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Abstract

PLL Design for FMCW Radar Systems

By

Benyuanyi Liu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ali M. Niknejad, Chair

In this thesis, the PLL design for FMCW radar systems is illustrated. The FMCW radar 
imposes requirements on the PLL-based chirp generator in several aspects. Both the phase 
noise and the bandwidth of the PLL influence the measurement accuracy and resolution of 
the radar. The phase noise should be minimized, given a certain power consumption, and 
the bandwidth needs to be matched with the FMCW chirp slope to achieve better linearity.

For system-level design, unlike PLLs for other applications, the output of the chirp gen-
erator PLL is always changing. In many applications, such as precision measurement, the 
output never truly settles at each step. This necessitates careful modeling of the loop dynam-
ics. In this thesis, conventional PLL phase noise and settling time models are presented and 
adapted for the chirp generator. However, these models are insufficient fo r op timizing the 
design. Therefore, a more accurate time-domain model for calculating the chirp is proposed. 
This model aids in designing the PLL bandwidth, calculating the acceptable chirp slope for 
a given PLL, and computing the dynamic phase noise. To the best of our knowledge, this is 
the first relatively accurate model for the entire chirp generation process.

For the design of circuit blocks, the frequency division modules, which include a dual-
modulus divider and a Delta-Sigma Modulator, are presented. For the high-frequency circuit, 
an analytical model and a corresponding design methodology are proposed. The PLL has 
been taped-out, and measurements will be conducted to confirm the performance and design 
methodology.
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Chapter 1

Introduction

1.1 Introduction to FMCW Radar

In 1924, the first bistatic FMCW radar experiment was conducted by Appleton and Bar-
nett to measure the height of the ionosphere [2], followed by the Daventry experiment in
1935 to detect aircraft [3]. During World War II, transmit-receive switch was invented and
monostatic FMCW radars were built for bomb aiming and surveillance [4]. In mid 1970’s,
a major step forward was made as digital signal processing became available to perform the
signal processing to extract information from the received signals [5]. Nowadays, FMCW
radars have been widely used for civil applications (such as automotive applications [6] and
gesture recognition [7]), industry measurements (such as altimeter [8], coating characteri-
zation [9], and level gaging [10]), and military applications (such as small drone detection
[11]).

Today, state-of-the-art FMCW radar systems are implemented with CMOS and SiGe tech-
nologies, and both have their pros and cons. fT and fmax of advanced SiGe process are higher
than those of CMOS process that has comparable cost [12]. And higher fT/fmax makes it
more feasible to achieve both lower power and higher performance simultaneously. Because
to achieve the same performance, high-fT/fmax devices consume less current. And with the
same current consumption, high-fT/fmax devices could achieve better performance [13]. An-
other difference between CMOS devices and SiGe devices is maximum allowable bias voltage.
The collector-base breakdown voltage of SiGe devices keeps above 4V with increasing RF
performance while maximum supply voltage of CMOS devices rapidly decreases with more
advanced nodes [14]. Low supply voltage of CMOS devices is excellent for reducing power
consumption for digital circuits, but it also makes it more and more difficult to transmit RF
power out at the cost of higher current level. However, from the perspective of radar system,
CMOS process still has advantage of higher integration level. Shown in Fig. 1.1 is an example
for automotive radar [15]. Today’s high-end vehicles feature a multichip SiGe radar system.
But as the number of sensors increases to at least ten, the big and bulky multichip SiGe
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Table 1.1: State-of-the-art FMCW radar systems in F-band (90-140GHz), D-band (110-
170GHz), and G-band (110-300GHz).

MIT,

JSSC

2021

[17]

Toronto,

TMTT

2021

[18]

Ulm,

TMTT

2019

[19]

Ulm

JSSC

2021

[20]

IMEC,

ISSCC

2019

[21]

Wuppertal,

Trans.

THz 2016

[22]

MIT,

ISSCC

2022

[23]

Technology
65nm

CMOS

22nm

FDSOI
SiGe SiGe

28nm

CMOS
SiGe

65nm

CMOS

Architecture

1TX,

1RX

Fre-

quency

comb

2TX,

2RX

Stepped-

frequency

chirp

1TX,

1RX

MMIC-

based

1TX,

1RX

Leakage

sup-

pression

1TX,

1RX

Leakage

sup-

pression

1TX,

1RX

Circular

polariza-

tion

1TX,

1RX

Low-

loss

duplex-

ing

Center frequency (GHz) 220 151 160 169 145 240 140

Chirp bandwidth (GHz) 100 9 16 20 13 60 14

Resolution (mm) 1.5 17 10 21 11 2.57 11

RX min. NF (dB) 22.2 7.5-10 25 15.5 8 22.5 12.9

Phase noise @1MHz

(dBc/Hz)
N/A -107 -87 -80 -80 N/A N/A

Chip size (mm2) 5 2.75 N/A 5.4 6.5 3.2 3.1

Power (mW) 840

1130

(chirp

synthe-

sizer

not in-

cluded)

N/A 860 500 1800

405

(chirp

synthe-

sizer

not in-

cluded)

radar system solution becomes too spacce-consuming [16], making CMOS technology more
appealing, which can integrate into one chip radar front ends, microcontrollers (MCUs), and
digital signal processing (DSP) circuits. As some wireless sensing applications are putting an
increasing demand on bandwidth. The industry is addressing this challenge in many ways,
one of which is by moving to higher frequencies. SiGe is applied to build the transceivers to
address these applications first, due to its performance advantages. Over time, bulk CMOS
would catch up and address the applications with circuits that are more integratable with
other parts of the radar system. Some state-of-the-art FMCW radars systems are summrized
in Table. 1.1.

The traditional architecture of FMCW radar is very simple, as shown in Fig. 1.2. The
FMCW signal is sent to both transmitter antenna and receiver mixer to get beat frequencies
of objects. The frequency of the FMCW signal linearly ramps, so the distance is translated
into frequency. Such an architecture leads to strong noise correlation, thus noise cancellation,
for short-distance objects [24]. As distance increases, the correlation becomes weaker and
noise cancellation is less.
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PCB

MMIC

TX

MMIC

RX
ADC

FFT

MCU

Auxiliary circuits

TX+RX+ADC

+FFT+MCU

Auxiliary circuits

PCB

Figure 1.1: Single chip integration enabled by CMOS.

FMCW signal 

generator

ADC DSP

PA

LNA

TX ANT

RX ANT BPF

t

Object

Figure 1.2: Block diagram of a general FMCW radar system.

Based on the basic architecture, researchers proposed many variants to address issues
for specific applications. [25] and [26] adopt adaptive algorithm to cancel the leakage and
interference. Synthetic bandwidth technique is applied in [17] to achieve ultra-wide chirp
bandwidth of 100GHz. [27] and [28] implement on-chip calibration to reduce gain mismatch
and phase mismatch of complex baseband.

1.2 Operating Principle of FMCW Radar

A complete FMCW radar system can measure range, velocity, and angle of multiple ob-
jects. For each measurement, the maximum measurement range and resolution are deter-
mined by system parameters. The FMCW radar measurements are based on transmitting
frequency chirp, characterized by start frequency fc, bandwidth B, and chirp duration Tc as
shown in Fig. 1.3. And corresponding chirp slope is

S =
B

Tc

(1.1)
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Figure 1.3: Frequency chirp for FMCW radar.

Range Measurement

When a chirp is transmitted and then the electromagnetic wave (EM wave) is reflected
back to the radar, the system would mix the transmitted signal and the received one, as
shown in Fig. 1.4, getting a beat frequency fB for each object. The one-way travelling time
for EM wave from radar to the object is

t0 =
d

c
(1.2)

where d is the distance between the radar and the object, c the speed of light. And the
round-trip travelling is 2t0, so the beat frequency fB should be

fB = 2t0 · S = S · 2d
c

(1.3)

In this way, the distance d can be calculated by measuring beat frequency fB.

The maximum range is determined by FMCW chirp bandwidth B and IF sampling fre-
quency Fs.

fB,max = S · 2dmax

c
< B (1.4)

fB,max = S · 2dmax

c
<

Fs

2
(1.5)

For multiple objects, according to Discrete Fourier Transform (DFT) theory, an obser-
vation window of Tc can separate frequency components that are separated by more than
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Figure 1.4: Range measurement of a single object.

1
Tc
Hz, which means the frequency resolution is 1

Tc
. As a result, the range resolution is

∆d =
c

2B
(1.6)

Velocity Measurement

In terms of radial velocity measurement of moving objects, the beat frequency consists
additionally of Doppler frequency fD

fB = S · 2d
c

+ fD = S · 2d
c

+
2vr
λc

(1.7)

where λc is the corresponding wavelength of start frequency fc. The beat frequency fB from
a single chirp contains unknowns of d and vr in an unsolvable way. The principle of velocity
measurement is that phase of the IF signal is very sensitive to small changes in object range,
and that Doppler frequency’s impact on beat frequency is negligible. As shown in Fig. 1.5,
two chirps separated by Tc are transmitted, and received signal corresponding to each chirp
will have the same beat frequency but different phases. The phase difference is ∆φ:

∆φ = 2πfDTc = 2π ·
2vrTc

c
1
fc

=
4πvrTc

λc

(1.8)

vr =
λc∆φ

4πTc

(1.9)

And the phase difference ∆φ is positive when the object moves towards radar, and negative
when moving away. As a result, to assure unambiguous velocity measurement,
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Figure 1.5: Radial velocity measurement of a single object.

|∆φ| < π (1.10)

should be fulfilled, from which the maximum measurable velocity could be expressed as

|vr|max =
λc

4Tc

(1.11)

For multiple objects, in extreme cases where two objects have equal distance from the
radar but different velocities as shown in Fig. 1.6, they need to be distinguished by velocity,
which can be done with Doppler FFT.

Shown in Fig. 1.7, is range-Doppler processing in FMCW radar system. N chirps are
transmitted, and after mixing the transmitted signal with received one, range FFT are
conducted to get the spectrum of IF signal. Object 1 and object 2 are not distinguishable on
this spectrum because their beat frequencies are equal (equal distance). Phase of IF signal
contains velocity information. And for each IF frequency, there are N data points with
different phases. Doppler FFT is conducted to such set of phase data of each IF frequency,
giving us a 2-dimensional range-Doppler map. In the case described in above, Fig. 1.7
shows the Doppler FFT result of frequency fB, on which object 1 and object 2 could be
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Figure 1.6: Two objects with equal distance to the radar, but different radial velocities.

distinguished for their different radial velocities. Fig. 1.7 only shows the Doppler FFT result
at the IF frequency of fB. To get a complete range-Doppler map, Doppler FFT is conducted
for each IF frequency point.

As for resolution of velocity measurement, as known, a sequency of length N can separate
frequencies that are separated by more than 2π

N
rad/s after FFT, which is

2π∆fDTc =
2π

N
(1.12)

and that gives the velocity resolution

∆vr =
λc

2NTc

=
λc

2Tf

(1.13)

where Tf is the frame time and one frame consists of N chirps.

Angle Measurement

Angle measurement requires at least two antennas. Similar to velocity measurement,
the angle measurement is based on the fact that the phase of received signal is sensitive to
difference of EM wave travelling time caused by non-zero incident angle, as shown in Fig. 1.8.

For a single object, Fig. 1.9 shows the measurement principle with two antennas. A frame
of chirp is transmitted via a TX antenna, and when the EM wave bounces back, a range-
Doppler map could be drawn for each RX antenna. The peaks on these maps would be
at the same location because these two antennas are observing the same object with same
distance and same velocity. But the phase of the received signal would be different due to
different travelling time caused by sinθ · dant shown in Fig. 1.9. And corresponding phase
difference is

∆φ = 2π
sinθ · dant

λc

(1.14)
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Figure 1.7: Range-Doppler signal processing in FMCW radar system.

Figure 1.8: Angle measurement based on two RX antennas.
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Figure 1.9: Angle measurement of a single object.

So the incident angle is

θ = sin−1(
∆φ · λc

2πdant
) (1.15)

And to assure unambiguous angle measurement,

|∆φ| < π (1.16)

which gives

|θ|max = sin−1(
λc

2dant
) (1.17)

For multiple objects, K receiving antennas are needed to achieve certain angle resolution.
Again, consider a extreme case shown in Fig. 1.10 where two objects have equal distance
from the radar and equal radial velocity towards the radar. Thus, for each RX antenna,
there will be only one peak on the range-Doppler map, as shown in Fig. 1.11. They can be
distinguished from angle. In this case, angle FFT is applied to the phase sequence of the
peak. And there would be two peaks in the resulting plot, one for object 1 and the other for
2.

For angle resolution, similarly to velocity resolution, the minimum distinguishable fre-
quency separation is 2π

K
. And the “frequency” in angle FFT is the phase difference ∆φ of

the received signals

∆φ =
2πdant
λc

· [sin(θ +∆θ)− sin(θ)] (1.18)

∆φ ≈ 2πdant
λc

cos(θ)∆θ (1.19)
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Figure 1.10: Two objects have equal distance from the data and equal velocity towards the
radar.

Figure 1.11: Angle FFT based on rangle-Doppler map.
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Thus, the angle resolution is

∆θ =
λc

K · dant · cos(θ)
(1.20)

Conventionally, the angle resolution is quoted assuming θ = 0

∆θ =
λc

K · dant
(1.21)

1.3 Frequency Synthesizers for FMCW Radar

Shown in the previous section are theoretical resolutions for range, velocity, and angle,
assuming a perfect FMCW chirp. However, in real life, FMCW chirp has imperfections,
among which nonlinearity and phase noise are the main factors that degrade resolution and
contribute to measurement error.

Several types of frequency synthesizers (chirp generator) are applied to generate the chirp,
and each of them has its pros and cons. Direct digital synthesizer (DDS) is the most straight-
forward way to generate a chirp [29]. It’s a quick and easy solution for prototype testing,
but it comes with high spur level and limited bandwidth.

For analog methods, the chirp generator could be implemented mainly in three ways, which
are VCO-based frequency synthesizers [30], multiplier-based frequency synthesizers [31], and
PLL-based frequency synthesizers. VCO-based frequency synthesizers suffer from nonlinear-
ity issue, which requires compensation circuitry to correct the nonlinearity. Multiplier-based
frequency synthesizers have low phase noise, but they suffer from nonlinearity and harmonic
spurs issue, resulting in lower dynamic range. PLL-based frequency synthesizers have good
linearity and low phase noise, which leads to good radar resolution with comparable hardware
cost.

1.4 Design Needs of PLL-based Chirp Generator

There are several main design needs for PLLs in FMCW radar system, namely low phase
noise, good linearity, fast chirp generation, and wide chirp bandwidth.

Phase noise of PLL has a great impact on FMCW radar performance [24]. In multi-target
scenario, when objects are close to each other, larger in-band phase noise of PLL would lead
to wider peak on IF spectrum for each object, making it harder to clearly distinguish objects,
and thus lowering spatial resolution and the image quality. When objects are far from each
other, larger out-of-band noise of PLL leads to higher noise tail from closer objects, which
raises the noise floor for farther objects. That would make it more difficult to detect the
farther objects, limiting the maximum detection range of FMCW radar.
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In terms of frequency deviation and chirp linearity, phase noise contributes to the ran-
dom frequency deviation, and other sources (such as digital circuit switching, PLL transient
response, and nonlinear circuit blocks) contribute to the deterministic or even periodic fre-
quency deviation. The resultant nonlinear chirp could be modeled as a sinusoidal nonlin-
earity term [32] or a square-law nonlinearity term [33] in instantaneous output frequency
expression, both of which contribute to lower range resolution and larger range estimation
error.

The basic waveform to measure range and velocity consists of a up-ramp and a down-
ramp, duration of each of which is larger than 1ms [34]. That makes ranging frequency fr
and Doppler frequency fd fall in kHz range, which is flicker noise range. As a result, the
ranging resolution of FMCW radar is affected by flicker noise of the circuit. To solve the issue,
designers adopt fast chirp to move fr and fd above flicker noise corner frequency. Duration
of such chirp is around 100µs. That leads to some requirements of the PLL bandwidth [35],
which would be discussed in detail in later chapters.

Another need is wide chirp bandwidth. As known, for FMCW radar, the ranging resolution
is inversely proportional to chirp bandwidth [36]. To get range resolution of 10mm, chirp
bandwidth needs to be as wide as 16GHz [19]. The high-resolution measurement is needed
for industry quality inspection and measurement, such as accurate positioning of machines,
measuring thickness of layer coating, and separating closely adjacent targets [37]. And wide
bandwidth systems also offers possibility to operate in many different frequency bands [38].

As for the architecture, generally, PLL-based chirp generators can be categorized into
two types. One is one-point-modulation (OPM) architecture, and the other is two-point-
modulation (TPM) architecture [39].

For OPM architecture, the modulation signal is injected at only one point of the PLL.
In [40], the modulation signal is imposed as part of VCO’s control signal. Such PLL is
simple and doesn’t have additional noise source. Modulation can also be implemented by
modulating reference frequency of a PLL. For instance, a chirp is generated with a direct
digital frequency synthesizer (DDFS) and fed into the PLL as reference in [41]. DDFS can
avoid the issue of limited bandwidth of LC-VCO, and a high-resolution DDFS can minimize
the chirp nonlinearity, but power consumption of DDFS is high and it needs a large amount
of memory for the lookup table and a high-resolution DAC. Similarly in [42], a fast and linear
chirp as reference signal can facilitate the design of other components of PLL, but an external
instrument is needed in the design. So such designs are only for prototyping or testing
purposes, not for practical applications. Alternatively, the frequency modulation can be
achieved by varying the feedback division ratio in fractional-N PLL [43], [44]. The generated
chirp has good linearity if loop bandwidth is designed properly, and its power is significantly
lower than DDFS architecture, but additional noise from Delta-Sigma Modulator should be
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Table 1.2: State-of-the-art PLLs for FMCW radar systems.

