
Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance Analysis and Optimization for Scientific Data Workloads

Permalink
https://escholarship.org/uc/item/0rf47634

Authors
Giannakou, Anna
Ramakrishnan, Lavanya

Publication Date
2022-12-25
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rf47634
https://escholarship.org
http://www.cdlib.org/


Performance Analysis and Optimization for
Scientific Data Workloads

Anna Giannakou
Lawrence Berkeley National Lab

Berkeley, USA
agiannakou@lbl.gov

Lavanya Ramakrishnan
Lawrence Berkeley National Lab

Berkeley, USA
lramakrishnan@lbl.gov

Abstract—Scientific data generated at experimental and ob-
servational facilities are increasingly being processed on large-
scale compute systems. Most of the experimental data analysis
workflows are not designed or implemented to run on large
scale environments and take full advantage of HPC compute and
storage resources. These applications are unlike the traditional
tightly-coupled scientific applications and hence face significant
performance and scalability challenges as the volume of data
increases exponentially. In this paper, we conduct a performance
and scalability analysis for experimental analysis applications
and workflows operating on data from light sources. Our
analysis detects and quantifies I/O performance, scalability and
runtime bottlenecks for three data analysis applications that run
on NERSC resources. Based on our analysis we propose and
implement a set of optimizations that lead to reducing the amount
of time spent on I/O operations by almost 90%.

Index Terms—performance, scalability, HPC, throughput

I. INTRODUCTION

Science experiments are increasingly producing large
amounts of data from a diverse set of instruments at in-
creasingly high rates [1]. The data processing and analyses
workflows requires experimental data to be analyzed fast, as
intermediate results are used to steer and re-calibrate ongoing
experiments [2]. Furthermore, the computational, storage and
data transfer needs of the analyses necessitate the need for
high-performance networking, storage, and compute resources.
Scientists have turned to HPC platforms as an attractive solu-
tion for running this new class of complex, computationally in-
tensive experimental-data analysis workloads. Although HPC
environments grant access to significant compute and storage
resources, most of the experimental data analysis workflows
(e.g. X-ray imaging analysis) are not designed or implemented
to run on such large scale environments. These applications are
different from the tightly coupled scientific applications that
have run on HPC systems. Oftentimes, a substantial amount of
reconfiguration is required both for the underlying system and
the workflows’s codebase in order to enable reliable, portable
execution across HPC environments.

This new class of science workflows requires a deeper
understanding of performance and scaling challenges. We
need to implement performance oriented optimizations are
vital aspects for achieving fast, result turnaround. In order
to take advantage of HPC resources and ultimately improve

Identify applicable funding agency here. If none, delete this.

workflows’s performance and scalability, timely identification
and in-depth analysis of underlying bottlenecks and poten-
tial implementation inefficiencies is important. There is lim-
ited understanding of how we can be support experimental
data analysis workflows on HPC systems. Experimental data
workflows have specific characteristics, such as their ability
to handle multiple input data streams and have not been
studied in detail. This is in contrast to traditional HPC-
oriented Message Passing Interface (MPI) workflows that have
been thoroughly analyzed and modeled in terms of different
performance aspects (e.g. I/O, compute, scalability, etc).

In this paper, we analyze two experimental data analysis
workflows executed on resources at National Energy Research
Scientific Computing Center (NERSC) focusing on I/O, run-
time and scalability aspects. The first one is a Light Source
domain workflow that utilizes Free Electron Lasers (XFELs)
in order to generate millions of (slightly different) shots of
unknown samples. The samples are later analyzed using the
Computational Crystallography toolbox (CCTBX). The second
workflow, Serial Femtosecond X-ray (SFX) crystalography,
analyzes data collected from the Linac Coherent Light Source
(LCLS) at SLAC National Accelerator Laboratory, focusing
on protein structure discovery and was used in Covid-19 viral
protein reconstruction. Our work provides a thorough overview
of the and compute and I/O aspects of this new type of
experimental data analysis workflows.

