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GENERAL CUBIC SPLINES*

Jonathan D. Young
Lawrence Berkeley.Laboratory

University of California
Berkeley, California 94720

January, 1975

ABSTRACT

We generalize the construction (computation of unknown function,
derivative and second derivative values) for a cubic spline with

specified knots subject to various sufficient conditions.

*This work was done in part under the auspices of the Atomic Energy
Commission.
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INTRODUCTION

In reference (1) we defined a cubic spline function on a
closed interval, [xl, xm], with knots, X, Xpeoo X o Briefly,vthe
properties of the spline, s(x), are:

(1) On any subinterval, [xi, X, 1, for i equals one

i+1
tom-1, s is a cubic in x.

' and s" are

(2) The first and second derivatives, s
continuous over the whole interval; [xl, xm].
In Property (1) the expression cubic includes degenerate
cases. On the interval, [xi, X, 4 l], the function is defined by
2 3 '

=c. .+ x + c, + i
s cjo ¥ i1 i2 ¥ Cyq X for x in [xi,vxi + 1

] (1)
Where any or all of the c's may be zero. Note also that the

coefficients relate to the subinterval. This fact is indicated by

the subscript, i.

Now, for i equal one to m-2, we can set j i +;1 and write

2 3
= + + .
s =c, c ,.xtc,., x + cj3 x~ for x in [xj, xj 1

] (2)

The function s need not be the same cubic on the consecutive intervals.

We may have

c. # ¢ . for some or all n from zero to three.
in jn g
From the above, it would appear that we need 4m -~ 4 values for the

c's in order to determine the spline, s. However, the c's are not

independent since at any interior knot, xj, j =2, m-1, function

values, sj, and by Property (2) first derivative values, s', and
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", as expressed in terms of Cin and

and second derivative values, s
cjn must matgh. ?hus, we have three equations involving c's at each
xj for j = 2 tom - 1, for a total of 3m - 6 équatioqs. From
(4m-4) - Gm - 6) =m+2

we see that only m + 2 cfvalueé are independent; . If an independent
setof mt+2 c-values are known, the rest can be cémpufed. This fact
vagfees with the statement in reference (2) that thevspace of all
cubic splineé»with m specified knots has dimensioﬁ_m + 2.

We afe-gég.interested>in the c-values and will not compute them.
We are interested in the values of the cubic spline and its derivatives at
eacﬁ of the knoﬁs; We have not required third derivative continuiﬁy.
Héwever, s is a cubic on any ;ubinterval, hence, s"‘-l is constant and
éontinpous égcept for discontinuities (cij # cj3)'aévinterior knots, xj.
" We can define a third derivative function (piecewise continuous, with
.discontinuities at interior knots, xj) by assigning s&" , the value
assumed from fhe right of xj (the constant 6cj3). Fourth and all
higher order dérivatives are zero, as may be seen by differentiating
- either EquationJ(l) or Equation (2). |

For all;kans, xi, for i = 1 to m, we shall call the 3m values,

Sy» si( and si" for i = 1 to n the primary values of the spline s

with knots x;, noting that s'"

may be readily obtained by.
LR 1] = . " - 1" - . z . -
s; (Sj si) / (xj xi) for i =1 tom-1
with j =i + 1

L1 'll.

and s = s R
m m-1
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From our previous remarks about independence bf the c's and
dimension of the space of splines with m specified knots, we can
assume that if m + 2 independent primary values are specified, the
remaining

3m - (m+ 2) =2m-2
values can be computed.
In reference (1)‘ we showed that if the m functidn values, S
"

for i = 1 to m and either si and sé or sy and s; were specified,

P

then the remaining primary values could be compuﬁéd.. We were able

to do this in a rather special way: first computing éll the unknown
si}by solving a "tridiagonal" linear system of m equations in m
unknowns and then computing all the unknown s; one at a time using a
Mtwo point" formula involving Sy» si, Sk and sé wheré X, was adjacent
to Xy (either ;bove or below). (NOTE we have m + 2vprimary values
specified).

