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Abstract

We present a computer-based model of acquisi-
tion of word meaning from context. The model
uses semantic role assignments to search through
a hierarchy of conceptual information for an ap-
propriate meaning for an unknown word. The
implementation of this approach has led to many
surprising similarities with work in modelling hu-
man language acquisition. We describe the learn-
ing task and the model, then present an empirical
test and discuss the relationships between this ap-
proach and the work in psycholinguistics.

Introduction

This paper describes a computational model of acqui-
sition of lexical items from context. The learning task
is defined as follows: given a set of natural language
sentences in which a previously unknown lexical item
appears, infer the syntactic class and the meaning (or
meanings) of the word. We assume that the vast ma-
jority of other words appearing in the set of sentences
are already known.

Our approach has been implemented as part of a
unification-based natural language processing system
called LINK [Lytinen, 1990]. LINK’s grammar rules
are quite similar in form to those used in PATR-II
[Shieber, 1986). We have incorporated semantic infor-
mation into LINK’s grammar, along the lines of HPSG
(Pollard and Sag, 1987]. The integration of syntactic
and semantic knowledge into the same grammar for-
malism 1s key to our system’s ability to infer informa-
tion about unknown words.

We are using LINK in two prototype applications
involving relatively narrow domains (i.e. the necessary
domain knowledge can be described fairly completely),
but the textual input is entered by a large number
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of users and is therefore subject to wide variations in
the terminology used. Our system is able to infer the
meanings of many unknown words in these applica-
tions. The examples in this paper will be taken from
one of these applications. The texts in this application
describe sequences of actions to be performed on an
assembly line.

In this paper, we will provide a sketch of our word-
learning approach. In particular, we will focus on the
acquisition of word meanings. The reader is referred
to [Lytinen and Roberts, 1989] for a more detailed dis-
cussion of syntactic learning in LINK. We also present
the results of an empirical test, in which our approach
was used to learn the meanings of 22 undefined verbs
from a corpus of 100 inputs from one of our application
domains.

Our approach to the word-learning task was not de-
veloped with the modeling of human behavior in mind.
The constraints of the learning task, however, guided
the implementation to a state that closely resembles
theoretical and empirical linguistic explanations of lan-
guage acquisition in humans. We will discuss these re-
lationships after the presentation of the empirical test.

The Learning Task

The LINK parser is often able to infer the syntactic
category of an unknown word using grammatical con-
straints. Knowledge of the syntactic category allows
LINK to make certain inferences about the semantic
connections between the unknown word and other con-
stituents of the sentence. This role-filling information
is used in conjunction with a simple IS-A hierarchy in
order to formulate hypotheses about the meaning of an
undefined word. All of the semantic predicates defined
in LINK’s knowledge base are included in the hierar-
chy. Each concept definition includes a set of thematic
roles or “slots” that can be (optionally or obligatorily)
attached to the concept, as well as the type of concept
which can fill each slot. The set of restrictions on fillers
of slots for a concept must be at least as specific as the
restrictions for its ancestors in the hierarchy (i.e. more
general concepts). The ordering on generality of slot-
filler constraints as well as other semantic information



determines the structure of the semantic hierarchy.

Figure 1 presents a portion of the IS-A hierarchy for
actions that is used in describing our assembly-line do-
main. Constraints on fillers of slots for actions are also
represented in this figure. Slot-filling constraints on a
concept are inherited from the concept’s ancestors in
the tree. For example, since GENERAL-FACTORY-
ACTION requires an OBJECT that is a *FACTORY-
OBJECT?*, this restriction also implicitly holds for
actions like *GET* and *INSPECT*. *RECORD-
ACTION* is an example of a concept which makes
a further restriction on a previously constrained slot.
*RECORD*, the OBJECT of this action, must be a
descendant of *FACTORY-OBJECT*.

LINK’s concept hierarchy guides the process of
learning word meanings. Initially, it is assumed that
every concept in the hierarchy is a candidate hypothe-
sis for the meaning of an unknown word. Example sen-
tences can provide two types of restrictions on the set
of candidate hypotheses. First, the unknown word may
appear as the filler of a thematic role of another word,
as in Secure the flarge. Because flarge is assigned as
the direct object of secure, LINK’s grammar suggests
that it is the semantic OBJECT of *SECURE*. This
condition places an upper bound on the generality of
the word’s meaning: flarge must be an AUTO-PART
or one of its descendants in the hierarchy.