In this paper, our research has the following key contribu-
tions:

• We perform a analysis of different performance aspects
of the two selected workflows ( cctbx and SFX) Our
work uses lightweight code instrumentation in order to
detect and quantify underlying performance bottlenecks.
Our analysis shows that for SFX the main bottleneck
is redundant read and write operations while cctbx’s
execution time is affected by the location of input data.

• we designed, implemented underlying system optimiza-
tions that aim at resolving or reducing the identified
bottlenecks and associated performance penalties.

• Finally, we conduct a detailed evaluation of our perfor-
mance optimizations and compare the initial and opti-
mized versions of the workflows. For cctbx the execution
time is reduced up to 36% while for SFX we manage to
reduce the I/O footprint by 26%.



This paper is organized as follows: Section II presents
a detailed description of the analysed workflows while and
related research projects . Section III outlines our evaluation
process along with selected metrics and setup as well as
obtained results along with the optimizations that were applied
in order to reduce the I/O footprint and overall execution time
of each workflow.Section VI concludes the paper outlining
important observations.

II. BACKGROUND

In this section, we describe the individual stages for both
workflows and related work on application profiling and
performance characterization. A thorough understanding of
different aspects of workflow performance is necessary in
order to support this new class of experimental data analysis
workflows.

A. Application and Workflows

1) Reader: For an in depth understanding of the reading
process for data format produced by the Laser detectors
and analysed both by cctbx and Sfx we analyze a Reader
application running on NERSC resources. Reader’s sole role
is to read produced data in large memory blocks called
Dataframes. Dataframes are stored in a specific file format
with the extension xtc2 (extended tagged container). Since xtc2
files can be quite large in size occupying up to terabytes (TB)
of disk space, they are accompanied by a smaller smd file
(around 20MB) that acts as an index for each dataframe’s
location in the xtc2 file. On NERSC’s Cori both xtc2 and
smd files are located on permanent storage. Following MPI
principles, the Reader uses a master process that distributes
a user-defined number of events among a configurable set of
worker processes. Each worker is responsible for accessing the
xtc2 file and reading the assigned events. No further processing
is conducted. The only I/O activity is attributed to the open()
and read() calls performed by the master and worker MPI
processes. Each worker process utilizes Psana [3], the default
data analysis framework for xtc2 datasets, in order to access
the assigned events. The Reader can be run in both single and
multi-node environment depending on available resources (i.e.
nodes, cores). Typical data analysis workflows contain a high
number of events (e.g. 500 or 1000 events) assigned to each
process, making scalability a crucial factor for minimizing
both execution time as well as time spent on I/O operations
related to data access.

2) XFEL Data Analysis- Cctbx: Free Electron Lasers
(XFELs) are used in X-ray scattering experiments in order to
determine the structure of unknown samples. Images collected
from an XFEL are analyzed through the Computational Crys-
tallography Toolbox (cctbx) software package, an open source
tool. Since each experimental dataset contains hundreds of
thousands of images with varying diffraction patterns, cctbx
performance greatly depends on optimizing parallel image
processing as well as underlying I/O.

We describe the individual stages for the cctbx workflow
that run on NERSC resources focusing on I/O operations

