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ABSTRACT OF THE DISSERTATION

Accounting for Calibration Uncertainty in Detectors for High-Energy Astrophysics

By

Jin Xu

Doctor of Philosophy in Statistics

University of California, Irvine, 2014

Associate Professor Yaming Yu, Co-Chair

Professor David van Dyk, Co-Chair

Systematic instrumental uncertainties in astronomical analyses have been generally ignored

in data analysis due to the lack of robust principled methods, though the importance of

incorporating instrumental calibration uncertainty is widely recognized by both users and

instrument builders. Ignoring calibration uncertainty can cause bias in the estimation of

source model parameters and can lead to underestimation of the variance of these estimates.

Lee et al. (2011) introduced a so-called pragmatic Bayesian method to address this prob-

lem. The method is pragmatic in that it introduces an ad hoc technique that simplifies

computation by assuming that the current data is not useful in narrowing the uncertainty

for the calibration product, i.e., that the prior and posterior distributions for the calibration

products are the same.

In the thesis, we focus on incorporating calibration uncertainty into a principled Bayesian

X-ray spectral analysis, specifically we account for uncertainty in the so-called effective area

curve and the photon redistribution matrix. X-ray spectral analysis models the distribu-

tion of the energies of X-ray photons emitted from an astronomical source. The effective

area curve of an X-ray detector describes its sensitive as a function of the energy of incom-

ing photons, and the photon redistribution matrix describes the probability distribution of

x



the recorded (discrete) energy of a photon as a function of the true (discretized) energy.

Starting with the effective area curve, we follow Lee et al. (2011) and use a principle com-

ponent analysis (PCA) to efficiently represent the uncertainty. Here, however, we leverage

this representation to enable a principled, fully Bayesian method to account for calibration

uncertainty in high-energy spectral analysis. For the photon redistribution matrix, we first

model each conditional distribution as a normal distribution and then apply PCA to the pa-

rameters describing the normal models. This results in an efficient low-dimensional summary

of the uncertainty in the redistribution matrix. Our methods for both calibration products

are compared with standard analysis techniques and the pragmatic Bayesian method of Lee

et al. (2011). The advantage of the fully Bayesian method is that it allows the data to pro-

vide information not only for estimation of the source parameters but also for the calibration

product; we demonstrate this for the effective area curve. In this way, our fully Bayesian

approach can yield more accurate and efficient estimates of the source parameters, and valid

estimates of their uncertainty. Moreover, the fully Bayesian approach is the only method

that allows us to make a valid inference about the effective area curve itself, quantifying

which possible curves are most consistent with the data.
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Chapter 1

Background

In this chapter, we will introduce the background about calibration and systematic errors

in the physical sciences, and the important role that calibration plays in drawing valid sci-

entific conclusions. To account for calibration uncertainty, we will adopt Bayesian methods

throughout the entire thesis. Basic inference and computation techniques of Bayesian ap-

proaches will be reviewed in this chapter. Since we will use Principle Component Analysis

(PCA) to quantify calibration uncertainty, the concept of PCA will also be reviewed in this

chapter.

1.1 Calibration and Systematic Errors

In physical sciences and other sciences, measurement error, the difference between a measured

value of quantity and its true value, is very common and in fact unavoidable in practice.

The statistical approach for measurement errors can vary enormously, depending on different

scenarios and different factors. Measurement errors can be divided into two categories:

random error and systematic error. Random errors are statistical fluctuations (in either
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direction) in the measured data due to the precision limitations of the measurement device.

Random errors usually result from the experimenter’s inability to take the same measurement

in exactly the same way to get the exact same value. Systematic errors, by contrast, are

reproducible inaccuracies that are consistent in the same direction. Systematic errors are

often due to a problem which is inherent in the measurement process or the measuring

instruments.

A systematic error is sometimes called statistical bias. It cannot be entirely removed due

to the imperfection of the measuring instruments. Systematic errors can be either constant,

or be dependent (e.g. as a proportion or a percentage) on the actual value of the measured

quantity, or even be related to the value of a different quantity of the environment (e.g. the

reading of a ruler can be affected by the temperature).

If a systematic error is constant, a common method to reduce it is through calibration of the

measuring instrument. In practice, a systematic error can possibly be a random quantity. In

this case, simple constant calibration for the measuring instrument can no longer be applied.

How to appropriately account for this calibration uncertainty is the main goal in this thesis.

There is a large literature on measurement errors. In physical sciences, Moffat (1988),

Dieck (1992) and Lira (2002) described the basic source of uncertainties in experiments

and the methods to account for measurement errors. Weise and Woger (1993) pointed

out a maximum-entropy based method to account for measurement errors. This method

without parameterizing the measure error source can be applied in repeated experiments. In

astrophysics, measurement errors and calibration methods are also widely discussed. Kelly

(2007) described some aspects of measurement error in linear regression of astronomical

data, and Kutner and Ulich (1981) recommended reliable relative and absolute intensity

calibration schemes for millimeter-wavelength observations of spectral line. How to count

for different sources of measure errors in data calibration is crucial in various sciences, and

ignoring the measure errors may lead to substantial bias in research.
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Let us use a simple example to illustrate the general ideas of systematic errors. Physical

engineers measure temperatures using thermocouples. The variability in these measurements

comes from two sources: (1) the devices are not perfectly calibrated, some read too high, some

too low; and (2) the devices are not perfectly consistent either – repeated measurements with

the same thermocouple might result in slightly different readings. In reality, the engineers do

not use a new random thermocouple for each reading they make. Instead, one thermocouple

is used to make multiple readings. This converts the first type of error from random error

into systematic error. The second type of error remains random error.

If the chosen thermocouple always reads too high, the temperature measurement will be

overestimated, and vice versa. Thus ignoring systematic error can lead to biased measure-

ments.

Consider a simple statistical model for measuring temperature using one thermocouple.

Zobs = Ztrue + C + ε, (1.1)

where Zobs is the observed measurement, Ztrue is the true temperature value, C is the cali-

bration uncertainty, and ε is the random error. Here, we simply use additivity to represent

the relationship among the true temperature value, calibration uncertainty and the observed

value. In reality, as will be discussed in the context of high-energy astrophysics, this rela-

tionship could be very complicated.

1.2 Bayesian Inference

In order to appropriately account for calibration uncertainty, we adopt a Bayesian approach.

This approach gives us a sound mathematical framework for combining the data with external

sources of information. In particular, we quantify our state of knowledge before having seen

3



the data using a prior distribution and that after having seen the data using a posterior

distribution. Bayes’ Theorem allows us to transform the prior distribution into the posterior

distribution using the observed data.

In particular, suppose Y is the observed data, ψ represents the unknown parameters, and I

represents the information we have before seeing the data. In this setting, Bayes’ Theorem

states that the posterior distribution of ψ given Y and I is:

p(ψ|Y, I) =
L(Y |ψ, I)π(ψ|I)

p(Y |I)
, (1.2)

where π(ψ|I) is the prior distribution of ψ, L(Y |ψ, I) is the likelihood of Y given ψ, and

p(Y |I) represents the marginal distribution of Y , that is p(Y |I) =
∫
p(Y |ψ, I)π(ψ|I)dψ is

a normalizing constant that ensures p(ψ|Y, I) integrates to one.

Let us consider the temperature measurement model of Section 1.1. In Equation (1.1), we

have Y = Zobs and we treat Ztrue, and C as unknown quantities, that is ψ = (Ztrue, C). We

will need external information from physics scientists to set up prior π1(Ztrue|I) for the true

temperature value Ztrue, and external information from calibration scientists to set up the

prior π2(C|I) and π3(ε|I) for C and the density of the random error ε. Here we assume, that

the priors for Ztrue and Care independent of each other. Combining Equation (1.1), we have

the conditional probability distribution of Zobs, p(Zobs|Ztrue, C, I) = π3(Zobs − Ztrue − C|I)

Using Bayes Theorem, we have the posterior distribution of Ztrue and C:

p(Ztrue, C|Zobs) =
L(Zobs|Ztrue, C)π1(Ztrue)π2(C)

p(Zobs)
, (1.3)

where L(Zobs|Ztrue, C) is the likelihood of Zobs given Ztrue, and C, that is L(Zobs|Ztrue, C) =

π3(Zobs−Ztrue−C) and p(Zobs) =
∫
L(Zobs|Ztrue, C)π1(Ztrue)π2(C)dZtruedC is the marginal

distribution of Zobs. In the remainder of this chapter, we omit I in our notation.
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As a simple illustration, we set up the distribution of Ztrue, C and ε as normal distributions,

centered at zero,

Ztrue ∼ N (0, σ2
Z)

C ∼ N (0, σ2
C)

ε ∼ N (0, σ2
ε )

(1.4)

Here, we introduce three methods to make inference about Ztrue, which we investigate in the

later chapters.

The first method is called the Standard method. This method assumes that the true cali-

bration uncertainty is known, equal to the default calibration uncertainty, that is C = Cdef .

Usually, Cdef is simply set to zero, which means we believe that there is no bias. We have

the posterior distribution of Ztrue given C and Zobs:

pstd(Ztrue|C = 0, Zobs) = N
(

σ2
Z

σ2
Z + σ2

ε

Zobs,
σ2
Zσ

2
ε

σ2
Z + σ2

ε

)
(1.5)

The Standard method is simple as it does not incorporate any calibration uncertainty. In

practice, this assumption is often suspect and will lead to biased results.

The second method is called the Pragmatic Bayesian Method. It was first introduced by Lee

et al. (2011) in astrophysics. Mathematically, we have

p(Ztrue, C|Zobs) = p(Ztrue|C,Zobs)p(C|Zobs),

The pragmatic Bayesian method makes the simplified assumption that p(C|Zobs) = π2(C).

This assumption means that the observed data carry no information about the calibration

5



uncertainty. Under this assumption, we have the marginal distribution of Ztrue:

ppB(Ztrue|Zobs) =

∫
p(Ztrue|C,Zobs)π2(C)dC,

After simple calculations, we have:

ppB(Ztrue|Zobs) = N

(
σ2
Z

σ2
Z + σ2

ε

Zobs,
σ2
Zσ

2
ε

σ2
Z + σ2

ε

+

(
σ2
Z

σ2
Z + σ2

ε

)2

σ2
C

)
(1.6)

The pragmatic Bayesian method does not allow the data to choose the most suitable cal-

ibration uncertainty. As a result, ppB(Ztrue|Zobs) has the same mean location as standard

method, but the variance is increased considerably.

The third method that we propose in this thesis is the Fully Bayesian method. It is a

principled Bayesian method that treats Ztrue and C as unknown quantities, both of which

can be learned from the data. Based on Equations (1.1), (1.3), and (1.4), we have the joint

posterior distribution of Ztrue and C given Zobs, p(Ztrue, C|Zobs), in closed from:

Ztrue
C

∣∣∣∣∣Zobs ∼ N



σ2
Z

σ2
Z + σ2

C + σ2
ε

Zobs

σ2
C

σ2
Z + σ2

C + σ2
ε

Zobs

 ,


(σ2

C + σ2
ε )σ

2
Z

σ2
Z + σ2

C + σ2
ε

− σ2
Cσ

2
Z

σ2
Z + σ2

C + σ2
ε

− σ2
Cσ

2
Z

σ2
Z + σ2

C + σ2
ε

(σ2
Z + σ2

ε )σ
2
C

σ2
Z + σ2

C + σ2
ε


 ,

which yields the marginal distribution of Ztrue:

pfB(Ztrue|Zobs) = N
(

σ2
Z

σ2
Z + σ2

C + σ2
ε

Zobs,
(σ2

C + σ2
ε )σ

2
Z

σ2
Z + σ2

C + σ2
ε

)
. (1.7)

This simple example has an analytical solution and it illustrates how the fully Bayesian

analysis can account for calibration uncertainty. When we treat calibration uncertainty as

another unknown quantity, the observed data themselves can help us make inference about
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the calibration uncertainty and the unknown quantity of interest (e.g. temperature in this

example) simultaneously. This is a great advantage of Bayesian analysis. In the following

chapters, we will explore more in a more complex, realistic situation of the astrophysics.

1.3 Comparison of the Three Methods

Random errors can often be reduced by taking multiple measurements. For the temperature

measuring example, we can measure the temperature multiple times and use the mean of

temperature measures as Zobs to reduce the random error ε. Thus, in order to make an

intuitive comparison of these three methods, we assume that σ2
Z , σ

2
C � σ2

ε , that is, the

random error variance σ2
ε is much smaller than prior variance σ2

Z and calibration uncertainty

variance σ2
C . We make the following comparison.

Table 1.1 summarizes the marginal distribution of Ztrue of the three methods, with the

assumption σ2
Z , σ

2
C � σ2

ε . We can see that the marginal distribution of Ztrue from the

pragmatic Bayesian method has the same mean as that from the standard method, while

the mean of Ztrue from the fully Bayesian is shifted. The pragmatic Bayesian has the biggest

variance for Ztrue , the standard method has the smallest variance, and the fully Bayesian is

in-between.

Suppose that the true value of calibration uncertainty is Ctrue. We can evaluate the es-

timators of these three methods by Bias, Variance, and the mean squared error (MSE).

Bias(Ẑtrue) = E(Ẑtrue − Ztrue)

MSE(Ẑtrue) = E(Ẑtrue − Ztrue)2 = V ar(Ẑtrue) + (Bias(Ẑtrue, Ztrue))
2

Table 1.2 illustrates the evaluation of these three methods for this example. The fully
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Methods Mean Variance

Standard Zobs σ2
ε

Pragmatic Bayes Zobs σ2
C

Fully Bayes
σ2
Z

σ2
Z + σ2

C

Zobs
σ2
Cσ

2
Z

σ2
Z + σ2

C

Table 1.1: Comparison of the marginal distribution of Ztrue. For
this simple temperature measuring example, the marginal distri-
bution of Ztrue from the pragmatic Bayesian method has the same
mean as that from the standard method, while the mean of Ztrue
from the fully Bayesian has shifted. The pragmatic Bayesian
has the biggest variance of Ztrue , the standard method has the
smallest variance, and the fully Bayesian is in-between.

Bayesian method has the smallest bias, compared to the standard method and the prag-

matic Bayesian method. Since the standard method operates under the assumption of an

incorrectly specified calibration uncertainty, it has very small V ar(Ẑtrue)and is valid only

when Ctrue equals to zero or close to zero. In reality, if we have little prior information about

the true calibration uncertainty, the standard method could lead to a biased and dangerous

result. The pragmatic Bayesian method incorporates calibration uncertainty, leading to a

larger V ar(Ẑtrue), which correctly accounts for the variability of Ẑtrue, and makes the infer-

ence more valid than the standard method. However, if we compare the pragmatic Bayesian

and the fully Bayesian, the fully Bayesian not only reduces the bias, but also reduces the

MSE. Therefore, we recommend to use the fully Bayesian, if the true calibration uncertainty

is unknown.
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Methods Bias(Ẑtrue) V ar(Ẑtrue) MSE(Ẑtrue)

Standard Ctrue σ2
ε C2

true + σ2
ε

Pragmatic Bayes Ctrue σ2
C C2

true + σ2
C

Fully Bayes
σ2
Z

σ2
Z + σ2

C

Ctrue
σ2
Cσ

2
Z

σ2
Z + σ2

C

(
σ2
Z

σ2
Z + σ2

C

Ctrue)
2 +

σ2
Cσ

2
Z

σ2
Z + σ2

C

Table 1.2: Evaluation of the three methods. In general, the standard method only works well
when Ctrue is equal to zero or close to zero. Otherwise it results in biases. The pragmatic
Bayesian is most conservative, and has the largest V ar(Ẑtrue). Compared to the pragmatic
Bayesian, the fully Bayesian not only reduces the bias, but also has a smaller MSE.

1.4 Fitting Bayesian Methods Using MCMC

The fundamental Equation (1.2) is often written as,

p(ψ|Y ) ∝ L(Y |ψ)π(ψ), (1.8)

where we have omitted the denominator of Equation (1.2), a normalizing constant which

might be difficult (and unnecessary) to compute. The proportionality sign, “∝”, signifies

that the density function is not normalized.

To compute fitted parameters and their error bars in a Bayesian analysis, we use quantities

such as the mean, variance and percentiles of the posterior distribution. Although in some

simple cases (such as the temperature measuring example of Section 1.2), the posterior dis-

tribution is a well-known distribution and these quantities can be calculated analytically,

numerical methods are typically used. One very popular numerical method is Monte Carlo

which involves simulating draws from the posterior distribution and using the means, vari-

ances and percentiles of the Monte Carlo samples to compute fitted parameters and their

error bars. Park et al. (2008) reviews how this can be done using examples from high-energy

astrophysics.
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One of the common Monte Carlo methods is Markov chain Monte Carlo (MCMC), where a

Markov chain is constructed as an ordered sequence {ψ(t), t = 1, 2, ...}, each value of which

only depends on the value of the previous variable in the chain. Specifically, ψ(t+1) is obtained

by simulating from transition kernel, which is a conditional density that preserves the target

posterior distribution. That is, if ψ(t) has the posterior distribution already, then so does

ψ(t+1).

ψ(t+1) ∼ K(ψ|ψ(t)), (1.9)

Here, the kernel K should be designed to be simple to sample from and ensure that the chain

converges to the target distribution. Iterating Equation (1.9) results in a chain of values that

is called a Markov chain, which delivers a correlated sample from the posterior distribution.

Ergodic theory says that the chain will converge, that means ψ(t) has approximately posterior

distribution, if t is large. In practice we must start the chain at perhaps some arbitrary

value and let it run until it converges to the posterior distribution. This typically requires

convergence diagnostics, such as running multiple chains until they appear to be sampling

from the same distribution. This method is described in detail in Gelman and Rubin (1992),

see also Brooks and Gelman (1998) and Brooks et al. (2011).

The Metropolis-Hastings algorithm (Metropolis et al. (2004) and Hastings (1970)) and the

Gibbs sampler (Gelfand and Smith (1990) and Geman and Geman (1984)) are the two

popular MCMC algorithms. They correspond to specific kernels in Equation (1.9) to ensure

that the resulting Markov chain converges properly to the target posterior distribution. Here,

we provide some background about the algorithms that we will apply in the later chapters.

The Metropolis-Hastings algorithm draws samples for any probability distribution p(ψ|Y ),

provided that one can compute the unnormalized target density. That is, we only need to

calculate L(Y |ψ)π(ψ) to apply Metropolis-Hastings algorithm. This makes the Metropolis-
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Hastings algorithm particularly useful, because calculating the normalized constant is often

extremely difficult in practice. The Metropolis-Hastings algorithm uses a proposal distri-

bution or jumping distribution Q(ψ|ψ(t)) to suggest a candidate for the next sampled value

given the previously sampled value. This proposed value is then accepted or rejected accord-

ing to a specific ratio, which ensures that the chain converges to the correct distribution.

Metropolis-Hastings Sampler:

For t = 0, 1, 2, . . . , T ,

Step 1: Simulate ψprop ∼ Q(ψ | ψ(t)) and compute

α =
p(ψprop | Y )Q(ψ(t) | ψprop)

p(ψ(t) | Y )Q(ψprop | ψ(t))
.

Step 2: Let u be a uniformly distributed random number between zero and one and set

ψ(t+1) =


ψprop if u < α

ψ(t) otherwise

.

This algorithm proceeds by randomly attempting to move about the sample space, sometimes

accepting the moves and sometimes remaining at the previous iteration.

The Metropolis Sampler is a special case of the Metropolis-Hastings Sampler, when we have

a symmetric proposal in the sense that, Q(ψprop | ψ(t)) = Q(ψ(t) | ψprop). The acceptance

ratio is simplified into α = p(ψprop | Y )/p(ψ(t) | Y ). If the proposed move is to a point that

is more probable than the existing point (i.e. a point in a higher-density region of p(ψ|Y )),

we will always accept the move. However, if the proposed move is to a less probable point,

we will sometimes reject the move, and the bigger the relative drop is in probability, the

more likely we are to reject the new point. Thus, we will tend to stay in (and return large
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numbers of samples from) high-density regions of p(ψ|Y ), while only occasionally visit low-

density regions. Because of the symmetric property of proposal distribution, the Metropolis

Sampler is also called as a Random Walk Sampler.

The Independence Sampler is another special case of the Metropolis-Hastings Sampler, when

we set proposal distribution to be independent from the current state, that is Q(ψprop |

ψ(t)) = Q(ψprop). Getting efficient samples, the proposal distribution needs to be as close

to the target distribution as possible. In the later chapters, we will use both the Metropolis

Sampler and the Independence Sampler.

The Gibbs sampler is widely used when direct sampling from a multivariate distribution is

difficult. The Gibbs Sampler is an iterative algorithm, where at each iteration, we simulate

one component of a parameter vector at a time, according to the conditional distribution of

that component given all other components. It is especially useful when each full conditional

distribution is available. For instance, suppose ψ contains two components, ψ = (υ, ω). We

can apply a two-step Gibbs sampler.

Two Step Gibbs Sampler

For t = 0, 1, 2, . . . , T ,

Step 1: Simulate υ(t+1) ∼ p(υ|ω(t), Y )

Step 2: Simulate ω(t+1) ∼ p(ω|υ(t+1), Y )

Gibbs sampler ensures that the samples ψ(t) = (υ(t), ω(t)) can approximate the the joint

distribution p(υ, ω|Y ). Furthermore, the marginal distribution of any variable can be ap-

proximated by simply examining the samples for this variable, ignoring the other variable.

The Partially Collapsed Gibbs (PCG) sampler is a modification on the Gibbs Sampler, which

involves reducing the conditioning in one or more steps within an iteration (van Dyk and
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Park, 2008). For example, if we can easily sample from the marginal distribution p(υ|Y ), we

can obtain a PCG sampler from the Gibbs sampler. PCG samplers typically converge faster

than their parent Gibbs samplers.