Xidian,
VLSI
2022 [47]

ECNU,
TCAS
2022 [48]

NTU, IS-
CAS 2022
[49]

ADI,
ISSCC
2022 [50]

IMEC,
ISSCC
2020 [51]

Toronto,
TMTT
2021 [18]

IBM,
JSSC
2018 [52]

DENSO,
RFIC
2020 [53]

Technology
65nm
CMOS

55nm
CMOS

40nm
CMOS

28nm
CMOS

28nm
CMOS

22nm
FDSOI

130nm
SiGe

40nm
CMOS

Architecture DS-PLL
Fractional-
N

Fractional-
N

ADPLL SSPLL Integer-N
Dual-
loop

Fractional-
N

Reference
(MHz)

277 to
562.5

40 50 80 to 200 80
8400 to
1100

125 50

Center
frequency
(GHz)

8.55 to
17.11

21.24 to
24.64

4.8 to 5.5 8.8 to 12
8.3 to
11.7

160 79 76 to 77

Chirp band-
width (GHz)

0.5 1.25 0.7 0.65 1.21 8.5 8 0.3

Chirp rate
(MHz/µs) 33.33 1.818 1.22 65 94.5 5300 100 N/A

Phase noise
@1MHz
(dBc/Hz)

-120 -98.54 -110 -121 -109.1 -113 -97 -91

PLL power
(mW)

22.1 92.1 3.3 187 11.7 300 590 N/A

considered in the design. For all the OPM architectures, PLL loop bandwidth should be
designed considering some trade-offs. The loop bandwidth of PLL should be much less than
modulation frequency to allow VCO frequency variations and to suppress the quantization
noise. However, the cut-off frequency of the PLL transfer function should be much higher
than the modulation frequency to allow enough harmonics to pass for a linear chirp. This
trade-off doesn’t pose a problem if fast chirp generation is not required. Otherwise, it makes
the design challenging.

TPM architecture can decouple modulation frequency from PLL loop bandwidth. It injects
the modulation signal to both tuning port of VCO (DCO) and feedback path [45], [46]. With
two-point injection, the transfer function of the PLL could be expressed as Eq. 1.22, which
is a all-pass function if g0 is equal to fref/KDCO. The TPM architecture allows fast chirp
generation and provides more design freedom. But the circuitry is more complicated and
there are more noise sources. Also, TPM is very sensitive to gain mismatch, as all-pass
characterization disappears if g0 is not equal to fref/KDCO. As a result, calibration circuitry
is needed to eliminate gain mismatch across PVT [46]. State-of-the-art PLLs for FMCW
radar system are shown in Table. 1.2.

HTPM(s) = fref ·
[

Gloop(s)

1 +Gloop(s)
+

g0KV CO · (1/fref )
1 +Gloop(s)

]
(1.22)
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1.5 Conclusion

In this chapter, the background and design needs of the research are introduced. The
proposed design is a PLL used as a chirp generator in FMCW radar systems.

The thesis is organized as follows: In Chapter 2, the architecture of the proposed PLL is
explained and system-level modeling is presented. With the phase noise model and band-
width model, some PLL specifications can be determined. In Chapter 3, a more accurate
model for linearity and settling calculation is explored. This model provides comprehen-
sive insight into PLL bandwidth design and the calculation provides more accurate data for
dynamic phase noise calculation. Chapter 4 shows the dual-modulus divider and its con-
troller, a Delta-Sigma Modulator. Chapter 5 illustrates an analytical modeling method for
high-frequency circuit, which is used to design and optimize the prescaler and divider in the
proposed PLL. In Chapter 6, a prototype CMOS design is illustrated. Chapter 7 draws the
conclusion.
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Chapter 2

PLL Architecture and System-level
Modeling

2.1 Architecture of Proposed PLL

Background

In recent years, mm-wave FMCW radar at 140GHz is gaining more and more attention.
Sitting between microwave frequencies and visible light frequencies, mm-wave has its own
advantages.

Microwave radars, of which frequency is lower than that of mm-wave radars, suffer from
large physical size [54] and limited bandwidth [55]. Compared with microwave radar, mm-
wave radar has larger bandwidth, better angular resolution, better spacial resolution, and
smaller physical size.

For visible light radars (LiDAR), such systems can be categorized into two types, namely
flash type and scanning type [56]. Flash type LiDAR could achieve high resolution easily
at the cost of the limited measurement distance (typically < 20m), for laser power needs
to be diffused to all pixels. The scanning type could focus laser power on one column or
one row and conduct horizontal or vertical scanning respectively, resulting in much larger
measurement distance. However, its frame rate is lower due to its mechanical scanning
mechanism. And to get good optical properties and thus good SNR, rotating mirror is
commonly applied in the system, resulting in a bulky radar module, as shown in Fig. 2.1.
Compared with LiDAR, mm-wave radar has lower resolution, but it’s more compact and less
sensitive to bad weather, strong light interference, and EM interference [57].

In summary, mm-wave radar systems have good angular resolution, good spacial resolu-
tion, and small physical size. Based on its compact size and precise motion sensing, 140GHz
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Figure 2.1: LiDAR module on a car with advanced driving assistance function.

radar could be applied to many applications, such as driving assistance, driver monitoring,
patient monitoring, smart building, robotics, and gesture recognition [58].

The proposed PLL is used as the chirp generator in a 140GHz FMCW radar system. And
some circuit blocks of the proposed PLL are re-used from an integer-N PLL from previous
research [59], which is a transceiver operating at 140GHz.

Integer-N PLL and Fractional-N PLL

Fig. 2.2 shows the block diagram of conventional charge-pump PLL (CPPLL), consisting of
phase-frequency detector (PFD), charge pump (CP), low-pass filter (LPF), voltage-controlled
oscillator (VCO), and divider.

Depending on the division ratio of the divider, the PLL could be categorized into integer-
N PLL and fractional-N PLL. For FMCW chirp generation, fractional-N PLL is commonly
applied. Because for integer-N PLL, the bandwidth should be smaller than tenth of refer-
ence frequency, in order to avoid the stability issue due to the discrete sampling action of
PFD (bandwidth should be twentieth of reference frequency considering PVT). Thus, faster
settling requires higher reference frequency. However, the frequency step of the chirp is
equal to the reference frequency, meaning that finer frequency step requires smaller refer-
ence frequency. As a result, there is a fundamental trade-off between fast settling and small
frequency step, making it hard to generate a fast and linear chirp.

Fractional-N PLL is widely used as chirp generator because its frequency step is de-coupled
from PLL bandwidth. Its frequency step could be smaller than reference frequency so in
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Figure 2.2: Block diagram of charge-pump PLL.

order to generate a chirp with fine step, low frequency reference is not required and much
higher reference frequency is applicable.

Architecture

Different from conventional fractional-N PLL, the frequency of chirp generator’s output
ramps up with time linearly. And to generate the frequency ramp, modulation needs be
injected at some point of the loop. Generally, there are two modulation schemes for one-
point modulation, namely reference modulation and division-ratio modulation, as shown in
Fig. 2.3 and Fig. 2.4 respectively.

In the case of reference-modulated architecture, the reference signal, typically a chirp, is
usually supplied by an external instrument. The PLL serves as a frequency multiplier in this
architecture, which is usually utilized for testing and prototyping FMCW radar systems. For
division-ratio-modulated architecture, the division ratio increases linearly over time. This
architecture is suitable for a fully-integrated FMCW radar system. Therefore, the division-
ratio-modulated architecture is applied to the proposed PLL.

2.2 System-level Modeling

In this section, models of phase noise and PLL bandwidth are discussed. The correspond-
ing code is in Appendix A. For phase noise, the phase noise contribution of each circuit block
of the PLL will be discussed. Based on the zero-dead-zone PFD, a new model is proposed to
calculate the charge pump phase noise. For PLL bandwidth, Fig. 2.5 shows the comparison
of generated chirp with different PLL bandwidths. If the PLL is too slow, in other words,
if the bandwidth of the PLL is too narrow, then the generated chirp cannot follow the ideal
chirp. This leads to a nonlinear chirp and an unpredictable FMCW slope. On the contrary,
if the PLL is too fast, or if the PLL bandwidth is very wide, every time the division ratio
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Figure 2.3: Reference-modulated PLL-based chirp generator.

Figure 2.4: Division-ratio-modulated PLL-based chirp generator.

changes, the PLL would settle quickly. The resultant chirp would have a step shape, which
results in poor linearity. Such bandwidth is denoted by BWsettle where the PLL can settle
on each step. As a result, when designing a PLL, its bandwidth should fulfill the following
relation:

1

Tc

≪ BWPLL ≪ BWsettle (2.1)

In this section, the method for calculating BWsettle will be shown. A more accurate
method for designing PLL bandwidth will be discussed in the next chapter, which can not
only provide a rough range of PLL bandwidth but also tune and optimize the chirp linearity
without time-consuming circuit simulation.

Phase Noise Modeling

A general phase-domain model of a charge-pump PLL, which includes the main noise
sources, is shown in Fig. 2.6. The corresponding forward gain, G(s), and feedback gain,
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Figure 2.5: Generated chirp with different bandwidth. (a) PLL bandwidth is too narrow (b)
PLL bandwidth is suitable (c) PLL bandwidth is too wide.

H(s), are given by

G(s) =
ICPKV COZ(s)

s
(2.2)

and

H(s) =
1

N
(2.3)

respectively, where Z(s) is the transfer function of the low-pass filter. The loop gain is then
given by

T (s) = G(s)H(s) =
ICPKV COZ(s)

sN
(2.4)

To calculate the total output noise and plot the noise contribution from each noise source,
each circuit block must be simulated using a circuit simulator. The resultant phase noise
spectrum can then be used to calculate the total output phase noise in Matlab.
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Figure 2.6: Phase-domain model of charge-pump PLL with main noise sources.

Table 2.1: Phase noise chart of Keysight E8267D in dBc/Hz.

Offset from carrier (Hz)

Frequency 1 10 100 1k 10k 100k 1M 10M

>2 to 3.2GHz -58 -84 -102 -117 -134 -134 -150 -150

Reference Noise

Generally, the reference noise spectrum is not obtained from circuit simulation because
the reference signal is typically generated from a crystal or testing equipment, depending on
the application scenario or testing setup. The datasheet of the crystal or testing equipment
would describe the phase noise spectrum of the source signal it generates. For example, the
Keysight E8267D PSG vector signal generator is used as the reference source. Its datasheet
[60] provides its phase noise parameters, as shown in Table. 2.1.

Based on the phase noise data, the phase noise spectrum of the reference signal,Sref , can
be plotted in Matlab with interpolation and extrapolation as shown in Fig. 2.7. The noise
gain from reference signal phase to output phase is

Gn,ref =
ϕout

ϕn,ref

=
NG(s)

N +G(s)
(2.5)

And the corresponding power spectral density of phase noise at the output is

Sref,out = Sref · |Gn,ref |2 (2.6)

Filter Noise

In the proposed design, the low-pass filter is a passive network. The noise of such a network
can be modeled as a voltage noise source in series with the network’s impedance Zpassive(s),
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Figure 2.7: Phase noise spectrum of reference signal.

or as a current noise source in parallel with the network’s admittance Ypassive(s). For the
low-pass filter, the voltage noise power is given by

SVn,LPF
= 4kBTR{Z(s)} (2.7)

where kB is Boltzmann’s constant, T is the temperature, and Z(s) is the transfer function
of the filter. The gain from the filter noise voltage to the output phase is

Gn,LPF =
ϕout

vn,LPF

=
2π

ICPZ(s)
· NG(s)

N +G(s)
(2.8)

where ICP is the charging current of the charge pump. The filter noise spectrum at the
output is then given by

SLPF,out = SVn,LPF
· |Gn,LPF |2 (2.9)

VCO Noise

For the phase noise of LC oscillators, Leeson’s model is most commonly used [61]. This
model accounts for flicker noise and thermal noise, and the phase noise power spectral density
can be expressed as

SV CO(∆f) = n

(
1

∆f 2
+

fc
∆f 3

)
(2.10)

where n is the noise parameter, fc is the corner frequency, and ∆f is the offset frequency
from the carrier. The values of fc and n can be extracted or calculated from the VCO phase
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noise simulation results. In the proposed design, the corner frequency fc = 10MHz and
n = 2.87 rad2/Hz. The phase noise at the output is then given by

SV CO,out = SV CO · |Gn,V CO|2 (2.11)

where the gain Gn,V CO is given by

Gn,V CO =
ϕout

ϕn,V CO

=
N

N +G(s)
(2.12)

Divider Noise

Divider noise in fractional-N PLL is primarily generated by the modulation signal that
controls the divider. To achieve fractional division ratio, the divider must continually switch
between two integer division ratios, ensuring that the average division ratio equals the desired
non-integer value. In the proposed design, a Delta-Sigma Modulator is applied to control
the dual-modulus divider and more details of the scheme will be covered in a later chapter.
This section focuses solely on the noise contribution, which can be modeled as [62] [63]

SDSM(∆f) =
(2π)2

12fref

[
2 sin

(
π∆f

fref

)]2(m−1)

(2.13)

where fref is the reference frequency and m is the order of Delta-Sigma Modulator. The
gain from divider to the output is

Gn,DSM = − NG(s)

N +G(s)
(2.14)

And the noise contribution at the output is

SDSM,out = SDSM · |Gn,DSM |2 (2.15)

PFD and CP Noise

The noise from the charge pump in steady-state is influenced by the conducting time of
the charging and discharging currents, Iup and Idn. A higher duty cycle increases the noise
due to the injection of more noise current.

Mathematically, [64] derives the expression for the phase noise of the charge pump. Fig. 2.8
depicts a simplified charge pump, where the UP and DN signals control the charging and
discharging currents, respectively, and Iup = Idn = ICP . When the charging current is active,
its noise component in,up also flows into the filter, thereby increasing the output noise. The
same principle applies to the discharging current and in,dn. The total output noise power
is the sum of the power of the charging noise and discharging noise, as they are incoherent
noise sources.
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Figure 2.8: Simplified schematic of charge pump.

To compute the output noise, the waveform of the switched current can be represented as
the product of the input noise current and the control signal (see Fig. 2.9).

in,sw,up(t) = in,up · UP (t) (2.16)

in,sw,dn(t) = in,dn ·DN(t) (2.17)

As a result, the output noise spectrum is the convolution of input noise spectrum and squared
magnitude of the Fourier transform of the control signal.

Ssw,up = Sn,up ∗ |F{UP (t)}|2 (2.18)

Ssw,dn = Sn,dn ∗ |F{DN(t)}|2 (2.19)

where the Fourier transform of the control is

|F{DN(t)}|2 (f) = τ 2

T 2
ref

∞∑
k=−∞

[
sinc2

(
kτ

Tref

)
· δ
(
f − k

Tref

)]
(2.20)

The current noise comprises two components: white noise and flicker noise. To determine
the output noise spectrum, we need to calculate the output white noise power and the flicker
corner frequency. The white noise power can be computed by summing the series in Eq. 2.20.

Ssw,white = Sn,white ·
τ

Tref

(2.21)

where τ is the pulse width of UP (t) or DN(t) as shown in Fig. 2.9. The switched-noise
power is the continuous-time noise scaled by duty cycle αCP = τ

Tref
.
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Figure 2.9: Waveform of control signals, UP and DN.

For flicker corner frequency, it’s usually lower than
fref
2

in fractional-N PLL, so it’s not
affected by noise folding due to Eq. 2.20. And the output flicker noise spectrum is

Ssw,flicker = Sn,flicker ·
(

τ

Tref

)2

(2.22)

The switched flicker noise power is the continuous-time noise scaled by square of duty cycle.
Due to different scaling factors of the white noise and the flicker noise, the corner frequency
of output noise spectrum is scaled by αCP .

fc,out = fc,CP · τ

Tref

(2.23)

where fc,CP is the noise corner frequency of the charge pump, and fc,out is the corner frequency
of switched noise. Thus, the output noise spectrum of charge pump is [65][66]

Sin,CP (f) = Swhite
n · αCP

(
1 +

αCP · fc,CP

f

)
(2.24)

The noise gain from charge pump output current to output phase is

Gn,CP =
ϕout

in,CP

=
2π

ICP

· N ·G(s)

N +G(s)
(2.25)

and the noise spectrum at the output is

SCP,out = Sin,CP · |Gn,CP |2 (2.26)

In this model, the white noise Swhite
n and corner frequency fc,CP are obtained from simu-

lation of PFD and CP, the setup of which is shown in Fig. 2.10. The reference signal and
divided signal are generated by two signal sources, between which a delay is applied to sim-
ulate phase noise under different steady-state phase error values. For each phase error value,
the noise spectrum can be obtained from PSS simulation, from which Swhite

n and fc,CP can
be extracted from this spectrum.
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Figure 2.10: Noise simulation setup for PFD and charge pump.

