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Abstract

Background: Machine learning (ML) models can improve prediction of major adverse 

cardiovascular events (MACE), but in clinical practice some variables may be missing. We 

evaluated the influence of missing values in ML models for patient-specific prediction of MACE 

risk.

Methods: We included 20,179 patients from the multicenter REFINE SPECT registry with 

MACE follow-up data. We evaluated seven methods for handling missing values: 1) removal of 

variables with missing values (ML-Remove), 2) imputation with median and unique category 

for continuous and categorical variables, respectively (ML-Traditional), 3) unique category 

for missing variables (ML-Unique), 4) cluster-based imputation (ML-Cluster), 5) regression-

based imputation (ML-Regression), 6) Miss-Ranger imputation (ML-MR), and 7) multiple 

imputation (ML-MICE). We trained ML models with full data and simulated missing values 

in testing patients. Prediction performance was evaluated using area under the receiver-operating 

characteristic curve (AUC) and compared with a model without missing values (ML-All), expert 

visual diagnosis and total perfusion deficit (TPD).

Results: During mean follow-up of 4.7±1.5 years, 3,541 patients experienced at least one MACE 

(3.7% annualized risk). ML-All (reference model-no missing values) had AUC 0.799 for MACE 

risk prediction. All seven models with missing values had lower AUC (ML-Remove: 0.778, 

ML-MICE: 0.774, ML-Cluster: 0.771, ML-Traditional: 0.771, ML-Regression: 0.770, ML-MR: 

0.766, and ML-Unique: 0.766; p<0.01 for ML-Remove vs remaining methods). Stress TPD (AUC 

0.698) and visual diagnosis (0.681) had the lowest AUCs.

Conclusion: Missing values reduce the accuracy of ML models when predicting MACE risk. 

Removing variables with missing values and retraining the model may yield superior patient-level 

prediction performance.

Keywords

Machine learning; clinical implementation; missing values; prognosis; myocardial perfusion 
imaging

1. Introduction

Myocardial perfusion imaging (MPI) is frequently used for risk stratification in patients 

with known or suspected coronary artery disease (CAD) 1,2 Machine learning (ML) can 

be utilized to improve prediction of major adverse cardiovascular events (MACE)3, predict 
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revascularization4, or select patients for rest scan cancellation5. Guidelines suggest reporting 

the risk for adverse outcomes during clinical interpretation6. Recently it has been shown 

that machine learning (ML) models including fewer variables have higher prediction 

performance for MACE risk compared to standard interpretation methods and traditional 

clinical models7,8. These ML models have the potential of being implemented in clinical 

practice to provide patient-specific estimations of MACE risk.

However, in clinical practice, missing values in some clinical variables are unavoidable 

since patient questionnaires may be incomplete or stress tests may not yet be interpreted. 

This missing data could significantly reduce the accuracy of ML models, but the impact 

of missing values on prognostic accuracy has not been rigorously evaluated. Additionally, 

while dedicated methods exist for handling missing values in ML models 9-11, it remains 

unknown how these influence the accuracy of patient-specific risk estimations, especially 

after developing. The aim of this study was to evaluate the influence of missing values in 

variables on the accuracy of ML models to assess individual MACE risk using seven distinct 

methods for handling missing values.

2. Material and Methods

2.1 Study Population

The cohort included 20,414 consecutive patients referred for clinically indicated myocardial 

perfusion imaging from 2009 to 2014 at 5 centers. The institutional review boards at each 

center approved local data collection and the institutional review board at Cedars-Sinai 

Medical Center approved the overall registry. The study complies with the Declaration of 

Helsinki. To the extent allowed by data sharing agreements and IRB protocols, the data from 

this manuscript will be shared upon written request.

2.2. Data pre-processing

Patients with missing values (n = 235) in any study variable were excluded to avoid 

confounding factors during the training and testing process, leaving 20,179 patients with 

all values available for all variables. During data pre-processing no values were imputed 

(there were no missing values in the included dataset) and integer encoding was performed 

for categorical variables.

2.2 Clinical Data

Clinical data included: age, sex, body mass index, past medical history, symptoms, and 

family history of coronary artery disease (CAD). Past medical history included: diabetes 

mellitus, hypertension, dyslipidemia, smoking, previous myocardial infarction, previous 

percutaneous coronary intervention, and prior coronary artery bypass grafting 12.