PCG Sampler

For t = 0, 1, 2, . . . , T ,

Step 1: Simulate υ(t+1) ∼ p(υ|, Y )

Step 2: Simulate ω(t+1) ∼ p(ω|υ(t+1), Y )

Since we remove the conditioning in the first step, we get independent draws (υ(t), ω(t)),

which makes PCG converge to the stationary distribution p(υ, ω|Y ) immediately. Notice

this example is only one case of PCG, and this thesis only focuses on this version.

As in the case with usual Gibbs sampling, when the second step of the PCG sampler is not

in closed form, we can use an Metropolis-Hastings sampler, which yields the Metropolis-

Hastings within PCG sampler.

MH within PCG Sampler

For t = 0, 1, 2, . . . , T ,

Step 1: Simulate υ(t+1) ∼ p(υ|, Y )

Step 2: For i = 1, · · · , I, simulate ω(t+i/I) ∼ KMH(ω|ω(t+(i−1)/I), υ(t+1), Y ).

The iteration of the Metropolis-Hastings sampler KMH in Step 2 aims to eliminate the de-

pendence of its final output, ω(t+1), on its starting value, ω(t). Only ω(t+1) is retained; the
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intermediate draws, ω(t+1/I), . . . , ω(t+(I−1)/I) are discarded. The multiple iterations in Step 2

aim to reduce the dependence of ω(t+1) on ω(t), so that Step 2 yields the draw of p(ω|υ(t+1), Y ),

according to the correct conditional distribution.

We will explore these MCMC algorithms in the context of high-energy astrophysics in the

following chapters.

1.5 Principle Component Analysis

In the temperature measuring model of Section 1.1, calibration uncertainty is a one-dimensional

quantity. However, in practice, calibration uncertainty could be of high dimensions. For ex-

ample, the effective area curve (Section 2.3) can be a 1000-dimensional vector, and the pho-

ton redistribution matrix (Section 6.1) can be a matrix with 106 entries. How to efficiently

summarize calibration uncertainty becomes nontrivial. We will use Principle Component

Analysis (PCA) to reduce the dimensionality of the calibration uncertainty.

Principal component analysis is a statistical procedure that uses orthogonal transformations

to convert a set of observations of possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components. The number of principal components is

less than or equal to the number of original variables. This transformation is defined in such

a way that the first principal component has the largest possible variance (that is, accounts

for as much of the variability in the data as possible), and each succeeding component in

turn has the highest variance possible under the constraint that it is orthogonal to (i.e.,

uncorrelated with) the preceding components. Principal components are guaranteed to be

independent if the data set is jointly normally distributed. (More discussion can be found

in Jolliffe (2005), Anderson (2003), Ramsay (2006) and Bishop et al. (2006))

Consider a data matrix, X = (x>1 , x
>
2 , . . . , x

>
n )>, of dimension n × p. Each of the n rows
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represents one observation vector, xi, and each of the columns represents one variable vector

containing its values of these n observations. Each variable has zero empirical mean, that

is, the sample mean of each column is subtracted from that column to make it mean zero.

In our astrophysics cases, we may have p > n.

To summarize X, consider the singular value decomposition (SVD) of X:

X = UΣW>

where Σ is an n-by-p diagonal matrix with positive entries σ1 ≥ σ2 ≥ . . . ≥ σn on thediagonal,

which are known as singular values of X; U is an n-by-n matrix, the columns of which are

orthogonal unit vectors of length n called the left singular vectors of X; and W is a p-by-p

whose columns are orthogonal unit vectors of length p and called the right singular vectors

of X.

Then, each observation xi can be written as:

xi =
n∑
j=1

uijσjw
>
j (1.10)

where uij is the ijth element of U , and W = (w1, w2, . . . , wp). In other words, each row xi

can be represented by a linear combination of w>j ’s.

Note that, up to a multiplication constant, X>X is the empirical sample covariance matrix,

which can also be written as

X>X = WΣ>U>UΣW> = W (Σ>Σ)W>

where Σ>Σ is p × p diagonal matrix with positive entries σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n (the other

p− n diagonal elements are equal to zero), which is in fact the eigenvalue matrix with each

eigenvalue equal to the square of singular values σi of X, and the right singular vectors W
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of X are equivalent to the eigenvectors of X>X.

In the view of Equation (1.10), let us consider a linear combination:

x̃ =
n∑
j=1

ejσjw
>
j , (1.11)

where ej’s are i.i.d N (0, 1), j = 1, ..., n. Then it is easy to show that E(x̃) = 0, and

Cov(x̃) = X>X. Hence the distribution of x̃ preserves the covariance structure of the data

set X.

To reduce the dimensionality, we can modify Equation (1.11) by keeping the first J compo-

nents in Equation 1.11. That is,

x̃ =
J∑
j=1

eiσjw
>
j .

The fraction of the variance that can be explained in these J eigenvectors’ directions can be

calculated as:

fJ =

J∑
j=1

σ2
j

n∑
j=1

σ2
j

In practice, this allows us to use a smaller number of components, J < n, to approximately

capture the covariance structure. When the columns of X are collinear, often only a few

principle components are needed.

PCA not only helps reduce the rank of covariance matrix from p to J , but also provides us a

simple technique to sample any number of Monte Carlo replicates of x. We can also evaluate

the probability density of x̃ by simply multiplying the probability densities of ej’s. These

properties will be convenient when we apply PCA to summarize calibration uncertainties in
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astrophysics (i.e., the effective area curve in Chapter 2 and the photon redistribution matrix

in Chapter 6).

1.6 Contributions

Let us outline our contributions to astrophysics briefly. The importance of accounting cali-

bration uncertainty is well known among calibration scientists, but robust principled methods

are lacking. We first adopt the Bayesian approach to account for calibration uncertainty of

the effective area curve in spectral analysis. In Chapter 3, we illustrate the concept and the

advantages of the fully Bayesian method. Built on the work of Lee et al. (2011), in Chapter

4, we drastically improve the computational efficiency of the pragmatic Bayesian sampler.

Based on this, we develop the main fully Bayesian sampler schemes. Simulation studies and

real data analyses are conducted in Chapter 5 to demonstrate the effectiveness of our fully

Bayesian method and its potential application in various areas of astrophysics. For example,

in Chapter 6, we follow the same procedure as in the case of the effective area curve, to

account for calibration uncertainty of the photon redistribution matrix. In other words, our

method can be used to handle other calibration products.
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Chapter 2

Calibration Uncertainty in

High-Energy Astrophysics

In this chapter, we will provide some background of calibration uncertainty in High-Energy

Astrophysics. Then, a spectral model including calibration uncertainty will be built up and

a Bayesian analysis will be conducted. Here, we will only focus on one source of calibration

uncertainty, which is the effective area curve. The PCA summary for effective area curve

will be discussed in detail. Lastly, the concept of the pragmatic Bayesian method proposed

by Lee et al. (2011) will also be introduced in this chapter

2.1 Introduction

In high-energy astrophysics observed data are almost always result from a convolution of

photon count data with instrument calibration products such as effective area curves, en-

ergy redistribution matrices, and point-spread functions. Effective area curves record the

detector’s sensitivity as a function of energy. When one photon of certain energy reaches
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the detector, there is a proportion of the detector area that can record this photon. In a

statistical view, it can be considered as the probability that one photon with certain energy

is detected. Energy redistribution matrices record the probability of the detected photon’s

spreading into a range of energy bins of the detector, see Section 6.1. Point-spread function

describes the response of an imaging system to a point source or point object. A careful spec-

ification of these calibration products is critical both for parameter fitting and for properly

accounting for the statistical errors of these fits. It is only through instrument calibration

that we can transform measured signals into physically meaningful quantities and then in-

terpret data in a meaningful manner. Misspecification of calibration products can lead to

bias in the fitted parameters, unreliable statistical errors, and uninterpretable results.

In practice it is well-known that instrumental properties (e.g., the quantum efficiency of a

Charge Coupled Device (CCD) detector, point-spread functions, etc.) are measured with

error. Unfortunately, typical analyses only account for nominal estimates of calibration

products without regard for their errors and/or their possible misspecification. This can

seriously degrade fitted parameters and their error bars. In spectral analysis, for example,

(Drake et al., 2006) showed that ignoring calibration uncertainty can result error bars that

are underestimated by a factor of as much as five, see their Figure 5. We will show that

ignoring these errors not only is detrimental to error bars, but can also bias the the fitted

values themselves.

Efforts have been made to develop methods that account for calibration uncertainty in high-

energy astrophysics and such methods exist both in other areas of astrophysics and in related

fields such as particle physics (Heinrich and Lyons, 2007) and observational cosmology (Bri-

dle et al., 2002), see Lee et al. (2011) for a review. The nature of the errors in high-energy

calibration products including their complex correlations, however, means that such meth-

ods are inappropriate and will not provide reliable results. Modern instruments such as the

Chandra X-ray Observatory are calibrated using data from defined sources obtained either
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from particularly well-understood astronomical sources or in the lab, and comparing this

data with theoretical predictions. These measurements are not typically used directly, but

rather they are used to tune sophisticated physics-based computer codes that model the in-

strument as a whole. These codes can be used to derive both nominal estimates of calibration

products as measures of their uncertainty. The calibration products are high-dimensional

and exhibit complex and large scale correlation structures among their components. Ac-

counting for this complex uncertainty is further complicated in high-energy astrophysics due

to the non-Gaussian nature both of the underlying distribution of source photon counts and

of the instrument response. The non-Gaussian character of the data along with the complex

correlations in the calibration uncertainty mean that existing methods are not by in large

applicable in this setting. The general method of combining measurement and calibration

errors in quadrature (e.g., Bevington and Robinson, 1992), for example, assumes Gaussian

errors, uncorrelated calibration errors, and that there is a one-to-one relationship between

calibration errors and data points. This is not appropriate in the context of the complex

correlations exhibited by calibration products in high-energy astrophysics and the enormous

consequent variety of possible products. Unfortunately, the choice among these products

can effect the final fitted values. Thus, calibration uncertainty must be folded into analyses

in a statistically principled manner. As we shall see, doing so can allow the data to inform

the choice among the possible calibration products.

To address these complex correlations, Drake et al. (2006) suggested a bootstrap-like method

that relies on the availability of a large representative sample of possible calibrations products

given the calibration uncertainty; we refer to this sample as the calibration library. In

particular, they propose that a replicate data set be generated for each calibration product

in the library and that each replicate data set be fit in the usual way. The variability

among the resulting fitted model parameters is then used to estimate the effect of calibration

uncertainty on the fitted parameters. While this is a useful method to demonstrate the scale

of the effect of calibration uncertainty on error bars for the model parameters, it is not a
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robust statistical procedure in that generating replicated data sets requires knowledge of

typically unknown model parameters. From a practical point of view, the methods reliance

on a large calibration library is also problematic, especially considering that calibration

products of space-based detectors degrade over time and different calibration products—and

hence different calibration libraries—are required for different observations.

Lee et al. (2011) proposed to solve these practical problems by first replacing the large cal-

ibration library with a low-dimensional model for the calibration uncertainty (derived from

a principle component analysis (PCA) of the library) and second embedding the model for

calibration uncertainty into a Bayesian procedure that simultaneously fits the model param-

eters and accounts for calibration uncertainty. By virtue of the the calibration model this

strategy effectively embeds the instrument-modeling code as an integral part of the statis-

tical computing techniques. A critical assumption of this approach is that it supposes that

the observed photon counts and the calibration product are independent, that is, that the

data provide no information for narrowing the calibration uncertainty. An advantage of this

independence assumption is that it significantly simplifies the complexity of the necessary

computing, in that the algorithm is easy to implement, if not quick to run. For this reason Lee

et al. (2011) called their approach a pragmatic Bayesian method. The independence assump-

tion of the pragmatic Bayesian method also ensures that the choice of calibration product

is determined by calibration scientists, calibration experiments, and calibration simulations,

rather than the data from a particular observation, which may be viewed as an advantage

by some researchers.

The primary objective of this thesis is to remove the independence assumption of the prag-

matic Bayesian approach and allow the data to narrow calibration uncertainty. This is a

more principled approach from a statistical perspective. If a subset of calibration products

are possible according to the pre-specified calibration uncertainty but inconsistent with the

observed data, this subset should not play a role in the final analysis. From a statistical per-
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spective, it is the data that should drive a statistical analysis. We call this a fully Bayesian

method because it is more principled from a statistical point of view. This approach has other

advantages. For example, in addition to the calibration uncertainty quantified through ide-

alized experiments, calibration products are subject to errors stemming from differences

between these idealized settings and the variety of actual settings in which the products are

used. Indeed, suspected systematic errors cannot be fully understood without taking into

account the actual data in any particular observation and/or cross-instrument comparisons

can be made (e.g., Nevalainen et al., 2010). Our fully Bayesian method allows the data to

inform our choice of possible calibration products. In practice, we find that relatively large

data sets (� 104 counts) are needed to obtain appreciable power in narrowing calibration

uncertainty.

Like the pragmatic Bayesian method, the fully Bayesian approach embeds a model for cali-

bration uncertainty into a larger statistical model. Unlike the pragmatic Bayesian method,

however, it then marginalize over calibration uncertainty while conditioning on the observed

data, whereas the pragmatic method marginalize over calibration uncertainty without con-

ditioning on the data. In this regard, the fully Bayesian method is in line with a methods

proposed by Bridle et al. (2002) and Heinrich and Lyons (2007) for handling systematic errors

in cosmology and particle physics, respectively. These proposals, however, use a parame-

terized form for the systematics under which marginalization can be achieved analytically.

While these specific proposals are not applicable in our setting, they share our emphasis on

the general principle of building a joint model that incorporates all sources of uncertainty

and then marginalizing over nuisance parameters while conditioning on the observed data.

While the statistical framework that we present is quite general, for clarity we focus on

high-energy spectral analysis with uncertainty in the effective area curve for the remainder

of this thesis. In the remainder of this section, we outline the necessary background on

Bayesian spectral analysis, Bayesian model fitting using Markov chain Monte Carlo, the
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PCA-based calibration model proposed by Lee et al. (2011), and their pragmatic Bayesian

method. In Chapter 3, we lay out our fully Bayesian method and illustrate its advantage

over both the typical strategy of ignoring calibration uncertainty and the pragmatic Bayesain

method using a simple numerical illustration. The fully Bayesian methods requires us to

simultaneously fit the model parameters and the effective area curve while accounting for

pre-specified calibration uncertainty. Section 4.2 outlines how we leverage the PyBLoCXS

module in Sherpa along with the pragmatic Bayesian method to derive a sophisticated and

computationaly efficient algorithm for the fully Bayesian method. Section 4.3.2 describes

the main fully Bayesian algorithm that is applied for the following numerical analyses. In

Section 5.1 and 5.2 we validate our proposal using a set of simulation studies that include a

comprehensive frequency evaluation. We find striking improvement when large-count spectra

(� 104 counts) generated with an effective area curve that is consistent with the pre-specified

calibration uncertainty are fit with a misspecified default curve. In Section 5.3, 5.4 and 5.5 we

illustrate how the fully Bayesian method works in practice using several data sets obtained

with the Chandra telescope: a collection of quasi-stellar objects (QSO’s) observed near the

aimpoint of ACIS-S (ACIS stands for Advanced CCD Imaging Spectrometer) and described

with absorbed power-law models; a bright O system at a large off-axis location on ACIS-

S2 and modeled as absorbed multi-thermal spectra; and co-added long-duration grating

observation of an isolated neutron star modeled as a blackbody spectrum. In Chapter 6, we

discuss the calibration uncertainty in photon redistribution matrix and prove that the fully

Bayesian algorithm can also applied to redistribution matrix uncertainty. Finally discussion

appears in Chapter 7 and technical details about PyBLoCXS given in an Appendix A. A

glossary of the symbols we use in the following chapters is given in Table 2.1.
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Table 2.1: Glossary of symbols used in the Chapter 2-6

A effective area (ARF) curve
A0 the default effective area curve.
A∗0 the observation specific effective area curve.
Al effective area curve l in the calibration library
Ā the average of the effective area curves in the calibration library

Aprop a proposed effective area curve in an MH sampler

A
(t+1)
fB an effective area curve simulated with the fully Bayesian sampler

A
(t+1)
pB an effective area curve simulated with the pragmatic Bayesian sampler
A a set of effective areas, the calibration library

B the between imputation (or systematic) variance of θ̂.
CI a confidence interval
E energy of incident photon
E∗ energy channel at which the detector registers the incident photon
e the low-dimensional PCA representation of A, see Equation 2.4

eprop value of e proposed in an MH sampler

e
(t+1)
fB value of e simulated with the pragmatic Fully sampler

e
(t+1)
pB value of e simulated with the pragmatic Bayesian sampler
Q generic proposal distribution in a MH sampler
I number of inner iterations in pyBLoCXS, typically 10
i inner iteration number or index
I information obtained prior to the data, for example by calibration scientists
J number of components used in PCA analysis, here 8
j principal component number or index
k row indicator of photon redistribution matrix
K column dimension of photon redistribution matrix
K an MCMC kernel
KpyB the MCMC kernel used in PyBLoCKS

L number of replicate effective area curves in calibration library
L replicate effective area number or index
L(·) the likelihood function
M number of replicated draws of θ per draw of A in Iterated MH within PCG sampler
n row indicator of photon redistribution matrix
N row dimension of photon redistribution matrix

ppB, pfB pragmatica and fully Bayesian posterior distribution
R photon redistribution matrix (RMF)
R photon redistribution matrix library
Rb photon redistribution matrix with large value entires, along the right diagonal line
Rs R−Rb

R̃ vectorized R
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Table 2.2: Glossary of symbols used in the Chapter 2-6 - Continued

r2
j eigenvalue or PC coefficient of component l in the PCA representation
T number of MCMC iterations
t main MCMC iteration number or index

(t+...) the superscript indicates the running index of random draws
u a uniformly distributed random number between zero and one
vj eigen- or feature-vector for component l in the PCA representation

W the within one imputation variance of θ̂.
Y data, typically used here as counts spectra in detector PI bins
α̂ correlation used to validate the choice of I in the MH within PCG sampler
α the acceptance probability in an MH sampler
π a generic prior or posterior distribution
ρ lag one autocorrelation of the Monte Carlo samples from standard method
τ computational time
θ spectral model parameter

θ̂ estimate of θ
θprop a value of θ proposed in an MH sampler

θ
(t+...)
fB a value of θ simulated with the fully Bayesian sampler

θ
(t+...)
pB a value of θ simulated with the pragmatic Bayesian sampler
ψ generic notation for unknown quantities in analysis, e.g, ψ = θ or ψ = (A, θ)

ψprop a value of ψ proposed in an MH sampler
σ̂std, σ̂pB, σ̂fB error bars under fixed effective area, pragmatic, and fully Bayesian methods

Σ variance-covariance matrix of θ̂
Ψ normal approximation parameters from R
	 library of Ψ

25



2.2 Bayesian Spectral Analysis

The observed photon count in energy channel E∗ is modeled by a Poisson distribution,

Y (E∗) ∼ Pois

(∑
E

Λ(E; θ)A(E)R(E∗;E) +B(E∗)

)
, (2.1)

where Λ(E; θ) is the source spectral intensity in energy bin E, θ is the spectral (source)

parameter of primary interest, A(E) is the effective area curve in energy bin E, R(E∗;E)

is the energy redistribution matrix of detector, and B(E∗) is the background intensity in

channel E∗. The photon counts in each channel, Y (E∗) are independent Poisson variables.

For simplicity, we represent the vector of observed photon counts by Y = {Y (E∗)}, the

effective area by A = {A(E)}, and the photon redistribution matrix by R = {R(E∗;E)}. In

our numerical analyses, we consider an energy range from 0.3keV to 7keV, which is divided

evenly into approximately one thousand bins.

To fit the source parameters, θ, given the observed photon counts, Y while accounting for

calibration uncertainty, we adopt the Bayesian method. In particular, suppose ψ represents

the unknown quantities, and I is the information we have before seeing the data. In this

thesis, we treat θ and A as unknown, so ψ = (θ, A) while R is part of I. This is in contrast

to a standard analysis, where A is treated as known and is a part of I rather than of ψ.

In this thesis, we focus on Bayesian statistical methods that allow us to simultaneously learn

about θ and A. That is, we treat A as an unknown quantity and allow its uncertainty

to affect the fit and error bars of θ. Similar methods would be employed to account for

uncertainty in R in Chapter 6.

Substituting ψ = (θ, A) into Equation (1.2) and assuming the priors for θ and A are inde-
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pendent, we can write the posterior distribution.

p(θ, A|Y, I) ∝ L(Y |θ, A, I)π(θ|I)π(A|I), (2.2)

we typically use a defuse prior distribution on θ to reflect lack of knowledge on θ and

an informative prior on A representing information contained in I that is obtained from

calibration studies. In the remainder of the thesis, we typically omit I in our notation.

Unlike the simple temperature measuring example, the posterior distribution of the Bayesian

spectral method has no analytical solutions. We need to apply MCMC algorithms to obtain

numerical results. This will be the main target of this thesis. van Dyk et al. (2001) and

Park et al. (2008) detail the use of Bayesian MCMC for spectral analysis and give general

guidance on the use of MCMC algorithms in high-energy astrophysics.

While our primary goal is to consider methods for joint inference for θ and A using Equation

(2.2), we also compare such methods with the standard approach that treats A as fixed and

known. For clarity we refer this approach as the standard method. For example, in a Bayesian

analysis, the standard method involves estimating θ using its posterior distribution given the

observation, Y , and the nominal effective area curve associated with this observation, A∗0.

As a result,

pstd(θ|Y,A∗0) ∝ L(Y |θ, A∗0)p(θ|A∗0) (2.3)

where p(θ|A∗0) represents the prior distribution of θ, given A∗0. Usually we use prior distri-

bution for θ that is independent of A, p(θ|A∗0) = π(θ). This approach fixes A = A∗0, and

it does not incorporate the calibration uncertainty in A. Lee et al. (2011) et al illustrates

that the standard method can lead to misleading estimates of θ and can significantly un-

derestimate the error bars associated with these estimates. Nevertheless, because this is the

27



standard approach in practice, we treat it as a baseline in our numerical comparisons. Here

the subscript std indicates that this posterior distribution is from standard method.

