nm-1. The position of this peak shifts to lower q-

values as the PFSA fraction increases, suggesting that it arises from the correlation

between  ion-conducting  domains  in  the  polymers.  This  shift  coincides  with

decreased peak breadth, which suggests increased domain connectivity and lower

tortuosity at higher PFSA fractions. Furthermore, the characteristic spacing of these

domains (Figure 6b) were consistently smaller (and slightly broader) than those of

Nafion5,32. The smaller and more tortuous nano-domains inferred from SAXS, along

with the reduction in macroscopic water uptake, is expected to result in smaller and

more tortuous pathways for ion transport, thereby reducing the proton conductivity.

Additionally, SAXS profiles for PFMMD-co-PFSA ionomers do not exhibit the

characteristic matrix peak observed in Nafion, suggesting that the incorporation of

asymmetric  dioxolane  groups  in  the  backbone  disrupts  the  crystallinity  of  the

material leading to an amorphous matrix. To confirm the loss in crystallinity, wide-

angle X-ray scattering (WAXS) profiles for PFMMD-co-PFSA ionomers are presented
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in Figure 6(c) are similar to the PFMMD homopolymer25 and demonstrate the loss of

the PTFE crystallite peak, present in Nafion at q = 8 to 16 nm-1.

 

Figure 5: (a) SAXS profiles of hydrated PFMMD-co-PFSA at PFSA mass fractions ranging from
0.26 to 0.57. A scattering peak is present at q values close to 2 nm-1, close to the ionomer
peak of hydrated Nafion. As PFSA fraction increases, the intensity of this peak increases as it
shifts to lower q values, indicating larger ionomer domains. (b) Ionomer domain spacing is
shown for Nafion (green, from reference 5 as reproduced from reference 32) and PFMMD-co-
PFSA (blue) for a range of PFSA mass fractions, as calculated from SAXS scattering peaks.
The domain spacings of the two ionomers exhibit a similar dependence on PFSA fraction,
with PFMMD-co-PFSA displaying domains around 1 nm smaller than Nafion. (c) The WAXS
profile of PFMMD-co-PFSA (0.37 PFSA mass fraction) shows similar matrix structure to the
poly(PFMMD) homopolymer. Notably, the PTFE crystalline peak (denoted by dashed line) is
absent. Nafion WAXS profile reproduced from reference 35, and poly(PFMMD) from reference
25.

Gas-Transport Properties
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While  the  incorporation  of  a  glassy  matrix  reduced  ionic  conductivity  in

PFMMD-co-PFSA by constricting ionomer domains, its amorphous nature could lead

to an increase in gas permeability14. Two key polymer properties that dictate gas

permeability are free volume and chain mobility. While PTFE itself has low mobility

as indicated by its high Tg (115°C)36, its thermal-mechanical properties change when

incorporated in an ionomer. PFSA ionomers display multiple thermal transitions that

arise from different molecular origins: the β-transition, associated with segmental

motion of the main-chain, occurs between  40 and 20°C, indicating the matrix is

rubbery and has high mobility at room temperature37. In contrast, the Tg of PFMMD

homopolymers is 135°C, indicating lower mobility than PTFE. This value is expected

to change when PFMMD is copolymerized with PFSA, as segmental motion is known

to be affected by ionic interactions between sulfonate groups and cations. The role

of ionic interactions is complex due to their dependence on hydration state, cation

nature, and film thickness38, making it difficult to isolate the contribution of matrix

chemistry to transition temperature. To decouple the role of matrix mobility from

the ionic interactions present in the ionomers, we explored the materials thermal

transitions  in  the  neutral  sulfonyl-fluoride  (SO2F)  form.  Differential-scanning

calorimetry  (DSC)  measurements  demonstrated  a  single  thermal  transition  in

