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Abstract: We construct infraparticle scattering states for Compton scattering in the
standard model of non-relativistic QED. In our construction, an infrared cutoff initially
introduced to regularize the model is removed completely. We rigorously establish the
properties of infraparticle scattering theory predicted in the classic work of Bloch and
Nordsieck from the 1930’s, Faddeev and Kulish, and others. Our results represent a basic
step towards solving the infrared problem in (non-relativistic) QED.

I. Introduction

The construction of scattering states in Quantum Electrodynamics (QED) is an old open
problem. The main difficulties in solving this problem are linked to the infamous infra-
red catastrophe in QED: It became clear very early in the development of QED that,
at the level of perturbation theory (e.g., for Compton scattering), the transition ampli-
tudes between formal scattering states with charges and a finite number of photons are
ill-defined, because, typically, Feynman amplitudes containing vertex or electron self-
energy corrections exhibit logarithmic infrared divergences; [14,22].

A pragmatic approach proposed by Jauch and Rohrlich, [21,27], and by Yennie,
Frautschi, and Suura, [31], is to circumvent this difficulty by considering inclusive cross
sections: One sums over all possible final states that include photons whose total energy
lies below an arbitrary threshold energy ε > 0. Then the infrared divergences due to
soft virtual photons are formally canceled by those corresponding to the emission of soft
photons of total energy below ε, order by order in perturbation theory in powers of the
finestructure constant α. A drawback of this approach becomes apparent when one tries
to formulate a scattering theory that is ε-independent: Because the transition probability
Pε for an inclusive process is estimated to be O(εconst.α), the threshold energy ε cannot
be allowed to approach zero, unless “Bremsstrahlungs” processes (emission of photons)
are properly incorporated in the calculation.
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An alternative approach to solving the infrared problem is to go beyond inclusive
cross sections and to define α-dependent scattering states containing an infinite number
of photons (so-called soft-photon clouds), which are expected to yield finite transition
amplitudes, order by order in perturbation theory. The works of Chung [12], Kibble
[23], and Faddeev and Kulish [13], between 1965 and 1970, represent promising, albeit
incomplete progress in this direction. Their approaches are guided by an ansatz identi-
fied in the analysis of certain solvable models introduced in early work by Bloch and
Nordsieck, [2], and extended by Pauli and Fierz, [14], in the late 1930’s. In a seminal
paper [2] by Bloch and Nordsieck, it was shown (under certain approximations that
render their model solvable) that, in the presence of asymptotic charged particles, the
scattering representations of the asymptotic photon field are a coherent non-Fock rep-
resentation, and that formal scattering states with a finite number of soft photons do
not belong to the physical Hilbert space of a system of asymptotically freely moving
electrons interacting with the quantized radiation field. These authors also showed that
the coherent states describing the soft-photon cloud are parameterized by the asymptotic
velocities of the electrons.

The perturbative recipes for the construction of scattering states did not remove some
of the major conceptual problems. New puzzles appeared, some of which are related to
the problem that Lorentz boosts cannot be unitarily implemented on charged scattering
states; see [19]. This host of problems was addressed in a fundamental analysis of the
structural properties of QED, and of the infrared problem in the framework of general
quantum field theory; see [30]. Subsequent developments in axiomatic quantum field
theory have led to results that are of great importance for the topics treated in the present
paper:

i) Absence of dressed one-electron states with a sharp mass; see [4,28].
ii) Corrections to the asymptotic dynamics, as compared to the one in a theory with a

positive mass gap; see [3].
iii) Superselection rules pertaining to the space-like asymptotics of the quantized elec-

tromagnetic field, and connections to Gauss’ law; see [4].

In the early 1970’s, significant advances on the infrared problem were made for
Nelson’s model, which describes non-relativistic matter linearly coupled to a scalar field
of massless bosons. In [15,16], the disappearance of a sharp mass shell for the charged
particles was established for Nelson’s model, in the limit where an infrared cut-off is
removed. (An infrared cutoff is introduced, initially, with the purpose to eliminate the
interactions between charged particles and soft boson modes). Techniques developed
in [15,16] have become standard tools in more recent work on non-relativistic QED,
and attempts made in [15,16] have stimulated a deeper understanding of the asymp-
totic dynamics of charged particles and photons. The analysis of spectral and dynamical
aspects of non-relativistic QED and of Nelson’s model constitutes an active branch of
contemporary mathematical physics. In questions relating to the infrared problem, math-
ematical control of the removal of the infrared cutoff is a critical issue still unsolved in
many situations.

The construction of an infraparticle scattering theory for Nelson’s model, after
removal of the infrared cutoff, has recently been achieved in [26] by introducing a suit-
able scattering scheme. This analysis involves spectral results substantially improving
those in [16]. It is based on a new multiscale technique developed in [25].

While the interaction in Nelson’s model is linear in the creation- and annihilation
operators of the boson field, it is non-linear and of vector type in non-relativistic QED.
For this reason, the methods developed in [25,26] do not directly apply to the latter.
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The main goal of the present work is to construct an infraparticle scattering theory for
non-relativistic QED inspired by the methods of [25,26]. In a companion paper, [11],
we derive those spectral properties of QED that are crucial for our analysis of scattering
theory and determine the mass shell structure in the infrared limit. We will follow ideas
developed in [25]. Bogoliubov transformations, proven in [10] to characterize the soft
photon clouds in non-relativistic QED, represent an important element in our construc-
tion. The proof in [10] uses the uniform bounds on the renormalized electron mass
previously established in [9].

We present a detailed definition of the model of non-relativistic QED in Sect. II.
Aspects of infraparticle scattering theory, developed in this paper, are described in
Sect. III.

To understand why free radiation parametrized by the asymptotic velocities of the
charged particles must be expected to be present in all the scattering states, we recall a
useful point of view based on classical electrodynamics that was brought to our attention
by Morchio and Strocchi.

We consider a single, classical charged point-particle, e.g., an electron, moving along
a world line (t, �x(t)) in Minkowski space, with �x(0) = �0. We suppose that, for t ≤ 0, it
moves at a constant velocity �vin , and, for t > t̄ > 0, at a constant velocity �vout �= �vin ,
|�vout |, |�vin| < c, where c is the speed of light that we set equal to 1. Thus,

�x(t) = �vin · t, for t ≤ 0, (I.1)

and

�x(t) = �x∗ + �vout · t, for t ≥ t̄, (I.2)

for some �x∗.
For times t ∈ [0, t̄], the particle performs an accelerated motion. We propose to

analyze the behavior of the electromagnetic field in the vicinity of the particle and the
properties of the free electromagnetic radiation at very early times (t →−∞,“in”) and
very late times (t → +∞, “out”). For this purpose, we must solve Maxwell’s equations
for the electromagnetic field tensor, Fµν(t, �y), given the 4-current density correspond-
ing to the trajectory of the particle; (back reaction of the electromagnetic field on the
motion of the charged particle is neglected):

∂µFµν(t, �y) = J ν(t, �y) (I.3)

with

J ν(t, �y) := −q ( δ(3)(�y − �x(t)), �̇x(t) δ(3)(�y − �x(t)) ), (I.4)

where, in the units used in our paper, q = 2(2π)3α1/2 (α is the finestructure constant).
We solve Eq. (I.3) with prescribed spatial asymptotics (|�y| → ∞): Let Fµν[�vL .W.](t, �y) be

a solution of (I.3) that, to leading order in |�y|−1 (|�y| → ∞), approaches the Liénard-
Wiechert field tensor for a point-particle with charge −q and a constant velocity �vL .W.
at all times.

Let us denote the Liénard-Wiechert field tensor of a point-particle with charge −q
moving along a trajectory (t, �x(t)) in Minkowski space with �x(0) =: �x and �̇x(t) ≡ �v,
for all t , by Fµν�x,�v(t, �y). Apparently, we are looking for solutions, Fµν[�vL .W.](t, �y), of (I.3)
with the property that, for all times t ,

|Fµν[�vL .W.](t, �y)− Fµν�x,�vL .W.
(t, �y)| = o(|�y|−2), (I.5)
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as |�y| → ∞, for any �x. This class of solutions of (I.3) is denoted by C�vL .W. . It is impor-
tant to observe that, by causality, the class C�vL .W. is non-empty, for any �vL .W., with
|�vL .W.| < 1(= c). This can be seen by choosing Cauchy data for the solution of (I.3)
satisfying (I.5) at some time t0, e.g., t0 = 0.

Let us now consider a specific solution, Fµν[�vL .W.](t, �y), of Eq. (I.3) in the class C�vL .W. .
We are interested in the behavior of this solution at very early times (t 
 0). We expect
that, for |�y − �x(t)| = o(|t |),

Fµν[�vL .W.](t, �y) � Fµν�0,�vin
(t, �y) (I.6)

(here the symbol � means: up to a solution of the homogeneous Maxwell equation
decaying at least like 1

t2 ). However, for |�y − �x(t)| → ∞,

Fµν[�vL .W.](t, �y) � Fµν�0,�vL .W.
(t, �y), (I.7)

as quantified in (I.5).
We note that, by (I.1), Fµν�0,�vin

(t, �y) solves Eq. (I.3), for times t < 0. Thus,

φ
µν
in (t, �y) := Fµν[�vL .W.](t, �y)− Fµν�0,�vin

(t, �y) t < 0 (I.8)

solves the homogenous Maxwell equation, i.e., Eq. (I.3) with J ν ≡ 0. For t � t̄ , we
expect that, for |�y − �x(t)| = o(t),

Fµν[�vL .W.](t, �y) � Fµν�x∗,�vout
(t, �y) (I.9)

(here the symbol � means: up to a solution of the homogeneous Maxwell equation
decaying at least like 1

t2 ). But, for |�y − �x(t)| → ∞,

Fµν[�vL .W.](t, �y) � Fµν�0,�vL .W.
(t, �y), (I.10)

as quantified in (I.5). We note that, by (I.2), Fµν�x∗,�vout
(t, �y) solves Eq. (I.3), for times t > t̄ .

Thus,

φ
µν
out (t, �y) := Fµν[�vL .W.](t, �y)− Fµν�x∗,�vout

(t, �y) t > t̄ (I.11)

solves the homogenous Maxwell equation.
Next, we recall that φµνas (t, �y), with as = in/out , can be derived from an electro-

magnetic vector potential, Aµas , by

φµνas (t, �y) = ∂µAνas(t, �y)− ∂ν Aµas(t, �y). (I.12)

We can impose the Coulomb gauge condition on Aµas : Aµas = (0, �Aas(t, �y)), with �∇ ·
�Aas(t, �y) ≡ 0. It turns out (and this can be derived from formulae one finds, e.g., in

[20]), that, to leading order in |�y|−1 (|�y| → ∞), �Aas(t, �y) is given by

�Aas(t, �y) := α
1
2
∑

λ

∫
d3k√
|�k|

{ �vas · �ε ∗�k,λ
|�k| 3

2 (1 − �vas · k̂)
�ε�k,λe−i �k·�y+i |�k|t + c.c.

}

−α 1
2
∑

λ

∫
d3k√
|�k|

{ �vL .W. · �ε ∗�k,λ
|�k| 3

2 (1 − �vL .W. · k̂)
�ε�k,λe−i �k·�y+i |�k|t + c.c.

}
, (I.13)
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where k̂ is the unit vector in the direction of �k, and �ε�k,+, �ε�k,− are transverse polarization

vectors with k̂ · �ε�k,λ = 0, λ = +,−, and �ε∗�k,λ · �ε�k,λ′ = δλ,λ′ .
The free field

φµν(t, �y) = φ
µν
out (t, �y)− φµνin (t, �y) (I.14)

is the radiation emitted by the particle due to its accelerated motion, as t → ∞. It is
well known that Eqs. (I.6)-( I.13) can be made precise within classical electrodynamics
under some standard assumptions on the Cauchy data for the solutions in addition to the
condition in Eq. (I.5). We will see that analogous statements also hold in our model of
quantum electrodynamics with non-relativistic matter.

In this paper, we treat the quantum theory of a system consisting of a nonrelativ-
istic charged particle only interacting with the quantized e.m. field. The motion of the
quantum particle depends on the back-reaction of the field, and the asymptotic in- and
out-velocities of this particle are not attained at finite times. However, the infrared fea-
tures of the asymptotic radiation in the classical model, described above for a given
current, are reproduced in this interacting quantum model.

In fact, the set of classes C�vL .W. , associated with different currents but at fixed �vL .W.,
corresponds to one of the superselection sectors of the quantized theory; see e.g. [3].
In particular, the Fock representation, which is the usual (but not the only possible)
choice for the representation of the algebra of photon creation- and annihilation oper-
ators, corresponds to �vL .W. = 0. This implies that, in the Fock representation of the
interpolating photon creation- and annihilation operators, an infrared-singular asymp-
totic electromagnetic-field configuration must be present for all values of the asymptotic
velocity of the electron different from zero. In particular, after replacing the classical
velocities with the spectral values of the quantum operators �vout/ in , the background field
with �vL .W. = 0 (given by (I.13)) corresponds to the background radiation described by
the coherent non-Fock representations of the algebra of asymptotic photon creation- and
annihilation operators labeled by �vout/ in ; see also Sect. III.5.

II. Definition of the Model

The Hilbert space of pure state vectors of the system consisting of one non-relativistic
electron interacting with the quantized electromagnetic field is given by

H := Hel ⊗ F , (II.1)

where Hel = L2(R3) is the Hilbert space for a single electron; (for expository con-
venience, we neglect the spin of the electron). The Fock space used to describe the
states of the transverse modes of the quantized electromagnetic field (the photons) in
the Coulomb gauge is given by

F :=
∞⊕

N=0

F (N ) , F (0) = C
, (II.2)

where
 is the vacuum vector (the state of the electromagnetic field without any excited
modes), and

F (N ) := SN

N⊗

j=1

h , N ≥ 1, (II.3)
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where the Hilbert space h of a single photon is

h := L2(R3 × Z2). (II.4)

Here, R
3 is momentum space, and Z2 accounts for the two independent transverse

polarizations (or helicities) of a photon. In (II.3), SN denotes the orthogonal projection
onto the subspace of

⊗N
j=1 h of totally symmetric N -photon wave functions, to account

for the fact that photons satisfy Bose-Einstein statistics. Thus, F (N ) is the subspace of
F of state vectors for configurations of exactly N photons. In this paper, we use units
such that Planck’s constant �, the speed of light c, and the mass of the electron are equal
to unity. The dynamics of the system is generated by the Hamiltonian

H :=
(
−i �∇�x + α1/2 �A(�x)

)2

2
+ H f . (II.5)

The multiplication operator �x ∈ R
3 corresponds to the position of the electron. The

electron momentum operator is given by �p = −i �∇�x; α∼=1/137 is the finestructure con-
stant (which, in this paper, is treated as a small parameter), �A(�x) denotes the (ultraviolet
regularized) vector potential of the transverse modes of the quantized electromagnetic
field at the point �x (the electron position) in the Coulomb gauge,

�∇�x · �A(�x) = 0. (II.6)

H f is the Hamiltonian of the quantized, free electromagnetic field, given by

H f :=
∑

λ=±

∫
d3k |�k| a∗�k,λ a�k,λ , (II.7)

where a∗�k,λ and a�k,λ are the usual photon creation- and annihilation operators, which
satisfy the canonical commutation relations

[a�k,λ, a∗�k′,λ′ ] = δλλ′ δ(�k − �k′) , (II.8)

[a#
�k,λ, a#

�k′,λ′ ] = 0, (II.9)

with a# = a or a∗. The vacuum vector 
 obeys the condition

a�k,λ 
 = 0 , (II.10)

for all �k ∈ R
3 and λ ∈ Z2 ≡ {+,−}.

The quantized electromagnetic vector potential is given by

�A(�y) :=
∑

λ=±

∫

B�
d3k√
|�k|

{
�ε�k,λe−i �k·�ya∗�k,λ + �ε ∗�k,λei �k·�ya�k,λ

}
, (II.11)

where �ε�k,−, �ε�k,+ are photon polarization vectors, i.e., two unit vectors in R
3 ⊗C satis-

fying

�ε ∗�k,λ · �ε�k,µ = δλµ , �k · �ε�k,λ = 0 , (II.12)
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for λ,µ = ±. The equation �k · �ε�k,λ = 0 expresses the Coulomb gauge condition.
Moreover, B� is a ball of radius � centered at the origin in momentum space; � rep-
resents an ultraviolet cutoff that will be kept fixed throughout our analysis. The vector
potential defined in (II.11) is thus regularized in the ultraviolet.

Throughout this paper, it will be assumed that � ≈ 1 (the rest energy of an elec-
tron), and that α is sufficiently small. Under these assumptions, the Hamitonian H is
selfadjoint on D(H0), the domain of definition of the operator

H0 := (−i �∇�x)2

2
+ H f . (II.13)

The perturbation H − H0 is small in the sense of Kato.
The operator measuring the total momentum of a state of the system consisting of

the electron and the electromagnetic field is given by

�P := �p + �P f , (II.14)

where �p = −i �∇�x is the momentum operator for the electron, and

�P f :=
∑

λ=±

∫
d3k �k a∗�k,λ a�k,λ (II.15)

is the momentum operator for the radiation field.
The operators H and �P are essentially selfadjoint on the domain D(H0), and since

the dynamics is invariant under translations, they commute: [H, �P] = 0. The Hilbert
space H can be decomposed on the joint spectrum, R

3, of the component-operators of
�P . Their spectral measure is absolutely continuous with respect to Lebesgue measure,

H :=
∫ ⊕

H �P d3 P, (II.16)

where each fiber space H �P is a copy of Fock space F .

Remark. Throughout this paper, the symbol �P stands for both a variable in R
3 and a

vector operator in H, depending on the context. Similarly, a double meaning is also
associated with functions of the total momentum operator. (E.g.: In Eq. (III.1) Eσ�P is an

operator on the Hilbert space H, while in Eq. (III.3) it is a function of �P ∈ R
3.)

To each fiber space H �P there corresponds an isomorphism

I �P : H �P −→ Fb, (II.17)

where Fb is the Fock space corresponding to the annihilation- and creation operators
b�k,λ, b∗�k,λ, where b�k,λ is given by ei �k·�xa�k,λ, and b∗�k,λ by e−i �k·�xa∗�k,λ, with vacuum 
 f =
I �P (e

i �P·�x), where �x is the electron position. To define I �P more precisely, we consider an
(improper) vector ψ

( f (n); �P) ∈ H �P with a definite total momentum, which describes an

electron and n photons. Its wave function, in the variables (�x; �k1, . . . , �kn; λ1, . . . , λn),
is given by

ei( �P−�k1−···−�kn)·�x f (n)(�k1, λ1; · · · · · · ; �kn, λn), (II.18)
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where f (n) is totally symmetric in its n arguments. The isomorphism I �P acts by way of

I �P
(

ei( �P−�k1−···−�kn)·�x f (n)(�k1, λ1; · · · · · · ; �kn, λn) (II.19)

= 1√
n!

∑

λ1,...,λn

∫
d3k1 . . . d

3kn f (n)(�k1, λ1; · · · · · · ; �kn, λn) b∗�k1,λ1
· · · b∗�kn ,λn


 f .

(II.20)

The Hamiltonian H maps each fiber space H �P into itself, i.e., it can be written as

H =
∫ ⊗

H �P d3 P, (II.21)

where

H �P : H �P −→ H �P . (II.22)

Written in terms of the operators b�k,λ, b∗�k,λ, and of the variable �P , the fiber Hamiltonian

H �P has the form

H �P :=
( �P − �P f + α1/2 �A

)2

2
+ H f , (II.23)

where

�P f =
∑

λ

∫
d3k �k b∗�k,λ b�k,λ, (II.24)

H f =
∑

λ

∫
d3k |�k| b∗�k,λ b�k,λ, (II.25)

and

�A :=
∑

λ

∫

B�
d3k√
|�k|

{
b∗�k,λ�ε�k,λ + �ε ∗�k,λb�k,λ

}
. (II.26)

Let

S := { �P ∈ R
3 : | �P| < 1

3
}. (II.27)

In order to give precise meaning to the constructions used in this work, we restrict the
total momentum �P to the set S, and we introduce an infrared cut-off at an energy σ > 0
in the vector potential. The removal of the infrared cutoff in the construction of scattering
states is the main problem solved in this paper. The restriction of �P to S guarantees that
the propagation speed of a dressed electron is strictly smaller than the speed of light.
However, our results can be extended to a region S (inside the unit ball) of radius larger
than 1

3 .
We start by studying a regularized fiber Hamiltonian given by

Hσ
�P :=

( �P − �P f + α1/2 �Aσ
)2

2
+ H f (II.28)
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acting on the fiber space H �P , for �P ∈ S, where

�Aσ :=
∑

λ

∫

B�\Bσ
d3k√
|�k|

{
b∗�k,λ�ε�k,λ + �ε ∗�k,λb�k,λ

}
, (II.29)

and where Bσ is a ball of radius σ .