A Sherpa module, PyBLoCXS (Bayesian Low Count X-ray Spectral analysis in Python)

adopted from the method of van Dyk et al. (2001), is designed to use MCMC algorithms

for spectral analysis in the Sherpa environment. It provides us a convenient and efficient

MCMC sampler for simulating spectral source parameters θ from the posterior distribution

p(θ|Y,A), (A is assumed to be fixed and known in PyBLoCXS ). This module is designed to

conduct the standard method. More detail about PyBLoCXS can be found in Appendix A. In

this thesis, we use the PyBLoCXS algorithm to sample p(θ|A, Y ) and use the notation KpyB to

refer to the pyBLoCXS kernel. Specifically, PyBLoCXS will be incorporated as a component

of an overall algorithm that simulates the full posterior distribution, p(θ, A|Y ). To do this,

we must quantify what we know about A into a prior distribution, π(A). This is the task of

Section 2.3

2.3 Quantifying Calibration Uncertainty

The specification of the posterior distribution in Equation 2.2 requires that we formulate a

prior distribution on A to encapsulate the calibration uncertainty. Although they were not

working in a Bayesian setting, Drake et al. (2006) suggested using a set of effective area curves

that represent the range of plausible curves and are constructed by calibration scientists to

represent calibration uncertainty. Generally speaking, we use the term calibration product

to refer to an effective area curve, photon redistribution matrix, point spread function, etc.

and the term calibration sample to refer to a set of such products that summarize calibration

uncertainty. Drake et al. (2006), for example, simulated a sample of ACIS effective area

curves, representative of the possible true curve given our uncertainty. This was accomplished

by explicitly including uncertainties in each of the detector’s subsystems (UV/ion shield
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transmittance, CDD quantum efficiency, and the telescope mirror reflectivity). We follow

Lee et al. (2011) and use the ACIS calibration sample of Drake et al. (2006) in our numerical

studies. It consists of L = 1000 simulated effective area curves, A = {A1, A2, ..., AL}. We

define Ā to be the arithmetic mean of the calibration sample and let A0 denote the default

effective area curve associated with the sample. Ā and A0 are typically similar, but may not

be equal.

In practice, the calibration sample must be large enough to fully represent the uncertainty in

high-dimensional calibration products. To summarize this sample into a concise and usable

form, Lee et al. (2011) proposed conducting a Principle Component Analysis (PCA) on the

mean-subtracted calibration sample, {A1−Ā, ..., AL−Ā}. PCA is a mathematical procedure

that uses orthogonal transformation to convert a set of observations of possibly correlated

variables into a set of linearly uncorrelated variables called principal components. According

to Lee et al. (2011), in the case of ACIS calibration sample, approximately 20 principal

components (out of 1000) account for 99% of the variability in the sample.

Following Lee et al. (2011), we conduct a Bayesian analysis that treats the true effective area

curve, along with the spectral parameters as unknown. We use the PCA summary of the

calibration sample to formulate the prior distribution for A, π(A). In particular, we assume

that under the prior distribution on A,

A(e) = Ā+ (A∗0 − A0) +
J∑
j=1

ejrjvj, (2.4)

where A∗0 is the user-generated observation-specific effective area, r2
j and vj are the first

J principle component eigenvalues and eigenvectors, respectively. And ej is independent

standard normal deviations. Since Ā ≈ A0, we can view Equation (2.4) as starting with

the user-speficied effective are, A∗0, and adding the random term
∑J

j=1 ejrjvj to account for

uncertainty; Ā−A0 adjust for the necessary mean-subtraction of A when conducting PCA.
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To simulate replicated effective area curves under the prior distribution given in Equation

(2.4), we only need to simulate J independent standard normal deviations, (e1, ..., eJ), and

evaluate Equation (2.4). We treat A(e) as the generic notation for the effective area curve

and contine to simply use A when its explicit dependence on e is not pertinent.

In effect, we are assuming that the uncertainty in the effective area curve can be described

by a 1078 dimensional multivariate normal distribution. The similarity of the effective area

curves inAmeans that most of the correlations among the components of this distribution are

very strong (i.e. near 1). The PCA representation in Equation (2.4) increases the strongest,

and the vast majority (1078-J), of these correlation to one and thereby effectively reduces

the rank of prior variance-covariance matrix of A. Equation (2.4) also stipulates that the

distributions associated with calibration uncertainty for observation-specific effective area

curves differ only in their means and that they all have the same variance. This means we

can use the variance of Drake et al.’s simulated calibration sample to represent the variance

of any observation-specific effective area. In practice, this procedure avoids generating a

calibration sample for each observation while still allowing us to account for uncertainty in

an effective and efficient manner.

Figure 2.1 illustrates the performance of PCA in summarizing the structure of individual

effective area curve in A. It shows that when we use J = 8 principle components, the re-

constructed effective area curve nicely capture the structures of the original A ∈ A. This

means that we can reduce the dimension of effective area curve to 8 when using PCA. We

use J = 8 in all the numerical studies.

This PCA-based emulation of the uncertainty in A is critical both for Lee et al. (2011)’s

Pragmatic Bayesian Method and our proposed Fully Bayesian Method. It not only provides

a simple way to incorporate the uncertainty in the effective area curve, but also allows us

to evaluate π(A) and using Equation (2.2), p(A, θ|Y ). We will need these quantities to

implement our MCMC sampler.
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Figure 2.1: The PCA representation of several effective area curves from the calibration
library. The left column plots four randomly selected Al ∈ A, one in each row, along with
their PCA representation, Al(e), for two values of J . The original curves are plotted in dot-
dashed black and the PCA representations are plotted as dashed blue and solid red for J = 1
and 8, respectively. The right column is constructed in the same manner, but subtracting
off each of the four original effective area curves ∆Al = Al(e)−Al. Although Al(e) deviates
from Al, even with J = 8, the left column shows that the scale of this deviation is quite
small and that overall using J = 8 concisely captures the structure of each of the effective
area curves.
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2.4 A Pragmatic Bayesian Method

As noted above (see Equation (2.3)), standard analyses assume that the effective area is

fixed. That is, the parameters are estimated conditional on A∗0. Here we aim to eliminate this

conditioning. Mathematically, this involves treating A as unknown rather that conditioning

on its value, and expressing Equation (2.2) as

pfB(θ, A|Y ) = p(θ|A, Y )p(A|Y ). (2.5)

Because the left-hand side of Equation (2.5) does not condition on the effective area, but

rather treat it as an unknown quantity, this model effectively allows us to account for the

uncertainty in A. Here the subscript fB indicates that this is fully Bayesian posterior distri-

bution.

Lee et al. (2011) made the simplified “pragmatic” assumption that p(A|Y ) = π(A), where

π(A) represents the prior distribution for A (e.g. Equation (2.4)). This assumption says that

the observed photon counts and the effective area curve are independent; in other words, the

data provides no information for narrowing the uncertainty in the choice of effective area

curve. Under this assumption, the posterior distribution of θ and A can be written as

ppB(θ, A|Y ) = p(θ|A, Y )p(A|Y ) = p(θ|A, Y )π(A) (2.6a)

where p(θ|A, Y ) is given in Equation (2.3) with A∗0 replaced by the generic A. We use the

subscript pB in Equation 2.6a to emphasize that this is the posterior distribution under the

pragmatic assumption of Lee et al. (2011).

Under the model in Equation (2.6a), inference for θ is based on its marginal posterior dis-
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tribution,

ppB(θ|Y ) =

∫
p(θ|A, Y )π(A)dA (2.6b)

The pragmatic Bayesian method accounts for calibration uncertainty in a conservative man-

ner. The assumption p(A | Y ) = π(A) ignores information in the data that may contribute

to the uncertainty in A and hence in θ. We now consider methods that allow Y to narrow

the uncertainty of A.
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Chapter 3

The Fully Bayesian Solution

In this chapter, we will provide the fully Bayesian solution, which avoids the “pragmatic”

assumption in Equation (2.6a). The fully Bayesian method has the unique advantage to

narrow the choice of effective area curve, by selecting the effective area curves that are most

consistent to the data. The theory and the advantage of the fully Bayesian will be discussed

in this chapter through one simulated example.

3.1 Motivation and Theory

To avoid the “pragmatic” assumption in Equation (2.6a), we employ a fully Bayesian ap-

proach that makes inference on the full posterior distribution pfB(θ, A|Y ) in Equation (2.5).

This can have practiced consequences, because we find that some effective area curves in the

calibration sample can be inconsistent with the observed data, especially with moderate to

large data sets. That is, the data themselves not only carry the information about source

parameters θ, but also give us evidence as to the choice of effective area curve.

Under the fully Bayesian posterior distribution, the marginal distribution of θ given in Equa-
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tion (2.6b) is

pfB(θ|Y ) =

∫
p(θ|A, Y )p(A|Y )dA

which can be weighted version of Equation (2.6b) via

pfB(θ|Y ) =

∫
p(θ|A, Y )

p(A|Y )

π(A)
π(A)dA

≈ 1

T

n∑
t=1

p(θ|A(t), Y )
p(A(t)|Y )

π(A(t))
, (3.1)

where A(t) ∼ π(A). In principle, we could implement the fully Bayesian method by obtaining

a sample {A(t), t = 1, ..., T} from π(A) and evaluating Equation (3.1). (This technique is

known as importance sampling.) Unfortunately the calculation for p(A|Y ) =
∫
p(θ, A|Y )dθ

can be extremely challenging. This means we cannot perform the fully Bayesian analysis by

simply sampling effective area curves from the prior π(A) and refitting the model using the

standard method for each sampled A, as is done in the pragmatic Bayesian method. There-

fore, alternative computational techniques therefore are needed. We outline our strategy in

detail in Section 4.3.2 in detail.

An important difference between the fully Bayesian and the pragmatic Bayesian strategies

is that the fully Bayesian method leverages the data to learn about A. Specifically, the

posterior distribution of A under the pragmatic method, is

ppB(A | Y ) =

∫
ppB(θ, A | Y ) dθ =

∫
p(θ | A, Y )π(A) dθ = π(A),

35



●●●●●●●
●●●

●●●●●●●

●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●
●●

●●●●

●●● ●●●●

●
●●●●●●●●●●●
●●

●●●
●

●●
●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●
●●●

●●●●●
●●

●●●●●●●●●●●●●

●●●●●

●●●● ●●
●●●●●●●●●

●●●●●●●●
●●
●
●●●●●●●●
●
●●

●
●●●●●●

●●●●●
●

●
●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●● ●●●●●

●●●●●
●●●●

●●
●●●

●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●

●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●●●●●●
●●●

●●
●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●
●●

●

●●●
●

●●●●●●●●●

●

●

●●●●
●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●●

●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●

●●●● ●●
●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●

●●

●●●●●

●●
●●●

●

●●●●●

●

●
●●●

●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●
●

●●●●●●●●●●●●●●●

●●●
●

●●●●
●●●●●●●

●

●
●●●●●●●●●

●●
●●●●●●●
●

●●●●
●●●●●
● ●●
●●●●●

●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●● ●●● ●● ●●
●

●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●
●●●●●●

●●
●●●● ●●●●

●●●
●● ●●

●●●●●
●●●

●●●
●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●●

●●●●●●●●●●●●●●●●
●●●●●

●●●●●●

●
●

●●●●

●
●●

●●●●●●●●●●●●●●●●●●●

●●

●●●
●●●●●

●

●●●●●●●●●●●
●●●●●●●●

●●

●●●● ●●●●●●●●●●●

●●●●●●

●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●
●●●●

●●●●
●●
●

●●●●●●●●●●●
●

●●●

●●●
●●●●

●●●●●
●●●●●●●
●●●●●
●●●

●●●●●●●●●●●●
●●●

●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●●
●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●

●●●●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●

●
●●●●●●●●●●●

●●●●

●●
● ●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●

●●●●●●
●

●●●

●●●●●●
●●

●●●
●●●●●●●●●●●●●●

●●●●●●●● ●●●●● ●●●●●●●●●

●●●●
●●●

●●●●●
●●

●●●●●●●

●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●

●●●●

●

●●●●●●

●
●●●●●●

●●●
●●●●

●
●●●●●●

●●●●●●●●
●●●●●●●
●● ●●●

●●

●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●

●●●●●●●●●●

●●●
●●

●●●
●●

●●●●●●●●●●●

●●●●

●●●●●●●
●●

●●●

●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●
●●●●

●●●
●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●

●●
●

●●●
●●●

●●●●

●
●

●●●●

●●●●●

●●
●●

●●●●●●●●●●●

●●
●●

●●●●
●●●●●●●

●

●●●●●●●●●●●

●
●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●
●●●●●●

●●

●●●●●●●●●●●
●●●●●●

●●●●

●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●

●●●

●
●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●
●●●●

●●●●●

●●●●●●●●●●●●●
●●●

●●●

●●●●
●●●●●

●●●

●●●●●●●●●
●

●●

●
●●

●●●

●●●●●●●

●●●●
●●●●

●●

●
●

●●●●
●●●●●●●●

●●
●

●

●●●●●
●

●●●
●

●
●●●●●

●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●

●
●●●●●

●●

● ●●●●●●
●●●●

●●●●●●●● ●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●
●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●

●●
●●●

●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●
●●

●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●

●●

●●●●●●
●●●●

●●●●

●●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●
●●●●●●

●●●●

●●

●●●●

●● ●●●●●●●●
●●●●●●
●●●●

●●●

●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●

●●●●●●●

●
●●●●●●
●●

●
●
●●●●●●●

●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●
●●
●●●●

●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●

0.09 0.11 0.13 0.15

0.
95

1.
05

1.
15

NH

Γ
Standard

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●●

●●

●

●●

●
●

●●

● ●

●●
●

●

●

● ●●●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●●● ●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●
●

●●●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●●

●
●●

●

●
●

●●● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●
● ●

●

●

●
● ●

●
●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●●

● ●

●
●

●

●

●
●● ●
●

●

●●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
● ●●

●

●●●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●
●●

●

●

● ●●

● ●

●

●

● ●
●●

●
●

●

●●●

●

●

●
●

●
●

●●
●●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●●

●
●
●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

● ●
●

●

●●

●
●

●●●

● ●

●
●

●

●

●●

●
●

●●
●

●

●

●●
● ●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●
●
● ●

●

●

●
●

●●

● ●
●

●

●

●
● ●

●

●● ●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●

●

●
●

●●

● ●
●●
●

●●

●

●

●

● ●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●
●

●●
●

●
●

●
●

● ●

●

●

●

●

●●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

● ●

●
●

●
●●

●●

●

●
●

●

●

●●
●

●●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●

●

●
●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
● ●●

●

●

● ●

●●

●

●

●
●●

●

●

●

●
●●

●●

●

●

●

●

●●

●●●

●●●
●

● ●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●● ●
●

●

●

●

●

●
●

●
●●●

●●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●
●

●●

●
●
●

●●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●●

●●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●
● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●
●

●

●
●

●

●

●

●

●● ●●
●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●●
● ●

●

●
●

●●
●

●
● ●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●
●

●

●
●● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●●●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●
●
●

●

●●

●●

●

●

●
●●

●
●

●

●●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●
●
●

●

●

●
●

●

● ●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●●
●●

● ● ●

●●
●

●

● ●

●●●
●●

●
●

●

●

●●

●

●
● ●●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●●

●
●

●●● ●

●
●●

●

●

●●

●

●

●

●

● ●●

● ●●
●●

●
●

●

●

●

●●● ●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●
●●

●

●●

●

●●

●
●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
● ●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●
●●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●
●
●

● ●

●
●●

●

●

●
●

● ●●●

●

● ●●

●

●
●

●●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●●●

●
●

●

●
●

●
●
●

●
●

● ●
●

●

●

●●
●

●
●●

●

●

●●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●●

●

● ●
●●

●
●

●

●
●

●
●

●●
●●

●
●
●●●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

● ●●

●

●●
●

●

●

●
●●

●

●●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●●

●●

●
●

●

●
●

●

●●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●●

●●
●

●

●

●

●●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●●

●

●●●●

●●

●
●

●

●
●

●
●● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●●

●

●

●
●●

●

●
●

● ●●●

●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●●
●

● ●

●

●

● ●

●
●

●

●●●

●●

●● ●

●

●

● ●

●●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●●

●

●

● ●
●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
● ●

●

●●

●
●●

●

●

●

● ●●

●
●

●

● ●

●

●

●● ●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

● ● ●

●

●

●

●

●●

●

●
●

●●

●

●
●●●

●

●
●

●
●

●

●
●

●●

●

● ●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●●
● ●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●●● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

● ●
●

●
●

●
●

●

●
●●

●
●●●

●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
● ●●

●

●

●
●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

●

0.09 0.11 0.13 0.15

0.
95

1.
05

1.
15

NH

Γ

Pragmatic Bayes

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●●●

●

●

●

●
●

●●

●
●

●
●

●

●●●

●

● ●
●

●●

●
●●

●

●

●● ●●●●

●●

●●

● ●

● ●●

●

●●●

●●●

●●

●

●●

●●

●

●

●
●

●

●
●

●

●
●

● ●

●●
●

●
●

●●

●

●
●

●
●●

●

●●●●●

●

●●

●
●

●●●
●●

●

●

●

●

●
●

●●
●

●
●

●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●

●
●
●●

●

●

●

●

●

●●●●●●●●●
●●

●

●●
●

●

●●

● ●
● ●●

●●
●●

●●●

●●
●

●

●

●
●●●

●●●●●●

●●●●

●●
●

●
●
●

●
●

●

●
●

●

● ●

●

●

●

●
●●
●●

●

●●●

●
●●●

● ●●
●

●

● ●●

●

●

●

●●

●

●●●●●●●●●

●

●
●

●

●
●● ●●

●

●

●●●●
●

●●●●●

●

●

●

●●
●

● ●
●

●●

●●●
●

●
●●

●

●●

●
●

●
●●

●●
●
●

●●

●

●

●●
●

●

●●●●●●●
●

●
●

●
●

● ●●●●●●●●●●

●
●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●
●

●●●●

●
●

●

● ●

●

●●

●
●

●

●

●

● ●

●

●
●

●
● ●

●

●

● ●

●

●●
●

●●

●
●

●●
●●
●

●

●

●
●

●
●●●●●

●

●

●●●
●

●

● ● ●

●

●
●

●

●

●●

●

●

●
●●●

●

●

●
●

●

●

●
●

●●
●●

●
●

●
●●

●
●

●●

●●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●●
● ●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●

●●●

●

● ●●●

●●●

●
●

●

●
●●

●●●●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●●●●●●●

●●
●

●

●

●

●●

●
●●

● ●

●
● ●

●

●●●
●

●
●

●

●●
●

●

● ●●
●●

●

●
●●

●

● ●

●●●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●
●●

●

●

●●●●●●
●

●●

●

●●

●●
●

●
●

●●●

●

●
●
●

●

●●
● ●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●
●
●●●●●

●

●●
●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●●●

●

●
●

● ● ●

●●

●

● ●

●

●

●

●

●

●●

●●

●●●●●
●

●

● ●●●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●
●

●
●●●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●●●●●●
●

●
●
●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●

●

●
●

●● ●

●●

●●●

●

●
●

●

●

●●
●

● ●

●●●●●●●

●

●

●

●●●

●

●
●

●
●

●●

●
●

●●
●●

●
●

●

●●

●

●

●

●
● ●●

●

●

●●●

●●●●●●●●●●●●

●●●●

●●
●

●●●●●
●

●●

●●

●
●

●

●
●

●

●
●

●

●●● ●

●
●●

●
●

●●●●●
●

●

●

●

●

● ●

●

●
●

●
●

●

●●

●

●

● ●

●
●●

●
● ●●

●

●

●

●●

●

●●●
●

●

●

●●●

●
●

●

●

●

●
●

●

●● ●
●

●●
●●

●●●●●

●

●
●

●
●

●

●
● ●

●
●

●
●

●●
● ●●

●●
●

●
●

●

●
●
●

●

●
●

●
●

●
●●

●●● ●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●
●

●
●

●●

●●●
●●

●
●

●

●
●

●
●

●
●

●●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●●●●

●

●

●

●●
●

●

●●●●

●
●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●●●●●●

●
●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●
●

●

●●

●
●
●
●●

●
●●●●●●●●●●●●●●

●●

●

●

●
●

●

●●

●●

●

●●

●
●

●

●

●

●
●

●● ●

●●

●●●

●

●

●

●

●
●●●●

●
●●

●

●

●

●

●

●

●● ●●

●

●

●
●

●
●

●●

●●

●●

●

●

●●●●●
●

●
●

●
●
●

●

●

●●●

● ●

●●
●●

●

●

●

●●●●●●●●
●●●●

●●●●●

●

●

●

● ●●

●
●●

●●

●

●

●

●

●●
●●

●●●●●

●

●

●●

●●

●

●
●
●●
●●●●

●●

●

●

●●

●●

●●●

●
●

●
●

●

●

●

●
●●●

●●●

●●

●

●
●

●

●

●●●

●●

●

●

●
●
●

●●
● ●

●

●●

●

●

●●
●

●

●●
●
●

●

●

●

●●●

●

●
●

●
●

●

●

●●

●
●●

●●
●

●

●

●●
●

●
●

●

●●

●
● ●

●

●

● ●

●●

●
●●●

●
●

●
●●

●●
●

●●
●

●

●

●

●

●
●●

●●●●●●●●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

● ●

●●
●

●

●●

●
●

● ●●●

●

●

●

●●●

●

●

●
● ●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●●●

●●●●

●●
●

●
●●

●
●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●●

●
●

●

●

●

●

● ●●●●●
●

●●●

●●

●

●
●

● ●●● ●

●

●

●
●●
●

●

●

●

●
●●

●

●

●

●
●

●●●●

●

●

●

●
●●

●

●●

●

●
●

●
●●

●
● ●●●

●● ●

●●●

●
●

●●●

●
●

●●
●

●●
●●
●●

●

●

●
●

●
●

●●

●

●

●

●
●
●●●●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●●
●

●

●
●

●

●

●●

●
●

●

●●●●
● ●

●●

●●

●

●

●●

●

●●

●

●

●
●

●
●

●●

●●●

●●●

●
●

●

●●

●

●
●

● ●●●●●
●●●●●

●

●

●

●

●●
●

●

●
●●

●●
●

●

●

●

●●
●●●●

●●●
●●

●

● ●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●●● ●

●

●

●
●

●●
●

●

●
●●
●
●●●

● ●●●
●

●●●●●

●●●●●●●

●● ●
●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●● ●● ●

●●●

●●●
●●

●●

●
●

●●

●

●●
●

●

●

●●●

●●

●● ●●●●

0.09 0.11 0.13 0.15

0.
95

1.
05

1.
15

NH

Γ

Fully Bayes

Figure 3.1: Comparison of the standard (left), pragmatic Bayesian (middle), and fully
Bayesian (right) methods. Each panel compares a Monte Carlo posterior sample of values of
θ = (Γ, NH) to its true value, marked with a red square. When fit with an incorrect effective
area curve, the standard method can result in misleading estimates of θ (see left panel). The
pragmatic Bayesian method, on the other hand, averages over all a priori possible effective
area curves and significantly enlarges the posterior variance for θ (see middle panel). Al-
though the centers of the posterior distributions under the standard and pragmatic Bayesian
methods are similar the larger error bars computed with the latter allows them to include
the true values of θ. Finally the posterior distribution under the fully Bayesian method shifts
toward the true value of θ, allowing it to cover the true value while maintaining relatively
modest error bars (see right panel).

which is equal to the prior distribution of A. In contrast, under the fully Bayesian posterior,

pfB(A | Y ) =

∫
pfB(θ, A | Y ) dθ =

∫
p(θ | A, Y ) p(A | Y ) dθ = p(A | Y )

can be used to learn what effective area curves are more or less consistent with the observed

data.

