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Abstract 

Conformity refers to phenomena where people match their 
behavior to others. Much research has focused on cases where 
people observe others in identical situations, saying little about 
its depth or generalizability. When conforming, do people 
revise behaviors only in that specific situation, or do they 
update more deeply to maintain consistent behaviors across 
situations? Using simulations, we first show that deep and 
shallow conformity leads to contrasting group dynamics; only 
with deep conformity can groups accumulate improvements 
beyond individual lifespans. We further conduct an experiment 
using an estimation task to examine the depths of conformity 
in humans. People generally extended conformist social 
influence to new situations without direct reference to others. 
However, those who simply averaged their answer with that of 
the direct reference showed notable failures in this 
generalization. Collectively, our research highlights the 
importance of distinguishing different depths of conformity 
when studying social influence and resulting group outcomes. 

Keywords: conformity; social learning; cultural evolution; 
generalization 

Introduction 
Humans routinely conform their behaviors to those of other 
individuals in the same situation. For example, in making 
everyday consumer choices, we often follow sales rankings 
or friends’ reviews rather than independently selecting from 
available options. While earlier studies typically associated 
such conformity with irrational acts that make us elude 
objective criteria (Asch, 1956), it has also been argued that 
conformity can be understood as informationally rational, 
with people using social cues to acquire information 
regarding the adaptive behaviors in given situations (Kameda 
& Nakanishi, 2002; Toelch & Dolan, 2015). Given that there 
is a limitation in an individual’s knowledge of what is 
adaptive in the environment, behaving as others do, or at least 
as similar to others, can provide a rational solution to avoid 
costly mistakes or save time. Conformity by individuals also 
catalyzes a variety of collective phenomena such as efficient 
collective search (List, Elsholtz, & Seeley, 2009) or 
erroneous informational cascades (Hung & Plott, 2001). 
Interestingly, small differences in how individuals conform 
to each other may amplify to shape drastically different 
dynamics at the collective level. 

One prominent experimental paradigm to investigate 
conformity is a “rerating paradigm (Figure 1A),” in which 
participants initially take independent behaviors (rating or 
estimation), then observe other individuals’ behaviors as 
social information, and finally arrive at a revision (Figure 1A; 

Klucharev, Hytönen, Rijpkema, Smidts, & Fernández, 2009; 
Schultze, Rakotoarisoa, & Stefan, 2015; Jayles, Kim, 
Escobedo, Cezera, Blanchet, Kameda, Sire, & Theraulaz, 
2017). By comparing the initial and the revised behaviors, 
researchers can determine the extent to which the individuals 
updated their behaviors under conformist social influence. 
Human individuals are known to conform to social 
information across domains, from facial attractiveness 
ratings (Klucharev et al., 2009; Izuma & Adolphs, 2013) to 
gambling choices (Suzuki, Jensen, Bossaerts, & O’Doherty, 
2016) and perceptual estimations (Molleman, Kurvers, & van 
den Bos, 2019; Kuroda, Ogura, Ogawa, Tamei, Ikeda, & 
Kameda, 2022), and more so, for example, if others to whom 
they refer is more reliable (Toelch, Bruce, Newson, 
Richerson, & Reader, 2014; Kameda, Toyokawa, & Tindale, 
2022) or have more things in common with themselves 
(Baron, Kerr, & Miller, 1992). 

Most of the present research about conformity focuses on 
how people conform to others in direct reference, a situation 
where they can observe others in the same specific situation 
(but see Nook, Ong, Morelli, Mitchell, & Zaki, 2016 for a 
notable exception). Here, we argue that this leaves a crucial 
question unanswered: How much does conformist social 
influence generalize across similar but distinct situations 
even when others are no longer observable (i.e., without 
direct reference)? Suppose a child conforms to their parent 
refraining from talking at a funeral. Does this only drive the 
imitation of a particular behavior to stay silent at the specific 
funeral, or does it generalize more broadly across similar yet 
distinct situations, such as subdued behavior in other formal 
settings? The generalization of conformity can be restated as 
the difference in the depths at which it operates. If conformity 
is shallow, affecting only observable behaviors (e.g., staying 
calm at that funeral with the parent), changes will be confined 
to specific situations where direct reference is possible. 
Conversely, if it is deep and influences the underlying 
generative function of behaviors (e.g., behave reservedly if a 
situation is formal), then agents will also update their 
behavioral patterns in line with others in other situations 
without direct reference. 