Remark. In a companion paper [11], we construct dressed one-electron states of fixed
momentum given by the ground state vectors �

σ j

�P of the Hamiltonians H
σ j

�P , and we

compare ground state vectors �
σ j

�P , �
σ j ′
�P ′ corresponding to different fiber Hamiltonians

H
σ j

�P , H
σ j ′
�P ′ with �P �= �P ′. We compare these ground state vectors as vectors in the Fock

space Fb. In the sequel, we use the expression

‖�σ j

�P −�σ j ′
�P ′ ‖F (II.30)

as an abbreviation for

‖I �P (�
σ j

�P )− I �P ′(�
σ j ′
�P ′ )‖F ; (II.31)

‖ · ‖F stands for the Fock norm. Hölder continuity properties of �σ�P in σ and in �P are
proven in [11]. These properties play a crucial role in the present paper.

II.1. Summary of contents. In Sect. III, time-dependent vectors ψh,κ (t) approximating
scattering states are constructed, and the main results of this paper are described, along
with an outline of infraparticle scattering theory. In Sects. IV and V, ψh,κ (t) is shown to
converge to a scattering state ψout/ in

h,κ in the Hilbert space H, as time t tends to infinity.

This result is based on mathematical techniques introduced in [26]. The vector ψout/ in
h,κ

represents a dressed electron with a wave function h on momentum space whose sup-
port is contained in the set S (see details in Sect. III.1), accompanied by a cloud of soft
photons described by a Bloch-Nordsieck operator, and with an upper cutoff κ imposed
on photon frequencies. This cutoff can be chosen arbitrarily.

In Sect. VI, we construct the scattering subspaces Hout/ in . Vectors in these sub-
spaces are obtained from certain subspaces, H̊out/ in , by applying “hard” asymptotic
photon creation operators. These spaces carry representations of the algebras Aout/ in

ph

and Aout/ in
el of asymptotic photon creation- and annihilation operators and asymptotic

electron observables, respectively, which commute with each other. The latter prop-
erty proves asymptotic decoupling of the electron and photon dynamics. We rigorously
establish the coherent nature and the infrared properties of the representation of Aout/ in

ph
identified by Bloch and Nordsieck in their classic paper, [2].

In a companion paper [11], we establish the main spectral ingredients for the con-
struction and convergence of the vectors {�σ�P }, as σ tends to 0. These results are obtained
with the help of a new multiscale method introduced in [25], to which we refer the reader
for some details of the proofs.

In the Appendix, we prove some technical results used in the proofs.
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III. Infraparticle Scattering States

Infraparticle scattering theory is concerned with the asymptotic dynamics in QFT
models of infraparticles and massless fields. Contrary to theories with a non-vanishing
mass gap, the picture of asymptotically freely moving particles in the Fock representa-
tion is not valid, due to the inseparability of the dynamics of charged massive particles
and the soft modes of the massless asymptotic fields.

Our starting point is to study the (dressed one-particle) states of a (non-relativistic)
electron when the interactions with the soft modes of the photon field are turned off. We
then analyze their limiting behavior when this infrared cut-off is removed. This amounts
to studying vectors ψσ , σ > 0, in the Hilbert space H that are solutions to the equation

Hσ ψσ = Eσ�P ψ
σ , (III.1)

where Hσ = ∫⊕ Hσ
�P d3 P , and Eσ�P is a function of the vector operator �P; Eσ�P is

the electron energy function defined more precisely in Sect. III.1. Since in our model
non-relativistic matter is coupled to a relativistic field, the form of Eσ�P is not fixed by
symmetry, except for rotation invariance. Furthermore, the solutions of (III.1) give rise
to vectors in the physical Hilbert space describing wave packets of dressed electrons of
the form

ψσ (h) =
∫

h( �P)�σ�P d3 P, (III.2)

where the support of h is contained in a ball centered at �P = 0, chosen such that
| �∇Eσ�P | < 1, as a function of �P , i.e., we must impose the condition that the maximal
group velocity of the electron which, a priori, is not bounded from above in our non-
relativistic model, is bounded by the speed of light. (For group velocities larger than the
velocity of light, the one-electron states decay by emission of Cerenkov radiation.)

The guiding principle motivating our analysis of limiting or improper one-particle
states, ψσ (h) for σ → 0, is that refined control of the infrared singularities, which push
these vectors out of the space H, as σ → 0, should enable one to characterize the soft
photon cloud encountered in the scattering states. The analysis of Bloch and Nordsieck,
[2], suggests that the infrared behavior of the state describing the soft photons accompa-
nying an electron should be singular (i.e., not square-integrable at the origin in photon
momentum space), and that it should be determined by the momentum of the asymp-
totic electron. In mathematical terms, this means that the asymptotic electron velocity
is expected to determine an asymptotic Weyl operator (creating a cloud of asymptotic
photons), which when applied to a dressed one-electron state ψσ=0(h) yields a well
defined vector in the Hilbert space H. This vector is expected to describe an asymptotic
electron with wave function h surrounded by a cloud of infinitely many asymptotic free
photons, in accordance with the observations sketched in (I.6)–(I.13).

Our goal in this paper is to translate this physical picture into rigorous mathematics,
following suggestions made in [15] and methods developed in [9,10,25,26].

III.1. Key spectral properties. In our construction of scattering states, we make exten-
sive use of a number of spectral properties of our model proven in [11], and summarized
in Theorem III.1 below; (they are analogous to those used in the analysis of Nelson’s
model in [26]).
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We define the energy of a dressed one-electron state of momentum �P by

Eσ�P = inf specHσ
�P , E �P = inf specH �P = Eσ=0

�P . (III.3)

We refer to Eσ�P as the ground state energy of the fiber Hamiltonian Hσ
�P . We assume that

the finestructure constant α is so small that

| �∇Eσ�P | < νmax < 1 (III.4)

for all �P ∈ S := { �P ∈ R
3 : | �P| < 1

3 }, for some constant νmax < 1, uniformly in σ .
Corresponding to �∇Eσ�P , we introduce a Weyl operator

Wσ ( �∇Eσ�P ) := exp

⎛

⎝α
1
2
∑

λ

∫

B�\Bσ
d3k

�∇Eσ�P
|�k| 3

2 δ �P,σ (̂k)
· (�ε�k,λb∗�k,λ − h.c.)

⎞

⎠ , (III.5)

where

δ �P,σ (̂k) := 1 − �∇Eσ�P ·
�k
|�k| , (III.6)

acting on H �P , which is unitary forσ > 0. We consider the transformed fiber Hamiltonian

K σ
�P := Wσ ( �∇Eσ�P )H

σ
�P W ∗

σ (
�∇Eσ�P ). (III.7)

We note that conjugation by Wσ ( �∇Eσ�P ) acts on the creation- and annihilation operators
as a linear Bogoliubov transformation (translation)

Wσ ( �∇Eσ�P ) b#
�k,λ W ∗

σ (
�∇Eσ�P ) = b#

�k,λ − α1/2 1σ,�(�k)
|�k| 3

2 δ �P,σ (̂k)
�∇Eσ�P · �ε #

�k,λ, (III.8)

where 1σ,�(�k) stands for the characteristic function of the set B�\Bσ . Our methods
rely on proving regularity properties in σ and �P of the ground state vector, �σ�P , and of
the ground state energy, Eσ�P , of K σ

�P . These regularity properties are summarized in the
following theorem, which is the main result of the companion paper [11].

Theorem III.1. For �P ∈ S and for α > 0 sufficiently small, the following statements
hold.

(I 1) The energy Eσ�P is a simple eigenvalue of the operator K σ
�P on Fb. Let Bσ :=

{�k ∈ R
3 | |�k| ≤ σ }, and let Fσ denote the Fock space over L2((R3\Bσ ) × Z2).

Likewise, we define Fσ
0 to be the Fock space over L2(Bσ × Z2); hence Fb =

Fσ ⊗Fσ
0 . On Fσ , the operator K σ

�P has a spectral gap of size ρ−σ or larger, sep-

arating Eσ�P from the rest of its spectrum, for some constant ρ−, with 0 < ρ− < 1.
The contour

γ := {z ∈ C ||z − Eσ�P | =
ρ−σ

2
} , σ > 0 (III.9)
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bounds a disc which intersects the spectrum of K σ
�P |Fσ

in only one point, {Eσ�P }.
The ground state vectors of the operators K σ

�P are given by

�σ�P :=
1

2π i

∫
γ

1
K σ
�P−z dz
 f

‖ 1
2π i

∫
γ

1
K σ
�P−z dz
 f ‖F

(III.10)

and converge strongly to a non-zero vector � �P ∈ Fb, in the limit σ → 0. The

rate of convergence is at least of order σ
1
2 (1−δ), for any 0 < δ < 1. (Although it

is not relevant for the purposes of this paper, we note that the results in [17] imply

the uniformity in δ of the range of values of α, where the rate estimate σ
1
2 (1−δ)

holds; analogous conclusions follow for the rate estimates below.)
The dependence of the ground state energies Eσ�P of the fiber Hamiltonians K σ

�P
on the infrared cutoff σ is characterized by the following estimates:

|Eσ�P − Eσ
′
�P | ≤ O(σ ), (III.11)

and

| �∇Eσ�P − �∇Eσ
′
�P | ≤ O(σ 1

2 (1−δ)), (III.12)

for any 0 < δ < 1, with σ > σ ′ > 0.
(I 2) The following Hölder regularity properties in �P ∈ S hold uniformly in σ ≥ 0:

‖�σ�P −�σ�P+� �P‖F ≤ Cδ′ |� �P| 1
4−δ′ (III.13)

and

| �∇Eσ�P − �∇Eσ�P+� �P | ≤ Cδ′′ |� �P| 1
4−δ′′ , (III.14)

for any 0 < δ′′ < δ′ < 1
4 , with �P, �P + � �P ∈ S, where Cδ′ and Cδ′′ are finite

constants depending on δ′ and δ′′, respectively.
(I 3) Given a positive number νmin, there are numbers rα = νmin + O(α) > 0 and

νmax < 1 such that, for �P ∈ S\Brα and for α sufficiently small,

1 > νmax > | �∇Eσ�P | > νmin > 0, (III.15)

uniformly in σ . (We also notice that the control on the second derivative of Eσ�P
in �P uniformly in the sharp infrared cut-off σ ≥ 0 (see [17]) would allow us to
take νmin ≡ 0, rα ≡ 0, and to include electron velocities �∇Eσ�P arbitrarily close
to 0, but we prefer to work with an assumption self-contained in the paper).

(I 4) For �P ∈ S and for any �k �= 0, the following inequality holds uniformly in σ , for
α small enough:

Eσ�P−�k > Eσ�P − Cα|�k|, (III.16)

where Eσ�P−�k := inf spec Hσ
�P−�k and 1

3 < Cα < 1, with Cα → 1
3 as α→ 0.
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(I 5) Let �σ�P ∈ F denote the ground state vector of the fiber Hamiltonian Hσ
�P , so that

�σ�P = ζWσ ( �∇Eσ�P )
�σ�P

‖�σ�P‖F
ζ ∈ C, |ζ | = 1. (III.17)

For �P ∈ S, one has that

‖ b�k,λ
�σ�P

‖�σ�P‖F
‖F ≤ C α1/2 1σ,�(�k)

|�k|3/2 , (III.18)

where�σ�P is the ground state of Hσ
�P and C is a positive constant; see Lemma 6.1

of [10] which can be extended to �k ∈ R
3 using (I 4).

Detailed proofs of Theorem III.1 based on results in [25,10] are given in [11].

III.2. Definition of the approximating vector �h,κ (t). We construct infraparticle scat-
tering states by using a time-dependent approach to scattering theory. We define a
time-dependent approximating vector ψh,κ (t) that converges to an asymptotic vector,
as t → ∞. It describes an electron with wave function h (whose momentum space
support is contained in S), and a cloud of asymptotic free photons with an upper photon
frequency cutoff 0 < κ ≤ �. This interpretation will be justified a posteriori.

We closely follow an approach to infraparticle scattering theory developed for
Nelson’s model in [26], (see also [15]). In the context of the present paper, our task
is to give a mathematically rigorous meaning to the formal expression

�out
κ (h) := lim

t→∞ lim
σ→0

ei Ht Wκ,σ (�v(t), t) e−i Hσ tψσ (h), (III.19)

where

Wκ,σ (�v(t), t) := exp

⎛

⎝α
1
2
∑

λ

∫

Bκ\Bσ
d3k√
|�k|

�v(t) · {�ε�k,λa∗�k,λe−i |�k|t − �ε ∗�k,λa�k,λei |�k|t }
|�k|(1 − k̂ · �v(t))

⎞

⎠ .

The operator �v(t) is not known a priori; but, in the limit t → ∞, it must converge to
the asymptotic velocity operator of the electron. The latter is determined by the operator
�∇E �P , applied to the (non-Fock) vectors � �P . This can be seen by first considering the
infrared regularized model, with σ > 0, which has dressed one-electron states ψσ (h)
in H, and by subsequently passing to the limit σ → 0. Formally, for σ → 0, the Weyl
operator

ei Ht Wκ,σ (�v(t), t) e−i Hσ t (III.20)

is an interpolating operator used in the L.S.Z. (Lehmann-Symanzik-Zimmermann)
approach to scattering theory for the electromagnetic field, where the photon test func-
tions (in the operator Wκ,σ (�v(t), t)) are evolved backwards in time with the free evolu-
tion, and the photon creation- and annihilation operators are evolved forward in time with
the interacting time evolution. Moreover, the photon test functions in (III.20) coincide
with the test functions in the Weyl operator Wσ ( �∇Eσ�P ) defined in (III.5), after replacing
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the operator �∇Eσ�P by the operator �v(t). We stress that, while the Weyl operator Wσ ( �∇Eσ�P )
leaves the fiber spaces H �P invariant, the Weyl operator Wκ,σ (�v(t), t) is expressed in
terms of the operators {a, a∗}, as it must be when describing real photons in a scattering
process, and hence does not preserve the fiber spaces.

Guided by the expected relation between �v(t) and �∇Eσ�P , as t →∞ and σ → 0, two
key ideas used to make (III.19) precise are to render the infrared cut-off time-dependent,
with σt → 0, as t →∞, and to discretize the ball S = { �P ∈ R

3 | | �P| < 1
3 }, with a grid

size decreasing in time t . This discretization also applies to the velocity operator �v(t) in
expression (III.19).

The existence of infraparticle scattering states in H is established by proving that
the corresponding sequence of time-dependent approximating scattering states, which
depend on the cutoff σt and on the discretization, defines a strongly convergent sequence
of vectors in H. This is accomplished by appropriately tuning the convergence rates of
σt and of the discretization of S. Our sequence of approximate infraparticle scattering
states is defined as follows (for t � 1):

i) We consider a wave function h with support in a region R which is a union of
cubes contained in S\Brα ; (see condition (I 3) in Theorem III.1). We introduce
a time-dependent cell partition G (t) of R. This partition is constructed as follows:
At time t , the linear dimension of each cell is L

2n , where L is the diameter of R,
and n ∈ N is such that

(2n)
1
ε ≤ t < (2n+1)

1
ε , (III.21)

for some ε > 0 to be fixed later. Thus, the total number of cells in G (t) is N (t) =
23n , where n = �log2 tε�; (�x� extracts the integer part of x). By G (t)

j , we denote

the j th cell of the partition G (t).
ii) For each cell, we consider a one-particle state of the Hamiltonian Hσt ,

ψ
(t)
j,σt

:=
∫

G (t)
j

h( �P)�σt
�P d3 P, (III.22)

where
• h( �P) ∈ C1

0(S\Brα ), with supp h ⊆ R;
• σt := t−β , for some exponent β (> 1) to be fixed later;
• in (III.22), the ground state vector, �σt

�P , of Hσt
�P is defined by

�
σt
�P := W ∗

σt
(∇Eσt

�P )�
σt
�P , (III.23)

where �σt
�P is the ground state of K σt

�P ; (see Theorem III.1).

iii) With each cell G (t)
j we associate a soft-photon cloud described by the following

“LSZ (Lehmann-Symanzik-Zimmermann) Weyl operator”:

ei Ht Wκ,σt (�v j , t) e−i Hσt t , (III.24)

where

Wκ,σt (�v j , t) := exp

⎛

⎝α
1
2
∑

λ

∫

Bκ\Bσt

d3k√
|�k|

�v j · {�ε�k,λa∗�k,λe−i |�k|t − �ε ∗�k,λa�k,λei |�k|t }
|�k|(1 − k̂ · �v j )

⎞

⎠.

(III.25)
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• Here κ , with 0 < κ ≤ �, is an arbitrary (but fixed) photon energy threshold or
counter threshold.

• �v j ≡ �∇Eσt ( �P∗
j ) is the c-number vector corresponding to the value of the

“velocity” �∇Eσt ( �P) in the center, �P∗
j , of the cell G (t)

j .

iv) For each cell, we consider a time-dependent phase factor

eiγσt (�v j , �∇Eσt
�P ,t), (III.26)

with

γσt (�v j , �∇Eσt
�P , t) := −α

∫ t

1

�∇Eσt
�P ·
∫

B
σ S
τ
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P τ − |�k|τ) d3k dτ,

(III.27)

and

�l
�v j
(�k) := 2

∑

l ′
(δl,l ′ − klkl ′

|�k|2 ) v
l ′
j

1

|�k|2(1 − k̂ · �v j )
. (III.28)

Here, σ S
τ := τ−θ , and the exponent 0 < θ < 1 will be chosen later. Note that, in

(III.26), (III.27), �∇Eσt
�P is interpreted as an operator.

v) The approximate scattering state at time t is given by the expression

ψh,κ (t) := ei Ht
N (t)∑

j=1

Wκ,σt (�v j , t) eiγσt (�v j , �∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
j,σt
, (III.29)

where N (t) is the number of cells in G (t).

The role played by the phase factor eiγσt (�v j , �∇Eσt
�P ,t) is similar to that of the Coulomb

phase in Coulomb scattering. However, in the present case, the phase has a limit, as
t →∞, and is introduced to control an oscillatory term in the Cook argument which is
not absolutely convergent (see Sect. III.3).

III.3. Statement of the main result. The main result of this paper is Theorem III.2, below,
from which the asymptotic picture described in Sect. III.5, below, emerges. It relies on
the assumptions summarized in the following hypothesis.

Main Assumption III.1. The following assumptions hold throughout this paper:

(1) The conserved momentum �P takes values in S; see (II.27).
(2) The finestructure constant α satisfies α < αc, for some small constant αc 
 1

independent of the infrared cutoff.
(3) The wave function h is supported in a set R and is of class C1, where R is contained

in S\Brα , as indicated in Fig. 1, and rα is introduced in (I 3).
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Fig. 1. R can be described as a union of cubes with sides of length L
2n0 , for some n0 <∞

Theorem III.2. Given the Main Assumption III.1, the following holds: There exist pos-
itive real numbers β > 1, θ < 1 and ε > 0 such that the limit

s − lim
t→+∞ψh,κ (t) =: ψ(out)

h,κ (III.30)

(where ψh,κ (t) is defined in Eq. (III.29) and κ , see (III.25), is the threshold frequency)

exists as a vector in H, and ‖ψ(out)
h,κ ‖2 = ∫ |h( �P)|2d3 P. Furthermore, the rate of con-

vergence is at least of order t−ρ′ , for some ρ′ > 0.

We note that this result corresponds to Theorem 3.1 of [26] for Nelson’s model.
The limiting state is the desired infraparticle scattering state without infrared cut-offs.

We shall verify that {ψh,κ (t)} is a Cauchy sequence in H, as t → +∞; (or t →−∞).
In Sect. III.4, we outline the key mechanisms responsible for the convergence of

the approximating vectors ψh,κ (t), as t →∞. We note that, in (III.30), three different
convergence rates are involved:

• The rate t−β related to the fast infrared cut-off σt ;
• the rate t−θ , related to the slow infrared cut-off σ S

t (see (III.27));
• the rate t−ε of the grid size of the cell partition.

We anticipate that, in order to control the interaction,

• β has to be larger than 1, due to the time-energy uncertainty principle.
• The exponent θ has to be smaller than 1, in order to ensure the cancelation of some

“infrared tails” discussed in Sect. IV.
• The exponent ε, which controls the rate of refinement of the cell decomposition, will

have to be chosen small enough to be able to prove certain decay estimates.
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III.4. Strategy of convergence proof. Here we outline the key mechanisms used to prove
that the approximating vectors ψh,κ (t) converge to a nonzero vector in H, as t →±∞.

