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Abstract of the Dissertation

Economic Analyses of Three Energy Policy Problems

by

Megan Henderson Accordino

Doctor of Philosophy in Economics

University of California, Los Angeles, 2015

Professor Hugo Andres Hopenhayn, Chair

The essays included in this dissertation analyze three policy issues that have been fre-

quently discussed in recent years. Chapter One analyzes the effects and likelihood of a

particular type of manipulation with which the Federal Energy Regulatory Commission

has become increasingly concerned and illustrates a potential screen for such manipu-

lation. Chapter Two analyzes the effect a federal climate policy might have given the

many state climate policies that are already in place. Finally, Chapter Three examines

whether it is economically justified to encourage investment in energy storage (instead

of flexible natural gas generation) to compensate for the increasing variability in wind

generation.

Chapter 1: I examine the incentives for and detection of manipulation in a spot mar-

ket with a related futures market. I find that the manipulability of spot prices depends

on the amount of hedging in the futures market relative to the amount of non-strategic

speculation. When spot prices are manipulated, the price impact of a trade declines be-

cause manipulation increases the relative amount of unpredictable uninformative trading.

I employ this implication of the model as a screen for manipulation and test its efficacy

with data from a recent case against BP who allegedly manipulated natural gas prices in

Texas in 2008. Using several measures of the price impact of a trade, I find that in the

period in which the allegedly manipulative strategy was profitable, price impact in the

allegedly manipulated market was lower than in other periods and lower than in other
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nearby markets.

Chapter 2: We analyze the effect of various combinations of state and national

emissions policies on national emissions of a global pollutant, specifically, greenhouse gas

emissions. We highlight the effect of unintended increases in out-of-state emissions on

the efficacy of overlapping state policies. We show that emission taxes do not necessarily

prevent a completely offsetting increase in out-of-state emissions when states add a state-

level emissions tax to the national emissions tax. In particular, states small relative to

their market will be unable to reduce national emissions with a state-level CO2 tax or

a system of tradable permits. However, under a national cap-and-trade regime that

allows states to be carved out, a state of any size can reduce national emissions by

setting a tighter state cap. This combination yields a lower total cost than the equivalent

combination of national and state CO2 taxes (when possible) but increases the cost to

consumers outside the market.

Chapter 3: Since 2000, a majority of U.S. states have implemented Renewable Port-

folio Standards (RPS) mandating a share of electricity consumption that must be served

by generation from qualifying renewable resources. Of the 116,000 GWh increase in

renewable generation (excluding hydroelectric) in the U.S. since 2002, 94 percent was

generated by wind turbines. However, generation from wind turbines is variable and

difficult to predict. As supply must always equal demand in electricity markets, other

generators must adjust their output to compensate for the variation in the generation

from wind. To increase the ability of the grid to absorb the unpredictable intermittency

of wind generation, many have suggested an increase in energy storage capacity. In this

paper, I compare the cost-effectiveness of increasing energy storage versus increasing

flexible natural gas-powered generation to compensate for wind generation’s increasingly

large fluctuations in supply using a structural partial-equilibrium model of the electricity

energy market simulated using data from the Pennsylvania Jersey Maryland (PJM) In-

terconnection. I find that due to the much higher capital cost of energy storage compared

with natural gas generation, energy storage is cost-effective only if natural gas prices are

predicted to be high (e.g. at 2008 levels of $9 per mmBtu).
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CHAPTER 1

Incentives for and Detection of Manipulation with

Spot and Futures Markets

1.1 Introduction

In the last several years, the Federal Energy Regulatory Commission (FERC) and the

Commodity Futures Trading Commission (CFTC) have investigated a number of allega-

tions of attempted market manipulation including complaints against Amaranth,1 Energy

Transfer Partners,2 Constellation Energy Commodities Group,3 Barclays Bank,4 and BP

America.5 These cases have focused on one particular type of manipulation in which

the defendant is accused of manipulating the spot price of an asset in order to increase

the company’s profit on a related cash-settled futures contract.6 To ensure manipulation

attempts are correctly identified, it is desirable to understand the circumstances under

which this manipulation can arise and to develop economically well-founded tools that

can be used to detect it and confirm it occurred.

Two recent papers, Ledgerwood and Carpenter (2012) and Ledgerwood and Pfeifen-

berger (2013), suggest that manipulation will always be a temptation when there are

1120 FERC ¶61,085
2120 FERC ¶61,086
3138 FERC ¶61,168
4141 FERC ¶61,084
5144 FERC ¶61,100
6To clarify, a physical futures contract is a standardized contract in which the seller agrees to deliver

an asset on a specific delivery date in the future. Under a cash-settled futures contract, rather than
deliver the physical asset, the seller agrees to pay the buyer the value of the asset on the future delivery
date, which will be determined by the spot price of the asset on the delivery date. The spot price of
an asset is the price charged for delivering the asset immediately. The spot prices utilized to settle
cash-settled futures contracts are standardized and generally determined by the weighted average trade
price within a certain window immediately prior to delivery of the asset.
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spot markets with a related cash-settled futures contract, but the authors do not fully

consider the equilibrium responses of other market participants. The only full equilib-

rium model of this type of manipulation, Kumar and Seppi (1992), also indicates that

this manipulation would generally be profitable in expectation and that it would reduce

the informativeness of spot prices.

In this paper, I extend the existing equilibrium model of this type of manipulation and

demonstrate that as one condition of the model relaxes in a sensible way, the expected

profit from manipulation goes to zero, as does its effect on the spot price, suggesting

that manipulation may not be as alluring as previously thought. Using the model, I also

analyze the effect of a successful manipulation on the market and propose a screen for

manipulation that utilizes publicly obtainable data. In the second half of the paper, I

apply the screen to a recent case in which BP America was accused of manipulating the

spot price of natural gas in Texas in 2008. To implement the screen, I exploit a dataset

rarely available to academic researchers (though it is commonly available to regulators)

and employ two types of estimators. In the period in which the alleged manipulation was

supposedly profitable, both types of estimates confirm the hypothesis that manipulation

may have occurred. In a later period in which manipulation was unprofitable, the results

of the screen are inconclusive.

Ledgerwood and Carpenter (2012) and Ledgerwood and Pfeifenberger (2013) under-

stand the manipulation in the following way. Suppose that a trader buys one cash-settled

futures contract. By buying a cash-settled futures contract, he pays a fixed futures price,

$F , now, and on the delivery date, he will receive the spot price, $S. The higher the

price in the spot market relative to the futures price paid, the more profit the trader

makes. Realizing this, the trader would like to find a way to make the spot price higher.

But of course, this can easily be done by purchasing the asset in the spot market, the

trader thinks. After all, sellers will certainly be happy to sell to him at an inflated price.

Though the trader is likely to take a loss on his purchases, if his futures position is suffi-

ciently large relative to the amount purchased in the spot market, the gain on the futures

contract will outweigh the loss from buying the physical asset at an inflated price.

2



It is not clear however, that this would be profitable in an equilibrium with rational

expectations, as noted also in Lo Prete and Hogan (2014). For instance, if other traders

have a good estimate of the quantity the manipulator will buy or sell and how he will make

his trades, then expectations of price may not be affected by the manipulator’s trades,

causing any change in price to be temporary if one can even be achieved. Alternatively, if

a manipulator’s increased buying activity draws more sellers to the market and therefore

generates more competition among sellers, it may be difficult to create a sufficiently large

increase in price. Furthermore, the manipulator’s purchases in the futures market may

raise the futures price, reducing any profit the manipulator would receive, and could

cause the traders on the other side of the manipulator’s futures position to trade in the

spot market, thereby counteracting the manipulator’s effect on the spot price.

Current understanding of this manipulation in an equilibrium setting with rational

traders rests on a paper by Kumar and Seppi from 1992 which shows that, under the

conditions of their model, manipulation is always profitable. The key condition identified

by the authors that is required for successful manipulation is that trading in the futures

market must be significantly less informative about the true value of the asset than

trading in the spot market. If this condition is met, the price impact of a trade in the

futures market will be lower than the price impact of a trade in the spot market, allowing

the manipulator to take a large futures position without significantly moving the futures

price and make spot market trades that are smaller in size but which have a greater

impact on price. Together, these elements ensure that the expected profit on the futures

position will be greater than the expected loss on the spot position. As trading in the

spot markets that determine the settlement prices of cash-settled futures contracts often

appears to be much thinner than trading in the futures markets, this condition often

seems to be met and it would seem that little can be done to prevent this manipulation

other than harshly punishing the manipulators that are caught to try to deter future

manipulators.

However, I demonstrate that spot prices can only be manipulated if there are non-

strategic speculators in the futures market who take a cash-settled futures position and

3



do not trade in the spot market even though this strategy generates a loss on average.

If all futures traders were hedging or speculating strategically, spot prices would be

not be manipulable and the expected profit from manipulation would be zero, which

corroborates a recent discussion in a 2009 working paper by Kyle, in which he argues that

if all traders are strategic, their joint spot and futures market trades are not manipulative.

I also show that as the proportion of non-strategic speculators to hedgers falls, so does

the expected profit (and presumably the probability) of manipulation. As demand for

futures contracts in commodity markets is generally driven by the inelastic demand and

supply needs of risk-averse hedgers, this result suggests that manipulation may be much

less appealing and less prevalent than previously thought.

Ideally, one could screen for the manipulability of a market by examining the spot

market trades of those who held a position in the futures market to expiration. The share

of non-strategic speculators could be measured as the share of the open positions in the

futures contract at expiration that cannot be matched with corresponding trades in the

spot market. While this information could potentially be gathered by surveying traders,

it would be very costly and difficult to obtain a complete picture of the proportion of

trades driven by hedging versus non-strategic speculation. Recognizing these difficulties,

I instead suggest and test a screen for attempted manipulation that utilizes obtainable

data from an allegedly manipulated market. This screen can be employed when manip-

ulation is suspected to corroborate other evidence of manipulation and as a first pass at

identifying irregularities in market activity.

Both the original and extended versions of the Kumar and Seppi (1992) model suggest

that when spot prices can be manipulated by a strategic trader, manipulation will re-

duce the equilibrium price impact of a trade. This occurs because manipulation increases

the amount of unpredictable uninformative trading and therefore reduces the amount of

information about the true value of the asset revealed by trading on average. Thus, if

market conditions cause participants to believe that the likelihood or scale of manipula-

tion has increased, the price impact of a trade may fall. I apply this screen to a recent

case in which BP America was accused of manipulating natural gas prices in Texas after

4



Hurricanes Gustav and Ike in 2008.

To test the proposed screen for manipulation, I obtained and analyzed data from the

Intercontinental Exchange that contains the bids, offers, and trades from the market and

time period in which traders from BP America allegedly manipulated the spot price of

natural gas. In particular, BP America has been accused of manipulating the spread (or

price difference) between the spot price of natural gas at Houston Ship Channel and the

spot price at Henry Hub. As their alleged manipulation occurred after a pair of hurricanes

that damaged natural gas production and transportation infrastructure and therefore

reduced the correlation between the value of natural gas at Houston Ship Channel and

Henry Hub, the expected profit from manipulating the spread likely increased relative to

periods unaffected by hurricanes. If other market participants recognized the probability

and profitability of manipulation had increased, the model suggests that the average price

impact of a trade would be reduced relative to other time periods and relative to other

hubs at which manipulation was not suspected.

To test the hypothesis that price impact was lower during the allegedly manipulated

period, I develop two types of estimators for the price impact of a trade. The first is

a measure of the resilience of the market, that is the speed and frequency with which

market prices return to their pre-trade levels between trades. The less informative trades

are about the true value of the asset, the more likely prices will bounce back and the

quicker they will bounce back after a trade, since each trade reveals little information.

The second estimator is a direct measure of the price impact of trading from a vector

error correction model in which I separately identify the effect of a sale versus the effect

of a purchase on the available bids and offers.

The results from both estimators suggest that in the middle of the allegedly manip-

ulated period, when the allegedly manipulative strategy was profitable, the price impact

of a trade was lower than expected. The estimates suggest that in this period, the price

impact of a trade in the allegedly manipulated market was lower than in any other period

in the dataset and lower than in other nearby markets, providing solid support for the

hypothesis that price impact is lower when manipulation is suspected and for the hy-
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pothesis that manipulation may have occurred. I exclude the first few days of the alleged

manipulation as the increase in uncertainty caused by the hurricanes makes it difficult

to separately identify any effect of manipulation. At the end of the investigative period,

when the allegedly manipulative strategy generated a loss, the results are inconclusive

with some measures of price impact and market resilience indicating that the price im-

pact of a trade may have returned to more usual levels. If BP’s actions became more

predictable in the later period, this may explain the increase in price impact as market

participants could adjust to their trades in other ways.

The paper is organized as follows. Section 1.2 provides a simple intuitive model of

when a manipulator might believe manipulation would be profitable. Section 1.3 discusses

why manipulation is profitable in equilibrium in the model of Kumar and Seppi (1992)

and extends the model to include the possibility that some or all futures noise trading

is due to hedging demand from risk-averse traders. Section 1.3 also demonstrates that

the same manipulation could be profitable with a physical futures contract rather than a

cash-settled futures contract. In Section 1.4, I propose and test a screen for manipulation

using BP America’s alleged manipulation of natural gas prices in Texas as my test case.

1.2 The Profit Maximizing Strategy of a Manipulator

To understand the incentives manipulation, it is helpful to begin with a simple model.

Suppose that there are two markets related to a physical asset, a spot market, where the

physical asset can be traded, and a cash-settled futures market. Trading in the futures

market occurs prior to trading in the spot market and traders in the futures market have

no private information about the true value of the asset causing prices to be unaffected

by trades. The manipulator is risk-neutral and able to trade in both the spot market

and the futures market. When solving his profit maximization problem, he makes an

assumption about the strategy of other traders in the futures market. In particular,

the manipulator must consider the strategy of the trader who took the other side of his

futures position.
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I assume the spot price is determined as follows. First, some traders in the spot

market do have private information about the asset’s true value and therefore trades

are expected to carry information on average and will affect spot prices. Second, traders

assume that the price impact of a trade is constant throughout the trading period. Third,

traders assume that the price impact of a trade is linear in the size of their trade and

that their trading strategies do not affect the price impact of a trade.

Let µ represent trader i’s expected spot price if he does not trade in either the futures

or the spot market and other traders do not expect him to trade. I assume that trader

i has no reason to trade other than his expectation that trading in both the spot and

futures market may yield a profit and that he has no private information about the value

of the asset. Let λ be trader i’s expectation of the price impact of a trade in the spot

market.

Let yf,i be the futures position of trader i. If there are N traders in the futures market,

then
∑N

i=1 yf,i = 0 since every trade must have a buyer and a seller. Let ys,i be trader i’s

spot market trade. To determine trader i’s expected spot price if he trades in the futures

market and then in the spot market, trader i must make an assumption about how the

trader who took the other side of his futures trade will act. Trader i’s futures trade

causes another trader in the futures market to have a futures position −yf,i. Suppose

that trader i assumes the other trader will trade −kyf,i in the spot market if trader i

traded yf,i in the futures market, where k is a constant. For instance, if trader i assumes

that the other trader will not trade in the spot market in reaction to his futures trade,

then k = 0. If other traders are hedging, then to obtain a physical futures position when

only a cash-settled futures contract exists, hedgers will need to buy cash-settled futures

contracts, for which they will receive S and pay F , and then buy the same amount in

the spot market, for which they will pay S in exchange for the physical asset. On net,

they pay F and receive the asset. Therefore, if trader i assumes all other futures traders
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are hedging, he will expect k = 1. Given k, trader i’s expected spot price is:

Ei[S|ys,i, yf,i] = µ+ λ

(
ys,i + k

( N∑
j=1

yf,j − yf,i
))

= µ+ λ(ys,i − kyf,i) (1.1)

where
∑N

j=1 yf,j − yf,i is the net futures position of all other futures traders. Since∑N
j=1 yf,j = 0 by definition, the first term vanishes in the simplified equation.

Suppose that trader i’s expectation of the spot price without him, µ, is the futures

price, F , because he has no private information on the value of the asset. This also

implies that trader i’s expectation of the true value of the asset will be µ.

Trader i’s problem at the opening of the spot market is:

max
ys,i

E[Π|yfi] = max
ys,i

E[yf,i(S(yf,i, ys,i)− F (yf,i)) + ys,i(v − S(yf,i, ys,i))|yf,i]

= max
ys,i

yf,i(µ+ λ(ys,i − kyf,i)− µ) + ys,i(µ− µ− λ(ys,i − kyf,i))

= max
ys,i

λ(yf,i − ys,i)(ys,i − kyf,i) (1.2)

From equation (1.2), one can see that if k ∈ [0, 1), then trader i can earn a positive profit

if yf,i > ys,i and ys,i > kyf,i. Figure 1.1 illustrates trader i’s profit graphically if trader i

has a long futures position, that is yf,i > 0. When trader i trades ys,i in the spot market,

he moves the spot price by dS = λ(ys,i − kyf,i). If ys,i > kyf,i, then trader i increases

the spot price above the true value of the asset. He therefore expects to take a loss of

−dS ∗ys,i on his spot market position. However, if yf,i > ys,i, then since he earns dS ∗yf,i

but only loses −dS ∗ ys,i, his net profit is positive.

The first order condition of trader i’s problem confirms that trader i’s optimal spot

trade is halfway between kyf,i and yf,i as it appears in Figure 1.1:

ys,i = 1
2
(1 + k)yf,i (1.3)
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Π(ys,i)

0 5yf,ikyf,i ys,i

Figure 1.1: Trader i’s Profit as a Function of his Spot Market Trade

Suppose trader i assumes other traders are not trading in the spot market, e.g. k = 0,

then trader i will make a spot trade in the same direction as his futures trade but it will

be half the size of his futures trade, e.g. if he bought 5 units in the futures market, he will

buy 2.5 units in the spot market. If all traders with futures positions act strategically

upon arriving in the spot market, that is they choose a spot trade to maximize their

expected profit given their futures position, they would make the same decision as trader

i, i.e. make a spot trade half the size of their futures trade, if they expected k = 0.

Thus, if trader i believes the other traders are strategic and rational, it cannot be an

equilibrium for trader i to assume that none of the others will trade in the spot market

when he clearly has incentive to do so.

At the other extreme, if other traders exactly replicate their futures trade in the spot

market, that is if they trade ysj = yfj so that k = 1, then so will trader i by equation (1.3).

If trader i trades ysi = yfi in the spot market, he earns zero profit and can do no better

by making any other trade. This is his optimal choice because when all other traders

choose ysj = yfj, trader i would have to make a bigger trade in the spot market than he

made in the futures market, ys,i > yf,i, in order to increase the spot price. However, if

his spot trade is larger than his futures trade, then his loss in the spot market, −dS ∗ys,i,
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will be bigger than his gain in the futures market, dS ∗ yf,i, resulting in a net loss. Thus,

k = 1 is an equilibrium because each trader, believing that other traders will exactly

replicate their futures trades in the spot market, will do the same.

Note that there is no sense in which the manipulator could surprise the market with a

manipulation attempt and expect to earn a profit if all other traders make the same trade

in the spot market as they made in the futures market. For instance suppose he buys

in the futures market: yf,i > 0 and chooses a smaller spot trade: ys,i < yf,i. This would

cause the spot price to go down since ys,i − yf,i < 0. But, he only makes money when

the spot price goes down if his spot trade was bigger than his futures trade: ys,i > yf,i.

Thus, any spot trade that is different from his futures trade will generate an expected

loss for a rational manipulator.7

Returning to the expected spot price, we see that if k = 1, then the expected spot

price will be unmoved by trader i’s trade since ys,i = yf,i. As a result, trader i’s expected

profit will be zero and he will be indifferent between trading in the futures market or

not. Furthermore, if the price impact coefficient, λ, is set based upon a linear prediction

of the asset’s true value given observed trading patterns and if each trader with a futures

positions trades ys,i = yf,i in the spot market, then the spot trades of those with futures

positions will create equal pressure on the buy and sell sides of the spot market and will

not affect perceptions of net order flow (a.k.a. net demand) causing the price impact

to be unaffected. Thus, the expectation that everyone is acting in their best interest in

fact prevents manipulation of the spot price; Adam Smith’s proverbial invisible hand in

action.

Small players in the market, of course, may fail to account for their (proportionally

small) effect on the market and may wish to speculate. If some traders hold futures

positions to expiration and do not trade in the spot market, causing k < 1, then the

trades of strategic traders are likely to affect the realized spot price and may reduce its

7If the manipulator bought in the futures market, but failed to take into account that the trader who
sold him his futures position will make the same sale in the spot market, then he might expect the spot
price will go up (and yield him a profit) when actually it will go down (and cause him to lose money on
average).
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efficiency as a signal if the amount of uninformed trading is perceived to increase (as

will be discussed in Section 1.3). This could be especially problematic if the aggregate

trading of small buyers in the futures market is different from the aggregate trading of

small sellers. For instance, if all buyers in the futures market are small and all sellers

are large, then the large sellers’ optimal strategies would move the price downward. In

this case, the small buyers would consistently lose money on their futures trades since

the spot price would be less than the futures price due to the spot market sales of the

large futures sellers. That is: S = µ+λysL < µ = F , where ysL < 0 is the aggregate spot

market sale of the large futures sellers. To prevent manipulation from occurring, one

could advise small players to sell their speculative futures positions prior to the closure

of the futures market, which would allow them to profit from any change in expectation

since their position was purchased while preventing losses due to manipulation.

Spot market traders have an additional weapon not heretofore considered: their ex-

pectation of the spot trades of futures traders. If all sales are made by a few larger sellers

in the futures market and all purchasers are small buyers, then if spot market traders

can observe the amount of trading in the futures market, they can guess the aggregate

spot market trade of the large futures sellers and filter out that portion of spot market

trading when determining the price at which they are willing to trade in the spot mar-

ket; a key reason why manipulation may not be effective in equilibrium. The better spot

market traders can guess how a manipulator will trade, the less effect he will have on

the realized spot price. To gain a clearer understanding of how equilibrium forces under

rational expectations may limit or prevent manipulation, I re-examine and extend the

full equilibrium model of Kumar and Seppi (1992).
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1.3 Manipulation in Equilibrium

1.3.1 The Kumar and Seppi (1992) Model

Under the assumptions of Kumar and Seppi’s 1992 model, there is an equilibrium

with manipulation and manipulation will degrade the informativeness of prices in the

spot market. Further, even if many players attempt to manipulate prices, Kumar and

Seppi demonstrate that though the profit from manipulation goes to zero, the spot price

is always less informative under manipulation. In this section, I review their model and

demonstrate that if we consider more carefully the identity of the noise traders in the

futures market, we find that more accurate assumptions about the behavior of the futures

noise traders could render manipulation unprofitable and the spot price signal untainted.

Kumar and Seppi’s 1992 model consists of three periods: in period 1, a cash-settled

futures contract is traded, and in period 2, a spot contract is traded. In period 3,

the true value of the asset is revealed and anyone with an open position in the spot

contract receives or pays the true value of the asset. The cash-settled futures contract is

structured such that the buyer of the contract pays the cash-settled futures price, F and

receives the settlement price of the spot contract, S. Only the distribution of the true

value of the asset, v, is known in period 1. It is assumed that v is distributed normally

with mean µ and variance σ2
v . In period 2, there is a risk-neutral informed trader who

learns v at the beginning of the period, while all other players remain uninformed. The

model is essentially a two-period version of the Kyle (1985) model except that there is

an informed trader only in the second period of trading in Kumar and Seppi’s model,

while in Kyle’s model there is a trader who knows the value v in every period. This

information differential between periods is one of the features of the model that allows

for an equilibrium with manipulation.

In the period 1 futures market, there are noise traders who place an order e drawn

from a normal distribution with mean 0 and variance σ2
e . e is independent of the true

value. A risk-neutral potential manipulator may trade in the futures market if it is

profitable, but it is assumed for simplicity that the informed trader does not trade in the
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futures market.8 The potential manipulator submits an order ∆ which is combined with

the noise traders’ order e to generate the net futures order flow yf = ∆ + e. There are

at least two risk-neutral market makers who observe yf and compete à la Bertrand to

set the price of the futures contract F given the net order flow yf . As traders holding a

futures contract will receive the spot price, the futures price, F , will equal the expected

spot price given yf , F = E[S|yf ].

In the period 2 spot market, the informed trader submits an order X knowing v and

yf . The manipulator submits an order z knowing his own futures order, ∆ and yf (and

consequently e = yf −∆ as well). There are also noise traders in the spot market who

submit an order u drawn from a normal distribution with mean 0 and variance σ2
u. u is

independent of v and e. The three orders in the spot market are combined into the net

spot order flow ys = X + u + z. A set of risk-neutral market makers observe yf and ys

and again compete à la Bertrand to set the price of the spot contract. As anyone who

holds a position in the spot contract at the end of period 2 will receive the true value v

in period 3, the spot price S will be equal to the expected value of the asset, v, given ys

and yf : S = E[v|ys, yf ].

The profit of the strategic players and the properties of the equilibrium are given by

Proposition 1.1. For the full proof of the proposition, I refer the reader to the Appendix

of Kumar and Seppi (1992). Here I will provide the intuition.

Proposition 1.1 (Linear Equilibrium of Kumar and Seppi (1992)) There is an

equilibrium in which (i) the strategy that maximizes the profit of manipulator,

max
∆
Ee

{
max
z
Ev,u,X

[
∆
(
S(X + z + u, e+ ∆)− F (e+ ∆)

)
+ z
(
v − S(X + z + u, e+ ∆)

)∣∣∣e]}
s.t. |∆| ≤ |W | (1.4)

is to randomize his futures order ∆ between |W | and −|W | with equal probability and

8If he is allowed to trade in the futures market, he competes with the manipulator to manipulate the
market.
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trade

z = 1
2
[(1 + k)∆ + ke] (1.5)

where k =
σ2
w

σ2
w + σ2

e

. (1.6)

The manipulator’s expected profit is:

E[ΠM |∆] = 1
4
λ(1− k)2∆2 + k2σ2

e > 0 (1.7)

(ii) the strategy that maximizes the profit of the informed trader,

max
X
Eu,z

[
X
(
v − S(X + z + u, e+ ∆)

)∣∣∣v, yf] (1.8)

is to trade

X =
1

2λ
(v − µ), (1.9)

(iii) the futures price is F = µ, and (iv) the spot price is set using the rule

S = µ+ λ(ys − E[ys|yf ]) (1.10)

where λ =
σv

2
√
σ2
u + σ2(z|yf )

(1.11)

σ2(z|yf ) = 1
4
kσ2

e (1.12)

E[ys|yf ] = E[z|yf ] = kyf (1.13)

The goal of the market makers in the spot market is to extract the signal of the

true value, X, the trade of the informed trader which is based upon v, from the noise

generated by the uninformed noise traders and the uninformed manipulator. To do so,

they utilize their knowledge of the strategies of each trader and the observed order flows

to form an estimate of the amount of each order flow that contains information and the

correlation between that part of the order flow and the true value. In equilibrium all
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trades are linear combinations of the normally distributed (and independent) random

variables, e, u, v, and W . Therefore, the order flows in the spot and futures markets, ys

and yf , are also normally distributed. As a result, the spot price, which is equal to the

expected value of the asset given the order flows, takes a linear form

S = E[v|yf , ys] = E[v|yf ] +
Cov(v, ys|yf )
V ar(ys|yf )

(
ys − E[ys|yf ]

)
= µ+ λ(ys − kyf )

Neither the manipulator’s order nor the other futures traders’ orders are correlated with

the true value v, and therefore yf does help to predict the true value of the asset. Con-

sequently, the market makers’ expectation of the value of the asset, v, given yf is simply

µ, the expectation of v.

The second term contains ys − E[ys|yf ], which is the market makers’ expectation of

the part of the spot market order flow that contains information about the true value.

The market makers know that traders in the futures market do not have information

about the true value of the asset and that yf is therefore uninformative about the true

value. However, yf does predict the amount that the uninformed manipulator will trade

in the spot market. As yf does not predict how much the spot noise traders will trade or

how much the informed trader will trade, E[ys|yf ] = E[z|yf ]. Thus, when observing any

order flow ys, the market makers first filter out their best estimate of the spot market

order of the uninformed manipulator and the spot price will only move if ys is different

from their expectation of the uninformed manipulator’s order.

After filtering out their best estimate of the manipulator’s trade, the market makers

in the spot market choose λ, which determines how much the spot price moves given

the filtered order flow. The price impact, λ, will be based upon the covariance between

the filtered order flow and the true value of the asset relative to the total variance of the

filtered order flow. As can be seen in the equilibrium value of λ, shown in equation (1.11),

the less precise the public information about the true value (the larger σv is) and the

smaller the amount of noise from the manipulator and spot noise traders (σ2
u+σ2(z|yf )),
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the more informative the filtered order flow becomes and the larger the price impact per

unit of filtered order flow.

Note that if the market makers in the spot market know the manipulator’s trades

with certainty either because the manipulator always chooses the same trades or be-

cause there are no noise traders in the futures market to camouflage the manipulator’s

futures position, then the market makers can perfectly filter out the manipulator’s spot

market trade and the spot price will be unaffected by the manipulator’s trades. If the

manipulator’s order does not move the spot price, the manipulator earns no profit.

However, if the manipulator plays a mixed strategy in the futures market, random-

izing between several possible trades, and if there are noise traders who trade only in

the futures market, camouflaging the manipulator’s futures position, market makers in

the spot market can estimate the manipulator’s futures position and spot market order

(which will depend on his futures position), but will not know their exact values. Since

the manipulator’s spot order is both uncertain and known to be uninformative about

the true value of the asset, the manipulator’s spot market order increases the amount

of uninformative trading in the spot market. The larger the variation in uninformative

trading relative to the variation in the informed player’s order (which is derived from the

possible variation in the true value), the harder it is for the market maker to distinguish

the exact volume traded by the informed trader which signals the true value of the asset

and the lower the price impact of an order, as seen in equation (1.11). Thus, by increas-

ing the possible variation in uninformed trading in the spot market, the manipulator

decreases the informativeness of the price signal in the spot market. With the market

maker unable to perfectly filter out the manipulator’s spot trade when setting the spot

price, the manipulator’s spot trade will affect the spot price and manipulation can be

profitable.

k indicates the manipulator’s share of the variance of the futures order flow and

therefore measures his size relative to the futures noise traders. Holding the variance of

the futures noise trades constant, the closer k is to one, the larger the manipulator is

and the lower the price impact of a trade in the spot market becomes because, when the
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manipulator is large relative to the futures noise, the variance in his uninformative spot

market order given the futures order flow is also large, which increases the noisiness of

the spot order flow and decreases its informativeness.

By iterated expectations, the futures price, F , will always be equal to the baseline

expected value of the asset, µ. This result arises because the market makers in the

spot market have more information than the market makers in the futures market. As

discussed above, the market makers in the spot market carefully filter out the trade of the

manipulator given both yf and ys. Furthermore, the futures order flow, yf , contains no

information about the true value, and only enters the spot price because it helps predict

and filter out uninformative trading. Therefore, since yf does not help predict the true

value v and will be filtered out of the spot order flow ys when forming the spot price, the

expectation of the spot price knowing only yf will not be influenced by yf and will be

equal to the expected value of the asset, µ. In other words, from the perspective of the

market makers in the futures market who know only yf , the expected spot price is not

affected by yf , and therefore the futures price, F , which equals the expected spot price

given yf is not affected by yf .

If the futures order flow did reveal information about the true value of the asset, then

the futures price will respond to trades in the futures market because they are informa-

tive. Although it is beyond the scope of this paper to delve deeply into the implications of

information in the futures market, preliminary findings correlate the assertion of Kumar

and Seppi that adding an informed trader to the futures market in their model makes

manipulation unprofitable. This result appears to arise both because the manipulator’s

futures trades now move the futures price adversely and because the manipulator has

a more precise signal of the uninformative trading in the futures market than the mar-

ket makers in the spot market have causing the manipulator’s spot market trade to be

informative about the true value of the asset.

Returning to the original model, the informed trader, picks his trade X knowing v and

yf . Since the spot noise traders and manipulator do not have private information about

the true value of the asset, their trades do not depend on v. Therefore, the manipulator
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has the same information as the market maker about how the spot noise traders and the

manipulator will trade. This means that expected trades of the manipulator and spot

noise traders will not affect the informed trader’s expectation of the spot price:

E[S|v, yf ] = µ+ λ(X + E[u+ z|v, yf ]− E[X + u+ z|yf ])

= µ+ λ(X + E[u+ z|yf ]− E[X + u+ z|yf ])

= µ+ λ(X − E[X|yf ])

Maximizing his profit given his expected profit and his monopoly on information about

the true value of the asset, shows that he will trade X = 1
2λ

(v − µ), which would move

the price halfway to the true value if the net order flow of others were zero. This also

implies that the expected order of the informed trader, given knowledge of yf alone is

zero since E[v|yf ] = µ.

Turning to the manipulator’s spot trade, we see that his optimal trade is

z = 1
2
[(1 + k)∆ + ke] = 1

2
[∆ + kyf ]

which has a nearly identical form to his optimal trade in the simple model of Section 1.2.

This can be understood by considering his expected profit:

E[Π|e,∆, z] = E
[
∆
(
S(X + z + u, e+ ∆)− F (e+ ∆)

)
+ z
(
v − S(X + z + u, e+ ∆)

)∣∣∣e,∆, z]
= λ(∆− z)(z − E[z|yf ]) (1.14)

The market makers’ expectation of the manipulator’s spot trade, z, given the futures

order flow yf is equal to kyf where k indicates the manipulator’s share of the variance

of the futures order flow. As in the earlier model, the manipulator can increase price if

z > E[z|yf ] = kyf and will make a profit if his loss −dS ∗ z = −λ(z − kyf )z is smaller

than his expected gain, dS ∗ ∆, which requires z < ∆. To have z < ∆ and z > kyf
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requires also that kyf < ∆. If kyf > ∆, the manipulator would like to decrease price by

setting z < kyf and will earn a profit if z > ∆.

Suppose ∆ > 0 to simplify the intuition. If the market believes that the manipulator’s

trade will be smaller than his actual futures position, kyf < ∆, because the futures noise

order e was small or negative, the manipulator can place a spot order z smaller than

∆ but larger than kyf and move the spot price upward while still making a profit since

∆ > z. This is illustrated in Case A in Figure 1.2. If the market believes that the

manipulator’s trade will be bigger than his actual futures position, kyf > ∆, because the

futures noise order e was very large, the manipulator would like to buy a small amount

z between ∆ and kyf , which will keep price below its expected value µ. Since z < kyf ,

the manipulator will earn a profit in the spot market, in this case, and since z > ∆, his

spot profit will be larger than his loss in the futures market. This case is illustrated in

Case B in Figure 1.2.