The second type of restriction that context may sug-
gest is a filler for a thematic role of the unknown word,
as in Flarge the door. In this case, LINK’s unification
grammar suggests that *DOOR* is the semantic OB-
JECT of flarge. Information about role-fillers of an
unknown concept place a lower bound on the speci-
ficity of the concept: given that *DOOR¥* is the OB-
JECT, flarge can refer to concepts like *GENERAL-
FACTORY-ACTION* and *ASSEMBLE*, but not
to concepts like *FASTEN*  *REFILL*, or *TAPE-
ACTION* (or any of its descendants) since a *DOOR*
violates the restrictions that these concepts place on

their OBJECTs.

Thus, two types of information are supplied by ex-
ample sentences: information which provides a lower
bound on the level in the hierarchy of the meaning of
an unknown word, and information which provides an
upper bound. This would suggest a least-commitment
approach to learning, such as Mitchell’s candidate-
elimination algorithm [Mitchell, 1990). Mitchell’s al-
gorithm used version spaces to represent the set of
candidate hypotheses, and slowly narrowed the version
space depending on the additional constraints provided
by new examples. Unfortunately, in our word-learning
task, often it is the case that particular kinds of words
only appear in examples that provide one of the two
types of restrictions. Nouns, which usually refer to
things, almost always appear as role-fillers of actions
or states; thus, examples only serve to limit the up-
per bound of the candidate hypotheses. Verbs, on the
other hand, usually appear with role-fillers attached
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to them, and not as role-fillers themselves, since they
refer to actions or states. Thus, examples only serve
to place a lower bound on their candidate hypothe-
ses. Thus, since examples only provide one of the two
kinds of restrictions for many word classes, a least-
commitment algorithm would not converge on a single
hypothesis for the meaning of most unknown words.
Because of this, our algorithm is not a least-
commitment algorithm. For nouns, we assume the
most general candidate hypothesis is the correct one.
Thus, the hypothesis for Secure the flarge is that flarge
means *AUTO-PART*. In the case of verbs, the most
specific candidate hypotheses are kept. From flarge
the nut, then, flarge is assumed to mean *FASTEN*
(since this concept requires a *NUT* as its OBJECT).
A later example like flarge the door would eliminate
the hypothesis *FASTEN*, since a *DOOR* cannot
be its OBJECT. This would result in a generalization
procedure which ascends the hierarchy and branches
out until a concept (or concepts) whose constraints
are satisfied by this set of slot-fillers (*DOOR* and
*NUT*). The resulting set of hypotheses would then
be *INSTALL*, *POSITION*, and *SECURE* since
*DOORX* and *NUT* are both *YAUTOQ-PART*s.

Limitations of This Technique

Several artifacts of the learning mechanism limit the
sort of word definitions that can be learned. The first is
the assumption that the representation of the ontology
is complete, i.e. that every concept which is part of
the domain is a priori represented by some node in
the semantic hierarchy. This clearly limits the range
of concepts which can be learned.

In addition, this technique relies solely on one type
of information, the semantic constraints of role-fillers.
While this information is sufficient to differentiate be-
tween many of the word meanings, large classes of
words exist that require additional information to dis-
tinguish the members of the class from one another.

As mentioned above, the learning algorithm can not
handle ambiguous words. In such cases, an apparent
contradiction is found between competing hypotheses,
and an over-general concept is then chosen. Some sort
of mechanism is needed to determine whether a more
general concept or a disjunctive mapping is justified in
specific situations.

Finally, the learning algorithm (as we have described
it so far) often does not converge on a single hypoth-
esis for the meaning of a word, especially in the case
of verbs. To see why this is true, consider again the
example Flarge the nut. Intuitively it seems that the
best hypothesis for the meaning of flarge is *FASTEN*,
since only nuts can be fastened, and *FASTEN¥ is the
only action in the hierarchy which can be done to only
nuts. However, many other hypotheses cannot be elim-
inated as possibilities: flarge might mean *INSTALL*,
since according to our hierarchy nuts can be installed,
too. Given the hierarchy as it stands, no examples



( (OBJECT) =R *NUT*)

((DESTINATION) =R *LOCATION*)
((OBJECT) =R *AUTO-PART*)

*CHECK -OBJECT*

*SECURE*
({ (INSTRUMENT) =R *FASTENER®)

AgET*
( (DESTINATION)

=0 NOTHING)

