# **UCLA**

# **Posters**

# **Title**

Systems Infrastructure (SYS 18)

# **Permalink**

https://escholarship.org/uc/item/0rf530hg

# **Authors**

Richard Guy John Hicks Karen Weeks

# **Publication Date**

2006

# **Systems Infrastructure**

John Hicks, Karen Weeks, Richard Guy, Thanos Stathopoulos, Tom Schoellhammer **CENS Systems Laboratory** 

# **Problem Space:** Assembling complete deployments from a variety of available components

The Systems Infrastructure team assembles, tests, and provides complete sensor network solutions containing both exploratory and hardened components, from high-level applications and analysis tools, down to hardware at the sensor platform level. We assist domain science teams with planning and execution.

# **ESS: Extensible Sensing System**

- TinyOS: Provides a scheduling system and the underlying CC1000

- central micro server

  'Time synchronization: Works through the routing layer to provide reliable mote time stamping

  'DTN: A persistent data buffer that works above the transport layer to provide in-network data storage and retransmission
- Sympathy: Provides system status information and fault isolation Data Sampling Engine: Allows a user to remotely program motes with queries to periodically return sensor data
- Deluge: Allows remote reprogramming of all nodes in the network

- Areas of Foo
  Worst-case connectivity requirements
   Science-driven place... - Science-driven placement of n Continuous interactivity with mol - Especially during installation

- Energy versus robustness Vertical integration
- Sensor to microserver as well as microserver to database Real-time visibility
  - To adjust individual sensor placement and alignment

# **Routing Algorithms**

#### Interchangeability

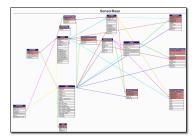
- The routing layer was designed to be modular
- Allows easy insertion, testing, and verification of various algorithms

#### Multihop

- A beacon-based multihop service
- Slow to adapt to changing network conditions

#### Centroute

- A centralized tree-based routing protocol
- All routing decisions made on the sink
- Constant sized state stored on mote for increased scalability


#### Hyper

- Creates routing trees in response to a "tree formation" message flooded from the sink
- Converges extremely quickly

#### SensorBase.org

### Current challenges of data management:

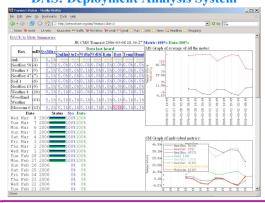
- Different sensor networks use different data push mechanisms
- Difficult to cull, parse, interpret from different sources
- Difficult to search for data sets
- Difficult to share/publish/annotate data sets



## A framework that allows a simple development path from simulation to deployment

**EmStar** 

- Fault isolation through multiple processes
- Modular design
- Visualization and debug tools




Layer 0: FUSD

# **Futures**

- Additional tools and module development
- **Interface improvements**
- **Documentation and** usability
- Port to other platforms

# **DAS: Deployment Analysis System**



## **Future Directions**

- More robust hardware to improve reliability
  - Fleck motes
  - Stargate-2
  - Slauson
- Rewrite of EmStar for new features and ease of installation
- Various small applications to target specific deployment
  - Mobile sink to receive network data from the field
  - Instantly check connection reliability to all neighboring nodes