and parallelism. An overview of the cctbx pipeline is shown
in Figure 1. Red boxes depict I/O intensive phases that are
later profiled in our analysis and are executed through a
configurable set of containerized workers (using NERSC’s
Shifter):
Marshaling: The first pipeline phase starts with a master
process distributing an equal, configurable number of events
and experiment related inputs that are applicable to all images
(e.g. metrology, bad pixel mask, gain mask) among MPI
worker processes. Each process is running in a dedicated
container.
Import: In the second phase, each worker uses Psana2 in
order to read data from the large xtc2 file (located on perma-
nent storage) in the same manner described in the Reader
application. This phase is the first of the I/O dependent
operations. Once the images are read, a set of dark and gain
corrections are applied and a cbf file is assembled per worker.
Spot Finding: The crystallography analysis starts with discov-
ering sets of connected bright pixels using the dark pixel mask.
Once these are found (based on input defined parameters) they
are isolated for further processing.
Indexing: The discovered sets of bright pixels are indexed
and the crystal orientation is defined based on the following
factors:metrology, location and input defined unit cell. The
successfully indexed images are prepared for the refinement
phase creating one file per image. Only a subset of the initial
images is going to be indexed successfully on each pipeline
execution. The different diffraction patterns in images result in
varying indexing rates and vastly fluctuating completion times
for each worker. The I/O footprint of the indexing phase is
attributed to the write calls for generating the .idx files.
Refinement: The model parameters are adjusted in order to
ensure better data fit.
Integration: Spots are integrated using a simple summation of
foreground pixels and removal of the estimation of background
in this area.
Write out Results: Finally, each worker writes out results to
a user-defined location that is common amongst all workers.
Depending on user’s choice the output is going to be com-
prised by either one set of files per process rank or one set of
files per indexed image. The amount of I/O depends on the
number of write() calls for the result files.

3) SFX: SFX is from LCLS and is used for analyzing and
mapping the structure of Covid-19 proteins that was success-
fully ported and executed on Cori. A schematic representation
of the workflow stages is shown in Figure 2.
Peak Finding: In the first phase, images of the protein
samples are analyzed in order to detect useful defraction
patterns. Defraction patterns depend on the number of peaks
found in each sample. SFX utilizes Psocake [4] for peak
finding. While peak finding, the user is able to tune input
parameters, launch multiple jobs on all available cores and
inspect intermediate results for discovered number of peaks (
a job is considered a success if more than 15 hits are found).
The results are stored in a cxi file (one cxi file per process).
Inspection of intermediate results is crucial in order to reduce
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Fig. 1. Cctbx pipeline stages for multiple MPI sub-processes.

Fig. 2. SFX workflow stages on NERSC resources for Covid-19 protein structure determination. Black arrows represent the data flow for both input data and
intermediate results

the computational load for the remaining workflow phases.
Each job is running in a container.
Indexing: Provided that enough peaks were found, Psocake
will attempt to index the defraction patterns. Although a
percentage of jobs will terminate without successful indexing
solutions, each job stores the obtained result in a separate
stream file. Indexing is conducted through Psocake’s indexa-
majig. Multiple jobs can be launched for Indexing.
Histogram and Indexing: In this step, the successfully
indexed spots are combined to a single cell file. Then a
second round of indexing occurs. The second indexing round
is executed inside containers.
Merging: The stream files that contain the results from the
second round of indexing are combined in a single mtz file
after different scaling methods are applied (e.g. monte carlo
scaling, simple scaling). Scaling is performed by Psocake’s
process hkl. Users can launch multiple merging jobs for faster
phase turnaround time.
Phasing: In the final stage of the pipeline the samples are
phased using either SAD or MR phasing techniques. Both
techniques effectively conduct a combinatorial grid search.
The main difference between the two techniques is that MR
starts from a known solution, hence a substantially smaller
search space, that leads to lower execution times. In both
techniques, a master process launches multiple SLURM jobs
as sub-processes that will carry out the search incorporating
Phenix [5] and CCP4 [6]. The number of jobs that are launched
depends on the size of the search space as well as the actual
number of grids. Before each job is launched, the master
process creates a sub-directory and copies an identical set of

input and executable files. The number of copy operations
increases with the number of launched jobs leading to large
I/O overhead for increased grid sizes. The jobs are launched
sequentially and the computed probabilities are stored in a
common file while the master process waits for each job to
complete. The result with the highest probability is selected as
the phasing solution. The SFX workflow was running natively
on LCLS resources requiring complex and time consuming
configuration of associated software modules (e.g. Phenix,
CCP4, etc)

B. Related work

In this section, we briefly describe research works around
workflow profiling and characterization.