3.2 The Advantage of the Fully Bayesian Analysis

To illustrate the advantage of the fully Bayesian method over the pragmatic Bayesian

method, we compared their performance in a simulation study. In Section 5.1 we repro-

duce part of the simulation study of Lee et al. (2011) but this time we include the fully
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Bayesian method. Here we give detailed results under one setting of this simulation study

to illustrate the potential of the fully Bayesian method before discussing the necessary com-

putational techniques. In particular, we simulate an absorbed power-law source model with

three parameters (power-law index Γ, absorption column density NH, and normalization)

using the fake pha routine in Sherpa. The data set was simulated without background con-

tamination using the XSPEC model wabs*powerlaw and a default (RMF) for ACIS-S. Lee

et al. (2011) replicated the simulation under eight settings that varied the hardness of the

power law, the choice of effective area, and the nominal counts, details appear in Section 5.1.

We consider the energy range from 0.3keV to 7keV, which is divided evenly into approxi-

mately one thousand bins. Here we give detailed results for Simulation II which set Γ = 1,

NH = 1021cm−2, generated 105 counts, and used an off-center effective area curve from the

calibration library of (Drake et al., 2006). (We use the same off-center effective area curve

as Lee et al. (2011) and label it Aext; it is number 934 in the calibration library.)

Figure 3.1 plots a Monte Carlo sample from the posterior distribution under the standard

method, p(θ | A0, Y ), the pragmatic Bayesian method ppB(θ|Y ), and the full Bayesian

method, pfB(θ | Y ), where A0 is the default under the calibration library of Drake et al.

(2006) and here θ = (Γ, NH). The red square in each panel gives the true value of θ. The

MCMC samplers used in Figure 3.1 are described in Chapter 4. Although the error bars

computed with the standard method are the smallest, in this simulation the method misses

the true true value of θ. Thus, the results of the standard method are precise but incorrect.

This is not unusual when the default effective area curve, A0, is misspecified, as it is in

this case because the data were generated under a different curve—one that is nonetheless

plausible given the calibration uncertainty. The pragmatic method accounts for calibration

uncertainty by averaging over all a priori possible effective area curves, resulting in much

larger error bars that capture the true value of θ – the method is imprecise but correct. As

pointed out by Lee et al. (2011), this is a clear advantage over the standard method. Finally,

the fully Bayesian method accounts for calibration uncertainty by averaging over those effec-

37



tive area curves that are consistent with the observed data. The resulting error bars are only

slightly larger than those produced with a fixed effective area curve, but the fitted values for

θ have shifted enough that the error bars still capture the true value. This example clearly

illustrates the benefits of the fully Bayesian method: we can characterize the performance

of the standard method as precise but wrong, that of the pragmatic method as imprecise

but correct and that of the fully Bayesian method as both precise and correct. We conduct

additional numerical study in Sections 5.1 and 5.2 to illustrate when we can expect the fully

Bayesian method to outperform the standard method and pragmatic Bayesian method.
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Chapter 4

Statistical Computation

In previous chapter, we found that the fully Bayesian method outperforms the standard

method or the pragmatic Bayesian method. In this chapter, we outline our computational

strategy for fitting the fully Bayesian method. Firstly, we describe one of the main algo-

rithms for the pragmatic Bayesian method proposed by Lee et al. (2011), MH within Partial

Collapsed Gibbs Sampler. Based on this algorithm, we develop a more efficient pragmatic

Bayesian algorithm, called Iterated MH within Partial Collapsed Gibbs Sampler. It highly

leverages each update of the effective area curve, by keeping multiple draws of spectral

parameters corresponding to one effective area curve. Then, the basic HM within Gibbs

Sampler for the fully Bayesian is proposed, which turns out to be not applicable in reality.

Lastly, the pragmatic proposal sampler for the fully Bayesian method is developed, by using

the samples from the pragmatic Bayesian as the proposal distribution. The advantages of

this sampler are detailed in this chapter.
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4.1 The Original Pragmatic Bayesian Sampler

To fit the pragmatic Bayesian model, Lee et al. (2011) proposed a number of algorithms

including a Metropolis Hastings (MH) with Partially Collapsed Gibbs (PCG) sampler. This

involves simulating a sequence of effective area curves from π(A) and running PyBLoCXS for

each simulated curve. Specifically, in their Section 4.2.2, they proposed

MH within PCG Sampler of Lee et al. (2011)

For t = 0, 1, 2, . . . , T ,

Step 1: Simulate ej ∼ N (0, 1) for j = 1, . . . , J and set

e
(t+1)
pB = (e

(t+1)
1 , . . . , e

(t+1)
J ) and A

(t+1)
pB = Ā+ (A?0 − A0) +

∑J
j=1 e

(t+1)
j rjvj.

Step 2: For i = 1, · · · , I, simulate θ
(t+i/I)
pB ∼ KpyB(θ | θ(t+(i−1)/I);Y,A(t+1)).

The iteration of PyBLoCXS in Step 2 aims to eliminate the dependence of its final out-

put, θ
(t+1)
pB , on its starting value, θ

(t)
pB. Only θ

(t+1)
pB is retained; the intermediate draws,

θ
(t+1/I)
pB , . . . , θ

(t+(I−1)/I)
pB are discarded. This is necessary because A

(t+1)
pB is simulated from

its marginal distribution in Step 1 and is independent of θ
(t)
pB. The simulated value θ

(t+1)
pB

should be correlated with A
(t+1)
pB , insofar as A is informative for θ and thus A and θ are corre-

lated under ppB(θ, A | Y ). Likewise, because A
(t)
pB and A

(t+1)
pB are independent, θ

(t)
pB and θ

(t+1)
pB

should also be independent. The number of inner iterations, I, is determined by examining

the empirical autocorrelation function of KpyB for a given data analysis. Its value should be

set to ensure that θ
(t)
pB and θ

(t+1)
pB are independent, see Lee et al. (2011) and van Dyk and Jiao

(2014) for discussion.

While Lee et al. (2011) showed that this MH within PCG sampler effectively delivers fitted

values and error bars that account for calibration uncertainty under ppB(θ, A | Y ), it can be
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very slow in terms of its required computational time. This is owing to the inner workings

of PyBLoCXS which approximates p(θ | A, Y ) by fitting the spectral model via maximum

likelihood (i.e., using the Cash statistic) in Sherpa. This is of little consequence when

PyBLoCXS is used with fixed A, because the Sherpa fit only needs to be preformed once. In

the context of the MH within PCG Sampler, however, PyBLoCXS must be reinitiated with a

new Sherpa fit at every iteration because A
(t+1)
pB is updated at every iteration. Because each

Sherpa fit requires about 6-8 seconds of CPU time, a run of 3000 MCMC iterations spends

5-7 hours on Sherpa fits.

4.2 Improving the Pragmatic Bayesian Sampler

4.2.1 An Iterated Pragmatic Bayesian Sampler

The Pragmatic Bayesian sampler only generates one draw of θ for each effective-area specific

Sherpa fit. Although this results in (nearly) independent simulates of θ, the computation is

expensive. We propose an alternate implementation of the MH within PCG Sampler that is

dramatically faster. In particular, it fully leverages each of the effective-area specific Sherpa

fits by continuing to iterate as in Step 2 after the dependence on θ
(t)
pB has worn off in order

to obtain several simulated values of θ per iteration. Specifically, we propose

Iterated Pragmatic Bayesian Sampler:

For t = 0, 1, ..., T

Step 1: Simulate e
(tM+1)
j ∼ N (0, 1) for j = 1, ...., J and set e

(tM+1)
pB = (e

(tM+1)
1 , ..., e

(tM+1)
J )

and A
(tM+1)
pB = Ā+ (A∗0 − A0) +

J∑
j=1

e
(tM+1)
j rjvj.

Step 2: For i = 1, ..., I, simulate θ(Mt+i/I) ∼ KpyB(θ|θ(Mt+(i−1)/I);Y,A(t+1)).
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Step 3: For i = 2, ...,M , simulate θ
(Mt+i)
pB ∼ KpyB(θ|θ(Mt+i−1);Y,A(t+1))

Just as with original Pragmatic Bayesian sampler, we discard I − 1 sub-iterations in Step

2 to ensure that draws corresponding to different effective area curve are independent of

each other. This ensures that stationary distribution of the chain is the target posterior

distribution.

At iteration t, we only retain e
(tM+1)
pB , A

(tM+1)
pB , and θ

(tM+1)
pB , · · · , θ(Mt+M)

pB and discard the

intermediate draws of θ obtained in Step 2. Notice that this strategy results in M times

more simulated values of θ than those of A. The advantage is that the extra T (M − 1)

simulations of θ require relatively little computational time. The disadvantage is that these

simulated values are correlated whereas the simulated values of the MH within PCG sampler

of Lee et al. (2011) are essentially independent.

To illustrate the computational advantage of the iterated pragmatic Bayesian sampler, we

compared its performance with the original sampler in a simulation study that is described in

Section 3.2. The left and right columns of Figure 4.1 show the performance of the MH within

PCG Sampler of Lee et al. (2011) and our Iterated Sampler (run with M = 10), respectively.

The first row is a time-series plot of the first 300 consecutive draws of Γ(t) obtained with the

two samplers. The blocky nature of the draws obtained with the Iterated Sampler is a result

of its infrequent updating of A; each block is drawn with a common effective area curve. The

second row presents the same time-series plots, but as a function of CPU time (in second)

rather than iteration number. The relative speed of the Iterated Sampler is apparent. The

final row shows scatterplots of the of the simulated values of (N
(t)
H ,Γ(t)) obtained in about

one hour. Again the advantage of the Iterated Sampler is clear, despite the blocky nature of

its simulated values.

Running the Iterated Sampler requires the values of both I and M , that is, the number of

initial simulated values of θ to discard (I−1) at each iteration and the number of additional
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Figure 4.1: The improved speed of the iterated MH within PCG sampler. Using the sim-
ulation study described in Section 3.2, panels (a)-(b) plot Γ(t) as a function of iteration
number using the sampler of Lee et al. (2011) and the intreated MH within PCG sampler,
respectively. Panels (c)-(d) plot the same, but as a function of CPU time rather than of
iteration. The relative speed of the iterated method is apparent. Panels (e)-(f) are scatter-

plots of (Γ(t), N
(t)
H ) obtained in the first hour of the two samplers. The red lines in panels

(a)-(d) and squares in panels (e)-(f) indicate the true parameter values. Despite the blocky
nature of the chains in panels (b) and (d), the advantage of the iterated sampler in terms of
computational speed is clear.
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extra simulated values to keep (M). The initial iteration in Step 2 is designed to mitigate

the dependence of the simulated values on the input value of θ at each iteration. To measure

this effect, we can compute the correlation of θ(Mt) and θ(Mt+1),

α̂ ≈
∑T

t=1(θ(Mt) − θ̄pB)(θ(Mt+1) − θ̄pB)∑T
t=1(θ(Mt) − θ̂pB)2

, (4.1)

where θ̄pB = 1
TM

∑TM
t=1 θ

(t)
pB. If T α̂2/(1−α̂2) is greater than about two (for large T , e.g, > 100),

the sampler should be rerun with a larger value of I. Van Dyk and Jiao (2014) discuss other

methods for choosing and validating I in the general MH within PCG sampler. (The choice

of I is less important when implementing the fully Bayesian method, see Section 4.3.2.)

4.2.2 Optimizing the Iterated Pragmatic Bayesian Sampler

Given one certain A, the iterated sampler can jump across the parameter space, but then

delivers M draws of θ that show relatively high correlation. We can characterize this behavior

in the term of the within-A variance, which is V ar(θ|Y,A) (i.e. the variance for a fixed A).

To get new draw within one A, the computational time is relatively small. Once we resample

a new A, a large constant computational time is needed to set up proposal distribution in

PyBLoCXS algorithm. And the conditional mean, E(θ|A, Y ), shifts to that of the newly

sampled A, that is according to the between-A variance, which is the variability of E(θ|A, Y )

as a function of A.

Thus, the variance of sample chain contains two components, within-A variance and between-

A variance. The M correlated draws of θ in Step 3 vary according to within-A variance, and

the conditional means, E(θ|A, Y ), vary according to between-A variance.

We now turn to the question of choosing the optimal value of M . There is a tradeoff between

choosing a small value of M to fully explore the posterior distribution and choosing a large

44



M to improve the computational efficiency. Put another way, there is a tradeoff to distribute

total number of iterations between more outer iterations and more inner iterations. The fact

that the computing cost for one inner iteration is much less than of the cost for one outer

iteration complicates the tradeoff.

To balance this tradeoff, we aim to minimize V ar(θ̄) with the fixed CPU time, where θ̄ is

the sample mean of the chain,

θ̄ =
1

TM

T∑
t=1

M∑
m=1

θ(tM+m) (4.2)

Let θ̄t be the sample mean within one common A(t)

θ̄t =
1

M

M∑
m=1

θ(tM+m) (4.3)

From Equations (4.3) and (4.2), we have

θ̄ =
1

T

T∑
t=1

θ̄t (4.4)

Because of MH within PCG Sampler, A(t) is sampled from marginal distribution π(A), and

θ(tM+1), . . . , θ(tM+M) are sampled only on A(t). Thus, θ̄t is independent to each other for

different t.

V ar(θ̄) =
1

T 2

T∑
t=1

V ar(θ̄t) (4.5)

Focus on one individual component V ar(θ̄t) in Equation (4.5), we have

V ar(θ̄t) = E[V ar(θ̄t|A(t))] + V ar[E(θ̄t|A(t))] (4.6)
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We assume that θ(tM+1), . . . , θ(tM+M) are AR(1) correlated. ρt is autocorrelation of the

Monte Carlo chain for the standard method with A = A(t). When M is sufficiently large,

incorporating correlation between θ(tM+1), . . . , θ(tM+M), we have:

V ar(θ̄t|A(t)) ≈
σ2
θ|A(t)

M

1 + ρt
1− ρt

(4.7)

We also assume ρt ≡ ρ and σ2
θ|A(t) ≡ σ2

θ|A = W , where W stands for within-A variance. This

assumption essentially means that changing A only affects E(θ|A), but not V ar(θ|A). In

reality, this assumption holds in general. Thus,

E[V ar(θ̄t|A(t))] ≈ W

M

1 + ρ

1− ρ
(4.8)

Also, the other part of Equation (4.6) becomes:

V ar[E(θ̄t|A(t))] = V ar[E(θ|A(t))] = B (4.9)

Here, B stands for between-A variance.

Place Equation (4.8) and (4.9) into Equation (4.5), we have

V ar(θ̄) =
1

T
[B +W

1 + ρ

M(1− ρ)
] (4.10)

Let τ1 be opportunity cost of the computational time once we have a new sampled A. It

contains the time to set up new proposal distribution in PyBLoCXS and the time to sample

the first discarded I − 1 θ draws in Step 2. Let τ2 be the computational time for each

sub-iteration within Step 3.
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In practice, since θ is a multivariate variable, we cannot simply minimize V ar(θ̄). Usually,

we pick the most important variable in θ, such as Γ in our example. With a fixed, total CPU

time τ = Tτ1 + TMτ2, to minimize V ar(Γ̄), we have the analytical form of the optimal M .

M =

√
τ1WΓ(1 + ρ)

τ2BΓ(1− ρ)
, (4.11)

Where WΓ and BΓ are the within-A variance and between-A variance for Γ. Note that the

optimized M is not related to total CPU time τ .

Computing the optimal M using Equation (4.11) requires pre-estimates for T1, T2, ρ, W

and B. In practice, we can firstly run T0(about 20) affective area curves and M0(about 20)

sub-iterations for θ in order to get a rough estimate for T1, T2, ρ, W and B in order to use

Equation (4.11).

The formulas for B and W can be found in Section 4.2.3. Here, we give the formula to

estimate for ρ.

ρ̂ ≈ 1

T0

T0∑
t=1

M0−1∑
m=1

(Γ(tM0+m) − Γ̄t)(Γ(tM0+m+1) − Γ̄t)

M0∑
m=1

(Γ(tM0+m) − Γ̄t)2

Back to the simulation example of Section 3.2, it can give us a general idea about how Iterated

Pragmatic Bayesian works in reality. We can estimate τ̂1 = 6.2sec, τ̂2 = 0.042sec, ρ̂ = 0.87,

B̂Γ = 0.0021, ŴΓ = 0.000107. Use the Equation (4.11), the optimal M is approximately

equal to 10.
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4.2.3 Computing Fitted Value and Error Bars with the Iterated

Sampler

Once the iterations are obtained, multiple imputation combing rules are applied to compute

the mean and error bars of θ. Multiple Imputation was first designed to handle missing data

(Rubin (1987)). In multiple imputation, a number of Monte Carlo replications of the missing

data is used to represent the the statistical qualities of the missing values. Here, we treat

the effective areas curve as the missing data and use the multiple imputation combing rules

to compute the within-A variance of θ and the between-A variance of θ. The mean estimate

of θ is simply computed as the average of the samples:

θ̄ =
1

TM

T∑
t=1

M∑
m=1

θ(tM+m) (4.12)

The estimate of the within-A variance is calculated as:

Ŵ =
1

T (M − 1)

T∑
t=1

M∑
m=1

(θ(tM+m) − θ̄t)2 (4.13)

The estimate of the between-A variance is calculated as:

B̂ =
1

T − 1

T∑
t=1

(θ̄t − θ̄)(θ̄t − θ̄)> (4.14)

The estimate of the total variance of θ is

V̂ ar(θ) = Ŵ + (1 +
1

T
)B̂ (4.15)

Here, the term
1

T
accounts for the small number of imputations.

The iterated pragmatic Bayesian sampler is essentially one realization on application of

multiple imputation. It uses the first two moments to obtain fitted values and error bars.
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Since it relies on moment calculation, it may produce misleading results if the posterior

distribution is highly non-Gaussian, e.g., it has multiple modes. The advantage of iterated

pragmatic Bayesian sampler is its efficiency in practice. With constant CPU time, it provides

the optimal number of samples to minimize V ar(θ̄), which means the estimate of θ̄ from

iterated pragmatic Bayesian sampler is more accurate and reliable.

Notice that the application of multiple imputation in iterated pragmatic Bayesian method is

different from the Multiple Imputation method in Lee et al. (2011). The multiple imputation

used by Lee et al. (2011), assumes that the parameter estimates θ̂ from sherpa fit is the mean

of p(θ|Y,A). That’s not true in general, since sherpa fit aims to find the mode of p(θ|Y,A).

Lee et al. (2011) has not examined this assumption. Iterated pragmatic Bayesian method, on

the other hand, uses only parameter estimates from sherpa fit for metropolis-hasting rules.

Thus, it does not have this limitation.

4.3 Fully Bayesian Samplers

4.3.1 A Fully Bayesian MH within Gibbs Sampler

In order to construct an MCMC samplar with stationary distribution pfB(θ, A|Y ), we can

use a two-step Gibbs sampler.

Fully Bayesian Gibbs Sampler :

For t = 0, 1, 2, . . . , T ,

Step 1: Sample A(t+1) ∼ p(A|θ(t), Y )

Step 2: Sample θ(t+1) ∼ p(θ|A(t+1), Y )
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Unlike the pragmatic Bayesian sampler, the fully Bayesian samples the effective area curve

from its conditional posterior distribution, in Step 1. Although we cannot simulate directly

from the conditional distribution, we can use a Mixed Metropolis and Independence Sampler.

For Step 2, we can still directly apply PyBLoCXS to accomplish the sampling θ given A. We

update θ same as in the pragmatic Bayesian samplers, except no inner iteration is required

in Step 2 because this is a standard MH within Gibbs sampler. There is no partial collapse

in Step 1, as it aims to simulated p(A|θ, Y ) rather than π(A).

The resulting sampler is:

MH within Fully Bayesian Gibbs Sampler :

For t = 0, 1, ..., T

Step 1: Sample A(t+1) ∼ K(A|A(t);Y, θ(t))

Step 2: Sample θ(t+1) ∼ KpyB(θ|θ(t);Y,A(t+1))

MH within Gibbs Sampler is a very standard and easy algorithm in practice. If we consider

these two steps as an entire unit, it essentially draws new samples {A(t+1), θ(t+1)}, from the

multivariate kernel K(A, θ|A(t), θ(t)). Thus, it can also be regarded as an extended case of

Metropolis-Hastings and preserves the nice convergence property as Metropolis-Hastings.