Π(z) Π(z)

0 5Δkyf z

( )

z* 0 5kyfΔ zz*0 5Δkyf zz*

Case A. kyf < z* < Δ

0 5kyfΔ zz*

Case B. Δ < z* < kyfCase A. kyf < z* < Δ Case B. Δ < z* < kyf

Figure 1.2: The Manipulator’s Profit as a Function of his Spot Market Trade

As the futures noise traders camouflage the manipulator’s futures order, market mak-

ers will be unable to estimate his exact futures position given only the futures order flow

if the manipulator randomizes his futures trade. Since the market makers know that

the manipulator’s spot trade depends on both the net order of the futures noise traders

and the manipulator’s random futures order, they will be unable to exactly predict the

manipulator’s spot order. To achieve a linear equilibrium, Kumar and Seppi make some

additional assumptions. As shown in Proposition 1.1, the manipulator’s expected profit
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given his futures position takes the form 1
4
λ(1−k)2∆2 +k2σ2

e . Thus as long as 1−k 6= 0,

which holds as long as there is some noise trading in the futures market, the manipulator

would wish to take an infinite futures position, but is indifferent between buying and

selling. To prevent the manipulator from taking an infinitely large position, Kumar and

Seppi assume that the manipulator is subject to an initial wealth constraint |W |, and

only the distribution of W (N(0, σ2
w)) is known to other players. W is independent of v,

u, and e. To submit an order ∆, the manipulator must deposit |∆| in a margin account

thereby preventing him from taking an infinite position.

Under these assumptions, the manipulator receives some initial wealth |W | and, since

he is indifferent between trading |W | and −|W | he randomizes between trading |W | and

−|W | with equal probability, which gives ∆ the same normal distribution as W . In this

way, the market makers are uncertain of whether he bought or sold as well as the amount

he traded and therefore cannot perfectly filter out his spot market trade when setting

the spot price, generating the potential for profit from manipulation.

The key feature of the equilibrium to note in the Kumar and Seppi (1992) model is

that the manipulator is able to make a profit because he has an information advantage

over the market makers in predicting the spot market order flow. This can be seen by

rearranging equation (1.5) into: z = ∆ + 1
2
(e−E[e|yf ]). From this version, one sees that

the strategy of the manipulator can be characterized as trading his full futures position,

∆, plus half of his information advantage, e−E[e|yf ]. If the market makers knew e, then

the manipulator’s optimal strategy would be to trade z = ∆, in which case he earns zero

profit since the futures price F is always equal to the expected value of the asset.

The natural question is thus, under what circumstances would the manipulator lose

his information advantage? Obviously, if there were no noise traders in the futures

market, then the futures market order flow would perfectly reflect the manipulator’s

order. Alternatively, if the manipulator always made the same trade in the futures

market, then the futures order flow would perfectly reflect the aggregate trades of the

noise traders, e. It turns out that there is also a third situation in which the manipulator

loses his advantage: the case in which all noise trading in the futures market is executed
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as a hedge for planned trades in the spot market.

1.3.2 Hedging versus Non-Strategic Speculation

In the current model, the aggregate profit of the noise traders in the futures market is

e(S−F ) whose expected value at the beginning of the futures market is always negative,

−1
2
λkσ2

e . As the futures product they have traded yields only a transfer of cash upon

settlement, the noise traders in the futures market in the model of Kumar and Seppi

(1992) are essentially non-strategic speculators who either do not notice or do not care

that, on average, they will lose money by trading futures contracts. They are neither

acquiring the physical asset nor hedging against any real risks in this model, so there is

no reason for them to trade unless their expected profit from the futures trade alone is

non-negative. A more compelling type of noise trader for the futures market, especially

in the context of a commodity such as natural gas, would be a risk-averse hedger, whose

trades are generated by actual (and potentially inelastic) demand for or supply of the

asset in question. Since the futures contract assumed in this model is a cash-settled

futures contract, to actually acquire or dispose of the physical asset, the same quantity

that is purchased in the futures market as a hedge, h, must also be purchased in the spot

market, in which case the profit of a hedger is Πh = h(S−F )+h(v−S) = h(v−F ). Note

that if he buys h as a hedge in the futures market, he also buys h in the spot market. If

a physical futures contract were available, he could achieve the same outcome with only

one transaction in the physical futures market.

Suppose all noise trading in the futures market is due to hedging and represent it by

h. In this case, the spot market order flow is comprised of the orders of the informed

trader, the spot noise traders, the manipulator and the hedgers. The strategies of the

informed trader and spot noise traders are not affected by the manipulator and hedgers’

strategies as they have the same information as the market maker in the spot market.

Therefore, taking their strategies from Proposition 1.1 and the prior assumptions, the

expected spot trades of the informed and spot noise traders, given the futures order flow,
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are zero. Consider now the manipulator’s first order condition for z, where yf = ∆ + h

and ys = X + u+ z + h:

z = 1
2
(∆− E[X + u+ h|h] + E[X + z + u+ h|yf ])

Since E[X|yf ] = E[X|h] = E[u|yf ] = E[u|h] = 0

z = 1
2
(∆− h+ E[z + h|yf ])

Taking the expectation of both sides given yf reveals that E[z|yf ] = E[∆|yf ]. Therefore

z = 1
2
(∆− h+ E[∆ + h|yf ])

= 1
2
(∆− h+ yf )

= ∆

As also occurs in the case with only non-strategic speculators, the market makers’ best

guess of the manipulator’s trade, z, given the futures order flow is the same as their

best guess of ∆ given the futures order flow. However, since both the futures market

noise traders and the manipulator trade in the spot market and since the futures market

noise traders trade exactly the same quantity in the spot market as they traded in

the futures market, the market makers’ best guess of the spot market order flow that

will be caused by uninformed futures traders is now just the futures order flow, that is

E[ys|yf ] = E[h+∆|yf ] = yf . Knowing that the market makers expect that the spot order

flow due to uninformed futures trading will be yf , it turns out that the manipulator’s

optimal spot market trade is same as his futures market trade, z = ∆.

With hedgers, the noise from the other futures traders works against the manipulator,

unlike in the case of the non-strategic speculators, because it appears both in the spot and

futures market order flow. Given an arbitrary spot trade z, the manipulator’s expected

spot price is S = µ+λ(z+ h− yf ) = µ+λ(z−∆) since yf = h+ ∆. His expected profit
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is therefore:

E[Π|h,∆, z] = E
[
∆
(
S(X + z + u+ h, h+ ∆)− F (h+ ∆)

)
+ z
(
v − S(X + z + u+ h, h+ ∆)

)∣∣∣h,∆, z]
= λ(∆− z)(z −∆)

= −λ(z −∆)2 < 0 (1.15)

With hedgers, the only way to increase the spot price is to make a bigger trade in the spot

market than he made in the futures market z > ∆. However, if z > ∆, his expected profit

decreases because the increase in the spot price (dS) hurts his spot position by −dS ∗ z

but only benefits his futures position by dS ∗ ∆ and ∆ < z. Therefore, his expected

profit is always negative in equilibrium, since λ must be positive for the manipulator’s

and informed trader’s second order conditions to be satisfied. As a result, the best he

can do is to set z = ∆ and earn zero profit in expectation.

Furthermore, since the uninformative spot trades of the futures traders can be deter-

mined exactly by the market makers in the spot market, they can filter them out exactly

when setting the spot price, and so the spot price is not affected by the manipulator’s

actions even if he does decide to trade (despite an expectation of zero profit). Or in

other words, when all of the other traders in the spot market trade their entire futures

positions in the spot market, the manipulator loses his information advantage over the

market makers in predicting the uninformed portion of the spot market order flow.

Of course, there’s no reason that there couldn’t be speculators in the futures market

along with the hedgers, but in local commodity markets, such as I examine in this paper,

I expect that the speculators are likely to be strategic, like the manipulator, as they

should recognize that an isolated futures trade would be expected to lose money in the

presence of strategic speculators. Speculators who do not wish to have a physical position

at the conclusion of the spot market can trade in their futures position prior to the close

of the futures market, and earn a profit on any change in the futures price that occurred

since they obtained the position without introducing inefficiency into the spot price.
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If all speculators trade in their cash-settled futures position for a physical futures

position, it would not mean that there are no speculators in the market, only that there

are no non-strategic speculators. If the traders in the futures market are either strategic

speculators or hedgers, I show in Proposition 1.2 that given a futures position ∆, the

optimal spot market order of a strategic speculator is z = ∆, in which case all strategic

speculators expect to earn zero profit from any manipulation attempt. Thus as long as

all those who demand liquidity in the futures market are either (1) strategic speculators,

or (2) hedgers, then the expected profit from strategic speculation will be zero and the

spot price signal will be untainted. As in the simple model examined earlier, if all other

futures traders are either strategic or hedging, the manipulator could not even surprise

the market and expect to make a profit since any difference between his spot and futures

market will move price in the wrong direction given the gap between his futures and spot

positions.

Proposition 1.2 (Equilibrium when All Speculators are Strategic) If the futures

noise trading is due to hedging and/or there are multiple strategic speculators in the mar-

ket, in equilibrium, all strategic speculators will choose z = ∆, the expected profit from

speculation will be zero and the spot price signal will be unaffected.

Proof. Suppose that a particular strategic speculator, call him the manipulator, takes

others’ strategies as given, assuming that whatever their net futures trade, ε, is, the other

strategic speculators will trade ζ = R1ε+R2yf in the spot market. If there are hedgers,

they trade h in both the spot and futures markets. Thus the futures order flow, yf equals

∆ + h + ε and the spot order flow, ys is X + u + h + z + ζ. The manipulator’s profit

maximization problem is the same as in (1.4) with the new definitions of yf and ys. His

first order condition for z is therefore:

z = 1
2
(∆− E[X + u+ h+ ζ|e] + E[z +X + u+ h+ ζ|yf ]) (1.16)

As before, taking the expectation of both sides of (1.16) with respect to yf yields,

E[z|yf ] = E[∆|yf ] by iterated expectations. Taking into account E[X + u|e] = E[X +
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u|yf ] = 0 and ζ = R1ε+R2yf , his first order condition becomes

z = 1
2
(∆− E[h+R1ε|e] + E[∆ + h+R1ε|yf ]) (1.17)

Suppose that R1 = 1, then

z = 1
2
(∆− E[h+ ε|e] + E[∆ + h+ ε|yf ]) (1.18)

= 1
2
(∆− e+ yf ) (1.19)

= ∆ (1.20)

Thus, if all other speculators trade their entire futures position in the spot market, the

optimal trade of the manipulator is to also trade his entire futures position in the spot

market. Plugging z = ∆ and E[v|e] = µ = F into the manipulator’s expected profit

shows that the manipulator’s expected profit will be zero. As before, if the full futures

order flow is traded in the spot market, the market makers in the spot market know

exactly the uninformative spot market order of the futures traders and can subtract it

from the spot order flow causing the spot market price to be unaffected by the strategic

speculators.

In Appendix 1.A, I demonstrate that any amount of non-strategic speculation in

the futures market will result in a positive expected profit for a manipulator and a

compromised price signal, though the expected profit declines as non-strategic noise

trading declines. The price impact of a trade is always smaller with non-strategic noise

traders, but is generally hook-shaped in the share of futures noise trading due to non-

strategic speculators, with a minimum somewhere between zero and 100% non-strategic

speculators and a maximum when there are no non-strategic speculators, in which case

the price impact parameter is the same as the price impact without manipulation. Thus,

the more non-strategic speculators there are, the greater the profit from manipulation

and the more likely a manipulator would attempt it.

To summarize the implications of the model thus far, manipulation becomes less likely
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in an equilibrium setting because other traders will be aware of the presence and strategy

of potential manipulators. Knowing the strategy of potential manipulators given the

parameters of the markets in which they trade, traders can (1) attempt to infer the spot

market trade(s) of the manipulator(s) from the futures market order flow and adjust their

expectations of how much volume in the spot market is likely to be traded by uninformed

futures traders, (2) adjust downward the price impact coefficient if they believe the share

of trading that is uninformative about the true value of the asset has increased in order

to prevent prices from straying too far from their expectations, and (3) adjust their

own trading strategies in response to the manipulators. In richer models, traders would

have even more options available to counteract the effects of a manipulator, although

manipulators would undoubtedly gain new tricks as well.

Furthermore, the results demonstrate that if manipulation is profitable, the spot

price will be manipulable. In the presence of manipulation the realized spot price will, on

average, stray further from the asset’s true value (making it a less efficient and informative

signal) because the manipulator has increased the variance of uninformative trading.

That is, if the market makers cannot perfectly filter out the manipulator’s trade from the

spot market order flow, then the manipulator’s trading in the spot market will increase

the amount of unpredictable uninformed volume relative to the amount of informed

volume, reducing the ability of the market makers to infer the true value of the asset.

Conversely, if manipulation ies expected to yield zero profit because all futures traders

are expected to repeat their futures trades in the spot market, the spot price will not

be manipulated even if the manipulator trades because the market makers can perfectly

filter out the uninformative orders of all of the futures traders when computing the spot

price.

1.3.3 Kumar and Seppi (1992) with a Physical Futures Contract

In the introduction to their 1992 paper, Kumar and Seppi state that “If futures

accounts are closed through ‘cash settlement’ rather than ‘physical delivery,’ then ma-
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nipulative spot trading can improve the settlement price.” By “improve the settlement

price,” they mean improve the settlement price for the manipulator, in fact, the quality

of the settlement price as a signal of the asset’s value declines. However, once the same

assumptions utilized in the cash-settled futures model are applied to the physical futures

setting, one finds that if manipulation is profitable with a cash-settled futures contract,

then it should also be profitable with a physical futures contract.

The key to demonstrating that a physical futures contract generates a model identical

to that generated by a cash-settled future is to ensure that all traders follow the same

strategy regardless of the type of futures contract offered. Note first that if only one

type of contract is offered, hedgers will attempt to hedge using whichever is available,

and speculators would speculate using whichever futures contract is available. Secondly,

under one key assumption identified in Kyle (2009): that it is possible to convert a

cash-settled futures contract to a physical futures contract (or vice versa) with zero

transactions cost, a condition met in this model, a physical futures contract is exactly

equivalent to a cash-settled futures contract. To convert a cash-settled futures contract

to a physical futures contract, one needs to be able to purchase or sell in the spot market

at exactly the settlement price of the spot contract. For instance, if I own a cash-settled

futures contract, then I owe the futures price and will receive the settlement price of

the spot contract, E[Π] = E[S − F ]. To convert this position to a physical futures

position, if I can buy a spot contract at exactly the spot market settlement price with no

transaction cost, then I will own the asset and pay the settlement spot price, making my

total expected profit E[Π] = E[S−F + v−S] = E[v−F ], which is exactly the expected

profit from owning a physical futures contract. Thus, in the model of Kumar and Seppi

(1992), to purchase a physical futures position, one must both purchase a cash-settled

futures contract and a spot contract.

Continuing on, in the model of Kumar and Seppi (1992), the futures noise traders

are expected to speculate non-strategically by buying a cash-settled futures contract and

holding their position to expiration, which generates an expected profit of E[Π|qc] =

E[qc(S − F )], where qc is the speculator’s cash-settled futures trade. Buying a physical
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futures contract and selling in the spot market would generate a profit of E[Π|qp, qs] =

E[qp(v−F )+qs(v−S)|qp, qs], where qp represents the quantity of physical futures traded

and qs indicates the quantity traded in the spot market. If the trader buys the same

amount in the physical futures market as he sells in the spot market, qs = −qp, then

E[qp(v − F ) + qs(v − S)|qp, qs] = E[qp(S − F )|qp]. Therefore, to exactly convert the

model of Kumar and Seppi (1992) to one with a physical futures contract instead of a

cash-settled futures contract, it must be assumed that the non-strategic speculators of

Kumar and Seppi’s model would trade e in the physical futures market and −e in the

spot market.

Under the original model, the strategy of the manipulator is to take a cash-settled

futures position ∆ and trade z in the spot market, which generates an expected profit

of E[Π|∆, z] = E[∆(S − F ) + z(v − S)|∆, z]. Under a physical futures contract, this

strategy can be replicated by trading ∆ in the physical futures market, and z − ∆ in

the spot market, which would generate an expected profit of E[Π|∆, z] = E[∆(v − F ) +

(z −∆)(v − S)|∆, z] = E[∆(S − F ) + z(v − S)|∆, z]. In equilibrium, the market makers

will know that this is the strategy of the manipulator and will take it into account when

computing their expected spot and futures prices.

Assuming, as before, Bertrand competition among market makers and no information

in the futures market, the spot price will be the expected value of the asset given the

spot and futures orders:

S = E[v|ys, yf ] = E[v|yf ] + λ(ys − E[ys|yf ]) = µ+ λ(ys − E[ys|yf ]) (1.21)

To see that the spot price will end up the same whether there is a physical futures contract

or a cash-settled futures contract, equation (1.21) shows that one must determine if the

difference between actual and expected volume, ys−E[ys|yf ], is the same under each type

of contract. If ys − E[ys|yf ] is the same in both situations, then by the normality of the

random variables, λ = Cov(v, ys|yf )/V ar(ys|yf ) will be the same under both contracts.

ys − E[ys|yf ] represents the market maker’s best estimate of the net order flow that
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is driven by information. Therefore, if the market maker’s estimate of informed trading

does not change when switching from a cash-settled futures contract to a physical futures

contract, keeping all traders’ strategies the same, then the spot price will not change

either.

Assuming that the futures noise traders are non-strategic speculators, the spot order

flow due to futures traders under a cash-settled futures contract would be z. Under a

physical futures contract, it would be z−∆−e, since both the manipulator and the noise

traders trade in their physical futures position to get cash-settled positions. Since the

total spot order flow from futures traders is z−∆− e = z−yf and the futures order flow

yf is known, the inference problem of the market makers in the spot problem is the same

as with a cash-settled futures contract, they need to guess z from the futures order flow.

This can be seen in the following comparison, which demonstrates that ys − E[ys|yf ] is

the same under either contract.

Variable Cash-Settled Future Physical Future

yf ∆ + e ∆ + e

ys X + u+ z X + u+ z −∆− e

ys − E[ys|yf ] X + u+ z − E[z|yf ] X + u+ z −∆− e− E[z −∆− e|yf ]

X + u+ z − yf − E[z − yf |yf ]

X + u+ z − E[z|yf ]

If we instead assume that futures noise traders are hedging and that the only futures

contract available is a cash-settled futures contract, the hedgers would convert their cash-

settled futures positions to physical futures positions in the spot market by trading the

same quantity in the spot market as was traded in the cash-settled futures market. This

causes the spot market order flow driven by futures traders to be z + e. If the available

futures contract, were a physical futures contract, the hedgers would not trade in the

spot market, while the manipulator would make his spot trade z and convert his physical

futures position to a cash-settled one by trading −∆. Therefore, under a physical futures

contract, the spot market order flow driven by futures traders would be z − ∆. In the
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cash-settled case, the market makers must infer z + e from the futures order flow, while

in the second case, they must infer z −∆. However, since they know the futures order

flow yf and that yf = e + ∆ guessing e given yf is the same as guessing −∆ = yf + e

given yf . This can be seen in the following comparison demonstrating that ys−E[ys|yf ]

will be the same under either contract:

Variable Cash-Settled Future Physical Future

yf ∆ + e ∆ + e

ys X + u+ z + e X + u+ z −∆

ys − E[ys|yf ] X + u+ z + e− E[z + e|yf ] X + u+ z −∆− E[z −∆|yf ]

X + u+ z − yf + e− E[z − yf + e|yf ]

X + u+ z + e− E[z + e|yf ]

If only some futures noise traders hedge, while the other speculate non-strategically, the

same argument can be used to show that the spot price will be the same under either

type of contract.

Given that the formula for the spot price will be the same under either contract type,

the strategy of the manipulator will be the same under either contract as will his profit

and effect on the market. Therefore, if manipulation is profitable and moves the spot

price because there are non-strategic speculators with a cash-settled future, the same

strategy would also work with a physical futures contract, all else equal. Thus, Kumar

and Seppi (1992) find that manipulation is profitable with a cash-settled futures contract

but unprofitable with a physical futures contract because they fail to notice that when

they switch to a physical futures contract, if they continue to assume that futures noise

traders do not trade in the spot market, then they are actually assuming that the strategy

of the futures noise traders has changed from non-strategic speculation to hedging.
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1.4 Screening for Manipulation

The conditions for manipulation in the theoretical model presented above suggest

two potential screens for manipulability. Recall that the first condition identified for

profitable manipulation was that the price impact of a trade in the futures market must

be significantly lower than the price impact of a trade in the spot market. Otherwise, the

manipulator’s large position in the futures market would move futures prices adversely,

diminishing and perhaps eliminating the profit from manipulation. Thus a screen for

manipulability in a pair of markets would compare the price impact in the futures market

against the price impact in the related spot market. The more similar the price impact in

the futures market is to the price impact in the spot market, the less profit manipulation

will generate and the less likely manipulation will occur. Unfortunately, this is not easily

done in the case I examine here due to limitations in the available data and the nature

of the many futures contracts utilized by the accused manipulator.

The second condition for profitable manipulation which I identify is that some traders

in the futures market must consistently speculate non-strategically by taking a cash-

settled futures position and not trading in the spot market. Thus, one could screen for

manipulability by examining the spot market trades of those who held a position in the

futures market to expiration. The share of the open positions in the futures market at

expiration that cannot be matched with corresponding trades in the spot market would

indicate the share of non-strategic speculation. While this information could potentially

be gathered by surveying traders, it would be very costly and difficult to obtain a complete

picture of the proportion of trades driven by hedging versus non-strategic speculation.

A more useful screen would utilize data that is easily obtainable and simple to an-

alyze. I therefore suggest and test a screen for attempted manipulation that utilizes

obtainable data from an allegedly manipulated market. This screen can be employed

when manipulation is suspected to corroborate other evidence of manipulation and as a

first pass at identifying irregularities in market activity.

The theoretical model of manipulation presented above suggests that if manipulation
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is successful in moving the spot price, then manipulative trading increases the amount

of trading that is both uninformative about the spot price and indistinguishable from

the informative trading. This reduces the average informativeness of trading and causes

other traders to infer less about the true value of the asset from each trade, meaning that

the price impact of a trade will be lower. This suggests that if one suspects manipulation

has affected prices during a particular period of time, one can compare estimated price

impacts from potentially manipulated periods against price impacts in other periods or

in other similar markets. A finding that price impacts were lower than would be expected

given the comparison group would corroborate the evidence that the market may have

been manipulated in that period.

Note that the model implies that the equilibrium given any non-zero amount of non-

strategic speculation will involve manipulation. For price impact to decrease, it must

be that some other force has increased the wealth of the manipulator, the number of

manipulators per Kumar and Seppi (1992), or changed the amount of non-strategic spec-

ulation. Thus, this screen is most likely to be effective if an exogenous force has changed

market conditions. As the company accused of manipulation was allegedly trying to ma-

nipulate the price difference (or spread) between two spot markets in the case I am about

to examine, a third reason to expect increased manipulation arises: that the correlation

between the value of the assets in the two markets falls. When the correlation between

asset values in two markets falls, it increases the likelihood that a trade will move the

price in one market more than the price in the other market, thereby increasing the abil-

ity of a manipulator to move the spread between the prices via strategic trading. If the

value of the assets in the two markets were perfectly correlated, then any trade in either

market would have the same effect on both prices, moving the spread would be nearly

impossible, and manipulation would be unprofitable.

I propose three estimates of price impact that can used for such a screen. The first

measures the resilience of the market, that is, the frequency and speed with which, after a

trade, market prices return to their pre-trade levels before the next trade. When trading

is perceived to be less informative or is less correlated with new information, price will
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be more likely to return to its prior level after a trade and will return more quickly.

The second measure is the immediate price impact of a trade estimated from a vector

error correction model (VEC). Work by Sand̊as (2001) and Frey and Grammig (2006)

suggests that prices at each level of the order book will be based on the bidder or offerer’s

expectation of price if a trade were to take their full bid or more than their full bid. For

instance, suppose that there are 10 units available at the best bid, 5 at the second best

bid, and 20 at lower-priced bids. The price for the best bid will be based on that bidder’s

expectation of price given a trade that is 10 units or larger, while the price of the second

best bid will be based on that bidder’s expectation of price given a trade that is 15

units or larger. Therefore the price at each level is an overestimate of the revision in

expectations given a trade of a particular size, e.g. E[p|q > 10] > E[p|q = 10]. Thus,

an estimate of the immediate price impact of a trade, where the immediate impact is

defined as the part of the change in price between the second just before the trade and

the end of second in which the trade occurred that was caused by the trade, is likely to

be an overestimate of a trader’s new expectation of price after the trade occurs.

The final estimate, the permanent price impact of a trade, is derived from the impulse

response function of the VEC model. This estimator makes use of the full evolution of

the market after a trade. Although the estimators for the immediate and permanent

price impacts are likely to overstate the causal effect of a trade on price if trades are

correlated with new public information, the fact that manipulation reduces both the

correlation between trading and information and the causal impact of a trade suggests

that if estimates of the permanent price impact of a trade decline during an allegedly

manipulative period, then the change in the price impacts corroborates the evidence for

manipulation.

1.4.1 FERC’s Allegations Against BP

On September 1, 2008 at 10:00 am, Hurricane Gustav made landfall between Morgan

City and Port Grand Isle, Louisiana leaving 1 million customers in Louisiana without
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power, shutting off 92% natural gas production and causing damage to at least 21 nat-

ural gas pipelines in the Gulf of Mexico. As Louisiana began to recover from Gustav,

reports of another hurricane arrived. Although Hurricane Ike formed on September 1st

far out in the Atlantic Ocean, by September 7th it reached Cuba and then continued

into the Gulf of Mexico, headed for Texas. By September 13th, when Ike reached land,

just south of Galveston, Texas, its strength was reduced to a category 2 hurricane, but

the damage it inflicted was severe. Nearly 4 million customers in Texas, Louisiana, Okla-

homa, Arkansas, and Missouri were left without power, 22 natural gas pipelines reported

significant damage and without functioning pipelines, 40% of natural gas production in

the Gulf of Mexico remained off-line for over a month. Electricity was not fully restored

until 3 weeks later.

Given the severe disruptions to both supply and demand for natural gas, it is not sur-

prising that the usual price relationships between various locations in Texas and Louisiana

broke down during this period. Henry Hub, the delivery point for the New York Mercan-

tile Exchange (NYMEX) physical natural gas futures contract and the central location

for natural gas trading in the U.S., was not fully operational for over a month. In this

period, natural gas flowed from West Texas to East Texas to Louisiana and then up to the

Northeast and Midwest U.S. Disruptions on the pipelines between Texas and Louisiana

due to the hurricanes therefore backed up natural gas supplies in Texas while severe

reductions in supply from the Gulf of Mexico reduced supply flowing into Henry Hub

from the south. In combination, these phenomena lowered prices in East Texas relative

to those in Louisiana, the key Louisiana price being that at Henry Hub and the key East

Texas price being the Houston Ship Channel (HSC) price.

Figure 1.3 shows the relationship between the Henry Hub and HSC spot prices for

2008 through 2009. The spot prices in the figure are the weighted average prices of

trades executed in the next-day fixed-price markets at each location (gas traded in these

markets is delivered the next day). The dotted black line shows the spread, or price

difference, between the two locations. As can be seen, the spread increased dramatically

after Hurricane Ike and did not fully recover to pre-hurricane levels until April 2009. From
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Figure 1.3: Next-Day Natural Gas Prices at Henry Hub and HSC
Source: ICE.

September 18, 2008 to November 30, 2008, FERC alleges that BP diverted supplies from

Katy (just a few miles west of Houston) to HSC in order to lower the spot price of natural

gas at HSC relative to Henry Hub (widening the spread), thereby increasing BP’s profit

on a cash-settled futures spread position that benefited from lower prices at HSC relative

to Henry Hub.9

Entering the month of September 2008, among other positions, BP held a long position

in natural gas at Katy (i.e., they owned natural gas at Katy), 200,000 mmBtu of pipeline

capacity capable of moving natural gas from Katy to HSC, and a cash-settled futures

spread position between HSC and Henry Hub. The futures position had been established

9BP’s cash-settled position was technically in forward contracts, non-standard futures contracts,
which are subject to fewer regulations. Under the Dodd-Frank law, the contracts utilized by BP are now
designated as futures contracts. To keep terminology simple and consistent, I refer to these contracts as
futures contracts. The differences between forward and futures contracts are not relevant to the analysis.
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in January 2008 and benefited when the spread widened, i.e. the price at HSC went

down relative to the price at Henry Hub. Enjoying the massive profit earned when the

spread widened immediately following Hurricane Ike and recognizing that sales at HSC

generally move prices down, FERC alleges that BP attempted to increase their profit on

their futures spread position by utilizing their pipeline capacity and their long position

in natural gas at Katy to move gas from Katy to HSC in the days following Hurricane

Ike, to suppress the price at HSC relative to Henry Hub.

Enforcement Staff Report re: BP America Inc.

24

The Texas team used their increased Net Beginning-of-Day position to sell large 
volumes of gas at HSC for 48 out of 49 days in the investigative period.

Figure 3

Finally, the graph below shows how the Texas team became consistent and 
heavier net sellers of fixed-price gas at HSC at the same time they had a large financial 
spread position that benefited from weaker HSC fixed-price gas relative to Henry Hub 
fixed-price gas.

Figure 4

20130805-4001 FERC PDF (Unofficial) 08/05/2013

Figure 1.4: BP Futures Spread Position and Physical Fixed Price Trading
Source: BP Show Cause Order.

Observing that their strategy seemed to have been effective in the last weeks of

September 2008, FERC alleges that BP then created an even larger futures spread po-

sition between HSC and Henry Hub for the months of October and November 2008 and

increased their long position at Katy in anticipation of further manipulation attempts.

Figure 1.4, which comes from the BP Show Cause Order issued by FERC, shows BP’s

trading in the fixed price market and their HSC-Henry Hub futures spread position. The

dark blue bars illustrate BP’s fixed-price trades, with negative values indicating sales,

and the light grey shaded area illustrates BP’s spread position, where the negative val-
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ues indicate that the company held a short spread position and would therefore pay the

HSC price and receive the Henry Hub price. From this figure, one can see that during

the investigative period, BP sold natural gas in the next-day fixed-price market at HSC

nearly every day during the investigative period and that the quantity of their sales was

correlated with the size of their short position in the HSC-Henry Hub spread.

1.4.2 Data

To investigate the effect of BP’s trading on the next-day fixed-price natural gas mar-

kets in Texas and Louisiana, I obtained data from the Intercontinental Exchange (ICE)

which hosts the trading platform on which the allegedly manipulative trades took place.

ICE provides a centralized electronic exchange for trading standardized over-the-counter

contracts for physically-delivered natural gas (among many other commodities and prod-

ucts). Although a significant portion of natural gas trades are executed bilaterally or via

brokers, virtually all next-day fixed-price natural gas is traded on ICE. Thus, the data I

will utilize to test my screen encompasses nearly all of the trades in the relevant markets.

The data obtained from ICE contain all bids to buy, offers to sell, and consummated

trades that occurred from 2008 to 2009 in the next-day fixed-price natural gas markets

at HSC, Henry Hub, and Katy. In particular, the data contain one observation each time

a bid or offer was initiated, cancelled, temporarily withdrawn, changed, or consummated

(e.g. another trader accepted the bid or offer and a trade occurred). The bids and offers

are linked by order identification numbers, such that a particular bid or offered can be

tracked from the moment it is initiated until it is cancelled or consummated. The data do

not contain any identifying information about the traders who initiate the bids, offers,

and trades, nor is it possible to group bids, offers, and trades by trader. If a trader

accepts a bid, the trade is classified as a sale, as the initiator of the trade was a seller.

Similarly, if a trader accepts an offer, the trade is classified as a purchase.

The data contains 483 trading days. The main trading hours for a particular delivery

date are 7:30 am to 12:30 pm on the business day prior to delivery, although trading for
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each delivery date begins at 12:31 pm two business days prior to delivery. At the three

hubs in this dataset, approximately 95% of trades for a particular delivery date occur

between 8:00 am and 10:30 am. The smallest price increment or tick-size, is $0.0025.

The results will present price changes and price impacts in ticks rather than dollars to

facilitate interpretation.

Using the raw list of bids and offers, I transformed the data for each location into

an estimate of the order book that existed at the end of each second.10 An order book

contains the list of active bids and offers that could be accepted by other traders at a

particular moment in time. In the order book, active bids and offers are arranged in

ascending order and traders must generally accept the best bid (a.k.a. the highest bid)

if they would like to sell and the best offer (a.k.a. the lowest offer) if they would like

to buy. Differing from futures markets where anyone can trade with anyone else, in the

ICE next-day fixed-price natural gas markets, traders are constrained to only trade with

others with whom they have pre-arranged credit. To alert traders whether they can

accept a particular bid or offer, each individual trader sees the order book on his screen

with a green mark indicating that he can take a particular bid or offer because he has

credit with the other trader, or a red mark indicating that he does not have credit with

that bidder or offer and therefore cannot accept that bid or offer.11 As a result, traders

are only required to accept the best bid or offer within the group of bids and offers that

were initiated by those with whom they have credit. This frequently causes bids and

offers at higher levels of the order book to be consummated before the best bid or offer.

It also leads to periods where the best bid is above the best offer, but no trade occurs,

causing the bid-offer spread to be negative.

Table 1.1 displays a few summary statistics about each market. The average bid-offer

spread between 7:30 am and 12:30 pm, when one exists is larger at HSC than at the other

10As the precision of the time variable in my dataset was only to the nearest second, I often had to
guess the sequence of bids and offers within a second using information from earlier and later periods.
When it was not possible to guess the sequence with any accuracy, I chose the bid or offer that would
make the order book the steepest. Differences between the steepest possible order book and the flattest
possible order book were generally small.

11The order book is otherwise anonymous.
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HSC Henry Katy

Avg. Bid-Offer Spread $0.094 $0.067 $0.074
% of Seconds with Spread 67.0% 77.9% 69.1%
Avg. No. of Quotes 4.6 7.9 9.3
Avg. No. of Trades/Day 66.9 119.5 98.1
Avg. No. of Traders 21.8 36.4 35.7

Table 1.1: Summary Statistics by Market

two hubs. HSC is also somewhat less likely to have both a bid and an offer available

at any moment in time. On average, there are 4-5 quotes (bids and offers) available at

HSC, or roughly 2.5 bids and 2.5 offers, while Henry and Katy typically have closer to

8 or 9 quotes. HSC also has the fewest trades and the fewest traders per day. Traders

represents the number of unique people who bought or sold in a day.

1.4.3 Resilience

The first measure of price impact that I utilize is the resilience of the order book,

where resilience is defined as the frequency and speed with which, after a trade, bids

or offers return to their pre-trade levels before the next trade on the same side of the

book. As traders who accept all available bids or offers at a particular price level have an

instantaneous effect on the price at which the next trader could sell or buy, these trades

instantaneously change prices even if they have no permanent effect on beliefs or prices.