Users that execute workflows spawning multiple jobs on
supercomputers can use Darshan tool [7] to profile the I/O
usage of their applications. Darshan instruments I/O functions
at multiple levels, primarily MPI-I/O and POSIX I/O. The
statistics collected per job include: numbers of processes,
bytes read/written, aggregate I/O throughput as well as total
runtime and time spent in I/O. On Cori, users can use the
dedicated Darshan parser tool in order to easily summarize I/O
results. Darshan collects a minimal amount of data making it a
suitable solution for monitoring I/O behavior at scale. Existing
work [8] analyzes Darshan logs from thousands of applications
running on NERSC and ALCF resources over a multi year
period in order to discover I/O related bottlenecks and provide
useful performance improvements suggestions. However, as
previously noted the Darshan module on Cori was unable to
track I/O for both applications.



A number of works have addressed performance charac-
terization of workflows running on NERSC resources from
different aspects. Previous work [9] focuses on the data trans-
fer part of the workflow and uses decision based techniques
to predict the transfer rate of different file sizes from LCLS
to NERSC. The decision is based on previously collected
performance metrics such as transfer duration transfer start
time, source file system, etc. The work clearly recognizes the
value of performance characterization for optimizing overall
workflow performance. Feature selection and clustering [10]
has been used to identify a set of configuration parameters to
optimize I/O performance for different workflow types that
run on NERSC resources. The authors utilize a variety of
feature selection techniques such as F-regression and Mutual
Information regression in order to isolate the most important
I/O features. The analysis, based on Darshan logs, results
to a general recommendation about the use of MPI for
aleviating I/O bottlenecks and does not provide application
specific optimization strategies. Daley et al. [11] profile a
wide set of simulation and data-analytics workloads isolating
communication, I/O and compute times and conclude that
indeed I/O performance can be improved with the use of
intermediate storage mechanisms such as burst buffer.

Betke and kunkel [12] utilize machine learning (i.e. K-
means) to analyze past application traces in order to identify
workload clusters that demonstrate similar I/O patterns. Al-
though the proposed trace data analysis pipeline was able to
produce eight distinct application clusters only three of them
had a clear I/O profile (normal, intensive and other) while no
application-specific bottlenecks were discovered.

III. METHODOLOGY

In this section, we describe the metrics used for evaluating
the I/O footprint of each workflow. Furthermore, we provide
readers with a detailed description of the hardware and datasets
used for our experiments.

A. Metrics

In order to quantify the I/O footprint of each workflow and
understand the effect of our design and runtime optimizations,
we focus on the following metrics:
Throughput. We calculate throughput by dividing the total
number of processed events by the total latency per process.
Since cctbx is the only event-based workflow the throughput
measurements were obtained only for the cctbx workflow.
Execution time. We measure per process execution time by
calculating the average execution time among all processes
participating in each workflow execution.
Total amount of I/O for read() and write() system calls.
We measure the total amount of I/O by summing the amount
of I/O for write() and read() system calls for each process.
Furthermore, for the SFX workflow (MR and SAD applica-
tions), we also calculate the amount of IO spent by the master
process.
We performed five runs per workflow and all measurements
were obtained for both the initial and optimized workflow

versions. For otaining the I/O measurements we utilized strace
[13] Linux debugging userspace utility. For the SFX workflow,
we instrumented the code by inserting strace calls both at
the master process that is responsible for spawning all worker
processes as well in the worker processes that conduct grid
search and reconstruction. The I/O events recorded by strace
were: read(), write(), fseek(), open(), close().
For calculating the per process execution time, we used dedi-
cated time calls placed in the SLURM job submission script.
For the SFX workflow we obtained timing measurements for
both MR and SAD phasing applications by instrumenting the
code of both the master and worker processes by inserting
timers using Python’s time module.

