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Full length article 

How much potable water is saved by wastewater recycling? 
Quasi-experimental evidence from California 

Jason Maier a,*, Joseph Palazzo a, Roland Geyer a, Douglas G. Steigerwald b 

a Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA 
b Department of Economics, University of California, Santa Barbara, CA, 93106, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

Recently, California has made large investments in wastewater recycling to replace applications that use potable 
water. It may be expected that the use of recycled water reduces potable water use, but such an equivalency is 
not assured. The addition of recycled water infrastructure in a large Californian water district creates a natural 
experiment where this work tests how recycled water usage affects primary potable water. This is done using 
econometric methods for causal inference in an observational setting that mirror a randomized control trial 
(RCT). From 2001 to 2014, a number of public parks were given recycled water infrastructure, while others in 
those regions remained exclusively on potable supply. A two-way fixed effects regression is used to produce a 
difference-in-differences estimate of the average treatment effect of recycled water on total and potable water 
usage. The results indicate that potable water usage is reduced significantly when a park is connected to the 
recycled water supply. The estimated rate of displacement in the study period is 81.7%, meaning each unit of 
recycled water use avoided 0.817 units of potable water usage, which implies the connection of parks to recycled 
water supply increases total water use. The analysis provides, to the best of our knowledge, the first empirical 
estimate of the water savings claimed by urban water recycling programs, and the first empirical estimate of 
displacement using quasi-experimental methods. The methodology can be utilized to evaluate the effectiveness 
of recycling programs around the world.   

1. Introduction 

The reuse of treated wastewater, or water recycling, traces back to 
ancient civilizations in the dry areas of the world. Angelakis et al. (2005) 
place the earliest uses of wastewater for agricultural irrigation in the 
Minoan civilization, more than a millennium before the Christian era. 
Today, wastewater recycling is a common practice in water stressed 
areas, with the Middle East and North Africa and various island 
nationshaving the highest levels of water reuse per capita in the world 
(Jimenez and Asano, 2008; Jones et al. 2021). As climate change pro
gresses, droughts are expected to increase in frequency and severity in 
many parts of the world (Dai, 2013; Guneralp et al., 2015). The potential 
future risks of climate change, as well as increasing demand for water 
resources, has led to increased investment in wastewater recycling as a 
means of decreasing reliance on ground and surface water sources 
(Palazzo et al., 2017). For wastewater recycling to mitigate risk or 
decrease demand on primary supply, the use of recycled water must 
decrease the consumption of primary water supply. At first glance, this 

might seem to be a trivial point. Certainly, the nuance has been over
looked by many suppliers. For instance, in water districts with active 
water recycling programs, promotional material states the amount of 
primary water saved is equivalent to the amount of recycled wastewater 
supplied to customers (Goleta Water District, 2018; Horticulture 
Australia Limited, 2011). But this relationship is implicitly assumed and 
need not be the case. There is no theoretical reason that consumption of 
recycled water must happen in place of primary supply and an empirical 
estimate of this equivalency is lacking in the literature. 

The consumption of units of recycled wastewater may not replace 
consumption of primary sources on a one-to-one basis. Why might 
recycled wastewater usage not avoid primary water usage? For one, 
recycled water is not currently suitable for all uses. Some uses such as 
direct consumption (drinking) remain best served by primary potable 
water infrastructure. In the case of direct consumption, there are tech
nical and economic limitations of treating water to a level of sanitation 
required to meet human health and safety regulations (Tang et al. 2018). 
As a result, the introduction of recycled water infrastructure often occurs 
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as a supplement to the already existing potable water network. Since 
recycled water is generally non-potable, ‘potable’ and ‘primary’ are used 
interchangeably here. When recycled water infrastructure exists along
side potable water infrastructure it need not be the case that the use of 
recycled water avoids the use of potable water. For instance, if recycled 
water is cheaper, less healthy or considered to be more environmentally 
friendly, it may be used in ways that differ from its potable counterpart. 
To this end, the introduction of recycled water infrastructure has an 
unclear effect on potable (and total) water usage. As a point of clarity, 
the effect on potable and total water usage are related, since total water 
usage is equal to potable usage plus recycled water usage. As a result, the 
observation that total water usage is unaffected by recycled water 
treatment implies that potable water usage is avoided by recycled water 
usage on a 1:1 basis. To what extent does the introduction of recycled 
water change the overall demand for water and, in particular, the de
mand for potable water? To shed light on this question, data from a 
California water district is examined that recently introduced treated 
wastewater into its supply. 