However, in many PLL designs, the phase frequency detector (PFD) is implemented with
dead-zone elimination structure for better linearity. For instance, in the proposed design, a
conventional NAND-gate-based PFD is used as shown in Fig. 2.11 and a dead-zone elimina-
tion buffer is inserted between the NAND gate output and the reset terminal. This converts
a very small phase error from a very narrow pulse into two wider pulses with a difference
in width. In such architecture, the duty cycle of charging current and discharging current
cannot be zero, even if the phase error is 0, which contradicts the previous model Eq. 2.24.
Simulation results (Fig. 2.12) shows that after the reference signal and divided signal (over-
lapped with reference and not shown) rise from 0 to 1V, both UP and DN signals go high
after a certain delay and then fall down to 0 together. In this simulation, reference frequency
is 2.875GHz, and pulse width of UP and DN are 0.021ns and 0.025ns respectively. Thus,
the average duty cycle of the charge pump is α0 = 6.6125%. The overlapping behavior of
UP and DN comes from the delay of the dead-zone elimination buffer, and it persists when
phase error is nonzero as shown in Fig. 2.13.

As a result, Eq. 2.24 needs modification. Fig. 2.14 illustrates the phase noise of the PFD
and charge pump at various phase error values. The new model incorporates two factors: the
new noise floor and the new noise corner. Specifically, the previous noise floor is Swhite

n ·αCP ,
while the new noise floor results from the power addition of incoherent noise, given by
Swhite
n · (2α0+αCP ). In this case, α0 = 6.6125% as mentioned. And Swhite

n can be determined
from the data presented in Fig. 2.14 using the expression

Swhite
n =

(
3.5× 10−12A/

√
Hz

2α0

)2

(2.27)
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Figure 2.11: Schematic of NAND-gate PFD with dead-zone elimination buffer.

Figure 2.12: Waveform of UP and DN signals when phase error (between reference and
divided signal) is 0.
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Figure 2.13: Waveform of UP and DN signals when phase error (between reference and
divided signal) is π

2
or π.

Figure 2.14: Phase noise of PFD and charge pump at different phase error values.
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Figure 2.15: Comparison between proposed model and simulation results.

The same principle applies to the new corner frequency. The previous corner frequency,
αCP ·fc,CP , is replaced with (2α0+αCP )·fc,CP . The new noise floor and new corner frequency
match the simulation well as depicted in Fig. 2.15. Consequently, the proposed new phase
noise model is

Sin,CP (f) = Swhite
n · (2α0 + αCP )

(
1 +

(2α0 + αCP ) · fc,CP

f

)
(2.28)

Total Noise

By adding up the noise from all noise sources, the total phase noise at the output can be
calculated as

Sout,total = Sref,out + SLPF,out + SV CO,out + SDSM,out + SCP,out (2.29)

And noise contribution can be illustrated as shown in Fig. 2.16.

PLL Bandwidth Modeling

As previously mentioned, this section encompasses the modeling and calculation of the
bandwidth where PLL can settle on such frequency step, specifically BWsettle.

The time-domain model of CPPLL is shown as Fig. 2.17. The phase error ϕe is

ϕe(t) = ϕi(t)− ϕdiv(t) (2.30)
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Figure 2.16: Comparison between proposed model and simulation results.

Figure 2.17: Time-domain model of charge-pump PLL.
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The output current of charge pump is

I(t) = ϕe(t) ·KPD (2.31)

where KPD = ICP

2π
is the gain of charge pump. For VCO, the frequency of its output is

ωout(t) = 2πfout(t) = 2π ·KV CO · V (t) =
d [N · ϕdiv(t)]

dt
(2.32)

where KV CO is the VCO gain. Based on division ratio modulation for chirp generation, the
output frequency

ωout(t) = ωref · (N0 + α · t) (2.33)

where ωref is the reference frequency, N0 the division ratio at the beginning of the chirp, α the
slope of division ratio. And the N(t) = N0 + αt. It’s important to note that the expression
for N(t) assumes the division ratio of the divider changes continuously and linearly over
time, which is a simplification and approximation. More accurate modeling will be discussed
in Chapter 3. From Eq. 2.32 and Eq. 2.33, the output voltage of the filter can be expressed
as

V (t) =
1

2πKV CO

·
[
αϕdiv(t) + (N0 + αt)

dϕdiv(t)

dt

]
(2.34)

For the filter, in S-domain, its transfer function is

V

I
=

bns
n + bn−1s

n−1 + · · ·+ b1s+ b0
ansn + an−1sn−1 + · · ·+ a1s

(2.35)

which can be written in time-domain as

an ·
dnV (t)

dtn
+ · · ·+ a1 ·

dV (t)

dt
= bn ·

dnI(t)

dtn
+ · · ·+ b1 ·

dI(t)

dt
+ b0 · I(t) (2.36)

Here V (t) can be substituted with ϕdiv(t) (Eq. 2.34), which is equal to ϕi(t)− ϕe(t), and
I(t) can be substituted with ϕe(t) (Eq. 2.31). As a result, Eq. 2.36 can be written as a
derivative equation of ϕe(t). By solving this equation, the settling process can be plotted
and settling time can be calculated.

For low-pass filter, traditional topologies for 2nd-, 3rd-, and 4th-order filter is shown in
Fig. 2.18 and their transfer function can be written as the general form

Z(s) =
R2C2 · s+ 1

a4s4 + a3s3 + a2s2 + a1s
(2.37)

where the coefficients a1, a2, a3, and a4 are summarized in Table. 2.2.
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Figure 2.18: Topology for (a) 2nd-order filter (b) 3rd-order filter (c) 4th-order filter

Table 2.2: Coefficients for 2nd-, 3rd, and 4th-order low-pass filter transfer function.

2nd-order

a1 C1 + C2

a2 C1 · C2 · R2

a3 0

a4 0

3rd-order

a1 C1 + C2 + C3

a2 C2 · R2 · (C1 + C3) + C3 · R3 · (C1 + C2)

a3 C1 · C2 · C3 · R2 · R3

a4 0

4th-order

a1 C1 + C2 + C3 + C4

a2

C2 ·R2 · (C1 +C3 +C4)+C4 ·R4 · (C1 +C2 +C3)

+ R3 · (C1 + C2) · (C3 + C4)

a3

C1 ·C2 ·R2 ·R3 · (C3 +C4)+C4 ·R4 · (C2 ·C3 ·R3

+ C1 · C3 · R3 + C1 · C2 · R2 + C2 · C3 · R2)

a4 C1 · C2 · C3 · C4 · R2 · R3 · R4

2nd-order filter is taken as an example. When n = 2, Eq. 2.36 becomes

a2 ·
d2V (t)

dt2
+ a1 ·

dV (t)

dt
= b2 ·

d2I(t)

dt2
+ b1 ·

dI(t)

dt
+ b0 · I(t) (2.38)

From Eq. 2.34, dV (t)
dt

and d2V (t)
dt2

can be derived as

dV (t)

dt
=

1

2πKV CO

[
2α

dϕdiv(t)

dt
+ (N0 + αt)

d2ϕdiv(t)

dt2

]
(2.39)

d2V (t)

dt2
=

1

2πKV CO

[
3α

d2ϕ(t)

dt2
+ (N0 + αt)

d3ϕ(t)

dt3

]
(2.40)
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And based on Eq. 2.30, following relationships can be derived

dϕe(t)

dt
= ωref −

dϕdiv(t)

dt
(2.41)

d2ϕe(t)

dt2
= −d2ϕdiv(t)

dt2
(2.42)

d3ϕe(t)

dt3
= −d3ϕdiv(t)

dt3
(2.43)

Substituting I(t) with ϕe(t) (Eq. 2.31) in Eq. 2.38, an ordinary differential equation of
ϕe(t) can be derived

a2 · −1
2πKV CO

[
3αd2ϕe(t)

dt2
+ (N0 + αt)d

3ϕe(t)
dt3

]
+ a1 · 1

2πKV CO

[
2αωref − 2αdϕe(t)

dt
− (N0 + αt)d

2ϕe(t)
dt2

]
= b2 ·KPD

d2ϕe(t)

dt2
+ b1 ·KPD

dϕe(t)

dt
+ b0 ·KPD · ϕe(t) (2.44)

The settling time can be calculated by solving Eq. 2.44 with initial conditions. For ease
of solving it in tools like Matlab, Eq. 2.44 can be re-written as following first-order system

y′1 = y2 (2.45)

y′2 = y3 (2.46)

y′3 =
− 2πKV CO

a2
(b2KPD·y3+b1KPD·y2+b0KPD·y1)+a1

a2
[2αωref−2α·y2−(N0+αt)·y3]−3α·y3

N0+αt
(2.47)

Based on this model, a PLL with a bandwidth BWsettle can be designed if settling time
is much smaller than step time (less than tenth or twentieth of step time). Furthermore,
the bandwidth of the practical design should be much smaller than BWsettle, as indicated by
Eq. 2.1. Regarding the initial conditions, the initial value of ϕe(t) is set as π to calculate the
worst-case settling time. And the settling threshold is within±0.01 degree of the steady-state
value.

The settling time for 3rd-, 4th-, and higher-order low-pass filters can be calculated sim-
ilarly. However, the expressions become significantly more complex, and deriving them
requires the use of symbolic computation tools such as Mathematica, Matlab, or Python.
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2.3 PLL Specifications

With the above calculations, the FMCW chirp and PLL specifications are designed as
shown in the following tables, and the flowchart is shown in Fig. 2.19. The DSM parameters
in Table 2.3 will be discussed in Chapter 4. Table 2.4 shows the PLL parameters, and a
more detailed and accurate settling model of the PLL will be discussed in Chapter 3. The
dynamic phase noise is defined as the phase noise when the PLL is generating the chirp, as
opposed to the static phase noise when the PLL output frequency is fixed at a certain value.
The dynamic phase noise is generally higher than the static phase noise. This is because
when generating the chirp in practical applications, the PLL never settles for better linearity,
resulting in non-zero phase error, ϕe, which leads to higher noise injected into the charge
pump.

Table 2.3: FMCW chirp specifications.

FMCW bandwidth 8 GHz

Chirp duration 40 µs

Chirp slope 200 MHz/µs

Number of DSM input bits 12

DSM input control word @ start −2047

DSM input control word @ end −1098

Number of frequency steps 950

Frequency step/resolution 0.7 MHz

Table 2.4: PLL specifications.

Step time 0.042 µs

Settling time 1.398 µs

Mean phase error 20.798◦

Dynamic phase noise @10kHz −86 dBc/Hz

Dynamic phase noise @1MHz −103 dBc/Hz

PLL bandwidth 2.189 MHz

Phase margin 57◦
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Figure 2.19: Design flowchart of the system-level specifications. The red lines represent the
process of design iteration.
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2.4 Conclusion

In this chapter, the choice of the PLL architecture is analyzed. Models for phase noise and
PLL bandwidth are proposed, and PLL specifications are determined based on these models.
More details of the PLL design and modeling will be discussed in subsequent chapters. The
phase noise of the charge pump, a major contributor to phase noise, is dependent on ϕe.
A more accurate calculation of ϕe is discussed in Chapter 3. Besides, the PLL bandwidth
modeling in this chapter can only provide an upper limit of the PLL bandwidth. Calculations
in Chapter 3 can help design the bandwidth more accurately.
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Chapter 3

Linearity and Settling Model

As previously mentioned, in this chapter we discuss a more accurate model for settling.
Based on this model, we propose a more precise method for designing a linear chirp. The
model relies on time-domain calculations, which significantly reduce the computational time
required for circuit transient simulations. In the later part of this chapter, we also delve
into other modeling and calculation efforts based on s-domain analysis and the calculus of
variations.

3.1 Practical Chirp

The chirp is generated by modulating the division ratio of the PLL. Ideally the division
ratio increases linearly as

N(t) = N0 + α · t (3.1)

where N0 is the initial division ratio and α is the slope of the N(t). As a result, the ideal
output frequency is

fout,ideal(t) = fstart + αfref t (3.2)

where fstart = N0 · fref is the output frequency at the beginning of the chirp.

However, the practical division ratio doesn’t change continuously; instead, it changes step
by step. As a result, the practical chirp is not perfectly linear. Three types of chirps are
schematically illustrated in Fig. 3.1. The ideal chirp is perfectly linear, with a constant slope.
In contrast, the chirp with infinite PLL bandwidth appears step-shaped because each time
the division ratio changes, the output frequency quickly settles at the new frequency within
a very short time. This curve can be used to mark the time points where the division ratio
changes. The practical chirp, represented by the blue dashed line, deviates slightly from the
ideal chirp, which is perfectly linear.



CHAPTER 3. LINEARITY AND SETTLING MODEL 37

Figure 3.1: Ideal chirp and practical chirp.

To make the practical chirp as linear as possible, the proposed method calculates the
output frequency, fout, as a function of time, using parameters from PLL circuit blocks.
Based on the instantaneous expression of fout(t), the root-mean-square (RMS) error between
the practical chirp and ideal chirp can be calculated. This information can guide circuit
optimization, especially in the design of PLL bandwidth.

3.2 Modeling

To analyze the system, the PLL cannot be considered as a time-invariant system, because
the division ratio, one of the system parameters, keeps changing. However, the PLL is time-
invariant in each step when the division ratio is fixed. For instance, during the step from
tk = k∆t to tk+1 = (k + 1)∆t as shown in Fig. 3.2, the division ratio remains constant

N = N0 + αk∆t (3.3)

where ∆t is the step time of the FMCW chirp.
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Figure 3.2: The step to be analyzed is k∆t ∼ (k+1)∆t, where tk = k∆t and tk+1 = (k+1)∆t.

The time-domain derivation is performed for one step, which is schematically represented
in Fig. 3.3. While part of the derivation is the same as the settling analysis in Chapter 2,
the PLL is not expected to settle at each step in this chapter. Consequently, the initial
conditions for each step, or the boundary conditions between steps, differ from those in the
previous analysis.

Differential Equation of ϕe(t) in Each Step

The time-domain model of the PLL is shown in Fig. 3.4. The basic relations still hold

ϕe(t) = ϕi(t)− ϕdiv(t) = ϕi(t)−
1

N
ϕo(t) (3.4)

I(t) =
ICP

2π
ϕe(t) (3.5)

V (t) =
1

2πKV CO

dϕo(t)

dt
=

N

2πKV CO

(
dϕi(t)

dt
− dϕe(t)

dt

)
(3.6)
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Figure 3.3: The step k∆t ∼ (k + 1)∆t.

Figure 3.4: The time-domain model of the PLL
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And the core equation is the time-domain V (t)− I(t) relationship of the 2nd-order low-pass
filter as mentioned in Chapter 2

a2 ·
d2V (t)

dt2
+ a1 ·

dV (t)

dt
= b1 ·

dI(t)

dt
+ b0I(t) (3.7)

Substituting Eq. 3.5 and Eq. 3.6 into Eq. 3.7 leads to a equation of ϕe(t)

a2
d3ϕe(t)

dt3
+ a1

d2ϕe(t)

dt2
+

b1 · ICP ·KV CO

N
· dϕe(t)

dt
+

b0 · ICP ·KV CO

N
· ϕe(t) = 0 (3.8)

In Matlab, to use the differential equation solver ‘ode45’, the equation should be rewrit-
ten as a first-order ODE system as following

x1 = ϕe(t) (3.9)

x2 =
dx1

dt
(3.10)

x3 =
dx2

dt
(3.11)

dx3

dt
= − 1

a2

(
a1 · x3 +

b1 · ICP ·KV CO

Nk

· x2 +
b0 · ICP ·KV CO

Nk

· x1

)
(3.12)

Step Edge Analysis

The crucial part of analyzing the chirp is understanding what happens at the moment
when the division ratio changes and how these changes affect the signals. Because such
information is necessary to determine the initial values or boundary conditions in each step.
At t = tk on Fig. 3.3, the division ratio switches from N(t = t−k ) = N0 + α(k − 1)∆t to
N(t = t+k ) = N0 + αk∆t. At this moment, all instantaneous signals labelled in Fig. 3.4
remain unchanged. The only sudden change occurs in the division ratio and the output
frequency fout(t) doesn’t change at the moment. Consequently, there is a sudden change in
the frequency of the divided signal, fdiv(t), indicating that the accumulation rate of ϕdiv(t)
slightly decreases at t = tk. The previous rate of accumulation or derivative is

dϕdiv(t)

dt

∣∣∣∣∣
t=t−k

= 2πfdiv(t
−
k ) = 2π

fout,k
N0 + α(k − 1)∆t

(3.13)

where fout,k is the output frequency at t = k∆t. And the new derivative is

dϕdiv(t)

dt

∣∣∣∣∣
t=t+k

= 2πfdiv(t
+
k ) = 2π

fout,k
N0 + αk∆t

(3.14)

And their difference is defined as Ak

Ak =
dϕdiv(t)

dt

∣∣∣∣∣
t=t+k

− dϕdiv(t)

dt

∣∣∣∣∣
t=t−k

= 2π

(
fout,k

N0 + αk∆t
− fout,k

N0 + α(k − 1)∆t

)
(3.15)
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As a result, the switching of division ratio introduces a step function Ak · u(t) to the

quantity dϕdiv(t)
dt

. And other quantities labelled in Fig. 3.4 don’t experience any sudden
change at the switching moment, due to the low-pass characteristic of the loop.