*IRERECT* * CHECK - RECORD*
( (PURPOSE) =0 *NUMBER-ACTION®)
GENEFAL-TACTORY-ACTION® *RECORD-ACTION®
({OBJECT) =R *FACTORY-OBJECT*) { (OBJECT) =R *RECORD*)
“REFILL®
((OBJECT) =R *LIQUID-CONTAINER®)
“REMOVE*
( (DESTINATION) =0 NOTHING)
*ROUTE * -
. AFFLY-TAPE®
HERAGHGH) =0 MRRIRFION® ( (DESTINATION) =R *FACTORY-OBJECT*)
FTAPE-ACTION® oot
{ {CBJECT) =R *TAPE*)
RO LES
TOWCOIL®
{{OBJECT) =R *HARNESS*)
{ (DESTINATION) =0 NOTHING)

Figure I: A portion ol the action concept hierarchy

can be given which will eliminate all other candidate
hypotheses (assuming flarge really does mean *FAS-
TEN#*), since nothing which meets the restrictions on
the slots of *FASTEN* will violate any of the restric-
tions on the slots of these other candidates.

To remedy this problem, our algorithm ranks the list
of candidate hypotheses according to how tightly each
candidate’s constraints on slots match with the actual
slot fillers found in the examples. For the example
flarge the nut, *FASTEN¥* is the highest-ranked can-
didate hypothesis for the meaning of flarge, since its
restriction on the OBJECT slot exactly matches the
OBIJECT of flarge in the example sentence.

In addition, the final set of meaning hypotheses for
an unknown word is checked at the end of the parse
to see if all of the required slots for each hypothesis is
present in the parse. Thus for an example like flarge the
door handle, where *INSTALL*, *POSITION*, and
*SECURE* would be hypotheses based on the filler
of the OBJECT slot, *SECURE* would be eliminated
from consideration because its required instrument slot
is missing in the sentence.

The Empirical Test

To evaluate the effectiveness of our approach, an em-
pirical test was conducted. In the test, a set of 100 ex-
ample inputs from one of our application corpora was
chosen at random. The test corpus consisted of short
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descriptions of sequences of actions to be performed
on an assembly line. This corpus was chosen for the
test because we had already developed extensive sets
of grammar rules and lexical entries for it.

We were particularly interested in evaluating our al-
gorithm’s performance on learning verbs, since they
presented the largest challenge. For the test, we re-
moved the definitions of all of the verbs that appeared
in the 100 examples from LINK’s lexicon. There were
22 verbs in this set of examples. We then ran the sys-
tem on the 100 examples and inspected the definitions
of the verbs to see whether the system had inferred
their meanings correctly. Table 1 presents 2 typical
verbs from the set of examples as well as the sentences
in which they appeared.

Table 1: Typical verbs and example sentences
secure | Secure rr/dr hndl w/2 nuts
(secure right-rear door handle ...)
Secure hrns to rsb w/2 int chps
(Secure harness to right-side
bolster with 2 int-clips)

Gel inspection record

At bench, get manifest

Get lock cylinder kit

Get driver

get




A representative set of verbs along with their in-
ferred meanings is presented in table 2. In table 3, the
verbs are grouped according the quality of the result
achieved. The 17 verbs in group 1 (77% of the total
set) were learned to the maximum extent possible given
the amount of knowledge that exists in the system.
For 7 of these words, the correct meaning was the top-
ranked hypothesis. For the others, the correct meaning
is included among a set of hypotheses that are indis-
tinguishable using only the role-filler constraints. For
example, the actions *INSTALL* and *POSITION*
are both defined as requiring an *AUTO-PART* for
an object. Without additional information, there is no
way to distinguish between these concepts. Thus, both
of the concepts remain as hypotheses for the meanings
of install and position at the end of the test run. Verbs
of this type are counted as having been successfully
learned in our test results.

Group 2 contains verbs that were ambiguous, i.e.
that referred to two or more nodes in the semantic
hierarchy. As stated above, the algorithm currently
has no way of successfully handling such words.

The verbs in group 3 were the victims of shortcom-
ings in the implementation. Allow always occurs with
a sentential object, e.g. Allow to load paper to print-
ers. This causes difficulty for the learning algorithm
since it can only handle one word at a time (notice that
load doesn’t show up in the results). The word preload
was only found in one sentence in this test set, so the
hypothesis was overly specific.

The results of this test suggest that a large portion
of the meaning of unknown words can be inferred auto-
matically using only very basic conceptual information
about the domain.

