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After an initial period of recovery, human neurological injury has long been thought to

be static. In order to improve quality of life for those suffering from stroke, spinal cord

injury, or traumatic brain injury, researchers have been working to restore the nervous

system and reduce neurological deficits through a number of mechanisms. For example,

neurobiologists have been identifying and manipulating components of the intra- and

extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have

been producing brain-machine and neural interfaces that circumvent lesions to restore

functionality, and neurorehabilitation experts have been developing new ways to revitalize

the nervous system even in chronic disease. While each of these areas holds promise,

their individual paths to clinical relevance remain difficult. Nonetheless, thesemethods are

now able to synergistically enhance recovery of native motor function to levels which were

previously believed to be impossible. Furthermore, such recovery can even persist after

training, and for the first time there is evidence of functional axonal regrowth and rewiring

in the central nervous system of animal models. To attain this type of regeneration,

rehabilitation paradigms that pair cortically-based intent with activation of affected circuits

and positive neurofeedback appear to be required—a phenomenon which raises new

and far reaching questions about the underlying relationship between conscious action

and neural repair. For this reason, we argue that multi-modal therapy will be necessary

to facilitate a truly robust recovery, and that the success of investigational microscopic

techniques may depend on their integration into macroscopic frameworks that include

task-based neurorehabilitation. We further identify critical components of future neural

repair strategies and explore the most updated knowledge, progress, and challenges in

the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the

goal of better understanding neurological injury and how to improve recovery.

Keywords: neurorehabilitation, neural stimulation, brain-machine interface (BMI), neuroplasticity, neural

regeneration, neural interface, neural repair, spinal cord stimulation
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INTRODUCTION

Historically, for patients suffering from spinal cord injury (SCI),
stroke, or traumatic brain injury (TBI), the prognosis for recovery
has been poor, and patients with more complete and chronic
injuries have shown the least potential for improvement (Jennett
et al., 1976; Waters et al., 1992, 1996; Curt et al., 2008; Perel et al.,
2008; Steyerberg et al., 2008; Lloyd-Jones et al., 2010). Researchers
have been dedicated to improving the quality of life for these
patients in several ways, e.g., (1) biological manipulation of the
cellular milieu to encourage neuronal repair and regeneration
(Magavi et al., 2000; Chen et al., 2002; Lee et al., 2004; Freund
et al., 2006; Benowitz and Yin, 2007; Park et al., 2008; Maier
et al., 2009; de Lima et al., 2012b; Dachir et al., 2014; Li et al.,
2015; Omura et al., 2015), (2) creation of neural- or brain-
machine interfaces designed to circumvent lesions and restore
functionality (Wolpaw and McFarland, 1994; Kennedy and
Bakay, 1998; Leuthardt et al., 2004; Monfils et al., 2004; Hochberg
et al., 2006, 2012;Moritz et al., 2008; O’Doherty et al., 2009; Ethier
et al., 2012; Collinger et al., 2013; Guggenmos et al., 2013; Ifft
et al., 2013; Memberg et al., 2014; Zimmermann and Jackson,
2014; Grahn et al., 2015; Jarosiewicz et al., 2015; Soekadar et al.,
2015; Bouton et al., 2016; Capogrosso et al., 2016; Donati et al.,
2016; Hotson et al., 2016; Rajangam et al., 2016; Vansteensel
et al., 2016), and (3) new rehabilitation techniques that include
electrical stimulation and pharmacological enhancement of
spinal circuitry to stimulate recovery (Carhart et al., 2004; Levy
et al., 2008, 2016; Dy et al., 2010; Harkema et al., 2011, 2012;
Dominici et al., 2012; van den Brand et al., 2012; Gad et al.,
2013b, 2015; Angeli et al., 2014; Gharabaghi et al., 2014a,c;
Wahl et al., 2014; Gerasimenko et al., 2015b). Unfortunately,
the path to clinical relevance for these individual approaches
remains long, and each field tends to operate largely in its own
sphere of influence. Nonetheless, there is now emerging evidence
that these methods may synergistically enhance recovery of
native motor function that can persist even after the training
period and is beyond what was previously thought possible
(van den Brand et al., 2012; Guggenmos et al., 2013; Angeli
et al., 2014; Wahl et al., 2014; Gad et al., 2015; García-Alías
et al., 2015). Some animal models are even displaying functional
axonal regrowth, sprouting, and rewiring never seen before in
the central nervous system (CNS) of mammals (Bregman et al.,
1995; Chen et al., 2002; Liebscher et al., 2005; Freund et al.,
2006; Maier et al., 2009; van den Brand et al., 2012; Wahl
et al., 2014; García-Alías et al., 2015). Throughout much of this
work, evidence is emerging that combinatorial therapy across
fields may actually be necessary to achieve significant and lasting
neurological repair (Wahl et al., 2014; Gad et al., 2015). This
paper explores the state of the art in each of these disciplines,
identifies essential components of rehabilitation strategies, and
argues why synthesizing approaches across specialties will be
essential to realizing clinical applicability.

THE BIOLOGY OF NEUROLOGICAL
INJURY

In order to understand how best to reverse or repair neurological
injury, the mechanisms of cellular development and damage

response must be appreciated. During maturation, young
neurons of the CNS require activity (stimulated by purposeful
actions like vision, walking, or hand function) and trophic factors
to survive, grow, and prune (reviewed in Liu et al., 2011). Once
mature, however, their axonal growth potential declines due to
changes in intrinsic and extrinsic signaling factors, as well as
established and stable synaptic fields. After lesioning, the distal
portion of an axon undergoes Wallerian degeneration while the
proximal portion seals the damaged membrane to form an end
bulb (Schlaepfer and Bunge, 1973; Li and Raisman, 1995; Shetty
and Turner, 1999; Hill et al., 2001; Fishman and Bittner, 2003).
Eventually a growth cone is formed and injured corticospinal
axons make an attempt to regrow; however, guidance cues
are typically missing, and such efforts are therefore transient,
abortive, and ultimately fail (Bernstein and Stelzner, 1983;
Magavi et al., 2000; reviewed in Bulinski et al., 1998; Benowitz and
Yin, 2007). This inability to regenerate is why injury to the CNS
is so devastating and has been considered static once chronic.

After an insult, damaged CNS neurons continue a downward
spiral of degeneration known as secondary injury. This
includes an uncontrolled release of glutamate from presynaptic
vesicles, loss of cell membrane potential, and damage to N-
methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors, all of which lead
to overstimulation and increased neuronal death (Park et al.,
1989; Goforth et al., 1999; Yurkewicz et al., 2005). Nitric oxide,
triggered by the activation of NMDA receptors and intracellular
calcium, interacts with stress-induced reactive oxygen species
to cause DNA fragmentation, lipid peroxidation, and cellular
death (reviewed in DeFina et al., 2009; Demirtas-Tatlidede et al.,
2012; Villamar et al., 2012). Hemorrhage itself also exacerbates
injury, as blood outside vessels releases excitatory amino acids,
iron, and thrombin which induce further oxidative stress (Xi
et al., 2006). The accumulation of excess intracellular zinc
has too been shown to play a role in secondary injury by
triggering neuronal death through intrinsic mechanisms such as
5′-adenosine monophosphate-activated protein kinase (AMPK)
(Suh et al., 2000; Eom et al., 2016). These mechanisms of
primary and secondary neurologic injury are summarized in
Table 1.

Upon cell dissolution and fragmentation, inflammation is
triggered, resulting in the clean-up of dead cells, disconnection
of nonfunctional synapses, release of pro- and anti-inflammatory
cytokines, and disruption of the blood-brain-barrier (BBB)
(reviewed in Greve and Zink, 2009). This drives astrocytes
and endothelial cells to produce more inflammatory mediators
and impairs the brain’s ability to manage its own perfusion
status [i.e., autoregulate cerebral blood flow (CBF)]. During
the first hours after injury, decreased perfusion and cerebral
ischemia is seen, followed by a second phase of increased
perfusion with increased intracranial pressure (ICP), and a final
phase of vasospasm and again reduced perfusion (reviewed
in Villamar et al., 2012). Until about 10–14 days after
injury, inflammation helps to prime the extracellular milieu
for subsequent axonal entry and re-innervation (Shetty and
Turner, 1995). Resolution of acute inflammation is mediated
by apoptosis of the inflammatory cells and endogenous anti-
inflammatory mediators (reviewed in Villamar et al., 2012).
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A brief timeline of the injury environment is provided in
Figure 1.

As a result of these inflammatory processes, cerebral edema
tends to emerge during the secondary injury and can be either
vasogenic or cytotoxic (Marmarou et al., 2006). Vasogenic edema
results from vasodilation, increased permeability of the BBB,
and accumulation of molecules in the interstitial fluid. Cytotoxic
edema is due to metabolic derangements within cells that lead to
changes in osmolality, swelling, and death, often from inadequate
metabolism or too severe ionic load for the membrane pumps
to handle (reviewed in Greve and Zink, 2009; Zink et al., 2010;
Villamar et al., 2012).

While the spinal cord shares certain mechanisms of injury
with the brain, its injury patterns also have some important
differences. For example, the most frequent primary cause of
SCI is traumatic acute compression, and usually at least some
subpial neurological tissue is preserved (Wolman, 1965; Tator
and Edmonds, 1979; reviewed in Tator, 1995). Mechanical
trauma preferentially affects the central gray matter of the
cord, likely due to its vascularity and softer consistency,
and can cause necrosis, edema, hemorrhage, and vasospasm
(Wolman, 1965; reviewed in Tator, 1995). A cascade of secondary

TABLE 1 | Mechanisms of neurological injury.

Primary injury Secondary injury

Blunt trauma Excitotoxicity (NMDA/AMPA—glutamate)

Penetrating trauma Reactive O2 species (cytochrome c—caspase, GSH)

Necrosis/apoptosis Nitric oxide (DNA fragmentation, lipid peroxidation

Degenerative disease Zinc toxicity (PKC, NADPH, nNOS, PARP, AMPK)

Ischemia/stroke Inflammation (BBB and CBF disruption, vasospasm)

Hemorrhage Hemorrhage products (amino acids, iron, thrombin)

Infection Cerebral edema (vasogenic, cytotoxic)

Stroke sequelae (elevated ICP, edema, vasospasm)

NMDA, N-methyl-D-aspartate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid; GSH, glutathione; DNA, deoxyribonucleic acid; PKC, protein kinase C; NADPH,

nicotinamide adenine dinucleotide phosphate-oxidase; nNOS, neuronal nitric oxide

synthase; PARP, poly adenosine diphosphate (ADP) ribose polymerase; AMPK,

adenosine monophosphate (AMP)-activated protein kinase; BBB, blood brain barrier;

CBF, cerebral blood flow; ICP, intracranial pressure.

pathophysiology similar to that seen in the brain follows,
including ischemia, apoptosis, necrosis, fluid and electrolyte
disturbances, excitotoxicity, production of free radicals, lipid
peroxidation, and an inflammatory response. These processes
result in further neurological damage, swelling, and ischemia.
Ultimately, a large fluid-filled cavity or cyst forms in the center of
the injured cord surrounded by a subpial rim of preserved axons,
many of which become demyelinated. Hypertrophic astrocytes
and macrophages secrete extracellular matrix and inhibitory
molecules that form a glial scar—a physical and chemical barrier
to neural regeneration (reviewed in Tator and Fehlings, 1991;
Tator, 1995; Mothe and Tator, 2012).