In general, characterizing the environmental benefits that arise from 
recycling activity is a topic of great interest to the industrial ecology 
community (Ekvall, 2000; Frischknecht, 2010; Koffler and Finkbeiner, 
2018). The environmental benefits are driven by the degree to which 
recycled materials substitute for their primary equivalents on the ma
terial market, a phenomenon referred to as displacement (Geyer et al., 
2015; Yang, 2016; Zink and Geyer, 2018). When displacement is 
incomplete, i.e. recycled materials do not substitute for primary mate
rials on a one-to-one basis, increases in recycling are not completely 
offset by decreases in primary production or usage. Such a scenario re
sults in the increase of total material use and a decrease in the envi
ronmental benefits of the recycling activity. In recent research, authors 
have shown that paper consumption may increase when users are aware 
of its recycled content (Catlin and Wang, 2013) and that the complete 
substitution of recycled aluminum for primary aluminum on the U.S. 
material market is unlikely (Zink et al., 2017). It has also been shown 
that resource consumption may increase when recycling is added as a 
disposal option, in comparison to scenarios where trashing is the only 
disposal option (Sun and Trudel, 2017). These studies provide evidence 
that recycling may not displace primary production, leading to increases 
in total resource consumption, a phenomenon known as circular econ
omy rebound (Zink and Geyer, 2017). The relationship between primary 
and secondary material use can be complex, driven by economic, 
behavioral, or other contextual factors. As a result, estimating the rate of 
displacement is an empirical challenge. One recent paper outlines how 
displacement can be estimated using quasi-experimental approaches 
such as difference-in-differences (DID), where data are divided into 
treatment and control groups (Palazzo et al., 2019). Such a strategy has 
yet to be executed in the literature. We direct readers to Palazzo et al. 
(2019) for a thorough treatment of the benefits and limitations 
quasi-experimental methods more generally. 

Water recycling presents a compelling case study because water is 
used, recycled, and reused in a localized system with data that are 
regularly tracked at the level of the individual user. Furthermore, 
recycled water is often delivered for non-potable applications in which 
the usage data of potable and recycled water are metered separately. In 
this research, data was collected on recycled and potable water use over 
time to conduct the first quasi-experimental estimation of the effect of 
wastewater recycling on total and potable water usage. A two-way fixed 

effects regression is used to produce a difference-in-differences (DID) 
estimate of the effect of recycled water conversions on total and potable 
water usage, and the estimated treatment effect is used to estimate the 
displacement ratio. The paper proceeds as follows. First, the difference- 
in-differences estimator is revisited and the assumptions that qualify the 
use of the two-way fixed effects model are discussed. Second, the esti
mation of the displacement ratio is discussed. Third, the two-way fixed 
effects model is applied to a panel of nineteen properties in two regions 
of a specific water district. The estimated effects of access to recycled 
water on total water usage are presented, as well as estimates of the 
displacement ratio. The research concludes with a discussion of the 
limitations of the approach, future research directions, and the impli
cations of the findings for water resources management. 

2. Data and methods 

Section 2 presents a discussion of the data source used, followed by a 
discussion of the methods employed. For readers less familiar with the 
difference-in-differences (DID) framework, the estimation framework is 
presented in detail along with a discussion of DID estimation in a general 
two-period case. After the two-period case, the multiple-period, stag
gered adoption case is presented. The section concludes with a discus
sion of statistical inference and the estimation of the displacement ratio 
from the average treatment effect. 

2.1. Data source 

To examine the effect of water recycling on total water use, and in 
turn displacement, primary data was collected (2016-2018) of site-level 
water usage from the East Bay Municipal Utility District (EBMUD), a 
large water district (more than 1 million customers) in California. These 
data consist of monthly observations of water usage from public recre
ational properties, also known as parks. These parks consist of green 
open spaces, trails and walking paths, and in some instances sport fields, 
however the specific uses of each park were anonymized by the data 
provider. For each site, a minimum of 120 observations were collected at 
the monthly level. Data were collected from a total of 19 sites that are 
divided into two small regions within EBMUD. A site is considered 
“treated” once it has been connected to the infrastructure that supplies 
recycled wastewater. Sites that are never connected to the infrastructure 
serve as controls. The proximity of treatment and control properties to 
each other allows for the isolation of the effect of the addition of recy
cled water infrastructure from the myriad other factors that determine 
water usage (Arbués et al., 2003; DeOliver, 1999; Gilbertson et al., 2011; 
Martinez-Espineira, 2002). Additional information regarding the data 
collection process, and sample statistics for each site are presented in 
Appendix A.4, including dates of data collection, site specific means and 
number of observations, and site treatment information. 