Our study explores these different depths of conformity 
from two perspectives. First, we ask how the distinction is 
relevant in terms of collective phenomena: When and how do 
agents with deep and shallow conformity shape different 
dynamics in groups and yield different macro patterns? 
Drawing from the literature on cultural evolution, we suggest 
that the depth of social influence determines what a group can 
accumulate over time. Theories of cultural evolution 
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maintain that conformist social learning plays a key role in 
enabling the spread of rare effective inventions across people 
with high fidelity while eliminating the inefficient “re-
invention of wheels” within a group (e.g., Lala, 2017). Here, 
we show that for conformity to work in that way, it must be 
deep. We introduce a simple model, in which agents of 
overlapping generations learn adaptive behaviors in a vast 
environment. We manipulate how individual agents conform 
to each other and compare the resulting collective dynamics. 

The next question we ask is empirical: Do people actually 
exhibit such deep conformity? As we have argued, most 
existing research addressing people’s conformity behavior, 
including the rerating paradigm, failed to distinguish the 
different depths of influence. This is because participants 
could observe the behavior of others in the same situation 
every time they were asked to revise their behavior. 
Critically, regardless of whether they are merely aligning 
behaviors in the focal situation (i.e., shallow conformity) or 
updating a deeper function that produces behaviors across 
situations (i.e., deep conformity), their behavioral outputs are 
the same unless they face a new situation in which they have 
never directly referred to others’ behaviors. Therefore, we 
extend the rerating paradigm so that participants can observe 
others in only half of the situations. By comparing their 
revision patterns with and without direct social reference, we 
examine whether, and if so how, conformist social influence 
is deep and generalizes to new situations. We find some 
evidence that people generalize conformity beyond direct 
reference, but only partially. We further examine the reasons 
explaining this partiality. 

Simulation 
In this simulation, we explore and demonstrate how 
conformity in varying depths at the individual level shapes 
different dynamics at the collective level. We set up a simple 

 
1 For simplicity, here we assume that the true generative rule of 

the environment is a linear combination of features, and agents’ 

model that captures an environment in which agents strive to 
learn its true generative rule to behave adaptively. Although 
the lifespan of an agent is too short to reach optimal 
performance individually, as their lives partially overlap, 
they may be able to accumulate improvements across 
generations through social influence. Critically, we 
systematically vary how an individual conforms to other 
agents and compare the resultant collective outcomes. 

Method 
Environment, Problem, and Agent Our model consists of 
three main classes of objects (Fig. 1B): the environment, the 
problem, and the agent. Agents exist within an environment 
that continuously poses them problems. A new problem 𝑗 
consists of 𝑛!"# -dimensional features; 𝒙𝒋 ∈ ℝ%!"# , and a 
corresponding target value; 𝑦&∗ ∈ ℝ . The environment has 
true generative rule parameters; 𝜷∗ ∈ ℝ%!"#, that specify the 
relationship between the feature and the target value of each 
problem such that 𝑦&∗ = 𝒙𝒋(𝜷∗, for any 𝑗1. At each time step, 
the environment generates a new problem 𝑗. An agent 𝑖 can 
only observe the problem’s feature vector and must predict 
its target value, 𝑦),& . We assume agents make rule-based 
predictions. Specifically, each agent possesses estimations of 
the rule parameters (beta estimation), 𝜷𝒊 , and uses it to 
generate a prediction, 𝑦),& = 𝒙𝒋(𝛃𝐢. Individual learning occurs 
when they update their beta estimations after getting 
feedback from the prediction error, 𝑦&∗ − 𝑦),&. Here we simply 
assume the gradient descent: 𝜷) ← 𝜷𝒊 − 𝛼)(−2)𝒙𝒋(1𝑦&∗ −
𝑦),&2, where 𝛼) is a learning parameter. Together, our setting 
provides a minimal model of an environment producing a 
constant flow of similar but distinct situations, and agents 
learning to behave adaptively in those situations. 

primary task is to determine the specific parameters of this 
combination. 