Now, we focus on the detail of the effective area curve update in Step 1 using a Mixed

Metropolis and Independence Sampler.

Step 1A: Randomly sample u1 from standard uniform distribution.

If u1 < pm, go to Step 1B, Metropolis Sampler

else, go to Step 1C, Independence Sampler

Step 1B: For j = 1, ..., J , Sample eprop
j ∼ N (µ = e

(t)
j , sd = σe)
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set eprop = (eprop
1 , ..., eprop

J ) and Aprop = Ā+ (A∗0 − A0) +
J∑
j=1

eprop
j rjvj.

α =
p(Aprop|Y, θ(t))

p(A(t)|Y, θ(t))

go to Step 1D

Step 1C: For j = 1, ..., J , Sample eprop
j ∼ N (0, 1)

set eprop = (eprop
1 , ..., eprop

J ) and Aprop = Ā+ (A∗0 − A0) +
J∑
j=1

eprop
j rjvj.

α =
p(Aprop|Y, θ(t))Q(e(t))

p(A(t)|Y, θ(t))Q(eprop)
,

Q(eprop) is the jumping rule, and here is simple standard normal density

go to Step 1D

Step 1D: Randomly sample u2 from the standard uniform distribution.

(e(t+1), A(t+1)) =


(eprop, Aprop) if u2 < α

(e(t), A(t)) otherwise

.

In Step 1A, the tuning parameter pm is the proportion of proposals that are using Metropolis

Sampler. The Metropolis Sampler usually proposes the values near the previous draws, while

the Independence Sampler allows to jump across the parameter space. Running the Inde-

pendence sampler on its own, however can get stuck when A reaches high-density area where

p(Aprop|Y, θ)/Q(eprop) is large. Therefore, a mixture of Metropolis Sampler and Metropolis-

Hasting Sampler allows the samples to mix and results in better-performance chain. In Step

1B, we use normal distribution as Metropolis rules with sd = σe, where σe is a tuning pa-

rameter that determines the step size of Metropolis Sampler. This symmetric proposal is

also known as random walk proposal. In Step 1C, we usually set Q(eprop) as the prior dis-

tribution of e, that is the standard normal distribution. This proposal is an over-dispersed
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distribution, which is critical for independence sampler. Lastly, in order to evaluate the

conditional posterior probability p(A|Y, θ), we can use the Bayesian approach:

p(A|Y, θ) ∝ L(Y |A, θ)π(A),

Unfortunately, the fully Bayesian using MH within Gibbs sampler involves several tuning

parameters, and the value of which can highly influence the performance of the resulting

chain.(Note, there are two tuning parameters in Step 1, pm and σe, and there are also three

tuning parameters in PyBLoCXS of Step 2, see more in Appendix, A) Achieving good conver-

gence requires significant trial and error in the setting of the tuning parameters. Moreover,

the tuning parameters must be re-calibrated for every different data set, which limits the

use of this sampler in practice. For instance, small data sets usually do not provide much

information about the choice of effective area curve. In this case, picking smaller value of

pm is necessary in order to let the sampler rely more on the independence sampler.

In some cases it is nearly impossible to obtain samples adequately mixed with the MH within

Gibbs sampler. In the next section, we describe a method that is much more efficient.

4.3.2 Using the Pragmatic Posterior as a Proposal Distribution

In this section, we propose the main algorithm for fully Bayesian inference. As we can see

from Figure 3.1, the parameter estimates from the pragmatic Bayesian method have larger

variance than those of the fully Bayesian method. This is because the pragmatic Bayesian

method samples the effective area curve from the entire range of its prior distribution, while

the fully Bayesian method aims to select those that are most consistent with the data. Thus,

we expect the range of the samples of e and θ under the pragmatic Bayesian method to be

a superset of that under the fully Bayesian method. With this in mind, we can construct an
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independence sampler for both the effective area curve and source parameter simultaneously,

with the proposal distribution being the pragmatic Bayesian posterior distribution.

QpB(θ, A) = ppB(θ, A|Y ) = p(θ|A, Y )π(A)

=
L(Y |θ, A)p(θ|A)

p(Y |A)
π(A) (4.16)

The difficulty of using Equation (4.16) in independence sampler is that we can not evaluate

the pragmatic Bayesian posterior. It involves the calculation of normalizing constant, p(Y |A)

in Equation (4.16). The Pragmatic Bayesian posterior is actually a doubly-intractable dis-

tribution. An interesting fact is that we can still use pragmatic Bayesian MCMC algorithm

to sample from the pragmatic Bayesian posterior (Section 2.4). The typical problem is to

find ways to sample doubly-intractable distributions. Our problem seems simpler, but is still

intractable. More discussion about the doubly-intractable distributions and several solutions

to sample doubly-intractable distributions can be found in Murray et al. (2012) and Liang

(2010).

4.3.3 A Gaussian Approximation to the Pragmatic Posterior Dis-

tribution

Recognizing that the proposal distribution of the independence sampler can be any distri-

bution as long as it can cover the fully Bayesian posterior pfB(θ, A|Y ) nicely, we choose that

the proposal distribution such that its mass is in the same location with pfB(θ, A|Y ) and

its tails are at least as heavy as pfB(θ, A|Y ). Thus we suggest using a multivariate normal

distribution QMVN(θ, A) to fit a sample obtained from the pragmatic Bayesian posterior.

The sample of the pragmatic Bayesian could be either from original pragmatic Bayesian
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sampler or from iterated pragmatic Bayesian Sampler. Both will work equally well as an

over-dispersed approximation of pfB(θ, A|Y ). In practice, samples from iterated pragmatic

Bayesian sampler is suggested because of its efficiency, which is discussed in Section 4.2.

Suppose we have the pragmatic Bayesian samples, {(e(1)
pB, θ

(1)
pB), ..., (e

(T )
pB , θ

(T )
pB )}

We set the multivariate normal distribution QMVN(θ, e) to be,

θ
e

 ∼ N

µ̂θ
µe

 ,

Σ̂11 Σ̂12

Σ̂21 Σ22


 , (4.17)

Since e is sampled from the standard normal distribution in the pragmatic Bayesian sampler

(Recall that under the pragmatic Bayesian model, e is simulated according to its prior

distribution), µe = 0 and Σ22 = I. We set µ̂θ and Σ̂11 as the sample mean and sample variance

of θ obtained from the pragmatic Bayesian sample and set Σ̂12 as the sample covariance

between θ and e.

µ̂θ =

T∑
t=1

θ
(t)
pB

T

Σ̂11 =

T∑
t=1

(θ
(t)
pB − µ̂θ)(θ

(t)
pB − µ̂θ)>

T

Σ̂12 =

T∑
t=1

e
(t)
pB(θ

(t)
pB − µ̂θ)>

T

Σ̂21 = Σ̂>12

(4.18)

The conditional distribution of θ given e, written as QMVN(θ|e), is,

QMVN(θ|e) ∼ N (µ̂θ + Σ̂12e, Σ̂11 − Σ̂12Σ̂21) (4.19)

Thus, sampling from proposal distribution QMVN(θ, e) is straightforward. First, we sample
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e from the standard multivariate normal distribution. Next we sample θ from QMVN(θ|e).

Both steps only involve sampling from multivariate normal distribution.

Notice that using QMVN(θ, A) as the proposal distribution leads to an Independence Sampler,

as the current iteration does not depend on the previous iteration. A slight modification can

be made. We can still use a random walk sampler for e, as is done in Step 1B of Fully

Bayesian algorithm using Gibbs sampling. The new proposal distribution can be written:

Q′MVN(θ, e|θ(t), e(t)) = Q′MVN(θ, e|e(t))

= QMVN(θ|e)Q′MVN(e|e(t)) (4.20)

Q′MVN(e|e(t)) can simply be set to a normal distribution with mean equal to e(t). Overall, Q′

is not a random walk sampler, it involves QMVN(θ|A). We call it a Partial Random Walk

Sampler.

4.3.4 A Fully Bayesian Sampler with A Pragmatic Proposal

Combing these two proposal distributions, we can conduct a mixture of Independence Sam-

pler and Partial Random Walk Sampler for the fully Bayesian method.

Pragmatic Proposal Sampler:

For t = 1, 2, ..., T

Step 1: Randomly sample u1 from a standard uniform distribution.

If u1 < pm, go to Step 2, Partial Random Walk Sampler
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else, go to Step 3, Independence Sampler

Step 2: For j = 1, ..., J , Sample eprop
j ∼ N (µ = e

(t)
j , sd = σe)

Set eprop = (eprop
1 , ..., eprop

J ) and Aprop = Ā+ (A∗0 − A0) +
J∑
j=1

eprop
j rjvj.

Sample θprop ∼ QMVN(θ|eprop)

α =
p(Aprop, θprop|Y )QMVN(θ(t)|e(t))

p(A(t), θ(t)|Y )QMVN(θprop|eprop)
,

go to Step 4

Step 3: For j = 1, ..., J , Sample eprop
j ∼ N (0, 1)

Set eprop = (eprop
1 , ..., eprop

J ) and Aprop = Ā+ (A∗0 − A0) +
J∑
j=1

eprop
j rjvj.

Sample θprop ∼ QMVN(θ|eprop)

α =
p(Aprop, θprop|Y )QMVN(θ(t), e(t))

p(A(t), θ(t)|Y )QMVN(θprop, eprop)
,

go to Step 4

Step 4: Randomly sample u2 from a standard uniform distribution.

(e(t+1), A(t+1), θ(t+1)) =


(eprop, Aprop, θprop) if u2 < α

(e(t), A(t), θ(t)) otherwise

.

By taking the information of the pragmatic Bayesian sampler into the proposal distribution,

this algorithm has relative higher acceptance rate than the MH within Gibbs fully Bayesian

algorithm. Moreover, this algorithm no longer needs to use the sampler in PyBLoCXS which

makes the algorithm much more efficient. Only two tuning parameters are needed to sample

A (pm and σe). In practice, the default setting, pm = 0.5 and σe = 0.1 works well for most

data sets; this is because we have already picked much more efficient proposal distribution

afterwards in simulating θ, by using QMVN(θ|e). In contrast, MH within Gibbs fully Bayesian

56



0 500 1000 1500 2000

1.
00

1.
04

1.
08

iterations

Γ

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

0 500 1000 1500 2000

1.
00

1.
04

1.
08

iterations

Γ
0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Figure 4.2: Comparison of two fully Bayesian MCMC chains. Two fully bayesian samplers are
conducted for the simulated data set described in Section 3.2. The left column is the MCMC
draws from fully Bayesian using Gibbs sampler. The right column is the MCMC draws from
the pragmatic proposal sampler. The bottom row are the autocorrelation function plots for
the two samplers. The the pragmatic proposal sampler exhibits better convergence. As the
left bottom panel shows, the draws is almost uncorrelated when Lag = 30.

algorithm needs five tuning parameters to set up.

Compared to MH within Gibbs fully Bayesian sampler Section 4.3.1, the Pragmatic Proposal

Sampler has a dominant advantage in the performance of MCMC chain. Here, we compare

these two samplers by fitting the simulated data set, that is described in Section 3.2. For

the MH within Gibbs sampler, we set pm = 0.5 and σe = 0.1 for the Step 1, and scalepyb =

0.5, df pyb = 4, ppybm = 0.5 for the PyBLoCXS of Step 2. For the pragmatic proposal sampler, we

first need to draw samples from iterated pragmatic Bayesian sampler, in which we use the

optimal tuning parameters M = 10 (see in Section 4.2.2). We then use pragmatic proposal

sampler with pm = 0.5 and σe = 0.1.

We compare these two fully Bayesian samplers using two criteria–the computational time and
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the convergence rate. For the MH within Gibbs sampler, because of the existence of PyBLoCXS

in Step 2, 2000 iterations cost about 2-hour CPU time. For the pragmatic proposal sampler,

2000 iterations for iterated pragmatic Bayesian sampler and the pragmatic proposal sampler

costs about 30-minute and 10-minute CPU time, respectively. Therefore, the pragmatic

proposal sampler is more efficient than the MH within Gibbs sampler.

Figure 4.2 shows the performance of two chains from these two samplers. The left column is

the MCMC draws from MH within Gibbs sampler, and the right column is the MCMC draws

from the pragmatic proposal sampler. It shows that the draws form MH within Gibbs sampler

performs more “sticky”, and thus leads into a slower convergence rate. The two bottom

panels are the autocorrelation function plots for the two samplers. The autocorrelation of

pragmatic proposal sampler reduces much faster than that of the Gibbs sampler. When

Lag = 30, the draws is almost uncorrelated.

Overall, the pragmatic proposal sampler not only saves more than half the computational

time, but also improves the chain convergence rate substantially. Besides, it does not need to

apply the PyBLoCXS sampler, and thus avoids the problem of tuning parameters. Therefore,

in practice, the combination of iterated pragmatic Bayesian sampler and the pragmatic

proposal sampler for fully Bayesian is recommended.

In Chapter 5, we will also compare two versions of Pragmatic Proposal Sampler, one based

on MH within PCG Sampler of Lee et al. (2011) of Section 4.1 and one based on iterated

pragmatic Bayesian sampler of Section 4.2.1 in the simulation study. For the real data anal-

ysis, we will use the combination of iterated pragmatic Bayesian sampler and the pragmatic

proposal sampler for fully Bayesian as the default method.
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Chapter 5

Numerical Performance

In this chapter, we will first use a series of simulation studies to identify the circumstances un-

der which the fully Bayesian method is advantageous. Five methods–Standard method, prag-

matic Bayesian method, iterated pragmatic Bayesian method, fully Bayesian method based

on pragmatic Bayesian, and fully Bayesian method based on iterated pragmatic Bayesian–

will be compared. Then, frequency analysis will be conducted to provide more accurate

results. Last, we apply the standard method, iterated pragmatic Bayesian method and fully

Bayesian method based on samples from iterated pragmatic Bayesian method to real data

to demonstrate the advantages of the fully Bayesian method. We consider power-law and

multi-thermal sources observed with ACIS-S, and a nominal blackbody source observed with

Chandra HRC-S/LETG (HRC stands for High Resolution Camera, and LETG stands for

High Energy Transmission Grating.).
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Table 5.1: The eight simulations used to compare the standard, pragmatic Bayesian, and
fully Bayesian methods.

Effective Area Nominal Counts Spectal Model
Default? Extreme?? 105 104 Hard† Soft‡

Simulation I X X X
Simulation II X X X
Simulation III X X X
Simulation IV X X X
Simulation V X X X
Simulation VI X X X
Simulation VII X X X
Simulation VIII X X X

?The default effective area curve, A0, from the calibration library of Drake et al. (2006)
??An extreme effective area curve , Aext, from the calibration library of Drake et al. (2006)
†An absorbed powerlaw with Γ = 2, NH = 1023/cm2

‡An absorbed powerlaw with Γ = 1, NH = 1021/cm2

5.1 Simulation Study

We begin by replicating the same eight simulation studies of Lee et al. (2011), but this

time using the fully Bayesian method. The data sets were simulated from an absorbed

power-law source with three parameters (power-law index Γ, absorption column density NH ,

and normalization) using the fake pha routine in Sherpa. The first four data sets were all

simulated without background contamination using the XSPEC model wabs*powerlaw,

extremal effective area curve Aext from the calibration sample of Drake et al. (2006), and

a default RMF for ACIS-S. The power law parameter (Γ), column density (NH), and the

nominal counts are:

Simulation I: Γ = 2, NH = 1023cm−2, and 105 counts;

Simulation II: Γ = 1, NH = 1021cm−2, and 105 counts;

Simulation III: Γ = 2, NH = 1023cm−2, and 104 counts;

Simulation IV: Γ = 1, NH = 1021cm−2, and 104 counts
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The other 4 simulated data sets, Simulation V-VIII, have the exact same parameter setting,

except that they are simulated from nominal default effective area curve, A0. The simulation

represents 2 × 2 × 2 designs with three factors being (1) data simulated with an extremal

effective area curve Aext from A and with A0 , (2) 105 and 104 photon counts, and (3) hard

spectral powerlaw model with Γ = 2, NH = 1023cm−2 and soft spectral powerlaw model with

Γ = 1, NH = 1021cm−2. The setting is illustrated in detail in Table 5.1. We comprehensively

investigate the performance of the fully Bayesian method with regard to these three factors,

and make the model comparison with the standard method and the pragmatic Bayesian

method. These eight data sets are all fit with the default effective area curve, A0. This

means that first four data sets are fit with the wrong effective area curve, while the other

four are using the right effective area curve. This enables us to investigate the effect of

misspecification of A0, where the degree of misspecification is consistent with the variability

of the calibration library. Posterior distributions, intervals and fitted values for Γ computed

with each of three methods run on each simulation appear in Figures 5.1 and 5.2. The

standard, pragmatic Bayes and Fully Bayesian methods are represented by black, blue, and

red curves and intervals, respectively. The posterior means (fitted values) are represented

by a “×” and their 68.2% error bars are represented by horizontal bars. The joint posterior

distribution of Γ and NH under Simulation II for each of the three methods was discussed

in Section 3.2 and appeared in Figure 3.1. In all cases, the pragmatic Bayesian method

and iterated Pragmatic bayesian have almost identical results, same with the fully Bayesian

method based on the pragmatic Bayesian and the fully Bayesian method based on iterated

Pragmatic Bayesian. Thus, in Figures 5.1 and 5.2, we only plot the posterior density curves

for the pragmatic Bayesian and the fully Bayesian method based on the pragmatic Bayesian.

In all eight simulations, the standard method exhibits significantly narrower error bars than

the other methods, especially in the large count Simulations I, II, V, and VI. For the Simu-

lation I–IV, however, its intervals miss the true value of Γ by a large margin. The pragmatic

Bayesian method, by contrast, exhibits similar fitted values but much wider error bars, which
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reflects the variability in the fits resulting from different choices of A in the range of A. Fi-

nally the fully Bayesian methods uses the data to exclude some A in the range of A that

are inconsistent with the observed spectra. The result is optimal in that the fitted values

shift toward the true value of Γ and the width of the error bars is narrow relative to those

produced with the pragmatic Bayesian method. Thus, like the pragmatic Bayesian method,

the fully Bayesian methods provides error bars that contain the true value at nearly the

correct statistical rate (68.2% here), but these error bars are narrower than those provided

by the pragmatic Bayesian method—especially when the counts are large. We conduct a

large-scale simulation study in Section 5.2 to better quantify these trends.

For the Simulation VI-VIII, since we assume that the true effective area is known, as ex-

pected, the standard method performs the best. However, this assumption is unrealistic, as

we never know the true effective area in reality.

The results of the simulations can be better understood by considering the statistical errors

(due to Poisson fluctuations in the counts) and the systematic errors (due to misspecification

of the effective area curve). The standard method ignores the latter sources of error and

thus, not surprisingly, it provides narrower errors but can exhibit significant bias if the

misspecification of A is substantial. Because it only considers statistical errors, the standard

methods produces much narrower error bars for large-count spectra. The pragmatic Bayesian

method, on the other hand, incorporates both statistical and systematic errors, resulting in

significantly wider error bars. Because systematic errors do not dissipate as the sample

size grows, the error bars produced by the pragmatic Bayesian method are not particularly

sensitive to the number of counts. Lee et al. (2011) speculated that as the photon counts

grow and the statistical errors become negligible, the error bars produced by the pragmatic

methods will be entirely due to calibration uncertainty.

The power of the fully Bayesian method is that it actually uses the data to measure the

systematic error. Put another way, it transforms systematic error into statistical error.
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Figure 5.1: Results for Simulations I–IV. The panels show the posterior distributions
(curves), fitted values (×), and 68.2% error bars (horizontal bars) for Γ. Results for the
standard, pragmatic Bayesian, and fully Bayesian methods are plotted in black, blue, and
red, respectively. (The plotted pragmatic Bayesian posterior distributions correspond to
the MH within PCG Sampler of Lee et al. (2011) and the plotted fully Bayesian posterior
distributions corresponds the fully Bayesian based on the MH within PCG Sampler.) The
true value of Γ is given by the red broken vertical lines. These simulations consider the sit-
uation in which the default effective area curve is misspecified to a degree that is consistent
with the variability of the the calibration library. Because the standard method uses this
misspecified curve, it preforms poorly. Both the pragmatic and the fully Bayesian methods
avoid assuming that A is known without error allowing them to preform better. Of these
two, the fully Bayesian method provides both estimates of Γ that are closer to its true values
and narrower error bars..
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Figure 5.2: Results for Simulations VI–VIII. Since we assume that the true effective area is
known in these four simulations, as expected, the standard method performs the best.
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Figure 5.3: Fitting the effective area curve. The plots summarize pfB(A | Y ) for Simula-
tion II. The true and the default effective area curves are plotted in red and black, respec-
tively. The pointwise posterior distribution of A is plotted in blue, where the dark (light)
blue area corresponds to the central 68.3% (90%) region of the posterior distribution; the
pointwise posterior mean in plotted as a blue curve. The top panel is on the effective area
scale and the bottom panel subtracts off the true effective area curve, Aext, to magnify the
differences. The true effective area curve is contained largely (almost entirely) in the light
(dark) blue region. The posterior means (blue curve) is shifted from the prior mean to the
true effective area curve (in red). Because we do not use the counts in bins below 0.3keV,
we do not compute pfB(A|Y ) for these bins.
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Thus, its error bars are wider than those provided by the standard method because they

incorporate both sources of error, but their width descreases as the number of counts grows

because the data are able to narrow the calibration uncertainty. This in turn allows us to

go one step further and actually estimate A using its posterior distribution, pfB(A | Y ).

We illustrate this in Figure 5.3 which shows how pfB(A | Y ) differs from A0 when fitting

Simulation II. The shaded light blue region corresponds to a 90% pointwise posterior region

for A and contains the true effective area curve, Aext (plotted in red). The posterior region,

however, is shifted toward A0 (plotted in black), which serves as the prior mean for A.