B. Data

For the cctbx workflow, we used a single artificial xtc2 file
containing only XFEL images that are successfully indexed.
The size of the xtc2 file is 631 GB and the size of the smd
file (that acts as an index for the xtc2 file) is 20MB. For the
SFX workflow the following input files were used: one .mtz
file (1.2MB) for storing reflections and one .fasta file (1MB)
for the SAD phasing case while for the MR phasing case we
utilized: one .mtz file (1.2 MB) and a .fasta file (507KB).

C. Hardware

We run our experiments on Cori, an XC40 supercomputer at
NERSC on two distinct node groups: KNL and Haswell. Each
KNL single socket node features an Intel Xeon Phi Processor
7250 (1.4GHz) with 68 cores and 4 hardware threads per core
(272 threads total) accompanied by 96GB of DDR4 RAM at
2400MHz. A Haswell two socket node features an Intel Xeon
Processor E5-2698 v3 (2.3GHz) with a total of 32 cores and
2 threads per core (64 threads in total), that are matched with
128 GB DDR4 RAM at 2133 MHz. We use KNL nodes for
running the cctbx and Reader while we run the SFX workflow
on Haswell due to its large per process memory requirements.
In order to evaluate the effect of speeding up I/O reads and
writes in the execution time and throughput of the cctbx, we
conduct a set of experiments using NERSC’s Burst Buffer [14].
Burst buffer is an intermediate storage layer between on-node
memory and traditional HDD storage that provides slower
than on-node memory reads and writes but faster than HDD-
based storage. For our experiments we allocate burst buffer
resources using SLURM workload manager. We configure the
burst buffer reservation to operate on a stripped mode (in order
for data to be scattered across multiple burst buffer nodes)
while we opt for a non-permanent reservation (the burst buffer
allocation is deleted after the workflow is completed). Our
allocation size is 650GB per run.

IV. EXPERIMENTAL RESULTS

This section outlines baseline profiling results for both
workflows (cctbx and sfx) as well as a Reader application.
We include results for Reader in order to obtain a deeper
understanding of access patterns related to xtc2-specific input
files. Based on the obtained results we identify a series of



bottlenecks which we later alleviate through workflow-specific
runtime, implementation and system optimizations. We then
quantify the effect of our optimizations through a detailed
comparison with the baseline results. Finally, important ob-
servations and recommendations are presented.

A. Baseline Results

Reader We measure the execution time per process in the
reader workflow in order to obtain a baseline performance for
reading large xtc2-specific input files. Results are shown in
Figure 3 As the reader workflow distributes events among mul-
tiple MPI processes read() calls occur both on smd (small-size
index file) and xtc2 (large file containing actual Dataframes)
files that are located on cscratch1 on Cori. Our results show
that increasing the number of events per process does impact
the average process execution time Similarly, increasing the
number of events also increases the total I/O footprint of the
workflow bringing it up to 4.5GB (attributed to read) calls for
1000 events.
Cctbx We present the baseline execution time and throughput
when running cctbx on different number of nodes and pro-
cesses on Table I (100 events per process) and Table II (500
events per process). For our baseline evaluation we use only
one node to distribute events between processes (SMD node).
As described in Section II-A2 cctbx’s I/O intensive stages (i.e.
Import,Indexing and Write Out) process large amounts of input
data and store results through multiple time consuming read()
and write() system calls. Through our runtime analysis we
discover that average process execution time increases due to
varying indexing success rates among processes which in turn
lead to longer waiting times.

TABLE I
BASELINE PROCESS EXECUTION TIME IN SECONDS AND THROUGHPUT

FOR 100 EVENTS PER PROCESS FOR CCTBX.

number of processes 68 680 6800 10200
Execution Time 203.9 244.2 308.6 404.9
Throughput 0.49 0.4 0.32 0.24

TABLE II
BASELINE PROCESS EXECUTION TIME IN SECONDS AND THROUGHPUT

FOR 500 EVENTS PER PROCESS FOR CCTBX.

number of processes 68 680 6800 10200
Execution Time 434.5 164.2 308.6 1508.2
Throughput 1.15 3 1.62 0.33

SFX We present the obtained I/O measurements at the master
and worker process level granularity focusing on total time
dedicated for read() and write() calls as well as the average
per process execution time for the two types of protein phasing
(MR and SAD).