2.3 Imaging Protocols

Studies were performed as previously reported12. Patients underwent same-day rest/stress 

(58.1%), stress/rest (27.3%), stress-only (13.5%), or 2-day stress/rest (1.1%) imaging 

protocols. Stress results included exercise duration, stress-induced symptoms, resting and 
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stress heart rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), and 

electrocardiogram (ECG) changes.

2.4 Visual Analysis

Expert visual interpretation was performed with access to all data during clinical reporting, 

including clinical, stress test, and local quantitative imaging results. Studies were interpreted 

using either a 4-point visual scale as 0-normal, 1-probably normal, 2-equivocal, and 3-

abnormal or summed stress scores (SSS) 12. SSS were re-classified to reader diagnosis as 

normal (SSS = 0), probably normal (SSS = 1), equivocal (SSS = 2 to 3), or abnormal (SSS 

≥4)12.

2.5 Quantitative Analysis

Images were anonymized and transferred to the core laboratory at Cedars-Sinai Medical 

Center. Quantitative Perfusion/Gated SPECT software (QGS+QPS, Cedars- Sinai Medical 

Center, Los Angeles, CA) was used for automatic quantification of imaging variables 

including stress total perfusion deficit (TPD), left ventricular (LV) volumes, and phase 

analysis parameters 13,14. Stress TPD was quantified in the default imaging position, 

as described previously15. Combined 2-position stress TPD was obtained as previously 

described 16. A full list of variables is available in Table S1.

2.6 Primary Outcome

The primary outcome was MACE, which included all-cause mortality, non-fatal myocardial 

infarction, admission for unstable angina, or late coronary revascularization (>90 days 

after imaging). All-cause mortality was determined from the Social Security Death Index 

for US sites, Ministry of Health National Death Database for Israel, and through the 

Open Architecture Clinical Information System in Canada. Non-fatal myocardial infarction 

was defined based on hospital admission for chest pain, elevated cardiac enzyme levels, 

and typical ECG changes 17 Admission for unstable angina was defined as hospital 

admission for cardiac chest pain without elevated cardiac enzymes. All non-fatal events were 

adjudicated by experienced cardiologists after reviewing all available clinical, laboratory, 

and imaging information.

2.7 Machine Learning

Figure 1 presents an overview of the ML pathway followed in this study. Based on our 

previous work3, we considered a reduced ML model for MACE risk prediction, including: 

9 imaging, 8 clinical, and 6 stress test variables, see Table S1. Extreme gradient boosting 

(XGBoost) and random forest (RF) were used to build ML models and evaluate methods for 

handling missing values, seeking to determine whether the influence of missing values on 

patient-specific predictions holds disregarding the learning technique11,18.

2.7.1 Method for handling missing values—Methods for handling missing values 

are detailed and depicted in Table 1 and Figures 2-4. The imputation models were developed 

using data from the training populations to avoid overfitting. The following methods for 

handling missing values were assessed: 1) removal of variables with missing values and 
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retraining the ML model (ML-Remove), 2) imputation of unique “unknown” category 

– e.g., NA – for all missing variables to introduce a sparsity pattern, seeking to use 

the default method for handling missing values of XGBoost or RF (ML-Unique), see 

supplemental material for specific details, 3) imputation of values with the population 

median for continuous variables and a distinct missing category for categorical variables 

(ML-Traditional), 4) clustering patients based on known variables and subsequently 

imputing values with cluster-based medians for continuous variables or with a distinct 

missing category for categorical variables (ML-Cluster), 5) estimation of continuous values 

based on variables with complete data using linear regression or with a distinct missing 

category for categorical variables (ML-Regression), 6) non-parametric estimation of missing 

values using the MissRanger method, which builds a random forest model for each variable 

with the observed values (ML-MR), see supplemental material for specific details, and 

7) estimation of multiple values for missing values using multiple imputation by chained 

equations 19 (ML-MICE). The last four methods (ML-Cluster, ML-Regression, ML-MR, 

and ML-MICE) are described in detail in the supplemental material. Additional details for 

the cluster-based imputation are shown in fig S1-4.