Generation #0
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#2
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Timestep
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!! !" !#
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Figure 1: A: Illustration of the “re-rating” paradigm. B, C, D: Schematic diagram of the simulation setup. Agents 
exist within an environment that continuously poses them a new problem, which consists of a feature vector and 
a target value (B). Agents share overlapping generations (C). We explored five different types of conformity (D). 

5408



Cohort Structure of Agents The agents are not permanent 
fixtures within the environment but instead exit after a certain 
number of timesteps, 𝑇-"./0123, which we posit is too short for 
individual agents to independently develop optimal beta 
estimations (Fig. 1C). Agents experience shared lifespans 
with others born at the same timestep, forming a generation 
that consists of 𝑁4/3/526"73  individual agents. A new 
generation of agents is introduced at every 𝑇"36/582- , 
timesteps. Crucially, when 𝑇"36/582- < 𝑇-"./0123, two or more 
generations partially overlap, meaning that agents at different 
ages of their lifespans coexist in the environment at certain 
timestep. 

Five Conformity Types The lifetimes of agents are neither 
entirely synchronous nor completely separate, allowing each 
agent to observe and potentially be influenced by others. We 
model this situation in a similar way to the rerating paradigm. 
At each timestep, agents can observe other agents and 
possibly revise their predictions and beta estimations in light 
of those of the agents they referred to (Figure 1A). A crucial 
aspect of our simulation is examining various nuances of 
conformist social influence operating in this revision process. 
First, we categorize the depths of conformity in three levels: 
• No Conformity (“None”): Agents do not adjust their 

predictions or beta estimations in reference to others. 
• Shallow Conformity: Agents conform only to the 

observable behaviors of other agents. This is 
implemented by adjusting the agent’s (𝑖) prediction to 
align with the prediction of the referred agent (𝑘): 𝑦) ←
𝑦) + 𝑠) × (𝑦9 − 𝑦)), where 𝑠) 	is a sensitivity parameter 
that determines how much the agent’s prediction shifts 
towards that of the referred agent. 

• Deep Conformity: Beyond conforming in terms of 
predictions for a specific problem (𝑦),& ), agents also 
adjust their internal models (i.e., beta estimations) to 
match those of the referred agents: 𝜷𝒊 ← 𝜷𝒊 + 𝑠) ×
(𝜷𝒌 − 𝜷𝒊)2 . This deeper influence generalizes across 
problems because the agent uses the updated beta 
estimations to generate predictions for new problems in 
subsequent timesteps. 

Additionally, in line with the transmission bias in cultural 
evolution literature (e.g., Mesoudi, 2011), we varied whether 
agents distinguish relative expertise between the target agents 
and themselves, in both shallow and deep scenarios. 
Specifically, we assume agents select the agents they refer to 
either from the entire population (i.e., all the living agents 
other than themselves) or exclusively from those who are 
older than themselves. This results in conformity working 
either symmetrically or asymmetrically among agents. 

In sum, we explored five different types of conformity, 
each in a separate simulation (Figure 1D). 

 
2 Here, we assume that agents can observe the internal model of 

the target agents in each timestep, which may not be realistic. 
Although we believe it is necessary to assume that learning about 
others’ beta estimation is at least easier than learning about the 

Other Simulation Details The parameters of the true 
generative rule, agents’ beta estimations, and feature values 
of each problem were independently initialized using an 
𝑛!"#-dimensional vector, with each feature value sampled 
from a uniform distribution between 0 and 1. For the main 
simulation analysis (Figure 4), parameters were set to 𝑛!"# =
40, 𝑇-"./0123 = 20, 𝑇"36/582- = 10,𝑁4/3/526"73 = 10 , and 
𝛼) = 0.05 and 𝑠) = 0.3 for all agents. We confirmed that the 
results remained qualitatively robust when varying each 
parameter within broader reasonable ranges3. 