Thus, the prior distribution on A has a clear influence on its posterior distribution. A

similar pattern can be seen in Figure 5.1. The fitted values of Γ are pulled from the true

value toward the best value assuming A = A0 as computed with the standard method. We

emphasize, however, that the prior distribution on A used by the fully Bayesian method

is in fact much weaker than what is commonly used in practice: the assumption that A is

exactly equal to A0. The standard method makes this assumption and as was demonstrated

in Section 5.2, its fitted values exhibit significant bias when A0 is misspecified.

Note that the components of e given Y in the fully Bayesian method are not independent

of each other anymore, which makes the inference of A a bit difficult. We still have the

property Ā = A(ē1, ..., ēJ), which is a linear transformation of A(e). But we cannot simply

compute the quantile of A, as Aq = A(e1,q, ..., eJ,q), where ej,q represents the qth quantile of

ej. The way we use for Figure 5.3 is making inference of the effective area one energy bin

by one energy bin, using the samples of A(e), rather than directly using e.
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5.2 Frequency Evaluation

The 2×2×2 simulation study described in Section 5.1 generated only one data set for each of

the eight simulation studies. Part of the reason why Lee et al. (2011) limited the simulation

in this way is because their MH within PCG sampler requires significant computational time.

The iterated MH within PCG sampler that we propose does the same job with a fraction

1/9 of the computational costs. In this section we generate fifty spectra in each of the eight

simulation settings described in Table 5.1 and fit each of the resulting 50×8 simulated spectra

with the standard, pragmatic Bayesian, iterated pragmatic Bayesian, fully Bayesian based

on pragmatic Bayesian and fully Bayesian based on iterated pragmatic Bayesian. The fitted

values for Γ and their 68.2% error bars computed using the first ten spectra generated in

each simulation appear in Figure 5.4 and 5.5. Numerical summaries of the entire simulation

study appear in Table 5.2. The fully frequency analysis confirms the trends we observed in

Section 5.1:

• The pragmatic Bayesian and the iterated pragmatic Bayesian perform almost the

same. In practice, the iterated pragmatic Bayesian can actually replace the prag-

matic Bayesian, since the CPU time of the iterated pragmatic Bayesian is about 1/9

time of the pragmatic Bayesian.

• No matter whether the fully Bayesian is based on pragmatic Bayesian or the iterated

pragmatic Bayesian, the results of the fully Bayesian are almost the same.

• In all eight simulations, the standard method on average exhibits the narrowest error

bars (mean error bars), the pragmatic Bayesian method has the widest, and those of

the fully Bayesian method are in between.

• When A is correctly specified all three methods preform well, but the standard method

is optimal, see Simulation V–VIII.
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Figure 5.4: Frequency Analysis for Simulations I–IV. Each panel gives the fitted values and
one σ error bars for Γ resulting from ten replicate simulations. The red broken vertical
line in each panel indicated the true value of Γ. The four rows correspond to the four
simulation settings and the five columns correspond to the standard, pragmatic Bayesian,
iterated pragmatic Bayesian, fully Bayesian based on pragmatic Bayesian and fully Bayesian
based on iterated pragmatic Bayesian, respectively. Owing to the misspecification of A0,
the standard and pragmatic Bayesian methods both exhibit significant bias. The pragmatic
Bayesian methods adjusts for this bias with wider error bars, while the fully Bayesian method
reduces the bias. Overall the fully Bayesian method is able to cover the true value of Γ more
often with narrow errors bars than either of the other methods, especially with large-count
spectra (i.e., Simulations I and II).
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Figure 5.5: Frequency Analysis for Simulations V–VIII. These four simulation settings are
designed to investigate the performance of three methods when fit with the right effective
area curve. As expected, the standard method performs the best.
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• In the more realistic situation in which there is uncertainty in A (i.e., Simulations I–IV)

both the standard and pragmatic Bayesian methods exhibit substantial bias. The fully

Bayesian method reduces this bias, resulting in the overall smallest mean square error.

• The advantage of the fully Bayesian method is most striking when A is misspecified and

the data set is large (Simulations I and II). In this case the estimates produced by the

fully Bayesian method have much smaller bias and root mean square error than those

of the other two methods. Fully Bayesian intervals are much more likely to include

the true value of Γ (coverage) than intervals based on a fixed effective area fit and

the fully Bayesian error bars can be much narrower than the pragmatic Bayesian error

bars. These effects dissipate with smaller data sets because substantial large data is

required to narrow the calibration uncertainty.

5.3 Application to a Sample of Radio-Loud Quasars

We use a small sample of radio loud quasars to illustrate the relative performance of the

standard, pragmatic Bayesian, and fully Bayesian methods. In radio loud quasars, X-ray

emission originates in close vicinity to a supermassive black hole and is believed to be caused

by either an accretion disk or a relativistic jet. This emission can be modeled with a Compton

scattering process and the X-ray spectrum described using an absorbed power law:

Λ(E; θ) = N E−Γ e−σ(E)NH photons cm−2 sec−1 keV−1 , (5.1)

where σ(E) is the absorption cross-section, and the three model parameters are θ = (N,Γ, NH)

with N the normalization at 1 keV, Γ the photon index of the power law, and NH the ab-

sorption column. X-ray spectra of the quasars were observed with the Chandra X-ray Ob-

servatory in 2002 (Siemiginowska et al., 2008; Lee et al., 2011). Standard data processing
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including source extraction and calibration was preformed using the CIAO software (Chandra

Interactive Analysis of Observations).

The number of counts in the observed spectra vary between 8 and 5500. Following Lee et al.

(2011), we excluded two of the spectra (ObsID 3099 which had 8 counts, and ObsID 836

which is better described by a thermal spectrum) and reanalyzed the remaining 15 using

the standard, pragmatic Bayesian, and fully Bayesian methods. We account for background

contamination using a background spectrum extracted over large annuli surrounding each

source and a highly-structured background model that was originally fit to the blank-sky

data provided by the Chandra X-ray Center, see Lee et al. (2011) for details. Only the

normalization of the background model was fit in the individual spectral analyses. This

approach was used for all but the two lowest-count spectra (< 45, both with short 5 ksec

exposures), for which background was ignored. The sample of quasars was originally analyzed

by Siemiginowska et al. (2008) who did not account for calibration uncertainty. A followup

analysis accounted for calibration uncertainty using the pragmatic Bayesian method and

resulted in substantially larger error bars for the high-count datasets (Lee et al., 2011). As

illustrated in Section 5.1, systematic errors due to calibration uncertainty swamp statistical

errors for large data sets. For small data sets, however, the statistical errors may be much

larger and the relative effect of calibration uncertainty is therefore less important. Here we

reanalyze the same spectra with the fully Bayesian method and illustrate how it is able to

deliver low-bias parameter estimates with smaller error bars than the pragmatic Bayesian

method.

We fit each spectrum in three ways:

1. with the standard method,

2. with the pragmatic Bayesian method using the Iterated MH within PCG Sampler, and

3. with the fully Bayesian method using the Mixed Pragmatic Proposal Sampler.
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With each of the three methods, we use the fifteen observation-specific default effective area

curves, A∗0 corresponding to each spectra. For the two Bayesian methods, we use J = 8

in the PCA summary of the calibration library along with the A∗0 in Equation 2.4. When

running the Iterated MH within PCG Sampler, we set I = 10 and M = 10; that is at each

iteration we run PyBLoCXS M + I − 1 times, discarding the output of the first I − 1 runs

and keeping the output of the final M runs. In the Mixed Pragmatic Proposal Sampler, the

two proposal rules were used in equal proportion and with the random-walk proposal we set

σ = 0.1.

Results are illustrated in Figures 5.6 and 5.7. Error bars for Γ computed under the pragmatic

Bayesian (σ̂pB) and fully Bayesian (σ̂fB) methods are compared with those computed under

the standard method (σ̂std) in Figure 5.6. The left panel replicates results of Lee et al. (2011)

and shows that for large data sets, for which σ̂std is small, the pragmatic Bayesian method

produces much wider error bars than the standard method; σ̂pB accounts for systematic and

statistical errors, whereas σ̂std only accounts for statistical errors. For the largest datasets

σ̂pB is twice as big as σ̂std. The right panel of Figures 5.6 shows that by converting systematic

errors into statistical errors, the fully Bayesian method produces error bars more in line with

σ̂std; although for the largest data sets σ̂fB is bigger than σ̂std, it is not as big as σ̂pB.

Figure 5.7 compares the 1σ intervals for Γ produced by the three methods. Consider an

interval computed under the pragmatic Bayesian method: CIpB(Γ) = {Γ̂ ± σ̂pB(Γ)}, where

Γ̂ is the estimate of Γ under this method. To compare this interval with that computed

under the standard method, we subtract Γ̂std from CIpB(Γ) and divide by σ̂std(Γ). The

result is an interval that extends from −1 to 1 if CIpB(Γ) and CIstd(Γ) are identical, is

wider if σ̂pB > σ̂std, and shifts to the left or right if Γ̂pB and Γ̂std differ. These adjusted

intervals are plotted in the left panel of Figure 5.7. There is very little shifting to the left or

right because the pragmatic Bayesian and standard methods produce very similar estimates.

For small data sets (large values of σ̂std) the adjusted intervals are nearly {−1, 1}, but for
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Figure 5.6: Comparing the error bars for Γ computed under the standard (σ̂std), pragmatic
Bayesian (σ̂pB), and fully Bayesian (σ̂fB) methods using spectra from each of fifteen radio-
loud quasars. Smaller values of σ̂std correspond to data sets with more counts. For high-count
spectra, σ̂pB tends to be substantially larger than σ̂std while σ̂fB is only moderately larger
than σ̂std. Thus, the fully Bayesian methods is able to provide a principled accounting for
calibration uncertainty with only a moderate increase in the final error bars.

larger data sets (small values of σ̂std) the adjusted intervals are as much as twice as wide.

The right panel of Figure 5.7 adjusted intervals computed under the fully Bayesian method,

CI fB(Γ), in the same manner. For the smaller data sets CI fB(Γ) and CIstd(Γ) are similar,

but for large data sets, they differ: the adjusted intervals tend to shift to the left or right

but are not generally much more than four units wide. This means that the fully Bayesian

method tends to adjust the fitted value and to increase error bars only moderately. In two

cases (ObsID 3097 and 866) the fully Bayesian method shifts the fitted value of Γ by more

than error bar (σ̂std). This constitutes a significant shift in the scientific inference for these

observations when calibration uncertainty is accounted for in a principled Bayesian manner.
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Figure 5.7: Comparing the confidence intervals for Γ computed under the standard, prag-
matic Bayesian, and fully Bayesian methods using spectra from each of fifteen radio-loud
quasars. The left panel plots 1σ confidence intervals computed with the pragmatic Bayesian
method, but re-centered and re-scaled using the estimate and error bars of Γ computed under
the standard method: (CIpB− Γ̂std)/σ̂std(Γ). If the pragmatic and standard methods return
the same estimates and error bars, the plotted intervals would equal the interval (−1, 1). In
fact the plotted intervals are as much as twice this wide for large-count (small σ̂std) datasets,
indicating that σ̂pB can be substantially larger than σ̂std. The right panel plots 1σ confidence
intervals computed with the fully Bayesian method, re-centered and re-scaled in the same
manner. The plotted intervals shift right and left because the fitted values under the stan-
dard and fully Bayesian methods differ. The width of the fully Bayesian intervals, however,
are only moderately larger than under the standard method.
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5.4 Fitting a multi-thermal spectral model

Our analyses thus far have been carried out using a simple power-law spectral model, for both

simulations (Section 5.1) and observed data (Section 5.2). Here we illustrate the pragmatic

and fully Bayesian methods using a more complex multi-component thermal model.

We choose one of the strongest sources in the Chandra Source Catalog, ζ Ori, a young

(<12 Myr) binary system comprised of an O9 supergiant that is X-ray bright, and a weaker

B0 subgiant about 3′′ away. The source is observed (ObsID 1878) at 15 arcmin off-axis,

and situated on the ACIS-S2 chip, and is detected with a count rate of 1.33 ct s−1, with

> 105 counts in 75.46 ksec. Because of the large off-axis location, the point spread function

is broad, and the binary cannot be spatially resolved. Furthermore, the source is spread out

over > 20000 pixels, with maximum flunce at < 0.0017 ct s−1 at any pixel, and CCD pileup

effects may be ignored.

Our objective here is not to model the spectrum in detail (the X-ray emission is thermal,

generated from shocked plasma deep in the wind; see Waldron and Cassinelli (2001), Pollock

(2007), Raassen et al. (2008), Herve et al. (2013) for various models designed to account for

X-ray emission from massive stars); rather, it is to consider the effect calibration uncertainty

has on spectral fitting. We construct a variable-abundance absorbed 2-temperature APEC

spectral model and fit it to the data. This mimics roughly previous attempts to model

spectra of ζ Ori obtained with other telescopes such as ASCA (Yamauchi et al., 2000) and

XMM-Newton (Raassen et al., 2008). For reference, Yamauchi et al. find two temperature

components at T1 = 0.2, T2 = 0.6 keV, at an absorption column fixed at NH = 2.6 1020 cm−2;

Raassen et al. find three temperature components at T1 = 0.55, T2 = 0.2, T3 = 0.07 keV,

NH = 5 1020 cm−2, with abundances of C, N, and O, being close to solar photospheric (rep-

resented by the compilation of Anders and Grevesse (1989)), and those of Ne, Mg, Si, and Fe

being elevated. The results of applying the standard analysis, pragmatic Bayesian, and fully
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Bayesian methods to the data are given in Table 5.3. We find significantly higher absorption

columns, and lower temperatures and abundances, with our estimated abundance consistent

with the low metallicities measured for the nearby NGC 2023 star cluster (Lpez-Garca et al.,

2013). We find that these results are stable with respect to calibration uncertainty, with all

three methods producing similar best-fit values.

The fits are also summarized in Figures 5.8 and 5.9. In particular, they show that relative

to the standard method, the pragmatic Bayesian method delivers similar fitted values for

T1 and T2, but accounts for calibration uncertainty by inflating their error bars. The fully

Bayesian method shifts the fitted values by a small amount and generally requires a smaller

increase in the error bars. In this case, the posterior correlation of T1 and T2 decreases under

the fully Bayesian method, see Figure 5.9.

Table 5.3: Fit parameters for ζ Ori

Model Standard Pragmatic Bayesian Fully Bayesian
Parameters Analysis Analysis Analysis
NH [1022 cm−2] 0.1475 ±0.00901 0.1498 ±0.00916 0.1511 ±0.00866
T1 [keV] 0.179 ±0.0016 0.179 ±0.0022 0.181 ±0.0019
T2 [keV] 0.475 ±0.0063 0.474 ±0.0069 0.471 ±0.0068
[C,N,O]a 0.23 ±0.018 0.23 ±0.024 0.21 ±0.026
[Ne]a 0.48 ±0.031 0.48 ±0.033 0.47 ±0.034
[Ni,Mg, Si, Ca, Fe]a 0.41 ±0.028 0.41 ±0.032 0.40 ±0.032
Norm1 [1014 cm−5] 0.0628 ±0.0065 0.0640 ±0.0078 0.0588 ±0.0056
Norm2 [1014 cm−5] 0.0105 ±0.00057 0.0107 ±0.00079 0.0100 ±0.00059
a : abundances relative to solar (Anders and Grevesse, 1989)

The second row of Figure 5.8 shows time series plots of the Markov chains of T1 used to

simulate the three posterior distributions. While all three converge reasonably well, the fully

Bayesian chain occasionally “sticks” at a particular value of the parameter for a number of

iterations. This indicates that the pragmatic proposal distribution may attribute relatively

little probability to some regions of the parameter space with appreciable probability under

pfB(θ, A | Y ). This can also be seen in Figure 5.9 where the 90% contours of (normal

approximations to) the pragmatic and fully Bayesian posterior distributions are plotted in
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Figure 5.8: The standard, pragmatic Bayesian, and fully Bayesian fits of the T1 and T2

parameter in the spectrum of ζ Ori. The first row plots a Monte Carlo simulation from each
of the three posterior distributions; the solid red lines correspond to the posterior means of
T1 and T1 under each fit. The fitted values (posterior means) for the two parameters are
indistinguishable under the standard and pragmatic Bayesian methods, but shift noticeably
under the fully Bayesian method. Error bars are quantified by the spread of the simulated
parameter values under each of the methods. The error bars under the pragmatic Bayesian
method are noticeably larger than those computed with the other two methods. Thus, the
fully Bayesian method again is able to account for calibration uncertainty by shifting the
fitted values rather than by increasing their error bars. The second row presents time series
plots of the Markov chains for T1 used to generate the three Monte Carlo simulations. While
all three chains are fairly well behaved, the fully Bayesian chain occasionally “sticks” at the
same parameter value for a number of iterations. This is an indication that the pragmatic
proposal distribution attributes relatively little probability to some regions of the parameter
space with appreciable probability under pfB(θ, A | Y ). Nonetheless, the algorithm preforms
well enough for valid inference.
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Figure 5.9: The plot superimposes the 90% contours of the three posterior distributions
simulated in the first row of Figure 5.8. The contours are computed using a normal approxi-
mation to the posterior distribution computed under the standard (red), pragmatic Bayesian
(green), and fully Bayesian (blue) methods. The posterior means under the three methods
are plotted, respectively, as a red ×, a green +, and a filled blue square. Relative to the
standard method, the pragmatic Bayesian method delivers similar fitted values and larger
error bars, while the fully Bayesian method shifts the fitted value but only moderately in-
flates the error bars. In this example the correlation of the two parameters decreases under
the fully Bayesian method.
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green and blue, respectively. The fact that the fully Bayesian contour extends outside the

pragmatic Bayesian contour indicates that we may have trouble exploring parts of pfB(θ, A |

Y ) using the pragmatic proposal distribution. (Recall that we require the jumping rule of

the independence sampler to be an over-dispersed approximation to pfB(θ, A | Y ).) The

mixed pragmatic proposal sampler, however, mixes the pragmatic proposal with a random

walk update. This second component allows simulation of parameter values with relatively

low probability under the pragmatic proposal rule.

This, however, comes at significant computational cost. Owing to its “sticking” we ran the

fully Bayesian sampler for 30,000 iterations. (The pragmatic sampler was run for 3000.) This

combined with complexity of the multi-thermal spectral model fit with its eight parameters

resulted in a significant computation burden. The analyses in this section required about

one week of computing time compared with about an hour for the blackbody model that we

will describe in Section 5.5 and about 90 minutes for each of the quasars fit in Section 5.3.

In the fully Bayesian run, the data prove to be informative about the effective areas. The

subset of A that is consistent with the data and the adopted model suggests that the nominal

effective area is underestimated (see Figure 5.10) This is not surprising, since effective areas

at large off-axis angles are not as well calibrated as near the aimpoint. Our analysis suggests

that at off-axis angles > 15 arcmin the Chandra effective areas must be increased by ≈10%.

5.5 Fitting a blackbody model to a grating spectrum

As an additional example of the versatility of our approach, we consider data from an

entirely different detector, fitted with a blackbody spectral model. We analyze a high-

resolution grating spectrum of an isolated Neutron Star, RX J1856.5-3754 (RXJ1856). This

source has been observed with the LETGS+HRC-S grating/detector combination numerous
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Figure 5.10: Estimating the range of effective area curves that are consistent with the
spectrum of ζ Ori. The plots summarize pfB(A | Y ). The pointwise posterior distribution
of A is plotted in blue, where the dark (light) blue area corresponds to the central 68.3%
(90%) region of pfB(A | Y ). The pointwise posterior mean of A and its default value, A0

are plotted as solid blue and dotted black lines, respectively. The top panel shows the full
effective areas and the bottom panel subtracts off the default effective area curve, A0, to
highlight the differences. (We cannot subtract off the true curve as in Figure 5.3 because
it is unknown.) The data suggest that A0 underestimates the true effective area by ≈10%,
and the vignetting correction must be reduced for large off-axis angles for Chandra imaging
observations.
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times over the Chandra mission, and has accumulated 617.735 ks of exposure. RXJ1856 is

intrinsically an interesting object: it was originally classified as an isolated Neutron Star,

but was later suspected to be a Quark Star Drake et al. (2002). The X-ray data were fit

as a blackbody spectrum with a temperature of T = 61.1±0.3 eV by Drake et al., resulting

in a radius estimation of ≈4-8 km. But the optical data are inconsistent with the X-ray

predictions, and require fitting by a more complex magnetic Hydrogen atmosphere model,

with a temperature of T∞≈37 eV and a conventional radius R∞≈17 km consistent with a

neutron star core Ho et al. (2007). In the X-ray regime itself, these two models cannot be

statistically distinguished (Ho et al. (2007)).

Table 5.4: Fit parameters for RX J1856.5-3754

Model Standard Pragmatic Fully
Parameters Analysis Bayesian
NH [1022 cm−2] 0.0091 ±0.00043 0.0091 ±0.00058 0.0093 ±0.00055
T [eV] 62.4 ±0.58 62.5 ±1.05 62.4 ±0.93
Norm [0.083 ergs s−1 cm−2] 0.00031 ±5.6×10−6 0.00031 ±2.3×10−5 0.00032 ±2.2×10−5

Background scale 65.6 ±1.5 65.8 ±1.8 65.5 ±1.7

Here, for the sake of simplicity, we adopt an absorpbed Blackbody spectrum model to fit the

soft X-ray data. This spectral model was fit using exactly the same methods and algorithms

as in Section 5.3, except that the background was modeled as a fixed 8th-degree polynomial

whose coefficients were determined via a standard fit to the background spectrum, and was

then incorporated into the source model with a variable normalization.