Now, suppose for a function, y(x), we know ¥; for a set of m
distinct and‘iﬁcreasing points, X, for i = 1 to m, and we also know
yl' and y; or yI'and y; and the function is otherwise'unknown. Then
the function y can be appro#imated by a cubic spline, s, whose values
are those known for y. We use the method of referénce (1) to find all
the values, si and sg, not known and then use thesg for values for

yi and y; not known. Interpolation for approximate values for y, y'

and y" at any point x in [xl, xm] can be performed by computing s, s',

and s" at that x.
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However, the (two) kinds of specifications described above
are by no means the only sufficient ones to determine a unique

cubic spline. Many other m + 2 primary values, provided one value

" is specified at each knot and provided one value is a function value,

will determine a unique cubic spline. For example, a:unique cubic

spline is determined if at any knot xj we specify Sj’ si
at the other knots, X5 1 # j we specify either si_or-si or s;. As

, and sg and

another example specification of sj.and 83 or Sj ! "

and sk and sk or sk
(3}

. L 3
knots, xj, Xy and of g or 4 or sy at the other knots xi, i #‘J,
i # k is sufficient.

Unfortunately, the method of reference (1) cannotmbe reaéily-

adapted to solving sufficient specifications of a general nature.

The usefulness of a more general method can be illustrated in

connection with function approximation. For example, if for y(x) we know

¥1s yi and;yg énd Yg for i = 2 to m, there is a uhiqhe cubic spline
which approxiﬁates y but we cannot find it (compute its derivative

values) by the méthod of reference (1). As another”ekample, suppose
we know i f§r i'equal 1 to m, and further know thaF'ét interior knots,
X, and.xk, yj and ¥, are extreme values (maximum of'@inimum), then we

can set V3

o

'é 0 and yé = 0 to sufficiently specify the unique cubic

spline s which épproximates y. Further, if we know all the vi and

. know that between two consecutive knots x, and x, that y is a

j k

straight line, then we can set sg = 0 and s§'= 0 to specify the cubic

spline. Thus, the need for a general method becomes apparent.
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GENERAL METHOD

We wish to devise a method which will compute 2m - 2 unknown

|

primary valueS'(si, si,s; ) from any sufficient spécification of

m + 2 primary values. We have m - 1 subintervals, [xi; xj] where

i i + 1 and i runs from one to m - 1. Now, on any of these subintervals,
S -
s is a cubic and, further,the value Sj’ 83’ and s'" are those of that cubic.
' J

We set

and remembering that fourth and higher derivatives of a cubic are zero,

we expand s, s' and s" in Taylor's expansions from X, to X

3
2 3 S
= ' " + "

55 = s; + di si+ di si/Z i s; /6 , . 3)
s''=s, +d, s"+ds!"2 L (4)
3 i i i i "1 : .
"o " " i
sy = S; + %454 . (5)

Note that si" is defined by '"the right hand convention' mentioned
earlier.

From Equation (5) we have

e _ et o
s;" (Sj Si)/di

and we replacé si' in Equations (3) and (4) by its expression in sg and s;

obtaining (after some transposition)

s, -s, +d. s' +d? s''/3 + d? s''/6 =
i j i 74 _ i7i i %3

i
o

(6)

i
o

L " . " q .
s sj +di si/2 + di sj/Z )

Now, Equations . (6) and (7) hold for i = 1 to m - 1 and together provide

us with 2m - 2 equations involving 3m primary values of which m + 2 are
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to be specified; Consequently, we have preciselvam - 2 equations in
2m - 2 unknowns. When we evaluate the terms for those primary values
specified and ;ranspose them, frém Equations (6) and (7) applied for i + 1
tom-1, we Have’ m - 2 equations of the form
(sum of "unknown" terms) = -(sum of known terms) (8)

which we wish to solve for the unspecified primary values. The question

is - will this system be determinate (can we solve for the unknowns)?

Now, Equation (7) does not involve function values, hence, we have only
m-1 equations:[from (6)] which do. If all m function values are
ggspecified,,wé‘have m unknowns appearing in only m - 1 equations.
Therefore, at least one function value must be specified (as stated
earlier) otherwise the system is indeterminate. Now suppose Eg_érimary
value is specified at x;. These values appear in Equations (6) and (7) -

only for i = 1 hence we have three unknowns appearing in only two equations

‘and the system is indeterminate. Similarly, at L if no primary values

are specified, we have Equations (6) and (7) only for j = m, hence again,
only two equations for three unknowns. As for interior knots, there is

obviously no virfue in including a point xj for which_ﬁo value (function,
first derivative er second derivative) is known. Hence; we shall always

require that some primary value be known at every knot (at stated earlier).

Note that the requirements above are necessary conditions; they may

not be sufficient;



-8- | LBL- 3609
COMPUTATIONAL PROCEDURE

We are considering a cubic spline function, s, with knots, Xy for
i equal 1 to m with m greater than or equal‘to three. We must know the
values of the X; and they must be distinct and in increasing order.