Outcome Measures We focus on two measures to assess the 
collective performance of agents in each generation. First is 
the mean lifetime performance of individual agents. At each 
timestep (i.e., for each new specific problem), each agent’s 
performance is scored by the negative squared error between 
their prediction and the true target value. Lifetime 
performance for an agent is the accumulated sum of this 
score: ∑ −1𝑦&∗ − 𝑦),&2

;<=>$"%&'()*?@
&A< , where 𝑡 is the timestep 

when the agent was born. Higher (closer to zero) lifetime 
performance indicates the agent behaving more adaptively in 
the environment on average across their lifespan. A 
generation’s mean performance is calculated by averaging 
the lifetime performance of all the agents in the generation. 

Another measure is based on the errors in agents’ beta 
estimations (𝜷𝒊) compared to the true generative rule of the 
environment (𝜷∗), defined by the Euclidian distance in the 
𝑛!"# -dimensional space. At each time step, agents 
individually update their estimations by locally adjusting 
parameters after observing prediction errors using gradient 
descent. Furthermore, when an agent (𝑖) conforms “deeply” 
to another agent (𝑘 ), 𝑖  observes 𝑘 ’s beta estimations and 
adjusts their own estimations accordingly. Lower beta gaps 
indicate that the agent possesses better estimates of the 
environment. We calculate the average learning curve of the 
agents (i.e., the decrease in the beta gap over their lifetime) 
for each generation and investigate whether within-individual 
improvements differ across generations in a way that allows 
later generations to learn more quickly by leveraging the 
learning of earlier generations. 

Results 
Figure 2A shows the agents’ mean lifetime performance as a 
function of their generations, under different types of 
conformity. The solid lines indicate the mean lifetime 
performance of each generation while the shaded areas 
indicate the standard deviations. Comparing “None” to other 
types of conformity, the presence of any type of conformity 
leads to better performance. This could be attributed to noise 
reduction, where adapting predictions to those of other agents 
reduces random noise and improves the accuracy of 
predictions. Under “Shallow” conformity, we find that 

environment’s true beta, how much we can relax this assumption is 
an interesting future direction. 
3 The data and code to implement all analysis can be accessed at 

https://github.com/hiz-repo/depth-of-conformity-exp. 
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“Symmetric” influence outperforms “Asymmetric” 
influence. This could be because a greater number of agents 
find their reference agents in the “Symmetric” condition, 
which simply leads to a better collective performance when 
the primary benefit of conformity is noise reduction. 
However, under shallow conformity, the positive effects do 
not carry over to better beta estimations, by definition. Fig. 
2B shows how each generation of agents learns to reduce 
errors in beta estimations throughout their lifespans, under 
different types of conformity. Without any conformist social 
influence (“None”), agents across all generations follow 
identical learning curves. The “Shallow” conformity results 
in the identical pattern: As the impact of social learning does 
not extend to beta estimations, each generation of agents has 
to re-learn them solely through their individual experiences. 

“Deep” conformity differs from “Shallow” conformity in 
terms of both lifetime performance and beta estimations. 
First, “Deep” conformity generally yielded better lifetime 
performance than “Shallow” influence irrespective of 
whether the direction of conformity was symmetric or 
asymmetric, suggesting that the deeper social influence had 
an additional advantage beyond noise reduction. This 
improvement is explained by the differential learning curves 
in beta estimations (Fig. 2B): Under “Deep” conformity, 
agents began to cumulate better beta estimations across 
generations. With “Symmetric” influence, however, the 
cumulative advantage is limited to the earliest generations, 
possibly because adverse effects from the less to the more 
experienced agents hinder further improvements in later 
generations. The learning curves of beta estimations 
consistently improved from earlier to later generations only 
when conformity was both “Deep” and “Asymmetric” (Fig. 
2B, rightmost panel). Consequently, an accumulative 

improvement in lifetime performance across generations was 
observed exclusively under the “Deep” and “Asymmetric” 
conformity conditions. The lifetime performance of each 
generation successively improved until it converged to a 
near-optimal performance of zero (Fig. 2A, rightmost panel). 
These results underscore the importance of deep (and 
asymmetric) influence that can be generalized to future new 
problems in accumulating performance improvements 
beyond mere noise reduction. 