Although intuitively attractive, attempts to mitigate secondary
injury and improve recovery with pharmaceutical therapies have
been well studied with modest results at best (DeFina et al.,
2010; reviewed in Breceda and Dromerick, 2013; Krieger,
2013). In the acute phase of brain injury, suppression of
glutamatergic activity appears to be beneficial in minimizing
neurological damage and disability (Liu et al., 2013). In the
subacute phase, modulation of GABAergic inhibition can
minimize the functional impact of an injury (reviewed in
Demirtas-Tatlidede et al., 2012). Other drugs that have been
used to enhance motor recovery after TBI and/or stroke
include naltrexone, bromocriptine, fluoxetine, venlafaxine,
levo/carbidopa, donepezil, modafinil, rivastigmine, desipramine,
zolpidem, amantadine, methylphenidate, dextroamphetamine,
and rasagiline (reviewed in DeFina et al., 2010; Breceda and
Dromerick, 2013; Krieger, 2013). Most of these drugs are
aimed at normalizing the electrochemical balance of the
injured brain to optimize its ability to heal and minimize
secondary injury. Dopaminergic medications have also been
shown to promote gamma band activity during attention
through D4 receptor activation (Kuznetsova and Deth, 2008).
Nicotinamide too may help reverse severe oxidation, likely
through mitochondrial mechanisms (Shetty et al., 2014), and
some authors have suggested that blockade of AMPK in acute
brain injury may protect against zinc neurotoxicity (Eom et al.,
2016).

Selective serotonin reuptake inhibitors (SSRIs) like fluoxetine
play a role in treating depressive symptoms that often
accompany neurological disease (thought to be associated

FIGURE 1 | Injury environment timeline. Blue, acute phase; Red, subacute phase; Black, chronic phase. ICP, intracranial pressure.
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with disruption of corticostriatal and thalamocortical loops)
(Terroni et al., 2011). Treating depression is crucial to recovery
but is often overlooked, as the symptoms of depression
and learned helplessness can be found in up to 30% of
early stroke patients (Hackett et al., 2014). Vitamins and
antioxidants such as essential amino acids, minerals, cofactors,
and “immunonutrition” [omega 6 and omega 3 fatty acids,
arginine, glutamine, ribonucleic acids (RNAs), mycelia extracts]
have all demonstrated modest but generally benign results
(DeFina et al., 2010). Additionally, recent evidence suggests
that prophylactic anticonvulsants like phenytoin in stroke/TBI
are associated with worse functional outcomes, possibly due
to reduced axonal/growth cone bursting from sodium channel
suppression which may inhibit rewiring (Bhullar et al., 2014).
The optimal timing of seizure prophylaxis after brain injury,
if beneficial at all, remains open to debate (Thompson et al.,
2015).

MOLECULAR MECHANISMS OF NEURAL
REPAIR

In addition to the injury mechanisms and glial scar described
above, there are many biological mediators that alter the ability
of the CNS to repair itself after injury. Intrinsic factors including
transcription factors (c-Jun, Atf3, Klf family, Stat3, Sox11,
and Smad1) and regeneration-associated genes (Gap43, Cap23,
Arg1, Sprr1a, Hspb1, MARCKS, stathmin family, SCG10 L1,
P21/waf1, and tubulins) have been shown to alter restoration
potential (Grenningloh et al., 2004; Carmichael et al., 2005;

reviewed in Sun and He, 2010; Tedeschi, 2011). Phosphatase and
tensin homolog (PTEN), a tumor suppressor, seems to play an
important role as eliminating its gene has been shown to both
prevent apoptosis and induce axon extension in injured retinal
ganglion cells (RGCs) (Park et al., 2008; de Lima et al., 2012b).
Deletion of Socs3, a suppressor of signaling through the Jak-STAT
pathway, also promotes regeneration by enhancing the efficacy
of ciliary neurotrophic factor (CNTF) (Smith et al., 2009). If
the mechanistic target of rapamycin (mTOR) is inhibited, the
regenerative effect of PTEN deficiency is eradicated, suggesting
that axon regeneration induced by PTEN deletion is dependent
on the mTOR pathway (Park et al., 2008). The proto-oncogene
bcl-2 (and expression of its anti-apoptotic protein) also plays a
key role in preventing cell death after injury, enabling axonal
regrowth in RGCs with the presence of trophic factors and
physiologic electrical activity (Chen et al., 1997; Goldberg et al.,
2002).

Extrinsic factors that prevent axonal regeneration
include inhibitory proteins associated with myelin [e.g.,
NogoA, myelin-associated glycoprotein (MAG), and
oligodendrocyte-myelin glycoprotein (OMgp)], proteoglycans
in the perineuronal net and glial scar [e.g., chondroitin sulfate
proteoglycans (CSPGs) like aggrecan, versican, brevican,
neurocan, NG2, and phosphacan], and molecules that repel axon
growth during development which continue to be expressed in
the mature CNS (e.g., semaphorins, ephrins, slits, netrins, robos,
and Wnts) (reviewed in Benowitz and Yin, 2007; Benowitz and
Carmichael, 2010; de Lima et al., 2012a; Omura et al., 2015).
A summary of intrinsic and extrinsic factors affecting neural
growth and inhibition is provided in Figure 2.

FIGURE 2 | Intra- and extracellular mechanisms of neuronal growth and inhibition. Blue, associated with neuronal growth; Red, associated with neuronal

inhibition; Black, modulates both neuronal growth and inhibition. PTEN, phosphatase and tensin homolog; cAMP, cyclic adenosine monophosphate; GAP43, growth

associated protein 43; GDF10, growth differentiation factor 10; CAP23, cytoskeleton-associated protein; ARG1, arginase 1; SPRR1, small proline-rich protein 1;

HSPB1, heat shock protein family B (small) member 1; MARCKS, myristoylated alanine-rich C-kinase substrate; SCG10, superior cervical ganglion 10; NgR, nogo

receptor; CSPG, chondroitin sulfate proteoglycans; NG2, neural/glial antigen 2; MAG, myelin-associated glycoprotein; OMgp, oligodendrocyte-myelin glycoprotein;

CNTF, ciliary neurotrophic factor; OPN, osteopontin; IGF1, insulin-like growth factor 1.
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Despite identification of these molecules as being important,
removal or blockage of extracellular inhibitory factors alone
so far has failed to achieve extensive axonal regeneration with
a few exceptions (Alilain et al., 2011; reviewed in Benowitz
and Yin, 2007; Benowitz and Carmichael, 2010; Liu et al.,
2011). Interestingly, a strain of dorsal root ganglion neurons
grown from CAST/Ei knockout mice are less inhibited by the
same extrinsic cues listed above (Omura et al., 2015). Large
regenerative responses have been noted in these cells, and activin
seems to play an important role. Also, deletion of receptors
that bind to myelin-associated inhibitory molecules (MAIs), or
Nogo (NgR) receptors, has been shown to increase regeneration
potential in neurons (Dickendesher et al., 2012). This is why
anti-Nogo immunotherapies are currently of great interest as
potential treatments for neurological injury (Lee et al., 2004;
Freund et al., 2006; Maier et al., 2009; Wahl et al., 2014).
In fact, immunotherapies aimed at blocking inhibitory factors
like NogoA have successfully demonstrated increased sprouting
associated with functional recovery in both rat (Bregman et al.,
1995; Liebscher et al., 2005; Maier et al., 2009) and primate
(Freund et al., 2006) models of SCI. In 2014, Wahl et al.
published near full recovery of skilled forelimb function in
rats with large strokes after intrathecal injection of an anti-
NogoA antibody followed by intensive task-specific training
(Wahl et al., 2014). Injection of the NogoA neutralizing agent
was shown to promote growth of corticospinal fibers from the
intact forebrain motor cortex across the midline of the cervical
spinal cord to the hemicord that had lost its input from the
motor cortex. This new fiber sprouting was then stabilized by a
goal-directed physical therapy regimen. Interestingly, sequential
application of drug then training was necessary to show benefit.
When immunotherapy and forced-use training were combined
simultaneously, functional outcome was poorer compared to no
treatment at all or each treatment individually, likely due to
abundant but aberrant fiber branching (also seen in Maier et al.,
2009). This example outlines the important distinction between
regrowth with synapse formation and the restoration of function.

Another example of this principle was demonstrated by
Bei et al. in showing that PTEN/SOCS3 co-deletion or
overexpression of osteopontin (OPN)/insulin-like growth factor
1 (IGF1)/CNTF could induce regrowth of adult mouse retinal
axons to synapse in the superior colliculus, but this connection
did not restore visual function on its own (Bei et al., 2016). In
fact, these regenerated axons failed to conduct action potentials
(APs) due to lack of myelination, and administration of voltage-
gated potassium channel blockers was required to enable proper
conduction and improve visual acuity.

Despite the litany of inhibitory mechanisms examined above,
there are also signals released in the injured brain that are known
to promote axonal growth after injury. For example, growth
and differentiation factor 10 (GDF10) is induced in stroke and
works through transforming growth factor beta receptors I and
II (TGFβRI and TGFβRII) to promote axonal outgrowth (Li
et al., 2015). Growth associated protein 43 (GAP43), a neuronal
growth cone marker, is also induced in peri-infarct cortex after
stroke (Stroemer et al., 1995; Schaechter et al., 2006). The
purine nucleoside inosine works through a direct intracellular

mechanism to induce expression of genes associated with axonal
growth (e.g., GAP43, L1, and α-1 tubulin) and has been shown to
induce axonal reorganization and improve behavioral outcomes
after spinal cord injury and stroke (Zai et al., 2009, 2011;
Kim et al., 2013), as well as restore levels of GAP43 in the
hippocampus in rats after stroke (Chen et al., 2002; de Lima et al.,
2012b; Dachir et al., 2014).

The role of inflammation in axonal regeneration is somewhat
controversial. Some components of inflammation cause tissue
damage and neuronal death (see The Biology of Neurological
Injury section), while others promote cell survival, axon
sprouting, and regeneration (Shetty and Turner, 1995; Yin et al.,
2003; de Lima et al., 2012a; Kurimoto et al., 2013; Baldwin
et al., 2015; reviewed in Benowitz and Popovich, 2011). Both
oncomodulin, a macrophage-derived growth factor for RGCs,
and injury-induced cytokine release appear to play a role in
inflammation-induced axonal regeneration (Yin et al., 2006,
2009; Kurimoto et al., 2013). Traditional anti-inflammatory
therapies (e.g., NSAIDs such as ibuprofen) may suppress
beneficial as well as deleterious aspects of the immune response,
and they can stimulate axonal regeneration via direct effects
on neurons (reviewed in Benowitz and Yin, 2008; Benowitz
and Carmichael, 2010; Benowitz and Popovich, 2011). When
combined with PTEN deletion and elevation of cyclic adenosine
monophosphate (cAMP), intraocular inflammation will enable
some retinal ganglion cells to regenerate injured axons from the
eye to the brain and restore simple visual responses (de Lima
et al., 2012b).