Among other things, we will prove that

lim
t→∞‖ψh,κ (t)‖ = ‖h‖2 := (

∫
|h( �P)|2 d3 P )

1
2 . (III.31)

From its definition, see (III.29), one sees that the square of the norm of the vectorψh,κ (t)
involves a double sum over cells of the partitions G (t), i.e.,

‖ψh,κ (t)‖2 =
N (t)∑

l, j=1

〈
eiγσt (�vl , �∇Eσt

�P ,t) e−i Eσt
�P t
ψ
(t)
l,σt
, W∗

κ,σt
(�vl , t)

×Wκ,σt (�v j , t) eiγσt (�v j , �∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
j,σt

〉
, (III.32)

where the individual terms, labeled by (l, j), are inner products between vectors labeled
by cells G (t)

l and G (t)
j of G (t).

A heuristic argument to see where (III.31) comes from is as follows. Assuming that

• the vectors ψh,κ (t) converge to an asymptotic vector of the form

lim
t→±∞ lim

σ→0
ei Ht Wκ,σ (�v(t), t) e−i Hσ tψσ (h) = Wout/ in

κ,σ=0 (�v(±∞)) ψσ=0(h),

(III.33)

where

Wout/ in
κ,σ=0 (�v(±∞)) := exp

⎛

⎝α
1
2
∑

λ

∫

Bκ

d3k√
|�k|

�v(±∞) · {�ε�k,λaout/ in ∗
�k,λ − �ε ∗�k,λaout/ in

�k,λ }
|�k|(1 − k̂ · �v(±∞))

⎞

⎠ ,

and aout/ in ∗
�k,λ , aout/ in

�k,λ are the creation- and annihilation operators of the asymptotic
photons;

• the operators �v(±∞) commute with the algebra of asymptotic creation- and anni-
hilation operators {aout/ in ∗

�k,λ , aout/ in
�k,λ }; (this can be expected to be a consequence of

asymptotic decoupling of the photon dynamics from the dynamics of the electron);
• the restriction of the asymptotic velocity operators, �v(±∞), to the improper dressed

one-electron state is given by the operator �∇E �P , i.e.,

�v(±∞)� �P ≡ �∇E �P� �P ; (III.34)

then, the two vectors

Wκ,σt (�v j , t) eiγσt (�v j ,∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
j,σt

and Wκ,σt (�vl , t) eiγσt (�vl ,∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
l,σt

(III.35)

corresponding to two different cells of G (t) (i.e., j �= l) turn out to be orthogonal in the
limit t → ±∞. One can then show that the diagonal terms in the sum (III.32) are the
only ones that survive in the limit t →∞. The fact that their sum converges to ‖h‖2

2 is
comparatively easy to prove.
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A mathematically precise formulation of this mechanism is presented in Sect. IV. In
Sect. IV.1, part A., the analysis of the scalar products between the cell vectors in (III.35)
is reduced to the study of an ODE. To prove (III.31), we invoke the following properties
of the one-particle states ψ(t)j,σt

and ψ(t)l,σt
located in the j th and lth cell, respectively:

• Their spectral supports with respect to the momentum operator �P are disjoint up to
sets of measure zero.

• They are vacua for asymptotic annihilation operators, as long as an infrared cut-off
σt for a fixed time t is imposed: For Schwartz test functions gλ, we define

aout/ in
σt

(g) := lim
s→±∞ ei Hσt s

∑

λ

∫
a�k,λ gλ(�k) ei |�k|s e−i Hσt s d3k, (III.36)

on the domain of Hσt .

An important step in the proof of (III.31) is to control the decay in time of the off-
diagonal terms. After completion of this step, one can choose the rate, t−ε , by which the
diameter of the cells of the partition G (t) tends to 0 in such a way that the sum of the
off-diagonal terms vanishes, as t → ∞. Precise control is achieved in Sect. IV.1, part
B., where we invoke Cook’s argument and analyze the decay in time s of

d

ds

(
ei Hσt s Wκ,σt (�v j , s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

)
(III.37)

= i ei Hσt s[Hσt
I , Wκ,σt (�v j , s)] eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

(III.38)

+ i ei Hσt s Wκ,σt (�v j , s)
dγσt (�v j , �∇Eσt

�P , s)

ds
eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt
, (III.39)

for a fixed infrared cut-off σt , and a fixed partition. As we will show, the term in (III.38)
can be written (up to a unitary operator) as

α
1
2

∫
d3y

{
�Jσt (s, �y) ·

∫

Bκ\Bσt

���v j (�q) cos(�q · �y − |�q|s) d3q

}
eiγσt (�v j , �∇Eσt

�P ,s) ψ(t)j,σt

(III.40)

plus subleading terms, where �Jσt (s, �y) is essentially the electron current at time s, which
is proportional to the velocity operator

i [Hσt , �x] = �p + α
1
2 �Aσ t (�x). (III.41)

In (III.40), the electron current is smeared out with the vector function

�gt (s, �y) :=
∫

Bκ\Bσt

���v j (�q) cos(�q · �y − |�q|s) d3q, (III.42)

which solves the wave equation

�s,�y �gt (s, �y) = 0, (III.43)

and is then applied to the one-particle state eiγσt (�v j , �∇Eσt
�P ,s)ψ(t)j,σt

. Because of the dispersive
properties of the dynamics of the system, the resulting vector is expected to converge to
0 in norm at an integrable rate, as s →∞. An intuitive explanation proceeds as follows:
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i) A vector function �gt (s, �y) that solves (III.43) propagates along the light cone, and
sup�y∈R3 |�gt (s, �y)| decays in time like s−1, while a much faster decay is observed

when �y is restricted to the interior of the light cone (i.e., | |�y|s | < 1).

ii) Because of the support in �P of the vector ψ(t)j,σt
, the propagation of the electron

current in (III.38) is limited to the interior of the light cone, up to subleading tails.

Combination of i) and ii) is expected to suffice to exhibit decay of the vector norm
of (III.38) and to complete our argument. An important refinement of this reasoning
process, involving the term (III.39), is, however, necessary:

A mathematically precise version of statement ii) is as follows: Let χh be a smooth,
approximate characteristic function of the support of h. We will prove a propagation
estimate

∥∥∥∥χh(
�x
s
) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

−χh( �∇Eσt
�P ) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

∥∥∥

≤ 1

sν
1

t
3ε
2

| ln(σt )|, (III.44)

as s →∞, where ν > 0 is independent of ε. Using result (I 3) of Theorem III.1, and
our assumption on the support of h formulated in point ii) of Sect. III.2, this estimate
provides sufficient control of the asymptotic dynamics of the electron.

An important modification of the argument above is necessary because of the depen-
dence of

�gt (s, �y) :=
∫

Bκ\Bσt

���v j (�q) cos(�q · �y − |�q|s) d3q, (III.45)

on t , which cannot be neglected even if �y is in the interior of the light cone. In order to
exhibit the desired decay, it is necessary to split �gt (s, �y) into two pieces,

∫

Bκ\Bσ S
s

���v j (�q) cos(�q · �y − |�q|s)d3q (III.46)

and
∫

B
σ S

s
\Bσt

���v j (�q) cos(�q · �y − |�q|s) d3q (III.47)

for s such that σ S
s > σt , where σ S

s = s−θ , with 0 < θ < 1. (The same procedure will
also be used in (III.50), below.) The function (III.46) has good decay properties inside
the light cone. Expression (III.40), with �gt (s, �y) replaced by (III.46), can be controlled
by standard dispersive estimates. The other contribution, proportional to (III.47), is in
principle singular in the infrared region, but is canceled by (III.39). This can be seen
by using a propagation estimate similar to (III.44). This strategy has been designed in
[26]. However, because of the vector nature of the interaction in non-relativistic QED,
the cancelation in our proof is technically more subtle than the one in [26].

After having proven the uniform boundedness of the norms of the approximating
vectors ψh,κ (t), one must prove that they define a Cauchy sequence in H. To this end,
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we compare these vectors at two different times, t2 > t1 (for the limit t → +∞), and
split their difference into

ψh,κ (t1)− ψh,κ (t2) = �ψ(t2, σt2 ,G
(t2) → G (t1)) + �ψ(t2 → t1, σt2 ,G

(t1))

+�ψ(t1, σt2 → σt1 ,G
(t1)), (III.48)

where the three terms on the r.h.s. correspond to

I) changing the partition G (t2) → G (t1) in ψh,κ (t2):

�ψ(t2, σt2 ,G
(t2) → G (t1))

:= ei Ht2
N (t1)∑

j=1

Wκ,σt2
(�v j , t2) eiγσt2

(�v j , �∇E
σt2
�P ,t2)e−i E

σt2
�P t2 ψ

(t1)
j,σt2

− ei Ht2
N (t1)∑

j=1

∑

l( j)

Wκ,σt2
(�vl( j), t2)e

iγσt2
(�vl( j), �∇E

σt2
�P ,t2) e−i E

σt2
�P t2 ψ

(t2)
l( j),σt2

,

(III.49)

where l( j) labels all cells of G (t2) contained in the j th cell G (t1)
j of G (t1). Moreover,

�vl( j) ≡ �∇E
σt2
�P∗
l( j)

and �v j ≡ �∇E
σt1
�P∗

j
;

II) subsequently changing the time, t2 → t1, for the fixed partition G (t1), and the
fixed infrared cut-off σt2 :

�ψ(t2 → t1, σt2 ,G
(t1))

:= ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

− ei Ht2
N (t1)∑

j=1

Wκ,σt2
(�v j , t2) eiγσt2

(�v j , �∇E
σt2
�P ,t2) e−i E

σt2
�P t2 ψ

(t1)
j,σt2

; (III.50)

and, finally,
III) shifting the infrared cut-off, σt2 → σt1 :

�ψ(t1, σt2 → σt1 ,G
(t1))

:= ei Ht1
N (t1)∑

j=1

Wκ,σt1
(�v j , t1)e

iγσt1
(�v j , �∇E

σt1
�P ,t1)e−i E

σt1
�P t1ψ

(t1)
j,σt1

− ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)e

iγσt2
(�v j , �∇E

σt2
�P ,t1)e−i E

σt2
�P t1ψ

(t1)
j,σt2

. (III.51)

It is important to take these three steps in the order indicated above.
In Step I), the size of ‖�ψ(t2, σt2 ,G

(t2) → G (t1))‖2 in (III.49) is controlled as
follows: The sum of off-diagonal terms yields a subleading contribution. The diagonal
terms are shown to tend to 0 by controlling the differences

�vl( j) − �v j .



Infraparticle States in QED I 781

In Step II), Cook’s argument, combined with the cancelation of an infrared tail (as in
the mechanism described above), yields the desired decay in t1.

Step III) is more involved. But the basic idea is quite simple to grasp: It consists in
rewriting

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

(III.52)

as

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W ∗

σt2
( �∇E

σt2
�P )Wσt2

( �∇E
σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

.

(III.53)

The term in (III.53) corresponding to the cell G (t1)
j of G (t1) can then be obtained by

acting with the “dressing operator”

ei Ht1Wκ,σt2
(�v j , t1)W ∗

σt2
( �∇E

σt2
�P ) e−i E

σt2
�P t1, (III.54)

on the “infrared-regular” vector

eiγσt2
(�v j , �∇E

σt2
�P ,t1)�

(t1)
j,σt2

:= eiγσt2
(�v j , �∇E

σt2
�P ,t1)

∫

G
(t1)
j

h( �P)�σt2
�P d3 P (III.55)

corresponding to the vectors �σ�P = Wσ ( �∇Eσ�P )�
σ
�P (see (III.23)), for all j . The advan-

tage of (III.53) over (III.52) is that the vector �(t1)j,σt2
inherits the regularity properties of

�σ�P described in Theorem III.1. In particular, the vectors �(t1)j,σt2
converge strongly, as

σt2 → 0, and the vector

e−i �q·�x�(t1)j,σt2
(III.56)

depends on �q in a Hölder continuous manner, uniformly in σt2 . This last property entails
enough decay to offset various logarithmic divergences appearing in the removal of the
infrared cut-off in the dressing operator (III.54).

Our analysis of the strong convergence of the sequence of approximating vectors
culminates in the estimate

‖ψh,κ (t2)− ψh,κ (t1)‖ ≤ O
(
(ln(t2))

2/tρ1

)
, (III.57)

for some ρ > 0. By telescoping, this bound suffices to prove Theorem III.2. Indeed, to
estimate the difference between the two vectors at times t2 and t1, respectively, where
t2 > t1 > 1, we may consider a sequence of times {t2

1 , ..., tn
1 }, such that tn

1 ≤ t2 < tn+1
1 ,

and use Estimate (III.57) for each difference

ψh,κ (t2)− ψh,κ (t
n
1 ), (III.58)

ψh,κ (t
m
1 )− ψh,κ (t

m−1
1 ), 2 ≤ m ≤ n. (III.59)

Then, one can show that there exists a constant ρ′ > 0 such that the rate of convergence
of the time-dependent vector is at least of order t−ρ′ , as stated in Theorem III.2.
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III.5. A space of scattering states. We use the asymptotic states ψ(out/ in)
h,κ to construct a

subspace, H̊out/ in
κ , of scattering states invariant under space-time translations, and with

a photon energy threshold κ ,

H̊out/ in
κ :=

{∨
ψ

out/ in
h,κ (τ, �a) : h( �P) ∈ C1

0(S\Brα ), τ ∈ R, �a ∈ R3
}
, (III.60)

where

ψ
out/ in
h,κ (τ, �a) ≡ e−i �a· �P e−i Hτψout

h,κ . (III.61)

This space contains states describing an asymptotically freely moving electron, accom-
panied by asymptotic free photons with energy smaller than κ .

Spaces of scattering states are obtained from the space H̊out/ in
κ by adding (and

subtracting) “hard” photons, i.e.,

Hout/ in :=
{∨

ψ
out/ in

h, �F : h( �P) ∈ C1
0(S\Brα ),

�̂F ∈ C∞
0 (R

3\0 ; C3)
}
, (III.62)

where

ψ
out/ in

h, �F := s − lim
t→+/−∞ e

i
( �A[ �Ft ,t]− �A[ �Ft ,t]

)

ψh,κ (t), (III.63)

and

�A[ �Ft , t] := i
∫ (

�A(t, �y) · ∂ �Ft (�y)
∂t

− ∂ �A(t, �y)
∂t

· �Ft (�y)
)

d3y (III.64)

is the L.S.Z. photon field smeared out with the vector test function

�Ft (�y) :=
∑

λ=±

∫
d3k

(2π)32
√|k| �ε

∗
�k,λ F̂λ(�k) e−i |k|t+i �k·�y (III.65)

with

�̂F(�k) :=
∑

λ

�ε ∗�k,λ F̂λ(�k) ∈ C∞
0 (R

3\{0} ; C
3). (III.66)

An a posteriori physical interpretation of the scattering states constructed here emerges
by studying how certain algebras of asymptotic operators are represented on the spaces
of scattering states:

• The Weyl algebra, Aout/ in
ph , associated with the asymptotic electromagnetic field.

• The algebra Aout/ in
el generated by smooth functions of compact support of the asymp-

totic velocity of the electron.

These algebras will be defined in terms of the limits (III.67) and (III.69), below, whose
existence is established in Sect. VI.2.
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Theorem III.3. Functions f ∈ C∞
0 (R

3), of the variable ei Ht �x
t e−i Ht , have strong lim-

its, as t →±∞, as operators acting on Hout/ in ,

s − lim
t→+/−∞ ei Ht f (

�x
t
) e−i Htψ

out/ in

h, �F =: ψout/ in

f �∇E h, �F , (III.67)

where f �∇E (
�P) := limσ→0 f ( �∇Eσ�P ).

Theorem III.4. The LSZ Weyl operators
{

e
i
( �A[ �Gt ,t]− �A[ �Gt ,t]

)

: Ĝλ(�k) ∈ L2(R3, (1 + |�k|−1)d3k), λ = ±
}
, (III.68)

have strong limits in Hout/ in; i.e.,

Wout/ in( �G) := s − lim
t→+/−∞ e

i
( �A[ �Gt ,t]− �A[ �Gt ,t]

)

(III.69)

exists.
The limiting operators are unitary and satisfy the following properties:

i)

Wout/ in( �G)Wout/ in( �G ′) = Wout/ in( �G + �G ′) e−
ρ( �G, �G′)

2 , (III.70)

where

ρ( �G, �G ′) = 2i I m

(
∑

λ

∫
Ĝλ(�k)Ĝ ′λ(�k) d3k

)
. (III.71)

ii) The mapping R � s −→ Wout/ in(s �G)defines a strongly continuous one-parameter
group of unitary operators.

iii)

ei Hτ Wout/ in( �G) e−i Hτ = Wout/ in( �G−τ ), (III.72)

where �G−τ is the freely time-evolved (vector) test function at time −τ .

The two algebras, Aout/ in
ph and Aout/ in

el , commute. This is the precise mathematical
expression of the asymptotic decoupling of the dynamics of photons from the one of the
electron. The proof is non-trivial, because non-Fock representations of the asymptotic
photon creation- and annihilation operators appear. (For the representation of Aout/ in

ph ,
which is non-Fock but locally Fock see Sect. VI.2.) We will show that

〈
ψ

out/ in
h,κ , Wout ( �G)ψout/ in

h,κ

〉 =
∫

e−
‖ �G‖2

2
2 e

� �∇E �P
( �G) | h( �P) |2 d3 P, (III.73)

where

‖ �G‖2 =
(∫

| �G(�k)|2d3k

)1/2

, (III.74)
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and

��u( �G) := 2i Re

(
α

1
2
∑

λ

∫

Bκ
Ĝλ(�k)

�u · �ε ∗�k,λ
|�k| 3

2 (1 − �u · k̂)
d3k

)
. (III.75)

More precisely, the representation of Aout/ in
ph on the space of scattering states can be

decomposed in a direct integral of inequivalent irreducible representations labelled by
the asymptotic velocity of the electron. For different values of the asymptotic velocity,
these representations turn out to be inequivalent. Only for a vanishing electron velocity,
the representation is Fock; for non-zero velocity, it is a coherent non-Fock representation.
The coherent photon cloud, labeled by the asymptotic velocity, is the one anticipated by
Bloch and Nordsieck in the non-relativistic approximation.

These results can be interpreted as follows: In every scattering state, an asymptot-
ically freely moving electron is observed (with an asymptotic velocity whose size is
strictly smaller than the speed of light, by construction) accompanied by a cloud of
asymptotic photons propagating along the light cone.

Remark. We point out that, in our definition of scattering states, we can directly accom-
modate an arbitrarily large number of “hard” photons without energy restriction, i.e., we
can construct the limiting vector

�Aout [ �F (m)] . . . �Aout [ �F (1)]ψout
h,κ := s − lim

t→+∞
�A[ �F (m)t , t] . . . �A[ �F (1)t , t]ψh,κ (t)

(III.76)

which represents the state ψout
h,κ plus m asymptotic photons with wave functions

�F (m), . . . , �F (1), respectively. Analogously, we define

�Ain[ �G(m′)] . . . �Ain[ �G(1)]ψ in
h,κ := s − lim

t→−∞
�A[ �G(m′)

t , t] . . . �A[ �G(1)
t , t]ψh,κ (t).

(III.77)

This is possible because, apart from some higher order estimates to control the com-
mutator i[H, �x], and the photon creation operators in (III.76)–(III.77) (see for example
[18]), we use the propagation estimate (III.44), which only limits the asymptotic velocity
of the electron. This fact is very important for estimating scattering amplitudes involving
an arbitrary number of “hard” photons.

In particular, for any m,m′ ∈ N, we can define the S-matrix element

Sm,m′
α ( { �Fi }, { �G j } ) =

( �Aout [ �F (m)] . . . �Aout [ �F (1)]ψout
hout ,κout ,

�Ain[ �G(m′)] . . . �Ain[ �G(1)]ψ in
hin ,κ in

)
(III.78)

which corresponds to the transition amplitude between two states describing an incom-
ing electron with wave function hin , accompanied by a soft photon cloud of free photons
of energy smaller than κ in , plus m′ hard photons (with wave functions �G(1), . . . , �G(m′)),
and an outgoing electron with wave function hout and soft photon energy threshold κout ,
plus m hard photons, respectively.

The expansion of Sm,m′
α ( { �Fi }, { �G j } ) in the finestructure constant α can be carried

out, at least to leading order, along the lines of [1]. This yields a rigorous proof of the
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transition amplitudes for Compton scattering in leading order, and in the non-relativistic
approximation, that one can find in textbooks.