PFMMD-co-PFSF (the SO2F precursor of PFMMD-co-PFSA) (Figure 7). The temperature

of this transition decreased with increasing PFSF mole fraction,  indicating higher

mobility  of  the sulfonated side chain  than the dioxolane monomer.  For  all  PFSF

fractions  studied,  the  Tg was  much  higher  (i.e.,  60-140°C)  than  the  thermal

transition observed in the Nafion sulfonyl precursor (i.e., 0°C). 
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Figure 6:  Tg of the sulfonyl-fluoride precursor to PFMMD-co-PFSA for sulfonated monomer
mole  fractions  ranging  from 0 to  0.45 as  measured by  DSC.  Tg depressed sharply  with
increased PFSF fraction but was much higher than the Tg of the Nafion PFSF precursor (0°C)
for all compositions. This indicates that incorporation of PFMMD in the ionomer resulted in
inhibition of matrix segmental motion, which is reflected in the reduction of ionomer domain
spacing, proton conductivity, and water sorption.

Despite the high Tg of PFMMD homopolymers, this class of polymers exhibit

higher  permeability  than  PTFE  due  to  their  lower  density  (i.e.,  1.959  g  cm-3 in

contrast with 2.2 g cm-3 for PTFE), which results in a high fractional free volume

(FFV) of 0.2325. In the case of PFMMD-co-PFSA ionomers, we find a density decrease

between 5 to 7% with respect to Nafion. This small density change has significant

implications  for  the  FFV  of  the  polymers,  which  increases  by  up  to  21% upon

incorporation  of  an  amorphous  PFMMD matrix.  The  substantial  increase  in  FFV

resulted  in  a  >240%  increase  in  permeability  with  respect  to  Nafion,  as

demonstrated in Figure 8 for H2, O2, Ar, and CO2. While the overall permeability of

PFMMD-co-PFSA was much higher than Nafion, the selectivity towards each gas was

similar. The change in backbone chemistry did not appear to significantly alter the

nature of polymer/gas interactions. Furthermore, the permeability showed no clear

dependence on chain composition, as it remained largely unchanged as a function

of PFSA concentration. This supports the assertion that FFV contributions, which did
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not show compositional dependence, strongly dominate over chain mobility. These

results  are  consistent  with  the  behavior  of  PTFE-based  ionomers,  where  gas

permeation occurs primarily through the matrix when dehydrated. 

Material Density (g cm-3) FFV
PFMMD-co-PFSA  57%

PFSA

1.86 ± 0.08 0.260 ± 0.030

PFMMD-co-PFSA  37%

PFSA

1.86 ± 0.02 0.260 ± 0.010

PFMMD-co-PFSA  26%

PFSA

1.89 ± 0.01 0.249 ± 0.004

Nafion 40% PFSA 2.005 ± 0.002 0.215 ± 0.001
Table 1: Density (g cm-3) and FFV for PFMMD-co-PFSA compositions and Nafion 1100. 120 nm
films  were  cast  on  10  MHz  AT-cut  Quartz  Crystal  Microbalance  (QCM)  crystals  with  Au
electrodes  and  area  densities  were  measured  with  dry  N2 flow.  Film  thicknesses  were
measured by ellipsometry under the same conditions to calculate volumetric density.  All
compositions of PFMMD-co-PFSA showed lower density and higher FFV, indicating improved
permeability.

 

Figure 7: Permeability of dehydrated PFMMD-co-PFSA was several times higher than Nafion
towards a range of gases including H2, O2, Ar, and CO2. The high permeability is attributed to
the increased FFV upon incorporation of  PFMMD into the ionomer matrix.  Measurements
were performed on PTFE-supported ionomer films of 1 μm thickness in a constant-volume
permeation cell.

Performance of PFMMD-co-PFSA ionomers in Membrane Electrode Assemblies
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Overall ionomer performance as a catalyst binder is determined by its ability

to facilitate the transport of gases (O2, H2) and protons in the catalyst layer (CL).