2.7.2 Simulation of multiple missing values—We used 10-fold cross validation for 

training (90% of data) and testing (10% of data) ML models. In the stratified 10-fold 

cross-validation procedure, the population was randomly split into 10 equally sized folds 

(which included a similar proportion of patients with MACE and representation from all 5 

sites). Each fold had a separate model trained using 90% of the data, which was not used in 

any way during model testing. ML models were initially built with XGBoost and RF using 

the training set and full data (no missing values), where corresponding hyperparameters 

were optimized with an internal 5-fold cross validation procedure following a grid search 

method. Later, missing values were simulated for all patients in the testing set (which were 

not used in any way during training). We considered clinical and stress test variables that 

could be missing for reasons like incomplete data questionnaires or advance Interpretation 

of stress test data, see Table 2. Imaging variables were not considered since these variables 

can automatically be obtained with quantitative software directly from images and therefore 

should always be available for ML prediction. We simulated missing values for all patients 

to assess the influence on the accuracy of patient-specific predictions, where values can 

either be present or missing. Imputation methods were then used to estimate the variables 

that were missing in the testing set. Imputation models and parameters were optimized 

or derived using instances in the training set (i.e., instances with complete data). ML-

Remove models were retrained without the variables with missing values and tested with 

full patient-specific data. For ML-MICE, ML-MR, ML-Regression, ML-Traditional, ML-

Cluster, and ML-Unique, simulated missing data were replaced with the imputed values, 

where population median values or model-based imputations were initially derived in the 

training set with full patient-specific data. These ML methods were compared to the model 

built and tested with all variables without missing values (ML-All).

2.7.3 Estimation performance for missing values of imputation methods—We 

evaluated the performance of the imputation methods to estimate the simulated missing 
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values in the testing sets. For all methods, we used the following metrics for continuous and 

categorical variables:

Mean absolute percentage error (MAPE) = 1
n ∑i = 1

n y − y
y

Mean absolute error (MAE) = 1
n ∑

i = 1

n
∣ yi − yi ∣

NHD = 1
n ∑

i = 1

n
1 ⋅ f(yi, yi), f(yi, yi) = ∣ sign(yi − yi) ∣ =

1, if yi ≠ yi
0, if yi = yi

Where y and y were the actual and estimated output values, respectively. Meanwhile, n was 

the number of instances. We used MAPE to evaluate the imputation error for Resting HR 

and BMI. Similarly, to avoid division by zero, we used MAE to evaluate the estimation error 

for Magnitude of ST deviation. The metric NHD can be observed as a normalized version 

of the hamming distance for two vectors, which counts the number of values or components 

that are different between two vectors20. For the multiple imputation method (ML-MICE), 

we firstly aggregated the multiple imputations into a single estimation before evaluating the 

imputation error with MAPE, MAE, and NHD. For example, for continuous variables, y
was the average of the multiple estimations, while for categorical variables, y was the most 

frequent estimated category (i.e., the majority category).

2.7.4 Simulation of Increasing Number of Variables with Missing Values—We 

performed an additional analysis to determine the threshold at which the number of variables 

missing with missing values significantly impact prediction performance. For this analysis, 

we also compared the two best strategies. The number of variables with missing values were 

increased following the ranking of variable importance derived in our previous work7. This 

order was: indication for test, resting heart rate, body mass index, ECG response, Symptoms, 

ST deviation, and clinical response to stress. Several ML models were then built with an 

increasing number of variables with missing data.

2.8 Prediction Performance

Prediction performance was evaluated using area under the receiver-operating characteristic 

curve (AUC) and compared with the performance of 4-point scale visual diagnosis and 

stress total perfusion deficit (TPD) variables. All models and statistics were implemented in 

R language (version 4.0.3), using the following open-source packages: xgboost (version 

1.2.0.1) 11, randomforest (4.6.14), survival (3.2.7), PredictABEL (version 1.2.−4), and 

pROC (1.16.2).