THE PHYSIOLOGY OF RECOVERY FROM
NEUROLOGICAL INJURY

In addition to the molecular and intracellular mechanisms
mentioned above, proper function of the neuraxis also relies on
the appropriate establishment and maintenance of intercellular
mechanisms. Although the CNS does not fully self-repair after
injury, neurogenesis does occur naturally in the healthy adult
brain. This process happens primarily in the subgranular and
subventricular zones (SGZ and SVZ, respectively), and it helps
support learning, memory, and olfaction (Doetsch et al., 1999;
Laywell et al., 2000; Seri et al., 2001; reviewed in Alvarez-Buylla
and Lim, 2004; Ohab and Carmichael, 2008). These areas contain
niches of progenitor, glial, and endothelial cells that can self-
renew or differentiate into a glial or neuronal lineage. The SGZ
supplies the dentate gyrus of the hippocampus and the SVZ gives
cells to the olfactory bulb to integrate into local circuitry and
support function. There is evidence that damage from stroke
stimulates cell proliferation within these zones, and immature
neurons are recruited into damaged areas of the striatum and
cortex. This process starts at 2 weeks and lasts up to several
months after injury (Macas et al., 2006; Thored et al., 2006).
Initially, tens of thousands of immature neurons can migrate
to damaged areas. However, few mature and survive long-term
(Zhang et al., 2001; Arvidsson et al., 2002). While the generation
and migration of new neurons to damaged areas is associated
with functional recovery, it is possible that behavioral recovery is
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achieved through mechanisms other than neuronal replacement,
e.g., growth factor production in local tissue (reviewed in Ohab
and Carmichael, 2008).

Other more prominent mechanisms of restoration of function
include reduction in edema, resolution of diaschisis (loss of
function in connected areas of the brain due to inactivity, loss
of blood flow, and decreased metabolism), and optimization of
remaining motor areas (Nudo and Milliken, 1996; reviewed in
Feeney and Baron, 1986). Neural plasticity and reorganization
occur through the uncovering of previously latent synapses,
collateral sprouting of synapses from nearby intact neurons,
strengthening or weakening of existing synapses [e.g., through
long-term potentiation (LTP) or long-term depression (LTD)],
and changes in concentrations of neurotransmitters, ions, gap
junctions, and glial cells (reviewed in DeFina et al., 2009;
Demirtas-Tatlidede et al., 2012; Villamar et al., 2012; Nahmani
and Turrigiano, 2014). These mechanisms are outlined in
Table 2. While neural plasticity contributes significantly to
functional recovery, it should be noted that not all types are
beneficial. For example, maladaptive plasticity and inappropriate
axonal sprouting can lead to spasticity, pathological pain,
schizophrenia, and seizures (Dimitrijevi and Nathan, 1967;
Flor et al., 1995; Teyler et al., 2001; Quartarone et al., 2008;
Thickbroom and Mastaglia, 2009; Kuner, 2010; Hasan et al.,
2011).

Though long-range axonal sprouting was once thought to
be non-existent in adult mammals, evidence now supports this
possibility in animal models (Chen et al., 2002; Liebscher et al.,
2005; Freund et al., 2006; Maier et al., 2009; van den Brand
et al., 2012;Wahl et al., 2014). Context-dependent cortical activity
and functional growth cones paired with positive feedback seems
to be critical for this type of axonal sprouting to generate
robust and lasting functional improvement (van den Brand
et al., 2012; Wahl et al., 2014). Even without long-range axonal
sprouting, some level of functional improvement can occur
via other mechanisms of neural plasticity. For example, after
stroke, both hemispheres are known to assist with recovery
depending on the size of the injury (Dancause, 2005; reviewed
in Dancause and Nudo, 2011; Kantak et al., 2012). Following
a small stroke within the primary motor cortex (M1) or the
corticospinal tract, both ipsilesional dorsal and ventral premotor
cortices (PMCs) can reorganize themselves. However, when a

TABLE 2 | Mechanisms of neurological recovery.

Reduction in edema Long term potentiation or depression

Resolution of diaschisis Local growth factor production

Optimization of remaining motor areas Uncovering of latent synapses

Reorganization Cellular proliferation/recruitment from

SGZ/SVZ*

Collateral sprouting from local intact

neurons

Long-range axonal sprouting (animal

models)*

Changes in concentrations of

neurotransmitters, ions, gap junctions,

and glial cells

*Theoretical, or proven in animal models only. SGZ, subgranular zone; SVZ, subventricular

zone.

lesion involves a larger portion of M1 and the dorsal PMC,
the contralesional PMC appears to be critical for recovery-
related reorganization (reviewed in Dancause and Nudo, 2011;
Kantak et al., 2012). Initiation of post-infarct axonal sprouting
from the intact cortical hemisphere to peri-infarct cortex and
the contralateral dorsal striatum is signaled by synchronous
neuronal activity (Carmichael and Chesselet, 2002). In chronic
stroke patients, activity in ipsilesional primarymotor andmedial-
premotor cortices has been shown to be associated with good
motor recovery, whereas increased cerebellar vermis activity
signals poor recovery (Favre et al., 2014).

For up to several months after the initial injury, the neural
environment remains conducive to recovery due to its relatively
loose extracellular space, enhanced neurotrophic factors, open
synaptic sites, and probing axonal growth cones (Napieralski
et al., 1996; Carmichael et al., 2005; reviewed in Nudo, 2013).
After 6 months to 1 year, injuries have been classically considered
chronic with little opportunity for further gain, although
this doctrine is beginning to change (Figure 1) (reviewed in
Langhorne et al., 2011; Teasell et al., 2014).

THE NEUROPHYSIOLOGY UNDERLYING
BRAIN-MACHINE AND NEURAL
INTERFACE TRAINING

Neural- or brain-machine interfaces are electrode-computer
constructs that extract and decode information from the
nervous system to generate functional outputs. These have been
developed to bypass motor lesions (assistive BMIs) (Wolpaw and
McFarland, 1994; Kennedy and Bakay, 1998; Leuthardt et al.,
2004; Moritz et al., 2008; Ethier et al., 2012; Collinger et al.,
2013; Memberg et al., 2014; Jarosiewicz et al., 2015; Bouton et al.,
2016; Capogrosso et al., 2016; Hotson et al., 2016; Rajangam
et al., 2016; Vansteensel et al., 2016; reviewed in Lobel and Lee,
2014) and, more recently, to facilitate neural plasticity and motor
learning to enhance recovery after injury (rehabilitative BMIs)
(Carhart et al., 2004; Buch et al., 2008; van den Brand et al., 2012;
Ang et al., 2013; Ramos-Murguialday et al., 2013; Wahl et al.,
2014; Gharabaghi et al., 2014a,b,c; Gerasimenko et al., 2015b;
Donati et al., 2016; reviewed in Ethier et al., 2015; Jackson and
Zimmermann, 2012).

Interfaces generally contain at least four components: (1) a
method of extracting signals from the nervous system, (2) a
way to decode the signals to predict user intent, (3) an output
to affect the subject’s environment, and (4) a feedback system
to help the user refine the output (e.g., visual or other sensory
modality). Means of extracting nervous system signals range
from invasive [intracortical microelectrodes (APs, or spikes) and
larger scale sub- or epidural electrodes (electrocorticography,
ECoG)] to non-invasive [electroencephalography (EEG) or
electromyography (EMG)]. Targeted outputs have included
cursors on a screen (Wolpaw and McFarland, 1994; Kennedy
and Bakay, 1998; Leuthardt et al., 2004; McFarland et al., 2010),
virtual typing (Jarosiewicz et al., 2015), robotic or prosthetic
arms (Collinger et al., 2013; Hotson et al., 2016), wheelchairs
(Rajangam et al., 2016), exoskeletons (Donati et al., 2016),

Frontiers in Neuroscience | www.frontiersin.org 6 December 2016 | Volume 10 | Article 584

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Krucoff et al. Enhancing Nervous System Recovery

the spinal cord (Zimmermann and Jackson, 2014; Capogrosso
et al., 2016), and a patient’s own extremities (Ethier et al., 2012;
Memberg et al., 2014; King et al., 2015; Bouton et al., 2016;
Vidaurre et al., 2016).

While initially developed due to the belief that the human
nervous system could not self-regenerate (as examined in the
previous sections), BMIs have also led to exciting and innovative
ways to understand and interact with the nervous system.
Current understanding of brain function recognizes an intricate
arrangement of interconnected units and circuits that contribute
to a larger performing network, as opposed to older models
which viewed the brain as a collection of independent anatomical
modules with discrete functions (Breakspear and Stam, 2005;
Serences and Yantis, 2006; reviewed in Meunier et al., 2010).
It has been shown that functionally coupled remote brain
locations display near synchronous discharges that represent
emergent properties of their assimilated networks (Breakspear
and Stam, 2005; Womelsdorf et al., 2007; Stevenson et al.,
2012; Menzer et al., 2014). This dispersion of information
likely explains why motor information can be found widely
distributed throughout the cortex, and how random samples of
neurons can provide enough information to reconstruct certain
movements in great detail (Carmena et al., 2003; Fitzsimmons
et al., 2009; reviewed in Nicolelis and Lebedev, 2009). However,
it has also been shown that no matter how well tuned a single
neuron is to a behavioral task, that an individual cell only
contains limited information and can vary greatly over a short
period of time (Wessberg et al., 2000; Carmena et al., 2003).
Interestingly, once an ensemble of neurons reaches a certain
size, its collective predictive ability plateaus, suggesting that there
is redundancy in the neuronal network, and that there are a
critical number of neurons required to decode motor intention
(Carmena et al., 2003; Vargas-Irwin et al., 2010; reviewed in
Donoghue, 2008; Nicolelis and Lebedev, 2009). Collectively,
these concepts have led to population algorithms, or decoders
that exploit the idea that individual neurons encode multiple
parameters with different weights andmay vary from trial to trial;
however, useful information is maintained among a population
instead of individual neurons. The advantage of population
decoding systems is that they work even when individual
neurons poorly encode motor behavior. These algorithms, in
addition to advances in technology that have enabled large-
scale recordings of single-neuron activity patterns, have led
to the success of many BMIs described in the following
section.

The true language of the motor cortex, or how the motor
cortex encodes its output signals, is a subject of debate (Vargas-
Irwin et al., 2010; Cherian et al., 2011). Coordinated actions
of the limbs may engage widespread cortical areas, and M1
is known as the site where motor plans tend to merge before
diverging to multiple muscle groups (Vargas-Irwin et al., 2010).
While M1 clearly contains kinematic information (joint position
and trajectory) sufficient for accurate predictions (Vargas-Irwin
et al., 2010), there is evidence that it may more directly encode
kinetic (force) variables (Morrow et al., 2007; Cherian et al.,
2011; Flint et al., 2014). This would suggest that BMIs built
to encode force and/or EMG signals may be more robust
across different positional dynamics than trajectory-based BMIs.

For gait decoding, there is evidence that motor cortex BMIs
may perform better when estimating gait phases or locomotor
behaviors as opposed to continuous kinematic variables of leg
movement (Rigosa et al., 2015). Interestingly, bimanual arm
control appears to have its own representation in the cortex
and does not seem to be described simply by a superposition of
unilateral movements (Ifft et al., 2013).

As attempts for more dexterous and intuitive control of neural
interfaces are pursued, the question of how many independent
control signals can be extracted from a neural ensemble arises.
The human arm has 7 degrees of freedom (DOF), and the hand
has more than 20 (Stockwell, 1981; Jones, 1997). As it turns out,
natural grasp postures and reaching-to-grasp movements exist
in a much smaller subspace than physically possible movements
(Ingram et al., 2008). Dimensionality reduction techniques like
principal component analysis (PCA) show that a large proportion
of the variance of natural grasping behaviors can be represented
by two to three principal components. This provides a strategy
for neural interfaces to recapitulate potentially more complex
appearing movements while extracting fewer degrees of freedom
(reviewed in Hatsopoulos and Donoghue, 2009). An example
of such a technique is shown in Figure 3 (Krucoff and Slutzky,
2011).