When trading is perceived as less informative or is less correlated with information, prices

will be more likely to recover after a trade and will recover more quickly. As BP allegedly

manipulated the market by selling, I focus the analysis on the bid side of the order book.

Utilizing the raw list of active bids and sales, I measure the share of sales after which

a new bid with a price greater than or equal to the sale’s price arrives prior to the next

sale. Given that a better or equally-priced bid arrives before the next sale, I also measure

the median time between the trade and the arrival of the better or equally-priced bid. As

multiple bids are often accepted by sellers in the same second, I look for a new bid with

a price greater than or equal to the highest-priced bid that was accepted in each second.
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Many trades only accept part of a bid, and therefore have no instantaneous effect on

price. These trades are dropped from the analysis.12

By design, the order book only records prices at the end of each second, and therefore,

any fleeting bids lasting less than one second are not displayed in the order book. Using

the raw list of active bids allows me to observe the fleeting bids and avoids any sequencing

inaccuracies that occurred during my recreation of the order book. Many sales also occur

at higher levels of the order book, that is, the seller accepts the second or third best bid

because he does not have credit with the buyer associated with the first or second best

bid. Looking for new bids at equal or better prices in the raw list of bids allows me to

include these trades in the analysis with the same weight as a trade at the best bid or

offer.

1.4.4 Vector Error Correction Model of Price Impact

Trading at HSC, Katy, and Henry Hub is strongly entwined together. Consequently,

to accurately model the evolution of prices and trading at HSC, the activity in the other

markets should be included. To isolate the effect of a sale on the available bids, I model

bids and offers and purchases and sales separately at each hub. As BP sought to sell

natural gas at HSC, they either submitted offers or accepted bids. Thus, the bids were not

controlled by BP and reflect reactions to BP’s sales activity. To improve identification, I

include variables for the total quantity available at the best bid and best offer, and the

price of the second best bid and second best offer.

Hasbrouck (1991a,b) was the first to suggest modeling the price impact of a trade

with a dynamic system and showed that ignoring the indirect impacts of trades could

seriously bias the estimated price effect of a trade. For instance, if a purchase increases

the price and causes a sale to occur, the immediate effect of the purchase overestimates

12If there are multiple active bids with the same price and a seller does not accept all of the bids at
that price, this would also not change the price. However, the current methodology does not allow me
to flag these trades and they are therefore included in the analysis. These trades do reduce the quantity
available at the sale’s price, however, meaning that new bids arriving at that price or better would still
indicate a return of the order book to its pre-sale state.
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the trade’s permanent effect on price. His original model was a vector autoregression

(VAR) containing two endogenous variables, the change in the midpoint between the bid

and offer (mt), and the signed volume of a trade (xt).

∆mt = λ0xt +
L∑
s=1

λsxt−s + +
L∑
s=1

γs∆mt−s + εt

xt =
L∑
s=1

βsxt−s +
L∑
s=1

αs∆mt−s + ηt

This model also accounts for his earlier observation, in Hasbrouck (1988), that expected

trades cannot hold any private information and therefore it is the unexpected part of

trades the influences prices. If other traders commonly believe there is a high probability

that a purchase of one unit will occur shortly, that expectation will already be incorpo-

rated into the price. If the one unit purchase actually arrives, the price should not change

significantly. Therefore, to estimate the price impact of a trade, one must also include an

estimate of the expected trade. The VAR model implicitly incorporates the expectation

of a trade, though it is limited to the expectation that can be formed given the variables

included in the model. That is, if the expectation of future trade quantities is based on

past trades and past midpoints, then since those variables are already included in the

model for the midpoint of the bid and offer prices, the expectation of the future trade

quantity is incorporated as well.

In the years since the Hasbrouck papers were published, a number of authors have

built on his methodology. In Engle and Patton (2004), the authors estimated the price

impact of trades using a VEC model with the bid and offer modeled separately, rather

than taking the midpoint. They motivate this approach through the empirical results of

Jang and Venkatesh (1991) which illustrate that after no change at all, the most common

effect of a buy is to move only the offer, and the most common effect of a sale is move

only the bid. Modeling only the midpoint obscures this valuable information and the

dynamic effects of a trade. Furthermore, they note that although the bid and offer are

generally non-stationary variables, the difference between them, the bid-offer spread, is
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stationary. That is, the bid-offer spread is relatively constant over time. Therefore, the

bid and offer are cointegrated variables, where the cointegration vector is the spread,

and the appropriate model is not a VAR in differences but a VEC model. However,

to simplify their analysis, they do not model trading as endogenous and therefore are

unlikely to correctly identify the effect of a trade.

Building on Hasbrouck (1991a,b) and Engle and Patton (2004), Escribano and Pascual

(2006) makes trading endogenous and separately estimates the impact of a buy and a

sale on the bid and offer in a VEC model. Mizrach (2008) then demonstrated empirically

that ignoring the other levels of the order book, i.e. the higher offers and lower bids, may

bias the estimated price impacts. Several papers since then, such as Hautsch and Huang

(2012) and Fleming and Mizrach (2009), have made use of these innovations to examine

how trading effects prices in various markets.

Modifying the derivation of the VEC model of Pascual et al. (2006), which examines a

security traded in many markets, and of Escribano and Pascual (2006), which illustrates

the method for a model including bids, offers, and trading information, I derive the VEC

model used to analyze whether the price impact of a sale at HSC was lower during the

investigative period than would otherwise be expected. Let vt be the expected true value

of next-day natural gas at HSC given all information available at time t on day d. I

suppress the subscript d for simplicity. Suppose that the expectations of the true values

at Katy (vKt ) and Henry Hub (vHHt ) differ from that at HSC only by a constant plus

long-lived noise, representing transportation costs and supply and demand conditions

that vary over long periods of time as infrastructure, technology, and tastes adjust. The

noise can also account for medium-term changes from one day to the next driven by

weather, etc. the effects of which are likely to be fairly accurately anticipated by traders
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before trading for a day begins. That is:

vHSCt = vt

vKt = vt + cK + εKd

vHHt = vt + cHH + εHHd

cK and cHH represent the constant price differences and εKd and εHHd the noise, which

varies across days but not within a day.

Suppose that the expectations of the true value adjust within a day due to shocks to

common knowledge, such as new weather reports, and inference from observed trading,

which reveals private values and private information. Then the innovation process can

be represented as:

vt = vt−1 + It + λξt (1.22)

Here, It represents new public information, available to traders at all hubs, and ξt is a

6x1 vector representing unexpected purchases and sales at each hub, a.k.a. the trading

innovation. As I assume that the difference between the expectations of the true values

in each market is constant across a day, new public information within a day affects only

expected price levels, not the expected spread between prices, causing the expectation

of the true value at any particular hub to evolve according to the same process. This

assumption seems to hold in general in the data as the spreads between hubs in each

of the periods I define later are stationary variables according to a Dickey-Fuller test

with 15 lags. In the periods during and shortly after the hurricane, deviations from the

average spread are corrected more slowly than in other periods but all of the price series

still generally move together.

I follow Hasbrouck (1991a,b) and Escribano and Pascual (2006) in assuming that the
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bid and offer generating process at each hub can be represented by:

oit = vit + αi(oit−1 − vit−1) +
l∑

s=0

Aisxt−s + ηo,it

bit = vit + βi(vit−1 − bit−1) +
l∑

s=0

Bi
sxt−s + ηb,it

oit and bit represent the offer and bid available at the end of time t in market i. xt is a

6x1 vector of the purchases and sales made at time t. ηo,it and ηb,it are idiosyncratic errors

caused by market inefficiencies and model misspecifications. This model assumes the bids

and offers are driven by the expected true value, inventory considerations (represented by

the Aisxt−s and Bi
sxt−s terms which indicate that trades affect bids and offers for reasons

other than the new information they reveal), and competition between the traders setting

the bids and offers which causes bids and offers to be drawn toward the expected value

of the asset (represented by adjustment terms oit−1 − vit−1 and vit−1 − bit−1).

Rewriting each equation as

(1− αiL)(oit − vit) =
l∑

s=0

Aisxt−s + ηo,it

(1− βiL)(bit − vit) =
l∑

s=0

Bi
sxt−s + ηb,it

where L indicates the lag operator, and then dividing by the lag coefficient on the left-

hand side and applying the difference operator yields:

∆oit = ∆vit + Ã(L)ixt + θ̃o,i(L)ηo,it (1.23)

∆bit = ∆vit + B̃(L)ixt + θ̃b,i(L)ηb,it (1.24)

The Ã(L)i, B̃(L)i, θ̃o,i(L), and θ̃b,i(L) operators are collections of all the lag operators

and coefficients entering the equations. The change in the expected true value can be

44



removed using equation (1.22):

oit = oit−1 + Ã(L)ixt + θ̃o,iηo,it + It + λξt (1.25)

bit = bit−1 + B̃(L)ixt + θ̃b,iηb,it + It + λξt (1.26)

Similarly the trading process at each hub is described by:

xB,it = γiB(oit−1 − vit−1) + ξB,it

xS,it = γiS(vit−1 − bit−1) + ξS,it

xB,it and xS,it represent the quantity bought and sold at hub i. Note that the error terms,

ξB,it and ξS,it are elements of the ξt vector determining the innovation in the expected value.

Here, the decision to buy is based upon the distance between the best offer existing when

the trader makes his decision and the expected true value, as to buy immediately one

must accept an offer. Correspondingly, the decision to sell is based upon the difference

between the best bid and the true value. Finally, an identifying assumption has been

made: that the decision to buy or sell is not related to new public information, It. I will

discuss the validity of this assumption in the next section. Using equations (1.23) and

(1.24) before the difference operator was applied, one can substitute out the expected

value of the natural gas:

xB,it = γiBÂ(L)ixt−1 + γiB θ̂
o,i(L)ηo,it + ξB,it (1.27)

xS,it = γiSB̂(L)ixt−1 + γiS θ̂
b,i(L)ηb,it + ξS,it (1.28)

To eliminate the trade related shocks, ξt, in equations (1.25) and (1.26), one can

substitute from equations (1.27) and (1.28). Stacking all of the bid, offer, and trade

equations, a VARMA model is obtained as the error terms contain a moving average

(MA) of the errors from prior periods. By inverting the MA coefficients on the error
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term and truncating at lag p, a VAR(p) model in levels is obtained.

yt =


ot

bt

xt

 =


Co

0

Cb
0

0

xt +

p∑
s=1

Csyt−s + ut (1.29)

The bids and offers are non-stationary and also contain a single common trend vt−1 that

causes the non-stationarity. Therefore, since there are 6 prices, and one trend, there are

5 cointegrating vectors, which are known: the bid-offer spread at each hub, the spread

between HSC and Katy and the spread between HSC and Henry (the spread between

Henry and Katy is redundant). I define the spread between HSC and Katy and HSC

and Henry using the bids at each hub. The model can then be rewritten using Granger’s

Representation Theorem from Engle and Granger (1987) in vector error correction form:

ỹt =


∆ot

∆bt

xt

 =


Co

0

Cb
0

0

xt +

p−1∑
s=1

C̃sỹt−s +Dpxt−p + Est−1 + ut (1.30)

st−1 represents the 5 spreads in t− 1. Note that, as xt is already stationary I keep it in

levels.

The immediate price impact of a trade can be measured by the coefficient on xt

in each equation. To obtain the long-run permanent price impact of a trade requires

computation of the impulse response function, which illustrates how a shock reverberates

through the market over time. For instance, a trade shock has an immediate impact on

prices measured by C0. In the next period, the change in prices last period affects both

how prices change this period and how much is traded this period. To calculate the

impulse response functions, Lütkepohl and Reimers (1992), advise converting the VEC

model back into a VAR model in levels. Therefore, in Appendix 1.B, I explain how to

map the coefficients from the VEC model into the VAR(p) model. Given the matrix Cs

which contains all of the coefficients for lag s, the impulse response function r periods
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after the shock is computed as:

Φr =
r∑
q=1

Φr−qCq for r = 1, 2, . . . (1.31)

where Φ0 =


I 0 Co

0

0 I Cb
0

0 0 I

 and Cq = 0 for q > p (1.32)

The permanent price impact of a sale at HSC, for instance, can be measured by assuming

a one unit shock to the HSC quantity sold equation occurs and that there are no shocks

to any other variables. The shock vector is then multiplied by the impulse response

coefficients Φr for each period r after the shock.

1.4.4.1 Identification

To identify the impact of a trade from the preceding VEC model requires that (1)

trades are not caused by new public information that would cause price to move even in

the absence of the trade, and (2) that trades are not autocorrelated due to exogenous

pre-planned trading strategies such as order-splitting. As Hasbrouck (1991a) points out,

(1) does not require that trades be entirely independent of information, it does require,

however, that information affect trades only through past prices. That is, price increases

caused by observation of a demand shock can cause trading, but the demand shock itself

cannot affect trading directly. Many theoretical models of financial markets justify this

assumption by arguing that prices should always perfectly reflect all available public

information and therefore trading on public information would yield no financial benefit.

In commodity markets, where demand shocks can cause trading because more of the

commodity must be acquired, this seems a difficult assumption to maintain. Further, if

market frictions exist or if traders differ in the speed with which they process information,

stale orders, with inaccurate prices, may remain available and may be picked-off by other

traders. In this case, it is not the trade that is causing the price to move, but the trade’s

correlation with public information. Thus the price impacts coefficients from the current
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model are likely to overestimate the effect of trades on price.

To perfectly identify the potential effect of manipulative trading, uncorrelated with

information about the asset’s true value, would require either knowledge of which trades

were manipulative (and not information-motivated), which may be known to investiga-

tors of a particular case, or the ability to separate trades into those motivated by new

information versus those motivated by private liquidity needs. Note that this model can-

not prove whether a trade was manipulative or not, it only produces estimates of price

impact assuming the trades are not motivated by information. However, my purpose

is to identify whether manipulative trading may have occurred. If manipulative trading

is occurring it has two effects, as discussed in the theoretical model. First, it increases

the amount of uninformative trading, which reduces the correlation between trading and

information. Second, it lowers the causal effect of trade on price. As both the correla-

tion and causal impact move in the same direction if manipulation occurs, a lower price

impact coefficient during a period under investigation corroborates the evidence that

manipulation may have occurred.

A number of empirical papers, such as Biais et al. (1995), have documented strong

positive autocorrelation in trading activity, meaning that buys tend to follow buys and

sales to follow sales. One explanation for such a pattern is that traders who need to

trade a large quantity divide the total quantity they need to trade into many small

trades to reduce their price impact on the market, a strategy known as order-splitting.

Theoretical models by Obizhaeva and Wang (2013) and Alfonsi et al. (2010) confirm that

if part or all of the price impact of a trade is transient, that is, if price and the quantity

of outstanding bids and offers are expected to recover after a trade, then order-splitting

is the optimal strategy. Thus a past trade would not be the cause of the current trade,

it would just be correlated because of a trader’s pre-planned strategy. This may also be

a problem for estimating the effect of trades at one hub on the trades at another if two

trades are executed to profit from a price divergence across hubs, but are not executed

simultaneously. If order-splitting and arbitrage are the main reasons for the correlation

between current and past trades, this will bias upward the estimates of price impact from
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the impulse response functions. However, if the upward bias across periods and locations

is similar, because the manipulator’s trades also generated autocorrelation, then it may

not bias the comparisons over time and across hubs that I use to infer whether price

impact declined during the investigative period.

If publicly observable features of the order book influence both trade and price

changes, then excluding them from the model introduces unnecessary bias in the es-

timates of price impact. That is, suppose the price of the second best bid just decreased,

getting farther from the first best bid. A trader may take this as a sign that prices are

decreasing and he should trade now to get the best price. If other bidders also see the

decrease in the second best bid as a sign the price should decrease, then the price of the

best bid would go down even if the trade does not occur. Thus, the best bid decreases

mainly because the second best bid decreased and failing to control for the second best

bid in the model would yield estimates that overstate the effect of the trade. Therefore,

to improve identification, I augment the model with the second level of prices in the order

book, that is the second best bids and offers and the quantity available at the best bid

and best offer. Adding the second level of prices adds 6 more spreads to the model, the

spread between the second best bid and first best bid, and the spread between the second

best offer and first best offer at each hub. As the quantity at the best bid and best offer is

stationary according to a Dickey-Fuller test with 15 lags, I add it to the model in levels.

The basic identifying assumptions of the model are that past trades and features of

the order book are not correlated with the current error term. Additionally, I assume

that the bid (offer) side of the order book at the hub at which a sale (buy) occurs is

causally affected by a same second sale (buy). The other side of the order book at that

hub and the order book at other hubs can only be causally affected by that trade with a

lag. For example, of the contemporaneous trades at the three hubs, only a sale at HSC is

included in the equation and is therefore permitted to affect the contemporaneous bids at

HSC (as a sale at HSC generally will have an instantaneous and automatic effect on the

bids at HSC even if the bidders take no action post-trade). Sales at HSC are therefore

assumed to be uncorrelated with the error terms in the equations for the bids at HSC. All
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other contemporaneous trades are not included in the regressions for the bids at HSC.

Similarly, only contemporaneous purchases at HSC are included in the offer regressions

for HSC. This assumption is justified if it takes time to observe and digest how a trade

changes the expectations of those who are not involved in the trade. If allowing trades

at other hubs or purchases at HSC to affect the contemporaneous bid at HSC would

generate non-zero estimates of their price impact, I assume it is due to the correlation

between trading and new information and does not indicate a causal relationship.

1.4.4.2 Estimation and Testing

The data for the next-day natural gas markets at HSC, Katy, and Henry Hub have

a problem that does not occur in the data for equity and other financial markets that

are generally utilized in studies of trading activity. Namely, in ICE next-day natural gas

markets there are many periods when there is simply no bid or offer available at one or all

of the hubs. It is not that I face the usual sort of missing data problem, where there are

bids and offers and I just don’t see them. The problem is that sometimes no one is offering

to buy or sell. A trader who wants to buy natural gas at HSC is completely unable to

do so in a second when there is no offer available. The fact that no one is offering to

buy or sell is therefore meaningful. Ignoring observations where a price is missing at one

or more hubs eliminates valuable information and can cause inaccurate estimates of the

dynamics the system. For instance, estimating the model with only the observations for

which all variables and all necessary lags exist yields estimates that indicate there is no

cointegrating relationship between hubs, despite the strong co-movement in prices that

can be seen from casual observation of the price series.

To account for the missing data requires several adjustments to the usual estimation

strategy. Note first that the trade quantity and the quantity at the best bid and offer do

not have a missing data problem, as if there are no bids and offers, the quantity variables

are just zero. Second, except for the spread variables, which I treat differently, the prices

enter the model as price changes. If a price was missing last period and is still missing
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now, I record it as a zero price change since the missing-ness of the price did not change.

Thus, the price changes are only missing if the price was not missing last period but is

now missing (it went to missing) or if it was missing last period but now is not missing

(it came from missing).

Third, I make two versions of each of the price change variables. In one version, which

is used when that variable is the independent variable, the to-missing and from-missing

observations remain missing. In the second version, which is used when that variable is

a dependent variable, I fill in all missing observations with zeros. I then generate two

dummy variables for each variable indicating in one if the variable came from missing

and in the other if the variable went to missing.

In each equation, one lag of each spread appears. The spread is based upon price

levels and therefore if one of the two prices that make up the spread is missing, the spread

is missing. Note that if a price came from missing, its price change will be missing but the

spread may not be. To account for the effect of all the reasons a spread may be missing,

I generate several different variables. First, I generate a dummy variable indicating

whether each price was missing, e.g. I generate one dummy variable indicating if there

was no bid at HSC, and another indicating if there was no offer available at HSC, etc. I

also create dummy variables indicating, for each hub, if the bid-offer spread was missing,

if the HSC-Henry spread was missing, and if the HSC-Katy spread was missing. This

allows the effect of a non-existent spread to vary depending on the reason that it does

not exist. Note that I define the HSC-Henry and HSC-Katy spreads using the difference

between the best bids at each hub as these are least likely to be missing.

Therefore in each price change regression, the independent variable has missing obser-

vations whenever it came from missing or went to missing. The dependent variables are

the adjusted versions of each variable, with zeros where they were missing and dummy

variables indicating that they were missing and why. In this way, I only lose the obser-

vations in each equation where the independent variable was missing and can measure

and control for the effect of other variables being missing. Since every disappearance

of a bid or offer is matched by a reappearance, it is equally likely that a price change
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will be missing because the bid disappeared as because a bid reappeared. Therefore,

I assume that the expectation of the error term is still zero in all of the price change

equations. That is, if a price becomes missing because of a bad shock and it comes back

from missing because of a good shock, both the top and bottom of the distribution of the

error term are truncated and the expectation of the error will not change. This strategy

may still underestimate some of the dynamics that pull a price back from missing or

send it to missing, but is a vast improvement over totally ignoring the missing data. For

simplicity, I treat all of the dummy variables indicating whether a variable was missing

as exogenous. In the impulse response analysis, I estimate the effect of a shock assuming

nothing was missing and that the shock does not cause anything to become missing.

As each of the 24 equations uses different observations and dynamics are severely

biased if any are lost, I currently estimate the model equation-by-equation to obtain the

coefficients for the impulse response function. Following much of the literature, to reduce

the size of the data and account for the differences in duration between events that arise

due to differences in trading activity across a day, I drop any second in which none of

the variables change at any of the hubs.

I divide the data into six periods based upon the hurricane and manipulation periods

and their effect on the spread between HSC and Henry Hub prices. The first period, the

pre-hurricane period, runs from the beginning of the data, January 1, 2008, to August

31, 2008 and has roughly 221,000 observations. As Hurricane Gustav made landfall

on September 1, 2008 and Hurricane Ike on September 13, 2008, I mark the month

of September 2008 as the Hurricane period. It has roughly 22,600 observations. BP’s

attempts to manipulate allegedly continued until the end of November 2008. As market

conditions seem to have been quite different in October and November 2008, I define

October 2008 as one period and November 2008 as another. They have roughly 29,000

and 25,000 observations respectively. As the spread between Henry Hub and HSC did not

recover until mid-April 2009, and as trading patterns seem to have shifted considerably

toward the end of 2009, I define December 1, 2008 to April 15, 2009 as the next period.

It has roughly 95,000 observations. The final period is April 16, 2009 to December 31,
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2009, which has roughly 212,000 observations.

To account for variation in trading across the trading day, I include dummy variables

in each equation indicating the hour.13 To account for any time trends, I also include a

trend variable. As the various spreads do not have a zero mean and because they vary

by hour and across days, the cointegrating vector has a non-zero intercept. To account

for this, I regress each spread on dummy variables for the hour of the day and the time

trend. When including multiple time periods in a specification, I also include dummy

variables for the period. If only one period is being used in a specification, I use only

data for that period to estimate the intercept of the cointegrating vector. I then utilize

the residuals in the VEC model, which are the spreads less the time trend and the hourly

and period-specific means.

To determine the number of lags to include in the model (and keep them consistent

across time periods), I estimate the model using the entire dataset with dummy variables

for each time period, compute the residuals from each equation and utilize the Akaike

Information Criteria (AIC), which indicates that 7 lags of each variable are sufficient.14

With 7 lags of each variable, the constant, the time trend and the dummy variables for

each hour, there are 335 variables in each regression (334 in the regressions for quantity

sold and bought which do not contain any contemporaneous variables) for a total of 8,034

coefficients to be estimated.

I estimate the model separately for each time period to compute the impulse response

functions, which allows for dynamics to be completely different across periods. To test

whether the immediate price impact of a trade at HSC differs across hubs in a particular

period, I estimate pairs of equations via seemingly unrelated regression (SUR). That is,

to find out if a sale at HSC has a greater immediate impact on the best bid at HSC than

a sale at Henry has on the best bid at Henry, I estimate the two best bid equations for

HSC and Henry jointly via SUR. This retains as many observations as possible, while

allowing for computation of the test statistic. To test whether the immediate price

13I combine the few observations for 12:00-12:30 pm with those for 11:00 am-12:00 pm.
14Note that to compute the likelihood used in the AIC, I lose the 11% of the 605,000 observations

where one or more of the price variables is missing.
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impact of a trade varies between periods, I generate two versions of every variable for

the two time periods to be compared and re-estimate each of the best bid and offer

regressions combining the two time periods and including both versions of each variable.

This allows for all of the dynamics to be different between time periods, while permitting

me to test for differences in the immediate price impact coefficients. Estimates of the

immediate price impact coefficients are virtually unchanged in these auxiliary regressions.

Estimates of the standard errors when regressing one equation at a time are computed

using White’s heteroskedasticity robust estimator and are generally higher than those

estimated via SUR.

1.4.5 Results

The following figures and tables illustrate the estimated resilience and price impact of

sales at HSC, Henry Hub, and Katy for each of six time periods: pre-hurricane (January -

August 2008), hurricane (September 2008), October 2008, November 2008, post-hurricane

1 (December 1, 2008 - April 15, 2009), and post-hurricane 2 (April 16, 2009 - December

31, 2009). As the hurricanes created significant uncertainty, any effect BP’s manipulative

activity had in the first few days post-hurricane is extremely difficult to separately iden-

tify. I therefore focus my analysis on whether the price impact in October and November

2008 was lower than would otherwise have been expected.

To determine if a price impact is lower than expected, I utilize two types of com-

parisons, (1) over time, and (2) across locations. If the hurricanes created a lingering

increase in uncertainty that dissipated gradually, one would expect that resilience would

increase gradually and price impact would decrease gradually as time passed. I there-

fore compare the price impacts in October and November 2008 against all periods not

affected by the hurricane or alleged manipulation (termed non-hurricane for brevity) and

against the post-hurricane 1 period, during which the spread between Henry Hub and

HSC remained wider than it was pre-hurricane. The wider spread in the post-hurricane 1

period indicates that the recovery from the hurricanes was not yet complete and therefore

54



provides the most similar comparison group. In comparing across locations, I examine

the similarity between resilience and price impact estimates for sales at HSC, sales at

Henry Hub, and sales at Katy within the same period. Note that the price impacts pre-

sented are the absolute values of the estimated price impacts (which are negative since I

examine sales) to facilitate interpretation.

Figure 1.5 displays graphically the estimated resilience at the three locations. While

resilience in October 2008 at Henry Hub and Katy was roughly similar to resilience during

the hurricane period, resilience at HSC increased dramatically from September 2008 to

October 2008. In fact, resilience at HSC in October 2008, was higher on average than

during any other period of time, a fact confirmed by the t-test assuming unequal variance

displayed in Table 1.2. In the months following October 2008, resilience at Henry Hub

rose somewhat as might be expected during the recovery from a shock, while resilience

at HSC fell steeply in November 2008, then rose again in the post-hurricane 1 period.

Estimates of resilience at Katy are highly correlated with those at HSC, excluding the

jump in October 2008, which is expected given the proximity of the two locations. Thus,

the October 2008 estimates of resilience support the hypothesis that price impact was

lower in October 2008 than might have otherwise been expected, while the November

2008 estimates do not support the hypothesis.

Alternative Oct/Nov Non-Hurricane
Hypothesis Avg. Avg. T-Stat. P-value

Oct-08 > Non-Hurr. 55.1% 49.6% -2.679 0.004
Nov-08 > Non-Hurr. 45.3% 49.6% 1.789 0.963

Table 1.2: T-Tests of Differences in Resilience over Time at HSC

Figure 1.6 displays the time to price recovery given that recovery occurs before the

next sale. This figure shows that the median time to price recovery was faster in October

2008 and November 2008 than in the post-hurricane 1 period. A t-test of the average

time to recovery, assuming unequal variance, supports the hypothesis at a 90% confidence

level that both the October and November 2008 periods had faster price recovery on

average than the post-hurricane 1 period (see Table 1.3). The χ2 test implemented by
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Stata to test whether the median of two distributions is the same indicates the median

time to recovery was significantly different in October 2008 than in the post-hurricane

1 period, but not in November 2008 (see Table 1.4). Comparing across locations, the

median October 2008 recovery time was faster than at Henry Hub, but the November

2008 recovery time was slower than at Henry Hub. These observations are confirmed

by hypothesis tests in Tables 1.5 and 1.6. Thus, the October 2008 results are more

supportive than the November 2008 results of the hypothesis that price impact was lower

than expected during the alleged manipulation.

Alternative Oct/Nov Post-Hurr. 1
Hypothesis Avg. Avg. T-Stat. P-value

Oct-08 < Post-Hurr. 1 114 152 1.502 0.067
Nov-08 < Post-Hurr. 1 112 152 1.319 0.094

Table 1.3: T-Tests of Differences in Mean Time to Recovery at HSC

Alternative Oct/Nov Post-Hurr. 1 Chi2

Hypothesis Med. Med. Stat. P-value

Oct-08 6= Post-Hurr. 1 26 40.5 13.64 0.000
Nov-08 6= Post-Hurr. 1 32 40.5 0.459 0.498

Table 1.4: Tests of Differences in Median Time to Recovery at HSC

Alternative HSC Henry Hub
Hypothesis Avg. Avg. T-Stat. P-value

Oct-08, HSC < Henry 114 131 -0.686 0.246
Nov-08, HSC < Henry 112 78 2.070 0.981

Table 1.5: T-Tests of Differences between Mean Time to Recovery at HSC vs. Henry
Hub

Alternative HSC Henry Hub Chi2

Hypothesis Med. Med. Stat. P-value

Oct-08, HSC 6= Henry 26 39 8.847 0.003
Nov-08, HSC 6= Henry 32 15 16.95 0.000

Table 1.6: Tests of Differences between Median Time to Recovery at HSC vs. Henry Hub
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Figure 1.6: Median Time in Minutes to Price Recovery, Given Recovery Occurs
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From Figure 1.7, one can see that the immediate price change after a sale, that is

the change in the best bid from one second before a sale to the end of the second in

which a sale occurred, is lower in October 2008 and November 2008 than in the post-

hurricane 1 period. Additionally, the average immediate price change in October 2008

appears lower than in any other period in the dataset. Hypothesis tests, displayed in

Table 1.7, illustrate that although the point estimates are indeed lower, one cannot reject

any of the hypotheses at the 95% confidence level. The null hypotheses that the October

2008 immediate price change is lower on average than in other periods can be rejected

at lower confidence levels than the November 2008 hypotheses, but at best it can only

be rejected at the 90% confidence level indicating weaker support for the hypothesis

of smaller price impacts in the manipulative period. Comparing across locations and

excluding the hurricane period, the immediate price change in the bid at HSC due to a

sale at HSC appears to always be greater than the immediate price change in the bid at

Henry Hub (Katy) due to a sale at Henry Hub (Katy).

Alternative Oct/Nov Non-Hurricane
Hypothesis Avg. Avg. T-Stat. P-value

Oct-08 < Non-Hurr. 3.63 4.15 0.882 0.189
Nov-08 < Non-Hurr. 3.79 4.15 0.478 0.317

Oct-08 < Post-Hurr. 3.63 4.39 1.264 0.103
Nov-08 < Post-Hurr. 3.79 4.39 0.791 0.215

Table 1.7: Tests of Differences in Immediate Price Change over Time at HSC

Turning to the results of the VEC model, Figure 1.8 depicts the immediate price

impacts of sales at each location on their respective bids. The immediate price impact

estimate for HSC sales in October 2008 again appears lower than in any other period,

and the November 2008 immediate price impact estimate is again lower than in the post-

hurricane 1 period, but higher than in October 2008 and other non-hurricane periods.

F-tests, shown in Table 1.8, indicate that the October 2008 results are significant at

the 99% confidence level, while the November 2008 immediate price impact estimate is

only significantly lower than the post-hurricane 1 period at the 75% confidence level.
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Table 1.9 compares the estimated immediate price impact at HSC against the estimated

immediate price impacts at Henry Hub and Katy. In the pre and post-hurricane periods,

the immediate price impact of a sale at HSC is significantly higher than the immediate

price impact of sales at Henry Hub and Katy. However, in October 2008 (but not in

November 2008), the immediate price impact of a sale at HSC was significantly lower

than the immediate price impacts of sales at the other locations. Thus, comparing across

time periods and locations, the October 2008 results are again more supportive than

the November 2008 results of the hypothesis that price impacts were lower than their

expected level, although the November 2008 results are not entirely inconsistent with the

hypothesis.

Alternative Oct./Nov. Other
Hypothesis Coef. SE Coef. SE F-Stat. P-value

Oct-08 < Pre-Hurr. 1.66 0.22 2.56 0.17 10.45 0.00
Oct-08 < Post-Hurr. 1 3.37 0.25 26.38 0.00
Oct-08 < Post-Hurr. 2 2.61 0.20 10.26 0.00

Nov-08 < Pre-Hurr. 2.88 0.68 2.56 0.17 0.21 0.68
Nov-08 < Post-Hurr. 1 3.37 0.25 0.45 0.25
Nov-08 < Post-Hurr. 2 2.61 0.20 0.15 0.65

Table 1.8: Tests of Differences in Immediate Price Impact over Time at HSC

Finally, Figures 1.9 and 1.10 illustrate the longer term responses of bids to sales at

HSC. Figure 1.9 compares the response of the bid at HSC to a sale at HSC as the time

since the sale increases for each of the six time periods. Although in a few of the initial

periods the price impact of a sale at HSC is larger for October or November 2008 than

in the post-hurricane 1 period, the medium-term price impacts appear lower (and almost

identical) in October 2008 and November 2008 than in the post-hurricane 1 period. The

permanent price impact of a trade, that is, the price impact after all bids and offers at

all three hubs have converged to a stationary level, is displayed in Figure 1.10. This

figure indicates that the permanent price impact of a trade at HSC may have been lower

in October 2008 than in the post-hurricane 1 period, while the November 2008 price

impact is similar to that in the post-hurricane 1 period. Furthermore, in October 2008,
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Figure 1.7: Immediate Price Change Post-Sale
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Figure 1.8: Immediate Price Impact
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Alternative HSC Other Hub Chi2

Period Hypothesis Coef. SE Coef. SE Stat. P-value

Pre-Hurr. HSC > Henry 2.56 0.05 1.93 0.07 50.05 0.00
HSC > Katy 2.06 0.11 15.85 0.00

Hurricane HSC > Henry 5.76 0.35 2.77 0.13 64.05 0.00
HSC > Katy 7.28 0.66 4.14 0.98

Oct-08 HSC < Henry 1.66 0.13 2.21 0.12 9.71 0.00
HSC < Katy 2.45 0.18 12.39 0.00

Nov-08 HSC < Henry 2.88 0.16 1.65 0.15 31.49 1.00
HSC < Katy 1.34 0.15 50.39 1.00

Post-Hurr. 1 HSC > Henry 3.37 0.10 2.18 0.06 109.92 0.00
HSC > Katy 1.36 0.06 301.50 0.00

Post-Hurr. 2 HSC > Henry 2.60 0.08 2.16 0.06 21.32 0.00
HSC > Katy 2.02 0.05 39.45 0.00

Table 1.9: Tests of Differences in Immediate Price Impact across Locations

the permanent price impact of a sale at HSC appears to be lower than that of a sale at

Henry Hub, although in November 2008, the estimated permanent price impact of a sale

at Henry Hub is lower.15

The estimates of price impact considered here display a distinct pattern. The price

impact of a sale at HSC in October 2008 appears to be lower than in other time periods,

especially the post-hurricane 1 period. The price impact of a sale at HSC also appears

to be lower than the price impact of a sale at Henry Hub in October 2008, while in

other periods, most estimates of the price impact of a sale at HSC are higher than the

estimated price impact of a sale at Henry Hub. Thus, the screen for October 2008 seems

to indicate that price impact at HSC was lower than would otherwise be expected, which

suggests that manipulation may indeed have occurred. In November 2008, the results

of the screen are inconclusive. Some estimates indicate that the November 2008 price

impacts were weakly lower than in the post-hurricane 1 period, while others indicate

they may have been higher. This could be explained if BP’s actions had become more

predictable and traders adjusted to them in other ways. Thus, to fully understand the

effectiveness of this screen at identifying manipulation, it would be useful to apply the

15In future work, I hope to confirm these observations with hypothesis tests.
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Figure 1.9: Response of Bid at HSC to Sale at HSC
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Figure 1.10: Permanent Price Impact
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screen to other cases in which manipulation is believed to have occurred.