PFMMD-co-PFSA ionomers exhibit a tradeoff between higher gas permeability and

restricted proton conductivity, with respect to Nafion ionomers. To understand the

implications in PEFC performance of this tradeoff, catalyst-coated membranes were

constructed employing either (i) PFMMD-co-PFSA (0.57 PFSA fraction) or  (ii) Nafion

as catalyst binder at the working electrode with loading of 0.1 mg Pt cm -2 sprayed

onto  Nafion  (NR212)  membrane.  No  delamination  or  unanticipated  contact

resistances were observed, and the novel ionomer did not require any additional

processing  considerations.  The  counter  electrode  loading  was  a  gas-diffusion

electrode fixed at 0.3 mg Pt cm-2 with Nafion as catalyst binder. Electrochemical

performance  of  PFMMD-co-PFSA  was  evaluated  by  two  techniques.  First,  mass-

transport resistance of the respective ionomer films was determined by operating

the membrane-electrode assembly as a hydrogen pump (i.e., oxidation of H2 gas at

the  working  electrode  and  reduction  of  H+ at  the  counter  electrode).  This

configuration  has  a  number  of  advantages  that  have  enabled  improved

understanding and modeling of  catalyst-layer transport  resistances39–42,  since the

local  environment  is  easier  to  control  (relative  to  oxygen  reduction  in  a  PEFC

cathode) given the lack of oxide formation and generation of water and heat. Using

very dilute H2,  the mass-transport  limit  can be achieved at low current density,

ensuring  minimal  ohmic  losses.  At  limiting  current  density,  the  H2-transport

resistance in the catalyst layer is given by

RCL=2F cH2
i
lim ¿=

L
3 DCL

+
1
r f

RLocal
1
r f

RLocal¿

(Equation

6)
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where is F  Faraday’s constant, cH2
 is the concentration of H2 in the feed, ilim ¿¿ is the

limiting  current  density,  L is  the  catalyst-layer  thickness,  DCL is  the  effective

reactant gas diffusivity in the catalyst-layer pores, r f  is the roughness factor or the

normalized electrochemically active surface area (ECSA), and RLocal is the local H2-

transport resistance contributed by ionomer thin film on/near Pt41. The first term

(
L

3DCL

) represents transport resistance through CL secondary pores and the second

term is the normalized local H2-transport resistance. Catalyst loading is proportional

directly to  L and inversely to  r f , so the first term is negligible at low loading. The

results (Figure 9a) show a marked decrease in transport resistance for the catalyst

layer employing PFMMD-co-PFSA. This confirms that the introduction of PFMMD to

the  ionomer  matrix  successfully  improved  gas  transport  during  electrochemical

operation.  It  is  important  to note that  this device is  operated at  80% humidity,

whereas permeability measurements were taken in the dry state. The fact that the

improvement  in  gas  transport  persists  at  high  humidity  is  promising  for

implementation  in  electrochemical  systems  and  a  successful  demonstration  of

deconvoluting ionic and gas-transport pathways.

The reduced transport resistance exhibited in PFMMD-based catalyst layers is

expected  to  improve  PEFC  performance.  Figure  9b  shows  the  normalized

polarization performance when running the same assemblies in fuel-cell mode with

H2 at the counter electrode and air at the working electrode. From the curves, the

PFMMD-based  ionomer  with  57%  PFSA  catalyst  layer  exhibited  superior

performance compared to Nafion. This is despite reduced proton conductivity in the
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PFMMD-co-PFSA ionomer, underscoring the value of high permeability in ionomers

for  PEFC catalyst  binders.  Per  cm2 of  Pt,  this  MEA achieved 22% higher current

density at 0.25V than the device employing Nafion. In fact, improved performance

throughout  the  whole  polarization  curve  and  not  just  in  the  mass-transport

dominated part is witnessed, which also hints that the PFMMD-co-PFSA ionomer and

its increased FFV helps to inhibit catalyst poisoning by sulfonic-acid moieties more

so than the linear backbone of Nafion.