In recent years, neural interfaces have been developed to
modulate neural plasticity and enhance recovery (rehabilitative
BMIs) in addition to bypassing lesions (assistive BMIs). The
transition from assistive to rehabilitative BMIs has come with
the realization that patients with a chronic neurologic injury
may not be at a static level of functioning as previously thought,
and that underlying networks even in chronic injury can be
modified over time (Guggenmos et al., 2013; reviewed in Jackson
and Zimmermann, 2012). A diagram showing the conceptual
difference in approach to assistive vs. rehabilitative BMIs is
provided in Figure 4. Rehabilitative BMIs pair goal-oriented
tasks with expected outcomes and work to activate lesioned
circuits to create plasticity for long-lasting improvements.
This approach takes advantage of a principle called spike
timing dependent plasticity (STDP), or Hebbian plasticity
(often expressed as, “neurons that fire together wire together”)
(Hebb, 1949; Cooper, 2005). This is the idea that synaptic
strength is redistributed to favor functionally relevant pathways
that are coincidently active, inferring that both the sign and
magnitude of synaptic modification are determined by the
precise timing of APs (Rebesco and Miller, 2011). The best
known example of Hebbian plasticity is perhaps LTP and LTD
in memory circuits. For modeling of complex, larger scale
circuits, the Bienenstock–Cooper–Munro (BCM) model maybe
more representative of behavior. This theory incorporates both
presynaptic and postsynaptic firing rates (Bienenstock et al.,
1982; reviewed in Cooper and Bear, 2012) and applies a sliding
threshold for LTP/LTD based on post-synaptic activity as the
metric for stabilization.

A related concept employed in some rehabilitative BMIs
is paired associative stimulation (PAS), or the act of pairing
stimulation sites to promote plasticity (Stefan et al., 2000; Carson
and Kennedy, 2013). An example of a commonly used central
stimulation strategy is transcranial magnetic stimulation (TMS).
TMS involves applying rapidly changing magnetic fields to the
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FIGURE 3 | Principal component analysis (PCA). The example reduces 22 joint-position variables of the wrist and fingers to 3 dimensions that represent the state

of the hand. (A) Experimental task where the patient is cued to move his hand into one of the three configurations shown. (B) 22 independent variables of hand

movement are recorded and reduced to 3 principle components (PCs). Results are plotted as hand position and hand velocity in 3-dimensional PC space. (C) Greater

than 80% variance of hand movement is accounted for using only the first three PCs (Krucoff and Slutzky, 2011). MCP, metacarpophalangeal joint; PIP, proximal

interphalangeal joint; DIP, distal interphalangeal joint.

scalp via a magnetic stimulator. Continuous low frequency
repetitive stimuli (≤1Hz rTMS) decreases excitability of targets
areas (similar to LTD which is maximally evoked at 1 Hz),
while bursts of intermittent high frequency stimuli (≥5Hz
rTMS) enhance excitability (similar to LTP with high frequency
bursts) (Kobayashi and Pascual-Leone, 2003; Demirtas-Tatlidede
et al., 2012; Shin et al., 2014). These techniques have been used
to induce modulation across cortico-subcortical and cortico-
cortical networks through trans-synaptic spread, resulting in
distant but specific changes along functional networks. Evidence
suggests long term effects from TMS may be related to
modulation of NMDA glutamatergic receptors, similar to
induction of LTP/LTD (reviewed in Villamar et al., 2012). If
timed correctly, corresponding sensory inputs can be potentiated

(Stefan et al., 2000). Functional electrical stimulation (FES) of
paralyzed muscles or electrical stimulation of the nervous system
distal to the injury timed with voluntary effort has been shown
to accelerate recovery in both SCI and stroke (Daly et al.,
2006; Jung et al., 2009; Popovic et al., 2011; Kafri and Laufer,
2015).

THE STATE OF THE ART IN NEURAL
PROSTHESES AND BRAIN-MACHINE
INTERFACES

The first assistive BMI for patients with severe motor impairment
was developed for patients with locked-in syndrome—a
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FIGURE 4 | Assistive vs. rehabilitative BMIs. The assistive BMI uses brain signals to bypass a neural lesion and generate an intended action. The rehabilitative BMI

pairs goal-oriented tasks with positive feedback and works to re-activate lesioned circuits to create plasticity for long-lasting functional improvement.

condition where a patient is cognitively aware of his or her
environment but is unable to move or make sounds (Kennedy
and Bakay, 1998; Birbaumer et al., 1999). Birbaumer et al.’s device
was an EEG-based system designed to translate purposeful slow
cortical potentials (SCPs) into a binary selection of letters or
words on a screen. Since then, EEG-based systems have advanced
to move cursors on a screen in up to 3 dimensions (McFarland
et al., 2010), open and close a hand orthosis (Ramos-Murguialday
et al., 2012), provide limited FES-control of upper and lower
extremities (King et al., 2015; Vidaurre et al., 2016), and ambulate
a lower extremity exoskeleton (Donati et al., 2016); however,
their potential is hindered due to inherently poor reliability,
latency, signal variability, and generally non-intuitive nature
(reviewed in Jackson and Zimmermann, 2012).

In non-invasive BMIs, six types of brain signals have been
tested: sensori-motor rhythms (SMRs, 8–15 Hz, i.e., rolandic
alpha or mu rhythm) (Pfurtscheller et al., 1992, 2006; Wolpaw
and McFarland, 1994; McFarland et al., 2006), event-related
potentials (ERPs) (Farwell and Donchin, 1988), SCPs (Birbaumer
et al., 1999), steady-state visually or auditory evoked potentials
(SSVEPs/SSAEPs) (Sakurada et al., 2013), concentration
changes of oxy/deoxy hemoglobin using functional near-
infrared spectroscopy (fNIRS) (Sitaram et al., 2009; Mihara
et al., 2013; Rea et al., 2014), and blood-oxygenation level
dependent (BOLD)-contrast imaging using functional MRI
(Weiskopf et al., 2003). Implantable BMIs utilize epidural,
subdural, or intracortical electrodes. Epi- and subdural arrays
record field potentials (FPs), while intracortical electrodes
record APs (a.k.a. spikes) (reviewed in Soekadar et al., 2015).
A summary of neural recording methods is provided in
Figure 5.

Of all recording modalities, intracortical systems have
demonstrated the most advanced control potential. Hochberg
et al. provided initial evidence that a chronically tetraplegic
human could operate a BMI using electrodes implanted into the
arm area ofM1 to drive a computer cursor on a screen (Hochberg
et al., 2006). Several years later, that same group demonstrated
brain control of a robotic arm to perform three-dimensional
reach and grasp movements in two patients, including the ability
to drink coffee from a bottle (Hochberg et al., 2012). Since
then, intracortical BMIs have enabled brain-controlled typing
(Jarosiewicz et al., 2015; Nuyujukian et al., 2016), driven seven
degrees of freedom in a prosthetic limb at over 90% accuracy
(Collinger et al., 2013), restored voluntary movement and grasp
via real-time FES to a monkey with a paralyzed hand (Moritz
et al., 2008; Ethier et al., 2012), coordinated cervical intraspinal
simulation to enact reach and grasp in the upper extremities
(Zimmermann and Jackson, 2014), restored functional hand
movement to a patient with quadriplegia (Bouton et al., 2016),
and alleviated gait deficits inmacaques with hemicord injuries via
brain-controlled spinal epidural stimulation (Capogrosso et al.,
2016). Additionally, intracortical electrodes distributed in more
diffuse frontoparietal areas have enabled simultaneous bimanual
control of avatar arms (Ifft et al., 2013).

To date, the only recording modalities stable enough to
drive assistive BMIs over a prolonged period of time are
implanted electrodes. Even here, the major concern with
chronically implanted intracortical sensors is signal longevity.
Microelectrode arrays (MEAs) face gliosis that begins in the
first few months and can lead to failure at an average of 1 year
(Barrese et al., 2013, 2016). Eventually, progressive meningeal
fibrosis can encapsulate and elevate a microarray out of the
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FIGURE 5 | Recording and stimulating modalities for neural signals. (A)

Functional MRI (fMRI), (B) functional Near-Infrared Spectroscopy (fNIRS), (C)

scalp electrodes (EEG), (D) epidural electrodes (FP), (E) subdural electrodes

(ECoG), (F) intracortical electrodes (AP, or spikes), (G) muscle electrodes

(EMG), (H) intraspinal electrodes (AP, or spikes), (I) spinal epidural electrodes

(FP). EEG, electroencephalography; FP, field potential; ECoG,

electrocorticography; AP, action potential; EMG, electromyography.

cortex. Foreign body reactions and reactive oxygen species
lead to degradation of the materials over time. In the most
commonly used MEA known as the Utah array (UEA), failure
can be due to cracking of parylene, corrosion of platinum, and
delamination of silicone elastomer (Barrese et al., 2013, 2016).
Other intracortical recording techniques have been developed in
non-human primate models that minimize cortical damage and
have recorded stable signals for years, but these systems are not
widely adopted and have not yet been demonstrated in human
patients (Krüger et al., 2010; Schwarz et al., 2014).

This concern for longevity is one of the reasons ECoG-
based systems have become increasingly popular, as there is
evidence that FPs may have greater longevity and stability than
spikes (Flint et al., 2013, 2016). Recently, a fully implantable
ECoG system has been used to create a typing interface for a
locked-in patient with ALS by decoding hand motor intention
(Vansteensel et al., 2016), and another 64 channel completely
implantable system has been CE marked in Europe for human
use in BCI applications (Mestais et al., 2015). FPs recorded
from the surface of the human motor cortex contain high
gamma activity (70–300Hz) and time domain features that can
be used to decode continuous force, isometric pinch force, and
muscle activity in finger flexors with high levels of accuracy
(Crone et al., 2001; Flint et al., 2014). Hotson et al. recently
utilized a high-density ECoG array over the motor cortex to
achieve control of individual fingers on a prosthetic limb by
a human subject with epilepsy (Hotson et al., 2016). ECoG-
based systems have also been used as a mechanism to provide
therapy to chronic stroke patients who would otherwise be
unable to participate (Buch et al., 2008; Ramos-Murguialday
et al., 2013; Gharabaghi et al., 2014b). In one example, a patient
gained volitional control of a feedback device and engaged
himself in repetitive, high-intensity exercises of finger pointing
and wrist extension without the need for a therapist. He could

simultaneously monitor his own ability to modulate his brain
activity and receive immediate rewards for success, eventually
improving the function of the targeted muscle (Gharabaghi et al.,
2014c). Additionally, there is now evidence that epidural arrays
can provide similar information to subdural arrays regarding
finger kinematics, thus potentially providing a less invasive
and equally viable option for such applications (Flint et al.,
2017).

Other implanted devices include cortex-to-cortex BMIs that
have been used to bridge damaged neural pathways directly.
Guggenmos et al. showed that a neural prosthetic could help
reconnect premotor to somatosensory cortex in an injured rat
brain to restore reach and grasp functions to pre-lesion levels
(Guggenmos et al., 2013). Other investigators have connected the
brains of several animals into a single system, or “brainet,” where
the animals try to achieve a single objective using brain control
only (Pais-Vieira et al., 2015; Ramakrishnan et al., 2015). Clinical
applications for the latter remain to be established.

