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Dynamical Large Deviations of Two-Dimensional Kinetically Constrained Models
Using a Neural-Network State Ansatz
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34,5
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*Deparment of Physics, University of Ottawa, KIN 6N5, Ontario, Canada
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We use a neural-network ansatz originally designed for the variational optimization of quantum systems
to study dynamical large deviations in classical ones. We use recurrent neural networks to describe the large
deviations of the dynamical activity of model glasses, kinetically constrained models in two dimensions. We
present the first finite size-scaling analysis of the large-deviation functions of the two-dimensional
Fredrickson-Andersen model, and explore the spatial structure of the high-activity sector of the South-or-East
model. These results provide a new route to the study of dynamical large-deviation functions, and highlight
the broad applicability of the neural-network state ansatz across domains in physics.

Introduction.—Dynamical systems, which include
glassy [1-3], driven [4-8], and biochemical systems
[9,10], are defined by ensembles of stochastic trajectories,
much as equilibrium systems are defined by ensembles of
configurations. Trajectories can be characterized by time-
extensive trajectory observables, such as dynamical activity
[1,2,11], entropy production [12,13], or other currents
[14-16]. Fluctuations of these observables are often
described by large-deviation functions—the scaled cumu-
lant-generating function (SCGF) and the rate function—
which play a role analogous to thermodynamic potentials
for equilibrium systems [17,18]. Calculating large-
deviation functions is a challenging task, requiring the
use of advanced methods based on, e.g., cloning [19-21],
or the use of guiding or auxiliary dynamics [22-24].
Recently, neural networks have been used to construct
such auxiliary dynamics [25-27].

Here we demonstrate the ability of the neural-network
state ansatz [28] to calculate the large-deviation functions
of dynamical systems in both one and two dimensions. We
use this ansatz to represent the long-time configurational
probability distributions associated with rare trajectories,
inspired by its recent success within the variational opti-
mization of quantum systems [28]. The similarities
between variational energy minimization in quantum sys-
tems and finding the SCGF as the largest eigenvalue of a
tilted generator have inspired the use of variational tech-
niques for studying large deviations in dynamical systems,
in particular tensor network methods [29-33]. However,
current variational approaches to calculating large-
deviation functions are usually limited to one-dimensional
systems, while the flexibility of the neural-network ansatz
allows for straightforward generalization to higher spatial

dimensions. We calculate the large-deviation functions for
dynamical activity in prototypical models of slow dynam-
ics, the Fredrickson-Andersen (FA) [34] and South-or-East
models, in one and two dimensions, and present the first
size-scaling analysis of the large-deviation functions for
dynamical activity in two dimensions. We also explore and
resolve the spatial structure of the high-activity sector of the
South-or-East model. Although we focus on kinetically
constrained models, our method for obtaining large-
deviation functions is widely applicable. The ease of exten-
sion of this approach to two dimensions opens new avenues
for the efficient study of dynamical large deviations, and
demonstrates the broad applicability of the neural-network
state ansatz to classical dynamical problems.

Model and observables.—Kinetically constrained models
discussed in this Letter consist of a lattice of N binary spins
i=1,...,N, which take values n; =1 (up) or n; =0
(down). Spin i flips up (resp. down) with rate f;c [resp.
fi(1 = ¢)], where c is a parameter (equal to the density of up
spins in equilibrium) and f; is a model-dependent kinetic
constraint that renders the dynamics of the model slow or
glassy [34-37]. For the FA model, f; = ZjeNN(i) n; is the
number of nearest-neighbor up spins. The east (1D) and
South-or-East (2D) models have a directed kinetic constraint,
with f; equal to n;_, or to the number of nearest-neighbor up
spins to the left and above spin i, respectively. Their
dynamics are described by the generator

W=> file(f +nm=1)+(1=c)o7 —m)]. (1)

where o7 flips site i up or down. We work with open
boundary conditions by connecting each spin on the boun-
dary of the lattice to an immobile site in the down state.
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We will study the large-deviation properties of the
(intensive) dynamical activity k = K/t of the FA and
South-or-East models in two dimensions. The activity of
trajectory w of length 7 is equal to K(w), the number of
configuration changes within the trajectory. The probability
distribution for activity adopts for long times the large-
deviation form P(K) ~ e~*/(¥), where the rate function J(k)
quantifies the likelihood of observing atypical values of
activity [2,17]. Information equivalent to that contained in
J(k) can be obtained from its Legendre transform, the
SCGF: 0(s) = —miny[sk + J (k)] [17].