Moreover, as expected from classical electromagnetism, “close” to the electron a
Liénard-Wiechert electromagnetic field is observed. The precise mathematical state-
ment is

lim| �d|→∞ limt→±∞ | �d|2
{〈
ψ

out/ in

h, �F , ei Ht
∫

d3y Fµν(0, �y) δ̃�(�y − �x− �d) e−i Htψ
out/ in

h, �F

〉

−
∫

F
�∇E �P
µν (0, �d)〈ψσt

�P , ψ
σt
�P 〉 |h( �P)|2d3 P

}
= 0, (III.79)

where δ̃� is a smooth,�-dependent delta function which has the property that its Fourier
transform is supported in B�, �x is the electron position,

Fµν = ∂µAν − ∂ν Aµ (III.80)

with

A0(0, �y) := − (2π)2α1/2

|�y − �x| (III.81)

Ai (0, �y) := −
∑

λ

∫
d3k√
|�k|

(
(�ε�k,λ)i e−i �k·�ya∗�k,λ + (�ε ∗�k,λ)i ei �k·�ya�k,λ

)
, (III.82)

and F
�∇E �P
µν is the electromagnetic field tensor corresponding to a Liénard-Wiechert solu-

tion for the current

Jµ(t, �y) :=
(
−2(2π)3α

1
2 δ(3)(�y− �∇E �P t), 2(2π)3α

1
2 �∇E �Pδ

(3)(�y− �∇E �P t)
)
, | �∇E �P |<1;

(III.83)

see the discussion in Sect. I.

IV. Uniform Boundedness of the Limiting Norm

Our first aim is to prove the uniform boundedness of ‖ψh,κ (t)‖, as t → ∞; more
precisely, that

lim
t→∞

〈
ψh,κ (t), ψh,κ (t)

〉 =
∫
|h( �P)|2d3 P. (IV.1)

The sum of the diagonal terms – with respect to the partition G (t) introduced above – is
easily seen to yield

∫ |h( �P)|2d3 P in the limit t → ∞, as one expects. Thus, our main
task is to show that the sum of the off-diagonal terms vanishes in this limit.

In Sect. V, we prove that the norm-bounded sequence {ψh,κ (t)} is, in fact, Cauchy.
We recall that the definition of the vector ψh,κ (t) involves three different rates:

• The rate t−β related to the fast infrared cut-off σt ;
• the rate t−θ of the slow infrared cut-off σ S

t (see (III.27));
• the rate t−ε of refinement of the cell partitions G (t).
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IV.1. Control of the off-diagonal terms. We denote the off-diagonal term labeled by the
pair (l, j) of cell indices l �= j contributing to the l.h.s. of (IV.1) by

Ml, j (t) :=
〈

eiγσt (�vl ,∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
l,σt
, Wκ,σt ,l, j (t)e

iγσt (�v j ,∇Eσt
�P ,t) e−i Eσt

�P t
ψ
(t)
j,σt

〉
,

(IV.2)

where we use the notation

Wκ,σt ,l, j (t) := exp

(
∑

λ

∫

Bκ\Bσt

�ηl, j (�k) ·
{
�ε�k,λa∗�k,λe−i |�k|t − �ε ∗�k,λa�k,λei |�k|t} d3k

)
,

(IV.3)

where �v j ≡ �∇Eσt ( �P∗
j ), �P∗

j being the center of the cell G (t)
j , and

�ηl, j (�k) := α
1
2

�v j

|�k| 3
2 (1 − k̂ · �v j )

− α 1
2

�vl

|�k| 3
2 (1 − k̂ · �vl)

. (IV.4)

We study the limit t → +∞; the case t →−∞ is analogous.

A. Asymptotic orthogonality. In order to prove that the off-diagonal terms (IV.2) vanish
in the limit t → +∞, we separate the role played by the time variable t as the parameter
determining the dynamical cell decomposition and infrared cutoffs, from its usual role
as the conjugate variable to the energy. For the latter, we introduce an auxiliary variable
s ≥ t . Then, for fixed t (such that the cell decomposition and the cutoffs are constant),
we interpret the terms (IV.2) as special values Ml, j (t) = M1

l, j (t, t) of families Mµ
l, j (t, s)

introduced below, which depend on t, s, and an additional auxiliary parameter µ ∈ R.
Our strategy will be based on proving that the dispersive properties of Mµ

l, j (t, s) as a
function of s ≥ t alone, for fixed t andµ, imply that Ml, j (t) has a sufficiently fast decay
in t such that our desired result of asymptotic orthogonality follows.

More precisely, we introduce a family of operators

Wµ
κ,σt ,l, j (s) := exp

(
µ
∑

λ

∫

Bκ\Bσt

�ηl, j (�k) ·
{
�ε�k,λa∗�k,λe−i |�k|s − �ε ∗�k,λa�k,λei |�k|s} d3k

)

(IV.5)

depending on a parameter µ ∈ R, and define

M̂µ
l, j (t, s) :=

〈
eiγσt (�vl ,∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
l,σt
, Wµ

κ,σt ,l, j (s)e
iγσt (�v j ,∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

〉

(IV.6)

for s ≥ t (� 1). Obviously, M̂µ=1
l, j (t, t) = Ml, j (t).

The phase factor γσt (�v j ,∇Eσt
�P , s) is chosen as follows:

γσt (�v j ,∇Eσt
�P , s) := −α

∫ s

1

�∇Eσt
�P ·

∫

B
σ S
τ
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P τ − |�k|τ)d3kdτ

(IV.7)
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for s−θ ≥ σt , and

γσt (�v j ,∇Eσt
�P , s) := −α

∫ σ
− 1
θ

t

1

�∇Eσt
�P ·

∫

B
σ S
τ
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P τ − |�k|τ)d3kdτ,

(IV.8)

for s−θ < σt . As a function of µ, the scalar product in (IV.6) satisfies the ordinary
differential equation

d M̂µ
l, j (t, s)

dµ
= −µCl, j,σt M̂µ

l, j (t, s) + rµσt
(t, s), (IV.9)

where

Cl, j,σt :=
∫

Bκ\Bσt

|�ηl, j (�k)|2d3k, (IV.10)

and

rµσt
(t, s) := −

〈
eiγσt (�vl , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
l,σt
,

Wµ
κ,σt ,l, j (s) �aσt (�ηl, j )(s) eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

〉

+
〈
�aσt (�ηl, j )(s)e

iγσt (�vl , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
l,σt
,

Wµ
κ,σt ,l, j (s)e

iγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt

〉
,

with

�aσt (�ηl, j )(s) :=
∑

λ

∫

Bκ\Bσt

�ηl, j (�k) · �ε ∗�k,λa�k,λ ei |�k|s d3k. (IV.11)

The solution of the ODE (IV.9) is given by

M̂µ
l, j (t, s) = e−

Cl, j,σt
2 µ2

M̂0
l, j (t, s) +

∫ µ

0
rµ

′
σt
(t, s) e−

Cl, j,σt
2 (µ2−µ′2) dµ′, (IV.12)

where the initial condition at µ = 0 is given by

M̂0
l, j (t, s) = 0, (IV.13)

since the supports in �P of the two vectors ψ(t)l,σt
, ψ(t)j,σt

are disjoint (up to sets of measure
0), for arbitrary t and s.

Furthermore, condition (I 4) in Theorem III.1 implies that the vectors ψ(t)l,σt
, ψ(t)j,σt

are vacua for the annihilation part of the asymptotic photon field1 under the dynamics
generated by the Hamiltonian Hσt . As a consequence, we find that

lim
s→+∞ rµσt

(t, s) = 0, (IV.14)

1 The existence of the asymptotic field operator for a fixed cut-off dynamics is derived as explained in part
B. of this section.
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for fixed µ and t . To arrive at this conclusion, the following is used: The one-particle

state, multiplied by the phase eiγσt (�v j , �∇Eσt
�P ,s) continues to be a one-particle state for the

Hamiltonian Hσt ; for large s (see (IV.8)) the phase is s-independent; the operator Eσt
�P

coincides with the operator Hσt when applied to one-particle states of the Hamiltonian
Hσt .

Therefore, by dominated convergence, it follows that

lim
s→+∞ M̂1

l, j (t, s) = 0. (IV.15)

Since M̂1
l, j (t, t) ≡ Ml, j (t), we have

|Ml, j (t)|
= |Ml, j (t)− M̂1

l, j (t,+∞)|
≤ 2 sup

l
(‖ψ(t)l,σt

‖) sup
j

(
‖
∫ +∞

t

d

ds

(
ei Hσt s Wκ,σt (�v j , s)eiγσt (�v j ,∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

)
ds‖

)
.

(IV.16)

To estimate the r.h.s. of (IV.16), we proceed as follows.
Since we are interested in the limit t → +∞, and the integration domain on the r.h.s.

of (IV.16) is [t,+∞), our aim is to show that

d

ds

(
ei Hσt sWκ,σt (�v j , s)eiγσt (�v j ,∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

)
(IV.17)

is integrable in s, and that the rate at which the r.h.s. of (VI.16) converges to zero offsets
the growth of the number of cells in the partition. This allows us to conclude that

N (t)∑

l, j (l �= j)

Ml, j (t) −→ 0 (IV.18)

in the limit t → +∞, and, as a corollary,

lim
t→+∞

N (t)∑

l, j

Ml, j (t) =
∫
|h( �P)|2d3 P, (IV.19)

as asserted in Theorem III.2. The convergence (IV.18) follows from the following the-
orem.

Theorem IV.1. The off-diagonal terms Ml, j (t), l �= j , satisfy

| Ml, j (t) | ≤ C
1

tη
| ln σt |2 t−3ε, (IV.20)

for some constants C <∞ and η > 0, both independent of l, j , and ε > 0. In particular,
Ml, j (t)→ 0, as t → +∞.
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As a corollary, we find

∑

1≤l �= j≤N (t)

| Ml, j (t) | ≤ C N 2(t)
1

tη
| ln σt |2 t−3ε ≤ C ′ 1

tη
| ln σt |2 t3ε, (IV.21)

since N (t) ≈ t3ε . (Throughout the paper, C,C ′, c, and c′ denote positive constants.) We
conclude that, for ε < η

4 , (IV.18) follows.
B. Time derivative and infrared tail. We now proceed to prove Theorem IV.1. The
arguments developed here will also be relevant for the proof of the (strong) convergence
of the vectors ψh,κ (t), as t → +∞, which we discuss in Sect. V.

To control (IV.16), we focus on the derivative

d

ds

(
ei Hσt sWκ,σt (�v j , s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

)
(IV.22)

= i ei Hσt s[Hσt
I ,Wκ,σt (�v j , s)] eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

(IV.23)

+ i ei Hσt s Wκ,σt (�v j , s)
dγσt (�v j , �∇Eσt

�P , s)

ds
eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt
, (IV.24)

where

Hσt
I := α

1
2 �p · �Aσt (�x) + α

�Aσt (�x) · �Aσt (�x)
2

. (IV.25)

We have used that Wκ,σt (�v j , s) = e−is H0Wκ,σt (�v j , 0)eis H0 , where H0 := Hσt − Hσt
I

is the free Hamiltonian, to obtain the commutator in (IV.23). We rewrite the latter in the
form

[Hσt
I , Wκ,σt (�v j , s)] = Wκ,σt (�v j , s)

(Wκ,σt (�v j , s)∗Hσt
I Wκ,σt (�v j , s) − Hσt

I

)
,

(IV.26)

and use that

Wκ,σt (�v j , s)∗ �Aσt (�x)Wκ,σt (�v j , s) = �Aσt (�x) + α
1
2

∫

Bκ\Bσt

���v j (
�k) cos(�k · �x− |�k|s)d3k

(IV.27)

(see (III.8)), where �l
�v j
(�k) is defined in (III.28). We can then write the term (IV.23) as

(IV.23) = i ei Hσt sWκ,σt (�v j , s)α i[Hσt , �x] ·
∫

Bκ\Bσt

d3k ���v j (
�k) (IV.28)

× cos(�k · �x− |�k|s) e−i Eσt
�P seiγσt (�v j , �∇Eσt

�P ,s)ψ(t)j,σt

+ i ei Hσt sWκ,σt (�v j , s)
α2

2

(∫

Bκ\Bσt

���v j (
�k) cos(�k · �x− |�k|s)d3k

)2

(IV.29)

×eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt
,

where we recall that i[Hσt , �x] = �p + α
1
2 �Aσt (�x); see (III.41).
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From the decay estimates provided by Lemma A.2 in the Appendix one concludes
that the norm of (IV.29) is integrable in s, and that

∫ +∞

t
ds ‖ (IV.29) ‖ ≤ 1

tη
| ln σt |2 t−

3ε
2 (t � 1) (IV.30)

for some η > 0 independent of ε.
The analysis of (IV.28) is more involved. Our argument will eventually involve the

derivative of the phase factor in (IV.24). To begin with, we write (IV.28) as

(IV.28) = i ei Hσt s Wκ,σt (�v j , s)α i[Hσt , �x] · 1

Hσt + i

×(Hσt + i)
∫

Bκ\Bσt

d3k ���v j (
�k) cos(�k · �x− |�k|s) e−i Eσt

�P seiγσt (�v j , �∇Eσt
�P ,s)ψ(t)j,σt

.

(IV.31)

Pulling the operator (Hσt + i) through to the right, the vector (IV.31) splits into the sum
of a term involving the commutator [Hσt , �x],

i ei Hσt s Wκ,σt (�v j , s)α i[Hσt , �x] · 1

Hσt + i

∫

Bκ\Bσt

d3k ���v j (
�k)

×[ Hσt , cos(�k · �x− |�k|s) ] eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt
, (IV.32)

and

i ei Hσt sWκ,σt (�v j , s)α i[Hσt , �x] ·
∫

Bκ\Bσt

d3k ���v j (
�k)

× 1

Hσt + i
cos(�k · �x− |�k|s)eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
(Eσt

�P + i)ψ(t)j,σt
. (IV.33)

Note that [Hσt , �x] 1
Hσt +i is bounded in the operator norm, uniformly in σt . To control

(IV.32) and (IV.33), we invoke a propagation estimate for the electron position operator
as follows. Due to condition (I 3) in Theorem III.1, we can introduce a C∞−function
χh(�y), �y ∈ R

3, such that

• χh(�y) = 1 for νmin ≤ |�y| ≤ νmax.
• χh(�y) = 0 for |�y| ≤ 1

2νmin and |�y| ≥ 1+νmax
2 .

It is shown in Theorem A.3 of the Appendix that, for θ < 1 sufficiently close to 1 and s
large, the propagation estimate

∥∥∥∥χh

( �x
s

)
eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

− χh( �∇Eσt
�P )e

iγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt

∥∥∥∥

≤ 1

sν
1

t
3ε
2

| ln(σt )|, (IV.34)

holds, where ν > 0 is independent of ε. The argument uses the Hölder regularity of �∇Eσ�P
and of�σ�P listed under properties (I 2) in Theorem III.1, differentiability of h( �P), and
(III.18).
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We continue with the discussion of the expressions (IV.32) and (IV.33). We split
(IV.33) into two parts:

i ei Hσt s Wκ,σt (�v j , s)J |κ
σ S

s
(s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt
(IV.35)

+ i ei Hσt sWκ,σt (�v j , s)J |σ S
s
σt (s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt
, (IV.36)

using the definitions

J |κ
σ S

s
(s) := αi[Hσt , �x] · 1

Hσt + i

∫

Bκ\Bσ S
s

���v j (
�k) cos(�k · �x− |�k|s)d3k if s−θ ≥ σt

:= αi[Hσt , �x] ·
∫

Bκ\Bσt

d3k ���v j (
�k) 1

Hσt + i
cos(�k · �x− |�k|s) if s−θ < σt ,

(IV.37)

and

J |σ S
s
σt (s) := α i[Hσt , �x] · 1

Hσt + i

∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �x− |�k|s)d3k if s−θ ≥ σt

:= 0 if s−θ < σt , (IV.38)

where we refer to σ S
s := s−θ as the slow infrared cut-off. (We consider s, t large enough

such that κ > σ S
s , σt .)

To control J |σ S
s
σt (s) in (IV.38), we define the “infrared tail”

dγ̂σt (�v j ,
�x
s , s)

ds
:= α e−i Hσt s 1

Hσt + i

d(ei Hσt s �xh(s)e−i Hσt s)

ds
ei Hσt s ·

·
∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s) d3k if s−θ ≥ σt ,

:= 0 if s−θ < σt , (IV.39)

where �xh(s) := �xχh(
�x
s ). Summarizing, we can write (IV.22) as

(IV.22) = (IV.29)

+ i ei Hσt s Wκ,σt (�v j , s)J |κ
σ S

s
(s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt
(IV.40)

+ i ei Hσt sWκ,σt (�v j , s)J |σ S
s
σt (s) eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt
(IV.41)

+ i ei Hσt sWκ,σt (�v j , s)
dγσt (�v j , �∇Eσt

�P , s)

ds
eiγσt (�v j ,∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt

(IV.42)

+ i ei Hσt s Wκ,σt (�v j , s) α i [Hσt , �x] · 1

Hσt + i
(IV.43)

×
∫

Bκ\Bσt

d3k ���v j (
�k) [Hσt , cos(�k · �x− |�k|s)] eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt
,
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where we recall that (IV.29) satisfies (IV.30). We claim that
∥∥∥∥
∫ +∞

t
[(IV.40) + (IV.41) + (IV.42)] ds

∥∥∥∥ ≤ 1

tη
| ln σt |2 t−3ε/2, (t � 1) (IV.44)

for some η > 0 depending on θ , but independent of ε. This is obtained from
∥∥∥∥
∫ +∞

t
[(IV.40) + (IV.41) + (IV.42)] ds

∥∥∥∥ (IV.45)

≤
∫ +∞

t
ds

∥∥∥∥∥α i[Hσt , �x] · 1

Hσt + i

∫

Bκ\Bσt

d3k ���v j (
�k) cos(�k · �x− |�k|s)

×
[
χh( �∇Eσt

�P )− χh(
�x
s
)

]
eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt

∥∥∥∥∥ (IV.46)

+
∫ +∞

t
ds

∥∥∥J |κ
σ S

s
(s)χh(

�x
s
)eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt

∥∥∥ (IV.47)

+

∥∥∥∥∥

∫ +∞

t
ds ei Hσt s Wκ,σt (�v j , s)

[
J |σ S

s
σt (s)χh(

�x
s
)− dγ̂σt (�v j ,

�x
s , s)

ds

]
(IV.48)

× eiγσt (�v j , �∇Eσt
�P ,s) e−i Eσt

�P s
(Eσt

�P + i) ψ(t)j,σt

∥∥∥∥∥

+

∥∥∥∥∥

∫ +∞

t
ds ei Hσt s Wκ,σt (�v j , s)

[
dγσt (�v j , �∇Eσt

�P , s)

ds
− dγ̂σt (�v j ,

�x
s , s)

ds

]
(IV.49)

× eiγσt (�v j , �∇Eσt
�P ,s) e−i Eσt

�P s
(Eσt

�P + i) ψ(t)j,σt

∥∥∥∥∥

using the following arguments:

• The term (IV.46) can be bounded from above by 1
tη | ln σt |2 t−3ε/2, for some η > 0

independent of ε, due to the propagation estimate for (III.44) and Lemma A.2, which
show that the integrand has a sufficiently strong decay in s.

• In (IV.47), the slow cut-off σ S
s and the function χh(

�x
s ) make the norm integrable in

s with the desired rate (i.e., to get a bound as in (IV.30)), for a suitable choice of
θ < 1. In particular, we can exploit that

sup
�x∈R3

∣∣∣
∫

Bκ\Bσ S
s

d3k ��(�k, �v j ) cos(�k · �x− |�k|s) χh(
�x
s
)

∣∣∣ ≤ O( sθ

s2 ), (IV.50)

see Lemma A.2 in the Appendix.
• In (IV.48), only terms integrable in s and decaying fast enough to satisfy the bound

(IV.30) are left after subtracting

dγ̂σt (�v j ,
�x
s , s)

ds
(IV.51)

from J |σ S
s
σt (s). This is explained in detail in the proof of Theorem A.4 in the Appendix.
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• To bound (IV.49), we use the electron propagation estimate, combined with an inte-
gration by parts, to show that the derivative of the phase factor tends to the “infrared
tail” for large s, at an integrable rate that provides a bound as in (IV.30). We note
that due to the vector interaction in non-relativistic QED, this argument is more com-
plicated here than in the Nelson model treated in [26] where the interaction term is
scalar. Here, we have to show (see Theorem A.4) that, in the integral with respect to
s, the pointwise velocity ei Hσt s i[�x, Hσt ]e−i Hσt s can be replaced by the (asymptotic)
mean velocity �∇Eσt

�P at asymptotic times.

Finally, to control (IV.43), we observe that the commutator introduces additional
decay in s into the integrand when �x

s is restricted to the support of χh . It then follows
that the propagation estimate suffices (without infrared tail) to control the norm, by the
same arguments that were used to estimate (IV.46), (IV.47).

Combining the above arguments, the proof of Theorem IV.1 is completed.

V. Proof of Convergence of ψh,κ (t)

In this section, we prove that ψh,κ (t) defines a bounded Cauchy sequence in H, as
t → +∞. To this end, it is necessary to control the norm difference between vectors
ψh,κ (ti ), i = 1, 2, at times t2 > t1 � 1.