Figure 8:  (a)  Catalyst  layer transport  resistance in low-catalyst  loading MEA’s employing
PFMMD-co-PFSA  (57%  PFSA)  and  Nafion  determined  by  limiting  current  density
measurements in oxidation of H2. PFMMD-co-PFSA displayed reduced transport resistance
attributed to increase of free volume in the ionomer matrix. (b) Polarization curves of the
same MEA’s operated as fuel cells in H2/air. Adjusting current density by the ECSA shows
higher current per cm2 Pt in PFMMD-based ionomer than Nafion. 

Conclusions

This study demonstrated a new family of perfluorinated ionomers, PFMMD-co-

PFSA, molecularly designed to enhance transport properties of catalyst layers. The

ionomer  chemical  structure  leads  to  an  amorphous  glassy  matrix  designed  to

impart high gas permeability and keep the sulfonic-acid moieties from the surface,

while  maintaining  similar  proton  conduction  pathways  to  state-of-the-art  PFSA
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ionomers.  The  free-radical  polymerization  of  this  ionomer  exhibited  large

differences in  reactivity  ratios  between the two monomers,  rPFMMD >> 1 > rPFSVE,

which required the development of a numerical model to map synthesis parameters

leading  to  statistical  random  copolymers  with  low  compositional  drifts.  The

synthesized ionomers displayed reduced water sorption and conductivity compared

to  traditional  PFSAs,  which  may  be attributed  to  the low mobility  of  the  glassy

PFMMD matrix.  This was consistent with results from SAXS/WAXS measurements

that revealed smaller ionomer domains with a more amorphous matrix in PFMMD-

based ionomers than Nafion. However, the increased FFV of the ionomer matrix led

to  higher  gas permeability.  The tradeoff between lower  proton conductivity  and

enhanced gas transport was assessed by determining the transport resistance and

electrochemical performance in electrodes with PFMMD-co-PFSA functional binders.

Thanks to their high conductivity and gas permeability, catalyst layers fabricated

with  PFMMD-co-PFSA  ionomers  with  high  sulfonic-acid  content  demonstrated

enhanced fuel-cell  performance (i.e., up to 22% increase in current density at  a

given potential) per active surface area with respect to those fabricated with Nafion.

These  promising  results  demonstrate  the  importance  of  rationally  designed

ionomers, such as the ones presented in this study, to achieve higher performing

electrochemical devices, especially at low Pt loading. Future studies should explore

PFMMD-co-PFSA  catalyst  ink  formulations  and  deposition  methods  to  obtain

electrodes with high active surface areas and ultimately exploit the advantages of

this new generation of ionomers. 

Experimental
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Synthesis of PFMMD-co-PFSA Ionomers

PFSVE was purchased from Synquest Laboratories,  Inc.  Hexafluorobenzene

(HFB) was purchased from Sigma Aldrich. Perfluorobenzoyl peroxide (PFBPO), used

as initiator, was prepared by reaction of pentafluoro benzoyl chloride with hydrogen

peroxide.  The  crude  PFBPO  product  was  crystallized  from  methanol/chloroform

mixture (2:1 by volume) and had a melting point of 76-78°C. The preparation of

PFMMD  was  previously  reported43,44.  All  other  chemicals  were  purchased  from

Sigma-Aldrich. PFMMD, PFSVE, and PFBPO were dissolved in HFB and added to a

thick-walled glass ampoule (Chemglass Life Sciences).  The reaction mixture was

degassed by three freeze-pump-thaw cycles with liquid nitrogen. The ampoule was

sealed under vacuum and heated to 60°C to initiate copolymerization.  Reaction

times  were  controlled  to  keep  conversion  below  the  threshold  for  25%

compositional drift (see Results and Discussion for more information). The resulting

polymer  was  precipitated  by  dropwise  addition  to  a  large  excess  of

dicholoromethane. The solid polymer was recovered by vacuum filtration and rinsed

thoroughly  with  dicholoromethane to remove unreacted monomers.  The product

was then dried under vacuum at 70°C for 24 hours and weighed to determine yield,

which  was  used  to  calculate  the  approximate  conversion.  The  as-synthesized