Table 2: Sample results of test run

Verb Ordered meaning hypotheses

check *ASIDE* *CHECK-OBJECT* *GET*
*INSPECT* *LOAD* *LUBRICATE*
*OPEN* *PLACE* *REMOVE*
*REPAIR* *RESTOCK* *ROUTE*
*TO8S*

crumple | *BREAK* *CRUMPLE*

fasten *FASTEN*

install *INSTALL* *POSITION*

preload | *SECURE*

reach *REACH*

uncoil *UNCOIL*

Related Computer Models

Similar efforts at using machine learning techniques
in lexical acquisition were reported in [Zernik, 1987).
Zernik described his approach as using a version space
technique to learn phrasal lexicon rules. However,
Zernik’s system receives feedback from a teacher in the
form of user-supplied “contexts” that explain what the
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Table 3: Grouping of verbs in test results
roup 1 | aside, break, crumple, fasten,

fold, get, install, position,

reach, remove, return, route,

secure, step, toss, uncoil, walk

apply, check, place

allow, preload

Group 2
Group 3

input means. It is not clear if Zernik’s approach can be
adapted to a situation in which feedback is not avail-
able.

Selfridge’s CHILD program [1986) used contextual
information to provide constraints on definitions of un-
defined words in much the same way as our system does
for nouns. However, CHILD learned from only one ex-
ample, and could not further refine meanings based on
subsequent examples.

Jacobs and Zernik [1988)] describe the RINA system,
in which a task very similar to our word-learning task is
performed. RINA examines large corpora, extracting
many examples of a given unknown word. Although
they do not describe their algorithm in detail, it ap-
pears from examples discussed in the paper that word
meaning acquisition in RINA is driven more heavily by
discourse context than in LINK.

Relationships to Developmental
Psycholinguistics

Although this model was developed solely to allow ef-
ficient use of the limited information available to the
natural language processing system, some of the chal-
lenges we faced in the development of the system bear
a striking resemblance to issues brought up in the psy-
cholinguistic literature. This suggests that these chal-
lenges are not unique to computational models but
are inherent difficulties in language learning in general.
Some of these issues are discussed below.

The No-Negative-Evidence Problem

When children learn language, they must induce the
structure of the language and the meanings of the
words relying almost entirely on examples of utter-
ances which are within the language. They don’t have
the benefit of negative evidence to help them in their
learning task. This lack of discriminating information
makes the learning process computationally very com-
plex, yet children do learn language. The Subset Prin-
ciple was described in [Berwick, 1985] as one way that
children could reduce the complexity of the learning
task. This principle suggests that children have a hier-
archical mental representation of languages ordered on
the specificity of the grammars. When learning syn-
tax, children first hypothesize the most specific gram-
mar that accounts for the input in order to avoid over-
generalization.



We are faced with a similar problem in our model
of meaning acquisition. The lack of negative evidence
about word meanings as well as the nature of the role-
filler constraints provides a lower bound on the set of
hypotheses, but no upper bound. Thus we are forced
to choose the most specific hypotheses to be able to
learn from a training set consisting of only positive
examples.

Bowerman [1983] presents a model of how children
deal with the no-negative-evidence problem in learn-
ing verb meanings. She describes a method in which
children could use syntactic information to, in effect,
subcategorize verbs according to aspects of their mean-
ings (e.g. causation). Bowerman suggests that ad-
ditional discriminatory information such as this can
be used as pseudo-negative evidence in that children
can make predictions about word usage from syntactic
clues. The violation of their assumptions provides the
negative evidence that makes the learning process less
computationally overwhelming.

In our model, we try to find the most specific, falsifi-
able hypotheses. If a later example has a slot-filler that
violates our original hypothesis, we choose one that can
accommodate both the old and the new slot-fillers.

Syntactic and Semantic Bootstrapping

Gleitman [1990] detailed a mechanism called “syntac-
tic bootstrapping” that children might use to guide
their search for meanings of verbs through the space
of possible meanings that could be inferred from the
immediate context. She suggested that children as
young as 17 months have strong capabilities for rec-
ognizing syntactic distinctions and using them to con-
strain the meanings of verbs they are learning. For
example, children who had no prior knowledge of the
word flez were shown two videos, one of Big Bird and
the Cookie Monster crossing and uncrossing their own
arms, and another with one of them crossing the arms
of the other. When the sentences Big Bird is flezing
with the Cookie Monster and Big Bird is flezing Cookie
Monster were broadcast through a speaker, the chil-
dren showed a definite preference for the “syntactically
congruent screen”, i.e. the video that was showing the
action that was being described, even though they had
no semantic knowledge of the meaning of flez. Gleit-
man argued that without such a constraining mecha-
nism, the task of word learning would be computation-
ally infeasible. But while her approach relies solely on
the syntactic structure of the sentence to yield seman-
tic clues, our approach combines use of syntactic and
semantic information (but no external context) to gen-
erate hypotheses.