V.1. Three key steps. As anticipated in Sect. III.4, we decompose the difference of
ψh,κ (t1) and ψh,κ (t2) into three terms

ψh,κ (t1)− ψh,κ (t2) = �ψ(t2, σt2 ,G
(t2) → G (t1)) + �ψ(t2 → t1, σt2 ,G

(t1))

+�ψ(t1, σt2 → σt1 ,G
(t1)), (V.1)

where we recall from (III.49) – (III.51):

I) The term

�ψ(t2, σt2 ,G
(t2) → G (t1))

= ei Ht2
N (t1)∑

j=1

Wκ,σt2
(�v j , t2) eiγσt2

(�v j , �∇E
σt2
�P ,t2)e−i E

σt2
�P t2 ψ

(t1)
j,σt2

− ei Ht2
N (t1)∑

j=1

∑

l( j)

Wκ,σt2
(�vl( j), t2)e

iγσt2
(�vl( j), �∇E

σt2
�P ,t2) e−i E

σt2
�P t2 ψ

(t2)
l( j),σt2

, (V.2)

accounts for the change of the partition G (t2) → G (t1) in ψh,κ (t2), where l( j)

labels the sub-cells belonging to the sub-partition G (t2)∩G (t1)
j of G (t1)

j , and where
we define

�vl( j) ≡ �∇E
σt2
�P∗
l( j)

and �v j ≡ �∇E
σt1
�P∗

j
;
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II) the term

�ψ(t2 → t1, σt2 ,G
(t1))

= ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

− ei Ht2
N (t1)∑

j=1

Wκ,σt2
(�v j , t2) eiγσt2

(�v j , �∇E
σt2
�P ,t2) e−i E

σt2
�P t2 ψ

(t1)
j,σt2

, (V.3)

accounts for the subsequent change of the time variable, t2 → t1, for the fixed
partition G (t1), and the fixed infrared cut-off σt2 ; and finally,

III) the term

�ψ(t1, σt2 → σt1 ,G
(t1))

= ei Ht1
N (t1)∑

j=1

Wκ,σt1
(�v j , t1)e

iγσt1
(�v j , �∇E

σt1
�P ,t1)e−i E

σt1
�P t1ψ

(t1)
j,σt1

− ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)e

iγσt2
(�v j , �∇E

σt2
�P ,t1)e−i E

σt2
�P t1ψ

(t1)
j,σt2

(V.4)

accounts for the change of the infrared cut-off, σt2 → σt1 .

Our goal is to prove

‖ψh,κ (t2)− ψh,κ (t1) ‖ ≤ O
(
(ln(t2))

2/tρ1

)
, (V.5)

for some ρ > 0. To this end, it is necessary to perform the three steps in the order dis-
played above. As a corollary of the bound (V.5), we obtain Theorem III.2 by telescoping
(see the comment after Eq. (III.57)).

The arguments in our proof are very similar to those in [26], but a number of mod-
ifications are necessary because of the vector nature of the QED interaction. For these
modifications, we provide detailed explanations.

V.2. Refining the cell partition. In this section, we discuss step (V.2) in which the
momentum space cell partition is modified. It is possible to apply the methods developed
in [26], up to some minor modifications.

We will prove that

∥∥�ψ(t2, σt2 ,G
(t2) → G (t1))

∥∥ ≤ O
(
(ln(t2))

2/tρ1

)
(V.6)

for some ρ > 0. The contributions from the off-diagonal terms with respect to the sub-
partition G (t2) of G (t1) can be estimated by the same arguments that have culminated in
the proof of Theorem IV.1. That is, we first express ψ(t1)j,σt2

as

ψ
(t1)
j,σt2

=
∫

G
(t1)
j

h( �P)�σt2
�P d3 P =

∑

l( j)

∫

G
(t2)

l( j)

h( �P)�σt2
�P d3 P =

∑

l( j)

ψ
(t2)
l( j),σt2

. (V.7)
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Then,
∥∥�ψ(t2, σt 2,G

(t2) → G (t1))
∥∥2

=
N (t1)∑

j, j ′=1

∑

l( j),l ′( j ′)

〈 [
Ŵκ,σt2

(�vl( j), t2)− Ŵκ,σt2
(�v j , t2)

]
e−i E

σt2
�P t2ψ

(t2)
l( j),σt2

,

[
Ŵκ,σt2

(�vl ′( j ′), t2)− Ŵκ,σt2
(�v j ′, t2)

]
e−i E

σt2
�P t2ψ

(t2)
l ′( j ′),σt2

〉
, (V.8)

where we define

Ŵκ,σt2
(�v j , t2) := Wκ,σt2

(�v j , t2) eiγσt2
(�v j , �∇E

σt2
�P ,t2), (V.9)

Ŵκ,σt2
(�vl( j), t2) := Wκ,σt2

(�vl( j), t2) eiγσt2
(�vl( j), �∇E

σt2
�P ,t2). (V.10)

Following the analysis in Sect. IV.1, one finds that the sum over pairs (l ′( j ′), l( j)) with
either l �= l ′ or j �= j ′ can be bounded by O(t−ε2 ), provided that ε < η

4 , as in (IV.21).
Let 〈 〉�̃ stand for the expectation value with respect to the vector �̃. Then, we are

left with the diagonal terms

N (t1)∑

j=1

∑

l( j)

〈 [
2 − Ŵ∗

κ,σt2
(�vl( j), t2) Ŵκ,σt2

(�v j , t2)− Ŵ∗
κ,σt2

(�v j , t2)Ŵκ,σt2
(�vl( j), t2)

]〉

�̃
,

(V.11)

labeled by pairs (l( j), l( j)), where �̃ ≡ e−i E
σt2
�P t2ψ

(t2)
l( j),σt2

in the case considered here.
For each term 〈

Ŵ∗
κ,σt2

(�vl( j), t2)Ŵκ,σt2
(�v j , t2)

〉

�̃
, (V.12)

we can again invoke the arguments developed for off-diagonal elements indexed by (l, j)
(where l �= j) from Sect. IV.1.

In particular, we define for s > t2,

M̂µ

[l( j),�v j ],[l( j),�vl( j)](t2, s) :=
〈

e−i Eσt
�P s
ψ
(t2)
l( j),σt2

, Ŵ∗µ
κ,σt2

(�v j , s)

Ŵµ
κ,σt2

(�vl( j), s) e−i Eσt
�P s
ψ
(t2)
l( j),σt2

〉
, (V.13)

where

Ŵµ∗
κ,σt2

(�v j , s) Ŵµ
κ,σt2

(�vl( j), s) = e−iγσt2
(�v j , �∇E

σt2
�P ,s) Wµ ∗

κ,σt2
(�v j , s)

×Wµ
κ,σt2

(�vl( j), s) eiγσt2
(�vl( j), �∇E

σt2
�P ,s)

, (V.14)

and

Wµ ∗
κ,σt2

(�v j , s)Wµ
κ,σt2

(�vl( j), s) = exp

(
µ
∑

λ

∫

Bκ\Bσt2

�η j,l( j)(�k) ·
{
�ε�k,λa∗�k,λe−i |�k|s

−�ε ∗�k,λa�k,λei |�k|s } d3k

)
, (V.15)

with µ a real parameter.
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Proceeding similarly as in (IV.12), the solution of the ODE analogous to (IV.9) for
M̂µ

[l( j),�v j ],[l( j),�vl( j)](t2, s) at µ = 1 consists of a contribution at µ = 0, which remains
non-zero as s →∞, and a remainder term that vanishes in the limit s →∞. In fact,

lim
s→+∞ M̂1

[l( j),�v j ],[l( j),�vl( j)](t2, s)

= e−
C j,l( j) σt2

2

〈
eiγσt2

(�v j , �∇E
σt2
�P ,σ

− 1
θ

t2
)
ψ
(t2)
l( j),σt2

, eiγσt2
(�vl( j), �∇E

σt2
�P ,σ

− 1
θ

t2
)
ψ
(t2)
l( j),σt2

〉
, (V.16)

where

C j,l( j),σt2
:=

∫

Bκ\Bσt2

|�η j,l( j)(�k)|2d3k, (V.17)

as in (IV.10), with �η j,l( j)(�k) defined in (IV.4). Hence, (V.11) is given by the sum of

−
N (t2)∑

j=1

∑

�( j)

∫ +∞

t2

d

ds
M̂1
[�( j),�v j ],[�( j),�v�( j)](t2, s) ds

−
N (t2)∑

j=1

∑

�( j)

∫ +∞

t2

d

ds
M̂1
[�( j),�v�( j)],[�( j),�v j ](t2, s) ds (V.18)

and
N (t2)∑

j=1

∑

�( j)

〈
ψ
(t2)
l( j),σt2

,

[
2 − 2 cos

(
�γσt2

(�v j − �vl( j), �∇E
σt2
�P , t2)

)
e−

Cl( j), j,σt2
2

]
ψ
(t2)
l( j),σt2

〉
,

(V.19)

where

�γσt2
(�v j − �vl( j), �∇E

σt2
�P , t2) := γσt2

(�vl( j), �∇E
σt2
�P , σ

− 1
θ

t2 ) − γσt2
(�v j , �∇E

σt2
�P , σ

− 1
θ

t2 ).

(V.20)

The arguments that have culminated in Theorem IV.1 also imply that the sum (V.18) can
be bounded by O(t−4ε

2 ), for η > 4ε. The leading contribution in (V.6) is represented
by the sum (V.19) of diagonal terms (with respect to G (t2)), which can now be bounded
from above. It suffices to show that

sup
�P∈S

∣∣∣∣ 2 − 2 cos
(
�γσt2

(�v j − �vl( j), �∇E
σt2
�P , t2)

)
e−

Cl( j), j,σt2
2

∣∣∣∣ ≤
1

tη
′

1

ln t2 (V.21)

for some η′ > 0 that depends on ε. To see this, we note that the lower integration bound
in the integral (V.17) contributes a factor to (V.21) proportional to ln t2. In Lemma A.1,
it is proven that

∣∣∣ γσt2
(�v j , �∇E

σt2
�P , (σt2)

− 1
θ )− γσt2

(�vl( j), �∇E
σt2
�P , (σt2)

− 1
θ )

∣∣∣ ≤ O(|�v j − �vl( j)|).
(V.22)

We can estimate the difference �v j − �vl( j) = �∇E
σt1
�P∗

j
− �∇E

σt2
�P∗
l( j)

, which also appears in

�ηl( j), j (�k), using condition (I 2) of Theorem III.1. This yields the ε-dependent negative
power of t1 in (V.21).
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V.3. Shifting the time variable for a fixed cell partition and infrared cut-off. In this
subsection, we prove that

∥∥∥�ψ(t2 → t1, σt2 ,G
(t1))

∥∥∥ ≤ O
(
(ln(t2))

2/tρ1

)
(V.23)

for some ρ > 0; see (V.3). This accounts for the change of the time variable, while both
the cell partition and the infrared cutoff are kept fixed. It can be controlled by a standard
Cook argument, and methods similar to those used in the discussion of (IV.22).

For t1 ≤ s ≤ t2, we define

γσt2
(�v j , �∇E

σt2
�P , s) := −

∫ s

1

�∇E
σt2
�P ·

∫

B
σ S
τ
\Bσt2

���v j (
�k) cos(�k · �∇E

σt2
�P τ − |�k|τ) d3k dτ.

(V.24)

Then, we estimate
∫ t2

t1
ds

d

ds

(
ei Hσt2 sWκ,σt2

(�v j , s)eiγσt2
(�v j , �∇E

σt2
�P ,s)e−i E

σt2
�P s
ψ
(t1)
j,σt2

)
(V.25)

cell by cell. To this end, we can essentially apply the same arguments that entered the
treatment of the time derivative in (IV.22), see also the remark after Theorem A.3, by
defining an infrared tail in a similar fashion. The only modification to be added is that,
apart from two terms analogous to (IV.23), (IV.24), we now also have to consider

i ei Hs(H − Hσt2 )Wκ,σt2
(�v j , s)eiγσt2

(�v j , �∇E
σt2
�P ,s)e−i E

σt2
�P s
ψ
(t1)
j,σt2

, (V.26)

which enters from the derivative in s of the operator underlined in

ei Hse−i Hσt2 sei Hσt2 s Wκ,σt2
(�v j , s)eiγσt2

(�v j , �∇E
σt2
�P ,s)e−i E

σt2
�P s
ψ
(t1)
j,σt2

. (V.27)

To control the norm of (V.26), we observe that

H − Hσt2 = α
1
2 i[H, �x] · �A<σt2

− α
�A<σt2

· �A<σt2

2
, (V.28)

where

�A<σt2
:=

∑

λ=±

∫

Bσt2

d3k√
|�k|

{
�ε�k,λb∗�k,λ + �ε ∗�k,λb�k,λ

}
, (V.29)

and we note that

[H, �x] · �A<σt2
= �A<σt2

· [H, �x],
because of the Coulomb gauge condition. Moreover,

W∗
κ,σt2

(�v j , s) i[H, �x]Wσt2
(�v j , s) = i[H, �x] + �hs(�x) (V.30)

with ‖�hs(�x)‖ < O(1) and

[b�k,λ, �hs(�x)] = [�hs(�x), �A<σt2
] = 0.
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Furthermore, we have

b�k,λψ
(t1)
j,σt2

= 0

for �k ∈ Bσt2
, and

‖ �A<σt2
ψ
(t1)
j,σt2

‖, ‖ �A<σt2
· �A<σt2

ψ
(t1)
j,σt2

‖ ≤ O(σt2‖ψ(t1)j,σ t2
‖). (V.31)

The estimate

‖ �A<σt2
· [H, �x]ψ(t1)j,σt2

‖ ≤ O
(
σt2

{
‖[H, �x]ψ(t1)j,σt2

‖ + ‖ψ(t1)j,σt2
‖
})
, (V.32)

holds, where

‖[H, �x]ψ(t1)j,σt2
‖ ≤ O(t−

3ε
2

1 ), (V.33)

because

‖[H, �x]ψ(t1)j,σt2
‖ ≤ c1‖(Hσt2 + i)ψ(t1)j,σt2

‖
for some constant c1, and

‖ψ(t1)j,σt2
‖ = O(t−

3ε
2

1 ).

Consequently, we obtain that

∥∥∥ (H − Hσt2 )Wκ,σt2
(�v j , s)eiγσt2

(�v j , �∇E
σt2
�P ,s)e−i E

σt2
�P s
ψ
(t1)
j,σt2

∥∥∥

≤ O( σt2

{
‖[H, �x]ψ(t1)j,σt2

‖ + ‖ψ(t1)j,σt2
‖
}
) ≤ O( σt2 t−3/2ε ). (V.34)

Following the procedure in Sect. II.2.1, B., one can also check that
∥∥∥∥
∫ t2

t1
ei Hse−i Hσt2 s d

ds

(
ei Hσt2 s Wκ,σt2

(�v j , s)eiγσt2
(�v j , �∇E

σt2
�P ,s)e−i E

σt2
�P s
ψ
(t1)
j,σt2

)
ds

∥∥∥∥

≤ O
(

1

tη1
| ln σt2 |2 t

− 3ε
2

1

)
, (V.35)

for some η > 0 independent of ε. Similarly as in (IV.21), we choose ε small enough
such that η4 > ε.

The number of cells in the partition G (t1) is N (t1) ≈ t3ε
1 . Therefore, summing over

all cells, we get

O
(

N (t1) t
− 3ε

2
1 σt2 t2

)
+ O

(
N (t1)

1

tη1
| ln σt2 |2 t

− 3ε
2

1

)
, (V.36)

as an upper bound on the norm of the term in (V.3).
The parameter β in the definition of σt2 = t−β2 can be chosen arbitrarily large,

independently of ε. Hereby, we arrive at the upper bound claimed in (V.5).
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V.4. Shifting the infrared cut-off. In this section, we prove that

‖�ψ(t1, σt2 → σt1 ,G
(t1)) ‖ ≤ O

(
(ln(t2))

2/tρ1

)
(V.37)

for some ρ > 0; see (V.4). The analysis of this last step is the most involved one, and
will require extensive use of our previous results.

The starting idea is to rewrite the last term in (V.4),

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

, (V.38)

as

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W ∗

σt2
( �∇E

σt2
�P )Wσt2

( �∇E
σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 ψ

(t1)
j,σt2

,

(V.39)

and to group the terms appearing in (V.39) in such a way that, cell by cell, we consider
the new dressing operator

ei Ht1 Wκ,σt2
(�v j , t1)W ∗

σt2
( �∇E

σt2
�P ) e−i E

σt2
�P t1 , (V.40)

which acts on

�
(t1)
j,σt2

:=
∫

G
(t1)
j

h( �P)�σt2
�P d3 P, (V.41)

where �σ�P = Wσ ( �∇Eσ�P )�
σ
�P , see (III.23). The key advantage is that the vector �(t1)j,σt2

inherits the Hölder regularity of �σ�P ; see (III.13) in condition (I 2) of Theorem III.1.
We will refer to (V.41) as an infrared-regular vector.

Accordingly, (V.39) now reads

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W ∗

σt2
( �∇E

σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 �

(t1)
j,σt2

, (V.42)

and we proceed as follows.
A. Shifting the IR cutoff in the infrared-regular vector. First, we substitute

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W

∗
σt2
( �∇E

σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1)e−i E

σt2
�P t1�

(t1)
j,σt2

−→ ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W

∗
σt2
( �∇E

σt2
�P ) eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

,

(V.43)

where σt2 is replaced by σt1 in the underlined terms. We prove that the norm difference
of these two vectors is bounded by the r.h.s. of (V.37). The necessary ingredients are:
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1) Condition (I 1) in Theorem III.1.
2) The estimate

|γσt2
(�v j , �∇E

σt2
�P , t1)− γσt1

(�v j , �∇E
σt1
�P , t1)| ≤ O

(
σ

1
2 (1−δ)

t1 t1−θ
1

)
+ O (

t1 σt1

)
,

for t2 > t1 � 1, proven in Lemma A.1. The parameter 0 < θ < 1 is the same as
the one in (III.26).

3) The cell partition G (t1) depends on t1 < t2.
4) The parameter β can be chosen arbitrarily large, independently of ε, so that the

infrared cutoff σt1 = t−β1 can be made as small as one wishes.