Table III shows the amount of I/O for read() and write()
system calls for the master process in the SAD phasing case
for Covid-19 protein samples. Our instrumentation mechanism
has shown that the majority of the read(), write() calls are
attributed to redundant operations performed by the master

TABLE III
BASELINE AMOUNT OF I/O IN MB FOR MASTER PROCESS FOR READ()

AND WRITE() SYSTEMS CALLS FOR SAD PHASING.

number of processes 100 300 500
Read() 134.3 379.4 624.5
Write() 120.9 362.9 604.9

process such as creating multiple copies of the same set of
files (one copy set per worker). The copied set includes not
only per-job related input but also Python executables that are
later launched by the worker processes. Hence, the amount of
I/O by the master process follows a linear upward trend to the
number of workers.

TABLE IV
BASELINE AMOUNT OF I/O IN MB FOR MASTER PROCESS AND WORKER

PROCESSES FOR READ() AND WRITE() SYSTEMS CALLS FOR MR PHASING.

type of process master worker
Read() 0.9 0.45
Write() 1.15 0.03

I/O measurements for read() and write() system calls per-
formed by each sub-process in the MR phasing case are
shown in Table IV. Through our instrumentation mechanism
we identify that the majority of read() and write() system calls
for the master process is copying a set of input files similar
to the SAD phasing trend. For worker processes the read()
calls are attributed to accessing temporary files for input data.
In constrast with SAD phasing were the number of worker
processes varies, MR phasing has a fixed number of workers
that is the determined by the grid size.

B. Optimizations

[Utilizing Burst Buffer for storing input data Cctbx]
After determining that the I/O intensive stages in each MPI

process of the cctbx application refer to reading large amounts
of input data and writing out results, we considered Burst
Buffer, a faster storage solution, for temporarily storing input
data. Figures 4a and 4b demonstrate the average execution
time of each process while increasing the number of processes
and nodes for two different event set configurations (100 and
500 events). Burst Buffer significantly reduces process exe-
cution time especially for large scale runs (150 nodes=10200
processes) up to 13% and 32% (for the 500 event per process
scenario) respectively. In contrast with the overall observed
trend, the 10 node (680 processes and 500 events per process)
execution time using traditional HDD setup where data is
located on cscratch1 is significantly shorter than the one using
Burst Buffer. We discovered that the difference in small node
runs is attributed to the fact that approximately 1/6 of the
images were not able to be indexed hence causing processes
to exit earlier and overall shorter waiting times. Our results
prove that utilizing intermediate storage solutions like burst
buffer reduces the total time spent on I/O operations for read
intensive applications.
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Figures 5a and 5b show the normalized throughput while
increasing the number of worker processes and nodes for two
different sets of events. The results show that staging data in
Burst Buffer increases throughput in terms of events processed
at an individual process level. However as the number of
nodes and processes increase a downward trend is observed
independently of the input data location.
[Increasing the number of load balancing nodes Cctbx]. By
default, cctbx features one node for distributing events among
MPI processes resulting to delays in the Import stage of each

process. n order to reduce the time spent in the first of the
three I/O intensive stages (Import stage in Figure 1) we opt for
increasing the number of event distributing nodes. Figures 6a
and 6b demonstrate the execution time and throughput for
each process while increasing the number of processes and
nodes for two different SMD configurations (1 node which
is the default setting and 4 nodes). we opt for increasing the
number of event distributing nodes. The results confirm that
increasing the number of SMD nodes does have a positive
effect in the process execution time especially for large node



