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' GENERAL CUBIC SPLINES* 

Jonathan D. Young 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

January, 1975 

ABSTRACT 

LBL-3609 

We generalize the construction (computation of unknown function, 

derivative and second derivative values) for a cubic spline with 

specified knots subject to various sufficient conditions. 

*This work was done in part under the auspices of the Atomic Energy 
Commission. 
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INTRODUCTION 

In reference (1) we defined a cubic spline function on a 

closed interval, [x
1

, xm]' with knots, x
1

, x
2 
•.• xm. Briefly, the 

properties of the spline, s(x), are: 

(1) On any subinterval, [xi, xi+ 1 ], for i equals one 

to m - 1, s is a cubic in x. 

(2) The first and second derivatives, s' and s" are 

continuous over the whole interval, [x
1

, xm]. 

In Prop~rty (1) the expression cubic includes degenerate 

cases. On the interval, [xi' xi+ 1 ], the function is defined by 

2 3 
s = ciO + cil x + ci2 x + c 13 x for x in [xi, xi+ 1 ] (1) 

Where any or all of the c's may be zero. Note also that the 

coefficients relate to the subinterval. This fact is indicated by 

the subscript, i. 

Now, for i equal one to m-2,·we can set j - i + 1 and write 

+ + 
2 

x
3 

for x · [ ] s = cjO c jix cj 2 x + cj 3 ~n xj, xj + 1 

The function s need not be the same cubic on the consecutive intervals. 

We may have 

c. ~ c . for some or all n from zero to three. 
~n Jn 

From the above, it would appear that we need 4m - 4 values for the 

c's in order to determine the spline, s. However, the c's are not 

independent 

values, s., 
J 

since at any interior knot, x., j = 2, m- 1, function 
J 

and by Property (2) first derivative values, s', and 

(2) 
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and second derivative values, s", as expressed in terms of c. and 
1n 

c. must match. 
Jn 

Thus, we have three equations involving c's at each 

x. for j 
J 

= 2 to m - 1, for a total of 3m - 6 equations. From 

(4m- 4)- (3m- 6) =.m + 2 

we see that only m + 2 c-values are independent. If an independent 

set of m+2 c-values are known, the rest can be computed. This fact 

agrees with the statement in reference (2) that the space of all 

cubic splines with m specified knots has dimension m + 2. 

We are not interested in the c-values and will not compute them. 

We are interested in the values of the cubic splin~ and its derivatives at 

each of the knots. We have not required third derivative continuity. 

However, s is a cubic on any subinterval, hence, s'" is constant and 

continuous except for discontinuities (ci3 f cj 3) a~ interior knots, xj. 

We can define a third derivative function (piecewise continuous, with 

discontinuities at interior knots, x.) by assigning s~" , the value 
J J 

assumed from the right of xj (the constant 6cj 3). Fourth and all 

higher order derivatives are zero, as may be seen by differentiating 

either Equation (1) or Equation (2). 

For all knots, xi, for i = 1 to m, we shall call the 3m values, 

s s.' and s." fori= 1 torr. the primary values of the splines 
i' 1 1 

with knots x._, noting that s'" may be readily obtained by 
1 

s~" = (sj' ... s~) I (xj - xi) 

with j = i + 1 

and s'" = s'" · 
m m-1 

for i ... 1 .to m - 1 
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From our previous remarks about independence of the c's and 

dimension of the space of splines with m specified knots, we can 

assume that if m + 2 independent primary values are specified, the 

remaining 

3m - (m + 2) = 2m - 2 

values can be computed. 

In reference (1) we showed that if them function values, s., 
1 

for i = 1 to m and either s 1' and s' or s" and s" were specified, 
m 1 m 

then the remaining primary values could be computed. We were able 

to do this in a rather special way: first computing all the unknown 

s~ by solving a "tridiagonal" linear system of m equations in m 
1 

unknowns and t!hen computing all the unknown s" one at a time using a 
i 

"two point" formula involving s., s~, sk and s' 
1 1 k where ~ was adjacent 

to x. (either above or below). (NOTE we have m + 2 primary values 
1 

specified). 