Novel methods for extracting brain signals are continually
being developed. For example, Oxley et al. recently deployed
an endovascular venous electrode array, or “stentrode,” into a
superficial cortical vein over the motor cortex in freely moving
sheep for over 6 months. They report recording performance
similar to epidural surface electrodes (Oxley et al., 2016). Clinical
applicability of this device remains to be seen, however, and its
use will likely be limited to recording from cortical areas near
its deployment. Furthermore, implantation of the electrodes will
contain the risks associated with angiographic deployment of a
stent, including hemorrhage, thrombosis, stroke, and infection.
Notably, many of these limitations and risks are shared with other
implantable electrode systems.

Despite the success of cortically controlled motor prosthetic
devices in animals, the translation into broad clinical applicability
for human patients remains a challenge (reviewed in Patil
and Turner, 2008; Turner et al., 2008; Nicolelis and Lebedev,
2009). Although rarely studied in the context of a motor BMI,
subcortical regions such as the motor thalamus and subthalamic
nucleus (STN) are also involved inmotor planning and execution
(Friehs et al., 2004; Patil et al., 2004; Hanson et al., 2012;
Ryapolova-Webb et al., 2014). Deep brain stimulation (DBS)
in these areas is approved by the United States Food and
Drug Administration (FDA) for the treatment of Parkinson
Disease and tremor, and it is generally well-tolerated. For these
reasons, some researchers have suggested that chronic subcortical
ensemble recordings may enhance the viability of subcortical
BMI systems (Hanson et al., 2012; Ryapolova-Webb et al., 2014).
Recordings from microwire arrays in awake patients undergoing
deep brain stimulation found that 61% of neurons in the STN and
81% of ventralis oralis posterior (VOP) and ventralis intermedius
(VIM) neuronsmodulate with gripping force, and that ensembles
of 3–55 simultaneously recorded neurons contained sufficient
information to predict gripping force (Patil et al., 2004). In other
studies, after minutes of practice, patients have been able to bring
a cursor to a target (Friehs et al., 2004). Additionally, modulations
in firing rate of neurons in VOP, VIM, and STN have been
shown represent target onset, movement onset/direction, and
hand tremor (Hanson et al., 2012).

Frontiers in Neuroscience | www.frontiersin.org 10 December 2016 | Volume 10 | Article 584

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Krucoff et al. Enhancing Nervous System Recovery

In addition to brain signals, muscles proximal to an injury
have been used as command signals in FES systems. For example,
EMGs from muscles in the head and neck (e.g., platysma,
trapezius, and auricularis) have been used to drive FES systems
in patients with high cervical spinal cord injuries (Memberg
et al., 2014). While these patients achieved enough voluntary
control of their upper extremities to help with some activities
of daily living (ADLs), their extremities did not reach antigravity

strength, and there were serious limitations due to limb spasticity.
Notably, EMG-based FES systems also do not work on patients
who cannot voluntarily contract any muscles, and they require
the use of pre-programmed stimulation patterns which can be

non-intuitive (Memberg et al., 2014). Another major challenge
facing BMIs on their way to useful clinical application is the
difficulty in providing sensory or non-visual regulatory feedback
to the user. While several groups have provided some level

of information to a subject by stimulating the somatosensory

cortex (London et al., 2008; Fagg et al., 2009; O’Doherty
et al., 2009; Flesher et al., 2016), this technology remains in
its infancy and is ripe for breakthrough. Improving artificial
somatosensory feedback through intracortical microstimulation
(ICMS), intraspinal stimulation, epidural spinal stimulation, or
optogenetic stimulation are all efforts currently being undertaken

(reviewed in Lebedev et al., 2011). However, perhaps the biggest
hindrance to the large-scale development of BMIs is the lack of
commercial appeal andmarketability. Research and development
costs of BMIs are enormous, and the market tends to be very
niche and individualized. Until there is a large scale commercial
interest, the greatest utility in advancing this field maybe in better
understanding how to manipulate and rehabilitate the nervous
system. While the cost of capable processors and electronics
lessens with time, the cost of clinical trials remains a huge barrier
to progress. Whether technological advancement, commercial
interest, population demand, and clinical trial expense will evolve
to allow for wide-scale testing and implementation remains to
be seen (Patil and Turner, 2008). Also, for clinical viability, any
interface needs to be reliable for a very long period of time (e.g., a
decade), and, unfortunately, this remains a problem for virtually
every studied neural implant except DBS electrodes. Future
microelectrode arrays could address concerns about durability
through improved insulation materials, inert electrode alloys,
and/or incorporation of anti-inflammatory material along the
lines of drug eluting stents (Barrese et al., 2016).

While largely outside the scope of this paper, interfaces for
applications beyond motor recovery are also emerging. Devices
designed to control medically refractory seizures are on the
market. Neuromodulation for psychiatric illness is also currently
being tested in many centers around the world, although results
to date are mixed (Houeto et al., 2005; Mayberg et al., 2005;
Greenberg et al., 2006). New targets for neuromodulation,
including the fornix and septal area (Sweet et al., 2014), are
under investigation for the treatment of Alzheimer’s disease
(Laxton et al., 2010). One can envision the development
of neural interfaces for neuroprotection, memory (Hamani
et al., 2008; Suthana et al., 2012), cognitive enhancement,
concussion treatment, and sensory augmentation in the near
future (reviewed in Laxton et al., 2013; Bick and Eskandar, 2016).

NEUROREHABILITATION AND
ELECTRICAL STIMULATION OF THE
NERVOUS SYSTEM

Given that injured cells of the CNS do not regenerate on their
own, how can recovery be facilitated for patients with TBI, stroke,
or SCI? Several avenues for therapy have been explored, including
various physical rehabilitation paradigms (Wernig and Müller,
1992; Protas et al., 2001; Taub andMorris, 2001; Taub et al., 2002;
Duncan et al., 2011; Harkema et al., 2012; Mackay-Lyons et al.,
2013) and electrical stimulation modalities (Shik and Orlovsky,
1976; Dimitrijevic et al., 1998; Rattay et al., 2000; Carhart et al.,
2004; Minassian et al., 2004, 2007; Levy et al., 2008; DeFina et al.,
2010; Dy et al., 2010; Troyk et al., 2012; Gad et al., 2013a,b;
Angeli et al., 2014; Gerasimenko et al., 2015a,b; Prochazka, 2016).
Individually each of these areas has yielded only modest results;
however, by combining and improving techniques, significant
progress has beenmade (Carhart et al., 2004; reviewed in Breceda
and Dromerick, 2013).

Physical therapy is the mainstay of virtually every
neurorehabilitation program, and there have been several
types of physical therapy studied. Examples of prominent
physical therapy modalities are shown in Figure 6. For early
stroke patients, constraint-induced movement therapy (CIMT)
has been used to encourage use of the paretic limb by restraining
the less affected one (Taub and Morris, 2001; Taub et al.,
2002). This is done to avoid “learned non-use,” as animal
data has shown maladaptive changes and worse functional
outcomes from allowing overcompensation with the less
affected limb to dominate goal-directed tasks (Allred et al.,
2005; Allred and Jones, 2008). Timing the application of CIMT
appears to be crucial, however, as behavioral interventions
employed too early after injury may be deleterious (Kozlowski
et al., 1996). The mechanism of worse outcome in too-early
therapy is likely related to glutamate-NMDA excitotoxicity
due to over-engaging vulnerable tissue surrounding the injury
site (see The Biology of Neurological Injury section above).
Additionally, early intensive training with immunotherapy
has been shown to induce hyperinnervation and aberrant
growth, resulting in wrong circuit connectivity and impaired
function in rat models of stroke (see Molecular Mechanisms
of Neural Repair section above) (Wahl et al., 2014). Several
studies have examined the efficacy of CIMT for motor recovery
in human stroke patients with mixed results (Wolf et al.,
2006; Dromerick et al., 2009; McIntyre et al., 2012), and
the optimal timing for its application in human stroke
patients is yet to be determined (reviewed in Lang et al.,
2015).

Another commonly used physical therapy paradigm is partial
weight-bearing therapy (PWBT), or body weight supported
treadmill training (BWSTT) (Wernig and Müller, 1992; Protas
et al., 2001; Duncan et al., 2011; Mackay-Lyons et al., 2013). This
model has evolved from observations that spinalized animals
on a moving treadmill can initiate and sustain full weight-
bearing stepping over different speeds and directions due to
intrinsic changes in the locomotive rhythm generators of the
spinal cord (Barbeau and Rossignol, 1987; reviewed in Wolpaw
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FIGURE 6 | Neurorehabilitation strategies. (A) Partial weight-based

therapy (PWBT), (B) constraint-induced movement therapy (CIMT) in a patient

with a right hemispheric injury, (C) cortical neurostimulation in a patient with a

right hemispheric injury, (D) biofeedback in a patient with a left hemispheric

injury. CPU, computer processing unit; EEG, electroencephalography; fMRI,

functional magnetic resonance imaging.

and Tennissen, 2001). When applied as a monotherapy to
human stroke patients, benefits are largely comparable to those
seen with other methods of physical therapy—the main value
being increased cardiovascular endurance (Duncan et al., 2011;
Mackay-Lyons et al., 2013). However, when used in patients
with incomplete SCI either alone or in combination with
FES and monoaminergic excitation, PWBT/BWSTT has been
shown to facilitate locomotor function and decrease the reliance
on assistive devices while improving coordination, speed, and
endurance (Wernig and Müller, 1992; Protas et al., 2001;
Harkema et al., 2012). In some cases, the benefits have not
been limited to treadmill ambulation, but have been shown to
be transferable to over-ground walking (Wernig et al., 1998;
Carhart et al., 2004). In at least one patient with chronic
incomplete SCI, intermittent PWBT alone was not sufficient to
improve ambulation over ground; however, with the addition

of epidural spinal stimulation, he was successful (Carhart et al.,
2004).

Epidural spinal stimulation is one example of an emerging
spinal modulation strategy to capture dormant but functional
inter-neuronal pools distal to a spinal lesion and produce
coordinated limb activity (Iwahara et al., 1992; Dimitrijevic et al.,
1998; Sayenko et al., 2014; reviewed in Edgerton et al., 2004; Fong
et al., 2009; Roy et al., 2012). Spinal stimulation to enhance motor
performance in human patients with uppermotor neuron disease
(e.g., multiple sclerosis) was demonstrated as early as 1973 (Cook
andWeinstein, 1973; Illis et al., 1976; Dooley and Sharkey, 1977–
1978; Dimitrijevic et al., 1980, 2015), followed later by evidence
that central pattern generators exist within the mammalian
lumbosacral spinal cord that could be stimulated to produce
locomotion (Grillner, 1985; Iwahara et al., 1992; Dimitrijevic
et al., 1998; Minassian et al., 2007). Using electrical techniques
to generate stepping in combination with extensive goal-directed
physical therapy, patients with chronic and complete SCI have
now shown the ability to develop positive functional plasticity
and regain some voluntary control of lower extremity movement
(Gad et al., 2015; Gerasimenko et al., 2015a,b). Other subjects
with complete SCIs have regained the ability to selectively
move their hips, knees, and ankles, as well as regain some
coordination of flexor and extensor muscles (Sayenko et al., 2014;
Dimitrijevic et al., 2015). Furthermore, some of these patients
learned how to stand independently and activate lower limb
musculature during partial weight-bearing stepping (Sayenko
et al., 2014). In addition to attaining better lower extremity
control, improvements in cardiovascular, temperature, bladder,
and bowel control have been noted, as well as enhanced sexual
function in some (Harkema et al., 2011; Angeli et al., 2014;
Gad et al., 2015; Gerasimenko et al., 2015a,b). In other subjects,
subthreshold epidural stimulation between L2 and S1, or direct
stimulation of the pudendal nerve, has been shown to initiate
micturition (Gad et al., 2014;McGee andGrill, 2014;McGee et al.,
2015).