1.5 Conclusion

This work amends the conditions required for a manipulator to be able to move prices

in a spot market to increase the profit on a related futures position. It also suggests two

potential screens for manipulability and a screen for attempted manipulation. Previous

results indicated that for this type of manipulation to be profitable, the price impact of

a trade in the futures market must be significantly lower than the price impact of a trade

in the spot market. The results of this paper suggest that there is a second condition:

that some traders in the futures market must speculate non-strategically by obtaining

cash-settled futures positions and not trading in the spot market. The more non-strategic

speculators there are in the futures market, the more profit manipulation can generate

and the more likely the spot price will be manipulated. Conversely, if all traders with

futures positions are acting strategically or seeking to hedge planned transactions in the

spot market, the net effect of their trading will not reduce the informativeness of the spot

price, since their trades will cancel out in the spot market, and therefore the spot price

will be not be manipulated. This does not have to rule out non-strategic speculation

entirely, as traders in real markets who do not wish to take on a physical position can

close their futures position before the end of the futures market, which would limit the

manipulability of the spot price. These two conditions can be used to screen pairs of

spot and futures markets for manipulability.

The model also suggests that, when manipulation is expected to be profitable, the

price impact of a trade falls as the expected amount of manipulation rises, which provides

a potential screen for manipulation. To test this screen for manipulation, I obtained and

analyzed data from the Intercontinental Exchange that contains the bids, offers, and

trades from the market and time period in which traders from BP America allegedly

manipulated the spot price of natural gas in Texas. In particular, BP America has been

accused of manipulating the spread (or price difference) between the spot price of natural
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gas at Houston Ship Channel and the spot price at Henry Hub. As their alleged manipu-

lation occurred after Hurricanes Gustav and Ike which damaged natural gas production

and transportation infrastructure and therefore reduced the correlation between the value

of natural gas at Houston Ship Channel and Henry Hub, the expected profit from manip-

ulating the spread likely increased relative to periods unaffected by hurricanes. If other

market participants recognized the probability and profitability of manipulation had in-

creased at Houston Ship Channel, the model suggests that the average price impact of

a trade would be reduced relative to other time periods and relative to other hubs that

were not manipulated.

Estimates of the price impact of a trade from a vector error correction model and

estimates of market resilience, which indicate how often and how quickly prices recover

after a trade, suggest that in the middle of the allegedly manipulated period, the price

impact of a trade was lower than expected and manipulation may have occurred. I exclude

the first few days of the alleged manipulation as the increase in uncertainty caused by

the hurricanes makes it difficult to separately identify any effect of manipulation. At

the end of the investigative period, the measures of price impact and market resilience

indicate that the price impact of a trade may have returned to more usual levels. If BP’s

actions became more predictable in the later period, this may explain the increase in

price impact as market participants could have adjusted to their trades in other ways.

In future work, I would like to survey companies that participate in natural gas and

other markets about their joint spot and futures market trading to determine the share

of hedgers versus non-strategic speculators in the futures market. With a sufficiently

complete dataset, firm evidence could be obtained about whether manipulation could ac-

tually be effective at moving spot prices and generating positive profit on average. I also

hope to test the screen for attempted manipulation on other markets in which manipula-

tion is suspected. Finally, I have begun analyzing several additions to the manipulation

strategy considered here to evaluate the robustness of my theoretical results. Preliminary

results indicate that if, for instance, a manipulator buys an asset in advance and then

sells it later in order to push a particular spot price down, the effect of the attempted
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manipulation depends on the relative price effect of the initial purchases versus the later

sales. If the initial purchases caused a price increase equal in size to the price decrease

caused by the later sales, manipulation would be unprofitable.
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Appendices

1.A Equilibrium with Non-Strategic Speculators, Hedgers, and a Manipu-

lator

The set-up of the model is the same as in Kumar & Seppi (1992) except that some

futures noise trading is generated by hedgers and some by non-strategic speculators.

Let e represent the total futures noise trading, h represent the net volume traded by

hedgers, and ε represent the net volume traded by non-strategic speculators. h and ε are

independent with zero means and variances, σ2
h and σ2

ε . The total variance of the futures

noise trading is σ2
e = σ2

h + σ2
ε .

Proposition 1.3 (Linear Equilibrium with Non-Strategic Speculators, Hedgers,

and a Manipulator) There is an equilibrium in which (i) the strategy that maximizes

the profit of manipulator,

max
∆
Ee

{
max
z
Ev,u,h,X

[
∆
(
S(X + z + u+ h, e+ ∆)− F (e+ ∆)

)
+ z
(
v − S(X + z + u+ h, e+ ∆)

)∣∣∣e]}
s.t. |∆| ≤ |W | (1.A.1)

is to randomize his futures order ∆ between |W | and −|W | with equal probability and

trade

z = 1
2
[(2− kε)∆ + (Cε − kε)e] (1.A.2)

where kε =
σ2
ε

σ2
w + σ2

e

and Cε =
σ2
ε

σ2
e

. (1.A.3)

The manipulator’s expected profit is:

E[ΠM |∆] = 1
4
λ
(
k2
ε∆

2 − (C2
ε − k2

ε)σ
2
e

)
+ 1

2
λ
(
Cε − kε)

)
σ2
ε (1.A.4)
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(ii) the strategy that maximizes the profit of the informed trader,

max
X
Eu,h,z

[
X
(
v − S(X + z + u+ h, e+ ∆)

)∣∣∣v, yf] (1.A.5)

is to trade

X =
1

2λ
(v − µ), (1.A.6)

(iii) the futures price is F = µ, and (iv) the spot price is set using the rule

S = µ+ λ(ys − E[ys|yf ]) (1.A.7)

where λ =
σv

2
√
σ2
u + σ2(z|yf )

(1.A.8)

σ2(z|yf ) =
[

1
4
k(2− Cε)2 − k(1− Cε)2 + (1− k)Cε(1− Cε)

]
σ2
e (1.A.9)

E[ys|yf ] = E[z + h|yf ] = (1− kε)yf (1.A.10)

To derive the manipulator’s strategy, first assume that the formulas determining the

prices will be:

F = µ (1.A.11)

S = µ+ λ(ys − E[ys|yf ]) (1.A.12)

Since the manipulator is uninformed, his expectation of the true value of the asset is µ.

Next derive the strategy of the informed trader in the spot market:

max
X

X
(
v − µ− λ

(
X + E[z + u+ h|yf ]− E[X + z + u+ h|yf ]

))
= max

X
X
(
v − µ− λ

(
X − E[X|yf ]

))
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His first order condition is:

X =
1

2λ
(v − µ) +

1

2
E[X|yf ]

Taking the expectation of both sides given yf yields:

E[X|yf ] =
1

λ
E[(v − µ)|yf ] = 0

since yf reveals nothing about the true value of the asset. Therefore, the informed trader’s

optimal trade is:

X =
1

2λ
(v − µ)

Then simplify the manipulator’s profit maximization problem in the spot market,

given his futures position, to:

max
z

(∆− z)λ
(
z + E[X + u+ h|e]− E[X + z + u+ h|yf ]

)
Note that I have used the fact that since the manipulator knows ∆ and yf , he knows e.

Since the expected value of the spot noise trading and informed trader’s trade is zero,

this simplifies to:

max
z

(∆− z)λ
(
z + E[h|e]− E[z + h|yf ]

)
The manipulator’s first order condition is:

z =
1

2

[
∆ + E[z|yf ]− (E[h|e]− E[h|yf ])

]
Taking the expectation of both sides given yf yields:

E[z|yf ] = E[∆|yf ]

68



This can be seen by computing E[h|e] and E[h|yf ] assuming as before that the ma-

nipulator will randomize between trading |W | and −|W | in the futures market where W

is distributed N(0, σ2
w) and therefore so is ∆. Since all the trades in the futures market

are based on normally distributed random variables with zero mean:

E[h|e] =
σ2
h

σ2
e

e = Che

E[h|yf ] =
σ2
h

σ2
w + σ2

e

yf = khyf

Taking the expectation of E[h|e] given yf yields:

E
[
E[h|e]

∣∣yf] =
σ2
h

σ2
e

E[e|yf ]

=
σ2
h

σ2
e

σ2
e

σ2
w + σ2

e

yf

=
σ2
h

σ2
w + σ2

e

yf

= E[h|yf ]

Therefore E
[
E[h|e]− E[h|yf ]

∣∣yf] = 0.

Inserting E[z|yf ] into the manipulator’s optimal spot trade yields:

z =
1

2

[
∆ + E[∆|yf ]− (E[h|e]− E[h|yf ])

]
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At this point is useful to note a few more coefficients:

E[ε|e] =
σ2
ε

σ2
e

e = Cεe

e = E[ε|e] + E[h|e] = (Cε + Ch)e

E[ε|yf ] =
σ2
ε

σ2
w + σ2

e

yf = kεyf

E[∆|yf ] =
σ2
w

σ2
w + σ2

e

yf = k∆yf

yf = E[∆|yf ] + E[h|yf ] + E[ε|yf ] = (k∆ + kh + kε)yf

Armed with the additional coefficients, z can be rewritten

z =
1

2

[
∆ + k∆yf − (Che− khyf )

]
=

1

2

[
∆ + (k∆ + kh)yf − Che

]
=

1

2

[
∆ + (1− kε)(∆ + e)− Che

]
=

1

2

[
(2− kε)∆ + (Cε − Ch)e

]

Plugging the manipulator’s optimal spot trade into his profit function, simplifying,

and taking the expectation with respect to ∆ yields

E[Π|∆] = E
[
− 1

2
λ
(
(Cε − kε)e− kε∆

)(
1
2

(
(Cε + kε)e+ kε∆

)
+X + u− ε

)∣∣∣∆]
Remembering that h, ε, and ∆ are independent with mean zero, his expected profit given

∆ simplifies to:

E[Π|∆] = 1
4
λ
(
k2
ε∆

2 − (C2
ε − k2

ε)σ
2
e

)
+ 1

2
λ
(
Cε − kε)

)
σ2
ε (1.A.13)

Since 1
4
λk2

ε is always positive, the manipulator’s expected profit is always increasing in

the absolute size of his futures trade, and therefore the manipulator would want to make
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an infinitely-sized trade if he was not wealth-constrained. Since his expected profit is a

function of ∆2, he is indifferent between buying and selling in the futures market and so

a strategy of buying and selling with equal probability is feasible in equilibrium.

To solve for the price impact coefficient, λ =
Cov(v,ys|yf )

V ar(ys|yf )
, one must solve for Cov(v, ys|yf )

and V ar(ys|yf ).

Cov(v, ys|yf ) is:

Cov(v, ys|yf ) = E[(ys − E[ys|yf ])(v − µ)|yf ]

= E[(X + u+ h+ z − E[h+ z|yf ])(v − µ)|yf ]

= E[
1

2λ
(v − µ)2|yf ]

=
1

2λ
σ2
v

The second line follows from the first because the expected values of the spot noise

traders’ order and the informed trader’s order give yf is zero. The third line follows

because the informed trader is the only trader whose trade is correlated with v.

And V ar(ys|yf ) is:

V ar(ys|yf ) = E[(ys − E[ys|yf ])2|yf ]

= E[(X + u+ h+ z − E[h+ z|yf ])2|yf ]

= V ar(X|yf ) + V ar(u|yf ) + V ar(z + h|yf )

=
1

4λ2
σ2
v + σ2

u + V ar(z + h|yf )

where

V ar(z + h|yf ) = V ar(z|yf ) + V ar(h|yf ) + Cov(z, h|yf )
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V ar(z|yf ) = E[(∆− E[∆|yf ] + 1
2
(Cεe− kεyf ))2|yf ]

= E[(∆− E[∆|yf ] + 1
2
Cε(e− (1− k)yf ))

2|yf ]

= E[(∆− E[∆|yf ] + 1
2
Cε(e− E[e|yf ]))2|yf ]

= V ar(∆|yf ) + 1
4
C2
εV ar(e|yf ) + CεCov(∆, e|yf )

= V ar(∆|yf ) + 1
4
C2
εV ar(e|yf )− CεV ar(∆|yf )

= 1
4
kσ2

e(2− Cε)2

To go from the second to last line to the last line, I use the formula for determining

the variance of a normal random variable (x) given another normal random variable (y):

(1− ρ2
x,y)σ

2
x. Here ρ2

x,y = kx. I also use the fact that kσ2
e = (1− k)σ2

w = σ2
eσ

2
w

σ2
e+σ2

w
.

Next:

V ar(h|yf ) = (1− kh)σ2
h = (1− kh)Chσ2

e

Then, Cov(z, h|yf ) can be determined by writing the four random variables, (h,∆, ε, yf )

as a vector which is distributed:

N

0,


σ2
h 0 0 σ2

h

0 σ2
w 0 σ2

w

0 0 σ2
ε σ2

ε

σ2
h σ2

w σ2
ε σ2

h + σ2
w + σ2

ε




Partitioning (h,∆, ε, yf ) into f = (h,∆, ε) and yf , V ar(f |yf ) = Σf,f−Σf,yf Σ−1

yf ,yf
Σyf ,f :

V ar(f |yf ) =


σ2
h(1− kh) −σ2

hk −σ2
hkε

−σ2
hk σ2

w(1− k) −σ2
wkε

−σ2
hkε −σ2

wkε σ2
ε(1− kε)


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Therefore,

Cov(z, h|yf ) = E[(∆− E[∆|yf ] + 1
2
Cε(e− (1− k)yf ))(h− E[h|yf ])|yf ]

= Cov(∆, h|yf ]) + 1
2
CεCov(e, h|yf )

= Cov(∆, h|yf ]) + 1
2
Cε(V ar(h|yf ) + Cov(ε, h|yf ))

= −kσ2
h + 1

2
Cεkσ

2
h

= (1
2
Cε − 1)kChσ

2
e

To go from the third line to the fourth, I used the fact that 1− kh − kε = k.

And finally,

V ar(z + h|yf ) = V ar(z|yf ) + V ar(h|yf ) + Cov(z, h|yf )

=
[

1
4
k(2− Cε)2 − k(1− Cε)2 + (1− k)Cε(1− Cε)

]
σ2
e

Note that the variance of the manipulator and hedgers’ trades does not depend on the

price impact coefficient λ.

Solving the first line below for λ, yields the equilibrium price impact coefficient shown

in the second line:

λ =
1

2λ
σ2
v

1
4λ2
σ2
v + σ2

u + V ar(z + h|yf )

=
σv

2
√
σ2
u + V ar(z + h|yf )

1.B Moving between the VAR and VEC Representations

In this appendix, I demonstrate how the VEC coefficients in equation (1.30) can be

converted back to the VAR coefficients in equation (1.29). Decompose the vector ỹt into

(∆pt;xt), where ∆pt represents the vector of differenced bids and offers. The vector of

spreads, st−1 in equation (1.30), can be decomposed into Mpt−1 where pt−1 represents

the vector of bids and offers (in levels) in t− 1. M is the matrix that when multiplied by
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pt−1 computes the spreads. Decompose each matrix C̃s into [F̃s Ds] where F̃s is the 12x6

matrix of coefficients that multiplies ∆pt−s and Ds is the 12x6 matrix of coefficients that

multiplies xt−s. In equation (1.29), decompose each matrix Cs into [Fs Ds] where Fs is

the matrix of coefficients that multiplies pt−s. The matrix Ds is the same in equations

(1.29) and (1.30). The following equations illustrate how to convert F̃s and Est−1 back

to Fs:

C1 = C̃1 + EM + [I6; 06] (1.B.1)

Cr = C̃r − C̃r−1 for r ∈ 2, . . . , p− 1 (1.B.2)

Cp = −C̃p−1 (1.B.3)
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CHAPTER 2

When a National Cap-and-Trade Policy with

Carve-out Provision May Be Preferable to a

National CO2 Tax

with Deepak Rajagopal

2.1 Introduction

Greenhouse gas (GHG) emissions are widely regarded as a textbook case of a global

externality warranting coordinated global action (Oates, 2001). However, what appears

to be emerging from international negotiations is a weaker agreement whereby coun-

tries set their own targets for emission reduction (Diringer, 2013). One impediment to

a stronger global commitment is the lack of national consensus within some large indus-

trialized countries including the United States and Canada (Rabe et al., 2005; Bulkeley,

2010). In such countries (and elsewhere too), lower levels of government are undertaking

various measures to reduce GHG emissions (Rabe, 2008). The range of policy measures

includes carbon dioxide (CO2) taxes (e.g., the province of British Columbia in Canada

and the city of Boulder, Colorado in the U.S.), tradable emission permits, henceforth

referred to as cap-and-trade, (e.g., the state of California and the Regional Greenhouse

Gas Initiative by states in the north-eastern U.S.), emission intensity standards (e.g., the

province of Alberta in Canada and the state of California in the U.S.) and renewable en-

ergy policies (e.g., state-level Renewable Portfolio Standards, feed-in-tariffs, and various

forms of subsidies).
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While economic theory suggests that emission pricing, either directly through a CO2

tax or indirectly through a cap-and-trade program, is the cost-effective approach, renew-

able energy policies appear the more popular approach for state-level action. Justifica-

tions for renewable energy include the local economic benefits of “home-grown” energy

resources for long-term economic development and the benefits of reducing (or even sim-

ply aiming) to reduce GHG emissions (Rabe, 2008). Bushnell et al. (2008) argue that in

a market comprised of many states which are not subject to a unified climate policy and

which do not have state-level CO2 reduction programs, if one state decides to reduce its

own emissions, then this goal may be achieved by simply reshuffling pollution within the

market such that the state with the policy consumes “cleaner” products while the rest

of the market consumes the “dirtier” products. For instance, electricity is susceptible to

reshuffling because wholesale purchases of electricity are financial arrangements which

are not tied to the physical exchange of electrons. Thus, if “clean” products already have

a significant market share, the policy can be satisfied with no change in production or

emissions. Indeed, in many electricity markets in the U.S., sizeable zero-carbon electric-

ity generating capacity in the form of nuclear and hydroelectric power exists which may

prevent policies targeting CO2 emissions from being effective in many states.

The goal of this paper is to formally model the interaction of policies at multiple levels

of jurisdiction, specifically at the federal and state level, in order to identify the effect

on pollution and the relative costs and benefits of CO2 taxes vis-a-vis cap-and-trade at

the federal level when combined with overlapping state-level climate policies (specifically,

CO2 taxes1 or renewable portfolio standards (RPS)).2 This research is motivated by the

premise that in countries where national opinion on climate change is divided, in the near

to medium-term, any national agreement, should it be achieved, would likely be viewed

by some states as insufficiently stringent and such states would likely pursue overlapping

state-level policies. While an emission tax and a cap-and-trade program are ex ante

1At the level of lower jurisdiction, CO2 taxes and cap-and-trade are equivalent but we will show that
these two policies exhibit some differences at the level of the higher jurisdiction

2For a detailed discussion of the motivation for state-level policies for addressing climate change we
refer to Rabe (2008).
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equivalent (Jaffe et al., 2003), we show that when states enact additional emission control

policies, the two national policies could yield different results. In any case, the cost of a

given reduction in national emissions is always lower under a unified national emissions

policy than under differentiated and/or overlapping policies by multiple jurisdictions.

Several authors have analyzed the effect of combining state and federal emissions

reduction policies (Bushnell et al., 2008; McGuinness and Ellerman, 2008; Burtraw and

Shobe, 2009; Goulder and Stavins, 2011a,b; Williams, 2012). One common conclusion

in these studies is that under a national cap-and-trade regime, additional state policies

have little to no effect on national emissions as any additional emission reduction at the

state or local-level, beyond that which would have resulted under the national policy

alone, only allows emissions from the rest of the nation to rise back to the level of the

national cap. However, by developing innovative policies and infrastructure, state and

local regulators could help lower the cost of achieving national emission goals (Burtraw

and Shobe, 2009). Another set of papers analyzes the effect of renewable energy policies

operating under the European Union (EU) Emissions Trading System (ETS). See Fis-

cher and Preonas (2010) for a summary of this literature. These articles conclude that

overlapping national renewable energy policies raise the cost of national cap-and-trade

policies without affecting national emissions and may benefit the dirtiest fuels.

The offsetting increase in consumption outside the state under a national cap could,

however, be avoided by either “carving-out”, i.e. exempting states from the national

policy provided they set a stricter state policy, or through price-based regulations, e.g.

a CO2 tax (Goulder and Stavins, 2011a).3 Contrary to Goulder and Stavins (2011a), we

show that a price-based regulation, specifically a CO2 tax, does not necessarily prevent

a completely offsetting increase in emissions elsewhere when states adopt an additional

CO2 tax on top of the national CO2 tax. Consequently, we also show that, for small

states (relative to their market, see Section 2.3 for definition) that are subject to a

national CO2 tax, a state-level renewable energy policy is able to further reduce national

3As noted by Goulder and Stavins (2011a), there is ample precedent for carve-out provisions in the
context of fuel economy and emissions standards. However, we are not aware of any carve-out provisions
associated with cap-and-trade policies.
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emissions while a state-level emissions policy cannot. However, if a carve-out provision is

added to a national cap-and-trade program, allowing states to exempt themselves from

the national policy provided they set a tighter cap, and a state decides to set a tighter

cap, emissions must decline regardless of the size of the state as the sum of permitted

national and state emissions is now lower. Furthermore, because any reshuffling4 or

leakage5 of emissions within the market caused by a tighter state cap would increase the

national emissions permit price (in order to keep emissions outside the state constant),

a cap-and-trade policy with a carve-out provision limits reshuffling and leakage within

the market and reduces the cost of achieving a given reduction in emissions with a state

policy relative to the cost under a national CO2 tax coupled with an additional state CO2

tax. However, a tighter state cap under a national cap-and-trade policy with a carve-

out raises electricity costs for consumers outside the market relative to the costs before

the tighter state cap was implemented and relative to those under equivalent national

and state CO2 taxes, which may impede support for state carve-outs from the national

regime.

Our findings result from the following key features of our model: (i) the commodity

(or commodities) under consideration can be produced with inputs (say, energy) from

different sources or using different technologies resulting in different emissions per unit

of output and at least one such input or process results in a zero emission product. In

our example, the commodity is electricity derived from coal, natural gas, nuclear, hydro

and renewable resources, the latter three being considered zero emission resources; (ii)

the commodity is traded at negligible transportation cost within a specified geographic

region that spans multiple policy jurisdictions. In our example, it refers to the free flow

of electricity within a regional interconnected grid; (iii) under any state-level climate

policy, retailers are accountable for emissions attributable to final in-state sales regardless

of where emissions actually arise in the supply chain, which may be outside the policy

4Defined here as the reallocation of existing emissions across jurisdictions.
5Defined here as an increase in emissions outside the state caused by an increase in consumption

of carbon-intensive resources outside the state due to the reduction in demand for carbon-intensive
resources within the state.
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jurisdiction. In our example, this implies that even though electricity consumption is

emission-free, regulated state retailers are accountable for CO2 emitted during generation

of the electricity imported into the state.

Relaxing the above assumptions affects our findings as follows. Without a zero-carbon

resource, pure reshuffling of output would not be sufficient to avoid the state CO2 tax and

thus a state CO2 tax would be effective even for small states. As the cost of reshuffling

increases, the ability of state-level policies to affect national emissions increases for any

given state size. Thus the higher the transportation costs (or any other costs associated

with shuffling the distribution of the final good), the more effective state-level policies will

be at reducing national emissions. The implications of state policies directed at targets

other than the emissions attributable to final in-state sales, say, extraction of primary

fossils fuels, are discussed in Section 3.5.

While our mathematical and numerical illustrations are for a single commodity, specif-

ically electricity, the simplified model allows for more general conclusions about emission

policies spanning multiple economic activities. As the scope of the policy at either the

state-level, the national-level or both widens to include emissions from multiple sectors,

so does the scope for reshuffling and leakage, causing the efficacy of state-level emissions

policies to depend on how the size of the state changes relative to the broader mar-

ket(s) across which resources can be reshuffled. The comparisons of the various state

and national policy combinations are, however, unaffected. Given the global effects of

CO2 emissions, our results also speak to the interactions that occur when global policies

overlap national policies or state policies overlap local policies and product markets are

larger than the smaller jurisdiction. Finally, although we focus on only three policies -

CO2 taxes, cap-and-trade programs, and RPS, our framework can be extended to con-

sider many other policies such as emission intensity standards, subsidies for renewable

energy and border adjustment policies.
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2.2 Model

To demonstrate how national and state climate policies might interact, we construct

a model comprised of three regions: the nation, a regional market embedded within the

nation, and a state comprising a portion of the regional market. A market should be

interpreted as an integrated wholesale market in which electricity can flow freely within

the market and in which a centralized body clears wholesale transactions and manages

power flows. A national policy applies to all regions unless it has a carve-out provision

and the state has enacted a sufficiently stringent state-level policy, in which case the

state follows its own policy while the rest of the nation is subject to the national policy.

We later discuss how policies in the rest of the market (outside the state) might affect

our results.

 
  

Nation

Market

State

e-

Figure 2.1: The Model

We analyze the interaction of different state and national policy regimes in a static

partial equilibrium framework assuming perfect competition. As illustrated in Figure 2.1,

power can flow freely between the state and market, but does not flow into or out of the

market. We assume there are four types of fuels available to generate electricity: coal,

natural gas, qualifying renewable, and non-qualifying zero-carbon. Qualifying renewable

fuels represent those that would qualify as renewable under existing RPS policies. Non-
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qualifying zero-carbon fuels represent nuclear and large hydroelectric facilities, which do

not generally qualify as renewable under current state RPS policies. Given the significant

environmental and regulatory hurdles to building new nuclear or large hydro generation

capacity in addition to their high capital cost (CBO, 2011), we assume that the capacity of

non-qualifying zero-carbon resources is fixed. There is one firm operating each generation

technology which converts the input (fuel) into output (electricity) and emissions in fixed

proportions.

Within the market, the firm may sell power either to the state or to the rest of the

market at the electricity price in that region but may be required to pay an explicit

or implicit tax or may receive an implicit subsidy based upon the policy (policies) in

place in the region(s) to which it sells (not based upon the location of the producer).

Electricity sold outside the market is produced separately from the in-market electricity

and is therefore subject to a separate supply curve.

2.2.1 Mathematical Formulation of the Model

Let p denote price, q denote quantity of electricity, and the subscripts c, g, r, and

z denote coal, gas, qualifying renewables, and non-qualifying zero-carbon resources re-

spectively. A representative consumer in each region, R, maximizes a quasi–linear utility

function, uR(qR) − pRqR.6 uR(·) is the consumer’s utility of consuming electricity in

region R. A state comprises a fraction ρ of the market and therefore consumes ρ of

the electricity pre-policy, which will be reflected in the preferences of the representative

consumers.

Each producer seeks to maximize profit, which is defined as the sum of the revenue

6With this utility function, we implicitly assume that the cost of emissions to a consumer is additively
separable from the consumer’s utility of electricity and money.
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from electricity sold in each region less the cost of generating the electricity:

max
qsf ,q

m
f ,q

n
f

(ps + xsf + xNf )qsf + (pm + xNf )qmf − cMf (qsf + qmf )

+ (pn + xNf )qnf − cnf (qnf ) (2.1)

s.t. qsf ≥ 0, qmf ≥ 0, qnf ≥ 0 (2.2)

f indicates the fuel utilized by the producer. s indicates the state, m indicates the rest of

the market, M indicates the market as a whole, n indicates the rest of the nation (outside

the market), and N indicates the nation as a whole. Market clearing conditions ensure

that the sum of production from each fuel for each region equals total consumption in

each region (qRc + qrg + qRr + qRz = qR).

ps + xsf + xNf is the price received by the producer in the state for the electricity sold,

qsf . p
s represents the price of electricity in the state, xsf and xNf represent the explicit or

implicit tax or subsidy per MWh of electricity produced by each fuel f from the state

policy and national policy respectively. The values of xsf and xNf under each policy are

discussed in Section 2.2.2. Similarly, pm +xNf is the price received by the producer in the

rest of the market and pn + xNf is the price received by the producer in the rest of the

nation.

cMf (·) and cnf (·) represent the cost of generating electricity from each fuel, f , in the

market and the rest of the nation respectively. The assumption of separate cost curves

for the market and the rest of the nation ensures that supply to one market does not

affect supply in another market.7 Non-qualifying zero-carbon generation is assumed to

have zero marginal cost but to face a capacity constraint such that qsz + qmz ≤ QM
z where

QM
z is the total existing capacity of non-qualifying zero-carbon generation in the market.

7Even when technical or economic factors limit the exchange of a commodity (say electricity or
biofuel) to a specified geographic region, the intermediate inputs used to produce the commodity (such
as coal or crops) need not face such constraints, in which case, the cost function, and therefore the
supply, in one market will be related to that in the other. For instance, a reduction in demand for the
input in one market, increases the supply of inputs to the other market. This is yet another mechanism
of leakage, one that manifests via input markets as opposed to the output market which is the focus of
our illustration and does not weaken our findings.
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In the rest of the nation, non-qualifying zero-carbon generation is fixed at Qn
z .

2.2.2 Mathematical Formulation of Each Policy

2.2.2.1 Renewable Portfolio Standard

An RPS dictates that qualifying renewable generation must be a specified share of

total generation, α. The RPS requirement is represented by:

qr
qc + qg + qz + qr

≥ α or qr ≥ A(qc + qg + qz) where A =
α

1− α
(2.3)

Under an RPS, suppliers of electricity must demonstrate that at least α percent

of the electricity sold to end-users was generated from qualifying renewable resources.

To do this they can either generate electricity using renewable resources or purchase

renewable energy credits (RECs) at price γ from other producers generating electricity

using renewables. Thus, a supplier of electricity from renewable resources receives an

implicit subsidy γ, while a supplier of electricity from conventional resources pays an

implicit tax Aγ for electricity sold in region(s) with an RPS.

2.2.2.2 Tradable pollution permits or Cap-and-Trade

A cap-and-trade program specifies a maximum level of CO2 emissions by giving away

or auctioning a number of permits equal to the cap. The cap-and-trade requirement is

represented by:

ecqc + egqg ≤ Ē (2.4)

We assume that each producer must purchase one carbon credit per of emissions at

price τ for electricity sold in the region(s) with cap(s). The price is set by competition

for the limited supply of credits.8 ec and eg are the tonnes of CO2 emissions per MWh

8Whether credits are distributed for free or auctioned, the price of a carbon credit will end up the

83



of electricity generated by coal and natural gas.

2.2.2.3 CO2 Tax

With a CO2 tax, the regulator selects a tax of $T/tonne of CO2 emissions to achieve

a given emissions reduction. Producers using coal to generate electricity, which emits ec

tonnes of CO2 per MWh, pay ecT $/MWh of generation, and producers using natural

gas pay egT $/MWh for electricity sold in region(s) with a CO2 tax.

2.2.2.4 Carve-Out Provision

To implement the carve-out provision, we assume that a state’s pre-state-policy share

of emissions is equal to its pre-state-policy share of consumption. For example, prior

to the state policy, the national cap on emissions is 1,000 tonnes. If the market emits

100 tonnes and the state is 25 percent of the market, then the state is assumed to emit

25 tonnes of CO2 pre-state-policy and the national cap with the state carved out of the

policy would be set to 975 tonnes and the state’s cap must be less than or equal to 25

tonnes.

2.2.3 A classification of states based on their market share

A state’s ability to affect national emissions using a state policy is determined largely

by its size, measured in terms of its share of consumption (or emissions). We classify a

state as small if its total consumption is less than the quantity of zero-carbon resources

in the market. To understand the typical size of states relative to their markets in the

U.S., we examine data on electricity consumption and fuel mix for each state relative to

its relevant wholesale market.

In the U.S. there are seven wholesale electricity markets: Independent System Op-

erator New England (ISO-NE), the New York ISO, the Pennsylvania Jersey Maryland

(PJM) Interconnection, covering much of the Mid-Atlantic and Midwest, the Midwest

same though firms’ profits will differ based upon the number of credits granted for free.

84



ISO (MISO), the Electric Reliability Council of Texas (ERCOT), the Southwest Power

Pool (SPP) (as of January 2014) and the California ISO. As our results pertain mainly

to states participating in a wholesale market with other states, we exclude those states

that do not participate in a wholesale market as well as Texas, for which the bulk of

the electricity grid is isolated from the rest of the U.S.9 We also exclude California and

New York as these states operate their own wholesale markets but trade extensively with

neighboring regions, making it difficult to acquire the statistics needed for our analysis.

After these exclusions, there are 34 states in the U.S. in which at least some utilities

participate in a larger wholesale market (ISO-NE, PJM, MISO, or SPP).

We obtained data on state-level electricity consumption from the EIA’s Electric Sales,

Revenue, and Average Price Report for 201110 while data for market-level fuel mix was

obtained from the website for each wholesale electricity market. The data indicate that of

the 34 states that participate in a larger wholesale market, only eight could be considered

large. Of these eight, four are located in MISO, which had only 12.8 percent of generation

from zero-carbon resources in 2011. Three are located in SPP which receives only 14

percent of its power from zero-carbon resources in 2012.11 The remaining large state in

2011 was Massachusetts, which made up 50.5 percent of ISO-NE in terms of consumption,

while ISO-NE had 41.3 percent of generation from zero-carbon resources. In PJM, the

largest state by consumption is Virginia with 25.3 percent of consumption, but generation

from zero-carbon resources in 2011 was 35 percent. Therefore no state in PJM could be

considered large in 2011. Consequently, the majority of states that participate in larger

markets should be considered small.12

9For states that do not trade with other states, a national cap-and-trade with a carve-out provision
and a national CO2 tax will lead to the same outcome if states set more stringent emissions policies as
will be discussed below.