Table 1 gives a summary of the data set used in the analysis. EBMUD 
supplied the water usage data without site-specific identifiers. Thus, the 
exact location and size of all properties is unknown as well as additional 
details regarding site specific differences such as vegetation. Such dif
ferences are accounted for using site specific fixed effects, as discussed 
in section 2.2.3. However, it is assumed that given their geographic 
proximity, the treatment and control groups are robust matches in 
predictors of water usage, such as rainfall and temperature. The 
connection to recycled water is staggered over time, with some sites 

Table 1 
An overview of the two study regions including the number of control and treatment sites, the mean number of observations for the treatment and control sites, and the 
mean monthly water usage for treatment and control sites in cubic meters (cu m) during the period before any site is connected to recycled water.  

Region Control 
Sites 

Treated 
Sites 

Mean control 
observations 

Mean treatment 
observations 

Mean pre-treatment monthly water usage 
for controls (cu m/site/month) 

Mean pre-treatment monthly water usage 
for treated (cu m/site/month) 

R1 5 5 168 129 3937 1933 
R2 4 5 168 136 770 604  

J. Maier et al.                                                                                                                                                                                                                                   
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connected later than others. We account for this staggered adoption in 
our estimated model. Notably, two potential control sites, one from each 
region, were excluded due to data anomalies noticed and indicated as 
anomalies by the data provider. In addition, the unit price of water of 
both potable and recycled water faced by the parks is observed, both of 
which increase over the data collection period. The price of each type of 
water in a given year is the same across all sites. In all but one year 
(2010), the price of potable water is exactly 1.2 times the price of 
recycled water, nearly constant across our sample. In 2010, the price of 
potable water was 1.08 times the price of recycled water. Furthermore, 
the public recreational properties do not pay a tiered water rate based on 
usage. 

Table 1 compares average water use in the pre-treatment period for 
the sites that eventually are treated and those that serve as corre
sponding controls. A more intuitive comparison of the changes associ
ated with a treatment can be made when the average water use is 
comparable across the two groups. This is true in Region 2, where the 
average usage in control sites, 770, is close in magnitude to the average 
usage in the sites selected for treatment, 604. In Region 1, however, the 
average usage in control sites, 3,937, is much larger than the average 
usage in sites selected for treatment, 1,933. It could be that in Region 1, 
smaller parks are located closer to the source of recycled water, and so 
are more likely to be treated. As long as this differential usage pattern 
does not change over time (either in levels or percentage terms) it can be 
accounted for with site specific effects and the comparison of treatment 
and control groups remains valid. In Section 2.2.2 it is discussed why 
this difference is likely random with respect to selection into recycled 
water conversion, and thus does not threaten the identification of the 
effect of recycled water conversion on total and potable water usage. 

2.2. Empirical Approach 

To estimate the effect of introducing recycled water infrastructure on 
total water demand a difference-in-differences (DID) estimation frame
work is employed, which Palazzo et al. (2019) propose as a method to 
analyze the effect of recycling on total and primary resource usage at 
treated parks. The difference-in-differences is estimated using the 
two-way fixed effects estimator, an estimator commonly employed 
when there are multiple time periods and multiple units that are treated 
over time. Before describing the two-way fixed effects estimator, the DID 
estimation framework is presented, alongside a detailed case that de
scribes DID estimation in a two-period case designed to aid the intuitive 
understanding of the reader. This section concludes with a discussion of 
the estimation of the rate of displacement. 

2.2.1. Estimation framework 
The identification of causal effects using the difference-in-differences 

approach depends on several key assumptions. Let Yit measure total 
water usage at park i in period t. Yit can be measured either in levels 
(measured in volume) or in logs (used to represent percentage changes 
in volume); which measure is more appropriate is discussed below 
alongside the discussion of the parallel trends assumption. For each park 
in each time period, there are two potential outcomes: Yit(1), if the park 
is connected to the recycled water network in period t; and Yit(0), if the 
park is not connected to the recycled water network in period t. Let Dit 
indicate treatment, that is, Dit = 1 if park i is connected to the recycled 
water network in period t and is observed in the treatment state, 
otherwise Dit = 0 and the park is observed in the control state. 