As the differential equation is in terms of ϕe(t), the sudden change should also be connected
to the derivative of ϕe(t). From Eq. 3.4, we get

dϕe(t)

dt
=

dϕi(t)

dt
− dϕdiv(t)

dt
(3.16)

So the quantity dϕe(t)
dt

also experiences a sudden change, −Ak · u(t), at t = k∆t.

From ϕe(t) to fout(t)

The primary objective of modeling is to determine the instantaneous output frequency
fout(t) and to optimize the chirp linearity from it. This involves calculating ϕe(t) using the
provided equations and then converting it into fout(t). Two methods exist for this conversion,
both of which establish a relationship between ϕe(t) and fout(t).

The first method employs the filter equation Eq. 3.7. In this method, ϕe(t) substitutes
I(t) with Eq. 3.5, and fout(t) substitutes V (t) with

V (t) =
1

KV CO

· fout(t) (3.17)

This results in an equation in terms of fout(t) and ϕe(t)

a2
KV CO

·
d2fout(t)
dt2

+
a1

KV CO

·
dfout(t)
dt

=
ICP · b1

2π
· dϕe(t)

dt
+

ICP · b0
2π

· ϕe(t) (3.18)

The standard form of the first-order ODE system, which is compatible with the Matlab
‘ode45’ solver, is then used. This system includes three equations

y1 = fout(t) (3.19)

y2 =
dy1
dt

(3.20)

dy2
dt

=
KV CO

a2

(
ICP · b1

2π
· dϕe(t)

dt
+

ICP · b0
2π

· ϕe(t)

)
− a1

a2
y2 (3.21)

Given ϕe(t) in each step, fout(t) can be computed using these equations.
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The second method is simpler. It utilizes the relation of ϕe(t) and fout(t) in the feedback
loop. As mentioned, ϕe(t) is the difference between reference signal phase and divided signal
phase

ϕe(t) = ϕi(t)− ϕdiv(t) (3.22)

and in feedback loop, the divider gives ϕdiv(t) =
1
N
ϕo(t), allowing ϕe(t) to be expressed in

terms of ϕo(t)

ϕe(t) = ϕi(t)−
1

N
ϕo(t) (3.23)

Differentiating on both sides results in

dϕe(t)

dt
= 2πfref −

2π

N
· fout(t) (3.24)

Consequently fout(t) can be calculated directly from dϕe(t)
dt

with

fout(t) = N ·
(
fref −

1

2π
· dϕe(t)

dt

)
(3.25)

Note that in this equation, at the step edges, dϕe(t)
dt

undergoes a sudden change. Despite
this, fout(t) remains unaffected due to simultaneous changes in N . Calculations confirm that
both methods produce the same results.

Chirp Calculation

Given sufficient understanding of the dynamics in each step and the sudden changes at step
edges, we can compute ϕe(t) and thus the instantaneous output frequency fout(t) numerically,
step by step. By connecting these steps, we can determine fout(t) for the entire duration
of the chirp. The initial conditions are set during calculation of the first step t = 0 ∼ ∆t
and the final values of all quantities are saved and used as the initial values of the next step
t = ∆t ∼ 2∆t, with the addition of the sudden-change term (the step function). The entire
chirp can be calculated numerically by repeating this process for each step. The procedure
is depicted in Fig. 3.5. Using this method, RMS FM error can be computated for each set
of PLL parameters (KV CO, ICP , a1, a2, b0, b1). Based on these calculations, optimization can
be performed. The code is presented in Appendix B.

3.3 Calculation Results and Chirp Linearity

In the proposed design, the chirp is generated by the PLL-based chirp generator followed
by a ×6 frequency multiplier. The FMCW chirp bandwidth is 8GHz. Thus, at output of
the PLL, the chirp bandwidth is 1.33GHz. And PLL’s output frequency starts from 23GHz
and ends at 24.33GHz.
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Figure 3.5: The flow chart of calculating fout(t)
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The chirp calculation can assist in designing the PLL in two ways. One way is to optimize
the linearity of the chirp generated by the PLL, given a chirp slope. In this scenario, the
PLL parameters are swept, and the corresponding chirps are calculated. The parameter
combination that generates the most linear chirp is selected. The other way is to determine
the range of chirp slope with acceptable linearity, given the PLL parameters. In this case,
the PLL parameters are fixed, and the chirp slope values are swept. For each chirp slope
value, the non-linearity metric is calculated. This allows designers to understand the range
of chirp slope that the PLL can support with sufficient linearity.

The nonlinearity is measured by the FM RMS error between the generated chirp and
a perfectly linear chirp. This metric is commonly used for characterizing PLL-based chirp
generators. After calculating the chirp fout(t), the first 5% of it is cut off, because in practical
application, the beginning part of a chirp is not used for mixing with received signal, but for
starting chirp, TX, and ADC [67]. Then the average difference between the ideal chirp and
generated chirp is calculated and denoted as

∆f = average [fideal(t)− fout(t)] (3.26)

In many applications, a slight shift from the designed frequency value does not affect the
performance of the FMCW radar system, as long as the chirp bandwidth is as designed and
the linearity is good. So, in the optimization of linearity, this ∆f acts as a DC frequency
error that has nothing to do with linearity. It should be subtracted from the ideal chirp
before calculating the RMS error.

Fig. 3.6 shows the calculation results of a PLL with a 2.19MHz bandwidth. The chirp
slope labeled in the picture is the slope at the output of the PLL, before the ×6 frequency
multiplier. When the chirp slope is small, the generated chirp has a step shape and settles
quickly at the beginning, both due to the fast PLL. As the chirp slope gets larger, the
generated chirp becomes more linear and smooth. However, it takes longer to settle at the
beginning. In summary, the nonlinearity mainly comes from step-shaped chirp and slow
settling at the beginning. The PLL bandwidth should be chosen to balance this trade-off.

Removing the initial 5% of the generated chirp can eliminate the settling phase if the
settling occurs rapidly. However, if the settling is not quick, the chirp may still be in the
process of settling after the first 5%, contributing to nonlinearity. Therefore, the optimal PLL
bandwidth should be the one that allows settling within the first 5% of the chirp duration.
It’s important to note that the initial phase does not necessarily constitute 5% of Tchirp. The
settling time is determined by the specific requirements of the application.

The error introduced by the stair-shaped chirp is also related to the total number of steps,
or the frequency step size. The smaller the frequency step size, the smaller the RMS error.
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Figure 3.6: A PLL with 2.19MHz bandwidth at different chirp slopes.
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Figure 3.7: Calculation results for 200MHz/µs FMCW chirp slope. Both RMS error and
peak error are plotted.

A finer frequency step requires more hardware resources and a higher clock frequency for
the Delta-Sigma Modulator (DSM). This will be discussed in detail in the next chapter.

When designing the PLL, its parameters can be swept to find the optimal combination
for linearity. For instance, in the proposed architecture, the C1 in the 2nd-order filter can be
swept to tune the PLL bandwidth. The FM RMS error and peak error can be calculated for
each bandwidth. In Fig. 3.7, the FMCW chirp slope is set as 200MHz/µs (the corresponding

slope at the output of the PLL is 200MHz/µs
6

), and the optimal range of the PLL bandwidth
is 1.8MHz ∼ 2.2MHz. In this calculation, the bit depth of the DSM input is 12.

During the measurement phase, the chirp calculation can be used to determine the range
of the chirp slope with acceptable linearity. Fig. 3.8 shows the calculation results for a PLL
bandwidth of 2.19MHz. The chirp slope (after the ×6 frequency multiplier) is swept, and the
optimal chirp slope this PLL can support is between 200MHz/µs and 500MHz/µs. When
the chirp slope is small, the main source of error is the stair-shaped chirp. When the chirp
slope is large, the main source of error is the settling part at the beginning of the chirp.

As mentioned in Chapter 2, the ϕe(t) data from the calculation results can be utilized in
the phase noise calculation to obtain the dynamic phase noise. By comparing the calculated
dynamic phase noise with the calculated static phase noise, the dynamic phase noise of a
practical chirp generator can be estimated from the static phase noise measurement, which
is simpler to conduct.
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Figure 3.8: Calculation results for PLL with 2.19MHz bandwidth. Both RMS error and
peak error are plotted.

3.4 Discussion

In this section, two other modeling efforts will be discussed: one is on s-domain analysis
and the other is on the calculus of variations. This section discusses their pros and cons,
and suggests directions for future research efforts.

S-domain Analysis

Generally speaking, to analyze loop dynamics, one tool is time-domain differential equa-
tions, which was utilized in the previous part of this chapter. Another tool is s-domain
analysis, which can greatly simplify the mathematical expression of differential equations.
It’s also convenient to convert s-domain expressions back to the time domain. Thus, s-domain
analysis is widely used in circuit modeling and signal response calculation.

However, in this case, s-domain analysis doesn’t have much advantage over time-domain
analysis. This is because in FMCW chirp modeling, when focusing on a particular step, for
instance from tk to tk+1, the initial values are not 0. So the s-domain expression isn’t as clean
and simple compared with differential equations. Some basic formulas of Laplace transform
are listed below

L {f(t)} = F (s) (3.27)

L {f ′(t)} = sF (s)− f(0) (3.28)

L {f ′′(t)} = s2F (s)− sf(0)− f ′(0) (3.29)

L {f ′′′(t)} = s3F (s)− s2f(0)− sf ′(0)− f ′′(0) (3.30)
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As the system is not time-invariant across the whole chirp duration, s-domain analysis,
like time-domain analysis, can only be applied to one step at a time when the division ratio
is fixed. As a result, the initial values at the current step have to be found by calculating
all previous steps one by one. In this aspect, s-domain analysis doesn’t have an advantage
because it can’t circumvent the step-by-step calculation in time-domain analysis.

Besides, the sudden changes occurring at step edges inject a step function −Ak · u(t) into
dϕe(t)
dt

. The step function is a singularity function that needs to be specially handled in s-
domain analysis, which increases the complexity of derivation. But in the time domain, we
only need to add −Ak to the final value of dϕe(t)

dt
from the last step to get its initial value

after the sudden change.

However, in FMCW chirp modeling, s-domain analysis has its value. The derivation
shown previously in this chapter is based on a 2nd-order low-pass filter. The analytical
expressions are not too complicated. But for a higher-order filter, the expressions become
much more complicated in the form of differential equations. This requires the help of
symbolic computation tools or s-domain analysis, or both.

Calculus of Variations

Calculus of variations is a field of mathematics that studies the minimization or maxi-
mization of functionals, which are real-valued functions whose inputs are functions or curves
[68][69]. A classical problem in this field is the Brachistochrone problem, the goal of which
is to find the curve of fastest descent connecting points A and B in gravity field, given that
A and B are in the plane with A lying above B (but not directly above B). The curve is the
independent variable or input of the function, and the travel time is the dependent variable
or output of it. The calculus of variations is a powerful tool to solve such problems.

For FMCW chirp design and optimization, the calculus of variations can also be helpful.
In the step shown in Fig. 3.3, a functional can be defined as

Dk(KV CO, ICP , a1, a2, b0, b1) =

∫ tk+1

tk

[fideal(t)− fout(t)]
2 dt (3.31)

This quantifies the deviation of fout(t) from fideal(t). The optimization goal is to minimize
the total deviation

Dtotal(KV CO, ICP , a1, a2, b0, b1) =
1

Tchirp

SN−1∑
k=0

Dk (3.32)

where SN is the total number of steps. If linearity is the only optimization goal, then a
constant offset frequency ∆f is allowed between practical and ideal chirps. In this case, the
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functional of step tk ∼ tk+1 is defined as

dk(KV CO, ICP , a1, a2, b0, b1) =

∫ tk+1

tk

[fideal(t)−∆f − fout(t)]
2 dt (3.33)

and the corresponding summation is

dtotal(KV CO, ICP , a1, a2, b0, b1) =
1

Tchirp

SN−1∑
k=0

dk (3.34)

Applying the calculus of variations can lead to optimal design and it can also provide
some insight into the PLL. However, to make the problem solvable, the analytical expression
of fout = fout(t,KV CO, ICP , a1, a2, b0, b1) is required. This is probably possible for a PLL
with a first-order filter, but in practical design, 2nd- or higher-order filters are used. Thus,
analytical expression of Dk(KV CO, ICP , a1, a2, b0, b1) and dk(KV CO, ICP , a1, a2, b0, b1) will be
very complicated. Besides, the nonzero initial values of each step will make it even more
complicated, leading to exponentially higher computation cost during optimization. In other
words, much of the issue of applying this method originates from the chirp’s nature that it
is not one uniform chirp, but many segments that are dependent on each other.

Based on the discussion of s-domain analysis and calculus of variations, the time-domain
numerical calculation might be the most suitable method of optimizing the chirp linearity. It
does require some iterations tuning PLL parameters, to balance phase noise, chirp linearity,
and some other metrics. But it’s the most flexible and fastest method, considering general-
ity and computational cost. However,research interest could be directed towards s-domain
analysis or calculus of variations, if researchers figure out a way to model the chirp as a
whole. The switching division ratio might be able to be approximated as or equivalent to an
input signal, so that the system is considered as time-invariant. Then, those two methods
would be powerful. And calculus of variations can even directly provide the optimal values
for KV CO, ICP , etc.

3.5 Conclusion

In this chapter, we proposed a more accurate time-domain model for PLL bandwidth
design. This model is based on the step-wise time-invariant nature of the chirp generator.
The time-domain method might offer the best balance between accuracy and computational
cost, compared to circuit transient simulation and other modeling approaches. To the best
of the author’s knowledge, such a design and optimization method has never been proposed
or published before. The conventional method can only provide a lower limit of 1

Tchirp
and

an upper limit of BWsettle for PLL bandwidth design. In contrast, the proposed method
provides more comprehensive guidance on PLL bandwidth. And further research suggestions
are provided.
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Chapter 4

Frequency Division

The frequency division of the chirp generator involves the design of a dual-modulus divider
and the generation of its control. The fractional-N division ratio is achieved by alternating the
division ratio between two integers, resulting in an average division ratio that is a fractional
number. This necessitates a rapid switch in the division ratio by the divider. The operating
principle increases the phase noise, so an appropriate switching scheme must be chosen. This
chapter will present the design of the dual-modulus divider and the Delta-Sigma Modulator
that controls it.

4.1 Dual-Modulus Divider

In proposed design shown in Fig. 4.1, the FMCW bandwidth is 8GHz and the frequency of
FMCW chirp ranges from 138GHz to 146GHz, which is implemented with the generated chirp
from 23GHz to 24.33GHz, followed by a ×6 frequency multiplier. The reference frequency
is 2.875GHz, so the division ratio of the divider is from 8 to 8.4638.

As shown in Fig. 4.2, this division ratio range can be implemented by a divide-by-8/9
divider, which consists of a divide-by-2/3 prescaler followed by two divide-by-2 dividers in
cascade. In Fig. 4.2(a), the MC (modulus control) signal controls the division ratio. When
MC = 1, output of the OR gate is always 1 and the second-stage DFF operates as a divide-
by-2 divider. When MC = 0, output of the first stage turns to 0 every two clock cycles,
swallowing one clock cycle from the second stage, resulting in a divide-by-3 divider. In
Fig. 4.2(b), when MC = 0, the divider works in divide-by-8 mode because the divide-by-2/3
divider always works in divide-by-2 mode. When MC = 1, the MC terminal of the divide-
by-2/3 divider turns to 0 every 8 clock cycles, making the divide-by-2/3 divider works as a
divide-by-3 divider for one clock cycle, resulting in divide-by-9 operation.

However, such 8/9 divider is not fast enough. The proposed design, which uses TSMC
28nm technology, has a maximum input frequency for the 2/3 prescaler of 48.5GHz in divide-
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Figure 4.1: Chirp frequency and division ratio.

Figure 4.2: (a) A divide-by-2/3 prescaler. (b) A 8/9 dual-modulus frequency divider.
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Figure 4.3: The block diagram of divide-by-8/10 divider and schematic of the 4/5 divider.

by-2 mode and 46GHz in divide-by-3 mode. The 8/9 divider, however, is an asynchronous
circuit. For it to operate correctly, the output of the NAND gate needs to remain at 1
for 8 clock cycles and then switch to 0 before the next clock edge arrives. The total delay,
which includes 3 clock-to-Q delays and the NAND delay, makes it difficult to operate at high
frequencies. According to simulations, the divide-by-9 mode fails to work when the input
exceeds 15GHz, a frequency much lower than the VCO output frequency.

As an alternative, a divide-by-8/10 divider is used in the proposed design, consisting
of a divide-by-2 prescaler followed by a divide-by-4/5 divider. The division ratio range,
8/10, is doubled compared to that of the 8/9 divider, resulting in a loss of 1-bit resolution.
Consequently, in the control signal design, the input of the control circuit should be 1-bit
longer, which will be presented in detail in the following section. Fig. 4.3 shows the schematic
of the 8/10 divider. The divide-by-2 prescaler significantly reduces the design requirements
of the 4/5 divider, as the input frequency is around 12GHz. Besides, the 4/5 divider is a
synchronous circuit with 2-input logic gates, allowing it to operate at high frequency.

Schematic simulation shows the maximum operating frequency of the 8/10 divider is
60GHz. And its layout is shown in Fig. 4.4.