3. Results

3.1 Study Population

The baseline clinical characteristics of the study population (n = 20,179) are shown in 

Table S2. During mean follow-up of 4.7 ± 1.5 years, 3495 patients experienced at least one 

MACE including: 1,617 deaths, 379 MI, 1,895 late revascularizations, and 300 admissions 

for unstable angina. The annual rate of MACE was 3.7%. In the study population, patients 
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who experienced MACE were older (mean age 68 vs 63, p<0.001) and more likely to have 

a history of diabetes (38% vs 23%, p<0.001) or previous percutaneous coronary intervention 

(34% vs 16%, p<0.001).

3.2 MACE Prediction with Missing Values

With XGboost as the ML technique, the best MACE risk prediction was obtained when 

no variables were missing (ML-All AUC: 0.799, 95% confidence interval [CI]: 0.792 to 

0.807, p<0.01 vs all), see Figure 5. The second-best performance was obtained by removing 

variables with missing values during model training (ML-Remove AUC: 0.778, 95% CI: 

0.770 to 0.786), followed by multiple imputation by chained equations, traditional, cluster-

based, and regression imputation methods, see Table 1. ML-MR (AUC: 0.766, 95% CI: 

0.758 to 0.774) and ML-Unique (AUC: 0.766, 95% CI: 0.758 to 0.774) obtained the lowest 

prognostic accuracy of the ML models, but this was still higher compared with stress TPD 

(AUC: 0.698, 95% CI: 0.688 to 0.708) and visual diagnosis (AUC: 0.681, 95% CI: 0.671 to 

0.691; p < 0.01 for ML-MR vs stress TPD and Diagnosis).

Similarly, with RF as ML technique, the best MACE risk prediction was obtained when no 

variables were missing (ML-All AUC: 0.792, 95% confidence interval [CI]: 0.784 to 0.800, 

p<0.01 vs all), see Figure 6. Also, ML-MR (AUC: 0.755, 95% CI: 0.746 to 0.763) obtained 

the lowest prognostic accuracy of the ML models, but this was still higher compared with 

stress TPD (AUC: 0.698, 95% CI: 0.688 to 0.708) and visual diagnosis (AUC: 0.681, 

95% CI: 0.671 to 0.691; p < 0.01 for ML-MR vs stress TPD and Diagnosis). Unlike with 

XGBoost, the second-best performance was obtained by removing variables with missing 

values during model training and multiple imputation (ML-Remove AUC: 0.77, 95% CI: 

0.762 to 0.778 vs ML-MICE AUC: 0.77, 95% CI: 0.762 to 0.779; p = 0.732), followed by 

regression, traditional, and cluster-based imputation methods.

Table 3 provides the prediction performance of each imputation methods for estimating 

missing values. For continuous variables, ML-Traditional, ML-Cluster, and ML-Regression 

obtained in overall the best prediction performances. Meanwhile, for categorical variables, 

ML-MR obtained the best prediction performance.

3.3 Robustness of ML models with Increasing Number of Variables with Missing Values

We compared the prediction performance of ML-Remove and ML-MICE as a function of 

the number of variables with missing values, see Figure 7. The prediction performance of 

ML-Remove decreased significantly (decreased AUC of more than 1%) after three variables 

with missing values were present. Meanwhile, the prediction performance of ML-MICE 

decreased significantly when two or more variables with missing values were present.

4. Discussion

In this study we evaluated the impact of missing values on the prognostic accuracy of 

ML models which incorporate clinical, stress-test, and imaging variables when performing 

patient-specific evaluations of cardiovascular risk. We compared six different methods for 

imputing missing variables as well as a model retrained without the variables with missing 

variables. We show that the best strategy for handling missing values was to rebuild the ML 
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model, removing variables with missing values, to avoid bias introduced by imputation. The 

second-best strategy was to estimate multiple possible values (ML-MICE) for the missing 

values to account uncertainties in the imputation around the true value. Of the remaining 

imputation methods, ML-Regression, ML-cluster, and ML-traditional achieved similarly 

high accuracy followed by ML-Unique and ML-MR. Importantly, all of the ML models 

had higher prognostic accuracy compared to standard interpretation methods. In prospective 

studies assessing clinical implementations of ML for risk prediction, the effect of missing 

data in ML models should be considered to avoid possible model biases21-23.

ML models have been increasingly applied to many aspects of cardiovascular imaging24-27. 