Now, suppose for a function, y(x), we know yi for a set of m 

distinct and increasing points, x. for i 
1 

1 to m, and we also know 

y ' and y' or y" and y" and the function is otherwise unknown. Then 
1 m 1 m 

the function y can be approximated by a cubic spline, s, whose values 

are those known for y. We use the method of reference (1) to find all 

the values, s~ and s" not known and then use these for values for 
1 i' 

y~ and y': not known. Interpolation for approximate values for y, y' 
1 1 

andy" at any point x in [x1 , xm] can be performed by computing s, s', 

and s" at that x. 
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However, the (two) kinds of specifications described above 

are by no means the only sufficient ones to determine a unique 

cubic spline. Many other m + 2 primary values, provided one value 

is specified at each knot and provide'd one value is a function value, 

will determine a unique cubic spline. For example, a unique cubic 

spline is determined if at any knot xj we specify sJ., s 1 and s" and j' j 

at the other knots, x., i ~ j we specify either s. or s 1 or s~. As 
1 1 i 1 

another example specification of s. .and s~ or s~.' and sk and S I or s" 
J J J k k 

knots, X.' xk and of si or s ~ or s" at the other knots x.' i ~ j' J 1 i 1 

i ~ k is sufficient. 

Unfortunately, the method of reference (1) cannot be readily 

adapted to solving sufficient specifications of a general nature. 

The usefulness of a more general method can be illustrated in 

at 

connection with function approximation. For example, if for y(x) we know 

y1 , Yi and y~ and yi for i = 2 tom, there is a uniq~e cubic spline 

which approximates y but we cannot find it (compute its derivative 

values) by the method of reference (1). As another example, suppose 

we know yi for i equal 1 tom, and further know that at interior knots, 

xj and xk' yj and yk are extreme values (maximum or minimum), then we 

can set Yj = 0 and y~ = 0 to sufficiently specify tl!e unique cubic 

spline s which approximates y. Further, if we know all the yi and 

know that between two consecutive knots xj and xk that y is a 

straight line, then we can set s': = 0 and s" = 0 to specify the cubic . J k 

spline. Thus, the need for a general method becomes apparent. 
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GENERAL METHOD 

We wish to devise a method which will compute 2m - 2 unknown 

primary values (s., s~,s~) from any sufficient specification of 
1 1 1 

m + 2 primary values. We have m 1 subintervals, [x., x.] where 
1 J 

j _ i + 1 and i runs from one to m - 1. Now, on any of these subintervals, 
/ 

sis a cubic and,further,the values., 
J 

s~, and s" are those of that cubic. 
J j 

We set 

d.=x .. -x. 
1 J 1 

and remembering that fourth and higher derivatives of a cubic are zero, 

we expand s, S I and s" in Taylor's expansions from x. to X •. 
1 J 

s. s. + d. s~ + d: s'.'/2 + d~ s~"/6 
J 1 1 1 1 1 1 1 

' s. + d. s'.' + d: s~"/2 s. 
J 1 1 1 1 1 

s'! II d.s'.'' s. + J 1 1 1 

Note that s'" 
i 

is defined by "the right hand convention" mentioned 

earlier. 