First of all, it is clear that the norm difference of the two vectors in (V.43) is bounded
by the norm difference of the two underlined vectors, summed over all N (t1) cells.
Using 1) and 2), one straightforwardly derives that the norm difference between the two
underlined vectors in (V.43) is bounded from above by

O( t1 σ
1
2 (1−δ)

t1 t
− 3

2 ε

1 ), (V.44)

where the last factor, t
− 3

2 ε

1 , accounts for the volume of an individual cell in G (t1), by 3).
The sum over all cells in G (t1) yields a bound

O( N (t1) σ
1
2 (1−δ)

t1 t
1− 3

2 ε

1 ), (V.45)

where N (t1) ≈ t3ε
1 , by 3). Picking β sufficiently large, by 4), we find that the norm

difference of the two vectors in (V.43) is bounded by t−η1 , for some η > 0. This agrees
with the bound stated in (V.37).
B. Shifting the IR cutoff in the dressing operator. Subsequently to (V.43), we substitute

ei Ht1
N (t1)∑

j=1

Wκ,σt2
(�v j , t1)W

∗
σt2
( �∇E

σt2
�P )eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

−→ ei Ht1
N (t1)∑

j=1

Wκ,σt1
(�v j , t1)W

∗
σt1
( �∇E

σt1
�P )eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

(V.46)

where σt2 → σt1 in the underlined operators. A crucial point in our argument is that
when σt1(> σt2) tends to 0, the Hölder continuity of �

σt1
�P in �P offsets the (logarithmic)

divergence in t2 which arises from the dressing operator.
We subdivide the shift σt2 → σt1 in

Wκ,σt2
(�v j , t1)W

∗
σt2
( �∇E

σt2
�P ) −→ Wκ,σt1

(�v j , t1)W
∗
σt1
( �∇E

σt1
�P ) (V.47)

into the following three intermediate steps, where the operators modified in each step
are underlined:

Step a)

Wκ,σt2
(�v j , t1)W

∗
σt2
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt2
�P )

−→ Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt2
�P ), (V.48)
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Step b)

Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt2
�P )

−→ Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt1
�P ), (V.49)

Step c)

Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt1
�P )

−→ Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt1

(�v j )W
∗
σt1
( �∇E

σt1
�P ). (V.50)

Analysis of Step a). In Step a), we analyze the difference between the vectors

ei Ht1Wκ,σt2
(�v j , t1)W

∗
σt2
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt2
�P )eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

(V.51)

and

ei Ht1Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )Wσt2

(�v j )W
∗
σt2
( �∇E

σt2
�P )eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

,

(V.52)

for each cell in G (t1). Our goal is to prove that

‖ (V.51)− (V.52) ‖ ≤ const ln t2 P(t1, t2), (V.53)

where

P(t1, t2) := sup
�k∈Bσt1

∥∥∥ (e−i(|�k|t1−�k·�x) − 1)Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ))

× eiγσt2
(�v j , �∇E

σt2
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

∥∥∥ ≤ O( t−η1 ln t2 ) (V.54)

as t1 → +∞, for some η > 0 independent of ε and for β large enough.
Using the identity

Wκ,σt2
(�v j , t1)W

∗
σt2
(�v j ) = Wκ,σt1

(�v j , t1)W
∗
σt1
(�v j )

× exp

(
iα

2

∫

Bσt1
\Bσt2

d3k
�v j · ���v j (

�k) sin(�k · �x− |�k|t1)
|�k|(1 − k̂ · �v j )

)

× exp

⎛

⎝α
1
2
∑

λ

∫

Bσt1
\Bσt2

d3k√
|�k|

�v j · {�ε�k,λb∗�k,λ(e
−i(|�k|t1−�k·�x) − 1)− h.c. }

|�k|(1 − k̂ · �v j )

⎞

⎠,

(V.55)
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the difference between (V.51) and (V.52) is given by

ei Ht1 Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j ) exp

(
iα

2

∫

Bσt1
\Bσt2

d3k
�v j · ���v j (

�k) sin(�k · �x− |�k|t1)
|�k|(1 − k̂ · �v j )

)

×
⎡

⎣exp

⎛

⎝α
1
2
∑

λ

∫

Bσt1
\Bσt2

d3k√
|�k|

�v j · {�ε�k,λb∗�k,λ(e
−i(|�k|t1−�k·�x) − 1)− h.c. }

|�k|(1 − k̂ · �v j )

⎞

⎠ − I
⎤

⎦

×Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ) eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

(V.56)

+ ei Ht1 Wκ,σt1
(�v j , t1)W

∗
σt1
(�v j )

[
exp

(
iα

2

∫

Bσt1
\Bσt2

d3k
�v j · ���v j (

�k) sin(�k · �x− |�k|t1)
|�k|(1 − k̂ · �v j )

)
− I

]

×Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ) eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

, (V.57)

where I is the identity operator in H.
The norm of the vector (V.56) equals

∥∥∥∥∥∥

⎡

⎣exp

⎛

⎝α
1
2
∑

λ

∫

Bσt1
\Bσt2

d3k√
|�k|

�v j · {�ε�k,λb∗�k,λ(e
−i(|�k|t1−�k·�x) − I)− h.c. }

|�k|(1 − k̂ · �v j )

⎞

⎠− I
⎤

⎦

×Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P )eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

∥∥∥∥∥∥
. (V.58)

We now observe that

• for �k ∈ Bσt1
,

b�k,λ Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ) (V.59)

= Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ) b�k,λ (V.60)

+ Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P ) f�k,λ(�v j , �P), (V.61)

where
∫

Bσt1
\Bσt2

d3k | f�k,λ(�v j , �P)|2 ≤ O(| ln σt2 |) (V.62)

uniformly in �v j , and in �P ∈ S, and where j enumerates the cells.
• for �k ∈ Bσt1

,

b�k,λ eiγσt2
(�v j , �∇E

σt1
�P ,t1)e−i E

σt1
�P t1�

(t1)
j,σt1

= 0, (V.63)

because of the infrared properties of �(t1)j,σt1
.

From the Schwarz inequality, we therefore get

(V.58) ≤ c | ln σt2 | P(t1, t2), (V.64)
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for some finite constant c as claimed in (V.53), where

P(t1, t2) = sup
�k∈Bσt1

∥∥∥ (e−i(|�k|t1−�k·�x) − 1)Wσt2
(�v j )W

∗
σt2
( �∇E

σt2
�P )

× eiγσt2
(�v j , �∇E

σt2
�P ,t1)e−i E

σt2
�P t1�

(t1)
j,σt1

∥∥∥, (V.65)

as defined in (V.54). To estimate P(t1, t2), we regroup the terms inside the norm into

(e−i(|�k|t1−�k·�x) − 1)Wσt2
(�v j )W ∗

σt2
( �∇E

σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 �

(t1)
j,σt1

= Wσt2
(�v j )W ∗

σt2
( �∇E

σt2
�P−�k) (e

−i(|�k|t1−�k·�x) − I) eiγσt2
(�v j , �∇E

σt2
�P ,t1) e−i E

σt2
�P t1 �

(t1)
j,σt1

(V.66)

+ Wσt2
(�v j )W ∗

σt2
( �∇E

σt2
�P−�k) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 �

(t1)
j,σt1

(V.67)

− Wσt2
(�v j )W ∗

σt2
( �∇E

σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,t1) e−i E

σt2
�P t1 �

(t1)
j,σt1

. (V.68)

We next prove that

‖(V.66)‖ , ‖(V.67)− (V.68)‖ ≤ O( (σt1)
ρ t1 ln t2 ) (V.69)

for some ρ > 0 independent of ε. To this end, we use:

i) The Hölder regularity of�σ�P and �∇Eσ�P described under condition (I 2) in Theorem
III.1.

ii) The regularity of the phase function

γσt2
(�v j , �∇E

σt2
�P , t1) (V.70)

with respect to �P ∈ supph ⊂ S expressed in the following estimate, which is
similar to (A.3) in Lemma A.1: For �k ∈ Bσt1

and t1 large enough,

∣∣∣ γσt2
(�v j , �∇E

σt2
�P , t1) − γσt2

(�v j , �∇E
σt2
�P−�k, t1)

∣∣∣ ≤ O( |�k| 1
4 (1−δ′′) t (1−θ)1 ), (V.71)

where 0 < θ(< 1) can be chosen arbitrarily close to 1.
iii) The estimate

‖ b�k,λ�
σ
�P ‖ ≤ C

1σ,�(�k)
|�k|3/2 (V.72)

from (I 5) in Theorem III.1 for �P ∈ S, which implies

‖ N 1/2
f �σ�P ‖ =

(
∑

λ

∫
d3k ‖ b�k,λ �

σ
�P ‖2

)1/2

≤ C | ln σ |1/2. (V.73)
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Likewise,

‖ N 1/2
f �σ�P ‖ =

(
∑

λ

∫

B�\Bσ
d3k

∥∥∥
(

b�k,λ + O(|�k|−3/2)
)
�σ�P

∥∥∥
2
)1/2

≤ C | ln σ |1/2, (V.74)

which controls the expected photon number in the states {�σt1
�P }. As a side remark,

we note that the true size is in fact O(1), uniformly in σ , but the logarithmically
divergent bound here is sufficient for our purposes.

iv) The cell decomposition G (t1) is determined by t1 < t2. Moreover, since β(> 1)
can be chosen arbitrarily large and independent of ε, σt1 = t−β1 can be made as
small as desired.

We first prove the bound on ‖(V.66)‖ stated in (V.69). To this end, we use

(
e−i(|�k|t1−�k·�x) − I

)
eiγσt2

(�v j , �∇E
σt1
�P ,t1) e−i E

σt1
�P t1 �

(t1)
j,σt1

(V.75)

= e
iγσt2

(�v j , �∇E
σt1
�P−�k ,t1) e

−i E
σt1
�P−�k t1

(e−i(|�k|t1−�k·�x) − I)�(t1)j,σt1
(V.76)

+ e
iγσt2

(�v j , �∇E
σt1
�P−�k ,t1) e

−i E
σt1
�P−�k t1

�
(t1)
j,σt1

(V.77)

− eiγσt2
(�v j , �∇E

σt1
�P ,t1) e−i E

σt1
�P t1 �

(t1)
j,σt1

. (V.78)

The Hölder regularity of �
σt1
�P from i) yields

‖ (V.76) ‖ ≤ O( t1 σ
( 1

4−δ′)
t1 t

− 3ε
2

1 ), (V.79)

where δ′ can be chosen arbitrarily small, and independently of ε. The derivation of a
similar estimate is given in the proof of Theorem A.3 in the Appendix, starting from
(A.27), to which we refer for details. The Hölder continuity of E

σt1
�P and �∇E

σt1
�P , again

from i), combined with ii), with θ sufficiently close to 1, implies that, with �k ∈ Bσt1
,

‖ (V.77)− (V.78) ‖ ≤ O( t1 σ
1
5

t1 t
− 3ε

2
1 ), (V.80)

as desired.
To prove the bound on ‖ (V.67)− (V.68) ‖ asserted in (V.69), we write

W ∗
σt2
( �∇E

σt2
�P−�k)− W ∗

σt2
( �∇E

σt2
�P ) = W ∗

σt2
( �∇E

σt2
�P )(W ∗

σt2
( �∇E

σt2
�P−�k ; �∇E

σt2
�P )− I),

(V.81)

where

W ∗
σt2
( �∇E

σt2
�P−�k ; �∇E

σt2
�P ) := Wσt2

( �∇E
σt2
�P )W ∗

σt2
( �∇E

σt2
�P−�k),
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and apply the Schwarz inequality in the form
∥∥∥ (W ∗

σt2
( �∇E

σt2
�P+�k ; �∇E

σt2
�P )− I) �̃

∥∥∥

≤ C

(∫

Bσt2

d3q

|�q|3
)1/2

sup
�P∈supp h, �k∈Bσt1

∣∣∣ �∇E
σt2
�P−�k − �∇E

σt2
�P

∣∣∣ ‖ N 1/2
f �̃ ‖, (V.82)

where in our case, �̃ ≡ eiγσt2
(�v j , �∇E

σt1
�P ,t1)e−i E

σt1
�P t1 �

(t1)
j,σt1

. We have

‖N 1/2
f �

σt1
�P ‖ ≤ c | ln σt1 |1/2 ≤ c′ ( ln t1 )

1/2, (V.83)

as a consequence of iii). Due to i),

sup
�P∈supp h, �k∈Bσt1

∣∣∣ �∇E
σt2
�P−�k − �∇E

σt2
�P

∣∣∣ ≤ O( σ
1
4−δ′′

t1 ), (V.84)

where δ′′ > 0 is arbitrarily small, and independent of ε (see (III.14)). Therefore,

sup
�k∈Bσt1

‖ (V.67)− (V.68) ‖ ≤ O((ln t2) (σt1)
ρ′)

for some ρ′ > 0 which does not depend on ε (recalling that t1 < t2).
We may now return to (V.53). From iv), and the fact that the number of cells is

N (t1) ≈ t3ε
1 , summation over all cells yields

N (t1)∑

j=1

‖ (V.51) − (V.52) ‖ ≤ O( ln(t2)

tρ1
) (V.85)

for some ρ > 0, provided that β is sufficiently large. This agrees with (V.37).
The sum

∑N (t1)
j=1 ‖ (V.57) ‖ can be treated in a similar way.

Analysis of Step b). To show that the norm difference of the two vectors corresponding to
the change (V.49) in (V.46) is bounded by the r.h.s. of (V.5), we argue similarly as for Step
a), and we shall not reiterate the details. One again uses properties i) – iv) as in Step a).

Analysis of Step c). Finally, we prove that the difference of the vectors corresponding to
(V.50) satisfies

∥∥∥ei Ht1
N (t1)∑

j=1

Wκ,σt1
(�v j , t1)

[
W |σt1

σt2
(�v j )W

∗|σt1
σt2
( �∇E

σt1
�P )−I

]
eiγσt1

(�v j , �∇E
σt1
�P ,t1)e−i E

σt1
�P t1ψ

(t1)
j,σt1

∥∥∥
2

≤ O
(
(ln(t2))

2/tρ1

)
(V.86)

for some ρ > 0, where we define

W |σt1
σt2
(�v j ) := W ∗

σt1
(�v j )Wσt2

(�v j ), (V.87)
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and likewise,

W ∗|σt1
σt2
( �∇E

σt1
�P ) := W ∗

σt2
( �∇E

σt1
�P )Wσt1

( �∇E
σt1
�P ). (V.88)

We separately discuss the diagonal and off-diagonal contributions to (V.86) from the
sum over cells in G (t1).
• The diagonal terms in (V.86). To bound the diagonal terms in (V.86), we use that, with
�v j ≡ �∇Eσt1 | �P= �P∗

j
,

W |σt1
σt2
(�v j ; �∇E

σt1
�P ) := W |σt1

σt2
(�v j )W

∗|σt1
σt2
( �∇E

σt1
�P ) (V.89)

allows for an estimate similar to (V.82), where we now use that

sup
�P∈G

(t1)
j

| �∇E
σt1
�P − �v j | ≤ O( t

−ε( 1
4−δ′′)

1 ). (V.90)

The latter follows from the Hölder regularity of �∇Eσ�P , due to condition (I 2) in Theorem
III.1; see (III.14). Moreover, we use (V.83) to bound the expected photon number in the
states {�σt1

�P }.
Hereby we find that the sum of diagonal terms can be bounded by

O( N (t1) ‖ψ(t1)j,σt1
‖2 (ln t2) t

−ε( 1
4−δ′′)

1 ) ≤ O( t−ρ1 ln t2 ) (V.91)

for some ρ > 0, using N (t1) = O(t3ε
1 ), and ‖ψ(t1)j,σt1

‖2 = O(t−3ε
1 ).

• The off-diagonal terms in (V.86). Next, we bound the off-diagonal terms in (V.86),
corresponding to the inner product of vectors supported on cells j �= l of the partition
G (t1). Those are similar to the off-diagonal terms M̂1

l, j (t, s) in (IV.6) that were discussed
in detail previously. Correspondingly, we can apply the methods developed in Sect. IV.1,
up to some modifications which we explain now.

Our goal is to prove the asymptotic orthogonality of the off-diagonal terms in (V.86).
We first of all prove the auxiliary result

lim
s→+∞‖ �aσt1

(�ηl, j )(s)W ∗|σt1
σt2
( �∇E

σt1
�P )e−i Hσt1 sψ

(t1)
j,σt1

‖ = 0. (V.92)

To this end, we compare

W ∗|σt1
σt2
( �∇E

σt1
�P )1

G
(t1)
j
( �P) (V.93)

(where 1
G
(t1)
j

is the characteristic function of the cell G (t1)
j ) to its discretization:

1. We pick t̄ large enough such that G (t̄) is a sub-partition of G (t); in particular,

G (t)
j = ∑M

m( j)=1 G (t̄)
m( j), where M = N (t̄)

N (t) .

2. Furthermore, defining �um( j) := �∇E
σt1
�P∗
m( j)

, where �P∗
m( j) is the center of the cell G (t̄)

m( j),

we have, for �P ∈ G (t̄)
m( j),

|�um( j) − �∇E
σt1
�P | ≤ C

(
1

t̄

)ε ( 1
4−δ′′)

, (V.94)

where C is uniform in t1.
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3. We define

W
σt1
σt2
(M) :=

M∑

m( j)=1

W ∗|σt1
σt2
(�um( j)) 1

G (t̄)
m( j)
( �P) (V.95)

and rewrite the vector

�aσt1
(�ηl, j )(s)W ∗|σt1

σt2
( �∇E

σt1
�P )e−i Hσt1 sψ

(t1)
j,σt1

(V.96)

in (V.92) as

∑

λ

∫

Bκ\Bσt1

d3k e−i �k·�x [
W ∗|σt1

σt2
( �∇E

σt1
�P )−W

σt1
σt2
(M)

]

× �ηl, j (�k) · �ε ∗�k,λb�k,λei |�k|s e−i E
σt1
�P s
ψ
(t1)
j,σt1

(V.97)

+
M∑

m( j)=1

W ∗|σt1
σt2
(�um( j))

∑

λ

∫

Bκ\Bσt1

d3k �ηl, j (�k) · �ε ∗�k,λa�k,λei |�k|s

× e−i E
σt1
�P s
ψ
(t̄)
m( j),σt1

. (V.98)

We now observe that, at fixed t1, t2, (III.18) and the bound (V.94) imply that the vector
in (V.97) converges to the zero vector as t̄ → +∞, uniformly in s. Moreover, the norm
of the vector in (V.98) tends to zero, as s → +∞, at fixed t̄ . This proves (V.92).

The main difference between the vector corresponding to the j th cell in (V.86) and
the similar expression in (IV.22) that is differentiated in s is the term proportional to the
operator

W |σt1
σt2
(�v j )W

∗|σt1
σt2
( �∇E

σt1
�P ), (V.99)

which is absent in (IV.22). To control it, we first note that the Hamiltonian

Ĥσt1 :=
∫ ⊕

Ĥ
σt1
�P d3 P, (V.100)

where

Ĥ
σt1
�P :=

( �P − �P f
>σt1

+ α1/2 �Aσt1

)2

2
+ H f

>σt1
(V.101)

with

�P f
>σt1

:=
∫

R3\Bσt1

�k b∗�k,λb�k,λ d3k, (V.102)

and

H f
>σt1

:=
∫

R3\Bσt1

|�k| b∗�k,λb�k,λ d3k, (V.103)
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satisfies

Ĥ
σt1
�P �

σt1
�P = E

σt1
�P �

σt1
�P , (V.104)

and

[W |σt1
σt2
(�v j )W

∗|σt1
σt2
( �∇E

σt1
�P ), Ĥσt1 ] = 0. (V.105)

Using (V.105), the vector in (V.86) corresponding to the j th cell can be replaced by

ei Ĥσt1 sWκ,σt1
(�v j , s)eiγσt1

(�v j ,∇E
σt1
�P ,s)e−i Ĥσt1 s(W

∣∣σt1
σt2
(�v j ; �∇E

σt1
�P )−I)ψ(t)j,σ t1

, for s= t1,

(V.106)

where we recall that

W |σt1
σt2
(�v j ; �∇E

σt1
�P ) = W |σt1

σt2
(�v j )W

∗|σt1
σt2
( �∇E

σt1
�P ).

Similarly to our strategy in Sect. IV.1, we control M̂1
l, j (t, s); see (IV.16). The deriv-

ative in s of the term proportional to W
∣∣σt1
σt2
(�v j ; �∇E

σt1
�P ) in the j th cell vector has the

form

d

ds

(
ei Ĥσt1 s Wκ,σt1

(�v j , s) eiγσt1
(�v j , �∇E

σt1
�P ,s) e−i E

σt1
�P s W |σt1

σt2
(�v j ; �∇E

σt1
�P ) ψ

(t1)
j,σt1

)

= i ei Ĥσt1 s Wκ,σt1
(�v j , s) α i[Ĥσt1 , �x] ·

∫

Bκ\Bσt1

���v j (
�k) cos(�k · �x− |�k|s) d3k

× e−i E
σt1
�P s eiγσt1

(�v j ,∇Eσt
�P ,s) W |σt1

σt2
(�v j ; �∇E

σt1
�P ) ψ

(t)
j,σt

+ i ei Ĥσt1 s Wκ,σt1
(�v j , s) α2

∫

Bκ\Bσt1

���v j (
�k) cos(�k · �x− |�k|s) d3k

·
∫

Bκ\Bσt1

���v j (�q) cos(�q · �x− |�q|s)d3q

× eiγσt1
(�v j ,∇Eσt

�P ,s) e−i E
σt1
�P s W |σt1

σt2
(�v j ; �∇E

σt1
�P ) ψ

(t)
j,σt1

+ i ei Ĥσt1 s Wκ,σt1
(�v j , s)

dγσt1
(�v j ,∇E

σt1
�P , s)

ds

× eiγσt1
(�v j , �∇E

σt1
�P ,s) e−i E

σt1
�P s W |σt1

σt2
(�v j ; �∇E

σt1
�P ) ψ

(t1)
j,σt1

. (V.107)

Due to the similarity of this expression with (IV.22) – (IV.29), we can essentially adopt
the analysis presented in Sect. IV.1. The only difference here is the operator Ĥσt1 instead
of Hσt1 , and the additional term involving the commutator

[
χh

( �x
s

)
, W ∗|σt1

σt2

( �∇E
σt1
�P

)]
(V.108)

applied to the one-particle state

eiγσt1
(�v j , �∇E

σt1
�P ,s) e−i E

σt1
�P s
ψ
(t1)
j,σt1

. (V.109)
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However, the latter tends to zero as s → +∞, at a rate O( 1
sη ), for some ε-independent

η > 0. This follows from the Hölder regularity of �∇Eσ�P (condition (I 2) in Theorem
III.1), and (III.18). Similarly, we treat the commutator (V.108) with the infrared tail
(IV.39) in place of χh(

�x
s ) (and with Ĥσt1 replacing Hσt1 ). It is then straightforward to

see that we arrive at (V.5).  "

VI. Scattering Subspaces and Asymptotic Observables

This section is dedicated to the following key constructions in the scattering theory for
an infraparticle with the quantized electromagnetic field:

i) We define scattering subspaces Hout/ in which are invariant under space-time trans-
lations, built from vectors {�out/ in

h,κ }.
To this end, we first define a subspace, H̊out/ in

κ , depending on the choice of
a threshold frequency κ with the following purpose: Apart from photons with
energy smaller than κ , this subspace contains states describing only a freely mov-
ing (asymptotic) electron.

Adding asymptotic photons to the states in H̊out/ in
κ , we define spaces of scattering

states of the system, where the asymptotic electron velocity is restricted to the
region { �∇E �P : | �P| < 1

3 }.
We note that the choice of H̊out/ in

κ is not unique, except for the behavior of the
dressing photon cloud in the infrared limit. It is useful because
– in the construction of the spaces of scattering states, we can separate “hard

photons” from the photon cloud present in the states in H̊out/ in
κ , which is not

completely removable – each state in the scattering spaces contains an infinite
number of asymptotic photons.