The strength of ML is the ability to objectively integrate a variety of clinical, stress, 

and imaging variables to predict the outcome of interest. However, in clinical practice 

as the number of required variables increases some of this information will invariably 

be missing. These missing values could adversely impact the accuracy of predictions 

-but this issue has not been explored in depth. Previously, we demonstrated that a ML 

model incorporating only 9 of 32 manually collected variables could achieve >99.5% of 

the prediction performance of the full model 3. In the current work we demonstrate that 

missing values reduce the accuracy of ML models in prediction of MACE risk. We show 

that imputing values for missing variables introduced biases into ML models that decrease 

prediction performance. The most accurate solution for handling missing values was to 

develop a ML model without the variables (ML-Remove).

To date, the most accurate method to impute missing values has not been well established, 

therefore we evaluated several frequently used techniques 3-5,7,28. Mishra et al.29 previously 

demonstrated that multiple imputation using either regression or propensity-based methods 

significantly reduced mean square error compared to last observation carried forward 

imputation. Rusdah et al. demonstrated that the XGBoost default imputation method 

demonstrated higher accuracy compared to imputation with either k-nearest neighbor 

imputation or population mean30. However, in our dataset the default imputation method 

for XGBoost and RF (ML-Unique) obtained the second lowest accuracy of the ML models, 

while ML-Remove had the highest accuracy10. The XGBoost default method can be 

considered as a greedy algorithm that does not necessarily lead to the best solution (in 

this case MACE prediction), i.e., the sparsity-aware split algorithm only ensures that on 

average a default direction is the best solution given the already traversed decision nodes. 

The default method for RF based on proximity takes characteristics of ML-Cluster and 

ML-traditional as it takes averages of non-missing values weighted by proximities (i.e. 

average of most similar instances). Jerez et al. demonstrated that imputing missing values 

with k-nearest neighbor achieved higher model accuracy compared to list-wise deletion 

(removing observations with missing values)31. Similarly, Wohlrab et al. demonstrated that 

several methods for imputation generally outperformed list-wise deletion32. However, these 

imputation methods may eliminate individual characteristics that make a specific patient 

differ from the overall population (i.e. each missing value was assigned to the same single 

value – median/mean-or unique category), leading to biased assessments and treatments 30. 

In our study, multiple imputation resulted in the highest accuracy of the imputation methods 

tested. The variability between studies suggests that the optimal method depends on the 

number of variables available, the extent of bias caused by imputation and potentially other 
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factors. For cardiovascular applications, the bias related to value imputation is unpredictable 

but the number of variables potentially available for ML prediction is large. Therefore, 

generating new ML models without the variables with missing values would be expected to 

more consistently demonstrate high accuracy.

While our study suggests that ML-Remove is the most accurate method to handle missing 

values, it may not be clinically feasible to have ML models available for every possible data 

combination. Therefore, a compromise between feasibility and accuracy is necessary. The 

best solution may be to develop a limited set of ML models with different configurations 
23 For stress-only imaging, for instance, a ML model with only imaging-derived variables 

can be built to provide fully automatic MACE risk calculation, or semi-automatic by adding 

a few demographic variables with high importance which are rarely missing (e.g. age, sex, 

and diabetes). A full ML model can be built to support assessments with all patient-specific 

values when full data is available to ensure the highest possible accuracy since we also 

demonstrated that ML-All had significantly higher AUC compared to all other methods. 

If variables required for the desired ML-model could not be obtained, a population-based 

imputation method could be utilized such as ML-MICE which achieved only marginally 

lower accuracy. Based on our results, assigning a unique “unknown” category, which is 

commonly used and the default method for XGBoost, should not be incorporated in MACE 

risk estimation. Importantly, if data collection was incomplete, it would be important to warn 

the user about key missing features with high prediction importance.

We also evaluated the prognostic accuracy of ML models while the number of missing 

variables were progressively increased. We found that the prognostic accuracy was less 

affected when variables with missing values were removed (ML-Remove) compared to 

imputing values (ML-MICE). With ML-Remove, 3 variables with missing values were 

needed to reduce accuracy by 1%, while with ML-MICE only 2 variables with missing 

values were required. These results suggest that imputation of a single missing value should 

not meaningfully impact predictions in clinical practice.