The mechanism by which complete and chronic SCI patients
regain voluntary motor control of their lower extremities is
currently unclear (reviewed in Kern et al., 2005). The fact
that positive, lasting plasticity (up to years after training) can
be induced suggests that there are likely subclinical surviving
descending tracts in the injured spinal cord that are amenable to
modulation and strengthening (Sherwood et al., 1992; Harkema
et al., 2011; Angeli et al., 2014; Gerasimenko et al., 2015b).
However, Van den Brand et al. showed that pairing goal-directed
training with electrochemically enabled lumbosacral neurons
(epidural stimulation with pharmacologic enhancement) can
induce growth of de novo brainstem and intraspinal relays that
re-enable voluntary control of locomotion in rats (van den Brand
et al., 2012). As a control, they showed that automated treadmill-
restricted training, which did not engage cortical neurons, failed
to promote plasticity across the lesion or functional recovery.
These results suggest that active, goal-directed training that
engages task-specific cortical neurons is an essential component
to recovery, and that its pairing with appropriate sensory cues
(in this case, stepping gate) can lead to trans-lesional axonal
sprouting and regained voluntary control of function (van den
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Brand et al., 2012). Interestingly, there is also evidence that spinal
cord stimulation can replenish progenitor cells in the injured
spinal cords of rat models (Becker et al., 2010), but this has not
yet been explored in higher animals.

When used for SCI rehabilitation, epidural stimulation is
often combined withmonoamine therapy to increase the baseline
excitatory state of distal functional elements and prime them
for activation (Carhart et al., 2004; Harkema et al., 2011; van
den Brand et al., 2012; Angeli et al., 2014; Wahl et al., 2014;
Gerasimenko et al., 2015a,b). Neurons are known to release
serotonin (5HT), norepinephrine (NE), and dopamine (DA)
during locomotion withinmost laminae of lumbosacral segments
(reviewed in van den Brand et al., 2015). These monoamines are
thought to operate through volume neurotransmission (i.e., peri-
synaptic signal diffusion), and, along with epidural stimulation,
have helped promote locomotion in both animal models and
human patients with incomplete and complete spinal cord
injuries (Carhart et al., 2004; Harkema et al., 2011; van den Brand
et al., 2012; Angeli et al., 2014; Wahl et al., 2014; Gerasimenko
et al., 2015a,b).

More intricate and invasive methods of stimulating and
recording from the spinal cord are also being developed (Troyk
et al., 2012; Gad et al., 2013a; Chang et al., 2014; Grahn et al.,
2015; Minev et al., 2015; Mazurek et al., 2016; Prochazka,
2016). New generations of intraspinal microstimulator systems,
including wireless ones, are being constructed to take advantage
of this residual functional potential and plasticity. Older
intraspinal stimulation technology was designed primarily for
pain suppression, so there is optimism that these newer andmore
targeted devises will generate better outcomes than previously
seen.

Direct brain stimulation as an adjunct to physical therapy
has shown the ability to enhance functional recovery of reach
and grasp tasks in rats to pre-lesion levels (Kleim et al., 2003;
Guggenmos et al., 2013) and enhance cortical plasticity and
functional status after stroke in squirrel monkeys (Plautz et al.,
2003). This improvement appears to be induced by both re-
emergence of movement representation in peri-infarct areas as
well as the emergence of new areas of representation (Nudo and
Milliken, 1996; reviewed in Shin et al., 2014). After repeated
stimuli, areas of movement representation have been seen to
shift several microns and increase in size with a corresponding
increase in spine density in pyramidal cell layers III and V (Nudo
et al., 1990; Monfils et al., 2004). Stimulation to other areas of the
brain has also gained interest for goals other thanmotor recovery.
For example, deficits in learning and memory in rats after TBI
has been improved by theta burst stimulation (TBS) of the fornix
and hippocampus (Sweet et al., 2014). There is also human
data supporting the use of subthreshold cortical stimulation for
recovery after an ischemic infarct (Levy et al., 2008); however,
recent data from phase III trials have been negative (Levy et al.,
2016).

For patients with severe disorders of consciousness, median
nerve stimulation (MNS) has been used to enhance oxygen
perfusion to the brain and increase blood brain barrier
permeability for medications intended to help stabilize
the acute injury environment (Cooper et al., 2006; DeFina

et al., 2010). MNS has also been found to increase DA
levels, resulting in accelerated wakening from deep coma
(Cooper et al., 2006). In 2010, DeFina et al. published an
advanced care protocol (ACP) for the rehabilitation of
patients in minimally conscious and vegetative states from
TBI that involves sequential administration of an array
of pharmaceuticals followed by specific interventions and
treatments aimed at facilitating neuroplasticity (traditional
occupational, physical, and speech therapy plus median nerve
stimulation) (DeFina et al., 2010). Patients in this study also
finished a 12 week course of pharmaceutical grade nutrients
(“neutraceuticals”) which resulted in a modest improvement
in disability beyond standard treatment in literature
controls.

New closed-loop stimulation (i.e., bio-feedback) paradigms
are also being developed for patients who cannot participate in
traditional therapy, including brain state dependent stimulation
(BSDS) (Gharabaghi et al., 2014a). In 2014, Gharabaghi
et al. published an experiment where transcranial magnetic
stimulation (TMS) of the motor cortex and haptic feedback to
the hand were controlled by sensorimotor desynchronization
during motor-imagery in one healthy and one stroke subject
with chronic hand paresis (Gharabaghi et al., 2014a). They
found that BSDS increased the excitability of the stimulated
motor cortex in both patients, an effect not observed in non-
BSDS protocols. Both transcranial direct current and magnetic
stimulation therapies are in early stages.

Another area of growing interest is robotic therapy,
primarily for its ability to deliver highly intense and repetitive
motor practice. There is evidence that for some applications,
robotic therapy is at least non-inferior to traditional therapy
(Reinkensmeyer et al., 2004; Lo et al., 2010; Milot et al., 2013).
However, as it stands today, robotic therapy remains limited in
its applications, largely because of its inability to individualize
goal-directed rehabilitation paradigms suited to unique patient
needs. Despite this challenge, robotic interfaces are actively
becoming more sophisticated, and a wide range of strategies
are now being used to improve whole body functions. For
example, an advanced rehabilitative robot with the ability to
assess individualized statistics regarding gait and balance stability
has been demonstrated on a rat model (Dominici et al., 2012).
This particular robot also contains a mode with locomotive
capabilities that can go up stairs, as well as a training mode
with epidural stimulation, repetitive training, and pharmacologic
excitation built in. The latter mode has been shown to enable
rats to achieve voluntary over-ground walking, stair walking,
and precise paw placement after a stroke. Recently, training
for a year with an EEG-based lower extremity exoskeleton and
virtual reality leg simulations has been shown to improve somatic
sensation and enable new voluntary motor control in the legs
of previously chronic complete SCI patients, promoting some
patients up to an incomplete paraplegia classification (Donati
et al., 2016). As adaptive physiologic mechanisms improve and
costs lessen, robotic therapy will likely become increasingly
integral to rehabilitative strategies due to its ability to be applied
in both a clinic and home setting (Cai et al., 2006; Reinkensmeyer
et al., 2006; Courtine et al., 2008).
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DISCUSSION AND INTEGRATION

There are many reasons to be optimistic about the potential
for human nervous system repair. For the first time in
history we are seeing patients with chronic and complete
spinal cord injuries voluntarily move their legs (Dy et al.,
2010; Angeli et al., 2014; Gerasimenko et al., 2015b; Donati
et al., 2016). Advances in modern neurobiological, neuro-
engineering, and neurorehabilitation strategies have provided
hope for better outcomes, and the synergistic potential of
integrated strategies is only beginning to be realized. In fact,
there is a substantial amount of evidence reviewed here
that suggests multi-disciplinary approaches might not only be
helpful, but will be critical for any technique to realize its
full therapeutic capability. While the essential nature of many
rehabilitation strategies remains a subject of debate, well-timed,
goal-directed therapy and some form of associated positive
feedback mechanism appear to be necessary components of
therapeutic paradigms aimed at generating axonal sprouting
and lasting functional improvement (van den Brand et al.,
2012; Wahl et al., 2014). This is a profound realization, largely
because the abstract concept of how conscious agency relates to
neuroanatomical principles of circuitry and guidance remains a
mystery (reviewed in Brogaard and Gatzia, 2016; Koch et al.,
2016; Sandberg et al., 2016), and data presented in this article
suggests that they must be more intimately connected than
previously appreciated. Perhaps this relationship can be further
interrogated by studying the early development of the nervous
system when goal-directed development (e.g., learning to walk
or use one’s hands) naturally leads to innervation and the
establishment of a robust and functional nervous system. On
a practical level, the principle of cortically-based intent driving
axonal sprouting has at least two important consequences: (1)
that patients who suffer from disorders of consciousness (e.g.,
comatose or vegetative patients) may need completely different
therapeutic strategies to attain neural repair than those who have
intact consciousness systems, and (2) that experiments which
have failed in vitro may still be viable therapies when integrated
into a macroscopic framework that includes conscious intent and
goal-directed therapy with a mechanism for positive feedback.

For patients with disorders of consciousness, perhaps
more proximally-based interventions, e.g., cortical stimulation,
will find a way to substitute for active participation in
rehabilitation. Pairing this stimulation with other feedback
mechanisms [e.g., peripheral nerve stimulation and/or passive
movement (via exoskeleton, robotic therapy, or physical
therapy)] could capitalize on PAS principles discussed in
The Neurophysiology Underlying Brain-Machine and Neural
Interface Training section. Furthermore, pharmacologic therapy
aimed at promoting alertness should be included in treatment
strategies.

Another consequence of this theory is that new biological
approaches still largely in the in vitro stage may need to be
applied with goal-directed rehabilitation paradigms to realize
their therapeutic potential, and may fail in isolation. Perhaps
the clearest support for this claim was the demonstration by
Wahl et al. in 2014 of nearly full recovery of skilled forelimb

function by rats with large strokes by giving intrathecal injection
of an antibody against Nogo-A followed by intensive task-
specific training (Wahl et al., 2014). This study demonstrated
that sequential application of drug then training was necessary
to show benefit, and when immunotherapy and forced-use
training were combined simultaneously, functional outcome
was worse than either individually. Furthermore, proper
combination therapy demonstrated far better results than
individual treatments alone. These results serve as evidence
that the timing of therapeutic interventions is critical in
neurorehabilitation, and that failed treatment strategies pursued
in isolation may not, in fact, be futile; instead, they may need to
be applied under a different set of circumstances or synergistically
with othermacro level treatments. This principle could also apply
to stem cells (Mothe and Tator, 2012), gene therapies (Warren
Olanow et al., 2015), optogenetics (reviewed in Jarvis and Schultz,
2015), neuronal transplantation (Furlanetti et al., 2015), and
novel biological or immunotherapies (Maier et al., 2009; Alilain
et al., 2011). While details of these treatments remain largely
outside the scope of this paper, unfortunately they are all still
far from clinical implementation. When ready for rigorous
trials, however, evidence presented here suggests that well-timed
task-specific physical therapy accompanied by mechanisms
like neurostimulation and monoaminergic excitation should be
utilized to facilitate their success. Combinations of biological
therapies, e.g., stem cell and immunotherapies, may also yield
benefit, even if the success of individual applications is found to
be modest; in this review, we have shown multiple examples that
failure of an individual therapy does not preclude its success in
the right context (Benowitz and Yin, 2007; Zai et al., 2011; Wahl
et al., 2014). Researchers should also consider delivering local
therapies when the extracellular milieu is the most conducive
to axonal sprouting and rewiring (i.e., in the first few weeks
after injury), as the subacute inflammatory environment may
be more conducive to assimilating signals for plasticity and
growth than at other times (see The Biology of Neurological
Injury and The Physiology of Recovery from Neurological Injury
sections) (Shetty and Turner, 1995; Nahmani and Turrigiano,
2014). Since trials for these therapies can carry a very high
financial burden and a negative trial may do serious harm to
an otherwise potentially viable strategy, the incorporation of
the proper macroscopic framework to the application of micro
techniques may prove essential for success.