As was done for the Chandra/ACIS-S, we generate a calibration library based on constrained

spline curve modifications of known subsystem uncertainties in the LETGS+HRC-S system

(Drake et al., in preparation). We have computed the principal components for this library,

and show the top 5 components (in color), which together account for > 95% of the variance

in the library, in Figure 5.11. Also shown, in grey, are the summed contributions of the

remaining 5% of the components. Notice that there are wavelength regions where this

residual could be a significant factor. The wavelength range over which the RXJ1856 data are
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informative are shown with vertical dashed lines, and residual components do not affect the

analysis over this range. Note that in all our analyses below, we use 8 principal components.

We limit our analysis to the wavelength ranges [+25 : +59.5,+68 : +80] Å, with the gap

centered on the HRC-S chip gap. The chip gap is excluded because, even though the nominal

effective area A0 includes the effect of dither and corrects for the drop across the gap, it is

subject to additional systematic errors due to deformations in where the active regions on

the chip are located, and these are not included in the calibration library. We co-add the

spectra from all positive dispersion datasets of RXJ1856. We exclude the negative dispersion

data because it has a chip gap at a different wavelength range, which we make it difficult to

interpret the analysis results. There are ≈129 kct in the spectrum over the chosen wavelength

range, of which ≈43.8 kct are estimated to be due to the background. Though the large

number of net counts (≈85 kct) puts this dataset well in the range of that likely to be affected

by calibration uncertainty, the large fraction of expected background counts makes this an

inefficient dataset to place constraints on the calibration library. As expected, the application

of pragmatic Bayesian method expands the error bars on the best-fit model parameters (see

Table 5.4), For instance, the temperature estimate remains stable at T = 62.4 eV, but

the uncertainty increases from ±0.6 eV for the standard analysis to ±1.05 eV for pragmatic

Bayesian, and decreases slightly to ±0.93 eV for the fully Bayesian analysis (see Figure 5.12).

Unlike the case with ζ Ori (Section 5.4), there is no significant effect on the range of effective

area curves in the calibration library that are consistent with the spectrum of RXJ1856

(see Figure 5.13). We attribute this lack of sensitivity partly to the high background that

contaminates the dataset, and also to the short wavelength range over which the dataset is

informative. As we see from the Principal Components displayed in Figure 5.11, there are

long-range correlations present in the library which will be selected when a source with a

suitably long wavelength range is analyzed. In the current analysis, there is a suggestive

small curvature bias of ∼1-2% in the HRC-S/LETG effective area over the 25− 80 Å range.
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This bias, however, is fully contained within the nominal 1σ range of the effective area curves.

84



Figure 5.11: Top 5 Principal Components of the Chandra LETGS+HRC-S effective area
calibration library. The 1st (blue), 2nd (red), 3rd (green), 4th (brown), and 5th (pink) compo-
nents, weighted by the square-root of their eigenvalues, are shown as colored regions. The
the sum of the similarly weighted contributions from the remaining components is shown as
grey. The vertical dashed lines indicate the wavelength range over which the data analysis
is carried out.
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Figure 5.12: The standard, pragmatic Bayesian, and fully Bayesian fits of the the temper-
ature and absorption column in the spectrum of RX J1856.5-3754. The plots are layered as
in Figure 5.8. In this case, however, there is only a small shift of the fitted values (posterior
means given by the solid red lines). There is a noticeably less joint uncertainty in the two
parameters under the fully Bayesian fit than under the pragmatic fit. There is no noticeable
sticking for the any of the MCMC samplers; compare the second row with that of Figure 5.8.
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Figure 5.13: Estimating the range of effective area curves that are consistent with the
spectrum of RX J1856.5-3754. The plots summarize pfB(A | Y ). The pointwise posterior
distribution of A is plotted in blue, where the dark (light) blue area corresponds to the
central 68.3% (90%) region of pfB(A | Y ). The pointwise posterior mean of A and its default
value, A0 are plotted as solid blue and dotted black lines, respectively. The top panel displays
the the effective areas and the bottom panel shows the same data with the default effective
area, A0, subtracted off to highlight the differences. (We cannot subtract off the true curve
as in Figure 5.3 because it is unknown.) Here the fitted (posterior mean) and default (dotted
black curve) are very similar.

87



Chapter 6

Uncertainty in Photon Redistribution

Matrix

In this chapter, we will focus on another source of calibration uncertainty, the photon re-

distribution matrix. Unlike the procedure used to analyze uncertainty in the effective area

curve, here we will first summarize the photo redistribution matrix by a normal approxi-

mation for each row, and then conduct PCA to the normal density parameters. With this

summarization, the standard, pragmatic Bayesian and fully Bayesian methods are applied

to account for uncertainty in the photon redistribution matrix in spectral analysis. Because

of the complexity of the photon redistribution matrix, incorporating its uncertainty becomes

much more challenging. We illustrate that the same sampling algorithms apply as in the

case of the effective area curve, and the simulation results demonstrate that the advantages

of the fully Bayesian method preserves.
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6.1 Summarizing the Uncertainty of Photon Redistri-

bution Matrix

In this section, we describe the concept of the photon redistribution matrix, and provide

the reasons why simple PCA cannot be used to summarize the redistribution matrix. We

will develop a more complicated algorithm in Section 6.1.3 to capture the uncertainty of the

photon redistribution matrix.

6.1.1 Photon Redistribution Matrix

Since the detectors do not have perfect resolution, the recorded energy of a photon may

be different from its true energy. And this spreading of the energy is typically represented

by a matrix, the photon redistribution matrix. In high resolution instruments (e.g. diffrac-

tion gratings, such as HETG (High Energy Transmission Grating) and LETG (Low Energy

Transmission Grating)) the matrix is almost diagonal. In proportional counters the matrix

elements are non-zero over a large area. CCD (Charge-Coupled Device) detectors, such as

ACIS (Advanced CCD Imaging Spectrometer), are an intermediate case, with most of the

response being almost diagonal, but escape peaks and low energy tails adding significant

contributions.

Photon redistribution matrix element, R(E∗;E), represents the probability that an incoming

photon with energy E will be detected in the output detector channel E∗. We represent

R = {R(E∗;E)} as the whole photon redistribution matrix, with the dimension N × K,

where N is the number of the energy bins and K is the number of channel bins of the

detector. Each row n of R can be regarded as a probability density function, thus the sum

of each row equals one. Figure 6.1 shows one example of the photon redistribution matrix

of an ACIS detector. To better explore the structure of this matrix, we use a color-scheme
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Figure 6.1: One example of photon redistribution matrix. This image is the plot of logarithm
transformation of R, log(R+ 10−6). It clearly shows that most matrix elements are equal or
close to zero. The main probability lies on two diagonal lines, and the right line takes about
98% of the photon response.

based on the logarithm transformation of R, log(R + 10−6). This redistribution matrix has

the dimension 1078 × 1024. The image clearly shows that most matrix elements are equal

or close to zero. Most of the probability lies on two diagonal lines, and the main diagonal

line takes about 98% of the photon response. In reality, since lots of the matrix elements are

zero, photon redistribution matrix is stored in a standard FITS (Flexible Image Transport

System) file format to save hardware space. FITS file format only stores the value of the

nonzero elements of the matrix, and the index of the these values.

As in the effective area curve case, a library of ACIS redistribution matrices is generated to
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represent the best quantification of the calibration uncertainty in redistribution matrix. In

our general notation, we denote the redistribution matrix library by R = {R1, R2, ..., RL},

where L = 1000, and let R0 denote the default redistribution matrix associated with the

library. For this library, all the matrices have the same dimension, M = 1078 and K = 1024.

6.1.2 Naive PCA Summary

In order to summarize the redistribution matrix into a concise and usable form, we need to

reduce the dimension from more than one million (1078× 1024) into a feasible number and

then set up a proper prior distribution π(R) for R. Thus, we can sample a new redistribution

matrix Rnew from this prior distribution and evaluate the prior probability for Rnew. Hence,

the pragmatic Bayesian and fully Bayesian methods can be applied.

Similar to the PCA for the effective area curve, we have the following method to summarize

the redistribution matrix.

Naive PCA Summary:

Step 1: vectorize the redistribution matrix R into R̃

Step 2: perform PCA summarization for L one-million-dimensional vectors, R̃ (see the

detail algorithm in Section 1.5)

Step 3: use the PCA result to sample new R̃new (similar to the case in Section 2.3)

Step 4: transform the vector R̃new into matrix format, Rnew

There are several issues with this easy algorithm. First, to perform PCA for L million-

dimensional vectors requires a large amount of computation. Secondly, this algorithm ignores

the inherent constraints of the redistribution matrix. Since each row of the redistribution
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matrix represents a probability density function, all the elements should be bigger than or

equal to zero and each row sums to one. This algorithm cannot guarantee that the new

redistribution matrix has these properties. Lastly, when we use the PCA result to formulate

the prior distribution π(R), we essentially assume that the uncertainty in R can be described

by a multivariate normal distribution; see Section 1.5. Figure 6.2 shows the histogram of

25 selected matrix elements from the L redistribution matrix samples. These 25 elements

are along the main diagonal line of Figure 6.1, and are relatively large probabilities. It

demonstrates the probability density of each of these 25 elements is highly left-skewed and is

nowhere close to the normal density curve. Thus, simply use this naive method to summarize

the redistribution matrix in inappropriate.

6.1.3 Redistribution Matrix Summary

In order to better summarize the redistribution matrix, we explore the structure of each row

of the redistribution matrix. In more detail, from Figure 6.1, we can see the main proportion

of probability lies along the main diagonal, and it is reasonable to assume that the main

uncertainty of the redistribution matrix comes from these elements near this main diagonal.

We will focus on the summarization of these elements.

Figure 6.3 illustrates the probability density structure of each row of the default redistribu-

tion matrix, R0. Each curve represents the probability density function of the redistribution

of one photon in energy bin E, and E∗ represents its recorded energy (channel bin). The

number on top of the curve is the row indictor of the redistribution matrix, which is an

index for E. From this figure, we can see the probability density curve for each row has the

symmetry and bell-shaped properties. Notice that this curve is different from the density we

describe in the Figure 6.2 in Section 6.1.2, which is based on only one matrix entry across

1000 redistribution matrix samples. This finding enables us to use normal approximation to
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Figure 6.2: Histogram of 25 selected redistribution matrix elements. These 25 elements are
along the main diagonal line of Figure 6.1, containing relatively large probabilities. It shows
the probability density of these 25 elements is highly left skewed and far away from the
normal distribution.
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Figure 6.3: Probability density curve of each row of default redistribution matrix, R0. Each
curve represents the probability density function of the redistribution of one photon in energy
bin E, and E∗ represents its recorded energy (channel bin). The number on top of the curve
is the row indictor of the redistribution matrix, which is an index for E. For example, the left
black curve represents the density curve of the 80th row of R0. It shows that the probability
density curve for each row has the symmetry and bell-shaped properties, which enables us
to use normal approximation to summarize the probability density.

fit each probability density curve, thus reduces the dimension of each row n from K (1024,

number of channel bins) to 2 (mean and variance of approximated normal density function).

In this way, we can efficiently compress a redistribution matrix R with the dimension N ×K

(1078 × 1024) into a parameter vector Ψ with dimension 2N (1078 × 2 = 2156). Once L

redistribution matrices in the library are compressed into L 2N -dimensional vectors, PCA

can be used to summarize the correlation structure of Ψ.

Here, we propose the algorithm for photon redistribution matrix summarization:
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Redistribution Matrix Summarization:

Step 1: Each Ri ∈ R is separated into two matrices, Ri = Rb
i +Rs

i , where Rb
i only contains

big elements along the main diagonal line (about 30-50 elements per row; other elements

are zero), and Rs
i contains all other small values. We only consider the uncertainty

in Rb
i . Figure 6.4 illustrates the boundaries that are used to separate Ri into Rb

i and

Rs
i . The elements between the two black lines are considered as large value entires,

and thus used to construct Rb
i . Rs

i is built with the other elements. The separation

boundaries are the same for each Ri.

Step 2: For each row n of Rb
i , R

b
i [n, ], we approximate it with normal density function,

with µi;n = argmax
k

Rb
i [n, k], and σ2

i:n =
K∑
k=1

Rb
i [n, k](k − µi;n)2, where we set the mode

location of Rb
i [n, ] as the mean of the normal density function.

Step 3: The normal approximation allows us to transform Rb
i into 2N -dimension vector Ψi,

Ψi = {(µi;1, σ2
i:1), ..., (µi;n, σ

2
i:n), ..., (µi;N , σ

2
i:N)}. The redistribution matrix library R is

therefore written as 	 = {Ψ1, ...,Ψi, ...,ΨL}

Step 4: We conduct PCA for the mean subtracted 	−Ψ̄ = {Ψ1−Ψ̄, ...,Ψi−Ψ̄, ...,ΨL−Ψ̄},

and obtain the biggest J eigenvalues {r2
1, r

2
2, ..., r

2
J} and the corresponding eigenvectors

{v1, v2, ..., vJ}, where r2
1 ≥ r2

2 ≥, ...,≥ r2
J as in Section 1.5

In Step 1, since we only focus on the uncertainty on the elements along the main diagonal

line, we cut the redistribution matrix into two matrices and use the normal approximation for

the important elements. Otherwise, using one simple normal distribution to approximate the

whole row vector of redistribution matrix would not be appropriate because of the existence

of a secondary diagonal line and other subtle structures in the redistribution matrix as shown

in Figure 6.1. In Step 2, notice we use the mode location of Rb
i [n, ] as normal density function

center instead of the mean. In reality, the shape of the row vector, Rb
i [n, ] is often a bit left-

skewed and not perfectly normal. After conducting multiple tests, we found that using the
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Figure 6.4: Boundaries used to separate R into Rb and Rs. Two black lines indicate the
boundaries of the redistribution matrix elements that we will consider uncertainty of. We
build the matrix Rb by keeping the elements between these two lines, and forcing other
elements to be zero. And Rs can be simply constructed by R − Rb. The red line indicates
the location of elements containing largest value for each row of R0

mode location of Rb
i [n, ] as normal density function center works better than using mean,

for the approximation of the large value elements, where we put high priority. In Step 4, we

found that using the one, three and ten largest principle components count for 83.3%, 92.1%,

and 94% of the variance among 	, respectively. Since the additional variance explained by

using J = 10 rather than J = 3 is small, we use J = 3 in the following numerical analysis.

Moreover, smaller J means easier implementation for both pragmatic and fully Bayesian

methods.

6.1.4 Sampling Redistribution Matrix

Having summarized the redistribution matrix, we can build up a prior distribution for it,

π(R). It would be similar to, but slightly more complicated than, setting an effective area

prior. In this section, we detail the steps for sampling a redistribution matrix Rnew and

evaluating the prior probability of Rnew.
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Sampling the Redistribution Matrix:

Step 1: Simulate ej ∼ N (0, 1) independently for j = 1, ..., J .

Set e = {e1, ..., eJ} and Ψnew(e) = Ψ̄ +
J∑
j=1

ejrjvj

Step 2: Once the Ψnew(e) is simulated, Rb
new can be constructed, as follows.

Set µnew;n = Ψnew[2n− 1], and σ2
new;n = Ψnew[2n], and

Rb
new[n, k] =

1√
2πσ2

new;n

exp{−(k − µnew;n)2

2σ2
new;n

}

Notice this step is only for the elements of Rb, which are the entires between the two

black lines in Figure 6.4

Step 3: Set the new redistribution matrix Rnew = (R∗0 −R0) +Rb
new + R̄s,

where R∗0 is the user-generated observation-specific redistribution matrix, R0 is the

default redistribution matrix of the library R, and R̄s is the mean of the redistribution

matrix library for the small elements, which are the entires outside two black lines in

Figure 6.4.

Step 4: Modify Rnew to ensure that it is a valid redistribution matrix: negative entries, if

any are set to zero, and each entry is divided by the row sum to make the row sum to

one.

In Step 1, all the values of the new simulated Ψnew need to be positive to be a valid parameter

vector. In practice, it is rare to have negative values, because 	 contains all positive values,

and the PCA typically results in an all-positive Ψnew, too. In Step 3, the term R∗0 − R0

is the adjustment for the difference between observation-specific redistribution matrix and

the redistribution matrix library. Adding R̄s directly into Rnew means that the uncertainty

among the small value elements is ignored.

Overall, this algorithm allows us to sample a new distribution matrix only by sampling

independent standard normal deviations e and constructing the matrix from e. We will use
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the notation R(e) to represent the construction of R from e. Thus the prior for R obtained

from the prior for e:

π(R) =
J∏
j=1

π(ej) (6.1)

Since e is simulated independently fromN (0, 1), the calculation of the prior for π(R) becomes

straightforward. We expect the effect of probability transformation in Step 4 is minimal.

Figure 6.5 and 6.6 illustrate the performance of this redistribution matrix sampling algo-

rithm, compared to redistribution matrix library. 50 matrix elements are picked for the

comparison, 25 elements containing large values (Figure 6.5) and the other 25 containing

relatively small values (Figure 6.6). The histogram demonstrates the probability density of

certain matrix elements from 1000 redistribution matrix samples of the library, while the red

curve demonstrates the probability density of the same matrix element from 1000 simulated

redistribution matrices using this sampling algorithm. These two figures show that in gen-

eral the redistribution matrix sampling algorithm can capture the structure the uncertainty

of the redistribution matrix. It is not working perfectly when the row index is below 80,

corresponding to low energy bins below below 1 Kev.

However, note that using this sampling algorithm, we succeed to reduce the dimension of

the redistribution matrix from one million to three, which favors the implementation of the

pragmatic Bayesian and fully Bayesian methods. In the following sections of this chapter,

we will discuss how this sampling algorithm is used in the pragmatic Bayesian and fully

Bayesian methods for calibration uncertainty in the photon redistribution matrix.
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Figure 6.5: Redistribution matrix sampling algorithm for 25 large value elements. The
histogram demonstrates the probability density of certain matrix elements from 1000 redis-
tribution matrix samples of the library, while the red curve demonstrates the the probability
density of the same matrix element from 1000 simulated redistribution matrices using this
sampling algorithm.
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Figure 6.6: Redistribution matrix sampling algorithm for 25 relatively small value elements.
The histogram demonstrates the probability density of certain matrix elements from 1000
redistribution matrix sample of the library, while the red curve demonstrates the the proba-
bility density of the same matrix element from 1000 simulated redistribution matrices using
this sampling algorithm.
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6.2 Pragmatic Bayesian Method

For the following sections of this chapter, we will only focus on calibration uncertainty of

photon redistribution matrix, while the effective area curve will be fixed to be the default

one. First, we illustrate how the choice of the redistribution matrix affects the spectral anal-

ysis result and why incorporating the uncertainty of the redistribution matrix is necessary.

Secondly, the pragmatic Bayesian method for photon redistribution matrix is described.

6.2.1 The Effect of the Choice of Photon Redistribution Matrix

Consider the spectral model, Equation (2.1), and suppose we adopt the Bayesian frame-

work, where the spectral parameter θ and the photon redistribution matrix R are treated

as unknown quantities, ψ = (θ, R), and the effective area curve A becomes a part of known

information, I.

Assuming the prior distribution for θ and R are independent, we have the posterior distri-

bution as

p(θ, R|Y ) ∝ L(Y |θ, R)π(θ)π(R), (6.2)

First, as in Section 2.2 which handles the effective area curve, we also have the standard

method for R, which assumes a fixed and known R = R∗0. R∗0 is the nominal redistribution

matrix associated with this observation. Thus, this standard method estimates the posterior

distribution of θ, using

pstd(θ|Y,R∗0) ∝ L(Y |θ, R∗0)π(θ), (6.3)

However, in reality, R∗0 is usually different from the true unknown value of R. Pretending
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R = R∗0 can lead to misleading estimates of θ and significantly underestimate the error bars

associated with these estimates.

To illustrate how the choice of the redistribution matrix affects the spectral analysis result,

we conduct a simulation study. In Section 6.4, more simulation studies will be conducted.

Here we give detailed results under the simulation setting called Simulation II in Section

6.4. In particular, we simulate an absorbed power-law source model with three parameters

(power-law index Γ, absorption column density NH, and normalization) using the fake pha

routine in Sherpa. The data set was simulated without background contamination using

the XSPEC model wabs*powerlaw and a default (ARF) for ACIS-S. Here we give detailed

results for Simulation II which sets Γ = 1, NH = 1021cm−2, with 105 counts, and uses an

extremal redistribution matrix from the redistribution matrix library R. We label it Rext.

Figure 6.7 shows different standard method results of Simulation II, corresponding to fitting

the model using 15 different redistribution matrices. It demonstrates that the choice of

redistribution matrix can highly influence the spectral analysis result. If we use the wrong

redistribution matrix (in practice, we mostly use R∗0), the inference of spectral parameters

could be biased, and the confidence interval may undercover. Only when specifying the

redistribution matrix as the true one, Rext, can we draw a valid conclusion from the standard

method.

Notice that the data set in Simulation II is relatively large, containing 105 photon counts.

The bigger the data set, the more information there is, and the narrower the error bars for

the spectral parameters are. On the other hand, specifying the wrong redistribution matrix

for large data sets could lead to obvious bias and anti-conservative confidence intervals.
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Figure 6.7: Effect of the choice of 15 different redistribution matrices. 15 different redistri-
bution matrices including the default one R∗0 and the extremal true one Rext are selected to
conduct the standard method for Simulation II. For each choice of the redistribution matrix,
the star represents the posterior mean of the spectral parameter Γ, and the horizontal bar
represents the one-standard-deviation confidence interval. The vertical broken red line is the
true value of Γ.

6.2.2 Pragmatic Bayesian Algorithm

Same as we did for the uncertainty of the effective area curve in Section 2.4 and 4.2, we

now propose the pragmatic Bayesian method for uncertainty of redistribution matrix and

the corresponding sampling algorithm. With the “pragmatic assumption” p(R|Y ) = π(R),

we have the posterior distribution for the pragmatic Bayesian method:

ppB(θ, R|Y ) = p(θ|R, Y )π(R) (6.4)

Because the pragmatic Bayesian method essentially assumes that the observed data carry no

information about the redistribution matrix, and it will not narrow the uncertainty in the

choice of redistribution matrix. The pragmatic Bayesian method accounts for the calibration

uncertainty in a conservative manner.
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With the prior for redistribution matrix set up in Section 6.1, the implementation of the

pragmatic Bayesian method for redistribution matrix is similar to that for the effective

area curve. The only difference is the way we sample the redistribution matrix. Once the

redistribution matrix R is simulated, we can still use PyBLoCXS to sample spectral parameters

θ from p(θ|Y,R).