runs (100 and 150 nodes). In these two cases the execution
time is reduced by 27% and 36% respectively. However, in
single node runs increasing the load balancing nodes has a
negative effect since the number of processes left to process
the event streams is lower. Throughput in terms of events
processed per second exhibits the same trend. Summary. Over-
all we have observed that for I/O intensive workflows where
large input data needs to be processed and distributed among
different processes, utilizing Burst Buffer’s faster intermediate
storage and increasing the number of load balancing nodes has
a positive effect in both throughput and execution time per
process for larger scale runs.
[Eliminating redundant operations for reducing total amount
of I/O SFX.] Our instrumentation mechanism has shown
that the majority of the read(), write() calls are attributed to
redundant operations performed by the master process such
as creating multiple copies of the same set of files (one
copy set per worker). The copied set includes not only per-
job related input but also Python executables that are later
launched by the worker processes. Since the copied files were
used for read only purposes, we were able to eliminate all copy
related system calls (e.g. open(), read(), write()) and reduce the
associated I/O cost of the phasing step. Figures 7a and 7b show
the amount of I/O for read() and write() system calls before
and after our optimization for the master process in the SAD
phasing case for Covid-19 protein samples. Our results show
that the I/O cost reduction depends on the number of worker
processes which is related to the size of the to-be-reconstructed
grid.

I/O measurements for read() and write() system calls per-
formed by each sub-process in the MR phasing case are shown
in Figure 8. Eliminating intermediate reading from a temporary
file reduces the amount of MBs dedicated to read() calls
by approximately 26% while the amount of writes() remains
unchanged.

Figure 10 shows the effect of our optimization on the time
dedicated to I/O by both master and worker processes. We
measure time spent on I/O operations both in the master
process before and after eliminating the redundant copy oper-
ations. In the optimized MR phasing case the time is reduced
to under 20s for a full grid reconstruction (675 total sub-
processes were spawned for a full Covid-19 protein grid).
[Increase parallelism SFX.] Our runtime analysis of the SFX
pipeline has shown that did not support parallel job execution.
We increase workflow scalability by enabling parallel job
execution. In order to ensure parallel job execution on multiple
Cori nodes we redesigned and re-implemented the job submis-
sion pipeline enabling the master process to launch multiple
asynchronous grid searches through autonomous worker in-
stances (one group of workers per grid search). The master
process keeps a record of all the worker’s process id (pid)
as well as the time that they were launched. The pids can
be used for sanitizing purposes as well as provide interme-
diate visibility in cases where some worker instances hang
during grid search. Furthermore, for providing visibility in
the intermediate phases of the grid search non-blocking inter-

process communication was enabled through shared pipes.
The newly enabled communication allows the user to review
worker error messages during execution instead of waiting
for the workflow to complete and conduct a post-mortem
analysis. Our design opts for collocating multiple worker
processes per node in order to take advantage of available
cores and memory resources. Finally, we were able to facilitate
individual grid reconstruction for improving parallelism and
ultimately reducing overall phasing execution time.

Figure 11 shows the effect of enabling parallel job execution
on the average execution time per job. Each sub-process has
specific memory requirements (10GB/process) which limits
the number of processes that can simultaneously run at any
time on a Haswell node to 12. Limiting the number of
simultaneously running processes increases the average wait
time per process significantly, however the overall MR phasing
workflow execution time is reduced.
Overall, the obtained results demonstrate how our improve-
ments enabled successful reconstruction of two Covid-19 pro-
tein samples on Cori, while significantly reducing the overall
I/O footprint of the that stage.
Summary. For SFX, by eliminating redundant copy operations
and enhancing multi-level parallelism during grid reconstruc-
tion we managed to reduce I/O footprint by 26%.