The SCGF can be obtained as the largest eigenvalue of a
modified or tilted generator W*, which we shall do using a
variational method. The matrix elements of W* connecting
microstates x and y are

Wiy = Wyye (1= 8,,) — RySyy (2)

Here W, are the matrix elements of the original generator, in
this case Eq. (1), and R, = Zy# W,y [17,38,39]. The
dynamics described by the tilted generator W* obeys detailed
balance, so that a similarity transformation P~'W*P = H*
can be performed. Here H* is a Hermitian matrix with the
same eigenvalue spectrum as W¥. It reads as [2]

# =S file\/e(l = c)a

—c(1=ny) = (1 =c)nyl, (3)

where ¢* is a Pauli matrix. The SCGF can therefore be
obtained by solving the eigenproblem H*|y(s)) =
O(s)|y(s)), where the eigenvectors |w(s)) contain the
configurational probabilities in the long-time limit for
trajectories conditioned to have dynamical activity
(k) = —dO(s)/ds. Because H*® is Hermitian, the SCGF
obtained using a variational method results in a lower bound
on the exact SCGF; variational optimization can however
still be applied for systems where detailed balance is violated,
such as asymmetric simple exclusion processes [29,31]. The
large-deviation properties of the one-dimensional FA model
are well studied. In the limit of large system size there exists a
singularity in the SCGF of the activity at a size-dependent
value of s. Singularities in the SCGF are often associated with
phase transitions—in this case a dynamical phase transition
between an active and an inactive phase [2,30,40-42]—
though this is not always the case [43]. In what follows, we
show that a neural-network state ansatz can determine the
scaling behavior of similar large-deviation singularities in a
two-dimensional kinetically constrained model, and can
describe the spatial correlations of trajectories displaying
atypically large activity.

Recurrent neural-network states.—Artificial neural net-
works can be used within a variational ansatz by mapping
configurations x = (xy, ..., xy) of an N-site lattice system
to their corresponding probability amplitude y(x), which

defines the state |y) = >, w(x)|x). This ansatz has been
shown recently to be capable of representing highly
entangled quantum systems [28,44-63], and has found
use in quantum state tomography [64—67]. The expressivity
of the neural-network ansatz depends on the architecture of
the neural network, and typical choices include restricted
Boltzmann machines, fully connected and convolutional
neural networks, and autoregressive neural networks. Here
we use autoregressive neural networks, a popular architec-
tural choice for complex machine learning tasks such as
natural language processing, sequence generation, or hand-
writing recognition [68-72]. A state defined by such a
network can be sampled in parallel without Markov chains,
which is particularly useful for physical regimes in which
Markov chains struggle to propose uncorrelated configu-
rations (such as in glassy systems), and allows for the
efficient use of state-of-the-art computing infrastructure
such as massively parallel graphical processing units.
Examples of autoregressive neural networks include
PixelCNN [61] and recurrent neural networks (RNN)
[62,63]. We use the RNN ansatz of Refs. [62,63], which
was shown to be highly efficient in the optimization of two-
dimensional quantum systems. The probability amplitude
of a configuration x with an RNN ansatz is defined as

N

w(x) = HW(xilxi—ls e X)), (4)

i=1

where w(x;|x;_1, ..., x;) is a conditional probability ampli-
tude depending entirely on {x;_;} encountered earlier on
the lattice. An RNN is defined by its elementary building
block, the RNN cell, which is a parametrized nonlinear
function that sweeps over the lattice site by site and is used
to calculate y(x;|{x;;}) for each. For a one-dimensional
configuration x, the RNN cell receives at each lattice site i
the “visible” state x;_; from the previous site, as well as the
“hidden” state vector h;_;, which contains information
from the previously encountered degrees of freedom
{xj<;} and serves as a form of memory. From this, the
RNN cell calculates the hidden state of the current lattice site
h;. This hidden state is processed further to obtain
w(x;|{x;<;}), and is also passed to the next site. In order
to calculate the probability amplitude y (x) of a configuration
x, we start from an initial visible and hidden state and traverse
the lattice site by site with the RNN cell to calculate
w(x;|{x;;}); finally, we multiply these conditional proba-
bility amplitudes per Eq. (4). To draw a new configuration x
distributed according to |y (x)|?, again starting from an initial
visible and hidden state, we sample at each site a new
visible state x; from the distribution P(x;|{x;;}) =
ly(x;|{x;<;})|*. Together with the new hidden state, this
quantity is used as input for the next site. We repeat this
process N times. Because the sampling of new configurations
x and x’ is independent, all operations can be performed in
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FIG. 1. (a) For a two-dimensional system, an RNN cell with