Because of the complexity of sampling the redistribution matrix, the CPU time for the

first step of the pragmatic Bayesian is around 8 seconds in the simulation of Section 6.2,

which costs even more than the Sherpa fit after each redistribution matrix update. Thus

MH within PCG Sampler (Section 4.1) for redistribution matrix pragmatic Bayesian is even

more expensive. (A run of 3000 MCMC iterations requires 13-15 hours.) For later analysis

of the pragmatic Bayesian method, we will only consider the efficient Iterated MH within

PCG Sampler (Section 4.2), since it fully leverages each update of the redistribution matrix.

Iterated Pragmatic Bayesian Sampler:

For t = 0, 1, ..., T

Step 1: Simulate e
(tM+1)
j ∼ N (0, 1) for j = 1, ...., J and set e

(tM+1)
pB = (e

(tM+1)
1 , ..., e

(tM+1)
J )

and R
(tM+1)
pB = R(e

(tM+1)
pB ).

Step 2: For i = 1, ..., I, simulate θ(Mt+i/I) ∼ KpyB(θ|θ(Mt+(i−1)/I);Y,R(t+1)).

Step 3: For i = 2, ...,M , simulate θ
(Mt+i)
pB ∼ KpyB(θ|θ(Mt+i−1);Y,R(t+1))

The details of the algorithm can be found in Section 4.1 where we also discuss the procedure

to obtain the optimal number M .
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6.3 Fully Bayesian Method

The fully Bayesian Method, on the other hand, allows the data to provide information about

the redistribution matrix and eventually narrow the uncertainty in the choice of redistribu-

tion matrix. In other words, the data themselves carry information not only for θ, but also

for R. This is a principled Bayesian procedure. We have the posterior distribution of the

spectral parameters θ and the redistribution matrix R given observed data Y :

pfB(θ, R|Y ) ∝ L(Y |θ, R)π(θ)π(R), (6.5)

We will implement fully Bayesian method with the same procedure called Pragmatic Proposal

Sampler as described in Section 4.3.2. To do this we run the Iterated Sampler described

in Section 6.2.2 to obtain {e(tM+1)
pB , θ

(tM+1)
pB , . . . , θ

(tM+M)
pB , for t = 0, . . . , T} and regress the

M replicates of θ, (i.e., θ
(tM+1)
pB , . . . , θ

(tM+M)
pB ) on each e

(tM+1)
pB using multivariate Gaussian

regression, as in Section 4.3.3. This results in a multivariate normal approximation to ppB(θ |

R, Y ) that we combine with a multivariate standard normal distribution for e to form Q(θ, e).

With this proposal Q, we implement the MH algorithm for the fully Bayesian method, as in

Section 4.3.4.

In particular, this choice of Q serves as the needed over-dispersed approximation to ppB(θ, R |

Y ). In this context we run the Iterated MH within PCG Sampler to obtain the approxima-

tion, Q, because Q does not need to exactly match ppB(θ, R | Y ).

Thus we have:

Pragmatic Proposal Sampler:

For t = 1, 2, ..., T
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Step 1: Randomly sample u1 from a standard uniform distribution.

If u1 < pm, go to Step 2, Partial Random Walk Sampler

else, go to Step 3, Independence Sampler

Step 2: For j = 1, ..., J , Sample eprop
j ∼ N (µ = e

(t)
j , sd = σe)

Set eprop = (eprop
1 , ..., eprop

J ) and Rprop = R(eprop).

Sample θprop ∼ QMVN(θ|eprop)

α =
p(Rprop, θprop|Y )QMVN(θ(t)|e(t))

p(R(t), θ(t)|Y )QMVN(θprop|eprop)
,

go to Step 4

Step 3: For j = 1, ..., J , Sample eprop
j ∼ N (0, 1)

Set eprop = (eprop
1 , ..., eprop

J ) and Rprop = R(eprop).

Sample θprop ∼ QMVN(θ|eprop)

α =
p(Rprop, θprop|Y )QMVN(θ(t), e(t))

p(R(t), θ(t)|Y )QMVN(θprop, eprop)
,

go to Step 4

Step 4: Randomly sample u2 from a standard uniform distribution.

(e(t+1), R(t+1), θ(t+1)) =


(eprop, Rprop, θprop) if u2 < α

(e(t), R(t), θ(t)) otherwise

.

More discussion about this algorithm can be found in Section 4.3.4. Here, we emphasize

that this algorithm can also work for the redistribution matrix.
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Table 6.1: The eight simulations used to compare the standard, pragmatic Bayesian, and
fully Bayesian methods.

Redistribution Matrix Nominal Counts Spectal Model
Default? Extreme?? 105 104 Hard† Soft‡

Simulation I X X X
Simulation II X X X
Simulation III X X X
Simulation IV X X X
Simulation V X X X
Simulation VI X X X
Simulation VII X X X
Simulation VIII X X X

?The default effective area curve, R0, from the redistribution matrix calibration library
??An extreme effective area curve , Rext, from the redistribution matrix calibration library
†An absorbed powerlaw with Γ = 2, NH = 1023/cm2

‡An absorbed powerlaw with Γ = 1, NH = 1021/cm2

6.4 Simulation Studies

To compare the performance of the standard, pragmatic Bayesian and fully Bayesian meth-

ods, eight data sets were simulated from an absorbed power-law source with three parameters

(power-law index Γ, absorption column density NH , and normalization) using the fake pha

routine in Sherpa. This simulation setting is exactly the same as we did for the effective area

curve, in Section 5.1, except that, we use the default effective area curve throughout all eight

simulations and use the extremal redistribution matrix Rext for the first four simulations and

the default redistribution matrix R0 for the last four simulations. The simulation setting is

shown in detail, in Table 6.1

We make the model comparison between the standard, the pragmatic Bayesian and the fully

Bayesian methods by fitting all the eight data sets with the default redistribution matrix R0.

This means that first four data sets are fit with the wrong redistribution matrix, while the

other four are using the right redistribution matrix. Figures 6.8 and 6.9 demonstrates the

posterior distributions, intervals and fitted values for Γ computed with each of three methods

run on each simulation. The standard, pragmatic Bayes and Fully Bayesian methods are
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represented by black, blue, and red curves and intervals, respectively. The posterior means

(fitted values) are represented by a “×” and their 68.2% error bars are represented by

horizontal bars.

From Figure 6.8 and 6.9, we observe almost identical results as in Section 5.1.

• The standard method that does not account for calibration uncertainty exhibits the

narrowest error bars, the pragmatic Bayesian method accounting for the uncertainty

conservatively has the widest error bars, and those of the fully Bayesian method are

in between.

• When the correct R can be specified, the standard method should be used; see Simu-

lations V–VIII.

• Simulations I–IV illustrates the most common scenarios, when the true R is unknown.

In these cases, both the standard and pragmatic Bayesian methods exhibit more bias

than the fully Bayesian method.

• Photon counts (data size) are also a crucial factor that influences the result of the fully

Bayesian method. With more information in the data, the fully Bayesian method can

perform better in selecting more consistent redistribution matrices to the data, thus

helping the fitted spectral parameters to shift toward the true values; see Simulations

I and II.

6.5 Computational Time

In this section, we discuss the computational time of the the pragmatic Bayesian and fully

Bayesian methods for uncertainty of the redistribution matrix. Due to the complicated
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Figure 6.8: Results for Simulations I–IV for redistribution matrix. The panels show the
posterior distributions (curves), fitted values (×), and 68.2% error bars (horizontal bars) for
Γ. Results for the standard, pragmatic Bayesian, and fully Bayesian methods are plotted in
black, blue, and red, respectively. The true value of Γ is given by the red broken vertical
lines. These simulations consider the situation in which the default redistribution matrix is
misspecified to a degree that is consistent with the variability of the the calibration library.
Because the standard method uses this misspecified matrix, it preforms poorly. Both the
pragmatic and the fully Bayesian methods avoid assuming that R is known without error
allowing them to preform better. Of these two, the fully Bayesian method provides both esti-
mates of Γ that are closer to its true values and narrower error bars, especially in Simulation
I and II.
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Figure 6.9: Results of Simulations V–VIII for redistribution matrix. Since we assume that
the true redistribution matrix is known in these four simulations, as expected, the standard
method performs the best.
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structure of the redistribution matrix, the pragmatic Bayesian and fully Bayesian methods

cost much more time than those for the uncertainty of the effective area curve. Hence

computational time becomes an issue, should we use these methods in practice.

Table 6.2 exhibits the computational time for all the samplers involved in this thesis. For

effective area curve methods, Simulation II from Section 5.1 is selected as the example,

and for redistribution matrix methods, Simulation II from Section 6.4 is selected. Both

examples have the same setting for spectral parameters. The computational time in Table

6.2 represents the cost for 3000 iterations of these samplers.

We focus on the combination of iterated pragmatic Bayesian and the pragmatic proposal

sampler for fully Bayesian solution (that is, Column 4, 6 for effective area curve, and Col-

umn 9, 10 for redistribution matrix in Table 6.2). For effective area curve methods, the

main computational time is due to setting up the proposal density after each update of the

effective area curve (this step involves the sherpa fit). Iterated pragmatic Bayesian highly

leverage each update of effective area curve and makes multiple use of the same proposal

density, thus reduces the computational time (from 6 hours to 40 minutes in Table 6.2). The

pragmatic proposal sampler for fully Bayesian, on the other hand, takes the samples of iter-

ated pragmatic Bayesian as the proposal, and thus requires little additional computational

time (15 minutes in Table 6.2). For the redistribution matrix methods, the computational

time has two main sources, (1) the sample of new redistribution matrix and setting it up

in a usable format, due to the complicated sampling algorithm in Section 6.1.4 and (2) the

proposal setting after each update of redistribution matrix for the pragmatic Bayesian. It-

erated pragmatic Bayesian can still highly leverage each update of redistribution matrix,

reducing two sources of computational time simultaneously (from 14 hours to 1.5 hours, in

Table 6.2). However, the pragmatic proposal sampler for fully Bayesian requires to sample a

new matrix and set it up in a usable formate in every iteration, and therefore, the first source

of computational time becomes the main issue. In Table 6.2, we can see fully Bayesian for
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the redistribution matrix costs 8 hours, compared to 15 minutes of the fully Bayesian for

effective area curve.
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Chapter 7

Discussion

In this thesis we demonstrate the advantage of a fully Bayesian method that accounts for

calibration uncertainty. Compared to the pragmatic Bayesian method of Lee et al. (2011)

the fully Bayesian method gives estimates with smaller bias and narrower error bars. As

with the pragmatic method, the fully Bayesian method requires large-counts data sets to de-

liver significant gains over the standard fixed effective area method. In low-counts data sets,

uncertainty stemming from random fluctuations in the counts swamps that due to calibra-

tion. The advantage of the fully Bayesian method stems from its use of a calibration library

to transform systematic errors stemming from calibration uncertainty into statistical errors.

In this way it accounts for calibration uncertainty by shifting the fitted values of spectral

parameters. From a scientific perspective, this is preferable to increasing their error bars, the

mechanism by which the pragmatic Bayesian method accounts for calibration uncertainty.

Fitting a spectral model under the fully Bayesian method poses significant computational

challenges. We illustrate how we solve this problem by leveraging the pragmatic Bayesian fit

to deliver parameter values simulated under this fully Bayesian posterior distribution. This

strategy allows us to simultaneously fit the calibration product and the spectral parame-

ters. Thus, we are able to use information in large-count observed spectra to narrow the
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uncertainty for the calibration product.

We focus on the application of the fully Bayesian methods to account for uncertainty in the

effective area curve in X-ray spectral analysis from Chapter 2 to 5. In Section 5.1 and Section

5.2, the simulation study is conducted to prove that fully Bayesian is able to fit the effective

area curve and the spectral parameters simultaneously. When the true effective area curve

is unknown, the fully Bayesian can reduce the bias of fits of the spectral parameters, and

thus is recommended to apply in reality.

The general techniques we employ, however, have broad applicability in handling systematic

errors. Obvious extensions include accounting for uncertainty in other calibration products,

such as photon redistribution matrices, exposure maps, and point spread functions. Be-

cause all of these calibration products exhibit more complex structure than an effective area

curve—they are represented by matrices rather than vectors—more sophisticated methods

will be needed to summarize their calibration libraries into concise and useable forms. In

Chapter 6, we develop a method to represent the photon redistribution matrix, effectively

reducing the dimension from 106 to 3. This algorithm enables us to conduct the same fully

Bayesian method to account for the uncertainty of the photon redistribution matrix. The

simulations in Section 6.4 demonstrates that the advantages of fully Bayesian method per-

sist when counting different type of calibration product. However, the computational cost is

dramatically increased due to the complexity of the redistribution matrix. As future work,

we need to develop more efficient algorithms and apply the fully Bayesian to the real data.

Another challenge is to incorporate calibration uncertainty of effective area curve and pho-

ton redistribution matrix simultaneously into the spectral analysis, that is, we aim to make

inference for the posterior distribution p(θ, A,R|Y ), where there is uncertainty in both ef-

fective area curve and photon redistribution matrix. As before, we consider a fully Bayesian

solution.
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With the use of the samplers we developed in the thesis, we propose a collapsed Gibbs fully

Bayesian sampler:

Collapsed Gibbs Fully Bayesian Sampler :

For t = 0, 1, 2, . . . , T ,

Step 1: Sample (A(t+1), θ(t+1/2)) ∼ p(A, θ|R(t), Y )

Step 2: Sample (R(t+1), θ(t+1)) ∼ p(R, θ|A(t+1), Y )

We do not keep the intermediate iterations, θ(t+1/2), thus it is called collapsed Gibbs sampler.

In theory, this sampler can be conducted now by combining the samplers we have developed

in the thesis. Step 1 involves the fully Bayesian for effective area in Section 4.3.4, and Step

2 involves the fully Bayesian for redistribution matrix in Section 6.3. If we succeeded to im-

plement this sampler, the correlations between calibration products and spectral parameters

can be analyzed through the Monte Carlo draws. However, we expect heavy computational

burden of this method, especially if at each step, we need to use the pragmatic Bayesian to

build a new proposal density. Clearly, more sophisticated method is required to overcome

this problem.

Another approach to account for calibration uncertainty of A and R simultaneously is to

build up a new calibration product combining A and R. Specifically, Equation (2.1) for the

photon detecting model can be written in the following matrix format:

Y ∼ Pois
(
R>ȦΛ +B

)
, (7.1)

where Y is the observed photon count vector with dimension K×1, R is the photon redistri-

bution matrix with dimension N ×K, Ȧ is an N ×N diagonal matrix constructed from the
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effective area curve with Ȧ[n;n] = A[n], Λ is the spectral intensity vector with dimension

N × 1 and B is the background intensity vector with dimension K × 1.

In Equation (7.1), we can treat Ω = R>Ȧ as a new calibration product, which encodes

the information from both A and R. Suppose we have the paired calibration samples

{(A1, R1), ..., (AL, RL)}, and the calibration library for Ω can be constructed as {Ω1 =

R>1 Ȧ1, ...,ΩL = R>L ȦL}. We expect the algorithm to summarize Ω would be similar to

the one we developed for the photon redistribution matrix in Section 6.1.3, since Ω and R

have similar matrix formats. Once the prior for Ω is set up, the fully Bayesian method can

be implemented following the same procedure as in the case of the effective area curve. This

approach seems promising and worthy of further exploration for accounting for calibration

uncertainty of A and R simultaneously. It is more straightforward than the collapsed Gibbs

approach.

Besides calibration uncertainty, our methods can be used to account for other sources of

systematic errors, such as uncertainty in a background model. In our fit of the radio-loud

quasars in Section 5.3 and background-structured isolated neutron star RXJ1856 in Section

5.4, for example, we used a highly-structured background model that was originally fit to

the blank-sky data provided by the Chandra X-ray Center. Only the normalization of this

background model was fit to the individual quasars. Just like an effective area curve, this

background model is a vector that can only be specified with uncertainty. Ignoring this

uncertainty can lead to biases and systematic errors. Similarly, the comprehensive atomic

line emissivity database, AtomDB (Foster et al. (2012)) is often used to specify a spectral

models for X-ray data. While this database has been compiled by carefully combining

empirical observations with theoretical calculations, its entries are not known exactly. Like

a calibration product its errors exhibit complex high-dimensional correlations that cannot

be summarized with simple error bars for each entry. A better strategy is to compile an

“atomDB library” akin to a calibration library that can then be modeled to fully integrate
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uncertainty in atomDB into individual spectral analyses. In principle, we can image fitting

models that simultaneously account for uncertainly both in multiple calibration products and

in multiple model components. In practice, this will involve significant modeling challenges

such as accounting for correlations between calibration products and/or model components.

Sophisticated computation methods will also be required, and large data sets needed to

narrow uncertainty on multiple sources of systematic error. Although such work will involve

substantial effort, it is likely to pay significant dividends in reducing bias stemming from

calibration and model misspecified, at least when large-count data sets are available.
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Appendix A

pyBLoCXS

Chandra Interactive Analysis of Observations (CIAO) is a data analysis system written for

the needs of users of the Chandra X-ray Observatory. One of the central tools in CIAO

system is the modeling and fitting package, Sherpa. It can be used for analysis of images,

spectra and time series from many telescopes, including optical telescopes such as Hubble.

It enables the user to construct complex models from simple definitions and fit those models

to data, using a variety of statistics and optimization methods. Sherpa is an importable

module for the Python scripting language, providing users with the ability to write their

own Python scripts for use in Sherpa.

The PyBLoCXS is a sophisticated Markov chain Monte Carlo (MCMC) based algorithm de-

signed to carry out Bayesian Low-Count X-ray Spectral (BLoCXS) analysis in the Sherpa

environment. The code is a Python extension to Sherpa that explores parameter space at

a suspected minimum using a predefined Sherpa model to high-energy X-ray spectral data.

PyBLoCXS includes a flexible definition of priors and allows for variations in the calibration

information. It can also be used to compute posterior predictive p-values for the likelihood

ratio test.
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MCMC is a complex computational technique that requires some sophistication on the part

of its users to ensure that it both converges and explores the posterior distribution properly.

The PyBLoCXS code has been tested with a number of simple single-component spectral

models. It should be used with great care in more complex settings. Readers interested in

Bayesian low-count spectral analysis should consult van Dyk et al. (2001). PyBLoCXS is based

on the methods in van Dyk et al. (2001) but employs a different MCMC sampler than is

described in that article. In particular, PyBLoCXS has two sampling modules. The first uses

a Metropolis-Hastings jumping rule that is a multivariate t-distribution with user specified

degrees of freedom centered on the best spectral fit and with multivariate scale determined

by the Sherpa function, covar(), applied to the best fit. The second module mixes this

Metropolis Hastings jumping rule with a Metropolis jumping rule centered at the current

draw, also sampling according to a t-distribution with user specified degrees of freedom and

multivariate scale determined by a user specified scalar multiple of covar() applied to the

best fit.

For this thesis perspective, PyBLoCXS is used to sample θ from p(θ|A,R, Y ). PyBLoCXS fixes

the effective area curve and redistribution matrix, allowing no calibration uncertainty. Thus

for simplicity, we use the notation p(θ|Y ) as p(θ|A,R, Y ).

Here we list the PyBLoCXS sampler briefly, discarding unrelated details to this thesis.

PyBLoCXS Sampler :

Step 0: conduct standard Sherpa fit(), get the best fit θ̂ as the starting value in Step 1

use covar(), get the covariance matrix Σ0 for the proposal setting

For t = 0, 1, ..., T

Step 1: Randomly sample u1 from standard uniform distribution.
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If u1 < ppybm , go to Step 1B, Metropolis Sampler

else, go to Step 1C, Metropolis-Hasting (Independence) Sampler

Step 2: Sample θprop ∼ T (df = dfpyb, µ = θ(t),Σ = scalepyb ∗ Σ0)

α =
p(θprop|Y )

p(θ(t)|Y )

go to Step 1D

Step 3: Sample θprop ∼ T (df = dfpyb, µ = θ̂,Σ = scalepyb ∗ Σ0)

α =
p(θprop|Y )Q(θ(t))

p(θ(t)|Y )Q(θprop)
,

Q(θprop) is the jumping rule, and here is t-distribution

go to Step 1D

Step 4: Randomly sample u2 from standard uniform distribution.

θ(t+1)) =


θprop if u2 < α

θ(t) otherwise

.

where T (df, µ,Σ) represents the t-distribution, df is the degree of freedom, µ is the center

(mean), and Σ is the covariance matrix. Using the t-distributon as the proposal distribution

instead of the normal distribution helps PyBLoCXS have broader choice of proposal distri-

butions. When the target distribution p(θ|Y ) has complicated structure (e.g. two-modal

distribution), t-distribution can have better sampling performance since it has heavier tails

than the normal distribution.

Therefore, the PyBLoCXS sampler has three important tuning parameters, ppybm , dfpyb and

scalepyb. The default setting is ppybm = 0.5, dfpyb = 4 and scalepyb = 1. In complicated cases

(e.g. very large data set), the tuning parameters setting can be crucial to the performance
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of the Monte Carlo chains. For example, if the target distribution has a very peaky mode,

dfpyb should be set to be large, ppybm to be close to one and scalepyb to be relatively small

in order to obtain better convergence rate. The optimal tuning parameter setting heavily

depends on the situation of the dataset.

In addition, PyBLoCXS also allows to build different types of prior distributions for θ, which

may also influence the performance of the Monte Carlo chain. We skip the discussion about

this here. More information about PyBLoCXS can be found at:

http://hea-www.harvard.edu/astrostat/pyblocxs/
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