V. DISCUSSION

In this section, we provide some insights and recommenda-
tions for improving performance when running experimental
data analysis workflows that require fast result turnaround on
HPC environments. The recommendations stem from our ex-
periences in detecting and alleviating performance bottlenecks
for both cctbx and SFX.
Provide containerized environment for cross-facility exe-
cution. Container solutions like Shifter and Singularity [15]
are becoming popular in HPC environments due to their
ability to facilitate reproducibility and enable seamless exe-
cution across facilities regardless of the underlying system’s
features. Containers also provide a straightforward solution
to setting complex environments with many interdependent
software layers. Both cctbx and SFX come with a set of
complex software dependencies and oftentimes, depending
on the features and architecture of the underlying system,
require considerable amounts of reconfiguration in order to
be successfully executed. We have created container images
for both workflows using NERSC’s Shifter and resolved core
dependency issues (such as Psocake installation). Users were
able to deploy containers on multiple NERSC compute nodes
or locally at LCLS. Furthermore, using containers actually
reduced the load time especially for large python programs as
shown in [16] resulting to performance enhancements for both
cctbx and SFX. Our experience has shown that data analytics
workflows with complex dependencies should opt for using
containers in order to benefit from reduced loading times.
Reducing amount of I/O. For data analysis workflows with
large input datasets eliminating redundant I/O operations by
sharing files and balancing I/O operations between processes
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Fig. 6. Cctbx: Increasing the number of master nodes improves load balancing and reduces execution time for large scale runs.
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Fig. 7. SFX SAD phasing: Eliminating redundant copy operations reduces overall amount of I/O since fewer read() and write() calls are performed.
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Fig. 8. SFX MR phasing: Amount of I/O in MB for Read() and Write()
system calls per sub-process before and after eliminating redundant copy
operations. Eliminating copy operations reduces I/O due to fewer read() calls.

can lead to significant reductions in overall amount of I/O
as well as time spent in I/O operations. Through our work
we were able to verify that eliminating redundand copy
operatations for both cases (MR and SAD) of SFX workflow
lead to a significant reduction in the MBs dedicated to read
calls() as well as the overall time spent in I/O operations.
Furthermore, Workflows with significant I/O would benefit
from enhanced parallelism and even I/O distribution among
different processes. Our experience with cctbx has proven that
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Fig. 9. SFX MR phasing: Amount of I/O in MB for read() and write()
system calls in the master process before and after eliminating redundant
copy operations for a full grid reconstruction. Eliminating copy operations
reduces overall amount of I/O in master process due to fewer read() calls
being performed.

increasing load balancing can have a positive effect both on
execution time and throughput.
Use of intermediate storage solutions in order to speed
up input data reading. In the cctbx workflow we have
observed that staging input data in BurstBuffer significantly
reduces runtime in large node runs (up to 32% for 150 nodes).
Opting for intermediate faster storage should be preferred
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for scientific workflows with significantly large input datasets
where each workflow process in a pool conducts an initial
reading step before further processing. Employing a solution
where input, intermediate and output data is automatically
managed across different HPC storage layers based on a
workflow-specific data plan would significantly shorten overall
execution time [17]. Our results have proven that data location
at different HPC storage layers significantly affects workflow
performance. Integrating automatic data management with
runtime optimizations and containerized workflow execution
would significantly improve end-to-end workflow performance
as well as overall user experience.

VI. CONCLUSION

Performance and scalability are critical factors for fast
result turnaround for a new class of processing and analyses
workflows that process vast amounts of data generated at
experimental facilities. However, these applications are not
designed or implemented originally for HPC systems and
hence are unable to take full advantage of HPC resources in
terms of compute and I/O. Furthermore, although traditional
HPC applications have been extensively profiled, understand-
ing of experimental workloads remains largely unexplored. In
this paper, we conduct a thorough performance analysis for
two experimental data workflows,cctbx and SFX, focusing on
unveiling I/O, runtime and scalability bottlenecks. Based on
our findings, we design and implement a number of runtime,

I/O and parallelism optimizations for both workflows reducing
their overall I/O footprint and execution time significantly.
Our work addresses the issue of cross-facility execution by
providing dedicated container instances in order to achieve
seamless runtime. .
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