4.2 Delta-Sigma Modulator

The 8/10 divider needs to be controlled so that its division ratio alternates between 8
and 10 to achieve a non-integer average division ratio. Fig. 4.5 presents two methods for
implementing the fractional-N division ratio. Fig. 4.5(a) is the most basic architecture. It
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Figure 4.4: Layout of the divide-by-8/10 divider.

Figure 4.5: Implementations of fractional-N division ratio.

stores the controls bits in a shift register. This architecture is simple, but the difference
between the actual divider modulus and their average is a periodic sequence, resulting in
spur tone issues. Fig. 4.5(b) randomizes the sequence, where x is the fractional part of the
modulus and em[n] is the zero-mean quantization noise. This scheme results in em[n] being
a white noise. However, the noise at low frequency is still high for some applications. To
lower the phase noise, the Delta-Sigma Modulator (DSM) is applied in the proposed design
(Fig. 4.6). The DSM can generate the sequence of modulus such that most of the noise
power is well above the desired bandwidth of PLL. The high-frequency noise is suppressed
by the loop filter, improving the noise performance [70].

Division Ratio Quantization

To control the divide-by-8/10 divider presented in the previous section, a DSM with a
1-bit output is applied, as illustrated in Fig. 4.7. From a circuit perspective, the fractional
part (a fractional number between 0 and 0.4638) is fed into the DSM, which generates the
control bit sequence to control the 8/10 divider. This causes the division ratio to alternate
between 8 and 10. Logically, this process is equivalent to feeding a sequence of x[n] (x[n]
can be 0 or 2) into a divider, where the division ratio is (8 + x[n]). For the convenience of
DSM coding, all numbers are converted to signed numbers. A divider with a division ratio
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Figure 4.6: Chirp generator with a Delta-Sigma Modulator.

Figure 4.7: 1-bit DSM controls the division ratio of the divide-by-8/10 divider.

of (9 + x[n]) is controlled by a sequence of −1 and 1. Correspondingly, the fractional part
of the division ratio, or the input of the DSM, ranges from −1 to −0.5362.

For quantization, the fractional part k is quantified as qk = floor
(
k · 2bit in−1

)
, where

bit in is the number of DSM input bits, and the function floor rounds the variable to the
nearest integer less than or equal to it. The range is as follows

−1 ≤ k < 1 (4.1)

−2bit in−1 ≤ qk < 2bit in−1 (4.2)
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Figure 4.8: Block diagram of the 2nd-order 1-bit output DSM.

FMCW radar parameters can be calculated. The Frequency resolution fres, total number of
steps Nstep, and step time Tstep can be expressed in terms of bit in

fres =
fref

2bit in−1
(4.3)

Nstep = floor
[
(N1 − 9) · 2bit in−1

]
− floor

[
(N0 − 9) · 2bit in−1

]
+ 1 (4.4)

Tstep =
Tchirp

Nstep

(4.5)

where N0 is the division ratio at the beginning of the chirp (N0 = 8) and N1 is the one at
the end of the chirp (N1 = 8.4638).

Implementation of DSM

Fig. 4.8 shows the block diagram of the 1-bit output DSM. The signal transfer function
and noise transfer function are

TFsignal =
1

z
(4.6)

TFnoise =
1(

1− 1
z

)2 (4.7)

The DSM is implemented in Verilog, as shown below. The number of input bits is de-
termined by the linearity calculation. The number of extension bits, denoted as bit ext, is
selected to ensure that the internal signals do not overflow.

1 ‘timescale 1ns / 1ps

2 module DSM #(

3 parameter bit_in =12,

4 parameter bit_ext =11

5 )(
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6 input [bit_in -1:0] u ,

7 input clk ,

8 input rstn ,

9 output v

10 );

11 reg [bit_in+bit_ext -1:0] int1;

12 reg [bit_in+bit_ext -1:0] int2;

13 reg v_reg;

14 wire [bit_in+bit_ext -1:0] y1;

15 wire [bit_in+bit_ext -1:0] y2;

16 wire [bit_in+bit_ext -1:0] y3;

17 wire [bit_in+bit_ext -1:0] y4;

18 wire [bit_in+bit_ext -1:0] feedback;

19 assign y1 = $signed(u)-$signed(feedback );
20 assign y2 = $signed(int1)+ $signed(y1);
21 assign y3 = $signed(y2)-$signed(feedback );
22 assign y4 = $signed(y3)+ $signed(int2);
23 assign feedback= ~v_reg?( $signed(-1)<<<(bit_in -1)):
24 ($signed (1)<<<(bit_in -1));
25 always @(posedge clk ) begin

26 if(!rstn)

27 int1 <= ’d0;

28 else

29 int1 <= y2;

30 end

31 always @(posedge clk ) begin

32 if(!rstn)

33 int2 <= ’d0;

34 else

35 int2 <= y4;

36 end

37 always @(posedge clk ) begin

38 if(!rstn)

39 v_reg <= 1’b1;

40 else

41 v_reg <= ~y4[bit_in+bit_ext -1];

42 end

43 assign v=v_reg;

44 endmodule

The Verilog code can be inserted into Cadence Virtuoso to run transient simulations with
other circuits blocks. However, during the design phase, it’s faster to debug and tune pa-
rameters of the DSM in Matlab. The corresponding code is provided below. The Matlab
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code is equivalent to the Verilog code.

%% 2nd-order Delta -Sigma Modulator operation

y1(1)=u(1)-v(1) *2^( bit_in -bit_out);

y3(1)=y2(1)-v(1) *2^( bit_in -bit_out);

for k=2: length(t)

y4(k)=y4(k-1)+y3(k-1);

% quantizer / comparator

if y4(k)<0

v(k)=-1;

v_real(k)=0;

else

v(k)=1;

v_real(k)=2;

end

if k>= aver_bit_N

aver_v(k-aver_bit_N +1)=sum(v(k-aver_bit_N +1:k))/

aver_bit_N *2^( bit_in -bit_out); % Note: to compare

the average output with input , it's multipled by 2^(

bit_in -bit_out)

aver_v_real(k-aver_bit_N +1)=sum(v_real(k-aver_bit_N +1:k

))/aver_bit_N; % the logic average

output next stage will see

end

y1(k)=u(k)-v(k)*2^( bit_in -bit_out);

y2(k)=y1(k)+y2(k-1);

y3(k)=y2(k)-v(k)*2^( bit_in -bit_out);

end

The code for simulating the DSM is presented in Appendix C.

4.3 Simulation Results

The DSM is simulated and verified using three types of test: the DC test, the sine-wave
test, and the ramp test, both with Matlab and in Cadence Virtuoso.

DC Test

A DC test involves fixing the input of the DSM, calculating the average value of the output,
and checking if it equals the input. Fig. 4.9 presents the simulation results. The input is
set as −0.2345. The corresponding quantified input is −480, and the average of the output
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Figure 4.9: Simulation results for DC input.

Figure 4.10: Simulation results for sine-wave input.

signal is −481.28. In Fig. 4.9, the input is compared to the moving average of the output,
which is the average value of the latest 2000 outputs. The number of recent outputs used to
calculate the moving average can be set to other values. This test verifies the functionality
that the average value of the DSM output equals the input, even though the output is 1-bit
long. Other input values can also be tested. For instance, when the input is −0.5362, the
quantified input is −1098, and the average output is −1097.728.

Sine-wave Test

A sine-wave test is used to verify the noise shaping function by applying a sine-wave input.
Fig. 4.10 displays the simulation results. In this instance, a 300kHz sine-wave is applied.
The average output follows the input signal. Similar to the DC test, the moving average only
calculates the average value for the most recent 2000 outputs. The spectrum of the output
signal is calculated and depicted in Fig. 4.11. The noise shaping effect is clearly visible.
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Figure 4.11: Output spectrum with a sine-wave input.

Ramp Test

In the ramp test, a ramp input is applied to simulate the chirp generation operation. The
moving average of the output should follow the input ramp. Fig. 4.12 shows the simulation
results. In this case, the chirp slope is set to 10MHz/µs. At each step, the input switches
to a new value, and the output follows it. The division ratio is expected to start from 8
and end at 8.4638. The simulation results align with the design. For this test, the moving
average is calculated from the most recent 500 outputs instead of 2000, as there are only
approximately 2400 sampling points at each step.

Verification in Cadence Virtuoso

The sine-wave test and the ramp test are conducted in Cadence Virtuoso. Fig. 4.13 and
Fig. 4.14 show their simulation setup respectively. The simulation results match the ones in
Matlab.
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Figure 4.12: Simulation results for the ramp test.

Figure 4.13: Simulation setup for the sine-wave test.
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Figure 4.14: Simulation setup for the ramp test.

4.4 Conclusion

As a crucial part of the fractional-N PLL, the frequency division modules are discussed in
this chapter. A divide-by-8/10 divider is chosen, and a DSM is used to control it, thereby
implementing the fractional division ratio. The DSM is simulated and verified using both
Matlab and Cadence Virtuoso.
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Chapter 5

High-Frequency Circuit Design and
Modeling

5.1 Introduction

Modern integrated circuitry utilize high-speed Complementary Metal-oxide Semiconductor
(CMOS) devices as digital logic elements extensively, including frequency dividers [71], as
latches and adders/multipliers in high-speed links, and in high-speed mixed-signal circuits.
Increasingly, analog and even RF circuits utilize digital logic gates as high speed building
blocks in digital friendly approaches to realize traditionally all analog transceivers [72], power
amplifier [73], and frequency synthesizers [74].

In the proposed PLL, there are circuit blocks like prescaler and divider that operate at
high frequencies. In order to design and optimize high-speed digital circuitry, one requires an
accurate analytical and predictable delay model. While propagation delay models for both
sub-threshold and super threshold region of MOSFET operation are widely known [1][75] – a
void still exists for a universal physics based delay model valid for both sub-threshold as well
as super threshold regions. In many delay models the approach is heavily empirical fitting
based, raising concern for accuracy and consistency under diversified operating conditions
[1][76][77]. A plethora of logic issues has been addressed in literature to model the sub-
threshold or super-threshold propagation delay, yet only a few put forth a physics based
model [78]. Most importantly, to the best of our knowledge, there is no reported modeling
work on the impact of bias dependent mobility over the propagation delay – although the
direct influence of effective mobility on the drain current and its critical dependency on
applied voltage and temperature [79] are well studied. So from the designers perspective,
a universal physics based delay model coupled with a simple yet accurate PVT dependent
mobility equation is of cardinal importance.
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Within a vast PVT range, an accurate propagation delay model ensures correct estimation
of the circuit’s maximum operating frequency, during the circuit design phase itself. It is
well known that propagation delay is highly sensitive to factors like input transition time
(rise time and fall time), device dimensions and PVT variations [75][77]. The present work
furnishes a complete physics based universal delay model which handles all these factors along
with a novel mobility and stacking model, while being easily translatable to MOSFET based
advanced devices like NCFET [80]. Grounded on the charge based EKVMOSFET model[79],
a custom charge based delay modeling approach is adopted all-throughout. Another salient
reason behind choosing a charge based approach is that, unlike threshold voltage based
model (e.g. BSIM 1 to 4 [81]), it has a single drain current equation valid for all regimes.
Extensive simulations have been performed using commercial foundry 22nm, 28nm CMOS
processes along with UC Berkeley’s in-house 90nm NCFET process (BSIM4.5 extraction[81])
in transient simulation platform to ensure the validity of the proposed model.

This chapter is divided into six sections, including the introduction. Section II describes
the analytical proposed universal charge based propagation delay model, derived on a single
MOSFET with a capacitive load. The next section formulates the stacking effect of several
MOSFETs, in charge based approach. The fourth section describes the bias dependent
analytical mobility model, which is an unique contribution of this work in the domain of
digital / mixed signal circuits. In the fifth section the combined model is validated for
an array of scenarios ranging from single transistor including transistor stacks and a ring
oscillator. The sixth section concludes the chapter.

5.2 Analytical Delay Model Derivation

As discussed in the introduction, we strive for establishing a charge based process indepen-
dent generalised analytical delay model for CMOS based circuits. The modeling methodology
is based on primarily working out the delay model for a single N-type MOSFET with a sin-
gle lumped capacitive load at drain (involving intrinsic Miller capacitance), as depicted in
Fig. 5.1.

The drain to source current (IDS) for an NMOSFET is given by EKV model as [79],

IDS = 2mµeffCox(W/L)ϕ2
t (if − ir) (5.1)

Here m = sub-threshold slope factor, µeff = effective mobility, Cox = oxide capacitance
per unit area, W (L) = width(length) of the MOSFET, ϕt = kT/q = thermal voltage,
if(r) = MOSFET normalized source(drain) current (see Appendix D) [79]. In Eq. 5.1 the
quantities m and if(r) are only dependant on input gate-to-source voltage (Vg), whereas
µeff is dependant both on Vg and drain-to-source or the output voltage (Vout) – and their
expressions are listed in Appendix D.
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Figure 5.1: Normalized forward and reverse terminal currents in NMOS transistor with (a)
intrinsic capacitance network and external capacitance load, (b) lumped equivalent output
load capacitance (CL).

In Fig. 5.1, if the load CL is to discharge through the NMOSFET, when Vg makes a
low-to-high transition (0 to VDD) – then Vout swings from VDD to 0. So by definition, the
‘high-to-low’ propagation delay (tPHL) is the gap between the time instants when Vg = VDD/2
and Vout = VDD/2 [1]. So in order to work out a process-independent, analytical and fully
portable model of tPHL, we need to effectively focus only on the input and output ranges
of (VDD ≥ Vg ≥ VDD/2) and (VDD ≥ Vout ≥ VDD/2) respectively. This simple observation
enables us to make several important approximations in the tPHL modeling approach:

1. As within the range VDD ≥ Vg, Vout ≥ VDD/2 the charge contribution of the source
terminal is always much more than that of drain terminal – we neglect ir in Eq. 5.1.

2. The bias-dependent sub-threshold slope factor m is replaced by the near Fermi-level
approximated sub-threshold slope factor m0.

3. Instead of using the effective mobility µeff as function of bias voltages Vg and Vout,

we use µeff = µ
(tr)
eff as function of input voltage slope (rise time) tr. This way µeff

becomes independent of time, and easier to handle.

Hence after applying the above approximations in Eq. 5.1 we arrive at,

IDS = 2m0µ
(tr)
effCox(W/L)ϕ2

t if (5.2)

We compare Eq. 5.2 with the drain current equation Eq. 5.1 for VDD/2 ≤ Vg, Vout ≤ VDD

through Fig. 5.2 – which ratifies our approximation.

At the drain terminal of the NMOSFET in Fig. 5.1,

CL
dVout

dt
= −K(tr)

n if (5.3)



CHAPTER 5. HIGH-FREQUENCY CIRCUIT DESIGN AND MODELING 65

Figure 5.2: Comparison of approximated drain current model Eq. 5.2 (symbols) with exact
drain current model Eq. 5.1 (lines).

Figure 5.3: Input and output waveform schematic.

where K
(tr)
n = 2m0µ

(tr)
effCox(W/L)ϕ2

t is the trans-conductance parameter. As if is a function
of Vg as given in Eq. D-1(in Appendix D) – which is in-turn a function of time (t). From
Fig. 5.3, Vg can be defined as,

Vg(0 ≤ t ≤ tr) = VDD(t/tr) (5.4)

Vg(t > tr) = VDD (5.5)

To calculate the time difference in between the instances when Vg = VDD/2 and Vout =
VDD/2 (or the propagation delay tPHL), we first need to find Vx = Vout at t = tr Fig. 5.1.
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Again from Eq. D-1 it can be noted that if is a function of vp (which again is a function of
Vg). Hence changing variable from t to vp (expression given in Eq. D-3) and solving Eq. 5.3
for Vx we get,

Vx = VDD − AVDD
K(tr)

n tr/CL∆vp (5.6)

AVDD
=

1

12
Wl

3(2evp(VDD)) +
3

8
Wl

2(2evp(VDD)) +
1

2
Wl(2e

vp(VDD)) (5.7)

where ∆vp = vp(VDD) − vp(0), vp(VDD(0)) = vp at Vg = VDD(0)

It logically follows that there might arise two cases (shown in Fig. 5.3) when,

1. Vx ≥ VDD/2 or when Vout is yet to arrive at VDD/2 within 0 ≤ t ≤ tr. So Vout discharges
from Vx up to VDD/2 within tr < t ≤ tr+∆t (Fig. 5.3) – when Vg has stabilized Eq. 5.5.
Thus using Eq. 5.3 and Eq. 5.5,

CL

∫ VDD/2

Vx

dVout = −K(tr)
n if(VDD)

∫ tr+∆t

tr

dt (5.8)

Here if(VDD) = if at Vg = VDD (D-1). Hence solving Eq. 5.8 for ∆t,

∆t =
CL(Vx − VDD/2)

K
(tr)
n if(VDD)

(5.9)

So with reference to Fig. 5.3 the delay model for Vx ≥ VDD/2 condition is given by,

tPHL =
tr
2
+ ∆t =

tr
2
+

CL(Vx − VDD/2)

K
(tr)
n if(VDD)

(5.10)

2. Vx < VDD/2 or when Vout has already discharged beyond VDD/2 within 0 ≤ t ≤ tr.
So in this case we need to solve the governing differential equation Eq. 5.3 directly to
obtain tPHL as,

CL

∫ VDD/2

VDD

dVout = −K(tr)
n

∫ τ

0

ifdt (5.11)

Here τ = tr/2 + tPHL. Changing variable to vp from t in Eq. 5.11 and solving

CLVDD∆vp/trK
(tr)
n =

1

6
Wl

3(2evp(τ)) +
3

4
Wl

2(2evp(τ)) +Wl(2e
vp(τ)) (5.12)

Here vp(τ) = vp(0) + τ∆vp/tr. Solving Eq. 5.12 gives
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Figure 5.4: NMOS transistor stacking.

tPHL =
tr
∆vp

[logeβr + 2βr − vp(0)]−
tr
2

(5.13)

where

βr =
1

4
(θr + 1/θr − 3) (5.14)

θr = (4
√

36a2r + 27ar + 5 + 24ar + 9)1/3 (5.15)

ar = CLVDD∆vp/trK
(tr)
n (5.16)

Thus the equations Eq. 5.10 and Eq. 5.13 depict the analytical model for tPHL.