The treatment, or causal, effect is 

τit = Yit(1) − Yit(0).

τit represents the change in total water usage in park i in time period t 
caused by connection to the recycled water network. These effects can 
differ over parks and time periods and thus capture all possible het
erogeneous treatment effects. Because both of the potential outcomes for 
park i in period t can never be simultaneously observed, the treatment 

effect τit is unobservable. If treatment effects do not vary by park or over 
time, then τit = τ, a quantity that can be estimated directly from the 
data. In some instances it is more plausible that treatment effects differ 
over parks and over time. When the treatment effects for parks vary over 
parks and over time, estimation focuses on the average treatment effect 
among parks that are treated (ATT): 

E[τit|Dit = 1] = E[Yit(1) − Yit(0)|Dit = 1].

The ATT can be thought of as the effect of the treatment at the water 
district level. That is, the effect of the treatment could be different for 
each park: one park could increase water usage after being connected to 
the recycled water network because of pent-up demand or simply a 
belief that recycled water is more plentiful; another park could decrease 
water usage because of new found concerns regarding water usage. The 
average water use across treated parks provides an aggregate measure of 
these effects at the water district level. If the ATT is zero, then total water 
usage at the district level is unchanged as a result of connection to the 
recycled water network. In such a case, the used recycled water has 
simply replaced previous usage of potable water and the displacement 
ratio is 1. If, instead, total water usage increases, then 1 unit of recycled 
water replaces less than 1 unit of potable water and the displacement 
ratio is less than 1. The next two sections discuss the general framework 
for the estimation of the treatment effect, first in a two-period case, 
followed by a multiple period case in which we introduce the two-way 
fixed effects estimator. Once estimation and inference of the treatment 
effect has been discussed, the estimation of the displacement ratio using 
the estimated treatment effect is discussed. 

2.2.2. Two periods 
To aid the reader in the intuition of a difference-in-differences esti

mation, a general two-period case is presented. Suppose first that we 
compare only two periods, a pre-treatment period denoted t=0 and a 
post-treatment period denoted t=1. The logic is that none of the parks 
are treated in the pretreatment period, so Di0 = 0 for all parks, while 
some, but not all of the parks are treated in the post-treatment period. To 
be able to estimate the ATT, it must be the case that the treatment is 
randomly assigned. Here, random assignment means that there is no 
tendency to assign parks to treatment based on their change in water use 
over time. Mathematically, the parks that are in the control group have 
Di1 = 0, so their expected change in water use over the two periods is 

E[Yi1(0) − Yi0(0)|Di1 = 0].

This needs to be equal to the expected change in water use over the 
two periods for the parks in the treatment group, if those parks had not 
been treated, which is 

E[Yi1(0) − Yi0(0)|Di1 = 1].

If these two quantities are equal, then the treatment and control 
groups would have similar paths of water usage, apart from assignment 
to treatment. It is important to note that this allows for parks that are 
treated to be systematically different from parks that are not treated in 
their water usage in the pre-treatment period. For example, if the parks 
that were treated had lower water usage in the pre-treatment period, the 
estimation method accounts for this. What must be true is that the 
change in water usage – the trend – be similar across all parks. This 
assumption is often termed the parallel trends assumption. The 
assumption would be threatened if, for example, there was another 
major change that occurred in the treated parks simultaneously with 
their conversion to recycled water. Moreover, the parallel trends 
assumption is sensitive to scaling of the outcome of interest when the 
baseline levels between control and treatment groups are not equivalent, 
which is the case here as seen in Table 1. Since the baseline levels of 
water usage are different across the control and treatment groups pre- 
treatment, the parallel trends assumption cannot hold in both levels 
and logs. For instance, when the control and treatment group both 
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experience a ten percent increase in water usage, they violate the par
allel trends assumption in terms of water usage level (since 10% of the 
3937 is not equal to 10% of 1933). As such the research must choose 
whether to consider the outcome variable in levels or logs. Here, it is 
assumed that external forces have similar percentage change effects on 
park water usage, due to the lack of data on park size. As a result, we 
consider the log of total water usage as the outcome variable, with a 
discussion of the estimation in the case of levels left to Appendix A.1. 
The parallel trends assumption is discussed further in Section 2.2.3. 