Our study has a few important limitations. We simulated the impact of missing values 

using variables with the highest missing rate in our registry which is still relatively 

infrequent. However, missing values in other variables with high importance (such as 

previous cardiac intervention or age) could have greater impact on patient-specific risk 

estimation. Nevertheless, based on our results, the best strategy may be to remove variables 

with missing values rather than imputing data. Additionally, we tested the various models 

using stratified 10-fold cross validation and separate validation in data from new sites may 

yield different results.

5. Conclusions

Missing values significantly reduce the accuracy of ML when predicting MACE risk. ML 

models generated without variables with missing values are the most accurate method to 

address missing values. Meanwhile, imputing missing values based on population databases 

is a more clinically feasible alternative, which has clinically similar prediction performance 

and still higher prediction performance compared to standard interpretation methods.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Removing variables with missing values and retraining was the most accurate 

method

• Multiple imputation had the highest accuracy of the imputation methods

• Having a selection of reduced ML models may be a practical clinical solution
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Figure 1: Machine learning workflow.
The machine learning (ML) pathway and validation procedures used in this study. A: The 

REFINE SPECT study population was used to build a ML model for MACE risk prediction, 

including quantitative gated and perfusion variables, stress and clinical data. B) Seven 

methods were evaluated for handling missing values. C) Models were trained and tested 

using stratified 10-fold cross validation. In the training sets (90% of data with full patient 

information), we trained ML models with XGBoost and Random Forest (RF) for MACE 

prediction as well as the imputation models used for estimating missing values. Imputation 

models were also developed using data from the training set. Subsequently, for some clinical 

and stress test variables in the testing sets (10% of data), we simulated missing values 

for all patients and imputed values to evaluate their impact on the prediction performance 

for patient-specific estimations of MACE risk. ML models were compared to traditional 

risk models, expert visual interpretation, and stress total perfusion deficit. The method was 

repeated 10 times, with a separate fold (10% of data) used for testing in each repetition. 

Abbreviations: AUC – area under the receiver operating characteristic curve, MACE – major 

adverse cardiovascular events, NA – unique category for missing values, MICE – multiple 

imputation by chained equations, MR – MissRanger.
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Figure 2. Visual example for imputing missing values with the unique, traditional, and cluster-
based methods.
Missing values highlighted with red color on a given dataset were imputed using the 

following methods: 1) Removal of variables with missing values, 2) unique “unknown 

(NA)” category imputed for all missing variables (XGBoost default method for handling 

the missing variables), 3) traditional approach to impute variables with the population 

median for continuous variables and a distinct missing category for categorical variables, 

and 4) clustering patients based on known variables and subsequently imputing cluster-

based medians for continuous variables or with a distinct missing category for categorical 

variables. Cluster’s centroids and medians were derived with instances with complete data.
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Figure 3. Visual example for imputing missing values with the regression and MissRanger 
method.
Missing values highlighted with red color on a given dataset were imputed using the 

following methods: 5), sequential estimation of continuous variables using linear models 

with variables that have complete data, either with observed or estimated values derived 

from previous steps (e.g. Restıng HR), or with a distinct missing category for categorical 

variables , 6) non-parametric estimation of missing variables by building a random forest 

model for each variable based on instances with complete data, either with observed or 

estimated values derived from previous steps. The iterative procedure is stopped when the 

difference between the new and old matrix of imputed values increases for the first time with 

respect to both continuous and categorical variables. The function f represents the random 

forest model. For both imputation methods, model parameters are optimized using instances 

with complete data.
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Figure 4. Visual example for imputing missing values using multiple imputation by chained 
equations (MICE).
Missing values highlighted with red color on a given dataset were imputed with multiple 

imputation. It was created m = 3 “complete” datasets to predict the risk of MACE with the 

ML-All for each patient in the testing set of the 10-fold cross validation procedure (i.e. the 

desired analysis). Later, the ML scores for MACE risk were pooled into a single prediction 

by averaging the ML scores.