10See http://www.eia.gov/electricity/data.cfm#sales for state-level data
112012 is the only year for which data was available.
12This analysis excludes each market’s import capability, but if it were included in the analysis, the

share of zero-carbon resources deliverable into the market would increase while the relative size of the
state would diminish, rendering states even more likely to be small by our definition.
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2.3 Results and Discussion

2.3.1 National CO2 Tax or No National Policy

2.3.1.1 Small States

When there is either a national CO2 tax or no national climate policy and other

states in the market do not have climate policies, a state-level CO2 tax will be unable to

reduce national emissions if the state is small (i.e., the state’s pre-policy consumption is

less than the quantity of zero-carbon generation already present in the market).13 This

occurs because when the state is small, there are sufficient zero-carbon resources already

existing in the market for state consumers to trade all generation from fossil fuels for

generation from zero-carbon fuels with no net change in production, emissions, or tax

burden. This reallocation of existing production across consumers is what we henceforth

refer to as reshuffling.

To illustrate this result more clearly, suppose there are two fuels, zero-carbon and

coal. Pre-state-policy all producers using coal pay a national CO2 tax of $T n/tonne of

CO2 while producers using zero-carbon resources pay no CO2 taxes. After the state adds

a CO2 tax of $T s/tonne of CO2 on emissions from generation sold in-state, suppose total

production does not change but producers sell only generation from zero-carbon resources

to in-state consumers to avoid paying the state tax. Since we have assumed that the state

is small, there are sufficient zero-carbon resources to serve all in-state demand and so

consumption in-state need not change. Any excess zero-carbon generation and all coal

generation is sold to out-of-state customers. Since total production did not change, total

production less in-state zero-carbon generation is equal to the rest of the market’s pre-

state policy consumption, meaning that the rest of the market’s consumption does not

change post-state-policy. Finally, since all coal generation is sold in the rest of the market,

generators using coal still pay $T n/tonne of CO2. With production, consumption, and

13We assume that in formulating their emissions policies, states are primarily concerned with their
effect on national emissions as off-setting increases out-of-state from a global pollutant reduce the benefit
of the state policy.
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total tax paid unchanged, the price of electricity will not change either and so there

is no reason to change production or consumption. Note that this result requires only

that trade between states is possible, that reshuffling costs are negligible, and that zero-

carbon resources already exist and are available to shuffle. As the cost of reshuffling

increases, the ability of state-level policies to affect national emissions increases for any

given relative state size.

When some of the pre-existing zero-carbon fuels would qualify as renewables under

a state RPS while others would not, a small state may be able to achieve emissions

reduction under a state RPS even though a state CO2 tax would be ineffective.14 This

is because an RPS policy requires a more specific type of zero-carbon resource meaning

that there are, by definition, fewer qualifying resources already present in the market to

reshuffle. As a result, even for a small state, a real change in production will be necessary

to meet a sufficiently stringent RPS policy and emissions within the market will decline.

Therefore, since emissions outside the market are not affected by the state’s RPS policy

and emissions in the market fall, the state RPS policy will reduce emissions in the nation

as a whole. See Appendix 2.A for the mathematical proof.

Considering that about two-thirds of the states in the U.S. participate in larger mar-

kets, and that among those states, the majority can be considered small relative to their

market, our results suggest that should such a state decide to adopt unilateral measures

to reduce CO2 emissions, an RPS approach is more likely to allow them to have an im-

pact on national emissions either in the absence of national policy or in the presence of

a national CO2 tax. This is one possible rationale for the current U.S. climate policy

landscape, in which there is no national climate policy and 29 states have adopted RPS

policies.15

14If a state is so small that the pre-state-policy consumption in-state is less than pre-existing generation
from qualifying renewable fuels, a state RPS policy will also be ineffective.

15Database of State Incentives for Renewables & Efficiency, http://www.dsireusa.org
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2.3.1.2 Large States

Now consider the case of a large state: because existing zero carbon resources cannot

satisfy its full demand, some producers will have to pay the state CO2 tax in addition

to any national CO2 tax, which increases their tax burden. The increase in tax burden

caused by the state’s CO2 tax will therefore generally cause a reduction in national emis-

sions. However, if there are fuels that are zero-carbon but do not qualify as renewables

under an RPS, large states will be able to achieve larger national emissions reductions

with a state RPS than with a state CO2 tax, provided there is at least one other state

in the market. See Appendix 2.B for the mathematical proof.

Intuitively, this result follows because under the most stringent state RPS, the state

would consume only qualifying renewable fuels, ceding all existing zero-carbon generation

to the rest of the market and reducing demand for coal and natural gas in the rest of

the market relative to the demand under an infinitely high state CO2 tax, under which

only coal and natural gas would be available to the rest of the market as the state would

consume all zero-carbon resources. Therefore, total emissions under the most stringent

RPS will be lower than under an infinitely high CO2 tax. If a state does not participate

in a larger market and therefore does not trade with other states, then a state CO2

tax and a state RPS will be able to achieve the same maximum reduction in emissions.

When both a state-level CO2 tax and a state-level RPS can achieve a given reduction

in emissions, intuition suggests that a state CO2 tax will be more cost-effective than an

RPS at reducing emissions as it targets emissions directly and provides more flexibility

in the options for compliance. This hypothesis is confirmed by our simulation results in

Section 3.3.

2.3.2 National Cap-and-Trade Policy with a Carve-Out Provision

We next consider the effect of a national cap-and-trade program with a carve-out

provision. Recall that under a national cap-and-trade program without a carve-out pro-

vision, state policies cannot induce additional emission reductions because any reduction
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in emissions caused by a state policy will lower the national emissions permit price and

therefore cause a corresponding increase in emissions outside the state up to the level

of the national cap. The carve-out provision allows any state to become exempt from

the national cap provided that it implements a tighter state cap.16 Therefore, if a state

decides to set a tighter cap, the level of emissions outside the state does not change while

emissions within the state decrease. Together this implies that, regardless of the size of

the state with the tighter cap, the state cap will cause national emissions to decline.

Under a national cap-and-trade with carve-out, when other states in the market do

not have climate policies, a tighter state cap pushes carbon-intensive resources out of the

state, increasing emissions in the rest of the market. To compensate, emissions outside

the market must decline. Unlike under a national CO2 tax where reshuffling may have

no effect on prices and the total tax burden, in this case, reshuffling of resources within

the market would raise emissions in the rest of the market and force consumers outside

the market to make costly reductions in emissions. Thus, while a state CO2 tax or

RPS in addition to a national CO2 tax (or no national policy) leaves consumers outside

the market unaffected, a tighter state cap under a national cap-and-trade with carve-out

imposes additional costs on consumers outside the market when the state with the tighter

cap participates in a larger market. If the state does not participate in a larger market,

then a state emissions policy would not cause reshuffling regardless of the national policy

(since there is no region to reshuffle with), and therefore a state CO2 tax that causes a

reduction in emissions beyond that caused by a national CO2 tax would lead to the same

outcome as a tighter state cap and a national cap-and-trade program with a carve-out

that mandated the same total reduction in emissions.

16In our model, a state CO2 tax set above the level of the current national carbon credit price would
generate the same outcome as a tighter state cap. Also, note that carving a state out of a national
CO2 tax policy provided it sets a higher tax yields the same outcome as adding a state tax on top of a
national tax since the total tax would be the same.
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2.3.3 Comparison of Costs under Various Policy Combinations

Under a national CO2 tax, if a state policy is enacted that is sufficiently stringent

to cause national CO2 emissions to decline and that state also participates in a larger

market with other states that do not have climate policies, then resources in the market

will be reshuffled and the price paid to carbon-intensive resources must fall to reduce

generation from carbon-intensive resources and thereby reduce CO2 emissions. If the

price of carbon-intensive resources falls, then consumption of carbon-intensive resources

in the rest of the market will rise, the phenomenon known as leakage. Consequently,

for a state to reduce national emissions by X tonnes it will have to reduce its own

emissions by more than X tonnes to account for the increase in emissions outside the

market. However, a national cap-and-trade policy with a carve-out provision limits both

reshuffling and leakage within the market because any increase in emissions in the rest of

the market forces consumers outside the market to make costly reductions in emissions

to ensure the national cap is met, which increases the national emissions permit price

and prevents large consumption increases in the rest of the market. Thus, a reduction in

emissions caused by altering consumption within the state by a given amount is met by

a smaller increase in emissions in the rest of the market than if a national CO2 tax were

in place and therefore, the net emissions reduction is larger for a given change in state

consumption patterns. As a result, the cost of a given reduction in emissions achieved

by a state policy is lower under a national cap-and-trade with carve-out than under a

national CO2 tax.

To illustrate the degree of difference between the costs of the three national-state

policy combinations (National CO2 Tax + State CO2 Tax, National CO2 Tax + State

RPS, and National Cap-and-Trade with Carve-out + State Cap) we perform numerical

simulations for two relative state sizes: 25 percent of the market and 75 percent of

the market. A state that is 25 percent of its market is small in our simulations as

generation from zero-carbon resources was 32 percent of total consumption. A state

that is 75 percent of its market is therefore large. For each simulation, we calculate
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the surplus accruing to the consumers in each region and the surplus accruing to each

type of producer. The sum of the consumer surplus, producer surplus and the total tax

or emissions permit revenue paid by each region yields the national surplus under each

scenario. The reduction in national surplus due to a particular policy is the cost of the

policy. Details on the data and calibration can be found in Appendix 2.C.
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Figure 2.2: The figure depicts the relationship between national surplus changes and na-
tional emissions reductions for various combinations of national and state policies. Each
line represents the relationship for a fixed national policy and a state policy gradually
increasing in stringency.

Figure 2.2 plots the percentage change in national surplus against the percentage

reduction in national emissions caused by each national-state policy combination under

our baseline parameters for two relative state sizes, 25 percent and 75 percent. Note that

cap-and-trade polices at both the national and state levels without state carve-out and

national and state CO2 taxes with a small state result in the state having no incremental
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impact on national emissions and are therefore not shown. In the figure, the national

policy is held fixed at $20 (or at the national cap that is equivalent when there is no

state policy) while the state policy increases in stringency. The lines terminate at the

maximum achievable emissions reduction given the policy combination and relative state

size.

The figure verifies our intuition that the cost to achieve a given reduction in CO2

emissions using a national cap with a carve-out and tighter state cap is less than the cost

using a national CO2 tax with a state RPS or CO2 tax. The figure also confirms that the

cost of a national CO2 tax with a state CO2 tax is less than the cost of a national CO2 tax

with state RPS when both are feasible and that a state RPS can achieve larger reductions

in emissions than a state CO2 tax under a national CO2 tax. The exact differences

between the costs of the different policy combinations depend on the parametrization of

the model, but the ordering of the policies in terms of cost-effectiveness is invariant over

a broad range of elasticities of regional demand and fuel supply, region sizes and fuel

mix.

In summary, when there is a national CO2 tax or no national emissions policy and

a state is small or a state is large but desires a large reduction in emissions, a state

RPS may be able to achieve the state’s desired emission reduction while a state CO2 tax

would fail. For smaller emissions reductions in large states, either a state RPS policy or

a state CO2 tax will be able to reduce national emissions, though the state CO2 tax will

be more cost-effective. When there is a national cap-and-trade with a carve-out, a state

of any size can cause a reduction in national emissions by setting a tighter state cap.

Furthermore, the cost of a given reduction in emissions under a national cap-and-trade

with a carve-out and a state cap will be lower than the cost under a national CO2 tax

with a state RPS or CO2 tax. Thus, a national cap-and-trade policy with a carve-out

provision may be preferable to a national CO2 tax.

However, the distribution of the costs from each national policy differs. Under a

national CO2 tax, a state policy only affects the market in which the state participates

and therefore only affects costs for consumers and producers inside the market. Under a
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national cap-and-trade with a carve-out, a state policy also increases costs for consumers

and producers outside of the market. Thus, although a national cap-and-trade policy

with a carve-out is less costly than a national CO2 tax when states initiate stricter

policies, a national CO2 tax ensures that the state pays for the majority of the costs of

their policy-making. In other words, a national CO2 tax allows large states to reduce

emissions if they so desire, while a national cap-and-trade program allows a state of any

size to reduce national emissions, but also imposes additional costs on other states. This

may cause many states to oppose carve-out provisions.

2.3.4 Effect of Policies by Other States Within the Market

We now consider the implications of overlapping policies in other states within the

market. We build on the intuition developed in the prior sections to outline how different

combinations of policies across states might interact under each of the national policies

considered here.

Under a national CO2 tax or no national policy, if at least one other state in the

market has a binding RPS (targeting in-state consumption of renewables rather than

in-state production), a state of any size will be able to implement an RPS policy that

binds and reduces national emissions. This is because the states that already have RPS

policies will be consuming all qualifying renewable resources in the market and will be

unwilling to relinquish them. Therefore, to satisfy a new RPS policy in a state with no

prior climate policy, production from qualifying renewable resources must increase, which

will cause prices and production from all resources to adjust. Since qualifying renewable

generation is increasing, generation from coal and natural gas will decrease.

To be able to affect national emissions via a state-level CO2 tax when there is a

national CO2 tax or no national policy and other states in the market have RPS policies,

a state’s pre-state-policy consumption must be larger than the existing non-qualifying

zero carbon resources. The size barrier a state must exceed to be able to implement an

effective CO2 tax is now lower because the other states with RPS policies will not be
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willing to trade qualifying renewable resources for fossil fuels with no change in prices,

as this trade would increase the cost of complying with their RPS policies. However, the

other states with RPS polices are willing to trade non-qualifying zero-carbon resources

because these fuels pay the same implicit tax as fossil fuels under an RPS policy.

If other states have CO2 taxes that reduce national emissions in the presence of a

national CO2 tax or no national policy, the effect of a state CO2 tax in a new state will

depend on the level of the new CO2 tax relative to existing state CO2 taxes in the market

as well as the relative size of the state adding the new CO2 tax. For instance, suppose

there is one other state, state A, with a CO2 tax, TA. To be effective at reducing national

emissions, state A must be large. If state B sets a new CO2 tax, TB < TA, it will not be

able to draw in any zero-carbon resources from state A because the value of zero-carbon

resources is higher in state A. However, generation and emissions will change in this case

because all generation sold in state B will be carbon-intensive and subject to the tax TB.

If state B’s electricity consumption is less than the quantity of generation from zero-

carbon resources prior to the initiation of state B’s policy (or in other words, if state B

is small), then setting TB above TA will generate the same emission reduction as setting

TB equal to TA. This occurs because when TB ≥ TA, zero carbon resources are at least

as valuable in state B as in state A, which will cause zero-carbon resources to be shuffled

to state B. When state B is small, all demand in state B can be satisfied with existing

zero-carbon resources. If state B is large, then increasing state B’s CO2 tax from TA to

a higher level will generate additional reductions in emissions.

If there is a national cap-and-trade policy with a carve-out and states can be carved

out of the national policy only if they set a tighter state cap, then any other type of

state policy would overlap with the national cap (rather than supersede it) and would

therefore be unable to affect national emissions. States may nevertheless have other

types of climate policies if they believe they are correcting other externalities. In this

case, the other states’ policies will generally further limit the reshuffling of resources that

can occur when a state carves itself out of the national cap to set a tighter cap, but

they will not affect the state’s ability to reduce emissions. If other states in the market
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are already carved-out, mathematically, total emissions must decline when an additional

state is carved out since the sum of the caps is now lower.

In summary, if other states have RPS policies that are binding, then a state of any size

will able to reduce emissions with an RPS policy since all qualifying renewable resources

are being utilized. Under a national CO2 tax, increasing the state CO2 tax within one

state up to the level of the maximum state CO2 tax in the market will always bring about

additional emissions reductions. Depending on the size of the state, CO2 taxes above

level of the maximum state CO2 tax may or may not have an additional effect. Under

a national cap-and-trade program with a carve-out, when other states in the market

have been carved out, carving out an additional state brings about additional emissions

reductions.

2.3.5 Vertical Targeting of State Policies

We modeled the state-level policy as targeting emissions that are attributable to

in-state consumption as opposed to emissions from in-state production. Under the as-

sumption that one motivation for unilateral state-level (national) policies targeting global

public goods is a concern for the common good rather than just the economic impacts

to the state (nation), it is consistent for states (nations) that are net importers of pol-

lution (i.e., the emissions embodied in the goods imported for domestic consumption

exceed that embodied in what they export) to target emissions from in-state (national)

consumption. In fact, many of the states in the U.S. and several of the nations in the

European Union that support strong policies to limit CO2 emissions are net importers

of energy and/or energy-intensive goods and services.

Another alternative is to tax fossil fuels directly based on their carbon content rather

than taxing emissions from use of fossil fuels. Again, states could either tax producers of

the fossil fuels based on their production within the state or based upon their sales in the

state. For states with little production of fossil fuels, taxing in-state production would

have little effect. Taxing out-of-state producers based on their sales of fossil fuels in-state
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would also, in effect, raise the cost of in-state production of energy intensive commodities

and eventually lead to relocation of such activities, which is a type of leakage.

2.4 Conclusion

We analyze the effect of two different state-level policies – a CO2 tax (or an equivalent

cap and trade system) and an RPS, on national emissions of a global pollutant under

different national policy regimes – no national policy, a national CO2 tax and a national

cap-and-trade program with state carve-out.17,18 We highlight the effect of pollution

shuffling and leakage on the ability of state-level policies to reduce national emissions

and the cost they impose on the rest of the nation.

We find that the effectiveness of a state RPS or CO2 tax at reducing national emissions

will be influenced by a set of common factors whether there is a national CO2 tax or no

national climate policy. In both cases, a state whose consumption is less than the quantity

of qualifying renewable generation within the larger market that can be reallocated to

that state, will not be able to affect overall emissions with either an RPS or CO2 tax

at the state-level. A state whose consumption is greater than the existing qualifying

renewable generation but less than the existing zero-carbon generation in the market

(small states) can affect national emissions by adopting a state-level RPS policy, while a

state-level CO2 tax will not be able to reduce emissions due to reshuffling of zero-carbon

resources. We thus show that an emission tax at the national-level does not guarantee

that overlapping state-level policies are immune to complete leakage. For large states

subject to a national CO2 tax or no national climate policy, modest emission reduction

goals can be achieved with either a state-level CO2 tax or a state-level RPS, though the

cost should be lower under a state-level CO2 tax. The maximum feasible reduction in

17That a state-level policy is unable to affect national emissions under a national emissions cap without
carve-out is well known (See Burtraw and Shobe, 2009; Goulder and Stavins, 2011a, e.g.)).

18The one possible combination among these policies that we do not analyze is a state RPS with
national cap and trade with state carve-out. This option is excluded because it would be very difficult
in practice to determine what the minimum stringency of a state’s RPS ought to be to qualify the state
to be carved out of a national cap and trade regime. Conversely, when the state’s policy is an emissions
tax or lower emissions cap, the requirements for a state to be carved out are clear.
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national emissions, however, is higher for a state-level RPS compared to a state-level

CO2 tax.

Under a national cap-and-trade program with a carve-out provision, a state of any

size can achieve a reduction in national emissions by setting a tighter state cap because

the sum of the national and state emissions caps has been reduced. Examining cost-

effectiveness, we find that a national cap-and-trade policy with a carve-out provision

will cost less than a national CO2 tax when states pursue more stringent overlapping

policies. This occurs because reshuffling or leakage of emissions within the market raises

the national emissions permit price (in order to keep emissions in the rest of the nation

constant). Consequently, for any given reduction in national emissions, the increase in

emissions in the rest of the market is smaller under a national cap-and-trade program

with a carve-out than under a national CO2 tax and therefore the cost of achieving that

reduction in emissions is lower under the national cap-and-trade program with a carve-

out. If a tighter state cap does cause an increase in emissions in the rest of the market,

then emissions outside the market must fall, increasing prices for consumers outside the

market. Under a CO2 tax, emissions and cost to consumers outside the market are both

unaffected by the state policy. Thus, while a national cap-and-trade policy with a carve-

out is less costly for the nation as a whole when states implement tighter caps than the

equivalent national and state CO2 taxes, a national cap-and-trade with a carve-out will

lead to higher costs for consumers outside the market than would a national CO2 tax,

which could create political opposition to allowing individual states to be a carved out

of a national cap-and-trade program.

Extending the model to consider overlapping policies in multiple states within a mar-

ket together with a national-level policy, we find that, holding the total quantity of

renewable generation within the market fixed, the size threshold for a state to affect

national emissions through a CO2 tax diminishes as more states within the market adopt

targets for renewable energy consumption. If other states in the market have CO2 taxes

and there is a national CO2 tax, a state of any size could cause additional emissions

reduction by adding a state CO2 tax. If there is a national cap-and-trade policy with a
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carve-out provision, the climate policies of other states do not affect the ability of the

state to reduce national emissions by setting a tighter cap. Extending to a multi-sectoral

or economy-wide context, we conclude that the efficacy of a state-level policy in reducing

national emissions will change depending on how the relative size of the state changes

with the widening scope of the policy. Given the global effects of CO2 emissions, our

results also speak to the interactions that could take place when global policies overlap

national policies or state policies overlap local policies and product markets are larger

than the smaller jurisdiction. Our framework can additionally be extended to consider

other policies such as emission intensity standards, subsidies for renewable energy and

border adjustment policies.
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Appendices

2.A Proof of Proposition 2.1

Proposition 2.1 For any pre-policy generation portfolio with fossil fuels, RPS-qualifying

renewables, and non-qualifying near-zero carbon resources, there exists a range of relative

state sizes such that a sufficiently stringent state RPS policy may reduce CO2 emissions,

but a state CO2 tax cannot when there is no national policy or when there is a national

CO2 tax.

Proof. Assume for simplicity that the utility functions are continuous, increasing, and

strictly concave and the cost functions are continuous, increasing, and strictly convex.

Let ρ ∈ [0, 1] indicate the size of the state relative to the market. As state size is

measured by the state’s share of the market’s electricity consumption pre-state policy,

in-state consumption is qs0 = ρqM0, the 0 superscript indicating pre-state-policy. Let R

represent the share of market consumption that could be met with existing qualifying

renewable generation alone, RqM0 = qM0
r . Then R also represents the largest state size

such that the state can consume only qualifying renewables and satisfy all pre-policy

demand, i.e. if qs0 ≤ RqM0 then all demand in state can be served by existing qualifying

renewables, qM0
r . Let R̄ be such that R̄qM0 = qM0

r + qM0
z and in-state consumption be

such that qs0 ≤ R̄qM0. Then R̄ is the share of zero-carbon resources in the market as

well as the largest state size such that the state can consume only zero-carbon resources

and satisfy all pre-policy demand.

As explained in section 2.3.1.1, when ρ < R̄, a state CO2 tax cannot reduce emissions

when there is a national CO2 tax T n ≥ 0 as there are sufficient zero-carbon resources in

the market to satisfy demand in the state with no change in production or emissions and

thus no change in tax burden. Also, if the national policy is a CO2 tax or if there is no

policy, the rest of the nation’s production and emissions will be unaffected by any state

policy.

The remainder of the proof will proceed in three steps. In step 1, we demonstrate
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that for a sufficiently large state, ρ > R, there exists an RPS stringency, α, such that

the qualifying renewable resources required by the policy if state consumption remained

unchanged would be larger than existing quantity of qualifying renewables, αρqM0 > qM0
r .

In step 2, we note that if α is such that αρqM0 > qM0
r , then the RPS constraint binds

and the shadow price on the constraint γs (a.k.a. the REC price) must be larger than

zero. In step 3, we demonstrate that given αρqM0 > qM0
r , the RPS policy will cause the

price in the rest of the market, pm to decline which will reduce the quantity of generation

from coal and natural gas and therefore reduce emissions.

Step 1: Prove that there exists an α ∈ (0, 1) such that αρqM0 > qM0
r when ρ > R:

Proof. At ρ = R, RqM0 = qM0
r . For ρ > R, ρqM0 > qM0

r . For α sufficiently close to one,

αρqM0 > qM0
r .

Thus, there exists an RPS requirement, α, that will force the state to either increase

generation from renewable resources beyond what was produced in the market pre-policy

or reduce consumption.

Step 2: If α is such that αρqM0 > qM0
r and α < 1, then existing renewables cannot satisfy

the RPS constraint and the RPS constraint will bind, causing the shadow price (price of

a REC in-state), γs, to be positive.

Step 3: Prove that pm < p0 for α > α̂ where α̂ is such that the RPS just binds

(α̂ρqM0 = qM0
r ): Proof. If α < 1, γs > 0 and qs > 0, then the binding RPS constraint

causes non-qualifying fuels (coal, natural gas and non-qualifying zero-carbon fuels, de-

fined collectively as qnq) to be used in-state, qsnq = qsc + qsng + qsz > 0 (otherwise the RPS

constraint which requires qs = Aqsnq, A = α
1−α , would dictate that qs = 0 also). From

the first order conditions, if generation from renewable fuels is sold both in-state and to

the rest of the market, qsr > 0 and qmr > 0, then it must receive the same price in both:

ps + γs = pm, where ps + γs is the price received for renewable generation in-state and

pm is the price that all types of generation receive out-of-state. If ps + γs = pm then

ps − Aγs < pm since A > 0. Since ps − Aγs is the price received in-state for all non-

qualifying fuels, ps−Aγs < pm, implies producers would only want to sell non-qualifying
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fuels to the rest of the market where the price is higher so qsnq = 0 and qmnq > 0, but

this is a contradiction. Thus, qsr > 0, qmr = 0, qsnq > 0 and qmnq > 0 and ps − Aγs = pm,

or in other words, if non-qualifying resources are consumed in both regions, they must

receive the same price in each region. Thus if pm declines, then the strictly increasing

and convex cost curves ensure that generation from coal and natural gas in the market

declines.

With α > α̂, to meet the RPS constraint either consumption declines, qs < ρqM0,

renewable generation increases, qsr > qM0
r , or both. Suppose that consumption and

renewable generation increase, qs ≥ ρqM0 and qr > qM0
r . If qr > qM0

r , ps + γs ≥ p0

by strict convexity of costs. If qs ≥ ρqM0, then ps ≤ p0 by strict concavity of utility.

Together, it must be that p0 ≥ ps, which implies p0 > ps − Aγs = pm.

In the other case, if consumption declines, qs < ρqM0, then ps > p0 by strict concavity

of utility. γs > 0 implies ps + γs > p0, so it must be that renewable generation increases

qr > qM0
r . At α̂ where the RPS just binds, ρqM0 − qM0

r = q̂s − qM0
r = q̂snq, q̂

m
nq = qm0 , and

q̂snq + q̂mnq = qM0
nq . q̂ indicates the equilibrium quantity at α̂.

We have assumed that qs < ρqM0 and qr > qM0
r , which imply qsnq = qs − qr <

ρqM0 − qM0
r = q̂snq. Suppose qmnq ≤ q̂mnq = qm0 . Since qm = qmnq, p

m ≥ p0 by strict concavity

of utility. But if pm ≥ p0, then qsnq +qmnq < qM0
nq , which implies pm < p0 by strict convexity

of costs, a contradiction. Therefore, qm = qmnq > q̂mnq = qm0 and, as long as qMnq < qM0
nq ,

we have pm < p0 by strictly increasing and concave demand and strictly increasing and

convex costs, as desired.

With pm < p0, generation from coal and natural gas decreases (qMc < qM0
c and qMg <

qM0
g ) by strictly increasing and convex costs. Therefore CO2 emissions in the market

decline.

2.B Proof of Proposition 2.2

Proposition 2.2 If there is no national climate policy in place or if there is a national

CO2 tax, and if there are zero-carbon resources that are not RPS-qualifying renewables,
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then the maximum reduction in emissions that can be achieved by a state RPS will exceed

the maximum reduction that can be achieved by a state CO2 tax for states participating

in markets with other states.

Proof. Assume for simplicity that the utility functions are continuous, increasing, and

strictly concave and the cost functions are continuous, increasing, and strictly convex.

If there is a national CO2 tax or if there is no national climate policy (i.e. T n = 0),

the rest of the nation’s production and emissions will be unaffected by any state policy. If

a state RPS demands 100 percent renewables, then coal, natural gas, and non-qualifying

zero-carbon fuels are used only in the rest of the market and the following first order

conditions determine their output:

pm = ∂
∂qmc

um(qmc + qmg + qmz ) = d
dqmc

cc(q
m
c ) + ecT

n (2.B.1)

pm = ∂
∂qmg

um(qmc + qmg + qmz ) = d
dqmg

cg(q
m
g ) + egT

n (2.B.2)

pm = ∂
∂qmz

um(qmc + qmg + qmz ) = ψ (2.B.3)

ψ is the Lagrange multiplier on the constraint qmz + qsz ≤ QM
z . If the price in the rest

of the market is positive, pm > 0, then the full capacity of non-qualifying zero-carbon

generation will be utilized, ψ > 0 and qmz = QM
z . If not, pm = 0 and qmz ≤ QM

z . If we

assume (i) d
dqmc

cc(0) > 0 and (ii) d
dqmg

cg(0) > 0, then when pm = 0, qmc = 0 and qmg = 0.

If a state CO2 tax is sufficiently high, then only zero-carbon resources will be used

in-state and only coal and natural gas will be used in the rest of the market. Generation

of coal and natural gas are then determined by the first order conditions:

pm = ∂
∂qmc

um(qmc + qmg ) = d
dqmc

cc(q
m
c ) + ecT

n (2.B.4)

pm = ∂
∂qmg

um(qmc + qmg ) = d
dqmg

cg(q
m
g ) + egT

n (2.B.5)

If we assume (iii) ∂
∂qmc

um(0) > d
dqmc

cc(0) > 0 and (iv) ∂
∂qmg

um(0) > d
dqmg

cg(0) > 0, then

generation from coal and natural gas will always occur, qmc > 0 and qmg > 0.
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If qmc = 0 and qmg = 0 under the most stringent state RPS, CO2 emissions in the

market will be zero by assumptions (i) and (ii). Conversely, even with a very high state

CO2 tax, emissions will always be positive because, in that case, qmc > 0 and qmg > 0 by

assumptions (iii) and (iv).

If qmc > 0 and qmg > 0 under the most stringent RPS, then qmz = QM
z . If qmc and qmg

solve equations (2.B.1) and (2.B.2) and we were to remove the non-qualifying zero-carbon

generation being used, then d
dqmc

cc(q
m
c ) + ecT

n < ∂
∂qmc

um(qmc + qmg ) and d
dqmg

cg(qg) + egT
n <

∂
∂qmg

um(qmc + qmg ) by strict concavity of utility. Note that except for the inequality, these

equations are equations (2.B.4) and (2.B.5). By continuity, concave strictly increasing

utility, and convex strictly increasing costs, there exists a q̂mc > qmc and a q̂mg > qmg such

that equations (2.B.4) and (2.B.5) are satisfied. Thus, the most stringent RPS induces

less generation from fossil fuels and therefore fewer emissions than would an infinite CO2

tax because, unlike under an infinitely high state CO2 tax, zero-carbon generation is

available to out-of-state consumers under the most stringent RPS, which replaces much

of their demand for generation from coal and natural gas.

2.C Data and calibration

We assume the supply and demand curves are linear and represent a long term re-

sponse to long-term price trends in the market. Thus, the demand curve represents the

average consumer response to price changes over the long term, and the supply curve is

modeled as a long-term adjustment by producers who may be investing in new generation

capacity. To ensure our demand and supply functions have the required interpretation,

we utilize data from the Annual Energy Outlook 2011 (AEO2011) published by the U.S.

Energy Information Administration (EIA) which focuses on the factors that shape the

U.S. energy system over the long term. Our baseline pre-policy scenario utilizes 2009

data. Using the reference case, the high demand growth and the low demand growth side

cases, we compute the elasticity of supply implied by the difference between the reference

case and the side cases. We compute the elasticity of demand using the reference case
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and a side case developed to examine the effect of a clean energy standard for Senator

Jeff Bingaman.

Parameter Interpretation Value

p0 Initial Price ($/KWh) 0.098
q0 Initial Total Generation (KWh) 3.98E+12
q0
z Initial Non-Qualifying Zero-Carbon Gen. (KWh) 1.13E+12
q0
r Initial Renewable Generation (KWh) 1.45E+11
q0
g Initial Natural Gas Generation (KWh) 9.31E+11
q0
c Initial Coal Generation (KWh) 1.77E+12

ε Demand Elasticity -0.2
εr Renewables Elasticity 1.49
εg Natural Gas Elasticity 2.57
εc Coal Elasticity 1.10

Table 2.C.1: Parameters of the Model

The baseline price, quantities, and elasticities used to calculate the parameters of the

supply and demand curves are shown in Table 2.C.1. As our model contains three regions,

state, rest of the market, and rest of the nation, we compute three demand curves. In

all scenarios, we assume that a market consumes 10 percent of the national electricity

consumed. We consider two possible sizes of the state relative to the market, 25 and 75

percent. If the state is 25 percent of the market, then 25 percent of the pre-policy market

generation is consumed in the state. The price and elasticity of demand are assumed to

be the same in each region. There are also two supply curves, one for the market and

one for the rest of the nation. We assume resources are uniformly distributed across the

nation and that the elasticity of supply is the same across the nation.19

Lastly, the Environmental Protection Agency indicates that CO2 emissions are ap-

proximately 1.125 tonnes/MWh of coal generation and 0.5625 tonnes/MWh of natural

gas generation.20 Thus, the CO2 emissions per MWh of coal generation are roughly

double the CO2 emissions per MWh of natural gas generation.

19The uniform distribution of resources only affects our results in that it sets the share of market-wide
electricity a state must consume to be considered large (See Section 2.2.3).

20http://www.epa.gov/cleanenergy/energy-and-you/affect/air-emissions.html
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CHAPTER 3

Storage or Natural Gas: Which Best Complements

Increasing Wind Generation?

3.1 Introduction

Since 2000, 29 U.S. states, the District of Columbia, and 2 U.S. territories have

implemented Renewable Portfolio Standards (RPS).1 These policies mandate a share

of electricity consumption that must be served by generation from qualifying renewable

resources. The types of resources that qualify as renewables under each state’s RPS vary,

but generally included are wind, solar, geothermal, and small hydroelectric facilities

as well as biomass incineration facilities. Of the 116,000 GWh increase in renewable

generation (excluding hydroelectric) in the U.S. since 2002, 94 percent was generated by

wind turbines, 1 percent was generated by solar technology, and the remaining 5 percent

by geothermal and biomass.2 Thus, wind has been the primary respondent to the RPS

policies.