From Equation (5) we have 

s~" = (s': - s'.')/d. 
1 J 1 1 

and we replace s ~" in Equations (3) and (4) by its expression in s" and s'.' 
1 j 1 

obtaining (after some transposition) 

s. - s. + d. s ~ +d: s'.'/3 + d: s'.'/6 = 0 
1 J 1 1 1 1 1 J 

s.- I +d. s'.'/2 + di s'.'/2 0 s. 
1 J 1 1 J 

Now, Equations (6) and (7) hold for i x 1 to m - 1 and together provide 

us with 2m - 2 equations involving 3m primary values of which m + 2 are 

(3) 

(4) 

i 

(5) 

(6) 

(7) 
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to be specified. Consequently, we have precisely 2m - 2 equations in 

2m - 2 unknowns. When we evaluate the terms for those primary values 

specified and transpose them, ~rom Equations (6) and (7) applied for i + 1 

to m - 1, we have m - 2 equations of the form 

(sum of "unknown" terms) = -(sum of known terms) 

which we wish to solve for the unspecified primary values. The question 

is will this system be determinate (can we solve for the unknowns)? 

Now, Equation (7) does not involve function values, hence, we have only 

m- 1 equations [from (6)] which do. If all m function values are 

~specified, we have m unknowns appearing in only m - 1 equations. 

Therefore, at least one function value must be specified (as stated 

earlier) otherwise the system is indeterminate. Now suppose .!!£_ primary 

value is specified at x1 . These values appear in Equations (6) and (7) 

only for i = 1 hence we have three unknowns appearing in only two equations 

and the system is indeterminate. Similarly, at x , if no primary values 
m 

are specified, we have Equations (6) and (7) only for j = m, hence again, 

only two equations for three unknowns. As for interior knots, there is 

obviously no virtue in including a point x~ for which no value (function, 
J 

first derivative er second derivative) is known. Hence, we shall always 

require that some primary value be known at every knot (at stated earlier). 

Note that the requirements above are necessary conditions; they may 

not be sufficient. 

(8) 
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COMPUTATIONAL PROCEDURE 

We are considering a cubic spline function, s, with knots, xi for 

i equal 1 to m with m greater than or equal to three. We must know the 

values of the x. and they must be distinct and in increasing order. 
1 

Of the primary values, si' s~, s~ (3m in all) we must know m + 2 with 

at least one function value known and at least one value known at each 

knot. We set up an argument vector, x, whose components are the x. of 
l. 

dimension m, and an array, S, of dimension, 4 by m, whose rows are 

(or are to be) values of s., s!, s'.' and s!" respectively for i equal 
1 l. l. l. 

1 to m. Now, at the outset, we shall only know m + 2 of. the primary 

values, hence we set up an indicator array, K, of dimension three by m, 

whose rows contain a known or unknown indication for s., s! and s" 
l. l. 1 

respectively, (for convenience, the entry is to be zero if the value is 

known and one if it is unknown). The values for the knots are placed 

in the vector, x, the known primary values in the "value array", S, and 

the corresponding indicators in indicator array, K. 

We begin by counting (and numbering) the unknowns as indicated in 

the indicator array. That is, we look at the first tow of the indicator 

array. If the indicator is zero (known value) we do nothing, otherwise 

the indicator which is one is replaced by a number for that unknown, i.e. 

the first encountered is one, the second two, etc. We do the same for 

the second row of the indicator - continuing the numbering, and then for 

the third. If at any time the number for the unknown exceeds 2m - 2 we must 

stop since there are too many unknowns. If we finish up with less than 

2m - 2 unknowns, we also stop. Meanwhile, we can check that at least 
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one function value is known and that some value is known at every 

knot, otherwise we stop. 

We are now ready to construct the coefficient matrix, A, (2m - 2) by 

(2m - 2) and right-hand-side (2m - 2) for the linear system of 

Equation (8). We now proceed for consecutive knots, (x., x.) fori equal one to 
1 J 

m-1, and j = i + 1, computing di= xj-xi and from di the coefficients for 

Equations (6) and (7). Our numbering of the unknowns now becomes 

I 

important since that number is the column of the coefficient matrix 

corresponding to that unknown. When the indicator is zero, the 

value is known and the product of the coefficient and the known value 

must be subtracted from the right-hand-side. Otherwise, the coefficient 

is entered in the indicated column of the coefficient matrix, A. For each 

i for i = 1 to m - 1 we obtain two rows for the coefficient matrix and 

two entries for the right-hand-side. As we compute the d., we can 
1 

check that the x
1
. are distinct (d. I 0) and in proper order (d. > 0), 

1 . 1 

otherwise we must stop. Note that the coefficients of this paragraph 

are those of Equations (6) and (7) not the c-values mentioned earlier. 