Of the primary values, s_, si, s; (3m in all) we must know m + 2 with

at least one function value known and at least one value known at each
knot. We set up an argument vector, X, whose components are the X; of
dimension m, and an array, S, of dimension, 4 by m, whose rows are

(or are to be) values of ;s s:!L,si !

and si' respectively for i equal

1 to m. Now, at the outset, we shall only know m.+ 2 6f'the primary
values, hence we set up an indicator array, K, of_dimension three by m, .
whése rows contain a known or unknown indication for S;» si and SI
respectively, (for convenience, the entty is to be zero if the value is
known and one if it is unknown). The values for thé knots are placed

in the veCtor; X, the known primary values in the ''value array", S, and
thé corresponding indicators in indicator array, K.

We begin by counting (and numbering) the unknowné as indicated in
the indicator érray. That is, we look at the firsf t6w of the indicator
array. If the iﬁdicator is zero (known value) we do nothing, otherwise
the indicator which is one is replaced by a number for that unknown, i.e.

the first encountered is one, the second two, etc. We do the same for

the second row of the indicator - continuing the numbering, and then for

the third. If at any time the number for the unknown exceeds 2m - 2 we must

stop since there are too many unknowns. If we finish up with less than

2m - 2 unknowns, we also stop. Meanwhile, we can check that at least
|
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one function value is known and that some value is known at every
knot, otherwise we stop.

£

We are néw ready to construct the coefficient matrix, A, (2m - 2) by ’
(2m - 2) and right-hand-side (2m - 2) for the linear system of
Equation (8). We now proceed for consecutive knots, (xi, Xj) for i equal one to
m-1l, and j = i f l,.computing di= xj—xi and from di ?he coefficients for
Equations.(ﬁ)vand (7). Our numbering éf the unknowné now becomes
important since that numbef isvthe column of the coéfficient matrix
corresponding to that unknéwn.. When the indicator is zero, the.
value is known and the product of the coéfficient»and‘the known value
must be subtracted from the right—hgnd—side. Otherwise, the coefficient
is entered in the indicated column of the coefficient matrix, A. For each
i for i = 1 tom - 1 we obtain two rows for the coefficient matrix and
two entries for the right-hand-side. As we compute the di’ we can
check that tHe.xi are distinct (di # 0) and in proper érder (di > 0),
otherwise we must stop. Note that the éoefficientsvof this paragraph
are those of Equations (6) and (7) not the c—values-mentioned earlie;.

We now have_é linear system of the form |

Ap="

A is (2m - 2)'by (2m - 2) , ; is vector whose components are the
unknown primary values in the order described above. and b is right-hand-side

above. Barring pathological circumstances (singular or ill-conditioned

matrix, A) this system can be solved for the unknown vector, p. We now

"again use our numbering system contained in the indicator array to
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-> C
place the now known components of p in their appropriate places in

the value array.

We now compute si” for i equal 1 tom -1

j=4i+1
b s " = (g" - g"
y i v(sj Si)/di

T

and set s = g"
m

m-1

and place these answers in the fourth row of the value array. Then

this array contains all the values for s.
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ERROR ANALYSIS

Certainly there are pitfalls in approximating any function for
which we know only enough values to specify a cubic spline. The
specified values will, of course, be exact, but all;dther values

computed for the spline may differ greatly from those of the function.

Particularly, this is more likely when the two "extra" primary values
(other than one per knot) are specified at one knot or at two knots
close together. Hence, we need some method wherebyvthe'approximation

error can be estimated.

. The cubic spline approximation has zero fourth derivative values
on every subinterval. In general, this will not be true for the

function, y, being approximated. In order to get an estimate of errors, '

let us assume that s is in fact a quartic over the entire interval,

[xl, xm]. Now, for y we can write for any i =1 tom - 1, with j =i+ 1

= L} 2 " 3 T 4 .iV
Yy y; +c1i yi + di yi/2 + di Y4 /6 + di y /24 (8)
LI ' " 2 [R1] 3 1V
Y ;i t d; y; + di Y4 /2 + di y /6 9)
o . " " 2 iv o ) )
Y] vy td, oyt + 1y /2 , - (10)

iv | ‘
where y is a constant (not zero).