Still, is the parallel trends assumption (in logs) reasonable for the 
case at hand? The assumption is that the decision to connect a park to 
the recycled water network is not based on the change in water usage at 
that park over time. Understanding the decision to treat can help justify 
the parallel trends assumption. From conversations with the utility 
district, parks were connected to the recycled water network based on a 
set of factors that is not directly tied to the evolution of their water 
usage. A park was more likely to be connected to the recycled water 
network if it was: closer to the treatment plant that recycled water, 
closer to the main recycled water pipeline, and if there were fewer sites 
served along the pipeline closest to the park. Within EBMUD, main 
recycled water pipelines are constructed in an alignment that enables 
recycled water to reach an “anchor” customer such as a golf course or 
large industrial user. The pipeline going from the treatment plant to the 
anchor customer is configured such that the maximum number of 
smaller irrigation customers, such as the parks observed in the data, can 
be reached at the lowest cost. Because the main driver of the decision to 
connect a park to the recycled water network is that park’s proximity to 
an anchor customer, and because there is no reason to believe that the 
trend in water usage at parks is correlated with proximity to anchor 
customers, there is no reason to believe that the parallel assumption is 
violated in treatment assignment. 

To express the estimation equation, let {TREATi = 1} be a variable 
that indicates the parks that are treated in any period and let {t= 1} be a 
variable that indicates the post-treatment period. Thus for a treated park 
in the post treatment period, both of these variables equal 1, hence Dit =

{TREATi = 1} ∗ {t = 1}. The estimating equation is 

Yit = μ + δ{TREATi = 1} + ρ{t= 1} + θDit + εit. (1) 

Where μ is the mean value across all sites and εit is the error term. 
Since, the water usage is measured in logs, Yit is the log of total water use 
in site i at time t. To understand how the parameters of the estimating 
equation correspond to measurements of total water usage by park, first 
note that the equation is designed to fit average water usage. Average 
water usage in the pre-treatment period for parks that will not be treated 
is 

E [Yit|t= 0, TREATi = 0] = μ.

In corresponding fashion, average water use in the pre-treatment 
period for parks that will be treated is E [Yit|t= 0,TREATi = 1] = μ + δ,
so that δ is the difference in average water use, before treatment begins, 
between parks that will be treated and those that will not be treated. 
From the information in Table 1, we anticipate that the estimate of δ will 
be negative. Table 2 lays out these relations and the corresponding re
lations for average water use in the post-treatment period. 

From Table 2 we see that the change in water use over time for the 
parks that are not treated is ρ, so the parallel trends assumption implies 
that if the treated parks had not been treated, their water use over time 
would also have changed by ρ. Thus, if there is no effect of the treatment 
on total water usage, then average water usage in the treated parks post 
treatment is simply μ+ δ+ ρ, and θ would equal 0. If, however, θ does 
not equal 0, then the treatment has affected total water usage and θ 
captures the magnitude of the effect. Since the dependent variable, Yit , 
is in logs, the treatment effect, θ , is a percentage change in water usage. 
The estimator from this equation is termed the difference-in-differences 

estimator because 
{[

Ypost,treated − Ypre,treated

]
−

[
Ypost,control − Ypre,control

]}

{[μ + δ + ρ + θ − μ − δ] − [μ + ρ − μ]} = θ. The coefficient θ represents 
the difference between pre-and post-treatment means in the treatment 
group, minus the difference between pre-and post-treatment means in 
the control group. 

Note that it is extremely important to include the variables 
{TREATi = 1} and {t= 1} in the estimation equation, where 
{TREATi = 1} and {t = 1}are indicator variables for the treatment group 
and the post-treatment period, respectively. In essence, these terms are 
controls for the quasi-experiment represented by this model. It is likely 
that mean monthly water usage levels are systematically different in the 
treatment and control groups throughout the entire study period, 
regardless of the exposure of the treatment group to recycled water. The 
coefficient δ captures this difference in means, and including the term in 
the regression addresses potential bias in the estimate of the treatment 
effect. This bias would arise because the previously existing difference in 

Table 2 
The mean monthly water usage (in logs) for pre- and post-treatment observa
tions in the treated and control groups when using the difference-in-differences 
regression model in Eq. (1).   

Pre-treatment mean Post-treatment mean 

Treated μ+ δ  μ+ δ+ ρ+ θ  

Control μ  μ+ ρ   

Fig. 1. Monthly water usage in log(cu 
m) averaged across treated sites (solid 
line) and control sites (dashed line) 
during the period where all sites report 
data. The staggered treatment adoption 
is indicated with labels the number of 
treated sites at the beginning of each 
year where new treated sites are intro
duced. The all-sites period is broken into 
three parts, one before any site is treated 
(per-treatment), a second during the 
staggered adoption period (adoption 
period), and a third once all sites are 
treated (all-treated).   