polymer  was  in  the  sulfonyl  fluoride  (-SO2F)  form.  Polymer  composition  was

determined by elemental analysis conducted by Atlantic Microlab, Inc. with ± 0.3%

accuracy and precision. This was converted to the sulfonic acid (-SO3
-H+) form by

base  hydrolysis  followed  by  protonation.  Base  hydrolysis  was  performed  by

preparing a slurry of polymer in strong base (25% (w/w) in H2O) at 85°C with stirring

for 12 hours, which yielded the Na+ salt form of the ionomer45. This product was

recovered by vacuum filtration, rinsed with water, and dried under at 70°C vacuum
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for 12 hours. The salt form was protonated by adding to sulfuric acid (25% w/w) at

85°C with stirring for 12 hours, then recovered by vacuum filtration, rinsed with DI

water, and dried under vacuum at 70 °C for 12 hours. 

Nanostructure and Ionic Conductivity

PFMMD-co-PFSA was dissolved at 5% (w/w) in 70% IPA in DI water and spin-

cast on silicon substrates yielding films with thicknesses between 120 and 140 nm.

Prior to spin-casting, substrates were cleaned by solvent rinsing and O2/N2 plasma

treatment. Films were annealed for 12 hours at 130°C after spin-casting. Thickness

and  swelling  measurements  were  taken  with  a  J.A.  Woollam  Variable  Angle

Spectroscopic Ellipsometer with a custom-built LabVIEW module for controlling and

measuring  relative  humidity.  For  conductivity  measurements,  silicon  substrates

were patterned with platinum interdigitated microelectrodes (IDEs) fabricated at the

City University of New York Advanced Science Research Center. IDEs had platinum

teeth of 300 μm length, 5 μm width, 200 nm height (with a 20 nm Ti  adhesion

layer), and 100 μm spacing. Ohmic contacts between the IDE microelectrodes and

potentiostat  (Biologic  VSP-300)  were  embedded  in  sealed  glass  vials  to  enable

humidity-controlled  conductivity  measurements.  During  conductivity

measurements, humidity was controlled by adding a reservoir of saturated aqueous

salt to the vial46. Films were maintained in controlled humidity environment for 24

hours prior to measurement. Film resistance was determined by electrochemical

impedance spectroscopy (EIS) and used to calculate ionomer conductivity as

κf =
1
Rf

d
l (N−1 ) t

(Equation

7)

where κf is the film conductivity, Rf is the resistance, t is the film thickness, d is the

spacing between IDE teeth, and  l is the overlap length of the teeth, and  N is the
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number of teeth47,48. Impedance spectra were collected from 100 Hz to 7 MHz with

an  amplitude  of  0.10  mV.  Ionomer  film  resistance  was  extracted  from  the

impedance spectrum by fitting a semicircle to the high-frequency circular feature,

following previous analysis of PFSA films on similar IDEs33,48–50. 

Ionomer samples were drop-cast from 5 wt% in IPA/H2O into Kapton-sealed

stainless-steel washers with DI water to hydrate the ionomers. SAXS measurements

were  performed  at  beamline  7.3.3  of  the  Advanced  Light  Source  at  Lawrence

Berkeley  National  Lab.  The  X-ray  energy  was  10  keV  with  a  monochromator

resolution E/dE of 100. Scattering patterns were acquired with a 2D Dectris Pilatus

1M CCD area detector  (172 µm x  172 µm pixel  size).  WAXS experiments  were

performed at the NYU Department of  Chemistry Shared Instrumentation Facility.

The powder sample was loaded into an 0.8 mm Kapton capillary and then mounted

on  a  magnetic  base  of  the  sample  stage  of  a  Bruker  D8  DISCOVER  GADDS

microdiffractometer. The instrument is equipped with a VÅNTEC-2000 area detector.