We now have a linear system of the form 

-+ -+ 
A p = b 

A is (2m - 2) by (2m - 2) 
-+ 

, p is vector whose components are the 

-+ 
unknown primary values in the order described above and b is right-hand-side 

above. Barring pathological circumstances (singular or ill-conditioned 

-+ 
matrix, A) this system can be solved for the unknown vector, p. We now 

again use our numbering system contained in the indicator array to 
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-+ 
place the now known components of p in their appropriate places in 

the value array. 

by 

We now compute s~" 
1 

s I " = ( s '.' - s '.' ) I d . 
i J 1. 1. 

and set s'" = s" 
m m-1 

for i equal 1 to m - 1 
j = i + 1 

and place these answers in the fourth row of the value array. Then 

this array contains all the values for s. 
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ERROR ANALYSIS 

.. 
Certainly there are pitfalls in approximating any function for 

which we know only enough values to specify a cubic spline. The 

specified values will, of course, be exact, but all other values 

computed for the spline may differ greatly from those of the function. 

Particularly, this is more likely when the two "extra" primary values 

(other than one per knot) are specified at one knot or at two knots 

close together. Hence, we need some method whereby the approximation 

error can be estimated. 

The cubic spline approximation has zero fourth derivative values 

on every subinterval. In general, this will not be true for the 

function, y, being approximated. In order to get an estimate of errors, 

let us assume that s is in fact a quartic over the entire interval, 

[x
1

, xm]. Now, for y we can write for any i = 1 tom- 1, with j = i + 1 

yj = yi +d. y~ + d: y'.'/2 + d~ y"'/6 + d~ Yiv /24 
1 1 1 1 1 i 1 

(8) 

y~ y~ + d. y'.' + d. 
2 
y~"/2 + d~ Yiv16 = 

J 1 1 1 1 1 1 
(9) 

y'.' y'.' + d. y ~II + 1: Yiv12 
J 1 1 1 1 

(10) 

where 
iv 

is constant (not zero). y a 

Now, we define an error function, e 

e = s - y 

Subtracting Equations (8), (9) and (10) from (3), (4) and (5), respectively, 

we obtain 
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e e + d. e I + d: e 1.'12 + d? e ~"16 - d~ -fvl24 (11) 
j i 1 i 1 1 1 1 1 

d~ d~ iv 
e I e ' + d. e" + e 1.'12 y 16 (12) 

j i 1 i 1 1 1 

e " e" + d. el" d: 
iv.; 2 (13) 

j i 1 i 1 
y 

Now we define a function, r, by 

iv iv 
r - ely - (s - y)ly 

iv 
(not zero) (after transposition) and divide equation by y to obtain 

r. - r. + d. r~ + d~ r'~ 12 + d3 r~"l6 d~l24 (14) 
1 J 1 1 1 1 1 ·1 1 

r! - rl + d. r" + d: r!"l2 = d~l6 (15) 
l. J l. 1 l. 1 l. 

" - r" + d. r~" =- d:12 (16) r. 
l. j 1 l. 1 

We solve Equation (13) for r~" 
1 

r~" = (r'.' - r 1
.') I d . + d . I 2 

1 J 1 1. 1 

and substitute in Equation (11) and (12) to obtain 

r. - r. + d. r~ + d~ r'.'l3 + d~ r 1.'16 = - d~l24 (17) 
1 J 1 l. 1 1 1 J l. 

r~ r~ + d. r': 12 + d. r': 12 = -d~ll2 (18) 
l. J l. l. l. J 1 

Now we note that the coefficients for Equation {17) and (18) are 

precisely those of Equations (6) and (7), however, unlike the latter, the 

right hand sides of the former are not zero. 