Now, we define an error function, e

e=s—y

Subtracting Equations (8), (9) and (10) from (3), (4) and (5), respectively,

we obtain
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e  =e_+d e!'+a2en/2+aderye - a* yivya (11)
i i i i i 1 i i i
' 2 3 iv
e \ = el ell e" - .
; it di : + di i/2 di y /6 . (12)
e " = e" +d.e'" - d?'ylv‘/z (13)
i i i i i

Now we define a function, r, by
iv iv
r=e/y = (s-yly

' iv '
and divide equation by y (not zero) to obtain (after transposition)

ro—r, +d, r! +d> "2 +d> "6 = d4/24 (14)
i J i i i 4 i4 i’=

-1 +d. "+ d? r'"/2 = d3/6 | ' (15)
i 3 i i i Y4 i . . |
17" - r" 1 = 2

r; i d, ri" =d/2 , (16)

We solve Equation (13) for ri"

r!" = (" - r'")/d, +d,/2
1 N 1 1. 1 |
and substitute in Equation (11) and (12) to obtain
- L 2 11 2 " - 4 A
r ,rj + di i + di ri/3 + di rj/6 di/24 (17)
3
't Lt " 1" = -
ri rj + di r /2 + di rj/2 di/12 o (18)

Now we note that the coefficients for Equation (17) and (18) are
precisely those of Equations (6) and (7), however, unlike the latter, the
right hand sides of the former are not zero.

Where a value of i yé or yﬁ is specified, we have the corresponding

e' or eﬁ equal zero, hence the correspondingvof r

k> 'k k

Thus, transposing known terms to the right will not change the right

s T

é or r; equal zero.

hand sides of (17) and (18). Further, the coefficients for the unknownv

terms will be precisely those of Equation (8). Again we solve the
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linear system
>
Ar = d
. . v . -
where A is the same matrix mentioned earlier, r represents m - 2

unknowns corresponding to the unknown s ré, rﬁ andvg_is a known vector
constructed from the right hand sides of Equations (l7)'and (18). Note

that we can solve for all the unknown r

K’ ré and rﬂ.and if y is indeed

a quartic, we have

-7 iv
ey kY
vy iv - ’
e, ‘.rk y for k 1 to m.
iv

Thus, for a quartic, we can compute the errors of approximation of
s, s' and s" at every knot.
In general, we are interested in the magnitude of the error

rather than its sign, hence for quartic, y, we have

- 1
le | = Ix | Iy
legl Ixgl 15771
e X
ey ] = Il by Yl

If y is not a quartic, y'V is not constant, but if higher order derivatives

are neglected, we can let

=iv iv
y~ = max |y ]
and sayb

-i
Iekl is of the order lrkl vy
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Ieij- i of the order Irél y

" l ;iV

le!] is of the order lrk

k
Methods for estimating the value of §1v are left to the reader. The
following are suggested
—iv - 'I.l et} s - i _
(1) y max.]sj i I/difor i=1tom~-2
(2) Construct a polynomial of degree m + 1 (at least 4 for

m > 3) from the m + 2 specified values (one of which must be a function

value) and find the maximum absolute value for its fourth derivative.

INTERPOLATION

! ! are determined for i =.1 tom - 1, we can

After s., s', s'" and s!"
i’ i Ci i

always interpolate for s, s' and s" for any x in [xl,‘xm]. First, we

find the subinterval, [xi, Xj] in which x lies. Then we define

h=x - x,
i

and use cubic expansions

3

s = s, + hs' + hzs?/Z + h7s!"/6
i i i i

s'= s! + hs' + hzs!"/Z
i i i
s"= g" + hs'"
i i
If s 1is being used to approximate a function, y, and the error of
approximation e 1is acceptable, for any x in [xl, xm] we can let
y =8

If e' is acceptable, let"
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and if e" is acceptable, let

COMfUTER CODE

A computer routine, UNVSPY, has been written in FORTRAN to compute
all the unknqwn values for any properly specified cubic spline. If

desired, it will also compute absolute error coefficients, Ir , lr

UL

and.frﬁl applicable for approximating some other function, y. It
makes no estimate of yiv and does not decide if the épp;oximation is
acceptable. Hawever, if the user is able to do this for his
particular function, y, and so desires, the subroutine on another
option will iﬁterpolate for an array of x values tﬁe corresponding

values, s, s' and s", which can be used to approximate y, y' and y" at

"these x values. Extrapolation is not permitted, all the values x must

lie in [xl, xm].

Listing and instructions for use of this routine are available

from the author.
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