– from the physical point of view, every experimental setup is limited by a thresh-
old energy κ below which photons cannot be measured.

ii) The construction of asymptotic algebras of observables, Aout/ in
ph and Aout/ in

el ,
related to the electromagnetic field and to the electron, respectively.
The asymptotic algebras are
– the Weyl algebra, Aout/ in

ph , associated to the asymptotic electromagnetic field;

– the algebra Aout/ in
el generated by smooth functions of compact support of the

asymptotic velocity of the electron.
The two algebras Aout/ in

ph and Aout/ in
el commute. This is the mathematical coun-

terpart of the asymptotic decoupling between the photons and the electron. This
decoupling is, however, far from trivial: In fact, in contrast to a theory with a mass
gap or a theory where the interaction with the soft modes of the field is turned
off, the system is characterized by the emission of soft photons for arbitrarily long
times.

In this respect, the asymptotic convergence of the electron velocity is a new con-
ceptual result, obtained from the solution of the infraparticle problem in a concrete
model, here non-relativistic QED. Furthermore, the emission of soft photons for
arbitrarily long times is reflected in the representation of the asymptotic electro-
magnetic algebra, which is non-Fock but only locally Fock (see Sect. VI.2). More
precisely, the representation can be decomposed on the spectrum of the asymptotic
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velocity of the electron; for different values of the asymptotic velocity, the repre-
sentations turn out to be inequivalent. Only for �∇E �P = 0, the representation is
Fock, otherwise they are coherent non-Fock. The coherent photon cloud, labeled
by the asymptotic velocity, is the well known Bloch-Nordsieck cloud.

All the results and definition clearly hold for both the out and the in-states. We shall
restrict ourselves to the discussion of out-states.

VI.1. Scattering subspaces and “One-particle” subspaces with counter threshold κ . In
Sect. III, we have constructed a scattering state with electron wave function h, and a
dressing cloud exhibiting the correct behavior in the limit �k → 0, with maximal photon
frequency κ .

To construct a space which is invariant under space-time translations, we may either
focus on the vectors

e−i �a· �P e−i Hτψout
h,κ , (VI.1)

or on the vectors obtained from

s − lim
t→+∞ ei Ht

N (t)∑

j=1

Wτ, �a
κ,σt
(�v j , t)eiγσt (�v j , �∇Eσt

�P ,t)e−i Eσt
�P t
ψ
(t)
j,σt
(τ, �a), (VI.2)

where

Wτ,�a
κ,σt
(�v j , t) := exp

⎛

⎝α
1
2
∑

λ

∫

Bκ\Bσt

d3k√
|�k|

�v j · {�ε�k,λa∗�k,λe−i |�k|(t+τ)e−i �k·�a − h.c.}
|�k|(1 − k̂ · �v j )

⎞

⎠,

(VI.3)

and

ψ
(t)
j,σt
(τ, �a) :=

∫

G (t)
j

e−i �a· �P e−i Eσt
�P τ h( �P)ψσt

�P d3 P. (VI.4)

Using Theorem III.2, one straightforwardly finds that

e−i �a· �P e−i Hτψout
h,κ (VI.5)

= s − lim
t→+∞ e−i �a· �P e−i Hτ ei Ht

N (t)∑

j=1

Wκ,σt (�v j , t)eiγσt (�v j , �∇Eσt
�P ,t)e−i Eσt

�P t
ψ
(t)
j,σt

(VI.6)

= s − lim
t→+∞ ei Ht

N (t+τ)∑

j=1

Wτ, �a
κ,σt+τ

(�v j , t)eiγσt+τ (�v j , �∇Eσt+τ
�P ,t+τ) e−i Eσt+τ

�P t
ψ
(t+τ)
j,σt+τ

(τ, �a).

(VI.7)

The two limits (VI.2) and (VI.7) coincide; this follows straightforwardly from the line
of analysis presented in the previous section.

Therefore, we can define the “one-particle” space corresponding to the frequency
threshold κ as

H̊out/ in
κ :=

{∨
ψ

out/ in
h,κ (τ, �a) : h( �P) ∈ C1

0(S\Brα ), τ ∈ R, �a ∈ R3
}
. (VI.8)

By construction, H̊out/ in
κ is invariant under space-time translations.
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General scattering states of the system can contain an arbitrarily large number of
“hard” photons, i.e., photons with an energy above a frequency threshold, say for instance
κ . One can construct such states based on H̊out/ in

κ according to the following procedure.
We consider positive energy solutions of the form

Ft (�y) :=
∫

d3k

2 (2π)3
√|k| F̂(�k) e−i |k|t+i �k·�y (VI.9)

of the free wave equation

�∇�y · �∇�y Ft (�y)− ∂2 Ft (�y)
∂t2 = 0, (VI.10)

which exhibit fast decay in |�y| for arbitrary fixed t , and where F̂(�k) ∈ C∞
0 (R

3\{0}).
We then construct vector-valued test functions

�Ft (�y) :=
∑

λ=±

∫
d3k

2 (2π)3
√|k| �ε

∗
�k,λ F̂λ(�k) e−i |k|t+i �k·�y (VI.11)

satisfying the wave equation (VI.10), with

�̂F(�k) :=
∑

λ

�ε ∗�k,λ F̂λ(�k) ∈ C∞
0 (R

3\{0} ; C
3). (VI.12)

We set

�A(t, �y) := ei Ht �A(�y)e−i Ht ; (VI.13)

here �A(�y) is the expression in (II.11) with � = ∞. An asymptotic vector potential is
constructed starting from LSZ (t →±∞) limits of interpolating field operators,

�A[ �Ft , t] := i
∫ (

�A(t, �y) · ∂ �Ft (�y)
∂t

− ∂ �A(t, �y)
∂t

· �Ft (�y)
)

d3y, (VI.14)

with �Ft as in (VI.11) for the negative-energy component, and with − �Ft for the positive-
energy component. We define

ψ
out/ in

h, �F := s − lim
t→+/−∞ψh, �F (t), (VI.15)

where

ψh, �F (t) := e
i
( �A[ �Ft ,t]− �A[ �Ft ,t]

)

ψh,κ (t). (VI.16)

Here, ψh,κ (t) approximates a vector ψout
h,κ in H̊out/ in

κ (we temporarily drop the depen-
dence on (τ, �a) in our notation). The existence of the limit in (VI.15) is a straightforward
consequence of standard decay estimates for oscillating integrals under the assumption
in (VI.12), combined with the propagation estimate (III.44).

Finally, we can define the scattering subspaces as

Hout/ in :=
{∨

ψ
out/ in

h, �F : h( �P) ∈ C1
0(S\Brα ),

�̂F ∈ C∞
0 (R

3\0 ; C3)
}
. (VI.17)
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VI.2. Asymptotic algebras and Bloch-Nordsieck coherent factor. We now state some
theorems concerning the construction of the asymptotic algebras. The proofs can be
easily derived using the arguments developed in Sects. IV and V; for further details we
refer to [26].

Theorem VI.1. The functions f ∈ C∞
0 (R

3), of the variable ei Ht �x
t e−i Ht , have strong

limits for t →∞ in Hout/ in , namely:

s − lim
t→+/−∞ ei Ht f

( �x
t

)
e−i Htψ

out/ in

h, �F =: ψout/ in

h f �∇E ,
�F , (VI.18)

where f �∇E (
�P) := limσ→0 f ( �∇Eσ�P ).

The proof is obtained from an adaptation of the proof of Theorem A.3 in the Appendix.
For the radiation field, we have the following result.

Theorem VI.2. The LSZ Weyl operators
{

e
i
( �A[ �Gt ,t]− �A[ �Gt ,t]

)

: Ĝλ(�k) ∈ L2(R3, (1 + |�k|−1)d3k), λ = ±
}

(VI.19)

have strong limits in Hout/ in:

Wout/ in( �G) := s − lim
t→+/−∞ e

i
( �A[ �Gt ,t]− �A[ �Gt ,t]

)

. (VI.20)

The limiting operators are unitary, and have the following properties:

i)

Wout/ in( �G)Wout/ in( �G ′) = Wout/ in( �G + �G ′)e−
ρ( �G, �G′)

2 , (VI.21)

where

ρ( �G, �G ′) = 2i I m

(
∑

λ

∫
Ĝλ(�k)Ĝ ′λ(�k)d3k

)
. (VI.22)

ii) The mapping R � s −→ Wout/ in(s �G) defines a strongly continuous, one param-
eter group of unitary operators.

iii)

ei HτWout/ in( �G)e−i Hτ = Wout/ in( �G−τ ), (VI.23)

where �G−τ is a freely evolved, vector-valued test function in the time −τ .

Next, we define

• Aout/ in
el as the norm closure of the (abelian) *algebra generated by the limits in

(VI.18).
• Aout/ in

ph as the norm closure of the *algebra generated by the unitary operators in
(VI.20).
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From (VI.21) and (VI.23), we conclude that Aout/ in
ph is the Weyl algebra associated to

a free radiation field. Moreover, from straightforward approximation arguments applied
to the generators, we can prove that the two algebras, Aout/ in

el and Aout/ in
ph , commute.

Moreover, we can next establish key properties of the representation � of the alge-
bras Aout/ in

ph for the concrete model at hand that confirm structural features derived in
[19] under general assumptions.

To study the infrared features of the representation of Aout/ in
ph , it suffices to analyze

the expectation of the generators {Wout ( �G) } of the algebra with respect to arbitrary
states of the form ψout

h,κ ,
〈
ψout

h,κ , Wout ( �G) ψout
h,κ

〉
(VI.24)

= lim
t→+∞

N (t)∑

j=1, l=1

〈
eiγσt (�vl , �∇Eσt

�P ,t)e−i Eσt
�P t
ψ
(t)
l,σt
, (VI.25)

W∗
κ,σt
(�vl , t)e

i
( �A[ �Gt ,0]− �A[ �Gt ,0]

)

Wκ,σt (�v j , t)eiγσt (�v j , �∇Eσt
�P ,t)e−i Eσt

�P t
ψ
(t)
j,σt

〉
.

In the step passing from (VI.24) to (VI.25), we use Theorem III.2. One infers from the
arguments developed in Sect. IV.1 that the sum of the off-diagonal terms, l �= j , vanishes
in the limit. Therefore,

(VI.25) = lim
t→+∞

N (t)∑

j=1

〈
eiγσt (�v j , �∇Eσt

�P ,t)e−i Eσt
�P t
ψ
(t)
j,σt
,

e
i
( �A[ �Gt ,0]− �A[ �Gt ,0]

)

e
��v j

( �G)
eiγσt (�v j , �∇Eσt

�P ,t)e−i Eσt
�P t
ψ
(t)
j,σt

〉
, (VI.26)

where

��u( �G) := 2i Re

(
α

1
2
∑

λ

∫

Bκ
Ĝλ(�k)

�u · �ε ∗�k,λ
|�k| 3

2 (1 − �u · k̂)
d3k

)
. (VI.27)

After solving an ODE analogous to (IV.9), we find that the diagonal terms yield

〈
ψout

h,κ , Wout ( �G)ψout
h,κ

〉 =
∫

e−
C �G

2 e
� �∇E �P

( �G) |h( �P)|2 d3 P, (VI.28)

where

C �G :=
∫
| �̂G(�k)|2d3k. (VI.29)

Here, we also use that �v j ≡ �∇Eσt
�P∗

j
, combined with the convergence �∇Eσt

�P → �∇E �P (as

t →∞ and �P ∈ S).
Now, we can reproduce the following results in [19]: The representation�(A out/ in

ph )

is given by a direct integral on the spectrum of the operator �v out/ in
as in Hout/ in , defined

by

f (�v out/ in
as ) := s − lim

t→+/−∞ ei Ht f

( �x
t

)
e−i Ht (VI.30)
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for any f ∈ C∞
0 (R

3), of mutually inequivalent, irreducible representations. These

representations are coherent non-Fock for values �v out/ in
as �= 0. The coherent factors,

labeled by �v out/ in
as , are

α
1
2

�v out/ in
as · �ε�k,λ

|�k| 3
2 (1 − �v out/ in

as · k̂)
and α

1
2

�v out/ in
as · �ε ∗�k,λ

|�k| 3
2 (1 − �v out/ in

as · k̂)
, (VI.31)

for the annihilation and the creation part, aout/ in
�k,λ and aout/ in ∗

�k,λ , respectively.

The representation�(Aout/ in
ph ) is locally Fock in momentum space. This property is

equivalent to the following one:

For any κ > 0, and �̂Gκ ∈ C∞
0 (R

3\Bκ ; C
3), the operator

�A[− �Gκ
t , t] (VI.32)

annihilates vectors of the type ψout
h,κ in the limit t → +∞, i.e.,

lim
t→+∞

�A[− �Gκ
t , t]ψout

h,κ = 0. (VI.33)

To prove this, we first consider Theorem III.2, then

lim
t→+∞

�A[− �Gκ
t , t]ψout

h,κ = lim
t→+∞

�A[− �Gκ
t , t]ψh,κ (t). (VI.34)

Next, we rewrite the vector

�A[− �Gκ
t , t]ψh,κ (t) = ei Ht �A[− �Gκ

t , 0]
N (t)∑

j=1

Wκ,σt (�v j , t)eiγσt (�v j , �∇Eσt
�P ,t)e−i Eσt

�P t
ψ
(t)
j,σt

(VI.35)

as

−
∫ +∞

t

d

ds
{ ei Hs �A[− �Gκ

s , 0]
N (t)∑

j=1

Wκ,σt (�v j , s)eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt
} ds

(VI.36)

+ lim
s→+∞ ei Hs

N (t)∑

j=1

Wκ,σt (�v j , s) �A[− �Gκ
s , 0]eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt
. (VI.37)

The integral in (VI.36), and the limit in (VI.37) exist. To see this, it is enough to follow
the procedure in Sect. IV.1, taking into account that the operator

�A[− �Gκ
s , 0] 1

(Hσt + i)
[Hσt , �x] (VI.38)

is bounded, uniformly in t and s. The limit (VI.37) vanishes at fixed t because of condition
(I 4) in Theorem III.1. Therefore we finally conclude that the limit (VI.34) vanishes.

Liénard-Wiechert fields generated by the charge. Now we briefly explain how to obtain
the result stated in (III.79). The assertion is obvious for the longitudinal degrees of
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freedom; see the definition of Fµν in (III.80). For the transverse degrees of freedom,
we argue as follows. Similarly to the treatment of (VI.24), we arrive at a sum over the
diagonal terms,

lim
t→±∞

〈
ψ

out/ in

h, �F , ei Ht
∫

d3y Ftr
µν(0, �y) δ̃�(�y − �x− �d) e−i Htψ

out/ in

h, �F

〉

= lim
t→±∞

N (t)∑

j=1

〈
ψ
σt
j,σt
,

∫
d3y Ftr

µν(0, �y) δ̃�(�y − �x− �d) ψσt
j,σt

〉
.

Then, one uses the pull-through formula as in Lemma 6.1 in [10], and Proposition
5.1 in [10] which identifies the infrared coherent factor by showing that

∣∣∣∣∣

〈
�σ�P , b�k,λ �

σ
�P
〉

+ α
1
2

1σ,�(�k)
|�k| 1

2

1

|�k| − �k · �∇Eσ�P
�ε�k,λ · �∇Eσ�P

∣∣∣∣∣ ≤ α1/2 C |�k|−1

(VI.39)

for �k → 0. These ingredients imply that

| �d |2
∣∣∣∣∣∣

lim
t→±∞

⎧
⎨

⎩

N (t)∑

j=1

〈
ψ
σt
j,σt
,

∫
d3y Ftr

µν(0, �y) δ̃�(�y − �x− �d) ψσt
j,σt

〉

−
N (t)∑

j=1

∫

G (t)
j

|h( �P)|2
〈
ψ
σt
�P , ψ

σt
�P
〉 (

F
�∇Eσt

�P
µν

)tr

(0, �d) d3 P

⎫
⎬

⎭

∣∣∣∣∣∣
≤ O(| �d|−1/2),

(VI.40)

which vanishes in the limit | �d| → ∞, as asserted in (III.79).

Appendix A.

In the Appendix, we present detailed proofs of auxiliary results used in Sect. III.

Lemma A.1. The following estimates hold for �P ∈ S:

(i) For t2 > t1 � 1,

|γσt2
(�v j , �∇E

σt2
�P , (σt2)

− 1
θ )− γσt2

(�vl( j), �∇E
σt2
�P , (σt2)

− 1
θ )| ≤ O(|�v j − �vl( j)|),

(A.1)

where �v j ≡ �∇E
σt1
�P∗

j
and �v�( j) ≡ �∇E

σt2
�P∗
�( j)

.

(ii) For t2 > t1 � 1,

| γσt2
(�v j , �∇E

σt2
�P , t1)− γσt1

(�v j , �∇E
σt1
�P , t1) | ≤ O

(
[(σt1)

1
2 (1−δ) t1−θ

1 + t1 σt1 ]
)
.

(A.2)
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(iii) For s, t � 1 and �q ∈ {�q : |�q| < s(1−θ)},
| γσt (�v j , �∇Eσt

�P , s)− γσt (�v j , �∇Eσt

�P+ �q
s

, s) | ≤ O(s− θ
4 (1−δ′′) s(1−θ)), (A.3)

whenever γσt (�v j , �∇Eσt
�P , s) is defined.

Proof. The proofs only require the definition of the phase factor, and some elementary
integral estimates, using conditions (I 1) and (I 2) in Theorem III.1.  "
Lemma A.2. For s ≥ t � 1, the estimates

sup
�x∈R3

∣∣∣∣∣

∫

Bκ\Bσt

�l
�v j
(�k) cos(�k · �x− |�k|s)d3k

∣∣∣∣∣ ≤ O( | ln σt |
s

), (A.4)

sup
�x∈R3

∣∣∣∣∣∣

∫

Bκ\Bσ S
t

�l
�v j
(�k) cos(�k · �x− |�k|s)d3k χh(

�x
s
)

∣∣∣∣∣∣
≤ O( tθ

s2 ), (A.5)

hold, where

�l
�v j
(�k) := 2

∑

l ′
(δl,l ′ − klkl ′

|�k|2 )v
l ′
j

1

|�k|2(1 − k̂ · �v j )
, (A.6)

and where σt := t−β , σ S
τ := τ−θ , with β > 1, 0 < θ < 1. Moreover, χh(�y) = 0 for

|�y| ≤ 1
2νmin and |�y| ≥ 1+νmax

2 with 0 < νmin < νmax < 1 (see (III.15)).

Proof. To prove the estimate (A.4), we consider the variable �x first in the set

{�x ∈ R
3 : |�x| < (1 − ρ)s, 0 < ρ < 1}.

We denote by θ�k the angle between �x and �k. Integration with respect to |�k| yields
∣∣∣∣∣

∫

Bκ\Bσt

�l
�v j
(�k) cos(�k · �x− |�k|s)d3k

∣∣∣∣∣ (A.7)

=
∣∣∣∣
∫
�̂l
�v j
(̂k)

sin(κ k̂ · �x− κs)− sin(t−β k̂ · �x− t−βs)

k̂ · �x− s
d
�k

∣∣∣∣ (A.8)

≤ 2

ρ s

∫
|�̂�v j (̂k)|d
�k, (A.9)

where �̂l
�v j
(̂k) := |�k|2�l

�v j
(�k).

For �x in the set

{�x ∈ R
3 : |�x| > (1 − ρ)s, 0 < ρ < 1},

we integrate by parts with respect to cos θ�k , and observe that the two functions

�̂l
�v j
(̂k) and

d(�̂l
�v j
(̂k))

d cos θ�k
(A.10)
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belong to L1(S2 ; d
�k). This yields

∫

Bκ\Bσt

�l
�v j
(�k) cos(�k · �x− |�k|s)d3k (A.11)

= −
∫ κ

σt

∫
�̂l
�v j
(̂k)|θ�k=π

sin(|�k| |�x| + |�k|s)
|�k| |�x| d|�k|dφ�k (A.12)

−
∫ κ

σt

∫
�̂l
�v j
(̂k)|θ�k=0

sin(|�k| |�x| − |�k|s)
|�k| |�x| d|�k|dφ�k (A.13)

−
∫

Bκ\Bσt

d(�̂l
�v j
(̂k))

d cos θ�k
sin(�k · �x− |�k|s)

|�k| |�x|
d3k

|�k|2 . (A.14)

The absolute values of (A.12), (A.13), and (A.14), are all bounded above by O
( | ln σt |

s−ρs

)
,

as one easily verifies. This establishes (A.4), uniformly in �x ∈ R
3.