Overall, we have shown that, using a minimal model where 
overlapping generations of agents learn to behave adaptively 
in a vast environment, the conformity of different depths 
shapes distinct collective dynamics. Specifically, cumulative 
improvements across generations can be achieved only 
through the combination of deep conformity that reaches the 
generative model of an agent and asymmetric influence from 
the more to the less experienced ones. 

Behavioral Experiment 
In the following behavioral experiment, we aim to determine 
whether, and if so how, human participants generalize 
conformist social influence beyond direct reference. We have 
adapted the rerating paradigm, presenting participants with a 
series of problems that are similar yet distinct within a well-
defined feature space. Critically, participants are exposed to 
others’ behaviors in only a subset of the problems. This 
selective exposure allows us to discern how participants 
extend the influence of observed behaviors to other similar 
yet distinct problems without direct reference. Since we are 
interested in the role of expertise difference in modulating 
this difference, we also manipulate cover stories associated 
with social information. 

A

B

Figure 2: A: Lifetime performance of agents as a function of their generations. B: Improvements in beta estimations 
across lifetime of agents in each generation. Blue/red curves indicates agents in earlier/later generations. In both A 
and B, panels correspond to different types of conformity and results are averaged over 50 independent runs. 
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Method 
Protocol We administered an in-lab experiment with the 
University of Tokyo undergraduates who received course 
credit for their participation. Forty-three students (17 female; 
age: 𝑀 = 20.3, 𝑆𝐷 = 0.88) participated in the experiment. 

The specific domain we employed in an experiment was to 
estimate the monthly rent of apartments. We confronted 
participants with twenty-four different apartments, each 
characterized by three numerical values: age, size, and 
distance to the nearest station. The task consists of three 
stages (Figure 3A). In the first stage, participants individually 
answered their predictions for every twenty-four apartments. 
In the second stage, for half (twelve) of the apartments 
randomly chosen from the twenty-four used in the first stage, 
participants were told to guess “others’ predictions”, 
followed by feedback. We hereafter call these twelve 
apartments presented in the second stage as “with reference” 
apartments. The other twelve apartments were not addressed 
in the second stage (“without-reference” apartments). 
Critically, this means that participants could directly observe 
others’ behaviors in only half of all the situations 
(apartments). In the third stage, participants could update 
their predictions of all the twenty-four apartments, including 
both “with reference” and “without reference” ones. The 
order of apartments presented in each stage and the division 
of with- and without-reference apartments were randomized 
across participants. 

Additionally, we manipulated the credibility of social 
information in a between-participants design by altering the 
cover stories about “others” in the second stage. Twenty 
participants were assigned to the high-credibility condition, 
where social information was presented as the average 
answers from “senior students actually living in the area.” 
The other 23 participants were placed in the low-credibility 
condition, where the social information was attributed to 
mere “other university students.” To check the 
manipulation’s effectiveness, we asked participants to assess 
the accuracy of others’ estimations relative to themselves on 
a seven-point scale in the postexperimental questionnaire. 

Materials We retrieved data from existing one-room 
apartments whose nearest station is Hongo-Sanchome Station 
in Tokyo. The dataset of twenty-four apartments varied in age 
(4 - 60 years), size (12 – 38.5 square meters), walking 
distance from the station (1 - 9 minutes), and monthly rent 
(59 - 145 thousand JPY). In each stage, participants provided 
rent estimations on a slider from 0 to 300 thousand JPY. 

For the second stage predictions, we used data from a pilot 
study where four senior University of Tokyo undergraduates, 
who had house-hunting experiences in the area, estimated the 
rents for these apartments. To capture the average patterns of 
their predictions, we used predictive values from linear 
regression with age, size, and distance as predictors and rent 
as the outcome. In the analysis, we standardized feature 
values by dividing them by their respective maximums. The 
resulting standardized coefficients of the linear model for 
social information were -0.14 for age, 0.48 for size, -0.057 
for distance, and 8.6 for intercept. Importantly, this model can 

pinpoint social information for all twenty-four apartments, 
including the twelve apartments where participants did not 
directly observe the information. 