5.3 Transistor Stacking

In the previous section, we discussed the analytical delay model for a single NMOS tran-
sistor with a capacitive load. In real world digital circuits, we frequently encounter transistor
stacking in various digital building blocks e.g. gates, latches etc. In this work we demon-
strate the model using a 2-transistor stack as in Fig. 5.4, which can be easily extended to
the generalised N -transistor case.

Referring to Fig. 5.4 and using Eq. 5.1 we can write the expression of drain current IDS

of the NMOS stack arrangement as follows

IDS = K
(tr)
n,T2

[(q2i,1 + qi,1)− (q2i,out + qi,out)] = K
(tr)
n,T1

[(q2i,Gnd + qi,Gnd)− (q2i,1 + qi,1)] (5.17)

Here K
(tr)
n,T1(2)

= K
(tr)
n for transistor T1(2) and qi,1(Gnd)(out) = Normalized inversion charge

Eq. D-2 at V1(Ground)(Vout). Performing IDS/K
(tr)
n,T1

+ IDS/K
(tr)
n,T2

on Eq. 5.17 yields

IDS = K
(tr)
n,equiv

[
(q2i,Gnd + qi,Gnd)− (q2i,out + qi,out)

]
(5.18)
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HereK
(tr)
n,equiv = (1/K

(tr)
n,T1

+1/K
(tr)
n,T2

)−1 which is the equivalent trans-conductance parameter
for the stacked 2-NMOSFET arrangement (Fig. 5.4). Evidently this can be easily extended
generalised for N -stack case as

K
(tr)
n,equiv = [

N∑
i=1

1/K
(tr)
n,Ti

]−1 (5.19)

So by substituting Eq. 5.19 in Eq. 5.6 - Eq. 5.13, we may get the delay model for transistor
stacking arrangement.

5.4 Modeling the Effective Mobility

The existing models of effective mobility (µeff ) tackles the PVT variation of µeff through
semi-empirical functions of electric field [79][81][82] . This approach poses enormous challenge
to model tPHL – because the non-linear electric field terms become tough to manipulate
under time variance. As µeff affects tPHL through the pivotal IDS equation Eq. 5.2 and in
digital circuits we primarily use square pulses with finite rise time tr, we intended to find an
efficacious model for µeff as a function of tr only.

It is well studied that inside the channel the effective mobility degrades mostly due to the
gate electric field [82], because it is comparatively stronger than the drain-source electric
field as oxide thickness tox ≪ L (L = channel length). Thus we adapt a twofold modeling
strategy, where we first extract µeff at only the average output swing voltage VDD/2 for
three Vg points in-between VDD/2 and VDD and then work out tr values corresponding to

them – finally constructing a function µ
(tr)
eff varying with tr, using these extracted µeff and

obtained tr. We start the derivation by rearranging the equation Eq. 5.12

tr = CLVDD∆vp/2Avp(τ)K
(tr)
n (5.20)

Avp(τ) =
1

12
Wl

3(2evp(τ)) +
3

8
Wl

2(2evp(τ)) +
1

2
Wl(2e

vp(τ)) (5.21)

Recalling vp(τ) = vp(0) + τ∆vp/tr and τ = tr/2 + tPHL we trivially find vp(τ) for individual
tPHL = 0, tr/4 and tr/2 or τ = tr/2, 3tr/4, tr. By the definition of tPHL, within 0 ≤ t ≤ tPHL

the drain current IDS swings from high to low until Vout = VDD/2 – and within this time

vp swings up from vp = vp(0) + ∆vp/2 to vp = vp(0) + τ∆vp/tr Eq. 5.12. So we extract µ
(tr)
eff

for the range (vp(0) + ∆vp/2) ≤ vp ≤ (vp(0) + τ∆vp/tr) at the mean vp, i.e. vp(µeff ext) =
vp(0) +∆vp(1/4 + τ/2tr) ( or at equivalent Vg ≈ Vg(µeff ext) = VDD(1/4 + τ/2tr)).
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Table 5.1: Variables involved in µ
(tr)
eff modeling

τ vp(τ) Avp(τ)
Vg(µeff ext) µ

(tr)
eff

(K(tr)
n ) extracted tr(Vg(µeff ext))

( Eq. 5.20)

tr/2 vp(VDD/2) = vp(0) +
∆vp
2 Avp(VDD/2)

VDD/2 µ(VDD/2)(Kn(VDD/2)) tr(VDD/2) =
CLVDD∆vp

2Kn(VDD/2)Avp(VDD/2)

3tr/4 vp(3VDD/4) = vp(0) +
3∆vp

4 Avp(3VDD/4)
5VDD/8 µ(5VDD/8)(Kn(5VDD/8)) tr(5VDD/8) =

CLVDD∆vp
2Kn(5VDD/8)Avp(3VDD/4)

tr vp(VDD) = vp(0) + ∆vp Avp(VDD)
3VDD/4 µ(3VDD/4)(Kn(3VDD/4)) tr(3VDD/4) =

CLVDD∆vp
2Kn(3VDD/4)Avp(VDD)

For extraction, we substitute the IDS from SPICE simulator to Eq. 5.1, at above bias
conditions. So the extracted µ

(tr)
eff in this way, includes the secondary effects like channel

length modulation. The scheme is elaborated in Table. 5.1.

From Eq. 5.20 - Eq. 5.21 it can be observed that Avp(τ) dominates the numerator of Eq. 5.20
because of its inherent bias dependent exponential terms, and moreover is a monotonically
increasing function of vp(τ). So intuitively it can be said that, Avp(VDD/2)

≪ Avp(VDD)
or

Avp(3VDD/4)
– which means tr(VDD/2) ≫ tr(5VDD/8) or tr(3VDD/4). As for tr → tr(VDD/2) we have

µ
(tr)
eff → µ(VDD/2), µ

(tr)
eff saturates to µ(VDD/2) as tr → tr(VDD/2) when tr(VDD/2) is very large. We

exploit this saturating behaviour to model µ
(tr)
eff as a function of tr. We interpolate Table. 5.1

data to ‘Logistic function’ [83] having the following generic form for real x,

fLogistic(x) =
K

1 + exp[−α(x− δ)]
(5.22)

whereK, α, δ are real constants and can be found out using appropriate boundary conditions.
It trivially follows thatK = lim

x→∞
fLogistic(x) = the maximum value that fLogistic(x) can attain.

Therefore using Eq. 5.22 we may write the functional form of µ
(tr)
eff with respect to tr as,

µ
(tr)
eff =

µ(VDD/2)

1 + exp[−αr(tr − δr)]
(5.23)

From previous discussions and involving Table. 5.1, we may infer that lim
tr→∞

µ
(tr)
eff = µ(VDD/2).

Moreover using Table. 5.1 data we may calculate αr and δr having respective forms

αr =
loge[

µ(5VDD/8)

µ(3VDD/4)
(
µ(VDD/2)−µ(3VDD/4)

µ(VDD/2)−µ(5VDD/8)
)]

tr(5VDD/8) − tr(3VDD/4)

(5.24)

δr = tr(3VDD/4) −
1

αr

loge[
µ(3VDD/4)

µ(VDD/2) − µ(3VDD/4)

] (5.25)

Eq. 5.23 is the mobility model as a function of tr.
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Figure 5.5: Variation of delay with rise-time (tr) (Line: proposed model, symbol: simulation,
dotted line: delay model in [1]).

5.5 Delay Model Validation

We validated our proposed model using commercial foundry processes – 22nm and 28nm
CMOS as well as our in-house Berkeley-NCFET 90nm process, across a variable range of
device dimensions, VDD as well as rise time tr. Moreover, we have demonstrated the validity
of this model under large temperature and capacitive load variation – which indeed should
demonstrate the robustness, efficacy and practicality of the model.

In order to quantify the effective output capacitive load (CL) accurately, we have used CL =
CL,external +CL,intrinsic. Here CL,external is the external load attached to the output, whereas
CL,intrinsic is the intrinsic capacitance of the MOSFET. CL,intrinsic is obtained through SPICE
simulation.

Fig. 5.5 depicts the variation of the proposed model with rise time (tr) and external capac-
itive load (CL,external) against SPICE simulation and the popular empirical delay model given

by the equation tPHL =
√

t2PHL(tr=0) + (tr/2)2 [1]. This study clearly shows the accuracy of

our proposed model. Fig. 5.6 depicts the variation of the proposed model with rise time (tr)
under power supply variation.

Dependence of the proposed delay model over device channel width (W ) is shown in Fig. 5.7
under variable external loading (CL,external). We use CL,intrinsic = CL,intrinsic,nominal(W/Wnominal)
= cumulative intrinsic capacitance of the transistors, including parasitics. Wnominal = nom-
inal channel width for which the CL,intrinsic,nominal is extracted.
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Figure 5.6: Variation of delay with rise-time (tr) and bias voltage (VDD) (Line: proposed
model, symbol: simulation).

Figure 5.7: Variation of delay with NMOS channel width (W ) and capacitive load
(CL,external) (Line: proposed model, symbol: simulation).
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Figure 5.8: Variation of delay with rise time (tr) and temperature (Line: proposed model,
symbol: simulation).

Figure 5.9: Variation of delay with rise time (tr) using 22nm CMOS process (Line: proposed
model, symbol: simulation).

When the operating temperature changes, along with degradation in effective mobility
µ
(tr)
eff [75] the intrinsic carrier concentration ni as well as the bandgap Eg vary [82]. Hence

the drive current also responds to that change, ultimately affecting the propagation delay.
Therefore the validation of the a delay model with respect to temperature change is critical
and we have furnished that study through Fig. 5.8.

Apart from 28nm CMOS process, we have validated the proposed model in 22nm CMOS
process in Fig. 5.9 and Fig. 5.10.
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Figure 5.10: Variation of delay with channel width (W ) using 22nm CMOS process (Line:
proposed model, symbol: simulation).

Figure 5.11: Variation of delay with rise time (tr) using in-house Berkeley 90nm NCFET
process (BSIM4.5 extraction) (Line: proposed model, symbol: simulation).

We further validate our claim that the proposed delay model is equally effective for more
advanced transistors based on planar MOSFET architecture. Planar Negative Capacitance
FET (NCFET) is such a device – invented at UC Berkeley [80], which already has gained
momentum due to its promise for sub-60mV/ decade subthreshold slope. Using the mea-
surement data from the in-house fabricated 90 nm planar NCFET device, we first extract
a BSIM4.5 model card [81] – where tox = 2.8nm in the BSIM4.5 extraction. Based on
the model card we validate the delay model for a single transistor (Fig. 5.11), as well as a
2-transistor stack (Fig. 5.12, Fig. 5.13).
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Figure 5.12: Schematic of the two transistor stack connected to an effective capacitive load
(CL).

Figure 5.13: Variation of delay with rise time (tr) for a 2 transistor stack (Fig. 5.12) using in-
house Berkeley 90nm NCFET process (BSIM4.5 extraction) (Line: proposed model, symbol:
simulation).

The proposed model is further applied in standard circuit implementation. We imple-
mented a 31-stage as well as a 61-stage CMOS Ring Oscillator [1] with NMOS driver (W/L
= 100nm / 30nm) and PMOS load (W/L = 130nm / 30nm) in the 28 nm CMOS process.
The variation of oscillation frequency with the supply voltage VDD is captured accurately by
the proposed model, as shown in Fig. 5.14.

5.6 Conclusion

In this chapter we have proposed a charge based analytical and portable propagation
delay model for CMOS high-speed circuits. This computationally efficient and accurate
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Figure 5.14: Variation of Ring Oscillator oscillation frequency with supply voltage VDD

(Line: proposed model, symbol: simulation).

model covers all the regions of MOSFET operation and is shown to be process independent.
A major contribution of this work is the simple mobility model it proposes, which addresses
the inevitable electric field dependent mobility degradation phenomenon as a function of
input slope. We also demonstrated that the proposed charge based delay model is equally
applicable for more advanced transistors (e.g. planar NCFET) derived from planar MOSFET
architecture.
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Chapter 6

Prototype and Measurement Plan

6.1 Prototype

The proposed PLL was taped out in July 2023. Fig. 6.1 shows the layout of the PLL core,
and Fig. 6.2 presents the pad definition. In this version, the reference signal is fed through
a GSSG probe from an external instrument, and the divided output is sent to a GSG pad.
The DSM is implemented off-chip, and the control signal is fed into the chip through the
pad MC.

Figure 6.1: Layout of the proposed PLL core.
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Figure 6.2: Pads of the taped-out chip.

6.2 Measurement Plan

For measurement of the stand-alone PLL as a chirp generator, the key metrics are phase
noise and chirp linearity. As mentioned in Chapter 2, in FMCW radar applications, the
dynamic phase noise is important for the radar performance. But in practical measurement,
only static phase noise can be measured, as an indicator of the dynamic phase noise of the
PLL. According to calculations, the dynamic phase noise is 2 ∼ 3 dBc/Hz higher than the
static one.

1. Fix the division ratio and measure the output frequency to verify the functionality of
the PLL.

2. Vary the division ratio to measure the frequency range the PLL can operate.

3. Fix the division ratio and measure the phase noise.

4. Vary the bias current of the charge pump and measure the phase noise.

5. Modulate the division ratio and measure the output frequency to verify the chirp
generating functionality. Plot the fout(t)− t curve and calculate linearity metrics, such
as FM RMS error and peak error.

6. Vary the chirp slope. Measure and plot fout(t)−t curve and calculate linearity metrics.
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Chapter 7

Conclusions

In this thesis, we have illustrated the PLL design for FMCW radar systems. The FMCW
radar imposes requirements on the PLL-based chirp generator in several aspects. Both the
phase noise and the bandwidth of the PLL influence the measurement accuracy and resolu-
tion of the radar. The phase noise should be minimized, given a certain power consumption,
and the bandwidth needs to be matched with the FMCW chirp slope to achieve better
linearity.

For system-level design, unlike PLLs for other applications, the output of the chirp gen-
erator PLL is always changing. In many applications, such as precision measurement, the
output never truly settles at each step. This necessitates careful modeling of the loop dynam-
ics. In this thesis, conventional PLL phase noise and settling time models are presented and
adapted for the chirp generator. However, these models are insufficient for optimizing the
design. Therefore, a more accurate time-domain model for calculating the chirp is proposed.
This model aids in designing the PLL bandwidth, calculating the acceptable chirp slope for
a given PLL, and computing the dynamic phase noise. To the best of our knowledge, this is
the first relatively accurate model for the entire chirp generation process.

For the design of circuit blocks, the frequency division modules, which include a dual-
modulus divider and a Delta-Sigma Modulator, are presented. For the high-frequency circuit,
an analytical model and a corresponding design methodology are proposed. The PLL has
been taped-out, and measurements will be conducted in the near future.

In conclusion, this thesis presents the design of the PLL used for the FMCW radar chirp
generator. Considerable effort has been expended on the fine and detailed modeling of the
PLL. For the first time, a time-domain calculation method is proposed to model the entire
chirp.
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Appendix A

Matlab Code for Noise and Settling
Time Calculation

clear all

close all

clc

%% Parameters

% PLL circuit block parameters

Icp =150e-6;

Kpd=Icp/2/pi;

Kvco =50e6;

N=8;

order_lpf =2; % order of the LPF

dsm_order =2; % order of the DSM

ref_noise_on =1; % noise of reference 1=on 0=off

ref_source =1; % options of reference source in BWRC lab:

% source option 1: HP 83732A, worse phase noise

performance

% source option 2: Agilent E4438C , moderate

phase noise performance

% source option 3: Agilent E8267D , best phase

noise performance

% FMCW chirp parameters

FMCW_bandwidth =8e+9;

chirp_slope =200 *1e+6/1e-6;

T_chirp=FMCW_bandwidth/chirp_slope;
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ref_freq =2.875e+9; % reference frequency

fref=ref_freq;

wref =2*pi*fref;

PFD_cycle =1/ ref_freq;

% Delta -Sigma modulator (DSM) and divider parameters

bit_in =12; % input bit number of DSM.

% This is a 1-bit -output DSM

N_freq_multi =6; % frequency multiplication ratio after VCO

f1_vco =23e+9; % VCO starting frequency

f2_vco=f1_vco+FMCW_bandwidth/N_freq_multi;%VCO ending frequency

N0=f1_vco/fref; % starting division ratio=8

N1=f2_vco/fref; % ending division ratio =8.4638

% Choose to use divide -by -8/10 prescaler.