Rios et al. Page 16

Comput Biol Med. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Performance prediction for MACE risk with multiple missing values.
Receiver-operating characteristic (ROC) curves for the machine learning (ML) and standard 

interpretation methods. ML-All included all variables with patient specific values. ML-

Remove was developed with variables having missing values removed. For ML-MICE, ML-

MR, ML-Regression, ML-Traditional, ML-Unique, and ML-cluster all missing values were 

imputed to assess the impact on risk-estimation for an individual patient. Abbreviations: 

MACE – major adverse cardiovascular events, AUC – area under the ROC curve, CI – 

confidence interval, sTPD – stress total perfusion deficit.
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Figure 6. Performance prediction for MACE risk with random forest (RF) and multiple missing 
values.
Receiver-operating characteristic (ROC) curves for the machine learning (ML) and standard 

interpretation methods. ML-All included all variables with patient specific values. ML-

Remove was developed with variables having missing values removed. For ML-MICE, ML-

MR, ML-Regression, ML-Traditional, ML-Unique, and ML-cluster all missing values were 

imputed to assess the impact on risk-estimation for an individual patient. Abbreviations: 

MACE – major adverse cardiovascular events, AUC – area under the ROC curve, CI – 

confidence interval, sTPD – stress total perfusion deficit.
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Figure 7. Performance prediction for MACE risk with increasing number of variables with 
missing values.
Area under the receiver-operating characteristic curve (AUC) and 95% confidence intervals 

(CI) for machine learning (ML) models as the number of simulated missing values 

increases. Missing values were imputed using ML-Remove and ML-MICE methods –the 

two best strategies for handling missing values. Abbreviations: MACE – major adverse 

cardiovascular events, AUC – area under the ROC, CI – confidence interval.
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Table 1:
Methods for handling missing values.

Abbreviations: MI – multiple imputation by chained equations, ML – machine learning, MR – MissRanger.

Retraining Methods

Continuous and categorical Variables AUC (95% CI)

ML-Remove Variables with missing values were removed and a new ML model was trained using the training 
data set.

0.778 (0.770 to 0.786)

Imputation Methods

Continuous Variables Categorical
Variables

AUC (95% CI)

ML-Unique Distinct missing category Distinct missing category 0.766 (0.758 to 0.774)

ML-Traditional Population median Distinct missing category 0.771 (0.763 to 0.779)

ML-Cluster Median value from population cluster Distinct missing category 0.771 (0.763 to 0.779)

ML-Regression Linear regression-based estimate using variables with complete 
values

Distinct missing category 0.770 (0.761 to 0.778)

ML-MR Random Forest-based estimate with complete data 0.766 (0.758 to 0.774)

ML-MICE Multivariate imputation using chained equations with complete data 0.774 (0.766 to 0.782)
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Table 2.
List of variables with simulated missing values.

The reasons for missing values could potentially be related to incomplete data questionnaires or advance 

interpretation of stress test data.

Name
Type of variable Potential Reason for missing

value

Resting heart rate Clinical variable Incomplete patient questionnaires

Body mass index Clinical variable Incomplete patient questionnaires

Symptoms Clinical variable Incomplete patient questionnaires

Stress peak heart rate (HR) Stress-test variable Advanced interpretation of stress test data

ECG response to stress Stress-test variable Advanced interpretation of stress test data

ST deviation Stress-test variable Advanced interpretation of stress test data

Clinical Response to stress Stress-test variable Advanced interpretation of stress test data
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Table 3.
Estimation performance for missing values of each imputation methods.

Error metrics to evaluate the estimation performance for missing values of each imputation method. For 

categorical variables, NHD describes a normalized version of the hamming distance for two vectors, which 

counts the number of values or components that are different between two vectors. Meanwhile, for continuous 

variables, mean absolute error (MAE) describes on average how far the imputations for missing values were 

off from their actual values. Similarly, mean absolute percentage error (MAPE) describes on average the 

percentage of how far the imputations for missing values were off from their actual values.

ML-Traditional ML-Cluster ML-Regression ML-MR ML-MICE

MAPEResting HR 0.151 0.149 0.144 0.179 0.168

MAPEBMI 0.143 0.143 0.147 0.173 0.169

MAEMagnitude ST deviation 0.284 0.284 0.357 0.416 0.313

NHDsymptoms ---- ---- ---- 0.604 0.95

NHDECG response to stress ---- ---- ---- 0.508 0.403

NHDClinical Response to stress ---- ---- ---- 0.393 0.404

NHDIndication for test ---- ---- ---- 0.978 0.998
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