However, generation from wind turbines is dependent upon the prevailing winds and

is therefore difficult to predict with 100 percent accuracy. As supply must always equal

demand in electricity markets, other generators must adjust their output to compensate

for the variation in the generation from wind. While these types of adjustments occur

even in the absence of wind, due to the variation in demand, there is concern in the

industry that the large amounts of wind generation being added in response to RPS

policies may strain the flexibility of the electric power grid (Denholm et al., 2010). To

1Database of State Incentives for Renewables & Efficiency, http://www.dsireusa.org
2Energy Information Administration, Table 1.1.A. Net Generation by Other Renewables, 2002-June

2012, http://www.eia.gov/electricity/data.cfm#generation
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increase the ability of the grid to absorb the unpredictable intermittency of wind gener-

ation, many have suggested an increase in energy storage capacity. As storage can both

absorb excess wind generation and substitute for wind generation when the wind dies

down, storage seems to be an ideal technology to smooth the output of a wind generator.

Nonetheless, flexible generators can also smooth wind generation by decreasing pro-

duction when wind generation is high and increasing production when wind generation is

low. A flexible generator is one which can quickly adjust its output at minimal additional

expense. The most prominent examples of flexible generation are natural gas-fired com-

bustion turbines and natural gas-fired combined cycle units. Combustion turbines are

the traditional technology used on peak demand days as they can start quickly, have low

start-up costs, and can adjust their output quickly. However, the efficiency of these units

is low, making them costly to operate. Combined cycle units are a newer technology in

which one or more combustion turbines is connected to a steam engine which captures

the heat generated by the combustion turbines to generate additional electricity, thus

increasing the efficiency and lowering the cost of generation. These units are utilized to

follow demand, operating at nearly full capacity during the day and reducing output or

shutting off at night. Either type of unit can adjust its output to the output of a wind

turbine and both operate more flexibly than a coal or nuclear power plant.

Therefore, the question asked in this paper is: which is the more economical alterna-

tive to increase the flexibility of the electric power grid in the face of increasing quantities

of intermittent wind generation, storage or natural gas? To answer this question, I utilize

a simple partial-equilibrium model of the electricity energy market3 with three periods,

a night period, characterized by low demand, and a day period, characterized by high

demand, and a shoulder period, characterized by middling demand. In each period, elec-

tricity may be generated, and in the night period, when demand is low, electricity can be

stored for use in the day period when demand is high. For simplicity, costs and demand

are assumed to be separable between periods and there are no transmission constraints

3The market for electric power, as opposed to other markets operated simultaneously that are used
to procure reserves in case of outages and power quality maintenance services.

106



or transportation costs. Additionally, as I seek to understand which technology is more

beneficial and cost-effective for society as a whole, I assume perfect competition and solve

the model as a social planner.

Using data on existing generation and storage capacity, generation costs, and demand

from the Pennsylvania Jersey Maryland (PJM) Interconnection, a market covering much

of the Mid-Atlantic and Midwest U.S., I set up a base case scenario and solve for the op-

timal generation and storage in each period. The initial scenario assumes no uncertainty,

while subsequent scenarios add uncertainty about demand and uncertainty about wind

generation. For each scenario I calculate the market surplus given the existing generation

and storage capacity, the market surplus from adding a storage facility, and the market

surplus from adding a natural gas combined cycle unit. Comparing the change in market

surplus from adding a storage facility with the change from adding a combined cycle

unit, I am able to ascertain which technology is more valuable to the market.

The results indicate that the most important determinant of the value of additional

storage capacity relative to the value of additional combined cycle generation capacity is

the cost of natural gas. At high natural gas prices, as seen in 2008, the net lifetime benefit

from additional storage capacity exceeds that of additional combined cycle generation

capacity. However at the lower natural gas prices seen in 2011 and 2012, the net lifetime

benefit of storage is significantly less than the new lifetime benefit of new combined cycle

capacity and may even be negative. As the low natural gas prices seen today are likely

to continue at least in the near future due to the recent boom in production (Yergin and

Inesin, 2009), it is likely that storage will continue to be a poor investment relative to

new natural gas combined cycle capacity. Conversely the effect of the variance of wind

generation has a much smaller effect on the value of additional storage or generation

capacity in this model. Increasing the efficiency of either technology would increase the

value of new capacity from that technology but leave the other unaffected.

However, as the quantity of wind generation in the market grows, the value of com-

bined cycle capacity falls rapidly, regardless of fuel prices, as less generation from fossil

fuels is required to meet demand. However, the value of storage capacity may rise or fall
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depending on the steepness of the marginal cost curve. For instance, when fuel prices

are high, the marginal cost curve becomes steeper and the price difference between day

and night increases, increasing the value of storage. Therefore, the value of new storage

capacity rises relative to the value of new combined cycle capacity when the quantity of

wind generation in the market increases. Were wind (and/or solar) generation to become

the predominant source of power in the U.S., storage would be a very important tool to

balance the uncertainty inherent in these power sources, while combined cycle generation

capacity would be virtually obsolete.

3.2 Literature Review

Much of the prior literature has calculated the value of an additional energy storage

unit by simply utilizing historical prices and the operating characteristics of the unit.

These analyses use different time periods and different markets and find differing results.

For instance, Drury et al. (2011) analyze four U.S. electricity markets using prices from

2002 to 2009 and find that compressed air energy storage may be a profitable investment

as do Sioshansi et al. (2011) who analyze the PJM market from 2002 to 2008. Figueiredo

et al. (2006) analyze 14 markets in the U.S. and abroad using price data from 1996 to

2001, and find that in 6 of the markets storage could never generate an adequate return

on investment, while in the remaining markets it may be a feasible investment. Graves

et al. (1999) analyze a variety of U.S. and foreign markets using price data from 1997

and 1998 and find that in three markets there is a strong evidence that storage would

be a profitable investment while in the others it is less likely. Sioshansi et al. (2009)

analyze the effects of fuel prices, transmission constraints, efficiency of storage, and the

capacity of storage and the fuel mix on the potential revenue that storage could earn in

the PJM market from 2002 to 2007. Finally, Walawalkar et al. (2007) analyze the New

York market using price data from 2001 to 2004 and find strong evidence that storage

would be a profitable investment in the New York City area.

While many of these analyses do make an effort to tease out the effect of the fuel
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costs and other variables on their results, few utilize a structural model. An exception

to this rule is Crampes and Moreaux (2010) who investigate analytically the optimal

usage of storage as a function of the costs of generation and demand. They additionally

emphasize that the net change in market surplus should be the driver of the usage of

storage. A second exception is the analysis of Mokrian and Stephen (2006) who create

a structural model in which a firm maximizes profit by operating a storage facility.

The authors explore the differing results of a linear programming model, a dynamic

programming model, and a stochastic programming model in which prices are either

known, are generated according to a Markov process or are generated according to an

ARMA process, respectively. Their models indicate that a compressed air energy storage

facility may be a profitable investment while a smaller sodium-sulfur battery would not

be. However, while their model incorporates uncertainty into the estimation of the value

of storage, it does not allow the prices to respond to the introduction of storage but

instead assumes they arrive exogenously. Although Crampes and Moreaux (2010) have

some discussion of the difference between storage and generation, none of the analyses

discussed here compare the economics of investing in additional storage capacity against

the economics of investing in additional generation capacity.

3.3 The Model

The model consists of three periods: a night period with low demand, a shoulder

period with middling demand, and a day period with high demand. I assume that the

cost of electricity generation and demand are separable across the periods. The cost

curves are assumed to be increasing and convex and the demand curves to be decreasing

and concave. The economy is endowed with existing generation capacity, consisting of

generators using nuclear, renewable, coal, natural gas, and oil resources, and existing

storage capacity. A social planner maximizes welfare in the market.

Prior to the start of the night period, the social planner may choose to add additional

natural gas combined cycle capacity and/or energy storage capacity subject to the cost
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of the additional capacity, also assumed to be increasing and convex. Combined cycle

generators are designed to operate most efficiently at full capacity, causing the marginal

cost curve for an individual generator to be decreasing. To avoid the problems this

would cause in solving the model, the marginal cost of generating electricity from a

new combined cycle unit is assumed to be constant. At prices below the marginal cost

of the new combined cycle capacity, the cost function for generation is unaffected. At

higher prices, the cost function for generation shifts laterally to the right according to

the amount of capacity added. As a result, adding combined cycle capacity either leaves

unchanged or reduces the cost of generating a given quantity of electricity, in addition

to increasing the total generation capacity in the market.

It is assumed that all storage facilities face the same cost to store energy, and, there-

fore, adding additional storage capacity increases the amount of energy that can be stored

but does not affect the cost of storage. As storage units are not perfectly efficient, not

all of the electricity stored can be recovered. The ratio of the amount of electricity that

can be recovered to the amount that was stored is known as the round-trip efficiency,

e. As a result, given the rate at which a storage facility can fill or empty, it requires 1
e

hours to store enough energy in the night period to have one hour of electricity available

in the day period from a storage facility. Therefore, the cost per unit of energy stored is

1
e
− 1 = 1−e

e
multiplied by the price of electricity in the night period.

Dividing a 24 hour day into three periods, I assume that the day period is 8 hours

long, the night period is 1
e

∗
8 hours long and the shoulder period, in which storage would

neither fill nor empty, is (2 − 1
e
)∗8 hours long. In the night period, the social planner

chooses the quantity of electricity to generate and the quantity of electricity to store for

use in the day period subject to the cost of generation and storage and the available

generation and storage capacity. In the shoulder period, the planner chooses how much

electricity to generate. In the day period, the planner chooses the quantity of electricity

to generate for use in the day period subject to the cost of generation and the generation

capacity available.

In the initial version of the model, there is no uncertainty. The second version of
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the model adds uncertainty about the demand functions. When choosing additional

generation or storage capacity, the planner does not know the demand functions. In the

night period, the planner knows the night period demand function, but does not know

the shoulder or day period demand function when choosing generation for the night

period and the amount of energy to store. The decisions in the night period are linked

to the decisions in the day period by storage, but are unaffected by the outcome of the

shoulder period. The uncertainty about demand in the shoulder period is resolved before

the shoulder period generation decision is made. In the day period, all uncertainty is

resolved before the planner chooses generation for the day period. The third version of

the model adds uncertainty about wind generation, where the uncertainty about wind

generation is resolved at the same time as uncertainty about demand. It is assumed that

wind generation is uncorrelated with demand conditions.

3.3.1 Version 1 - No Uncertainty

The purpose of this version of the model is to develop an intuition for what drives the

decision to invest in additional generation or storage capacity. As will be seen in versions

2 and 3 of the model, adding uncertainty may increase the value of additional storage or

generation capacity, but the increase in value occurs through the same mechanism as in

version 1.

To find the optimal generation, storage, and amount of capacity to build, the planner

solves the following problem:

max
QN ,,QSh,QD,qs,Xg ,Xs

1
e
uN(QN − qs) + (2− 1

e
)uSh(QSh) + uD(QD + qs)− 1

e
c(QN , Xg)

− (2− 1
e
)c(QSh, Xg)− c(QD, Xg)− kg(Xg)− ks(Xs)

111



s.t. 0 ≤ QN ≤ Cg +Xg γNg , λ
N
g

0 ≤ QSh ≤ Cg +Xg γShg , λShg

0 ≤ QD ≤ Cg +Xg γDg , λ
D
g

0 ≤ qs ≤ Cs +Xs γs, λs

0 ≤ QN − qs δ

QN , QSh and QD are the quantities of electricity generated in the night, shoulder, and

day periods. qs is the quantity of electricity stored in the night period, to be used in the

day period. QN − qs is the quantity of electricity consumed by consumers at night and

QD + qs is the quantity of electricity consumed during the day. All energy the planner

chooses to store in the night period will be used in the day period because there is no

uncertainty and storage is costly. uN(·), uSh(·), and uD(·) are the demand functions and

c(Q,Xg) is the cost function for generating electricity, which is dependent on the amount

of electricity generated, Q, and the generation capacity added by the planner, Xg. Xs is

the amount of additional storage capacity the planner chooses to build. kg(·) and ks(·)

are the curves that determine the cost of building generation or storage capacity.

Cg is the existing generating capacity and Cs is the existing storage capacity in the

market. The first four constraints ensure that generation and storage are non-negative

and less than or equal to the capacity of generation and storage respectively. The γ vari-

ables are the Lagrange multipliers on the non-negativity constraints, and the λ variables

are the Lagrange multipliers on the capacity constraints. Negative storage would imply

that the planner would like to move electricity from the day period to the night period.

However, because the night period is assumed to take place before the day period, storage

is constrained to be positive. The final constraint ensures that the quantity generated in

the night period is greater than or equal to the amount stored plus the electricity used in

the storage process. This constraint is only necessary if the quantity stored is positive.

It is not necessary to constrain the planner to only build positive quantities of storage

or generation capacity as there is no cost to hold capacity, and therefore no reason to
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destroy capacity.

The cost functions and the demand functions are governed by the following assump-

tions:

Assumption 3.1 c1(Cg, Xg) > c1(0, Xg) = 0, c11(Q,Xg) ≥ 0

Here Cg is total available generation capacity. This first part of the assumption states

that the marginal cost of generating the last possible unit of electricity is greater than

the marginal cost of generating the first unit of electricity, which is equal to zero, given

the amount of additional generation built by the planner, Xg. The second part of the

assumption ensures that the cost curve is convex in Q so that the marginal cost curve is

weakly increasing in the quantity generated.

Assumption 3.2 ks(0), kg(0) > 0, k′s(·), k′g(·) ≥ 0, k′′s (·), k′′g (·) ≥ 0

The first part of this assumption indicates that there are fixed costs to installing genera-

tion or storage capacity. The second part specifies that the cost of additional generation

or storage capacity be increasing and convex.

Assumption 3.3 ut ′′(Q) ≤ 0, t ∈ {N,Sh,D}, uD ′(Q) > uSh ′(Q) > uN ′(Q)

uD ′(0), uSh ′(0), uN ′(0) > 0

The first part of the assumption guarantees that the utility function in each period t

is concave so that marginal utility is weakly decreasing in the quantity of electricity

consumed. The second part of the assumption ensures that the marginal utility of a

given quantity of electricity, Q, in the day period is always greater than the marginal

utility of the same quantity of electricity in the should period which is greater than the

marginal utility of that quantity in the night period. As a result, for the same price,

consumers in the day period would demand more electricity than consumers in the night

period. This assumption is relaxed in the uncertainty version of the model. The third

portion of the assumption ensures that the marginal utility at zero is always positive.
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As described in the introduction to the model, I assume that adding generation ca-

pacity affects the cost curve for generation by shifting it right for quantities such that

the marginal cost of generating that quantity is greater than the assumed marginal cost

of the additional combined cycle generating capacity. For quantities of generation such

that the marginal cost of generating that quantity is less than the marginal cost of the

new generating capacity, the cost curve is unaffected. Thus, defining B as the quantity

at which the marginal cost of existing generation equals the marginal cost of the new

generating capacity, and m as the constant marginal cost of the new capacity, the cost

curve c(Q,Xg) can be written:

Assumption 3.4

c(Q,Xg) =


c(Q) for 0 ≤ Q ≤ B

c(B) +m(Q−B) for B < Q < B +Xg

mXg + c(Q−Xg) for B +Xg ≤ Q ≤ Cg +Xg

3.3.1.1 Analytical Results

Combining the first order conditions of the planner’s problem, shown below, and

Assumptions 3.1 - 3.4, the conditions under which the planner would choose to invest in

additional generation or storage can be determined.
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QN: 1
e
uN ′(QN − qs) = 1

e
c1(QN , Xg) + λNg − γNg − δ (3.1)

QN: (2− 1
e
)uSh ′(QSh) = (2− 1

e
)c1(QSh, Xg) + λShg − γShg (3.2)

QD: uD ′(QD + qs) = c1(QD, Xg) + λDg − γDg (3.3)

qs: λs − γs + δ = uD ′(QD + qs)− 1
e
uN ′(QN − qs) (3.4)

Xg: k′g(Xg) = (>)λNg + λShg + λDg − 1
e
c2(QN , Xg)

− (2− 1
e
)c2(QSh, Xg)− c2(QD, Xg) if Xg > (=)0 (3.5)

Xs: k
′
s(Xs) = (>)λs if Xs > (=)0 (3.6)

Beginning with the problem of determining the amount of additional generation ca-

pacity to add, equation (3.5) shows that the first order conditions set the marginal cost

of additional generation capacity equal to the sum of the Lagrange multipliers on the

generation capacity constraints less the derivatives of the generation cost functions for

each period with respect to additional capacity. The derivative of the cost function with

respect to additional capacity in either period is represented by:

c2(Q,Xg) =


0 for 0 ≤ Q < B +Xg

m− c1(Q−Xg) for B +Xg ≤ Q ≤ Cg +Xg

As B is the quantity at which the marginal cost of generation is m, for any quantity

greater than B + Xg, the marginal cost, c1(Q−Xg), is greater than m. Further, in the

case that the quantity of generation Q is greater than B +Xg, c1(Q−Xg) = c1(Q,Xg).

Therefore, equation (3.5) can be rewritten as:

k′g(Xg) =λNg + λShg + λDg + 1
e
max(c1(QN , Xg)−m, 0)

+ (2− 1
e
)max(c1(QSh, Xg)−m, 0) +max(c1(QD, Xg)−m, 0) (3.7)

As the marginal cost of the first unit of electricity is 0, by assumption 3.1, and
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the marginal utility of the first unit of electricity is positive, by assumption 3.3, the

non-negativity constraints, γ, not bind. Setting price equal to marginal utility and sub-

stituting equations (3.3), (3.1), and (3.2) into (3.7) yields:

k′g(Xg) =1
e
max(PN + eδ −m, 0) + (2− 1

e
)max(P Sh −m, 0) +max(PD −m, 0) (3.8)

δ greater than zero indicates that there is no consumption in the night period because the

marginal cost of generating the electricity the planner wishes to store for day is greater

than the marginal utility of the first unit of electricity. This should occur rarely, if ever.

Thus, as long as δ is zero, the marginal value of additional combined cycle capacity is

equal to the weighted sum of the maximum of the equilibrium price less the marginal

cost of the new generation capacity and zero in each period.

If the quantity of generation chosen in all three periods is strictly less than the thresh-

old level, B, plus a positive amount of additional capacity, Xg, then: (1) generation in

the three periods is less than the existing generation capacity plus the additional capac-

ity, Q < Cg + Xg, and (2) the marginal benefit of the additional generation on the cost

function is zero (c2(Q,Xg) = 0). When the first item occurs, the capacity constraints on

generation do not bind, leading the Lagrange multipliers, λNg ,λShg , and λDg , to be zero.

The second item is true because if generation in all periods is less than B + Xg, some

of the added capacity is going unused and therefore should not have been installed. In

this situation, equation (3.6) reduces to k′g(Xg) = 0. As the marginal cost of additional

capacity, k′g(Xg) ≥ 0, by Assumption 3.2, this indicates that the amount of additional

generation may need to be reduced.

If generation in any period is greater than the threshold level plus the amount of

capacity added, Q > B +Xg, but generation in all periods is less than the total market

capacity, Q < Cg + Xg, then the marginal benefit of additional generation capacity will

be −c2(Q,Xg) = c1(Q − Xg) − m > 0, or the difference between the marginal cost of

the electricity generated less the marginal cost of generation from the new combined

cycle capacity. Therefore, the higher the marginal cost of the total quantity of electricity
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generated, the higher the value of additional capacity and the more additional capacity

will be installed. If generation in any period is equal to the total market capacity,

Q = Cg + Xg, then the capacity constraint in that period will bind and the marginal

benefit of additional generation capacity will increase further by the value of the Lagrange

multipliers on the capacity constraints: λNg + λShg + λDg . Thus the planner will want to

increase generation capacity if the market is capacity constrained or if the marginal cost

of the electricity demanded by consumers is significantly greater than the marginal cost

of new capacity.

The relationship between the marginal cost of electricity at the equilibrium quantity

and the marginal cost of new generation capacity is determined by two factors. First, the

elasticity and level of demand for a given generation cost function determines the price

in each period. The greater the willingness to pay for each unit of electricity, the higher

the price of electricity and the higher the marginal cost of electricity at the equilibrium

quantity. The more inelastic demand is, the more sensitive the electricity price will be

to the cost of generation.

More importantly, the cost of fuel and other variable generation costs will determine

where on the marginal cost (or supply) curve the new natural gas-fired combined cycle

capacity will be placed. New natural gas combined cycle generators are generally more

efficient per unit of energy than existing coal generation, but when natural gas prices are

high relative to coal prices, the new combined cycle unit is likely to be more expensive

than existing coal and will be placed further up the supply curve. The more similar

coal and natural gas prices are, the more likely it is for the cost of the new natural gas

capacity to be below the cost of existing coal units. This places the new capacity lower

on the supply curve and causes the new capacity to be used more often, increasing its

value.

Additionally, a larger amount of zero or near-zero cost generation, such as nuclear

and renewable generation, shifts the supply curve of the remaining generation to the

right, increasing the quantity of electricity in equilibrium and decreasing the price. The

decrease in price lowers the price the new generation capacity would receive and also the
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probability the new generation capacity will be used.

Turning to the decision to build additional storage capacity, equation (3.6) shows

that the planner would choose to build additional capacity if the value of the Lagrange

multiplier on the storage capacity constraint, λs is sufficiently large. Equation (3.4)

indicates that the value of the multiplier λs is determined by the difference between

the marginal utility of an additional unit of electricity consumption during the day,

uD ′(QD +qs), less the marginal utility of electricity consumption at night, uN ′(QN −qs),

less the cost of storing the energy, 1−e
e
uN ′(QN − qs). Setting price equal to marginal

utility, the value of storage is equal to the day price less the night price less the cost

of storage PD − PN − 1−e
e
PN = PD − 1

e
PN . Therefore the value of additional storage

capacity is determined by the difference in price between night and day and the efficiency

of storage. If the difference is negative, no additional storage capacity is necessary, when

the difference is positive additional storage would be valuable.

In turn, the day and night prices are determined by the amount of generation available,

generation costs, the utility functions, and the efficiency of existing storage capacity. If

insufficient generation capacity is available in the day period to serve demand, this will

raise the value of storage above the difference in marginal costs between periods. This

results is obtained because the price in the day period is dependent both on generation

costs and whether the market is capacity constrained, as can be seen in equation (3.3).

Conversely, insufficient generation in both periods may have a negative effect on the value

of storage as consumers would be less willing to give up the limited amount of electricity

available in the night period for use in the day period.

Figure 3.1 illustrates the effects of changing the cost of generating electricity. For

instance, in Figures 3.1.A and 3.1.B the slope of the generation cost curve is reduced.

The steepness of the generation cost curve is determined by fuel prices and the efficiency

of existing generators, as higher fuel prices magnify the difference in efficiency between

neighboring generators on the supply curve. When fuel prices fall, this reduces the slope

of the generation cost curve and therefore the difference in price between two quantities.

However, the change in the day-night electricity price difference is also affected by the
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Figure 3.1: Effect of the Cost Function on the Value of Additional Storage

responsiveness of day and night demand to price and the level of the difference between

day and night demand at each price.

In Figure 3.1.A, the slope of the demand curve for the day period is steeper than

the slope of the demand curve for the night period, indicating that demand during the

day is less responsive to price than is demand during the night. This causes the value

of a large quantity of electricity to be similar in both periods, but the value of a small

quantity of electricity to be significantly larger in the day period than in the night period.

When the slope of the cost curve decreases, the quantity of electricity demanded during

the day increases by less than the quantity demanded at night, but the price falls by

much more in the day period than in the night period, due to the steeper slope of the

day demand function. Therefore, falling generation costs decrease the price difference

between day and night. Figure 3.1.B, however, shows that if demand during the day is

significantly more responsive to price than demand at night, the decrease in the slope of

the generation cost curve can increase the price difference between day and night.

Figures 3.1.C and 3.1.D show the effect of an increase in the quantity of generation
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that can be generated at zero cost, for instance an increase in wind generation. As

the cost of generating electricity from other fuels does not change, this shifts the cost

curve to the right. This reduces the cost of electricity for a given quantity and therefore

affects the day-night electricity price difference in a similar way as a decrease in fuel

costs. If demand is significantly more responsive to price in the day period than in the

night period, the day-night price difference will grow, as in Figure 3.1.D, while a day

demand function with a steeper slope that intersects the x-axis at the same quantity

as the night demand function causes the day-night price difference to fall, as in Figure

3.1.C. However, this effect is also dependent on the position of the day demand curve

relative to the night demand curve. For instance, shifting the day demand curve right in

Figure 3.1.C, causes a larger day-night price difference. Thus, the effect of a reduction

in the cost of generating electricity, either due to a decrease in fuel costs or an increase

in the capacity of zero (or simply low) marginal cost generation, on the value of storage

is difficult to predict.

Further, from equation (3.4), the value of storage is dependent not on the raw price

difference but on the difference between the price storage will receive during the day less

the cost of the energy stored at night, or PD − 1
e
PN . Therefore the day price must be

1−e
e

percent greater than the night price. As the night price grows smaller, the absolute

difference between the day and night prices required for storage to be valuable declines.

When prices go to zero in the night period, any positive price in the day period will

present an opportunity to utilize storage. As a result, greater wind generation in the

night period than in the day period will increase in the value of storage and the larger

the difference between night and day wind generation, the larger the value of storage.

The effect of changing the day demand curve relative to the night demand curve,

while keeping generation costs constant, is much easier to predict, as the night price

remains constant. Figures 3.2.A and 3.2.B illustrate the potential effects of increasing

the slope of the demand function in the day period relative to the demand function in the

night period. In each figure, the solid grey line indicates the original demand function for

the day period, which has the same slope as the night demand function. If the slope of
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Figure 3.2: Effect of the Demand Functions on the Value of Additional Storage

the day demand curve increases, but the intercept stays constant, the willingness to pay

for a given quantity of electricity in the day period falls, and therefore the equilibrium

quantity falls, as can be seen in Figure 3.2.A. This reduces the price of electricity in

the day period and therefore the day-night price difference. Conversely, if the slope and

the intercept of the demand function for the day period increase, as in Figure 3.2.B,

the willingness to pay for a given quantity of electricity increases and the equilibrium

quantity of electricity increases, increasing the day-night price difference. If the demand

curve shifts right, as in Figure 3.2.C, the same result occurs. Thus, if willingness to pay

for a given quantity of electricity rises in the day period relative to the night period, the

day-night price difference will rise as will the value of storage.

Finally, the cost of storing electricity is most dependent upon the efficiency of the

storage device, e. Increasing the efficiency of the storage device decreases the cost of

storing energy and therefore decreases the required difference between day and night

electricity prices that must occur for storage to be useful. This in turn increases the

number of hours in a year that using storage would be profitable and therefore increases
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the value of adding storage capacity.

Comparing the origins of the value of additional generation capacity versus the value

of additional storage capacity, indicates that which investment provides more value to

the market depends upon the demand and supply conditions in the market. Additional

generation capacity is valuable whenever the market price of electricity is above the

marginal cost of the new generator(s) in any period. Conversely, the value of storage

depends on the difference between the night and day electricity price. Therefore, in-

cluding the shoulder period is important to the accuracy of the comparison between the

incentive to invest in additional storage versus generation capacity because the shoulder

period provides several hours in each day in which the new natural gas combined cycle

generator(s) may be operating, while new storage capacity would be idle. Comparing

the value of new capacity from generation versus storage in the day and night period, a

higher price of electricity at night relative to the price of electricity during the day would

decrease the value of storage, but would increase the value of additional generation, while

a higher price during the day relative to the night price increases the value of both types

of capacity.

On the other hand, increasing fuel costs decrease the quantity of generation demanded

and may shift the location of the new combined cycle capacity upward on the supply

curve, and therefore may reduce the amount of time new combined cycle capacity would

be used. However, as shown in Figure 3.1.A, the increase in the slope of the generation

cost curve may cause an increase in the day-night electricity price difference and therefore

increase the value of storage. Thus, an increase in fuel costs may decrease the value of

new combined cycle generation capacity but increase the value of storage capacity, which

would make it more likely for storage capacity to be a better investment than combined

cycle capacity.

Increasing the quantity of wind generation shifts the cost curve to right and therefore

increases the amount of electricity demanded, but also decreases the equilibrium price

of electricity. This causes the return to new combined cycle capacity to fall, regardless

of whether the new combined cycle capacity is utilized less in equilibrium due to the
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increase in generation from wind. The fall in the price of electricity in the night period,

however, reduces the absolute difference in price between periods required to make storage

useful. This may increase the value of storage, especially if the output of the new wind

generation is greater at night than during the day. An increase in the value of storage

due to increased wind generation, however, is by no means certain and depends upon

demand conditions and the distribution of the wind generation across periods.

3.3.2 Version 2 - Add Demand Uncertainty

In this version of the model, I assume that prior to the beginning of each period, the

planner knows only the distribution of the possible demand functions for the upcoming

period(s). Therefore, when choosing additional generation or storage capacity prior to

the beginning of the night period, the planner does not know the night or day demand

functions. In the night period, the planner learns the night period demand function,

prior to choosing generation for the night period and the amount of energy to store.

In the shoulder period, the planner learns the shoulder period demand function, prior

to choosing generation for the shoulder period. In the day period, all uncertainty is

resolved before the planner chooses generation for the day period. Although it makes the

exposition of the model somewhat more confusing, I replace QD, representing daytime

generation, with Q̂D = QD + qs, representing daytime consumption, because it makes

solving the model more straightforward.

Prior to the beginning of the night period, the planner maximizes the sum of expected

utility in each period by choosing the amount of additional generation capacity, Xg, and

storage capacity, Xs to build subject to the cost of new capacity, kg(Xg) and ks(Xs), and
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the expected cost of generation in each period:

max
Xg ,Xs

EN
[

1
e
uN
(
QN(Xg, Xs)− qs(Xg, Xs)

)
+ ESh|N

[
(2− 1

e
)uSh

(
QSh(Xg))

)]
+ ED|N

[
uD
(
Q̂D(qs(Xg, Xs), Xg)

)]
− 1

e
c
(
QN(Xg, Xs), Xg

)
− ESh|N

[
(2− 1

e
)c
(
QSh(Xg), Xg

)]
− ED|N

[
c
(
Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs)), Xg

)]]
− kg(Xg)− ks(Xs)

The choice of generation in the night period, QN , generation in the night period, QSh,

consumption in the day period, Q̂D, and storage, qs, will depend upon the choices of

generation and storage capacity as well as the realization of demand. EN represents

the expectation of demand conditions in the night period, while ESh|N and ED|N repre-

sents expectation of demand conditions in shoulder and day periods given the demand

conditions in the night period.

In the night period, the planner maximizes utility in the night period and expected

utility in the day period by choosing the quantity of electricity to generate in the night

period, QN , and the quantity of electricity to store for use in the day period, qs, subject to

the available generation and storage capacity, the cost of generation in the night period,

and the expected cost of generation in day period. The shoulder period is left out of the

night period’s decisions because there is no storage decision in the shoulder period and

therefore the shoulder period is not linked to the night and day periods and does not

affect the decisions in these periods.

max
QN ,qs

1
e
uN(QN − qs) + ED

[
uD(Q̂D(qs, Xg)

]
− 1

e
c(QN , Xg)− ED

[
c(Q̂D(qs, Xg)− qs, Xg)

]
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s.t. 0 ≤ QN ≤ Cg +Xg γNg , λ
N
g

0 ≤ qs ≤ Cs +Xs γs, λs

0 ≤ QN − qs δ

The level of consumption in the day period, Q̂D, will depend on the choice of storage, qs,

made in the night period, as stored electricity can be utilized in the day period at zero

marginal cost. The first constraint in the above prevents generation from being negative

or greater than the available capacity. The second constrains storage to be positive and

prevents storage from exceeding the available capacity. The final constraint prevents the

electricity stored from exceeding the amount generated in the night period.

The quantity of generation capacity added affects the solution by increasing the

amount of capacity available and potentially decreasing the cost of generation, depend-

ing on the where the generation enters the supply curve and the equilibrium quantity of

electricity generated in the night period. Indirectly, but via the same mechanism, it also

affects the amount of electricity that can be stored. Additional storage capacity increases

the amount that can be stored.

In the shoulder period, the planner maximizes utility by choosing the quantity of

electricity to be consumed, subject to the cost of generation and the generation capacity

constraint.

max
QSh

(2− 1
e
)
(
uSh(QSh)− c(QSh, Xg)

)

s.t. 0 ≤ QSh ≤ Cg +Xg γShg , λShg

The quantity of additional generation capacity enters the problem by reducing the cost

of generation and increasing the available capacity. The quantity of additional storage

capacity does not enter this problem.

In the day period, the planner maximizes utility by choosing the quantity of electricity
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to be consumed, subject to the amount of stored energy, the cost of generation, and the

generation capacity constraint.

max
Q̂D

uD(Q̂D)− c(Q̂D − qs, Xg)

s.t. 0 ≤ Q̂D ≤ Cg +Xg + qs γDg , λ
D
g

Energy storage enters the problem for the day period in two ways. First it increases the

amount of generation available at zero marginal cost, therefore shifting the cost curve

right and reducing costs. Second, it increases the maximum possible level of consumption.

Here consumption is constrained to be positive, Q̂D ≥ 0, but the planner is not required to

use all of the stored energy. Therefore, Q̂D−qs, may be negative. In the case that Q̂D−qs

is negative, the cost of generation, c(Q̂D − qs, Xg), is assumed to be zero. The quantity

of added storage capacity enters the problem only through the amount of energy stored.

The quantity of added generation capacity enters the problem through the amount of

energy stored, as it may decrease the cost of generating electricity to store and increase

the possible amount that can be stored. It also enters the problem by increasing the

amount of electricity that can be generated in the day period and possibly reducing the

cost of generation.

3.3.2.1 Analytical Results

To find the optimal generation, storage, and additional capacity to build, the planner

solves the problem by backward induction. In the day period, the first order condition

for the quantity of electricity to consume is:

Q̂D: uD ′(Q̂D(qs, Xg)) = c1(Q̂D(qs, Xg)− qs, Xg) + λDg − γDg (3.9)
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First, note that if consumption in the day period, Q̂D, were replaced with generation in

the day period, QD, this expression would be identical to the expression in the model

without uncertainty, equation (3.3). Second, as the marginal cost of utilizing the energy

from storage is zero, the marginal cost for the first qs units of electricity is zero. By

assumption 3.3, demand in the day period is never so low that the marginal utility of

zero consumption, uD ′(0), is less than zero. Therefore the non-negativity constraint on

consumption, with Lagrange multiplier γDg , never binds, and γDg is always zero.

The night period decisions and the choice of additional storage and generation ca-

pacity will depend upon the first derivative of day period consumption, Q̂D(qs, Xg) with

respect to qs and Xg. In forming the cost curve, I assume that it is possible that there

is a jump in cost between the zero-marginal cost generation and the costly generation.

If there is a discontinuity in the cost curve at this point, which I label Cg0 , the capacity

constraint, λDg , will bind and the quantity of electricity consumed, Q̂D(qs, Xg), will be the

sum of the zero marginal cost generation and the amount of electricity stored, Cg0 + qs.