The X-ray generated from a sealed Cu tube is monochromated by a graphite crystal

and collimated by a 0.5mm MONOCAP (λCu-Kα = 1.54178 Å). The sample-detector

distance is set at 150 mm. Scans were collected in a ϕ rotation method and with an

exposure time of 600 seconds per scan. The two-dimensional diffraction data were

integrated by the XRD2EVAL program in the Bruker PILOT software. The raw file of

the powder pattern generated was analyzed by the DIFFRACplus EVA software.

Gas Transport Properties

Differential scanning calorimetry (DSC Q2000, TA Instruments, New Castle,

DE) was used to determine the thermal transitions of the polymers at a heating rate

of 10 °C min-1 under 50 mL min-1 N2 flow. The  Tg was determined using Universal
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Analysis  2000  software.  Density  measurements  were  performed  by  spin-casting

ionomer  films  on  10  MHz  AT-cut  quartz-crystal  microbalance  crystals  with

evaporated gold electrodes (OpenQCM, nominal sensitivity 4.42 x 10 -9 g Hz-1 cm-2).

Film areal density was measured with an OpenQCM Fluidic Cell QCM with dry N2 flow

at room temperature. Film thickness was measured via spectroscopic ellipsometry

with dry N2 flow to calculate ionomer density. FFV was then be calculated as: 

FFV =1.3ρ VVDW

(Equation

8)

where ρ is the polymer density and VVDW is the van der Waals volume as estimated

by the Bondi group contribution method51,52. Ionomer permeability was measured

with a constant-volume gas permeation cell. Ionomer films were prepared by spin-

casting from solutions of 20 wt% ionomer in IPA/H2O on a nanoporous PTFE filter

membrane (Whatman #110601, 15 nm pore size). Films were further supported in

circular aluminum tape with the area for gas flux removed by die punch and loaded

into the permeation cell.  Films were degassed under vacuum overnight.  Prior to

testing, a 15-minute leak test was performed. The test gas was then introduced at

1,  2,  3,  and  4  atm for  15  minutes  each,  with  a  2-minute  evacuation  between

pressure steps. Permeability at each pressure step was calculated as:

P A=
V d l

pup ART [(d pdown

dt )SS−(
d pdown

dt )leak ]
(Equation

9)

where  Vd is  the downstream volume,  l is  the polymer film thickness,  pup is  the

upstream test gas pressure, pdown is the measured downstream pressure (subscript

SS denotes steady-state pressure test of test gas, and leak denotes the pressure

rise during the leak test), A is the area of exposed polymer film, R is the ideal gas

constant  and  T is  the  temperature.  All  measurements  were  performed  at  35°C

controlled by submerging the permeation cell in a water bath.
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Electrochemical Performance of PFMMD-co-PFSA

MEAs were fabricated with the following counter electrode (CE) and working

electrode (WE) parameters: Pt loading was fixed at 0.1 mg cm-2 (WE) and 0.3 mg

cm-2 (CE), with 30 wt% Pt/Vulcan (WE) and 50 wt% Pt/Vulcan (CE), and 0.8 (WE) and

0.9 (CE) ionomer-carbon ratio. Nafion was used as binder at both CEs, while one

MEA was  fabricated  with  PFMMD-co-PFSA  (0.57  PFSA  mass  fraction)  as  the  WE

binder and the other with Nafion. Electrodes were sprayed on Nafion NR212 (WE)

and Sigracet 25BC GDL (CE). Active surface area was measured via CO stripping at

40°C, 80% RH, and ambient pressure in cell hardware with an active area of 2 cm2.

The catalyst-layer transport resistance was determined by limiting current towards

H2 oxidation at 40°C, 80% RH in the same cell hardware, with 1000 ppm H2 flow at

the  WE and  2% H2 balance  Ar  at  the  CE.  Limiting  current  was  measured  at  a

constant potential of 0.3 V. Polarization curves were again obtained at 40°C, 80%

RH, and ambient pressure, with air flow at the WE and H2 at the CE. Potential was

varied from 0.85V to 0.25V at 5-minute intervals of 0.1V. Current was averaged

over the last two minutes. Complete details of cell assembly and testing conditions

can be found in reference 41.
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