% Following designs are based on such prescaler.

alpha=(N1-N0)/T_chirp; % slope of division ratio

q_N0=ceil((N0 -9+0.0001) *2^( bit_in -1));

q_N1=ceil((N1 -9) *2^( bit_in -1));

N_step=q_N1 -q_N0 +1; % number of frequency steps

T_step=T_chirp/N_step;

N_PFD_cycle=T_chirp/N_step/PFD_cycle;% number of PFD cycles in

one chirp step

freq_resolution=fref /2^ bit_in;% frequency step/resolution

% simulation parameters for phase noise

fstart = 10e3;

fstep = 1e3;

fend = 100e6;

foff = fstart:fstep:fend;% offset frequency from the carrier

s = 1i*2*pi*foff;

Kboltzmann = 1.38e-23;

T_room = 300;

%% Noise sources

% reference signal: from testing instrument

% source option 1: HP 83732A

% source option 2: Agilent E4438C

% source option 3: Agilent E8267D

if ref_source ==1

n_ref_floor =10^( -140/10);
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fc_ref =2.8184e+6;

phi_ref=sqrt(n_ref_floor *( fc_ref ./foff +1));

elseif ref_source ==2

n_ref_floor =10^( -140/10);

fc_ref =1e+6;

phi_ref=sqrt(n_ref_floor *( fc_ref ./foff +1));

else

n_ref_floor =10^( -140/10);

fc_ref =200e+3;

phi_ref=sqrt(n_ref_floor *( fc_ref ./foff +1));

end

% PFD+CP

phi_e_mean =0.363;% from linearity calculation

phi_e_mean_degree=phi_e_mean/pi *180;

alpha0 =6.6125/100;

ncurr0 =3.5e-12/ sqrt(alpha0 *2);

fc0_ncurr =8.3111e+6/( alpha0 *2);

if abs(phi_e_mean)<pi

duty_cycle=abs(phi_e_mean)/2/pi;

elseif abs(phi_e_mean)>pi && abs(phi_e_mean) <2*pi

duty_cycle =(2*pi-abs(phi_e_mean))/2/pi;

end

n_floor=ncurr0*sqrt(alpha0 *2+ duty_cycle);

fc_pfdcp=fc0_ncurr *( alpha0 *2+ duty_cycle);

ncurr_pfdcp=n_floor*sqrt(fc_pfdcp ./foff +1);% noise current

%spectrum , in A/sqrt(Hz)

% LPF

if order_lpf ==2% 2nd-order LPF

C1=1e-12;

C2=12e-12;

R2=15e+3;

A0=C1+C2;

A1=C1*C2*R2;

Zlpf =(1+R2*C2*s)./s./(A0+A1*s);

elseif order_lpf ==3% 3rd-order LPF

C1=5.4e-12;

C2=54.5e-12;

C3=54.5e-12;

R2 =34.38e+3;

R3 =34.38e+3;

A0=C1+C2+C3;

A1=C2*R2*(C1+C3)+C3*R3*(C1+C2);
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A2=C1*C2*C3*R2*R3;

A3=0;

Zlpf =(1+s*R2*C2)./(s.*(A0+s*A1+s.^2*A2+s.^3*A3));

else% 4th-order LPF

C1=5.4e-12;

C2=54.5e-12;

C3=54.5e-12;

C4=54.5e-12;

R2 =34.38e+3;

R3 =34.38e+3;

R4 =34.38e+3;

A0=C1+C2+C3+C4;

A1=C2*R2*(C1+C3+C4)+C4*R4*(C1+C2+C3)+R3*(C1+C2)*(C3+C4);

A2=C1*C2*R2*R3*(C3+C4)+C4*R4*(C2*C3*R3+C1*C3*R3+C1*C2*R2+C2

*C3*R2);

A3=C1*C2*C3*C4*R2*R3*R4;

Zlpf =(1+s*R2*C2)./(s.*(A0+s*A1+s.^2*A2+s.^3*A3));

end

ncurr_filter=sqrt (4* Kboltzmann*T_room .*real (1./ Zlpf));

% above: noise current of the filter

% VCO

PN_1M = -105; % phase noise @ 1 MHz [dBc]

fc_vco = 10e6; % 1/f^3 cut frequency

fout = 23e9; % output frequency

f1M=1e6;

n_floorVCO = 10^( PN_1M /10)*f1M ^2/(1+ fc_vco/f1M);

phi_vco = sqrt(n_floorVCO *(1./ foff .^2+ fc_vco ./foff .^3));

% DSM

fs=fout/N;

nv_dsm=sqrt ((2*pi)^2/12/ fs*(2* sin(pi*foff./fs)).^(2*( dsm_order

-1)));

%% Transfer functions

Gfwd= Icp*Kvco*Zlpf./s;

Grev =1/N;

T=Gfwd*Grev;

Gnref=N*Gfwd ./(N+Gfwd);

% PFD and CP

Gicp =2*pi/Icp*Gnref;
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% LPF

Glpf = (2*pi/Icp).* Gnref;

% VCO

Gvco =1./(1+T);

% divider

Gdiv=-Gnref;

%% Settling time calculation

% this calculation assumes the step time is infinite

% 2nd-order LPF parameters

b0=1;

b1=R2*C2;

b2=0;

a1=A0;

a2=A1;

t_end =30e-6;

t_step =0.1e-9;

t=[0: t_step:t_end ]; % time axis

y0=[pi wref /1000 0]; % initial conditions

[t,y]= ode45 (@(t,y) odefcn(t,y,b0 ,b1,b2,a1 ,a2,Kvco ,N0 ,wref ,Kpd ,

alpha),t,y0);

% above: function definition is at the end of the program

% calculate settling time

dphie=(y(:,1)-y(end ,1))/pi *180;

th_settling =0.01; % settling threshold in degree

[M_settle ,I_settle ]=min(abs(dphie -th_settling));

T_settling=I_settle*t_step; % settling time in us

%% Output phase noise calculation

% PFD+CP noise at the output

ncurr_pfdcp_o = ncurr_pfdcp .* Gicp;

% LPF noise at the output

ncurr_filter_o = abs(ncurr_filter) .* Glpf;

% VCO phase noise at the output

phi_vco_o = phi_vco .* Gvco;

% DSM phase noise at the output

nv_dsm_o=nv_dsm .*Gdiv;

% total noise

phase_noise_total=abs(ncurr_pfdcp_o).^2+ abs(ncurr_filter_o).^2+

abs(phi_vco_o).^2+ abs(nv_dsm_o).^2;
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phi_vco_o_dB = 10* log10(abs(phi_vco_o).^2);

ncurr_pfdcp_o_dB = 10* log10(abs(ncurr_pfdcp_o).^2);

ncurr_filter_o_dB = 10* log10(abs(ncurr_filter_o).^2);

nv_dsm_o_dB =10* log10(abs(nv_dsm_o).^2);

phase_noise_total_dB = 10* log10(abs(phase_noise_total));

%% Plots

% output phase noise contribution from circuit blocks

figure (1)

plot(log10(foff),phi_vco_o_dB ,'LineWidth ' ,2);
hold on

plot(log10(foff),ncurr_pfdcp_o_dB ,'LineWidth ' ,2);
plot(log10(foff),ncurr_filter_o_dB ,'LineWidth ' ,2);
plot(log10(foff),nv_dsm_o_dB ,'LineWidth ' ,2);
plot(log10(foff),phase_noise_total_dB ,'LineWidth ' ,2);
% plot(log10(foff),total_o_dB ,'LineWidth ',2);
hold off

legend('VCO','PFD+CP','Filter ','DSM','Total ');
xlabel('log10(offset freq.)','fontsize ' ,14)
ylabel('dBc/Hz','fontsize ' ,14);
title('Phase noise contribution without ref noise ');
% output phase noise including reference noise

if ref_noise_on ==1

phi_ref_o = phi_ref .* Gnref;

phase_noise_total_w_ref=abs(ncurr_pfdcp_o).^2+ abs(

ncurr_filter_o).^2+ abs(phi_vco_o).^2+ abs(nv_dsm_o).^2+

abs(phi_ref_o).^2;

phi_ref_o_dB =10* log10(abs(phi_ref_o).^2);

phase_noise_total_w_ref_dB = 10* log10(abs(

phase_noise_total_w_ref));

figure (2)

plot(log10(foff),phi_vco_o_dB ,'LineWidth ' ,2);
hold on

plot(log10(foff),ncurr_pfdcp_o_dB ,'LineWidth ' ,2);
plot(log10(foff),ncurr_filter_o_dB ,'LineWidth ' ,2);
plot(log10(foff),nv_dsm_o_dB ,'LineWidth ' ,2);
plot(log10(foff),phi_ref_o_dB ,'LineWidth ' ,2);
plot(log10(foff),phase_noise_total_w_ref_dB ,'LineWidth ' ,2);
%plot(log10(foff),total_o_dB ,'LineWidth ',2);
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hold off

legend('VCO','PFD+CP','Filter ','DSM','Ref','Total ');
xlabel('log10(offset freq.)','fontsize ' ,14)
ylabel('dBc/Hz','fontsize ' ,14);
%title('Phase noise contribution with ref noise ');

end

% % frequency response of PLL T

% figure (3)

% plot(log10(foff),log10(abs(T)));

% title('T of PLL ');
% xlabel('log(offset frequency)','fontsize ',14)
% ylabel('log10(T)','fontsize ',14);
PLL_bandwidth= interp1(abs(T),foff ,1);

PLL_phase_margin =180+ interp1(foff ,angle(Gfwd),PLL_bandwidth)/pi

*180;

% transfer function of the low -pass filter

% figure (4)

% plot(log10(foff),mag2db(abs(Zlpf)));

% title('LPF transfer function ');
% xlabel('log(offset frequency)','fontsize ',14)
% ylabel('dB(Z_{LPF}) ','fontsize ',14);

% % noise spectrum of DSM

% figure (5)

% plot(log10(foff),mag2db(abs(nv_dsm)));

% title('DSM phase noise ');
% xlabel('log(offset frequency)','fontsize ',14)
% ylabel('DSM phase noise ','fontsize ',14);

% put important plots in one window , which are figure 1, 4, and

7

figure (8)

subplot (1,3,1)% figure 1

plot(log10(foff),phi_vco_o_dB ,'LineWidth ' ,2);
hold on

plot(log10(foff),ncurr_pfdcp_o_dB ,'LineWidth ' ,2);
plot(log10(foff),ncurr_filter_o_dB ,'LineWidth ' ,2);
plot(log10(foff),nv_dsm_o_dB ,'LineWidth ' ,2);
plot(log10(foff),phase_noise_total_dB ,'LineWidth ' ,2);
hold off

legend('VCO','PFD+CP','Filter ','DSM','Total ');
xlabel('log10(offset freq.)','fontsize ' ,16)
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ylabel('dBc/Hz','fontsize ' ,16);
title('Phase noise contribution without ref noise ','

FontSize ' ,16);
subplot (1,3,2)% figure 4

plot(log10(foff),mag2db(abs(Zlpf)));

title('LPF transfer function ','FontSize ' ,16);
xlabel('log10(offset freq.)','fontsize ' ,16)
ylabel('dB(Z_{LPF})','fontsize ' ,16);

subplot (1,3,3)% figure 7

plot(t*1e+6,dphie ,'LineWidth ' ,3);
title(" Settling",'FontSize ' ,16);
xlabel('t/us','FontSize ' ,16);
ylabel('\phi_e^d in degree ','FontSize ' ,16);

x0=500;

y0=200;

width =1600;

height =600;

set(gcf ,'position ',[x0,y0,width ,height ]);

%% Print out some information and results

disp(['---------------------------------------------------']);
disp([9,' Report ']);
disp(['---------------------------------------------------']);
% FMCW parameters

disp([9,'FMCW paramters ']);
disp([9,'FMCW bandwidth ',9,9,num2str(FMCW_bandwidth /1e+9) ,9,'

GHz']);
disp([9,'Chirp duration ' ,9,9,9,num2str(T_chirp /1e-6) ,9,' us']);
disp([9,'Chirp slope ',9,9,9,num2str(chirp_slope /1e+12) ,9,' MHz/

us']);
disp([9,'DSM input bit number ',9,9,num2str(bit_in)]);
disp([9,'DSM input control word@start ',9,num2str(q_N0)]);
disp([9,'DSM input control word@end',9,num2str(q_N1)]);
disp([9,'Frequency step number ',9,num2str(N_step)]);
disp([9,'Frequency step/resolution ',9,num2str(round(

freq_resolution /10^6*100) /100) ,9,'MHz']);
disp(['---------------------------------------------------']);
% PLL parameters

T_step_us=T_step *1e+6; % T_step in us

T_settling_us=T_settling *1e+6;% T_settle in us

pn_10k=phase_noise_total_dB (1);

pn_1M=phase_noise_total_dB(find(foff ==1e+6));
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disp([9,'PLL paramters ']);
disp([9,'Step time ',9,9,9,num2str(T_step_us),9,' us']);
disp([9,'Settling time ',9, 9,9,num2str(T_settling_us) ,9,' us'

]);

disp([9,'Mean phase error ',9,9,num2str(phi_e_mean_degree) ,9,'
degree ']);

disp([9,'Phse noise @10 kHz',9,9,num2str(round(pn_10k)),9,' dBc/

Hz']);
disp([9,'Phse noise @1MHz ',9,9,num2str(round(pn_1M)),9,' dBc/

Hz']);
disp([9,'PLL bandwidth ',9,9,num2str(PLL_bandwidth /1e+6) ,9,'

MHz']);
disp([9,'PLL phase margin ',9,9,num2str(round(PLL_phase_margin)

),9,'degree ']);
disp(['---------------------------------------------------']);

%% Function definition

% rewrite 3rd-order ODE as 1st-order system

function dydt = odefcn(t,y,b0,b1 ,b2,a1,a2 ,Kvco ,N0,wref ,Kpd ,

alpha)

dydt=zeros (3,1);

dydt (1)=y(2);

dydt (2)=y(3);

dydt (3)=( -2*pi*Kvco/a2.*(b2*Kpd*y(3)+b1*Kpd*y(2)+b0*Kpd*

y(1))+a1/a2.*(2* alpha*wref -2* alpha*y(2) -(N0+alpha*t).*y

(3)) -3*alpha*y(3) )./(N0+alpha*t);

end
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Appendix B

Matlab Code for Chirp Calculation

clear all

close all

clc

% FMCW chirp parameters

FMCW_bandwidth =8e+9;

chirp_slope =200 *(1e+6/1e-6); % chirp slope in MHz/us

T_chirp=FMCW_bandwidth/chirp_slope;

fref =2.875e+9; % reference frequency

wref =2*pi*fref;

PFD_cycle =1/ fref;

N_freq_multi =6;% frequency multiplication ratio after VCO

f1_vco =23e+9;

f2_vco=f1_vco+FMCW_bandwidth/N_freq_multi;

N0=f1_vco/fref; % start division ratio=8

N1=f2_vco/fref; % end division ratio =8.4638

alpha=(N1 -N0)/T_chirp;

bit_in =12; % input bit number of DSM

q_N0=ceil((N0 -9+0.0001) *2^( bit_in -1));

q_N1=ceil((N1 -9) *2^( bit_in -1));

N_step=q_N1 -q_N0 +1;

T_step=T_chirp/N_step;

N_PFD_cycle=T_chirp/N_step/PFD_cycle;

% PLL circuit block parameters

Icp =150e-6;
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Kpd=Icp/2/pi;

Kvco =50e6;

% LPF

C1=1e-12;

C2=12e-12;

R2=15e+3;

b1=R2*C2;

b0=1;

a2=C1*C2*R2;

a1=C1+C2;

% Some simulation parameters

Np =1000; % number of time points in one step

%N_step =200; % for debugging

%

store_tphie=zeros(1,Np*N_step);

store_tfout=zeros(1,Np*N_step);

store_phie=zeros(1,Np*N_step);

store_dphie=zeros(1,Np*N_step);

store_d2phie=zeros(1,Np*N_step);

store_fout=zeros(1,Np*N_step);

store_dfout=zeros(1,Np*N_step);

for k=0: N_step -1 % calculate the time -domian response

step by step

Nk=N0+alpha*k*T_step;

% calculate the initial values for step k

% varibale x0 is for phie calculation

% variable y0 is for fout calculation

if k==0 % the first step

x0=[2*pi*0.04 0 0];

y0=[N0*fref 0];

else % other steps

Nk_1=N0+alpha*(k-1)*T_step;

step_term =-2*pi*store_fout(k*Np)*(1/Nk -1/ Nk_1);

% no sudden change

phie_initial=store_phie(k*Np);

% sudden change
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dphie_initial=store_dphie(k*Np)+step_term;

% no sudden change

d2phie_initial=store_d2phie(k*Np);

x0=[ phie_initial dphie_initial d2phie_initial ];

fout_initial=store_fout(k*Np);

dfout_initial=store_dfout(k*Np);

y0=[ fout_initial dfout_initial ];

end

% calculate the time -domian response of phie with 'ode45 '
t=linspace(0,T_step ,Np);

[t,x]= ode45 (@(t,x) ode_phie(t,x,a1,a2,b0 ,b1,Icp ,Kvco ,Nk),t,

x0);

% above: function expression definition is at the end of the

program

tphie=t;

% calculate corresponding fout based on phie

t=linspace(0,T_step ,Np);

[t,y]= ode45 (@(t,y) ode_fout(t,y,a1,a2,b0 ,b1,Icp ,Kvco ,x(:,1)

,x(:,2),tphie),t,y0);

tfout=t;