Analysis The primary variable of interest is the sensitivity to 
social influence, denoted as 𝑠),&  for participant 𝑖 estimating 

apartment 𝑗 . The sensitivity is defined as 𝑠),& =
B+,-
. ?B+,-

/

C-?B+,-
/ , 

where 𝐸),&@  and 𝐸),&;  are participant 𝑖 ’s first and revised 
estimations of apartment 𝑗, and 𝑀& is the social information 
for that apartment. A sensitivity score of 0 means the 
participant repeated their initial estimation without any 
conformity, whereas a score of 1 indicates complete 
adaptation to the social information. Note that 𝑠 can become 
arbitrarily large in its magnitude if the initial estimate and the 
social information are very close. Therefore, in the analysis, 
we limited its range to −1 ≤ 𝑠 ≤ 2, which corresponds to a 
symmetrical range surrounding 0 ≤ 𝑠 ≤ 1  and contained 
91% of the experimental data. Within this range, 𝑠 values 
greater than zero can be seen as expressions of conformity, 
where larger values indicate stronger influence. 

In our experiment, the accuracy of others’ predictions is 
arbitrarily determined by the researcher and is not self-
evident for participants. Therefore, our analysis will focus on 
how participants incorporate social information into their 
second estimates, that is the degree of sensitivity, rather than 
looking at the accuracy of their results. 

Results 
Do participants show any evidence of conformity for 
problems with which they did not directly observe social 
information (i.e., “without-reference” apartments)? If they do 
so at all, how is the conformity pattern different from 
conformity for problems with direct reference? 

 
Figure 3: A: Schematic diagram of the experimental setup. 
B: Histograms and scatter plot comparing participants’ mean 
sensitivity for problems with (x-axis) and without (y-axis) 
direct reference to social information (black crosses: 
individual participants; blue dotted line: the diagonal [i.e., 
equal sensitivity for both types of problems]; red line: the 
locally weighted scatterplot smoothing [LOWESS] curve). 

To analyze the determinants of sensitivity to social 
influence, we employed a multi-level regression with random 
intercepts for participants and problems. The dependent 
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variable was sensitivity, and independent variables included 
the presence or absence of direct social information, the type 
of cover story for social information, and their interaction. 
We found a significantly positive main effect of direct 
reference to social information (𝛽 = 0.08, 𝑝 = .040) and a 
significantly positive intercept ( 𝛽 = 0.47, 𝑝 < .001 ), 
suggesting that, while direct reference to social information 
led to stronger conformity, its influence extended to 
situations where such information was not observable. We 
did not observe a significant main effect of the cover stories 
( 𝛽 = 0.07, 𝑝 = .415 ) or their interaction with direct 
reference (𝛽 = −0.04, 𝑝 = .449), indicating that the type of 
cover story did not significantly influence the degree of 
conformity. According to the responses to the 
postexperimental questionnaire, there was no significant 
difference between the high- and low-credibility conditions 
in terms of participants’ subjective ratings of the accuracy of 
the social source (𝑡(39.9) = 0.96, 𝑝 = .345). This means 
that our manipulation of cover stories did not sufficiently 
shift participants’ subjective credibility toward social 
information. This result is plausible in hindsight: as 
subjective credibility should be determined by the relative 
expertise between oneself and others, and given substantial 
variations in participants’ own expertise, manipulation of the 
cover story alone may not suffice. 

Therefore, we have adjusted our approach to take the 
participants’ subjective credibility ratings as an independent 
measure, replacing the cover story manipulation. In this 
revised analysis, we again observed a significantly positive 
main effect of direct reference to social information (𝛽 =
0.06, 𝑝 = .035) and a significantly positive intercept (𝛽 =
0.50, 𝑝 < .001), and this time, a significantly positive main 
effect of credibility (𝛽 = 0.14, 𝑝 < .001). We, again, did not 
find the interaction statistically significant (𝛽 = −0.01, 𝑝 =
.618). Collectively, these results suggest that participants not 
only conformed to the observed behaviors of others but also 
generalized the influence to situations where they did not 
directly observe others, albeit to a lesser extent. Moreover, 
the extent of this conformist influence was larger when they 
assigned higher subjective credibility to social sources. 