In Shatz’ [1987] description of a similar bootstrap-
ping mechanism, she gives an example of a 4-year-old
who said “I pricked my finger” after she had stuck her-
self with a needle, and then asked, “What does prick
mean?” This suggests that children learning language
can use their limited knowledge of the context in which
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a word is used to develop a partial hypothesis for the
meaning of that word, just as our system incrementally
refines inferred meanings over multiple examples.

Later Language Acquisition

Although our approach presents many similar proper-
ties to some aspects of children’s language acquisition,
it cannot be seriously considered a model of the learn-
ing process of children because of the assumption that
the system’s domain knowledge is complete at the time
of word meaning acquisition. In this sense, the model
is more similar to human language acquisition that is
done later in life. Two examples of this are Genie and
second language learners.

As Curtiss explains [Curtiss, 1982], Genie, during
her developmental years, was deprived of all of the lin-
guistic input that children usually receive. She was
also partially deprived of information about the world.
She still had information about her own surroundings,
however, and presumably the maturation of her cogni-
tive abilities gave her a much more developed (though
still quite limited) conceptual representation for the
world than, say, a 2-year-old would have. But Genie
didn't know the words that went with the concepts
she knew. Because of this, Genie’s task of learning
language is very similar to the one that our model is
faced with. Unfortunately, Genie’s linguistic depriva-
tion during her ”sensitive years” appears to have ren-
dered her syntactic ability permanently limited. Al-
though Genie has done quite well in acquiring the
meanings of words, there are still noticeable deficits. In
the face of this computer model and the work on syn-
tactic bootstrapping, it is easy to see why she would
have difficulties in learning. A large part of the in-
formation that constrains the word-learning process is
unavailable to her.

The learning of a second language is another case
where a fully developed conceptual representation ex-
ists when word learning takes place. Unfortunately, the
second language acquisition literature tends to concen-
trate on teaching methods and problems, and not on
psychological or linguistic theories of the processes in-
volved. One example of the former that leans toward
the latter is Cornell’s description [1985] of the difficul-
ties of teaching second-language learners the meanings
of phrasal verbs (verb-particle pairs). He cites many
reasons for these difficulties, among them the subtle
differences between meanings for these verbs, and vary-
ing syntactic constraints. Unfortunately, our model
doesn’t contain the answers to these problems either,
since we're still trying to learn the gross differences
in meanings of words in our limited domain. Cornell
does give us motivation, however, stating, ” Presum-
ably what is needed is a computer intelligent enough
to scan a corpus and recognize phrasal groupings and
assign meanings to them.”

As mentioned above, our model of language learning
was not developed for the purpose of simulating lan-



guage acquisition in humans. If the similarities found
between our model and the psycholinguistic models are
more than coincidence, however, then our model will
provide a valuable testbed for the computational eval-
uation of language theories.

Future Work

There are many ways in which our algorithm can be ex-
tended. First, the algorithm as it currently stands uses
only information about semantic dependencies that the
parser is able to identify between words in example sen-
tences. It should be able take advantage of other infor-
mation available from the examples, such as the syn-
tactic constructions used with an unknown word, addi-
tional semantic contextual information, and so on. The
use of such additional information would enhance the
similarity between this approach and syntactic boot-
strapping.

Second, the assumption that a word must map di-
rectly to a unique concept in the hierarchy is not a re-
alistic one. Many words are ambiguous, and thus refer
to two or more nodes in the hierarchy. Even an unam-
biguous word’s meaning may not correspond exactly to
an already existing node in the hierarchy. In fact the
mutual exclusivity (contrast) assumption, described in
[Markman, in press, Clark, 1989], suggests that chil-
dren learning word meanings are biased against two
words having the same meaning. Our system should
be able to use a similar bias by entertaining disjunctive
hypotheses for word meanings, and should also be able
to consider “splitting” a node in the hierarchy (similar
to the approach in [Winston, 1975]), so that a word
can refer to a new subconcept. In addition, a mecha-
nism could be added to the system to check for words
that refer to particular concepts. If a concept already
has a referent word, it can be skipped when looking for
a meaning for an unknown word.

Finally, we will continue to examine the related is-
sues found in the psycholinguistic literature and ex-
plore methods of incorporating these theoretical and
experimental results into our computational model.
Hopefully these relationships will allow us to make our
model more efficient and more relevant to human learn-

ing.
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