% store the calculated values

if k==0

store_tphie(k*Np+1:(k+1)*Np)=tphie;

store_tfout(k*Np+1:(k+1)*Np)=tfout;

else

store_tphie(k*Np+1:(k+1)*Np)=tphie+store_tphie(k*Np);

store_tfout(k*Np+1:(k+1)*Np)=tfout+store_tfout(k*Np);

end

store_phie(k*Np+1:(k+1)*Np)=x(:,1);

store_dphie(k*Np+1:(k+1)*Np)=x(:,2);

store_d2phie(k*Np+1:(k+1)*Np)=x(:,3);

store_fout(k*Np+1:(k+1)*Np)=y(:,1);

store_dfout(k*Np+1:(k+1)*Np)=y(:,2);

end

% linearity calculation compared with ideal chirp

% ideal fout(t)

tt=linspace(0,T_chirp ,length(store_tfout));

fstart=N0*fref;

fout_ideal=fstart+alpha*fref.*tt;

fout_ideal= interp1(tt,fout_ideal ,store_tfout);

fout_ideal(end)=fout_ideal(end -1);
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% move the ideal chirp for plotting

store_deltaf=store_fout -fout_ideal;

deltaf=mean(store_deltaf);

fout_ideal_plot=fout_ideal+deltaf;

% calculate FM rms error

% cut_time =0.2*1e-6; % cut the 'settling ' part

cut_time =0.05* T_chirp;% cut the first 5% duration of the chirp

[~,nn]=min(abs(store_tfout -cut_time));

t_cut=store_tphie(nn:end);

fout_cut=store_fout(nn:end);

fout_ideal_cut=fout_ideal(nn:end);

deltaf_cut_sequence=fout_cut -fout_ideal_cut;

deltaf_cut_mean=mean(deltaf_cut_sequence);

FM_rms_error=rms(deltaf_cut_sequence -deltaf_cut_mean);

disp([9,'FM rms error ',9,9,9,num2str(FM_rms_error /1000) ,' kHz

']);
disp([9,'FM rms error percentage ',9,num2str(FM_rms_error/

f1_vco *100),' %']);
% calculate FM peak error

[FM_peak_error ,~]= max(abs(deltaf_cut_sequence -deltaf_cut_mean))

;

disp([9,'FM peak error ',9,9,num2str(FM_peak_error /1000) ,'
kHz']);

% linearity calculation with

% Plots

figure % phie vs. time

plot(store_tphie /1e-6,store_phie ,'LineWidth ' ,2);
xlabel('t/us','fontsize ' ,14)
ylabel('\phi_e ','fontsize ' ,14);
title('\phi_e vs. time');

figure % fout vs. time and ideal fout vs. time

plot(store_tfout /1e-6, store_fout /1e9 ,'LineWidth ' ,2);
hold on

plot(store_tfout /1e-6, fout_ideal_plot /1e9,'LineWidth ' ,2);
legend('Practical chirp','Ideal chirp ');
xlabel('t/us','fontsize ' ,14)
ylabel('Output frequency/GHz','fontsize ' ,14);
title('f_{out}(t)');
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figure % deltaf vs. time

plot(store_tfout /1e-6, store_deltaf /1e3 ,'LineWidth ' ,2);
xlabel('t/us','fontsize ' ,14)
ylabel('f_{out}-f_{out ,ideal}/kHz','fontsize ' ,14);
title('Delta f(t)');

figure % fout_cut vs. time and ideal fout_cut vs. time

plot(t_cut/1e-6,fout_cut /1e9,'LineWidth ' ,2);
hold on

plot(t_cut/1e-6,( fout_ideal_cut+deltaf_cut_mean)/1e9,'LineWidth
' ,2);

legend('Practical chirp','Ideal chirp ');
xlabel('t/us','fontsize ' ,14)
ylabel('Output frequency/GHz','fontsize ' ,14);
title('f_{out}(t) without beginning settling part');

figure % deltaf_cut vs. time

plot(t_cut/1e-6,( deltaf_cut_sequence -deltaf_cut_mean)/1e3 ,'
LineWidth ' ,2);

xlabel('t/us','fontsize ' ,14)
ylabel('f_{out}-f_{out ,ideal}/kHz','fontsize ' ,14);
title('Delta f(t)');

% Function definition

% rewrite 3rd-order ODE as 1st-order equation system

function dxdt = ode_phie(t,x,a1 ,a2 ,b0,b1,Icp ,Kvco ,Nk)

dxdt=zeros(size(x));

dxdt (1)=x(2);

dxdt (2)=x(3);

dxdt (3)=(-1/a2) * (a1*x(3)+b1*Icp*Kvco/Nk*x(2)+b0*Icp*Kvco/

Nk*x(1));

end

function dydt = ode_fout(t,y,a1 ,a2 ,b0,b1,Icp ,Kvco ,phie ,dphie ,

tphie)

phie= interp1(tphie ,phie ,t);

dphie= interp1(tphie ,dphie ,t);

dydt=zeros(size(y));

dydt (1)=y(2);

dydt (2)=Kvco/a2*Icp/2/pi*(b1*dphie+b0*phie)-a1/a2*y(2);

end
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Appendix C

Matlab Code for DSM Simulation

clear all

close all

clc

%% DSM parameters

osr =128; % over -sampling rate

bit_in =12; % Bit number of input signal u

bit_ext =11;

bit_internal=bit_in+bit_ext; % Bit number of internal signals

bit_out =1; % Bit number of output siganl v

%% Signal initialization

input_type =2; % 0: 300 kHz sin -wave input

% 1: DC input

% 2: ramp

if input_type ==0 % sin -wave input

input_freq =300e+3; % Input frequency

input_w =2*pi*input_freq; % Input frequency in rad/s

f_Ny=input_freq *2; % Nyquist frequency

fs=f_Ny*osr; % Sampling frequency

N_cycle =1000;

t=0:1/ fs:N_cycle/input_freq;% Sampling time points

in=sin(input_w*t);

% quantization

u=zeros(1,length(t));

in=(in+1) /4;

u=floor(in /(1/2^( bit_in)));

u=u-2^( bit_in -2);
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elseif input_type ==1 % DC input

fs=1e+9; % Sampling frequency

t=0:1/ fs:1e+6/fs;

in= -0.2345; % DC input (between -1<=DC < 1)

u=q_in*ones(1,length(t));

else % ramp input

FMCW_bandwidth =8e+9;

chirp_slope =10*1e+6/1e-6;

T_chirp=FMCW_bandwidth/chirp_slope;

N_cycle =1; % number of chirp in this simulation

fs =2.875e+9;

N_freq_multi =6;% frequency multiplication ratio after VCO

f1_vco =23e+9;

f2_vco=f1_vco+FMCW_bandwidth/N_freq_multi;

fref =2.875e+9;

N0=f1_vco/fref;

N1=f2_vco/fref;

q_N0=ceil((N0 -9+0.0001) *2^( bit_in -1));

q_N1=ceil((N1 -9) *2^( bit_in -1));

q_dN=q_N1 -q_N0 +1;

t=0:1/ fs:N_cycle*T_chirp;

t_step=T_chirp/q_dN;

in_one_chirp=zeros(1,( length(t) -1)/N_cycle);

for ii=1:( length(t) -1)/N_cycle

in_one_chirp(ii)=floor(t(ii)/t_step)+q_N0;

end

in=repmat(in_one_chirp ,1,N_cycle);

u=zeros(1,length(t));

u=[in(1) in]; % make it same length as t

end

fs_FFT=fs*2; % Sampling frequency for FFT

y1=zeros(1,length(t));

y2=zeros(1,length(t));

y3=zeros(1,length(t));

y4=zeros(1,length(t));

v=ones(1,length(t)); % logic output , -1 or 1

v_real=zeros(1,length(t));

if input_type ==0 % moving average filter

aver_bit_N=floor(osr /10);

end

if input_type ==1
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aver_bit_N =2000;

end

if input_type ==2

aver_bit_N =500;

end

aver_v=zeros(1,length(t)-aver_bit_N +1);

% average output next stage sees

aver_v_real=zeros(1,length(t)-aver_bit_N +1);

%% 2nd-order Delta -sigma modulator operation

y1(1)=u(1)-v(1) *2^( bit_in -bit_out);

y3(1)=y2(1)-v(1) *2^( bit_in -bit_out);

for k=2: length(t)

y4(k)=y4(k-1)+y3(k-1);

% quantizer / comparator

if y4(k)<0

v(k)=-1;

v_real(k)=0;

else

v(k)=1;

v_real(k)=2;

end

if k>= aver_bit_N

aver_v(k-aver_bit_N +1)=sum(v(k-aver_bit_N +1:k))/

aver_bit_N *2^( bit_in -bit_out); % Note: to compare

the average output with input , it's multipled by 2^(

bit_in -bit_out)

aver_v_real(k-aver_bit_N +1)=sum(v_real(k-aver_bit_N +1:k

))/aver_bit_N; % the logic

average output next stage will see

end

y1(k)=u(k)-v(k)*2^( bit_in -bit_out);

y2(k)=y1(k)+y2(k-1);

y3(k)=y2(k)-v(k)*2^( bit_in -bit_out);

end

% Check overflow of internal signals

overflow_y1 =0;

overflow_y2 =0;

overflow_y3 =0;

overflow_y4 =0;

if(max(y1) >2^( bit_internal -1) -1 | min(y1) <-(2^( bit_internal -1)
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-1))

overflow_y1 =1;

end

if(max(y2) >2^( bit_internal -1) -1 | min(y2) <-(2^( bit_internal -1)

-1))

overflow_y2 =1;

end

if(max(y3) >2^( bit_internal -1) -1 | min(y3) <-(2^( bit_internal -1)

-1))

overflow_y3 =1;

end

if(max(y4) >2^( bit_internal -1) -1 | min(y4) <-(2^( bit_internal -1)

-1))

overflow_y4 =1;

end

%% Plots

if input_type ==0

% Spectrum of input and output signals , only for sin -wave input

% Spectrum of output signal v

window_enable =0;% hanning windowing for FFT

v_resample=resample(v,fs_FFT ,fs);

if window_enable ==1

v_os=fft(hann(length(v_resample)).*v_resample ');% windowing

else

v_os=fft(v_resample);% no windowing

end

L=length(t)*( fs_FFT/fs);

v_P2=abs(v_os/L);

v_P1=v_P2 (1: floor(L/2) +1);

v_P1 (2:end -1) =2* v_P1 (2:end -1);

f=fs_FFT *(0:L/2)/L;

% Spectrum of quantized input signal u

u_resample=resample(u,fs_FFT ,fs);

if window_enable ==1

u_os=fft(hann(length(u_resample)).*u_resample ');% windowing

else

u_os=fft(u_resample);% no windowing

end

u_P2=abs(u_os/L);

u_P1=u_P2 (1: floor(L/2) +1);
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u_P1 (2:end -1) =2* u_P1 (2:end -1);

% Plot both spectrum

figure (1)

subplot (1,3,1)

u_P1_re_db=mag2db(u_P1)-max(mag2db(u_P1));

plot(log10(f),u_P1_re_db);

xlabel('log10(f)','FontSize ' ,12)
ylabel('dB','FontSize ' ,12)
xlim ([5 8])

title('Normalized single -sided spectrum of DSM input in dB','
FontSize ' ,12);

subplot (1,3,2)

v_P1_re_db=mag2db(v_P1)-max(mag2db(v_P1));

plot(log10(f),v_P1_re_db);

xlabel('log10(f)','FontSize ' ,12)
ylabel('dB','FontSize ' ,12)
xlim ([5 8])

title('Normalized single -sided spectrum of DSM output in dB','
FontSize ' ,12);

subplot (1,3,3)

plot(log10(f),u_P1_re_db ,'LineWidth ' ,0.8);
hold on

plot(log10(f),v_P1_re_db ,'LineWidth ' ,0.8);
legend('Input ','Output ','FontSize ' ,12);
title('Input and Output spectrum ','FontSize ' ,12);
xlim ([4 7])

x0=100;

y0=100;

width =1600;

height =600;

set(gcf ,'position ',[x0,y0,width ,height ]);
end

% Signals

figure (2)

subplot (6,1,1)

plot(u,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);

title('u','FontSize ' ,12);
subplot (6,1,2)

stairs(v,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);
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title('v','FontSize ' ,12);
subplot (6,1,3)

plot(y1,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);

title('y_1','FontSize ' ,12);
subplot (6,1,4)

plot(y2,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);

title('y_2','FontSize ' ,12);
subplot (6,1,5)

plot(y3,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);

title('y_3','FontSize ' ,12);
subplot (6,1,6)

plot(y4,'LineWidth ' ,1)
xlim(1e+5/4*[1.5 1.53]);

title('y_4','FontSize ' ,12);
x0=500;

y0=100;

width =600;

height =1000;

set(gcf ,'position ',[x0,y0,width ,height ]);

% locolized plot of input vs. moving average of output

figure (3)

subplot (1,3,1)

plot(u,'LineWidth ' ,3);
hold on

stairs(aver_v ,'LineWidth ' ,1);
xlim(floor(length(t)/4) +[0 200]);

legend('Input ','Moving averge of output ','FontSize ' ,12);
subplot (1,3,2)

plot(u,'LineWidth ' ,3);
hold on

stairs(aver_v ,'LineWidth ' ,1);
xlim(floor(length(t)/2) +[0 200]);

legend('Input ','Moving averge of output ','FontSize ' ,12);
subplot (1,3,3)

plot(u,'LineWidth ' ,3);
hold on

stairs(aver_v ,'LineWidth ' ,1);
xlim(floor(length(t)/10*9) +[0 200]);
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legend('Input ','Moving averge of output ','FontSize ' ,12);
x0=500;

y0=100;

width =1600;

height =400;

set(gcf ,'position ',[x0,y0,width ,height ]);

figure (4)% plot of input vs. moving average of output

plot(t*10^6,u,'LineWidth ' ,3);
hold on

stairs(t(aver_bit_N:end)*10^6 ,aver_v ,'LineWidth ' ,1);
xlabel('time/us','fontsize ' ,14)
legend('Input ','Moving averge of output ','FontSize ' ,12);
title('Quantified input vs. moving average of output ','FontSize

' ,12);

% plot the average division ratio for ramp input

if input_type ==2

figure (5)

% aver_v_real is the fractional part of the division ratio

stairs(t(aver_bit_N:end)*10^6 ,8+ aver_v_real ,'LineWidth ' ,1)
xlabel('time/us','fontsize ' ,14)
title('Division ratio ');

end

%% Print results

if overflow_y1 ==0 && overflow_y2 ==0 && overflow_y3 ==0 &&

overflow_y4 ==0

disp(['Internal signals: no overflow ']);
else

disp(['Internal signals: overflow!']);
end

if input_type ==1

disp('Input is DC signal ');
disp(['u',9,9,'=',num2str(u(end))]);
disp(['v averge ',9,'=',num2str(aver_v(end))]);

end
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Appendix D

Analytical Relationships

The normalized source(drain) currents are given by [79],

if(r) = q2i,S(D) + qi,S(D) (D-1)

Here qi,S(D) is the normalised terminal charge for source (drain) and is given by [79],

qi,S(D) = 0.5Wl(2e
vp−VS(D)/ϕt) (D-2)

Here Wl(x) is the ‘Lambert W function’ for x ⇒ Wl(x)e
Wl(x) = x, VS(D) = terminal voltage

at source (drain) w.r.t bulk terminal (always grounded for NMOS)[79], vp is a dimensionless
quantity and function of gate-to-bulk voltage Vg [79] as described subsequently,

vp = (Γp − 2ϕF )/ϕt − loge(4m
√

Γp/γ) (D-3)

Here γ =
√
2qϵsiNA/Cox, ϵsi = Silicon permittivity, q = electronic charge, NA = channel

doping concentration, ϕF = ϕt ln(NA/ni), ni = intrinsic carrier concentration, m and Γp are
the sub-threshold slope factor and the pinch-off surface potential respectively [79] having
expressions,

Γp = Vg − Vfb − [
√

γ4/4 + (Vg − Vfb)2 − γ2/2] (D-4)

m = 1 + γ/2
√

Γp + 4ϕt (D-5)

The sub-threshold slope factor (m) takes the following form (m0) near Fermi level,

m0 = 1 + γ/2
√
2ϕF (D-6)


	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction to FMCW Radar
	Operating Principle of FMCW Radar
	Frequency Synthesizers for FMCW Radar
	Design Needs of PLL-based Chirp Generator
	Conclusion

	PLL Architecture and System-level Modeling
	Architecture of Proposed PLL
	System-level Modeling
	PLL Specifications
	Conclusion

	Linearity and Settling Model
	Practical Chirp
	Modeling
	Calculation Results and Chirp Linearity
	Discussion
	Conclusion

	Frequency Division
	Dual-Modulus Divider
	Delta-Sigma Modulator
	Simulation Results
	Conclusion

	High-Frequency Circuit Design and Modeling
	Introduction
	Analytical Delay Model Derivation
	Transistor Stacking
	Modeling the Effective Mobility
	Delay Model Validation
	Conclusion

	Prototype and Measurement Plan
	Prototype
	Measurement Plan

	Conclusions
	Bibliography
	Appendices
	Matlab Code for Noise and Settling Time Calculation
	Matlab Code for Chirp Calculation
	Matlab Code for DSM Simulation
	Analytical Relationships