learnable parameters VV calculates a new hidden state £, given the
hidden and visible states of previous lattice sites a and f, and
passes this state to other lattice sites. The hidden state is further
processed to calculate the normalized conditional probability
amplitude y (x;|{x;;}). (b) This RNN cell is applied to each site
of a two-dimensional lattice, and the RNN traverses the lattice
row by row in a zigzag path to calculate the total probability
amplitude of a configuration. Note that the hidden state is passed
on in both the vertical and horizontal direction, respecting the
geometry of the system under study. This probability amplitude is
then used for the variational optimization of the scaled cumulant-
generating function 6(s).

parallel. The RNN ansatz can be naturally extended to higher
dimensions; for a two-dimensional system, we provide the
RNN cell with a hidden and visible state from two directions
[Fig. 1(a)], and traverse the lattice in a zigzag path [Fig. 1(b)].
The expressivity of this neural-network ansatz is determined
by the choice of the RNN cell and by the dimension of its
hidden state vector dj,, also known as the number of hidden
units. The weights of the neural network are updated
according to the variational principle: to determine the
SCGF in this work, weights are optimized so that
(w|H*|w) is maximized. Additional details and schematics
describing this ansatz and its optimization are provided in the
Supplemental Material [73]. Because the RNN cell itself is
not explicitly dependent on the number of lattice sites of the
system, it serves as an optimized starting point for further
study of large systems: an RNN cell is first optimized on
small lattices, which is computationally relatively cheap,
after which it can be optimized for a larger system, often
requiring only a few hundred iterations until convergence
[63]. Hence, the more costly parts of the optimization
procedure, such as determining the optimal hyperparameters

and avoiding local minima, are only performed for a small
lattice, and obtaining results on very large lattices becomes
computationally efficient.

FA model.—Having first verified the efficacy of the RNN
states in computing large-deviation functions for the one-
dimensional FA model and comparing its accuracy to
previous results using the density matrix renormalization
group (DMRG) (see Supplemental Material [73]), we turn
to the previously unstudied large-deviation behavior of the
FA model in two dimensions. To this end we use the two-
dimensional RNN shown in Fig. 1. Obtaining large-
deviation functions in two dimensions with tensor networks
has so far been limited to exclusion processes, using either
DMRG [31] or projected entangled pair states (PEPS) [32];
similar two-dimensional models have also been studied
exactly or with macroscopic fluctuation theory [74-76].
Though shown to be very accurate for two-dimensional
quantum systems, the computation of tensor network states
for two-dimensional systems is typically expensive, requir-
ing either a large number of variational parameters or
scaling unfavorably with the number of parameters.
Autoregressive neural-network states were recently used
to study two-dimensional quantum systems, and have been
shown to outperform DMRG [62] and PEPS [61] for
several prototypical models while using far fewer
parameters.

To describe the dynamics of the two-dimensional FA
model, we first optimize neural-network states for an 8 x 8§
lattice. The configuration with all sites in the down state is
disconnected from the rest of the configuration space due to
the kinetic constraints; we only consider dynamics without
this configuration during our optimization. In Fig. 2(a),
we show the resulting SCGF at ¢ = 0.5 and for a range
of s values. The dynamical activity can be calculated
as a numerical derivative of the SCGF, (k), = —6'(s)
[Fig. 2(b)]. Studying the large-deviation behavior of the
dynamical activity by varying s reveals a singularity in the
SCGF at s, which separates an active and an inactive sector,
similar to observations in one dimension. To further
characterize this singularity, we calculate how s. varies
with the number of lattice sites N. Using the RNN states
obtained for the 8 x 8 system as a starting point, we further
optimize neural-network states for progressively larger
system sizes, repeatedly increasing the linear system size
by four sites at a time in order to obtain the SCGF for
system sizes up to N = 1024. While the training of the
initial RNN state for the 8 x 8 system requires O(10%)
optimization iterations, each successive optimization upon
increasing the system size typically converges after less
than O(10?) iterations. The result of this procedure, shown
in Fig. 2, reveals that the value of s.(N), obtained from the
location of the peak of the susceptibility y(s) = 6"(s),
moves toward zero as the system size is increased. In the
inset of Fig. 2(a), we show the scaling of s.(N) obtained for
three different values of c. For each c, the scaling is of the
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FIG. 2.