To prove (A.5), we consider �x in a set of the form

{�x ∈ R
3 : (1 − ρ′)s > |�x| > (1 − ρ)s, 0 < ρ′ < ρ < 1}. (A.15)

We apply integration by parts with respect to |�k| in (A.12), (A.13), and (A.14) in the
case σ S

t . As an example, we get for (A.12),

(A.12) =
∫
�̂l
�v j
(̂k)|θ�k=π

cos(κ (|�x| + s))

κ (|�x| + s) |�x| dφ�k (A.16)

−
∫
�̂l
�v j
(̂k)|θ�k=π

cos(t−θ (|�x| + s))

t−θ (|�x| + s) |�x| dφ�k (A.17)

+
∫ κ

σ S
t

∫
�̂l
�v j
(̂k)|θ�k=π

cos(|�k| |�x| + |�k|s)
|�k|2 |�x|(|�x| + s)

dφ�kd|k|. (A.18)

Since �x is assumed to be an element of (A.15), it follows that the bound (A.5) holds for
(A.12). In the same manner, one obtains a similar bound for (A.13) and (A.14).  "
Theorem A.3. For θ < 1 sufficiently close to 1, and s ≥ t , the propagation estimate

∥∥∥χh

( �x
s

)
eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt

(A.19)

−χh( �∇Eσt
�P )e

iγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt

∥∥∥

≤ c
1

sν
1

t
3ε
2

| ln(σt )| (A.20)

holds, where ν > 0 is independent of ε.

Proof. Since the detailed proof of a closely related result is given in Theorem A2 of
[26], we only sketch the argument.

Expressing χh (which we assume to be real) in terms of its Fourier transform χ̂h ,
start from the bound
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‖
∫

d3q χ̂h(�q)(e−i �q· �∇Eσt
�P − e−i �q· �xs ) eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
ψ
(t)
j,σt
‖ (A.21)

≤ ‖
∫

d3q χ̂h(�q)(e−i �q· �∇Eσt
�P − e

i(Eσt
�P −Eσt

�P+ �q
s
)s
) eiγσt (�v j , �∇Eσt

�P ,s) ψ(t)j,σt
‖ (A.22)

+‖
∫

d3q χ̂h(�q) e
i(Eσt

�P −Eσt
�P+ �q

s
)s
(e−i �q· �xs − 1) eiγσt (�v j , �∇Eσt

�P ,s) ψ(t)j,σt
‖. (A.23)

We split the integration domains of (A.22) and (A.23) into the two regions

I+ := {�q : |�q| > s1−θ } and I− := {�q : |�q| ≤ s1−θ }. (A.24)

In both (A.22) and (A.23), the contribution to the integral from I+ is controlled by the
decay properties of χ̂(�q), and one easily derives the bound in (A.20). For the contribu-
tions to (A.22) from the integral over I−, the existence of the gradient of the energy, the
Hölder property in �P of the gradient, and the decay properties of χ̂(�q) are enough to
produce the bound in (A.20).

To control (A.23), we note that the two vectors

�
σt

�P− �q
s

and �̂
σt

�P− �q
s

:= e−i �q· �xs �σt
�P (A.25)

belong to the same fiber space H �P− �q
s
, and that, as vectors in Fock space, �̂σt

�P− �q
s

and�σt
�P

coincide, i.e.,

I �P− �q
s
(e−i �q· �xs �σt

�P ) ≡ I �P (�
σt
�P ). (A.26)

We split and estimate (A.23)|I− , i.e., (A.23) where the integration domain is restricted
to I−, by

(A.23)|I− = ∥∥
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P eiγσt (�v j , �∇Eσt
�P ,s)�̂σt

�P− �q
s

d3 Pd3q (A.27)

−
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P −Eσt
�P+ �q

s
)s

h �P eiγσt (�v j , �∇Eσt
�P ,s)�σt

�P d3 Pd3q
∥∥ (A.28)

≤ ∥∥
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P eiγσt (�v j , �∇Eσt
�P ,s)�̂σt

�P− �q
s

d3 Pd3q (A.29)

−
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P eiγσt (�v j , �∇Eσt
�P ,s)�σt

�P− �q
s

d3 Pd3q
∥∥

+
∥∥
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P eiγσt (�v j , �∇Eσt
�P ,s)�σt

�P− �q
s

d3 Pd3q (A.30)

−
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P− �q
s

e
iγσt (�v j , �∇Eσt

�P− �q
s
,s)
�
σt

�P− �q
s

d3 Pd3q
∥∥

+
∥∥

∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P− �q
s
−Eσt

�P )s h �P− �q
s

e
iγσt (�v j , �∇Eσt

�P− �q
s
,s)
�
σt

�P− �q
s

d3 Pd3q

−
∫

I−
χ̂h(�q)

∫

�
(t)
j

e
i(Eσt

�P −Eσt
�P+ �q

s
)s

h �P eiγσt (�v j , �∇Eσt
�P ,s)�σt

�P d3 Pd3q
∥∥. (A.31)
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The terms (A.29), (A.30), and (A.31) can be bounded by

(A.29) ≤
∫

I−
|χ̂h(�q)|

[∫

�
(t)
j

|h �P |2‖I �P (�
σt
�P )− I �P− �q

s
(�

σt

�P− �q
s

)‖2
F d3 P

] 1
2

d3q,

(A.32)

(A.30) ≤
∫

I−
|χ̂h(�q)|

[∫

�
(t)
j

|� �q
s
(h �P eiγσt (�v j , �∇Eσt

�P ,s))|2 ‖I �P− �q
s
(�

σt

�P− �q
s

)‖2
F d3 P

] 1
2

d3q,

(A.33)

and

(A.31) ≤
∫

I−
|χ̂h(�q)|

⎡

⎣
∫

O j
�q
s

|h �P |2 ‖I �P (�
σt
�P )‖

2
F d3 P

⎤

⎦

1
2

d3q, (A.34)

where

� �q
s
(h �P eiγσt (�v j , �∇Eσt

�P ,s)) := h �P eiγσt (�v j , �∇Eσt
�P ,s) − h �P− �q

s
e

iγσt (�v j , �∇Eσt
�P− �q

s
,s)
, (A.35)

and O j
�q
s

:= (�
(t)
j ∪ �(t),

�q
s

j )\(�(t)j ∩ �(t),
�q
s

j ), where �
(t), �qs
j is the translate by �q

s of the

cell �(t)j .

Using (A.3), the C1−regularity of h �P , and the definition of I−, one readily shows
that the terms (A.33), (A.34) satisfy the bound (A.20), as desired.

To estimate (A.32), we use the inequality

‖I �P
(
�
σt
�P
)
− I �P− �q

s

(
�
σt

�P− �q
s

)
‖F (A.36)

≤ ‖I �P
(

Wσt (
�∇Eσt

�P )�
σt
�P
)
− I �P− �q

s

(
Wσt (

�∇Eσt

�P− �q
s

)�
σt

�P− �q
s

)
‖F (A.37)

+‖I �P− �q
s

(
(W ∗

σt
( �∇Eσt

�P )− W ∗
σt
( �∇Eσt

�P− �q
s

))Wσt (
�∇Eσt

�P− �q
s

)�
σt

�P− �q
s

)
‖F , (A.38)

where it is clear that

Wσt (
�∇Eσt

�P )�
σt
�P = �

σt
�P . (A.39)

Moreover, we use properties (I 2), (I 5) in Theorem III.1, where we recall that

(I 2) Hölder regularity in �P ∈ S uniformly in σ ≥ 0 holds in the sense of

‖�σ�P −�σ�P+� �P‖F ≤ Cδ′ |� �P| 1
4−δ′ (A.40)

and

| �∇Eσ�P − �∇Eσ�P+� �P | ≤ Cδ′′ |� �P| 1
4−δ′′ , (A.41)

for any 0 < δ′′ < δ′ < 1
4 , with �P, �P + � �P ∈ S, and where Cδ′ and Cδ′′ are

finite constants depending on δ′ and δ′′, respectively.

We can bound (A.37) by use of (A.40).
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In order to bound (A.38), we recall the definition of the Weyl operator

Wσ ( �∇Eσ�P ) := exp

⎛

⎝α
1
2
∑

λ

∫

B�\Bσ
d3k

�∇Eσ�P
|�k| 3

2 δ �P,σ (̂k)
· (�ε�k,λb∗�k,λ − h.c.)

⎞

⎠ , (A.42)

and we note that

(A.38) ≤ c
∣∣ �∇Eσt

�P − �∇Eσt

�P− �q
s

∣∣Rt

⎛

⎝Rt +

(
∑

λ

∫

B�\Bσt

d3k ‖ b�k,λ�
σ
�P− �q

s

‖2
F

) 1
2
⎞

⎠

(A.43)

from a simple application of the Schwarz inequality, where

Rt :=
(∫

B�\Bσt

d3k

|�k|3
) 1

2

= O(| ln σt | 1
2 ). (A.44)

Moreover, we have
∑

λ

∫

B�\Bσt

d3k ‖ b�k,λ�
σ
�P− �q

s

‖2
F ≤ c | ln σt |, (A.45)

which is derived similarly as (V.74).
From Hölder continuity of �∇Eσ�P in �P , (A.41), we obtain a contribution to the upper

bound on (A.38) which exhibits a power law decay in s.
We conclude that (A.32) is bounded by (A.20), as claimed.  "

Remark. By a similar procedure, one finds that for t2 ≥ s ≥ t1,
∥∥∥χh(

�x
s
) eiγσt2

(�v j , �∇E
σt2
�P ,s) e−i E

σt2
�P s
ψ
(t1)
j,σt2

−χh( �∇E
σt2
�P ) eiγσt2

(�v j , �∇E
σt2
�P ,s) e−i E

σt2
�P s
ψ
(t1)
j,σt2

∥∥∥ ≤ c
1

sν
| ln(σt2)|

t3/2
1

. (A.46)

Analogous extensions hold for the estimates in the next theorem.

Theorem A.4. Both
∥∥∥∥∥

∫ +∞

t
ei Hσt sWκ,σt (�v j , s)

[
J |σ S

s
σt (s)χh(

�x
s
)− dγ̂σt (�v j ,

�x
s , s)

ds

]

× eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
(Eσt

�P + i) ψ(t)j,σt
ds

∥∥∥∥∥ (A.47)

and
∥∥∥∥∥

∫ +∞

t
ei Hσt sWκ,σt (�v j , s)

{ dγ̂σt (�v j ,
�x
s , s)

ds
eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt

−
dγσt (�v j , �∇Eσt

�P , s)

ds
eiγσt (�v j , �∇Eσt

�P ,s)e−i Eσt
�P s
(Eσt

�P + i) ψ(t)j,σt

}
ds

∥∥∥∥∥ (A.48)
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are bounded by

c
1

tη
| ln(σt )|2 t−

3ε
2 , (A.49)

where η > 0 is ε-independent. J |σ S
s
σt (s),

dγ̂σt (�v j ,
�x
s ,s)

ds , and
dγσt (�v j , �∇Eσt

�P ,s)
ds are defined in

(IV.38), (IV.39), and (IV.7) – (IV.8), respectively.

Proof. We recall from (IV.38) that for σ S
s ≥ σt ,

J |σ S
s
σt (s) = α i[Hσt , �x] ·

∫

B
σ S

s
\Bσt

���v j (
�k) 1

Hσt + i
cos(�k · �x− |�k|s)d3k,

where σ S
s := 1

sθ
is the slow cut-off, and from (IV.39),

dγ̂σt (�v j ,
�x
s , s)

ds
:= α e−i Hσt s 1

Hσt + i

d{ei Hσt s �xh(s)e−i Hσt s}
ds

ei Hσt s ·

·
∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)d3k. (A.50)

For s such that σ S
s ≤ σt the expressions (A.47) and (A.48) are identically zero. By

unitarity of ei Hσt s and Wσt (�v j , s), we can replace the part in the integrand of (A.47)

proportional to J |σ S
s
σt (s) by

ei Hσt sWκ,σt (�v j , s)αi[Hσt , �x] 1

Hσt + i
χh(

�x
s
) ·

∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)

×eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
(Eσt

�P + i)ψ(t)j,σt
, (A.51)

up to a term which yields an integral bounded in norm by

1

tη
| ln(σt )|2 t−

3ε
2 , (A.52)

for some η > 0 and independent of ε.
To justify this step, we exploit the fact that the operator

i[Hσt , �x] 1

Hσt + i
(A.53)

is bounded. Moreover, we are applying the propagation estimate∥∥∥
{ ∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �x− |�k|s)d3k −

∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)d3k
}

·eiγσt (�v j , �∇Eσt
�P ,s) e−i Eσt

�P s
(Eσt

�P + i) ψ(t)j,σt

∥∥∥ ≤ c
1

s1+ν

1

t
3ε
2

| ln(σt )|, (A.54)

for some ν > 0, which is similar to (A.19). To obtain the upper bound, we exploit

the fact that due to the slow cut-off σ S
s = s−θ , θ > 0, in J |σ S

s
σt (s), the upper integra-

tion bound in the radial part of the momentum variables vanishes in the limit s → ∞.
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We note that we have to assume θ < 1 as required in (IV.37), in order to use the result
in Lemma A.2.

Next, we approximate (A.51) by

ei Hσt sWκ,σt (�v j , s)α e−i Hσt s 1

Hσt + i

d �x(s)
ds

χh(
�x(s)

s
) ·

∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)

· (Eσt
�P + i)eiγσt (�v j , �∇Eσt

�P ,s)ψ(t)j,σt
, (A.55)

where �x(s) := ei Hσt s �xe−i Hσt s . To pass from (A.51) to (A.55), we have used

d �x(s)
ds

1

Hσt + i
= 1

Hσt + i

d �x(s)
ds

− 1

Hσt + i

d[�x(s), Hσt ]
ds

1

Hσt + i
, (A.56)

and we have noticed that the term containing

1

Hσt + i

d[�x(s), Hσt ]
ds

1

Hσt + i
(A.57)

can be neglected because an integration by parts shows that the corresponding integral

is bounded in norm by 1
tν | ln(σt )|2 t− 3ε

2 for some ν > 0 and ε-independent. This uses

sup
�P∈S

∣∣∣∣∣∣

∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)
∣∣∣∣∣∣
≤ O

( | ln (σt ) |
s

)
(A.58)

and

sup
�P∈S

∣∣∣∣∣∣
d

ds

∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)
∣∣∣∣∣∣
≤ O

(
1

s1+θ

)
, (A.59)

which can be derived as in Lemma A.2.
To bound the integral corresponding to (A.55), we note that up to a term whose

integral is bounded in norm by (A.49), one can replace d �x(s)
ds χh(

�x(s)
s ) by

d

ds

(
ei Hσt s �xh(s)e

−i Hσt s
)
, (A.60)

where �xh(s) := �xχh(
�x
s ), with χh(�y) defined as in Sect. IV.1. This is possible because

d

ds

(
ei Hσt s �xh(s)e

−i Hσt s
)

(A.61)

= − ei Hσt s �x [ �x
s2 · �∇χh(

�x
s
)]e−i Hσt s (A.62)

+ ei Hσt s i[Hσt , �x]χh(
�x
s
)e−i Hσt s (A.63)

+ ei Hσt s �x
s

[
�∇χh(

�x
s
) · i[Hσt , �x]

2

]
e−i Hσt s (A.64)

+ ei Hσt s �x
s

[
i[Hσt , �x]

2
· �∇χh(

�x
s
)

]
e−i Hσt s, (A.65)
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where (A.63) corresponds to d �x(s)
ds χh(

�x(s)
s ). Moreover, we use the fact that the vec-

tor operator 1
Hσt +i i[Hσt , �x] is bounded, and apply the propagation estimate (A.19) to

xi x j

s2 ∇ jχh(
�x
s ) and to xi

s ∇ jχh(
�x
s ) with appropriate modifications (see (A.72) and recall

that �∇χh( �∇Eσt
�P ) = 0 for �P ∈ supp h).

We observe that

ei Hσt s Wκ,σt (�v j , s) α e−i Hσt s 1

Hσt + i

d( ei Hσt s �xh(s)e−i Hσt s )

ds
·
∫

B
σ S

s
\Bσt

d3k ���v j (
�k)

· cos(�k · �∇Eσt
�P s − |�k|s) (Eσt

�P + i) eiγσt (�v j , �∇Eσt
�P ,s) ψ(t)j,σt

(A.66)

corresponds to

ei Hσt sWκ,σt (�v j , s)

[
dγ̂σt (�v j ,

�x
s , s)

ds

]
eiγσt (�v j , �∇Eσt

�P ,s) ψ(t)j,σt
. (A.67)

This immediately implies (A.47).
To prove (A.48), we need to control the integral

∫ s̄

t
ei Hσt sWκ,σt (�v j , s)e−i Hσt s α

Hσt + i

d( ei Hσt s �xh(s)e−i Hσt s )

ds
·
∫

B
σ S

s
\Bσt

d3k ���v j (
�k)

· cos(�k · �∇Eσt
�P s − |�k|s) eiγσt (�v j , �∇Eσt

�P ,s) (Eσt
�P + i)ψ(t)j,σt

ds (A.68)

for s̄ → +∞. An integration by parts with respect to s yields

ei Hσt sWκ,σt (�v j , s)
α

Hσt + i
�xh(s) ·

∫

B
σ S

s
\Bσt

d3k ���v j (
�k)

× cos(�k · �∇Eσt
�P s − |�k|s) e−i Eσt

�P s eiγσt (�v j , �∇Eσt
�P ,s) (Eσt

�P + i)ψ(t)j,σt

∣∣s̄
t (A.69)

−
∫ s̄

t

{ d

ds
( ei Hσt sWκ,σt (�v j , s)e−i Hσt s )

}
ei Hσt s α

Hσt + i

× �xh(s) ·
∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)

× e−i Eσt
�P s eiγσt (�v j , �∇Eσt

�P ,s) (Eσt
�P + i)ψ(t)j,σt

ds (A.70)

−
∫ s̄

t
ei Hσt sWκ,σt (�v j , s)

α

Hσt + i

×�xh(s) ·
⎧
⎨

⎩
d

ds

⎡

⎣
∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s) eiγσt (�v j , �∇Eσt
�P ,s)

⎤

⎦

⎫
⎬

⎭

× e−i Eσt
�P s
(Eσt

�P + i)ψ(t)j,σt
ds (A.71)

Here, we notice that

�xh(s) = �xχh(
�x
s
) = −is

∫
�∇χ̂h(�q)e−i �q· �xs d3q. (A.72)



824 T. Chen, J. Fröhlich, A. Pizzo

Furthermore, the operator

− i
∫

�∇χ̂h(�q)e−i �q· �xs d3q (A.73)

tends to

− i
∫

�∇χ̂h(�q)e−i �q· �∇Eσt
�P d3q (A.74)

for s →∞, if it is applied to the vectors

eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt
, (A.75)

or
∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt
, (A.76)

or
⎧
⎨

⎩
d

ds

⎡

⎣
∫

B
σ S

s
\Bσt

d3k ��(�k, �v j ) cos(�k · �∇Eσt
�P s − |�k|s) eiγσt (�v j , �∇Eσt

�P ,s)

⎤

⎦

⎫
⎬

⎭ e−i Eσt
�P s
ψ
(t)
j,σt
.

(A.77)

The rate of convergence of the corresponding expression in (A.48) is bounded by (A.49).
Therefore, we can replace expressions (A.69),(A.70), and (A.71) by

ei Hσt sWκ,σt (�v j , s)α s �∇Eσt
�P (A.78)

·
∫

B
σ S

s
\Bσt

d3k ���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)eiγσt (�v j , �∇Eσt
�P ,s)e−i Eσt

�P s
ψ
(t)
j,σt

∣∣∣
s̄

t

−
∫ s̄

t
ds

{
d

ds
( ei Hσt sWκ,σt (�v j , s)e−i Hσt s )

}
α s �∇Eσt

�P (A.79)

·
∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)d3keiγσt (�v j , �∇Eσt
�P ,s)ψ(t)j,σt

−
∫ s̄

t
ei Hσt sWκ,σt (�v j , s)α s �∇Eσt

�P (A.80)

·
⎧
⎨

⎩
d

ds

⎡

⎣
∫

B
σ S

s
\Bσt

���v j (
�k) cos(�k · �∇Eσt

�P s − |�k|s)d3k eiγσt (�v j , �∇Eσt
�P ,s)

⎤

⎦

⎫
⎬

⎭

× e−i Eσt
�P s
ψ
(t)
j,σt

ds.

Recalling the definition of the phase factor in (IV.7)-(IV.8), the sum of the expressions
(A.78), (A.79), and (A.80) can be written compactly as

∫ s̄

t
ds ei Hσt s Wκ,σt (�v j , s)

dγσt (�v j ,∇E �P , s)

ds
eiγσt (�v j , �∇Eσt

�P ,s) e−i Eσt
�P s
ψ
(t)
j,σt
, (A.81)

after an integration by parts.
This implies the asserted bound for (A.47).  "
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