Next, we examine the underlying mechanisms behind this 
“partial” generalization of conformist social influence. 
Figure 3B shows participants’ mean sensitivities for 
problems with (x-axis) and without (y-axis) reference to 
others. We highlight several observations. First, most scatters 
are located along the diagonal line. There was a strong 
positive rank correlation in mean sensitivities for with- and 
without-reference problems (Spearman’s 𝜌 = .72, 𝑝 <
.001 ), suggesting consistent individual sensitivity levels 
across problem types, with inter-participant variability. 
Second, sensitivity for with-reference problems clustered 
around 0.5, displaying a unimodal distribution, while 
sensitivity for without-reference problems has more variance, 
forming a mode below 0.5. Third, the noticeable within-
participant drop in sensitivity for without-reference problems 
(scatters located below the diagonal) primarily came from 
participants whose with-reference sensitivities are close to 

0.5. The red LOWESS curve, capturing the average trend, 
dips below the diagonal for only those whose initial 
sensitivities were around 0.5. 

These patterns may align well with the idea that two 
different depths of conformity coexist among participants: 
One is shallow behavioral alignment in which people utilize 
others’ estimates as additional samples for noise reduction. 
This mode may be signified by the sensitivity value of 0.5 
(i.e., fair averaging) with direct-reference problems and leads 
to reduced consistency in situations without reference. The 
other is a deeper level of influence in which people regard 
social information as a source for a better understanding of 
the feature-to-prediction mappings, leading to the 
generalization of conformity using these mapping rules 
across situations beyond direct reference. 

Discussion 
We have examined the generalization property of conformity 
from two perspectives. On one hand, we formally 
demonstrated the idea that for agents with overlapping 
lifetimes in a vast environment to accumulate performance 
improvements longer than individual lifespans, they need 
deep and asymmetric conformity—adopting influences at the 
level of generative function (i.e., mapping between 
situational features and behaviors) only in the direction from 
the more to the less experienced agents. 

Motivated by this theoretical observation, we conducted a 
behavioral experiment and found that people do display deep 
conformity, extending the social influence to situations where 
direct reference is unavailable. This finding is connected to 
the literature on function learning, in which people learn a 
continuous relationship between input and output variables 
from the training data presented as “truth.” However, in our 
study, social information was not necessarily accurate; in 
fact, participants did not uniformly adopt social information 
even when they could directly refer to it. The results suggest 
that, even in such situations, the influence can be deep 
enough to generalize to new (similar but distinct) situations. 

Interestingly, those who were simply averaging the 
answers while direct reference was available showed a 
notable failure in this generalization (i.e., reduced sensitivity 
for without-reference problems). We conjecture that this 
suggests that two different depths of conformity coexist 
among individuals. What determines which mode operates or 
how we might flexibly arbitrate between the two (Wu, Vélez, 
& Cushman, 2022) would be an interesting future question. 

One important limitation of our study is the limited 
empirical strength due to a small sample size (𝑁 = 43) and 
the exploratory nature of our analysis. As a result, our 
conclusions are not definitive, and further research is 
necessary to draw any empirical conclusions. Despite this, 
our study presents an interesting hypothesis that humans may 
extend conformist social influence beyond direct reference to 
others, and such deep (and asymmetric) conformity could 
underpin the accumulation of improvements longer than 
individual lifespans, a necessary condition for the cumulation 
of complex culture or technologies. 

5412



Acknowledgments 
We would like to thank Hye-rin Kim and Mayu Takahashi 
for helpful discussions. This work was supported by the 
Japan Society for the Promotion of Science (grant no. 
JP16H06324 to T.K. and no. JP23KJ0781 to R.M). 

References  
Asch, S. E. (1956). Studies of independence and conformity: 

I. A minority of one against a unanimous majority. 
Psychological Monographs: General and Applied, 70(9), 
1–70. 

Baron, R. S., Kerr, N. L., & Miller, N. (1992). Group process, 
group decision, group action. Thomson Brooks/Cole 
Publishing Co. 