(a) Scaled cumulant-generating function (s) of the two-dimensional Fredrickson-Andersen model at ¢ = 0.5 with two-

dimensional recurrent neural-network states, on L x L square lattices with length between L = 8 and L = 32. Inset: scaling of the
location s, of the singularity in the SCGF with the number of lattice sites for three values of c. (b) The dynamical activity (k), = —0'(s)

per lattice site. (c) The rate function J(k) for L = 8, 16, 32.

form s. ~ N~* where the exponent @ 2 1 increases slightly
for smaller values of ¢. A similar value for these exponents
was recently found for the one-dimensional FA model [30].
We discuss a collapse of the SCGF in the Supplemental
Material [73].

Having access to the SCGF allows us to determine, via a
Legendre transform, the rate function J(k). The latter
defines the distribution P(K) of the activity in the long-
time limit, via P(K) ~ ¢=/(*), In Fig. 2(c), we show the rate
function for three different system sizes. These rate
functions demonstrate the strongly non-Gaussian distribu-
tion of the dynamical activity. In the Supplemental Material
[73] we verify that this is also the case for other values of c.

South-or-East model.—The South-or-East model is a
two-dimensional generalization of the east model, and
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FIG. 3. Average density in the active sector (s < 0) of the

South-or-East model, as a function of v =1 — ¢*, for an 8 x 8
system at ¢ = 0.1. On the right, we show a density profile for
each of the levels in (n),.

has a directed kinetic constraint equal to the number of
nearest-neighbor up spins to the left and above each spin. We
consider here only configurations with the spin in the top left
corner in the up state, which allows access to the largest
ergodic component of configuration space. Studying the
SCGF of the south-or-east and 2D FA models reveals that
both models exhibit qualitatively similar large-deviation
behavior. However, the spatial structure of trajectories
with atypically high activity (s < 0) as revealed by time-
integrated density profiles shows markedly different behav-
ior. The average density of up spins can be measured as
<n>s = (I/N) ?V:l<ni>s; here <ni>s = <l//S|nl‘l//Y> where
lw,) is the eigenstate of H® [Eq. (3)] with eigenvalue
0(s). While the average density in the active sector of both
models is similar at large values of ¢, more interesting
behavior emerges at small values of ¢ < 0.1. For the one-
dimensional East model, it was proven [I11] and later
numerically verified [30] that for s < O the average density
as a function of v =1 —¢® shows distinct plateaus as v
increases for very small values of ¢. In Fig. 3, we demonstrate
that two-dimensional RNN states now allow us to uncover
that similar plateaulike features are also present for the South-
or-Eastmodel at ¢ = 0.1. The corresponding density profiles
exhibit large anticorrelations in the form of diagonal bands of
up spins surrounded by vacant bands. The number of such
bands is different between the density levels. This behavior
contrasts with that of the 2D FA model, where density
plateaus are absent even for very small ¢, and the local
density profiles are homogeneous apart from boundary
effects (the spatial structure of the 2D FA model is discussed
in the Supplemental Material [73]).

Outlook.—We have presented a study of the large-
deviation behavior of two two-dimensional kinetically con-
strained models. In particular, we have characterized the
scaling behavior of the dynamical activity of the two-
dimensional Fredrickson-Andersen model, and have



described the spatial structure of trajectories with atypically
high activity for the South-or-East model. This was made
possible by introducing artificial neural-network states as a
variational ansatz for obtaining large-deviation functions of
classical dynamical systems, drawing from its success in the
variational optimization of quantum ones. Our results high-
light how the neural-network state ansatz can be employed to
efficiently and accurately study large-deviation functions.
Although we have focused our study on prototypical models,
this ansatz is broadly applicable. Given the rapid improve-
ments being made to the neural-network state ansatz, we
expect it to play an important role in the study of dynamical
large deviations for higher-dimensional systems.
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