Until complete neurological repair is achievable, optimizing
the timing of a variety of treatments and tailoring therapies
to different phases of injury and recovery remains the gold
standard approach (Kleim and Jones, 2008; Pekna et al., 2012).
In American hospitals, standard of care during the acute phase
of neurological injury aims to stabilize the injury and prevent
further loss of tissue through (1) the initiation of hypothermia
after cardiac arrest, (2) the maintenance of neural perfusion
pressures after TBI or SCI, (3) the recannulation of occluded
vessel(s) after stroke by thrombectomy or thrombolysis, or (4)
surgery to evacuate mass lesions or decompress edematous
tissue. Once stabilized, however, when and how best to apply
pharmaceutical, rehabilitation, and neurostimulation strategies
to aid in neural repair needs rigorous study (reviewed in
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Lang et al., 2015). While certain biological manipulations
discussed in previous sections have shown promise in the
lab (e.g., multiple NgR deletions, anti-NogoA antibodies,
ionosine application, CAST/Ei knockouts), translation to bedside
applications remains a challenge. Furthermore, generating axonal
regrowth on its own does not ensure restoration of function
(see Molecular Mechanisms of Neural Repair section). Also
notable in clinical applications is the relative paucity of
biomarkers that might help drive prognosis and diagnose phases
of injury/recovery, as well as the large discrepancy between
known mechanisms of injury-repair and viable options for
intervention (reviewed in Hergenroeder et al., 2008; DeFina
et al., 2009; Zetterberg et al., 2013). Now that outcomes may
start improving, it would be interesting to monitor known
markers through improved recovery periods, as well as to
search for new ones in the hopes of helping inform the
timing and selection of therapeutic applications. Perhaps by
combining new developments in the neurobiology lab with
the essential elements of neurological rehabilitation, neural
simulation, and the concept of multi-disciplinary intervention
on micro- and macroscopic levels, success will be found
where previously promising therapies have failed (Alilain
et al., 2011; Warren Olanow et al., 2015; Levy et al.,
2016).

CONCLUSION

Researchers have long been developing ways to improve the
quality of life for patients who suffer from SCI, stroke, and
other neurological disorders classically categorized as permanent.
Several disciplines, namely neurobiology, neuro-engineering,
and neurorehabilitation, have all made great strides. However,
the path to achieving complete neurologic recovery for human
patients remains remote and complex. Nonetheless, patients
are now starting to show recovery beyond that which was
previously thought possible. This paper examined the most
recent advances in the biology of neurological injury, molecular
mechanisms of neural repair, physiology of neurological
recovery, neurophysiology underlying brain-machine and neural
interface training, state of the art in neural and brain-machine
interfaces, neurorehabilitation strategies, and ideas for how to
integrate future research. Furthermore, we have identified key
elements of repair strategies that should be included in these
studies. As the development of immunotherapies, electrical
stimulation, neural interfaces, stem cells, optogenetics, and
gene therapies advance, their reparative potential may only be
realized by integrating them into a rehabilitation framework

that includes conscious intention and positive neural feedback.
Special attention should be paid to timing, sequence, and dose
of therapy. Hopefully, these concepts will help usher in the next
frontier of nervous system recovery.

AUTHOR CONTRIBUTIONS

MK, SR, MS, VE, and DT all contributed substantially to the
intellectual property of this project. Each author either drafted or

revised the document critically multiple times, and each has given
his final approval of the version to be published. Furthermore,
each author agrees to be accountable for all aspects of the work.

FUNDING

MK is supported by a grant from the National Institute
of Neurological Disorders and Stroke (NINDS; R25,
5R25NS065731-08). MS is supported by grants from the National
Institute of Health (NIH; K08NS060223 and R01NS094748),
Paralyzed Veterans of America, Brain Research Foundation,
Doris Duke Charitable Foundation, and Northwestern Memorial
Foundation (Dixon Translational Research Grant). VE
is supported by a grants from the National Institute of
Biomedical Imaging and Bioengineering (NIBIB; U01EB007615,
U01EB015521, R43EB017641, and R43EB018232), Paralyzed
Veterans of America, WalkAbout Foundation, Christopher
& Dana Reeve Foundation, and Broccoli Foundation. DT is
supported by grants from the NIH (R21, AG051103; RO1,
NS079312; R21, NS084176; and R37, NS040894) and Veteran’s
Affairs (VA; VA I21, BX003023; and VA I21, RX002223).

ACKNOWLEDGMENTS

This work was inspired by the 2016 Research Update in
Neuroscience for Neurosurgeons (RUNN) course, so a special
thanks is due to course directors Allan Friedman, M.D.
and Richard Friedlander, M.D. for organizing a stimulating
curriculum. Thanks to course coordinator Karen Koenig for
her hard work and display of hospitality. Another thanks to
the distinguished lecturers, especially Andrew Schwartz, Ph.D.,
for their inspiration. Thanks also to Lee Miller, Ph.D., for his
persistent willingness to collaborate and mentor, and to Larry
Benowitz, Ph.D., for his inspiration and collaboration. And
thanks to Miguel Nicolelis, M.D., Ph.D., Laura Oliveira, M.D.,
and Mikhail Lebedev, Ph.D., for their continued mentorship and
support. Figures 1, 2, 4–6 were illustrated by Lauren Halligan at
Duke University.

REFERENCES

Alilain, W. J., Horn, K. P., Hu, H., Dick, T. E., and Silver, J. (2011). Functional

regeneration of respiratory pathways after spinal cord injury. Nature 475,

196–200. doi: 10.1038/nature10199

Allred, R. P., and Jones, T. A. (2008). Maladaptive effects of learning

with the less-affected forelimb after focal cortical infarcts in

rats. Exp. Neurol. 210, 172–181. doi: 10.1016/j.expneurol.2007.

10.010

Allred, R. P., Maldonado, M. A., Hsu And, J. E., and Jones, T. A. (2005).

Training the less-affected forelimb after unilateral cortical infarcts interferes

with functional recovery of the impaired forelimb in rats. Restor. Neurol.

Neurosci. 23, 297–302.

Alvarez-Buylla, A., and Lim, D. (2004). For the long run: maintaining

germinal niches in the adult brain. Neuron 41, 683–686.

doi: 10.1016/S0896-6273(04)00111-4

Ang, K. K., Guan, C., Chua, K. S. G., Phua, K. S.,Wang, C., Chin, Z. Y., et al. (2013).

A clinical study of motor imagery BCI performance in stroke by including

Frontiers in Neuroscience | www.frontiersin.org 15 December 2016 | Volume 10 | Article 584

https://doi.org/10.1038/nature10199
https://doi.org/10.1016/j.expneurol.2007.10.010
https://doi.org/10.1016/S0896-6273(04)00111-4
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Krucoff et al. Enhancing Nervous System Recovery

calibration data from passive movement. Conf. Proc. IEEE Eng. Med. Biol. Soc.

2013, 6603–6606. doi: 10.1109/EMBC.2013.6611069

Angeli, C. A., Edgerton, V. R., Gerasimenko, Y. P., and Harkema, S. J.

(2014). Altering spinal cord excitability enables voluntary movements

after chronic complete paralysis in humans. Brain 137, 1394–1409.

doi: 10.1093/brain/awu038

Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal

replacement from endogenous precursors in the adult brain after stroke. Nat.

Med. 8, 963–970. doi: 10.1038/nm747

Baldwin, K. T., Carbajal, K. S., Segal, B. M., and Giger, R. J. (2015).

Neuroinflammation triggered by β-glucan/dectin-1 signaling enables

CNS axon regeneration. Proc. Natl. Acad. Sci. U.S.A. 112, 2581–2586.

doi: 10.1073/pnas.1423221112

Barbeau, H., and Rossignol, S. (1987). Recovery of locomotion after

chronic spinalization in the adult cat. Brain Res. 412, 84–95.

doi: 10.1016/0006-8993(87)91442-9

Barrese, J. C., Aceros, J., and Donoghue, J. P. (2016). Scanning electronmicroscopy

of chronically implanted intracortical microelectrode arrays in non-human

primates. J. Neural Eng. 13:26003. doi: 10.1088/1741-2560/13/2/026003

Barrese, J. C., Rao, N., Paroo, K., Triebwasser, C., Vargas-Irwin, C., Franquemont,

L., et al. (2013). Failure mode analysis of silicon-based intracortical

microelectrode arrays in non-human primates. J. Neural Eng. 10:66014.

doi: 10.1088/1741-2560/10/6/066014

Becker, D., Gary, D. S., Rosenzweig, E. S., Grill, W. M., and McDonald,

J. W. (2010). Functional electrical stimulation helps replenish progenitor

cells in the injured spinal cord of adult rats. Exp. Neurol. 222, 211–218.

doi: 10.1016/j.expneurol.2009.12.029

Bei, F., Lee, H. H., Liu, X., Gunner, G., Jin, H., Ma, L., et al. (2016). Restoration

of visual function by enhancing conduction in regenerated axons. Cell 164,

219–232. doi: 10.1016/j.cell.2015.11.036

Benowitz, L. I., and Carmichael, S. T. (2010). Promoting axonal rewiring

to improve outcome after stroke. Neurobiol. Dis. 37, 259–266.

doi: 10.1016/j.nbd.2009.11.009

Benowitz, L. I., and Popovich, P. G. (2011). Inflammation and axon regeneration.

Curr. Opin. Neurol. 24, 577–583. doi: 10.1097/WCO.0b013e32834c208d

Benowitz, L. I., and Yin, Y. (2007). Combinatorial treatments for promoting

axon regeneration in the CNS: strategies for overcoming inhibitory signals

and activating neurons’ intrinsic growth state. Dev. Neurobiol. 67, 1148–1165.

doi: 10.1002/dneu.20515

Benowitz, L., and Yin, Y. (2008). Rewiring the injured CNS: Lessons from

the optic nerve. Exp. Neurol. 209, 389–398. doi: 10.1016/j.expneurol.2007.

05.025

Bernstein, D. R., and Stelzner, D. J. (1983). Plasticity of the corticospinal tract

following midthoracic spinal injury in the postnatal rat. J. Comp. Neurol. 221,

382–400. doi: 10.1002/cne.902210403

Bhullar, I. S., Johnson, D., Paul, J. P., Kerwin, A. J., Tepas, J. J., and Frykberg,

E. R. (2014). More harm than good: antiseizure prophylaxis after traumatic

brain injury does not decrease seizure rates but may inhibit functional

recovery. J. Trauma Acute Care Surg. 76, 54–60. doi: 10.1097/TA.0b013e3182

aafd15

Bick, S. K., and Eskandar, E. N. (2016). Neuromodulation for restoring memory.

Neurosurg. Focus 40:E5. doi: 10.3171/2016.3.FOCUS162

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for

the development of neuron selectivity: orientation specificity and binocular

interaction in visual cortex. J. Neurosci. 2, 32–48.