Hung, A. A., & Plott, C. R. (2001). Information Cascades: 
Replication and an Extension to Majority Rule and 
Conformity-Rewarding Institutions. The American 
Economic Review, 91(5), 1508–1520. 

Izuma, K., & Adolphs, R. (2013). Social manipulation of 
preference in the human brain. Neuron, 78(3), 563–573. 

Jayles, B., Kim, H.-R., Escobedo, R., Cezera, S., Blanchet, 
A., Kameda, T., Sire, C., & Theraulaz, G. (2017). How 
social information can improve estimation accuracy in 
human groups. Proceedings of the National Academy of 
Sciences of the United States of America, 114(47), 12620–
12625. 

Kameda, T., & Nakanishi, D. (2002). Cost–benefit analysis 
of social/cultural learning in a nonstationary uncertain 
environment. An evolutionary simulation and an 
experiment with human subjects. Evolution and Human 
Behavior, 23(5), 373–393. 

Kameda, T., Toyokawa, W., & Tindale, R. S. (2022). 
Information aggregation and collective intelligence beyond 
the wisdom of crowds. Nature Reviews Psychology, 1(6), 
345–357. 

Klucharev, V., Hytönen, K., Rijpkema, M., Smidts, A., & 
Fernández, G. (2009). Reinforcement learning signal 
predicts social conformity. Neuron, 61(1), 140–151. 

Kuroda, K., Ogura, Y., Ogawa, A., Tamei, T., Ikeda, K., & 
Kameda, T. (2022). Behavioral and neuro-cognitive bases 
for emergence of norms and socially shared realities via 
dynamic interaction. Communications Biology, 5(1), 1379. 

Lala, K. (2017). Darwin’s Unfinished Symphony. Princeton 
University Press. 

List, C., Elsholtz, C., & Seeley, T. D. (2009). Independence 
and interdependence in collective decision making: an 
agent-based model of nest-site choice by honeybee 
swarms. Philosophical Transactions of the Royal Society 
B: Biological Sciences, 364(1518), 755–762. 

Mesoudi, A. (2011). An experimental comparison of human 
social learning strategies: payoff-biased social learning is 
adaptive but underused. Evolution and Human Behavior, 
32(5), 334–342. 

Molleman, L., Kurvers, R. H. J. M., & van den Bos, W. 
(2019). Unleashing the BEAST: a brief measure of human 
social information use. Evolution and Human Behavior, 
40(5), 492–499. 

Nook, E. C., Ong, D. C., Morelli, S. A., Mitchell, J. P., & 
Zaki, J. (2016). Prosocial conformity: Prosocial norms 
generalize across behavior and empathy. Personality and 
Social Psychology Bulletin, 42(8), 1045-1062. 

Schultze, T., Rakotoarisoa, A.-F., & Stefan, S.-H. (2015). 
Effects of distance between initial estimates and advice on 
advice utilization. Judgment and Decision Making, 10(2), 
144–171. 

Suzuki, S., Jensen, E. L. S., Bossaerts, P., & O’Doherty, J. P. 
(2016). Behavioral contagion during learning about 
another agent’s risk-preferences acts on the neural 
representation of decision-risk. Proceedings of the 
National Academy of Sciences of the United States of 
America, 113(14), 3755–3760. 

Toelch, U., Bruce, M. J., Newson, L., Richerson, P. J., & 
Reader, S. M. (2014). Individual consistency and 
flexibility in human social information use. Proceedings of 
the Royal Society B: Biological Sciences, 281(1776), 
20132864. 

Toelch, U., & Dolan, R. J. (2015). Informational and 
Normative Influences in Conformity from a 
Neurocomputational Perspective. Trends in Cognitive 
Sciences, 19(10), 579–589. 

Wu, C. M., Vélez, N., Cushman, F. A., Dezza, I. C., & 
Schulz, E. (2022). Representational Exchange in Human 
Social Learning. In The Drive for Knowledge: The Science 
of Human Information Seeking. Cambridge University 
Press. 

5413