Therefore, if λDg binds, the quantity of electricity consumed will either be the sum of zero

marginal cost generation and electricity stored, Cg0 + qs, or the sum of all generation

capacity and the quantity of electricity stored, Cg+Xg+qs. In either case, the derivative

of Q̂D(qs, Xg) with respect to storage, qs, will be 1, while the derivative of Q̂D(qs, Xg)

with respect to additional generation capacity, Xg, will be 0 in the first case and 1 in the

second case. If λDg does not bind, the derivatives of Q̂D(qs, Xg) cannot be determined

without further assumptions.

In the shoulder period, the first order condition for the quantity of electricity to

consume is:

QSh: (2− 1
e
)uSh ′(QSh(Xg)) = (2− 1

e
)c1(QSh(Xg), Xg) + λShg − γShg (3.10)

This expression is identical to the expression in the model without uncertainty, equation

(3.2). Again, by assumption 3.3, it will never be optimal to consumer zero electricity, and

therefore γShg is always zero. The choice of additional generation capacity will depend on
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first derivative of QSh(Xg) with respect to the additional generation capacity, Xg. When

λShg is positive, generation, QSh(Xg), is either Cg0 , the quantity of zero marginal cost

generation, or Cg + Xg, the total quantity of generation available. In the first case, the

derivative of QSh(Xg) will be 0 and in the second case it will be 1. If λShg is zero, the

derivative is unknown.

In the night period, the first order conditions of the maximization problem are:

QN: 1
e
uN ′(QN(Xg, Xs)− qs(Xg, Xs)) = 1

e
c1(QN(Xg, Xs), Xg) + λNg − γNg − δ (3.11)

qs: λs − γs + δ = ED
[
uD ′(Q̂D(qs(Xg, Xs), Xg))Q̂

D
1 (qs(Xg, Xs), Xg)

− c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs))(Q̂
D
1 (qs(Xg, Xs), Xg)− 1)

]
− 1

e
uN ′(QN(Xg, Xs)− qs(Xg, Xs)) (3.12)

Note that equation for the choice of generation in the night period, QN , is identical to

the expression in the model without uncertainty, equation (3.1). With a little work, the

equation determining the choice of qs will also become very similar to that seen in the

first version of the model, equation (3.4).

The first order condition for the choice of storage can be rewritten as:

λs − γs + δ =

ED
[(
uD ′(Q̂D(qs(Xg, Xs), Xg))− c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs))

)
Q̂D

1 (qs(Xg, Xs), Xg)

+ c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs))
]
− 1

e
uN ′(QN(Xg, Xs)− qs(Xg, Xs)) (3.13)

Using the observations from the night period, the first term on the right-hand side of

equation (3.13) can be replaced with a simpler expression. The expectation operator can

be thought of as summing up all the possible cases that could occur in the day period.

Referring to the term uD ′(Q̂D(qs(Xg, Xs), Xg))− c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs)) as

A, in the case that neither constraint binds, A = 0. In the case that λDg binds, A can

be replaced with λDg based upon equation (3.9). Also, as discussed above, the derivative
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of consumption in the day period with respect to storage, Q̂D
1 (qs, Xg), is 1. Therefore,

equation (3.13) can be rewritten as:

λs − γs + δ =ED
[
λDg + c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs))

]
− 1

e
uN ′(QN(Xg, Xs)− qs(Xg, Xs)) (3.14)

Replacing λDg + c1(Q̂D(qs(Xg, Xs), Xg)− qs(Xg, Xs)) with uD ′(Q̂D(qs(Xg, Xs), Xg)) using

equation (3.9), would yield an expression that matches that in the model without uncer-

tainty, equation (3.4), although there is now an expectation over the day period marginal

utility function. Thus, the equations determining the choice of generation and storage

are nearly identical to the model without uncertainty. The effect of the uncertainty is

simply to change the expected marginal utility and costs in the day period when viewed

from the night period.

To choose the optimal generation and storage capacity additions, it is necessary to

determine the first derivatives of QN and qs with respect to additional generation and

storage capacity, Xg and Xs. I assume that it will never be the case that generation in the

night period will be zero, which means that the non-negativity constraint for generation

at night will never bind and γNg will always be zero. If no electricity was generated in

the night period, no energy could be stored in the night period. This assumption is

slightly different than assuming that consumption in the night period will never be zero.

Consumption in the night period can be zero even if generation is not zero if all generation

is stored for the day period. If the marginal cost for the energy stored is greater than the

marginal utility of zero consumption, consumption will be zero. In this case, the third

constraint in the night period maximization problem binds and δ is positive but, γNg is

zero.

If the capacity constraint on generation in the night period, λNg , is positive, either

all zero marginal cost generation is utilized but no other resources are utilized, or all

available generation is utilized. In the first case, the quantity of generation in the night

period, QN(Xg, Xs) would be Cg0 , in the second case, QN(Xg, Xs) would be Cg + Xg.
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Therefore, QN
1 (Xg, Xs), the derivative with respect to additional generation is 0 in the

first case and 1 in the second. The derivative with respect to storage, QN
2 (Xg, Xs), would

be zero in both cases. If neither λNg nor δ is positive the derivatives are unknown.

If δ is positive, then storage in the night period equals the amount of generation,

qs(Xg, Xs) = QN(Xg, Xs). Therefore the derivative of qs with respect to additional

capacity, Xg or Xs, will be QN
1 (Xg, Xs) and QN

2 (Xg, Xs) respectively. Secondly, it is

possible that δ and λNg could bind at the same time. If both bind, then the derivatives

of QN(Xg, Xs) are as before. Otherwise the derivatives are unknown.

If λs is positive, storage is filled to capacity or qs(Xg, Xs) = Cs +Xs. Therefore, the

derivative of qs(Xg, Xs) with respect to additional generation capacity, Xg, is 0 and the

derivative with respect to additional storage capacity, Xs, is 1. If γs is positive, storage is

not utilized and qs(Xg, Xs) = 0. This causes the derivatives of qs(Xg, Xs) with respect to

Xg and Xs to be zero. If neither λs, γs, nor δ are positive, the derivatives are unknown.

Finally, the first order conditions for the planner’s choice of generation and storage

capacity are (omitting the variables that QN , QSh, qs and Q̂D depend on for brevity and

legibility, and indicating the derivative with respect to the first argument with a subscript

1 and the derivative with respect to the second argument with a subscript 2):

Xg: k′g(Xg) =EN
[

1
e

(
uN ′(QN − qs)− c1(QN , Xg)

)
QN

1 − 1
e
c2(QN , Xg)

+ ED|N
[
c1(Q̂D − qs, Xg)− 1

e
uN ′(QN − qs)

]
qs1

+ ED|N
[(
uD ′(Q̂D)− c1(Q̂D − qs, Xg)

)
(Q̂D

1 qs1 + Q̂D
2 )− c2(Q̂D − qs, Xg)

]]
+ ESh|N

[
(2− 1

e
)
(
uSh ′(QSh)− c1(QSh, Xg)

)
QSh

1 − (2− 1
e
)c2(QSh, Xg)

]]
(3.15)

Xs: k
′
s(Xs) =EN

[
1
e

(
uN ′(QN − qs)− c1(QN , Xg)

)
QN

2

+ ED|N
[
c1(Q̂D − qs, Xg)− 1

e
uN ′(QN − qs)

]
qs2

+ ED|N
[(
uD ′(Q̂D)− c1(Q̂D − qs, Xg)

)
Q̂D

1 qs2
]]

(3.16)

Thinking of the expectation operators as summing all the possible cases together,
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using the derivatives computed above, where known, and substituting from equations

(3.11), (3.14), (3.9), and (3.10), these expressions can be simplified considerably. The

first term in each equation, 1
e
uN ′(QN − qs) − 1

e
c1(QN , Xg) equals λNg − δ, by equation

(3.11). In the second line of each equation, λs−γs+δ−ED|N [λDg ] can replace ED|N [c1(Q̂D−

qs, Xg)− 1
e
uN ′(QN−qs)], by equation (3.14). In the third line of each equation, uD ′(Q̂D)−

c1(Q̂D − qs, Xg) can be replaced with λDg using equation (3.9). In the fourth line of the

first equation, (2 − 1
e
)
(
uSh ′(QSh) − c1(QSh, Xg)

)
can be replaced with λShg , by equation

(3.10). Plugging in the derivatives, where known, yields the following simplified forms

for the first order conditions of Xg and Xs:

Xg: k′g(Xg) =EN
[
λNg − δQN

1 − 1
e
c2(QN , Xg)

− ED|N
[
λDg qs1

]
+ δQN

1

+ ED|N
[
λDg (qs1 + 1)− c2(Q̂D − qs, Xg)

]
+ ESh|N

[
λShg − (2− 1

e
)c2(QSh, Xg)

]]
(3.17)

Xs: k
′
s(Xs) =EN

[
− δQN

2

+ λs − ED|N
[
λDg qs2

]
+ δQN

2

+ ED|N
[
λDg qs2

]]
(3.18)

Noting that several terms cancel, these expressions can be simplified further:

Xg: k′g(Xg) =EN
[
λNg − 1

e
c2(QN , Xg) + ED|N [λDg − c2(Q̂D − qs, Xg)]

+ ESh|N [λShg − (2− 1
e
)c2(QSh, Xg)]

]
(3.19)

Xs: k
′
s(Xs) =EN

[
λs
]

(3.20)

With the exception of the expectation operators and the change in variable from gener-

ation in the day period to consumption in the day period, these expressions are identical

to the expressions found in the certainty version of the model, equations (3.5) and (3.6).

Consequently the decision to invest in additional generation and/or storage capacity oc-
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curs for the same reasons, although uncertainty may raise or lower the values of each

term.

3.3.3 Version 3 - Add Wind Generation Uncertainty

In the third version of the model, I add uncertainty about how much generation

will be produced by wind in each period. The uncertainty about the wind generation

is resolved at the same time as uncertainty about demand. As a result, the equations

derived for version 2 of the model hold equally under version 3, although the expectation

is now over possible realizations of wind generation as well as (or instead of) realizations

of demand. Wind generation is assumed to have zero marginal cost and therefore shifts

the marginal cost curve laterally as it varies.

3.4 Numerical Simulation

To understand how the interlacing forces of supply and demand affect the value of

additional combined cycle capacity relative to the value of additional storage capacity,

I numerically simulate a variety of possible situations in the Pennsylvania Jersey Mary-

land (PJM) Interconnection market. The PJM Interconnection market covers many of

the Mid-Atlantic and Midwestern U.S. states, extending up the coast Virginia to Penn-

sylvania and across to Ohio and parts of Illinois and Indiana. The market is operated by

an independent system operator (ISO) which operates a competitive wholesale electricity

market and manages the high-voltage electricity grid to ensure the reliable movement of

power from generators to customers. PJM was the first ISO in the country and has one

of the most easily accessible and reliable datasets on market operations of any electricity

market in the country.4

For the purposes of this study I focus on pumped hydroelectric storage technology,

which is the most mature and widely-used storage technology as well as the simplest to

model. Unfortunately, I was able to obtain only a range for the potential average cost

4http:\www.pjm.com

132

http:\www.pjm.com


per mega-watt (MW) of pumped storage capacity for small units and a range for large

units. Additionally, because the cost of pumped storage capacity is highly dependent

on the location and only three pumped storage facilities have been built in the U.S. in

the last 20 years, compared with 370 new combined cycle generation facilities, costs are

highly uncertain.5 As a result, I do not have enough information to trace out the function

governing the capital cost of installing new storage capacity.

I therefore estimate the relative value of adding a single 400 MW combined cycle

generator versus adding a storage facility with the capacity to store or generate 400

MWh of electricity per hour, and compare the value against the capital cost of building

the storage or generation capacity. The 400 MW size was chosen because this is the size

of the most efficient combined cycle generator for which I have capital cost information.

To compute the value to the market of adding new generation or storage capacity, I

begin by parametrizing the model and estimating the value of each parameter. I then

calculate the market surplus given existing generation and storage capacity and the

market surplus with the additional 540 MW of generation or storage capacity. Computing

the difference between the scenario with additional generation or storage capacity with

the scenario with only the pre-existing generation and storage capacity yields the increase

in market surplus due to the new capacity and therefore the value to the market of the

new capacity.

3.4.1 Parametrization

For ease of exposition and solution, I assume that marginal utility (demand) is linear.

Specifically:

uN ′(Q) = aN + bNQ

uSh ′(Q) = aSh + bShQ

uD ′(Q) = aD + bDQ

5Energy Information Administration, 2010 Form 860
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Here at > 0 and bt < 0, where t indicates the night (N), shoulder (Sh), or day (D)

period. The price, P , of a given quantity of electricity, Q, is defined as the marginal

utility at Q units of electricity. To compute the intercepts, at, and the slopes, bt, of the

demand functions, I begin with an estimated elasticity of demand, ε, and a baseline price

and quantity demanded, P t
0 and Qt

0, for the night, shoulder and day periods. I assume

the same elasticity in all periods. The definition of the elasticity of supply or demand is:

the percent change in quantity over the percent change in price or:

ε =

dQt

Qt
0

dP t

P t
0

=
dQt

dP t

P t
0

Qt
0

dP t and dQt represent change in price and quantity from the baseline prices and quanti-

ties, P t
0 and Qt

0. As dQt

dP t is also known as the derivative of quantity with respect to price,

rearranging P t = at+btQt taking the derivative of Qt with respect to P t yields, dQt

dP t = 1
bt

.

Plugging this fact into the above equation and solving for bt gives the slope of the demand

function in terms of the estimated elasticity and baseline prices and quantities:

bt =
P t

0

εQt
0

(3.21)

As the baseline prices and quantities are on the demand curve, plugging P t
0, Qt

0 and the

formula for bt into P t = at + btQt and solving for at yields the intercept of the demand

function:

at = P t
0 − btQt

0 = P t
0 −

P t
0

ε
(3.22)

To model uncertainty about demand in the day period, I assume that the percent-

age difference between the day and night price varies according to a mean zero normal

distribution with an estimated variance, or PD = PN(1 + ρ + µ). Here ρ is the average

night-day price difference computed from the data and µ is the error term. As I assume

that the marginal utility of zero consumption is always positive, I restrict the percentage

difference, ρ+µ, to be greater than -1, which eliminates at most 0.3 percent of the distri-
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bution. The prices given each value of µ and equation (3.22) are then used to compute the

intercept of the demand function for the day period, causing the intercept of the demand

function to vary stochastically while the slope stays constant. As the shoulder period

exhibits significantly lower variance, and to keep the solution of the model manageable,

I assume that shoulder period demand does not vary stochastically.

Because a shift upward (or downward) of the demand curve given a constant supply

curve induces higher (or lower) equilibrium electricity consumption, Q̂D, the demand

curve will intersect each portion of the supply curve for a particular range of µ. For

instance, Q̂D will be constrained by Cg +Xg +qs for high µ leading λDg to be greater than

zero. As µ decreases, the marginal cost of Q̂D will decline and intersect the main body of

the cost function. When the demand function has a very low intercept, it will cross the

cost function in the zero marginal cost range. λDg will also bind at any discontinuities in

the cost curve until µ declines sufficiently to reach the next section of the cost curve.

The marginal cost function is assumed to be piecewise linear such that:

c1(Q) =


0 if 0 ≤ Q ≤ Cg0

αL + βL(Q− Cg0) if Cg0 < Q ≤ Cg1

αH + βH(Q− Cg1) if Cg1 < Q ≤ Cg

(3.23)

Cg0 represents the quantity of zero marginal cost generation. The next section of the

marginal cost function is upward sloping, βL > 0, and the intercept αL−βLCg0 is greater

than or equal to zero. If the intercept is positive, there will be a discontinuity in the

marginal cost curve at Cg0 . The third section of the cost curve, in all but one of the

cases considered, has a steeper slope, betaH > 0, and, in all cases, intersects the second

section of the marginal cost curve with no discontinuity at Cg1 . Cg is the total available

generation in the market.
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If additional generation capacity is added, the marginal cost function becomes:

c1(Q) =



0 if 0 ≤ Q ≤ Cg0

αL + βL(Q− Cg0) if Cg0 < Q ≤ B

m if B < Q < B +Xg

αL + βL(Q− Cg0 −Xg) if B +Xg ≤ Q ≤ Cg1 +Xg

αH + βH(Q− Cg1 −Xg) if Cg1 +Xg < Q ≤ Cg +Xg

(3.24)

B is the quantity at which the second section of the marginal cost curve, αL+βL(Q−Cg0),

reaches the marginal cost of the new generation capacity, m. Xg is the quantity of new

generation. In all cases considered, the marginal cost of the new generation intersects

the cost curve in this lower portion of the cost curve.

As wind generation varies, the quantity of zero marginal cost generation varies, Cg0 .

To incorporate uncertainty about wind generation in the model, I assume that the ca-

pacity factor of wind generation can assume either a high or low value. The capacity

factor is the share of total capacity being utilized to generate electricity, e.g. if a wind

turbine has a capacity of 10 MW and is currently generating 5 mega-watt hours (MWh)

of electricity, the capacity factor is 50 percent. The probability of low or high wind in

the day period depends on the whether the wind in the night period is low or high to

account for the observed persistency in the level of wind generation across periods.

3.4.2 Data

For the baseline scenarios, I utilize the generation portfolio of PJM in 2011. The

capacity of existing storage facilities in the PJM market was computed from PJM’s 2010

Form 411 submitted to the Energy Information Administration (EIA). The demand and

cost functions are generated using electricity price and demand data for 2008, 2011, and

2012 from PJM. The probability and level of high and low wind generation in each period

are calculated from data on hourly wind generation in PJM during 2011. Capital costs
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for new storage facilities come from Rastler (2010) and capital costs for new combined

cycle generators come from EIA (2010).

3.4.2.1 Storage Capacity and Costs

The existing storage facilities in the PJM market can generate approximately 5,000

MWh of electricity per hour (or store 5,000 MWh of electricity in an hour). The ability

to generate 5,000 MWh of electricity per hour is also known as having 5,000 MW of

generation power. This information comes from the 2010 Form 411 submitted by PJM

to the EIA which contains a list of generators and storage facilities that participate in the

PJM market. Rastler (2010), a white paper from the Electric Power Research Institute

on storage technology, indicates that the typical pumped storage facility has an efficiency

of 80 percent, 8 hours of storage capacity, and a lifetime on the order of 50 years. The cost

of a storage facility, according to the report, ranges from 2,500-4,300 $/kW for a 280-530

MW facility to 1,500-2,700 $/kW for a 900-1,400 MW facility. Therefore, I assume that

the added storage facility has the capacity to store or generate 400 MWh of electricity

per hour, and therefore has 400 MW of power, and has the capacity to store 8 hours

worth of electricity or 3200 MWh. Assuming an 80 percent efficiency it requires 10 hours

to fill the 8 hours of storage capacity. The minimum cost of the 400 MW storage facility

is 2,500 $/kW, or $1 billion.

3.4.2.2 Generation Capacity and Costs

The baseline generation capacity utilized in the model comes from PJM’s capacity

by fuel type information sheet for 2011. The data indicate that there was 178,172 MW

of installed generation capacity in PJM in 2011, making adjustments for wind capacity

as explained in Section 3.4.2.3. Of this capacity, 42,707 MW consisted of zero marginal

cost generation capacity such as nuclear, hydroelectric, solar, and wind. The remaining

capacity consisted of coal, natural gas, and various petroleum and waste products. In

the spring/fall season, a significant portion of generators are removed from service for
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maintenance, as demand is generally quite low relative to winter and summer in the PJM

region. The hourly demand data for 2011 indicate that the maximum load in spring/fall

is approximately 4/5 of summer demand. I therefore assume that the available capacity

in PJM is 4/5 of the total capacity in spring/fall (therefore reducing the zero-marginal

cost generation by 4/5 as well).

To estimate the marginal cost function for the baseline scenario, I utilize hourly

data from PJM on prices and demand for 2011. As demand for electricity is extremely

inelastic and the PJM market operator is tasked with serving demand at minimum cost

given generators’ supply bids, the price roughly reflects the marginal cost of generation.

However, the data contains two sets of prices for the PJM market for each hour. The first

set of prices is the day-ahead price, which is computed at noon on the day prior given the

bids posted by generators and expected demand. The second set is the real-time price,

which reflects actual load and system operating conditions. As a result of transmission

constraints, unexpected generator outages and other system operations issues, the real-

time price does not clearly reflect the usual marginal cost of generation. I therefore utilize

the day-ahead prices to calculate the marginal cost function.

As costs vary across the seasons due to the variation in demand, I compute a separate

marginal cost function for each season. I begin by rounding demand to the nearest

thousand and computing the average price for each category. The data for 2011 exhibit a

convex cost function that is well-approximated by a two-part linear function. I therefore

set an initial threshold quantity and utilize ordinary least squares (OLS) to compute

the best linear approximation of the data below the threshold quantity and of the data

above the threshold. I then minimize the mean-squared error of the approximation by

adjusting the threshold quantity and recomputing the OLS estimate for each portion of

the cost function. As originally estimated, the winter marginal cost curve crosses below

zero at a quantity of generation greater than the assumed amount of zero marginal cost

generation (42,707 MW) in the market, yielding a small negative portion of the marginal

cost curve. To prevent this, I increase the intercept such that the marginal cost of 42,707

MWh of generation is zero, which increases the intercept by approximately $0.107 or 0.23
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percent. Figure 3.3 illustrates the observed cost function for each season in 2011 versus

the estimated cost function.
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Figure 3.3: Observed and Estimated Cost Functions for 2011

To examine the effect of fuel costs on the relative value of storage versus new combined

cycle generation capacity, I recompute the marginal cost functions using 2012 data, in

which natural gas prices fell considerably against coal prices, and using 2008 data, the

year in which natural gas prices peaked and in which coal and petroleum prices were

relatively low. However, to account for the change in generation capacity from 2008 to

2011 to 2012, I stretch the curves over a proportionally larger capacity for 2008 and

shrink the curve to cover a proportionally smaller capacity for 2012. To do this, I begin

by utilizing the 2008 and 2012 capacity by fuel type information sheets, adjusting for

wind capacity, to determine the total quantity of generation capacity in the market in

each year and the quantity of zero marginal cost generation. I then calculate the ratio of

2008 or 2012 non-zero marginal cost capacity to 2011 non-zero marginal cost capacity. I

assume that each portion of the curve stretches out from the same minimum price to the

same maximum price but across the initial quantity multiplied by the ratio of 2008 or

2012 capacity to 2011 capacity. For the lower portion of the curve, the minimum price is
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the cost (according to the equation for the lower part of the cost curve) at the quantity

of zero-marginal cost generation in that year and season, and the maximum price is the

price at which the lower portion of the curve intersects the upper portion. For the upper

portion of the curve, the minimum price is the price at the intersection of the two parts

of the cost curve, and the maximum price is the cost of generating at full capacity.

While this methodology yields no problems for 2012, the 2008 data exhibit more

curvature which causes the linear approximation to cross below zero at quantities greater

than the assumed quantity of zero marginal cost generation, which would cause the cost

curve to have a negative section after the zero marginal cost generation. To rectify this

issue with as little damage as possible to the fit of the marginal cost function to the cost

data, I increase the quantity of zero marginal cost generation. For winter, the quantity

of zero marginal cost generation must increase by 5,435 MW (13 percent), for spring/fall

it must increase by 5,938 (17 percent), and for summer it must increase by 13,322 MW

(31 percent). Additionally, to generate a better match to the rest of the data, three

outlying observations were excluded in estimating the winter 2008 marginal cost curve.

Interestingly, the data indicate that the cost curve was somewhat concave for spring/fall

in 2008 and therefore the slope of the upper portion of the cost curve is smaller than the

slope for the lower portion.
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Figure 3.4: Comparison of Estimated Marginal Cost Functions

Figure 3.4 illustrates the marginal cost functions estimated for 2008 and 2012 as they
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compare to the 2011 marginal cost functions. The vertical sections indicate that the

capacity constraint has been met. The 2008 curves fall below the 2011 curves at low

levels of generation because coal prices were lower, which (up until 2012 at least) provide

the cheapest fossil-fueled generation. The middle sections of the marginal cost functions

for 2008 are situated above the 2011 curves because of the much higher price of natural

gas in 2008. At high levels of generation, it is likely that the 2008 marginal cost functions

indicate lower marginal costs than the 2011 marginal cost functions because prices for

petroleum liquids, which are utilized by the highest cost generators, were lower. In 2012,

the low natural gas price causes the marginal cost curves for 2012 to fall below the

marginal cost curves for 2011. For reference, Table 3.1 shows the average price of coal,

natural gas, and petroleum liquids paid by the electric power sector in the PJM region for

a representative month in each year. These data are found in the EIA’s Electric Power

Monthly publication.

Fuel Oct-08 Apr-11 Apr-12

Coal $2.43 $2.76 $2.76
Natural Gas $8.19 $5.32 $3.29
Petroleum Liquids $14.11 $20.33 $23.67

Table 3.1: Average Price of Coal, Natural Gas, and Petroleum Liquids Paid by the
Electric Power Sector in the PJM Region

To determine the marginal cost of new combined cycle generation capacity for 2008,

2011, and 2012, I compiled the prices of natural gas and total receipts of natural gas

for electric power generation by region for each month of 2008, 2011, and 2012 from

the EIA’s Electric Power Monthly publication. To compute the weighted average cost of

natural gas to the electric power sector in PJM, I compiled the prices and total receipts of

natural gas for the Mid-Atlantic, South Atlantic, and East North Central regions which

contain the states within the PJM region. I then computed the weighted average cost of

natural gas for winter, spring/fall, and summer in each year. The calculated prices can

be found in Table 3.2.

The cost of electricity generated by a natural gas combined cycle unit is determined
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Season 2008 2011 2012

Winter $9.35 $5.45 $3.95
Spring/Fall $9.61 $5.04 $3.34
Summer $11.84 $5.35 $3.48

Table 3.2: Weighted Average Price of Natural Gas Paid by the Electric Power Sector in
the PJM Region

by the efficiency of the unit. Consulting the EIA’s Updated Capital Cost Estimates for

Electricity Generation Plants published in November 2010, the most efficient available

combined cycle unit has an efficiency of 6.43 mmBtu/MWh (million British thermal units

per MWh), which is the rate at which 1 mmBtu of fuel can be converted into 1 MWh

of electricity. The price of natural gas is given in $/mmBtu. Multiplying the natural

gas price by the efficiency of the combined cycle generator and adding variable opera-

tions and maintenance costs of $3.11/MWh, also from EIA (2010), yields the marginal

cost of generation assumed for new combined cycle generation capacity. According to

EIA (2010), the capital cost of the most efficient combined cycle generator available is

approximately $1,003/kW of capacity, yielding a total cost of $401.2 million for a new

400 MW combined cycle generator. The average lifespan of a combined cycle generator

is 30 years.

3.4.2.3 Wind Generation

Information on wind generation comes from PJM’s hourly wind generation database

for 2011. I assume that wind generation is uncorrelated with demand conditions. I begin

by separating the hours of each day into night, day, and shoulder periods. As I assume

that storage has 8 hours of capacity and requires 10 hours to charge, the shoulder period

constitutes 6 hours of the day. Consulting the average price by hour for 2011 from PJM’s

day-ahead price data, I assign 10 pm-midnight on the day prior and midnight to 8 am

to the night period as these are the 10 lowest priced hours on average. The hours 1 pm

to 9 pm are assigned to the day period, as these hours have the highest average prices,

and the remaining hours, 8 am to 1 pm and 9 pm to 10 pm, are assigned to the shoulder
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period.

Finding that the maximum generation from wind in PJM in a single hour in 2011

was 3,960 MWh, I assume the capacity of wind generation was 4,000 MW. Dividing the

hourly wind generation by the 4,000 MW of capacity yields the hourly capacity factor.

I then compute the average capacity factor for the night, shoulder, and day period of

each day. Finding that the average capacity factor across the year is roughly the same

for each period, I set the capacity factor for the low and high capacity factor categories

to the same value for each season. The value for the low capacity factor category is the

average capacity factor over all hours in 2011 when the capacity factor was less than

50 percent, and the value for the high category is the average capacity factor when the

capacity factor was greater than 50 percent. Thus, the low category has a capacity factor

of 22 percent, and the capacity factor of the high category is 65 percent.

Next, I compute the probability of having a high or low capacity factor in the night

period, the probability of having a high or low capacity factor in the shoulder period,

and the probability of having a high or low capacity factor in the day period given the

night capacity factor category. The values are shown in Table 3.3. Because the decision

in the shoulder period is not affected by the night period, the outcome in the shoulder

period will be the same for a given level of shoulder period wind generation regardless

of the night period. Combined with the fact that the market surplus for a day is simply

the sum of market surplus in each period, the weighted average market surplus for the

year can be computed without knowing the conditional probability of shoulder period

wind generation given night period wind generation. For the day period, because there

is persistence in the level of wind generation across a 24-hour period and the day period

decision is contingent on the outcome in the night period, it is necessary to allow the day

period wind generation to depend on the night period wind generation.

Finally, I compute the weighted average capacity factor given the probabilities and

the values of the capacity factor in each category. This yields a weighted average capacity

factor of 31.12 percent which roughly matches the average capacity factor when simply

averaging over the hourly capacity factors in 2011 (31.15 percent). Given the assumption

143



Day After Day After
Category Shoulder Night Low Night High Night

Low 80.0% 77.5% 90.5% 40.2%
High 20.0% 22.5% 9.5% 59.8%

Table 3.3: Probability of Low and High Wind Generation in each Period

of 4,000 MW of wind capacity in PJM, this yields an average hourly wind output of

1,247 MWh. The generation capacity by fuel type information sheet for 2011 indicates

that there is 652.5 MW of firm wind capacity in PJM. The discrepancy is caused by

the definition PJM utilizes for capacity when compiling the data. For the purposes of

this modeling exercise, I prefer to use the average wind capacity of 1,247. This is the

adjustment which yields 178,172 MW of capacity in PJM. To adjust the 2008 and 2012

capacity for wind generation, I compute the ratio of average wind generation, 1,247 MWh,

to the reported wind capacity, 652.5 MW, and increase the value of the 2008 and 2012

reported wind capacity by this ratio.

3.4.2.4 Demand

To estimate the demand functions for each season, I utilize the PJM day-ahead price

and demand data and a price elasticity of demand equal to -0.2. This elasticity is based

upon estimates in Bernstein and Griffin (2005). They find that the short-run price-

elasticity of demand for both residential and commercial consumers is approximately

-0.2. I divide each day into night, shoulder, and day periods based upon price. The 8

hours with the highest prices each day are assigned to day, the 10 lowest priced hours

of each day are assigned to night, and the remaining 6 hours to the shoulder period.

I assume each day begins at 10 pm the night before as this is when demand generally

collapses in the evening.

Demand for electricity follows clear seasonal trends and also varies significantly from

day to day. To account for the variation in price across seasons, I estimate prices in each

period for 3 seasons, winter, spring/fall, and summer. To account for variations within
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a season, I estimate the price at night for the 25th, 50th, 75th, and 90th percentiles

of the price distribution in each season. For the shoulder period, I estimate the 50th

percentile of the shoulder period price distribution for each season and each night-time

price percentile. For the day period, I begin with an estimate of the daytime price for

the 25th, 50th, 75th, and 90th percentiles of the daytime price distribution for each

season and for each of the night-time price percentiles. These 12 different night prices,

12 different shoulder period prices, and 48 different day prices are the prices used in the

certainty version of the model to calculate the demand functions.

For each of the 12 prices in the night and shoulder periods, I estimate the demand

that occurs at that price from the PJM demand data. Based on the Rand From the 12

price-quantity pairs in each period, I estimate 12 intercepts and 12 slopes using equations

(3.22) and (3.21). For day, I estimate the demand that occurs at the 25th daytime price

percentile for each season and night percentile. From these 12 price-quantity combina-

tions, I estimate 12 intercepts and 12 slopes. As the quantity demanded at the various

day prices within one of the 12 season-night percentile bins varies little, I assume that

the demand functions for the 50th, 75th, and 90th daytime price percentiles are simply

a vertical shift upwards of the demand functions from the 25th daytime price percentile.

Consequently, within a season-night percentile bin, the slope is constant, but the inter-

cept varies based upon the price for each of the daytime price percentiles. Thus, there

are 12 slopes and 48 intercepts for the day period in the certainty version of the model.

Table 3.A.1 in Appendix 3-A contains the full set of demand parameters utilized in the

baseline model without uncertainty.

The winter season accounts 25 percent of the year, the spring/fall season accounts

for 50 percent of the year, and summer accounts for 25 percent of the year. Using the

midpoint between percentile bins, I assume the 25th percentile of night prices accounts

for 37.5 percent of each season, the 50th percentile of night prices accounts for 25 percent

of each season, the 75th percentile of night prices accounts for 20 percent of each season,

and the 90th percentile of night prices accounts for 17.5 percent of each season. The

25th, 50th, 75th, and 90th percentiles of day prices then account for 37.5 percent, 25
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percent, 20 percent, and 17.5 percent respectively of each season-night percentile bin. In

estimating the value of additional storage or generation, I compute the weighted average

value across a year.

When including uncertainty about demand in the day period, I assume that the day

price is a function of the night price or PD = PN(1+ρ+µ). ρ is the percentage difference

between the price of electricity between each of the 48 day prices in the certainty version

of the model, and the price of electricity in the corresponding night periods. µ is the error

term, which I assume is normally distributed with mean zero and a positive variance. To

estimate the variance, I begin by calculating the average night and day price for each day

in 2011 from the day-ahead and real-time price data. The day-ahead prices are calculated

based upon expected demand and supply conditions on the day prior to the delivery of

the electricity. The real-time prices are calculated at the time of delivery and reflect

the realizations of supply and demand. Therefore, I compute the expected percentage

difference between day and night prices for each day from the day-ahead prices and the

actual percentage difference between day and night prices from the real-time data. I then

take compute the difference of the differences as the error term. As the observations of the

error have some extreme values that make it difficult for the normal distribution to match

the majority of the observed distribution, I calculate the variance of the observed errors

for each season, excluding the top 5 percent and the bottom 5 percent of observations.

This yields an estimated standard deviation of 0.25 for winter, 0.29 for spring/fall, and

0.54 for summer. Each value of µ generates a different estimate of price for day and a

different intercept of the demand function for day.

3.4.3 Market Surplus Calculation

The metric I utilize to determine the value of installing an additional 400 MW storage

facility versus an additional 400 MW combined cycle unit, is the change in market surplus

caused by adding the capacity to the market. Market surplus is defined as the sum of

the utility received by consumers from using electricity (consumer surplus) less the cost
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to producers of generating the electricity (producer surplus).