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler,

A., et al. (1999). A spelling device for the paralysed. Nature 398, 297–298.

doi: 10.1038/18581

Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg,

D. A., Nielson, D. M., et al. (2016). Restoring cortical control of

functional movement in a human with quadriplegia. Nature 533, 247–250.

doi: 10.1038/nature17435

Breakspear, M., and Stam, C. J. (2005). Dynamics of a neural system with a

multiscale architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1051–1074.

doi: 10.1098/rstb.2005.1643

Breceda, E. Y., and Dromerick, A. W. (2013). Motor rehabilitation in stroke

and traumatic brain injury: stimulating and intense. Curr. Opin. Neurol. 26,

595–601. doi: 10.1097/WCO.0000000000000024

Bregman, B. S., Kunkel-Bagden, E., Schnell, L., Dai, H. N., Gao, D., and Schwab, M.

E. (1995). Recovery from spinal cord injury mediated by antibodies to neurite

growth inhibitors. Nature 378, 498–501. doi: 10.1038/378498a0

Brogaard, B., and Gatzia, D. E. (2016). What can neuroscience tell us about the

hard problem of consciousness? Front. Neurosci. 10:395. doi: 10.3389/fnins.

2016.00395

Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., et al. (2008).

Think to move: a neuromagnetic brain-computer interface (BCI) system for

chronic stroke. Stroke 39, 910–917. doi: 10.1161/STROKEAHA.107.505313

Bulinski, J. C., Ohm, T., Roder, H., Spruston, N., Turner, D. A., and Wheal, H.

V. (1998). Changes in dendritic structure and function following hippocampal

lesions: correlations with developmental events? Prog. Neurobiol. 55, 641–650.

doi: 10.1016/s0301-0082(98)00023-9

Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., et al.

(2006). Implications of assist-as-needed robotic step training after a complete

spinal cord injury on intrinsic strategies of motor learning. J. Neurosci. 26,

10564–10568. doi: 10.1523/JNEUROSCI.2266-06.2006

Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Martin Moraud,

E., Mignardot, J.-B., et al. (2016). A brain-spinal interface alleviating

gait deficits after spinal cord injury in primates. Nature 539, 284–288.

doi: 10.1038/nature20118

Carhart, M. R., He, J., Herman, R., D’Luzansky, S., and Willis, W. T. (2004).

Epidural spinal-cord stimulation facilitates recovery of functional walking

following incomplete spinal-cord injury. IEEE Trans. Neural Syst. Rehabil. Eng.

12, 32–42. doi: 10.1109/TNSRE.2003.822763

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci,

D. M., Dimitrov, D. F., et al. (2003). Learning to control a brain-

machine interface for reaching and grasping by primates. PLoS Biol. 1:E42.

doi: 10.1371/journal.pbio.0000042

Carmichael, S. T., Archibeque, I., Luke, L., Nolan, T., Momiy, J., and Li,

S. (2005). Growth-associated gene expression after stroke: evidence for a

growth-promoting region in peri-infarct cortex. Exp. Neurol. 193, 291–311.

doi: 10.1016/j.expneurol.2005.01.004

Carmichael, S. T., and Chesselet, M.-F. (2002). Synchronous neuronal activity is

a signal for axonal sprouting after cortical lesions in the adult. J. Neurosci. 22,

6062–6070.

Carson, R. G., and Kennedy, N. C. (2013). Modulation of human corticospinal

excitability by paired associative stimulation. Front. Hum. Neurosci. 7:823.

doi: 10.3389/fnhum.2013.00823

Chang, C. W., Lo, Y. K., Gad, P., Edgerton, R., and Liu, W. (2014).

Design and fabrication of a multi-electrode array for spinal cord epidural

stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 6834–6837.

doi: 10.1109/EMBC.2014.6945198

Chen, D. F., Schneider, G. E., Martinou, J., and Tonegawa, S. (1997). Bcl-2

promotes regeneration of severed axons in mammalian CNS. Nature 385,

434–439. doi: 10.1038/385434a0

Chen, P., Goldberg, D. E., Kolb, B., Lanser, M., Benowitz, L. I., Chen, P., et al.

(2002). Inosine induces axonal rewiring and behavioral outcome after stroke.

Proc. Natl. Acad. Sci. U.S.A. 99, 9031–9036. doi: 10.1073/pnas.132076299

Cherian, A., Krucoff, M. O., and Miller, L. E. (2011). Motor cortical

prediction of EMG: evidence that a kinetic brain-machine interface may be

robust across altered movement dynamics. J. Neurophysiol. 106, 564–575.

doi: 10.1152/jn.00553.2010

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara,

E. C., Weber, D. J., et al. (2013). High-performance neuroprosthetic

control by an individual with tetraplegia. Lancet 381, 557–564.

doi: 10.1016/S0140-6736(12)61816-9

Cook, A. W., and Weinstein, S. P. (1973). Chronic dorsal column stimulation in

multiple sclerosis. Preliminary report. N. Y. State J. Med. 73, 2868–2872.

Cooper, E. B., Scherder, E. J., and Cooper, J. B. (2006). Electrical treatment

of reduced consciousness: experience with coma and Alzheimer’s disease.

Neuropsychol. Rehabil. 15, 389–405. doi: 10.1080/09602010443000317

Cooper, L. N., and Bear, M. F. (2012). The BCM theory of synapse modification

at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810.

doi: 10.1038/nrn3353

Cooper, S. J. (2005). Donald O. Hebb’s synapse and learning rule:

a history and commentary. Neurosci. Biobehav. Rev. 28, 851–874.

doi: 10.1016/j.neubiorev.2004.09.009

Frontiers in Neuroscience | www.frontiersin.org 16 December 2016 | Volume 10 | Article 584

https://doi.org/10.1109/EMBC.2013.6611069
https://doi.org/10.1093/brain/awu038
https://doi.org/10.1038/nm747
https://doi.org/10.1073/pnas.1423221112
https://doi.org/10.1016/0006-8993(87)91442-9
https://doi.org/10.1088/1741-2560/13/2/026003
https://doi.org/10.1088/1741-2560/10/6/066014
https://doi.org/10.1016/j.expneurol.2009.12.029
https://doi.org/10.1016/j.cell.2015.11.036
https://doi.org/10.1016/j.nbd.2009.11.009
https://doi.org/10.1097/WCO.0b013e32834c208d
https://doi.org/10.1002/dneu.20515
https://doi.org/10.1016/j.expneurol.2007.05.025
https://doi.org/10.1002/cne.902210403
https://doi.org/10.1097/TA.0b013e3182aafd15
https://doi.org/10.3171/2016.3.FOCUS162
https://doi.org/10.1038/18581
https://doi.org/10.1038/nature17435
https://doi.org/10.1098/rstb.2005.1643
https://doi.org/10.1097/WCO.0000000000000024
https://doi.org/10.1038/378498a0
https://doi.org/10.3389/fnins.2016.00395
https://doi.org/10.1161/STROKEAHA.107.505313
https://doi.org/10.1016/s0301-0082(98)00023-9
https://doi.org/10.1523/JNEUROSCI.2266-06.2006
https://doi.org/10.1038/nature20118
https://doi.org/10.1109/TNSRE.2003.822763
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1016/j.expneurol.2005.01.004
https://doi.org/10.3389/fnhum.2013.00823
https://doi.org/10.1109/EMBC.2014.6945198
https://doi.org/10.1038/385434a0
https://doi.org/10.1073/pnas.132076299
https://doi.org/10.1152/jn.00553.2010
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1080/09602010443000317
https://doi.org/10.1038/nrn3353
https://doi.org/10.1016/j.neubiorev.2004.09.009
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Krucoff et al. Enhancing Nervous System Recovery

Courtine, G., Song, B., Roy, R. R., Zhong, H., Herrmann, J. E., Ao, Y., et al. (2008).

Recovery of supraspinal control of stepping via indirect propriospinal relay

connections after spinal cord injury.Nat. Med. 14, 69–74. doi: 10.1038/nm1682

Crone, N. E., Boatman, D., Gordon, B., Hao, L., Adrian, E. D., Matthews,

B. H. C., et al. (2001). Induced electrocorticographic gamma activity

during auditory perception. Clin. Neurophysiol. 112, 565–582.

doi: 10.1016/S1388-2457(00)00545-9

Curt, A., Van Hedel, H. J. A., Klaus, D., and Dietz, V. (2008). Recovery from a

spinal cord injury: significance of compensation, neural plasticity, and repair. J.

Neurotrauma 25, 677–685. doi: 10.1089/neu.2007.0468

Dachir, S., Shabashov, D., Trembovler, V., Alexandrovich, A. G., Benowitz,

L. I., and Shohami, E. (2014). Inosine improves functional recovery

after experimental traumatic brain injury. Brain Res. 1555, 78–88.

doi: 10.1016/j.brainres.2014.01.044

Daly, J. J., Roenigk, K., Holcomb, J., Rogers, J. M., Butler, K., Gansen,

J., et al. (2006). A randomized controlled trial of functional

neuromuscular stimulation in chronic stroke subjects. Stroke 37, 172–178.

doi: 10.1161/01.STR.0000195129.95220.77

Dancause, N. (2005). Extensive cortical rewiring after brain injury. J. Neurosci. 25,

10167–10179. doi: 10.1523/JNEUROSCI.3256-05.2005

Dancause, N., and Nudo, R. (2011). Shaping plasticity to enhance

recovery after injury Numa. Prog. Brain Res. 192, 273–295.

doi: 10.1016/B978-0-444-53355-5.00015-4

DeFina, P. A., Fellus, J., Thompson, J. W., Eller, M., Moser, R. S., Frisina, P. G.,

et al. (2010). Improving outcomes of severe disorders of consciousness. Restor.

Neurol. Neurosci. 28, 769–780. doi: 10.3233/RNN-2010-0548

DeFina, P., Fellus, J., Polito, M. Z., Thompson, J. W., Moser, R. S., and DeLuca,

J. (2009). The new neuroscience frontier: promoting neuroplasticity and

brain repair in traumatic brain injury. Clin. Neuropsychol. 23, 1391–1399.

doi: 10.1080/13854040903058978

de Lima, S., Habboub, G., and Benowitz, L. I. (2012a). Combinatorial therapy

stimulates long-distance regeneration, target reinnervation, and partial

recovery of vision after optic nerve injury in mice. Int. Rev. Neurobiol. 106,

153–172. doi: 10.1016/B978-0-12-407178-0.00007-7

de Lima, S., Koriyama, Y., Kurimoto, T., Oliveira, J. T., Yin, Y., Li, Y., et al.

(2012b). Full-length axon regeneration in the adult mouse optic nerve and

partial recovery of simple visual behaviors. Proc. Natl. Acad. Sci. U.S.A. 109,

9149–9154. doi: 10.1073/pnas.1119449109

Demirtas-Tatlidede, A., Vahabzadeh-Hagh, A. M., Bernabeu, M., Tormos,

J. M., and Pascual-Leone, A. (2012). Noninvasive brain stimulation

in traumatic brain injury. J. Head Trauma Rehabil. 27, 274–292.

doi: 10.1097/HTR.0b013e318217df55

Dickendesher, T. L., Baldwin, K. T., Mironova, Y. A., Koriyama, Y., Raiker, S. J.,

Askew, K. L., et al. (2012). NgR1 and NgR3 are receptors for chondroitin sulfate

proteoglycans. Nat. Neurosci. 15, 703–712. doi: 10.1038/nn.3070
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