Where a value of yk, yk_ or yk is specified, we have the corresponding 

e e 1 

k' k 
or ek equal zero, hence the corresponding of rk, rk_ or r~ equal zero. 

Thus, transposing known terms to the right will not change the right 

hand sides of (17) and (18). Further, the coefficients for the unknown 

terms will be precisely those of Equation (8). Again we solve the 

" 
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I II -+ unknowns corresponding to the unknown rk, rk' rk and d is a known vector 

constructed from the right hand sides of Equations · (17) and (18). Note 

1 k I d 11 d •f d d that we can solve for a 1 the un nown rk, rk an rk an 1 y is in ee 

a quartic, we have 

iv 
ek rk y 

el I iv 
for k 1 = rk y = to m. 

k 

e" rll iv 
= y 

k k 

Thus, for a quartic, we can compute the errors of approximation of 

s, s 1 and s 11 at every knot. 

In general, we are interested in the magnitude of the error 

rather than its sign, hence for quartic, y, we have 

lekl = Irk! !Yivl 

le~l Irk! !Yivl 

le~l lr~l !Yivl 

If y is not a quartic, y'v is not constant, but if higher order derivatives 

are neglected, we can let 

and say 

1~1 is of the order jrkl 
.,..iv 
y 
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-iv Methods for estimating the value of y are left to the reader. The 

following are suggested 

-iv · 
y = max Is~ 11 

- s ~ 11 j/d. for i = 1 to m - 2 
J 1 1 

(1) 

(2) Construct a polynomial of degree m + 1 (at least 4 for 

m ~ 3) from the m + 2 specified values (one of which must be a function 

value) and find the maximum absolute value for its fourth derivative. 

INTERPOLATION 

After s., s~, s'.' and s! 11 are determined for i = 1 tom- 1, we can 
1 1 1 1 

always interpolate for s, s' and s 11 for any x in [xl' xm]. First, we 

find the subinterval, [x .• x.] in which x lies. Then we define 
1 J 

h = X - X. 
1 

and use cubic expansions 

s = s. + hs! + h2s'.'/2 + h
3
s! 11 /6 

1 1 1 1 

s'= s! + hs'.' + h2s~"/2 
1 1 1 

s"= s" + hs'" 
i i 

If s is being used to approximate a function, y, and the error of 

approKimation e is acceptable, for any x in [x
1

, xm] we can let 

y = s 

If e' is acceptable, let 

y' = s' 

.• 
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and if e" is acceptable, let 

COMPUTER CODE 

A computer routine, UNVSPY, has been written in FORTRAN to compute 

all the unknown values for any properly specified cubic spline. If 

desired, it will also compute absolute error coefficients, jrkj , jrkj 

and jrkl applicable for approximating some other function, y. It 

iv 
makes no estimate of y and does not decide if the approximation is 

acceptable. However, if the user is able to do this for his 

particular function, y, and so desires, the subroutine on another 

option will interpolate for an array of x values the corresponding 

values, s, s' and s", which can be us~d to approximate y, y' and y" at 

these x values. Extrapolation is not permitted, all the values x must 

lie in [xl., xm]. 

Listing and instructions for use of this routine are available 

from the author. 



-16- LBL-3609 

REFERENCES 

1. Young, J.,_ "Numerical Applications of Cubic Spline Functions," The 
Logistics Review, 3 (1967), pp. 9-14. 

2. Young, J., "The Space of Cubic Splines with Specified Knots", The Logistics 
Review, 7 (1971), pp. 3-8. 

: 

,_ 



. .. 

0 0 4 7 

~----------------LEGAL NOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for· the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



~·' . ~ '"'t 

41 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 