Consumer surplus (CS) is equal to the utility the consumers derive from the electricity

consumed less the price of the electricity, which is the area under the demand curve

(marginal utility curve) from zero to the total quantity of electricity consumed in that

period minus price times quantity demanded, as can be see in Figure 3.5. In the night

period, the quantity consumed is QN −qs, in the shoulder period, the quantity consumed

is QSh, and in the day period the quantity consumed is Q̂D = QD + qs. Therefore

consumer surplus is simply:

CS =
1

e

( QN−qs∫
0

uN ′(q)dq − PN(QN − qs)

)
+
(

2− 1

e

)( QSh∫
0

uSh ′(q)dq − P ShQSh

)

+

QD+qs∫
0

uD ′(q)dq − PD(QD + qs)

  

(a) Night

 

PD

QD+qsCg0+qs

CS

PS

(b) Day

Figure 3.5: Market Surplus Calculations

As is hinted at in Figure 3.5, computing the producer surplus is more tricky because

the night and day periods are linked by storage. In the night period, the producer

surplus is equal to the price received for the electricity sold multiplied by the quantity

sold, QN − qs, less the cost of generating the electricity sold, QN − qs, and the cost of the

electricity stored, qs, as shown in Figure 3.5a, multiplied by the night period’s relative

147



length, 1
e
:

PSN =
1

e

(
PN(QN − qs)−

QN∫
0

c1(q,Xg)dq

)

In the shoulder period, the producer surplus is simply the profit of the producer in the

shoulder period multiplied by the shoulder period’s relative length, 2− 1
e

or:

PSSh =
(

2− 1

e

)(
P ShQSh −

QSh∫
0

c1(q,Xg)dq

)

In the day period, any storage shifts the quantity of zero-marginal cost generation, Cg0 ,

out by qs, as shown in Figure 3.5b. The producer surplus is therefore equal to the price

in the day period multiplied by the total quantity of generation sold, QD + qs less the

cost of generation, QD.

PSD = PD(QD + qs)−
QD∫
0

c1(q,Xg)dq

Adding storage capacity simply increases the amount generators can store, while adding

generation capacity shifts the cost curve out as described above.

3.5 Results

I begin, in Section 3.5.1, by discussing the goodness of fit between the model and

the data which generate the parameters of the model for the certainty version of the

model. Section 3.5.2 explores the effect of wind generation and demand uncertainty as

well the effect of varying, but not uncertain, wind generation on the value of additional

storage capacity and on the value of additional generation capacity. Using the lessons

from these sections, I estimate the value of adding a 400 MW storage facility versus a

400 MW combined cycle unit as the level of wind generation in the market increases.
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I then compare how the relative value of storage versus generation capacity changes as

fuel costs, the efficiency of the new storage and combined cycle units, and the variance

of wind output changes.

3.5.1 Goodness of Fit

Table 3.4 reports the equilibrium prices and quantities of electricity generated and

stored for each of the 48 different scenarios in the certainty version of the model with

average wind generation in each period. First note that as expected, generation is less

in the night period, than in the shoulder period, which has lower generation than the

day period. Correspondingly, prices in the day period are the highest, followed by the

shoulder period, with the night period having the lowest prices. As the night prices

increase, from the 25th to the 50th percentile, etc., prices increase in all periods. For the

higher day price percentiles, the shoulder price stays constant, while the night price may

increase if more storage is utilized than at a lower day price percentile. If all storage was

utilized at the lower day price percentile, the price of electricity in the night period does

not change as all storage will be utilized at higher day prices as well. In the summer

period, which has the highest daytime demand and prices relative to the night period in

the data, the full capacity of existing storage is utilized for each set of demand functions.

At the 25th and 50th day price percentiles, storage is frequently not utilized to capacity

because the day-night price difference is not large enough.

Table 3.5 presents the estimated marginal value of additional generation and storage

calculated by the model versus the value of additional generation and storage calculated

from the raw data. Recalling the formulas in Sections 3.3.1 and 3.3.2, the marginal

value of additional storage is equal to the day price less the night price multiplied by

1
e

or PD − 1
e
PN , when this value is positive, and zero otherwise. The marginal value

of additional generation in each period is equal to the maximum of the price in each

period less the marginal cost of the new generation and zero, multiplied by the relative

length of each period, or 1
e
max(PN −m, 0) + (2− 1

e
)max(P Sh−m, 0) +max(PD−m, 0).
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Night Price 
Percentile

Day Price 
Percentile Season

Night 
Gen.

Shoulder 
Gen. Day Gen.

Quantity 
Stored

Night 
Price

Shoulder 
Price

Day
Price

25th 25th Winter 76,563 81,533 85,027 954 $36.24 $41.56 $45.29
Spring/Fall 66,101 76,994 77,639 1,910 $32.36 $40.00 $40.45
Summer 78,591 93,034 97,220 5,000 $30.68 $42.24 $45.59

50th Winter 79,137 81,533 89,447 5,000 $38.99 $41.56 $50.03
Spring/Fall 67,693 76,994 83,627 4,000 $33.48 $40.00 $44.65
Summer 78,591 93,034 112,434 5,000 $30.68 $42.24 $57.78

75th Winter 79,137 81,533 95,402 5,000 $38.99 $41.56 $56.40
Spring/Fall 67,693 76,994 90,085 4,000 $33.48 $40.00 $49.17
Summer 78,591 93,034 116,623 5,000 $30.68 $42.24 $61.13

90th Winter 79,137 81,533 99,119 5,000 $38.99 $41.56 $60.38
Spring/Fall 67,693 76,994 104,154 4,000 $33.48 $40.00 $59.04
Summer 78,591 93,034 126,313 5,000 $30.68 $42.24 $68.89

50th 25th Winter 79,360 83,595 88,523 2,018 $39.23 $43.76 $49.04
Spring/Fall 68,823 80,706 81,042 2,428 $34.27 $42.60 $42.83
Summer 83,151 98,502 108,273 5,000 $34.33 $46.62 $54.45

50th Winter 81,335 83,595 91,406 5,000 $41.34 $43.76 $52.12
Spring/Fall 69,995 80,706 82,508 3,960 $35.09 $42.60 $43.86
Summer 83,151 98,502 114,674 5,000 $34.33 $46.62 $59.57

75th Winter 81,335 83,595 94,363 5,000 $41.34 $43.76 $55.29
Spring/Fall 70,026 80,706 90,702 4,000 $35.11 $42.60 $49.61
Summer 83,151 98,502 120,929 5,000 $34.33 $46.62 $64.58

90th Winter 81,335 83,595 100,616 5,000 $41.34 $43.76 $61.98
Spring/Fall 70,026 80,706 111,534 4,000 $35.11 $42.60 $64.21
Summer 83,151 98,502 133,074 5,000 $34.33 $46.62 $94.20

75th 25th Winter 83,361 89,979 93,525 1,711 $43.51 $50.59 $54.39
Spring/Fall 71,003 81,617 83,767 1,547 $35.80 $43.24 $44.75
Summer 88,200 109,287 113,396 5,000 $38.37 $55.26 $58.55

50th Winter 84,586 89,979 95,056 3,486 $44.82 $50.59 $56.03
Spring/Fall 72,735 81,617 85,933 3,803 $37.01 $43.24 $46.26
Summer 88,200 109,287 116,515 5,000 $38.37 $55.26 $61.05

75th Winter 85,632 89,979 101,819 5,000 $45.94 $50.59 $63.27
Spring/Fall 72,886 81,617 97,915 4,000 $37.12 $43.24 $54.66
Summer 88,200 109,287 135,122 5,000 $38.37 $55.26 $109.04

90th Winter 85,632 89,979 106,847 5,000 $45.94 $50.59 $73.58
Spring/Fall 72,886 81,617 108,476 4,000 $37.12 $43.24 $62.07
Summer 88,200 109,287 145,230 5,000 $38.37 $55.26 $182.28

90th 25th Winter 87,596 95,771 98,818 2,490 $48.04 $56.79 $60.06
Spring/Fall 71,878 81,931 84,861 62 $36.41 $43.46 $45.51
Summer 93,448 119,629 128,065 5,000 $42.57 $63.54 $70.29

50th Winter 89,346 95,771 104,909 5,000 $49.92 $56.79 $66.57
Spring/Fall 74,917 81,931 89,321 4,000 $38.54 $43.46 $48.64
Summer 93,448 119,629 143,328 5,000 $42.57 $63.54 $168.51

75th Winter 89,346 95,771 109,839 5,000 $49.92 $56.79 $153.45
Spring/Fall 74,917 81,931 94,945 4,000 $38.54 $43.46 $52.58
Summer 93,448 119,629 164,966 5,000 $42.57 $63.54 $325.29

90th Winter 89,346 95,771 115,387 5,000 $49.92 $56.79 $301.55
Spring/Fall 74,917 81,931 104,642 4,000 $38.54 $43.46 $59.38
Summer 93,448 119,629 178,172 5,000 $42.57 $63.54 $880.12

Weighted Average 76,481 86,989 98,489 3,718 $36.79 $45.01 $67.05

Table 3.4: Equilibrium Prices and Quantities in the Baseline Model with No Uncertainty
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Night Price 
Percentile

Day Price 
Percentile Season

25th 25th Winter
Spring/Fall
Summer

50th Winter
Spring/Fall
Summer

75th Winter
Spring/Fall
Summer

90th Winter
Spring/Fall
Summer

50th 25th Winter
Spring/Fall
Summer

50th Winter
Spring/Fall
Summer

75th Winter
Spring/Fall
Summer

90th Winter
Spring/Fall
Summer

75th 25th Winter
Spring/Fall
Summer

50th Winter
Spring/Fall
Summer

75th Winter
Spring/Fall
Summer

90th Winter
Spring/Fall
Summer

90th 25th Winter
Spring/Fall
Summer

50th Winter
Spring/Fall
Summer

75th Winter
Spring/Fall
Summer

90th Winter
Spring/Fall
Summer

Weighted Average

Marginal 
Value of 

Added 
Generation

Marginal Value of 
Added Generation 
From Prices in the 

Data
Percentage 

Error

Marginal 
Value of 

Added 
Storage

Marginal Value of 
Added Storage From 

Day-Night Price 
Difference in Data

Percentage 
Error

$9.69 $0.00 Inf $0.00 $0.00 0.0%
$8.29 $2.91 184.9% $0.00 $0.97 -100.0%

$11.63 $8.76 32.8% $7.25 $9.92 -26.9%

$15.47 $1.22 1167.1% $1.29 $2.34 -45.1%
$12.49 $6.76 84.8% $2.80 $4.82 -41.8%
$23.82 $16.41 45.2% $19.43 $17.57 10.6%

$21.84 $4.24 415.2% $7.66 $5.36 42.8%
$17.02 $10.03 69.7% $7.33 $8.09 -9.4%
$27.17 $18.51 46.8% $22.79 $19.67 15.8%

$25.82 $6.12 321.6% $11.64 $7.25 60.6%
$26.88 $17.16 56.7% $17.19 $15.22 13.0%
$34.93 $23.38 49.4% $30.55 $24.54 24.5%

$16.43 $8.86 85.4% $0.00 $4.12 -100.0%
$12.63 $10.55 19.7% $0.00 $4.64 -100.0%
$23.77 $21.91 8.5% $11.53 $17.93 -35.7%

$22.16 $11.84 87.2% $0.44 $7.09 -93.8%
$13.66 $12.02 13.6% $0.00 $6.11 -100.0%
$28.89 $25.41 13.7% $16.66 $21.44 -22.3%

$25.33 $13.61 86.1% $3.61 $8.86 -59.3%
$19.40 $16.56 17.2% $5.72 $10.65 -46.3%
$33.90 $28.84 17.6% $21.67 $24.86 -12.8%

$32.02 $17.34 84.6% $10.30 $12.60 -18.2%
$34.01 $28.05 21.2% $20.32 $22.14 -8.2%
$63.53 $38.81 63.7% $51.29 $34.83 47.3%

$32.27 $25.05 28.8% $0.00 $5.76 -100.0%
$15.37 $17.11 -10.2% $0.00 $6.06 -100.0%
$35.42 $36.67 -3.4% $10.58 $23.45 -54.9%

$35.54 $26.93 32.0% $0.00 $7.64 -100.0%
$18.40 $19.42 -5.2% $0.00 $8.36 -100.0%
$37.92 $38.55 -1.6% $13.08 $25.33 -48.4%

$44.18 $32.17 37.3% $5.84 $12.87 -54.6%
$26.94 $26.47 1.8% $8.27 $15.41 -46.4%
$85.92 $55.26 55.5% $61.08 $42.05 45.3%

$54.49 $36.33 50.0% $16.15 $17.04 -5.2%
$34.34 $32.60 5.3% $15.67 $21.55 -27.3%

$159.16 $72.21 120.4% $134.32 $58.99 127.7%

$48.25 $49.45 -2.4% $0.00 $14.17 -100.0%
$17.06 $18.62 -8.4% $0.00 $5.58 -100.0%
$58.63 $65.13 -10.0% $17.08 $37.85 -54.9%

$57.11 $55.45 3.0% $4.18 $20.17 -79.3%
$22.86 $23.20 -1.5% $0.46 $10.16 -95.4%

$156.85 $89.70 74.9% $115.29 $62.42 84.7%

$143.98 $72.75 97.9% $91.05 $37.46 143.1%
$26.80 $26.58 0.8% $4.41 $13.54 -67.4%

$313.63 $127.46 146.1% $272.08 $100.18 171.6%

$292.08 $100.60 190.3% $239.15 $65.31 266.2%
$33.60 $32.40 3.7% $11.21 $19.36 -42.1%

$868.46 $227.02 282.5% $826.90 $199.75 314.0%

$38.61 $23.27 65.9% $21.06 $15.19 38.6%

Table 3.5: Comparison of the Calculated Marginal Value of Additional Storage and
Generation Capacity from the Baseline Model Versus the Value from the Data
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To compute the marginal value of storage and generation from the data, I apply these

formulas to the prices I put into the model to generate the demand functions (see Table

3.A.1 in Appendix 3-A).

Comparing the marginal values of additional generation capacity from the data versus

the model in Figure 3.5, shows that the values I estimate for generation are almost always

too high, sometimes more than 1000 percent above the value in the data. This leads the

weighted average marginal value of generation to be nearly 66 percent greater in the

model than in the data, which is clearly not a desirable attribute. Interestingly, however,

the marginal value of storage is not over-estimated in a corresponding fashion. The

marginal values of storage in the 25th percentile of night prices are not terribly far off,

though in some cases the model yields a zero value for additional storage while the data

exhibit a small positive marginal value. Marginal values for additional storage in the 50th

and 75th percentiles of night prices are generally too low, although the 90th percentile

of day prices in the summer season is too high. In the 90th percentile of night prices,

at the 25th and 50th percentiles of day prices, the marginal value of storage is generally

too low, but for the higher percentiles of night prices, the marginal value of storage is

significantly above the marginal value indicated by the data. It is these very high values

in the 90th percentiles that are driving the marginal value of storage in the model to be

39 percent above the marginal value of storage in the data.

The differing levels of overestimation for additional generation and storage capacity

lead the marginal value of additional storage to be 45.4 percent lower than the marginal

value of additional generation in the model, but only 34.7 percent below the marginal

value of additional generation in the data. Finding a way to correct these shortcomings of

the model, is therefore likely to improve the marginal value of additional storage relative

to the marginal value of additional generation. Unfortunately there was no obvious way

to fix these problems at this time, and therefore the results presented below should be

taken as preliminary.

In the first row of Table 3.6, the results on the relative value of additional storage

versus additional generation capacity in the baseline scenario are reported. The increase
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in surplus from adding a 400 MW combined cycle generator is $14,603, while the increase

in surplus from adding a 400 MW storage facility is $8,172. Thus, in the baseline case

using 2011 data, new storage capacity is worth 44 percent less than new generation

capacity.

The increase in surplus represents the increase over one day period, lasting 1 unit

of time, one shoulder period lasting 2 − 1
e

units of time, and one night period lasting 1
e

units of time. As the data utilized to calculate the parameters of the model represent

the average hourly price and demand, I assume a unit of time is an hour. Henceforth, I

will term the increase in surplus reported in the first and third columns of data in the

table the hourly value of generation or storage capacity, though it actually represents 3

hours. As I assume there are 8 hours of storage capacity and the efficiency of the storage

facility, e, is 80 percent, multiplying the increase in surplus from additional storage or

generation by 8 hours yields the value of storage or generation over 1 day. Multiplying

the daily value by 365 days in the year yields the annual value of storage or generation.

As noted in the section 3.4.2, storage facilities have an average lifetime of 50 years, while

combined cycle generators have an average lifetime of 30 years. Multiplying the annual

value of storage by 50 years and the annual value of generation by 30 years gives the

lifetime benefit from new storage or generation capacity. The capital cost of a new storage

facility is $1 billion and the capital cost of a new combined cycle unit is $401.2 million.

Subtracting the capital cost of each type of capacity from its lifetime benefit yields the

net lifetime benefit of new storage or generation capacity reported in the second to last

and third to last columns.

After accounting for the differing lifespans and capital costs, the net lifetime benefit

of a new 400 MW combined cycle generator is $878 million, while the net lifetime benefit

of a new 400 MW storage facility is $193 million, which is 78 percent less than the

net lifetime benefit of a new combined cycle unit. Thus, despite the longer lifespan of

a storage facility, the greater capital cost of storage makes additional storage capacity

a significantly less attractive investment than additional generation capacity given the

assumptions of the baseline scenario.
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As noted in Section 3.5.1, the marginal value of combined cycle generation is over-

stated by 66 percent relative to the data, and the marginal value of storage capacity is

overstated by 39 percent relative to the data. Assuming this basic relationship holds

when examining the value of 400 MW of additional capacity, and recalculating the over-

statements of value to be in reference to the value from the model rather than the value

in the data, the data would indicate that the value of generation capacity should be 40

percent lower and the value of generation should be 28 percent lower. After making these

adjustments, the net lifetime benefit of new generation capacity would be $370 million

and the net lifetime benefit of new storage capacity would be -$140 million. This revision

makes storage seem even less attractive even though the absolute difference between the

net lifetime benefits of the two options is reduced. If this relationship between the model

and the data were to hold when adding uncertainty in demand, the net lifetime benefit

of storage would improve to $5.7 million and the value of generation to $476 million.

However, it is not clear how to compare the model with the data in scenarios other than

the baseline. The important point here is simply that the shortcomings of the model

cause storage to seem like a somewhat profitable investment, when it may not be, and

probably increase the absolute difference between the net lifetime benefit of storage and

the net lifetime benefit of generation.
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3.5.2 Effect of Uncertainty

The remaining rows of Table 3.6 compare the value of additional storage or generation

capacity against the baseline for a variety of different scenarios to understand the effect of

the assumptions about uncertainty and the level of wind generation have on the results.

Before adding uncertainty in wind generation, I begin by assuming that wind varies in

the same way it would under uncertainty, but assume the planner knows the level of wind

generation that will occur in future periods prior to making decisions in the night period.

This is scenario 2 in Table 3.6. From the table, we see that adding variation in wind

generation, keeping the weighted average generation constant, increases the hourly value

of additional generation or storage capacity very slightly, but increases the hour value

of storage by a somewhat greater amount. Storage receives a greater benefit because

the weighted average price of electricity in the day period goes up while the weighted

average price of electricity in the night period goes down slightly, thereby increasing

the day-night price difference, but decreasing the value of additional generation in the

night period. The change in the relationship between prices is the result of the nature

of the variation in wind. Given the assumed capacity factors for the high and low wind

generation categories and the probabilities assigned to each category in each period, the

weighted average capacity factor for wind generators increases slightly in the night period

and decreases slightly in the day period, which causes the observed changes in price.

Adding uncertainty in wind generation, scenario 3, increases the value of additional

generation further, but decreases the value of additional storage somewhat. This occurs

because the weighted average price of electricity in the night period goes up slightly. The

increase in the night price is caused by increased, but less efficient, use of storage due to

the uncertainty.

Adding uncertainty in demand but keeping wind generation constant in each period

at the weighted average level, scenario 5, causes the hourly value and lifetime net benefit

of additional storage and additional generation to increase dramatically. This is a result

of a significant increase in the expected day price due to the fact that prices are bounded
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below by zero but are unbounded above. The increase in the expected day price also

increases the utilization of storage and therefore the weighted average price at night,

which causes the value of additional generation to not increase as much on a percentage

basis as the value of additional storage. Therefore, hourly value of additional storage

relative to the hourly value of additional generation increases from 44 percent less to

42 percent less, while the net lifetime benefit of additional storage relative to the net

lifetime benefit of additional generation increases from 78 percent less to 63 percent less.

Adding variation or uncertainty in wind generation, scenarios 6 and 12, increases the

relative value of additional storage versus additional generation in the same fashion as

does variation and uncertainty in wind generation without demand uncertainty.

Figure 3.6 illustrates the change in the hourly value and lifetime net benefit of ad-

ditional storage capacity and additional generation capacity as the capacity of wind in

the market increases. Note that increasing the available capacity of wind increases the

variance of wind generation because the difference between the low capacity factor, 22

percent, and the high capacity factor, 65 percent, is magnified by the increase in the

quantity of capacity that multiplies the capacity factor to determine generation. As can

be seen in the figure, even with very large increases in the capacity of wind generation,

the difference between the certainty and uncertainty versions of the model is quite small.

Although the uncertainty version of the model does decrease the net lifetime benefit of

storage a bit more relative to the certainty version than it decreases the hourly value.

The value of additional generation capacity is virtually unaffected.

3.5.3 Effect of Increasing Wind Capacity in the Market

Figure 3.6 also reveals that as the level of wind capacity in the market increases,

the hourly value of additional storage falls very little, and even begins to increase at

the highest levels of wind capacity, while the hourly value of additional generation drops

precipitously. Due to the difference in the capital cost, however, the net lifetime benefit

of storage does not exceed the net lifetime benefit of generation until there is 100,000 MW
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Figure 3.6: Hourly Value and Net Lifetime Benefit of Additional Storage or Generation
Capacity as Wind Capacity Increases, 2011 Costs

of wind capacity in the market (96,000 MW of added capacity), a 2400 percent increase in

wind capacity. Given the cost function utilized in the model, the electricity price at night

does not drop to zero until 96,000 MW of wind capacity have been added. In reality,

however, real-time electricity prices in the night period (those calculated given actual

operating conditions) have already dropped below zero in some hours because much of

the generation capacity utilized at night cannot be turned off at night if it needs to be

run the next day due to long start-up times. This is known as a must-run requirement.

Thus, a model that takes into account must-run requirements may be able to generate

zero prices at lower quantities of additional wind generation.
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Figure 3.7: Hourly Value and Net Lifetime Benefit of Additional Storage or Generation
Capacity as Wind Capacity Increases, 2008 Versus 2012 Costs

Figure 3.7 compares the hourly value and net lifetime benefit of additional generation
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or storage capacity as fuel costs change. The model incorporating uncertainty in both

demand and wind generation was utilized to generate the data for this figure and the

following figures. At 2008 fuel costs, the marginal cost curves are much steeper in the

initial upward sloping portion, as shown in Figure 3.4a, but flatter in the second portion

for spring/fall and winter than the marginal cost curves for 2011. The increase in the

steepness of the cost curve due to the increased fuel costs, combined with a daytime

demand curve that is steeper than the night-time demand curve increases the difference

between night and day prices and therefore increases the value of storage, as predicted by

Figure 3.1.A, for equilibria that were on the first portion of the marginal cost curve under

2011 prices. As wind generation increases, less generation from costly fossil fuels is needed

and therefore it is more likely that the equilibrium quantity will lie on the first portion of

the cost curve, where costs were higher in 2008 than in 2011. Thus, as wind generation

increases, the hourly value and net lifetime benefit of additional storage increases, though

for the largest quantity of added wind capacity the value declines somewhat. Conversely,

the increased cost of fuel decreases the amount of electricity demanded and increases

the marginal cost of generation from the new combined cycle capacity. Together, these

forces reduce the value of new combined cycle capacity sufficiently to make storage a

more cost-effective investment by either of the measures reported in Figure 3.7 and for

any level of wind generation.

In 2012, natural gas became much cheaper while other fuels prices changed little. This

caused the marginal cost curves to be much flatter than the marginal cost curves under

2011 fuel costs and the cost of generation at every quantity is less under 2012 fuel costs

than under 2011 fuel costs, see Figure 3.4b. Therefore the price of electricity is lower at

every level and equilibrium quantities are higher. Although the reduction in fuel costs

reduces the marginal cost of generation from new combined cycle capacity, the reduction

is not sufficient to make up for the lost revenue due to the decrease in price. Therefore, the

hourly value and net lifetime benefit of new combined cycle capacity decreases somewhat

relative to the values with 2011 fuel costs. The flattening of the supply curve, combined

with a day demand curve that is steeper than the night demand curve decreases the
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difference between night and day prices and significantly decreases the hourly value and

net lifetime benefit of additional storage relative to that under 2011. As wind generation

increases, this effect grows more pronounced.

Thus, as gas prices fall, as they did in 2012, the value of additional storage capacity

falls more significantly than the value of additional generation capacity. When natural

gas prices rise, as in 2008, the value of new combined cycle capacity falls significantly

while the value of new storage capacity rises. Thus, the model is able to support the

common assertion that falling natural gas prices hurt the competitiveness of storage

relative to natural gas capacity. However, the figures also show that combined cycle

capacity loses value much more rapidly than does storage as wind generation increases

and drives electricity prices lower. At extremely high volumes of wind capacity, e.g.

100,000 MW, the value of additional storage capcity is likely to exceed the value of

additional combined cycle capacity regardless of fuel costs because prices at night are

driven to zero in many periods. If prices are driven to zero more often in reality than in

the model, this indicates that the value of storage should be relatively higher as combined

cycle units would not be profitable to operate in these hours.
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(b) Net Lifetime Benefit

Figure 3.8: Hourly Value and Net Lifetime Benefit of Additional Storage or Generation
Capacity as Wind Capacity Increases, Increase Efficiency of Storage and Combined Cycle
Unit

Figure 3.8 illustrates the effect of increasing the efficiency of storage, e, from 80

percent to 85 percent efficiency (a roughly 6 percent increase) versus lowering the heat

rate (HR) of the new combined cycle capcity by 6 percent, which increases the efficiency
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by 6 percent. Unfortunately the model is not currently able to accommodate two groups

of storage capacity at different efficiencies and therefore in increasing the efficiency of the

new storage capacity, I was forced to also increase the efficiency of the existing capacity.

As can be seen in the figure, increasing the efficiency of storage has only a small effect on

the value of additional storage capacity and the difference between the value of additional

storage capacity at 80 percent efficiency and the value at 85 percent efficiency falls as

wind generation grows. The change in the efficiency of storage has very little impact

on the value of new combined cycle capacity because the quantity of storage capacity

in the market is small. Increasing the efficiency of the new generation capacity has no

effect on the value of new storage capacity, but does moderately improve the hourly value

and net lifetime benefit of installing an additional combined cycle unit. Thus increasing

the efficiency of either type of capacity would increase that technology’s competitiveness

relative to the other.

$0

$3,000

$6,000

$9,000

$12,000

$15,000

$18,000

0 20,000 40,000 60,000 80,000 100,000

Va
lu

e 
of

 A
dd

iti
on

al
 S

to
ra

ge
 o

r 
G

en
er

at
io

n 
C

ap
ac

ity
 ($

)

Quantity of Added Wind Capacity (MW)

Storage, Original CC, Original
Storage, 1/2 Var. of Wind CC, 1/2 Var. of Wind
Storage, 2x Var. of Wind CC, 2x Var. of Wind

(a) Hourly Value

$0.0

$200.0

$400.0

$600.0

$800.0

$1,000.0

$1,200.0

0 20,000 40,000 60,000 80,000 100,000Li
fe

tim
e 

N
et

 B
en

ef
it 

of
 A

dd
iti

on
al

  
St

or
ag

e 
or

 G
en

er
at

io
n 

C
ap

ac
ity

 
(M

ill
io

ns
 o

f $
)

Quantity of Added Wind Capacity (MW)

Storage, Original CC, Original
Storage, 1/2 Var. of Wind CC, 1/2 Var. of Wind
Storage, 2x Var. of Wind CC, 2x Var. of Wind

(b) Net Lifetime Benefit

Figure 3.9: Hourly Value and Net Lifetime Benefit of Additional Storage or Generation
Capacity as Wind Capacity Increases, Adjust Variance of Wind Generation

As the capacity of wind generation in a market grows, the variance of the total wind

generation in the market will fall if the wind generation becomes more geographically

dispersed and thus subject to less correlated weather patterns. Conversely, if the potential

locations for wind generation are concentrated in one area of a market, the variance of

the wind generation will increase as the quantity of wind generation grows. Figure

3.9 demonstrates the effect of doubling or halving the variance of the wind generation,
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keeping the mean constant, on the value of additional generation and storage capacity. At

the low levels of wind generation in the current market, the variance of wind generation

has little effect on the value of additional storage or generation capacity. As the quantity

of wind generation grows, the variance of the output grows, holding steady the variance of

the capacity factor, as is done in the scenarios shown in the figures. Therefore, changing

the variance has a somewhat larger effect on the value of additional generation or storage

capacity as the quantity of wind capacity available in the market grows although relative

to the effect of changing fuel prices or changing the efficiency of the technologies, the

effect of the variance of wind generation is small. Increasing the variance, increases the

value of additional generation capacity and vice versa. However, at the highest level of

wind capacity, the value of additional storage capacity decreases with the increase in the

variance of wind generation and also with a decrease in the variance of wind generation.

3.6 Conclusion

In conclusion, it is apparent that unless natural gas costs rise significantly in the next

few years, which is unlikely given the recent boom in production, it is unlikely that new

storage capacity will be a more profitable investment than new combined cycle capacity.

Given the assumptions of the model utilized in this paper, extremely high levels of wind

generation are required to slide the net lifetime benefit of new storage capacity above the

net lifetime benefit of new combined cycle capacity. However, the simplicity of the model

seems to be overlooking many of the areas in which storage excels. For instance, in a

model that takes into account the operating constraints of various technologies, e.g. coal-

fired steam turbines that take 12 or more hours to start up, prices at night may fall close to

zero more often without significantly affecting day prices, thereby increasing the value of

storage. Further the cost of unexpectedly high demand in the day period would be higher

if the long start-up times of low cost generation were taken into account. By contrast,

most storage technologies can respond to changes in demand almost instantaneously and

would therefore have a higher value in the day period.
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Regardless of the accuracy of the exact values assigned to the net lifetime benefit of

generation or storage capacity, these figures make it clear that combined cycle generation

has much more to lose from large increases in wind generation than does storage. Thus,

if wind and solar (which shares many of the same characteristics as wind) were to become

the predominant sources of power in the U.S., storage would clearly have an important

role to play.
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Appendices

3.A Demand Parameters

25th Percentile of Night Prices

Night Demand Parameters Shoulder Demand Parameters
Season P0

N Q0
N aN bN Season P0

Sh Q0
Sh aSh bSh

Winter $29.62 79,141 177.75 -0.0019 Winter $32.43 86,397 194.57 -0.0019
Spring/Fall $29.42 65,501 176.50 -0.0022 Spring/Fall $36.43 78,530 218.59 -0.0023
Summer $28.33 74,834 169.95 -0.0019 Summer $38.77 94,731 232.62 -0.0020

Day Demand Parameters Day Price Percentiles
Season P0

D Q0
D aD bD Season 25th 50th 75th 90th

Winter $35.80 90,794 214.82 -0.0020 Winter $35.80 $39.37 $42.39 $44.28
Spring/Fall $37.74 80,708 226.45 -0.0023 Spring/Fall $37.74 $41.59 $44.86 $51.99
Summer $45.33 102,341 271.96 -0.0022 Summer $45.33 $52.97 $55.08 $59.95

50th Percentile of Night Prices

Night Demand Parameters Shoulder Demand Parameters
Season P0

N Q0
N aN bN Season P0

Sh Q0
Sh aSh bSh

Winter $33.62 80,011 201.72 -0.0021 Winter $39.32 85,527 235.93 -0.0023
Spring/Fall $31.04 67,805 186.23 -0.0023 Spring/Fall $39.02 82,214 234.12 -0.0024
Summer $30.44 80,200 182.64 -0.0019 Summer $42.09 100,670 252.53 -0.0021

Day Demand Parameters Day Price Percentiles
Season P0

D Q0
D aD bD Season 25th 50th 75th 90th

Winter $46.14 91,692 276.85 -0.0025 Winter $46.14 $49.12 $50.88 $54.62
Spring/Fall $43.44 83,240 260.62 -0.0026 Spring/Fall $43.44 $44.91 $49.45 $60.94
Summer $55.98 112,653 335.91 -0.0025 Summer $55.98 $59.49 $62.92 $72.88

75th Percentile of Night Prices

Night Demand Parameters Shoulder Demand Parameters
Season P0

N Q0
N aN bN Season P0

Sh Q0
Sh aSh bSh

Winter $39.70 83,247 238.23 -0.0024 Winter $45.99 91,818 275.9286 -0.0025
Spring/Fall $32.78 70,757 196.70 -0.0023 Spring/Fall $42.97 81,719 257.82 -0.0026
Summer $33.42 85,741 200.51 -0.0019 Summer $49.45 111,916 296.69 -0.0022

Day Demand Parameters Day Price Percentiles
Season P0

D Q0
D aD bD Season 25th 50th 75th 90th

Winter $55.39 94,893 332.35 -0.0029 Winter $55.39 $57.27 $62.51 $66.67
Spring/Fall $47.04 84,490 282.23 -0.0028 Spring/Fall $47.04 $49.34 $56.39 $62.53
Summer $65.23 116,020 391.36 -0.0028 Summer $65.23 $67.10 $83.82 $100.76

90th Percentile of Night Prices

Night Demand Parameters Shoulder Demand Parameters
Season P0

N Q0
N aN bN Season P0

Sh Q0
Sh aSh bSh

Winter $42.98 87,159 257.89 -0.0025 Winter $56.39 95,908 338.355 -0.0029
Spring/Fall $34.44 72,646 206.64 -0.0024 Spring/Fall $42.86 82,161 257.145 -0.0026
Summer $36.30 91,617 217.77 -0.0020 Summer $63.40 119,680 380.415 -0.0026

Day Demand Parameters Day Price Percentiles
Season P0

D Q0
D aD bD Season 25th 50th 75th 90th

Winter $67.89 99,023 407.35 -0.0034 Winter $67.89 $73.89 $91.19 $119.04
Spring/Fall $48.63 83,847 291.79 -0.0029 Spring/Fall $48.63 $53.21 $56.59 $62.41
Summer $83.22 129,056 499.32 -0.0032 Summer $83.22 $107.79 $145.55 $245.12
Note: The intercepts for day, aD, vary with the day price percentiles while the slope, bD, stays constant within a season-night bin.

Elasticity (ε) -0.2

Table 3.A.1: Parameters of the Demand Functions for Each Period
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