J. Maier et al.                                                                                                                                                                                                                                   
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water usage levels between the treatment and control groups would be 
absorbed into the estimate θ̂. Similarly, ρ captures a change in mean 
water usage that arises in both the treatment and control groups in the 
post-treatment period. Including this term in the regression addresses 
potential bias in the estimate of the treatment effect that arises from time 
trends that exist across both treatment and control groups. Such time 
trends are not attributable to the treatment itself. With these controls in 
place, under the parallel trends assumption, θ is identified as the 
average treatment effect on the treated and the method of ordinary least 
squares (OLS) will deliver an unbiased estimator of this effect. 

2.2.3. Multiple periods–staggered adoption 
The difference-in-differences estimator can be applied in a case with 

multiple periods and staggered adoption. Such a case exists here where 
water usage is observed monthly over time (multiple periods) and 
treatment does not occur all at once. Staggered adoption is a special case 
of treatment occurring over time where units are treated in different 
periods, but once treated they remain so. The key assumption underly
ing a difference-in-differences estimation, which is sometimes termed 
the parallel trends assumption, implies that, absent connection to 
recycled water, water usage would follow the same trend over time in all 
parks. This assumption remains crucial in a case with multiple periods 
and staggered adoption. Because it is not possible to run a controlled 
experiment, the treatment could be correlated with another exogenous 
effect that differs in magnitude across treatment and control sites. 
However, staggered adoption helps to mitigate this concern by reducing 
the possibility that another exogenous effect occurs simultaneously 
(since treatment occurs at different periods). Fig. 1 examines the 
robustness of the parallel trends in log total water usage during the pre- 
treatment period. The plotted trends are average total water usage 
across sites in the treatment group (solid line) and control group (dashed 
lines) during the subset of the study period where all 19 sites are 
reporting data. A sinusoidal pattern in water usage is observed that 
peaks in the summer season. The peaks in the control group are higher 
than that of the treatment group. A visual inspection of the trends of the 
control and treatment group prior to the adoption period provides 
suggestive evidence that the common trends assumption holds. 

2.2.4. Two-way fixed effects 
To examine the effect of recycled water conversions on total and 

potable water usage in the setting where there are multiple time periods 
and staggered adoption of treatment, the two-way fixed effects regres
sion approach to DID estimation is used. A two-way fixed effects 
approach allows for there to be an individual intercept, or dummy 
variable coefficient, for each site. Two-way fixed effects estimation also 
allows for an individual intercept, or dummy variable coefficient, for 
each time period of data collection. This is a more flexible approach than 
the standard DID example given in Section 2.2.1, where there is a single 
intercept for treatment sites, a single intercept for control sites, and one 
indicator variable for the post-treatment period. In two-way fixed effects 
settings, one controls for time-invariant factors at individual sites, such 
as management structure and size, by estimating individual site in
tercepts. In addition, one controls for site-invariant factors that are 
distinct during each time period, such as the unit prices of potable and 
recycled water and weather, by estimating individual time period 
intercepts. 

The effect of introducing recycled water on the log total water usage 
is estimated using (4), where γ is the fixed effect for the excluded site in 
the base year, αi is the difference between the fixed effect for site i and 
the excluded site, βt is the difference between the fixed effect for period t 
and the base year, Dit remains the indicator for a treated site in the post 
treatment period, and θ is the estimate of the DID treatment effect, 

Yit = γ + αi + βt + θDit + εit (4) 

When there are only two sites and two time periods, Eq. (4) collapses 
into the form of Eq. (1). Since there are only two groups and two time 
periods represented in Eq. (1), αi= δ{TREATi = 1}, and βt = ρ{t = 1}. 

There is a notable complication that arises when using two-way fixed 
effects estimation in a setting with multiple time periods and staggered 
adoption of treatment. It is true, staggered adoption helps to mitigate the 
concern that an exogeneous event at the time of treatment affected 
control and treatment units differently, due to the non-simultaneous 
adoption of treatment. However, under two-way fixed effects estima
tion with staggered adoption, as consistent with Eq. 4 above, θ is equal to 
a weighted sum of the treatment effects in each treated unit (de Chai
semartin and D’Haultffuille, 2018): 

θ = E

⎡

⎣
∑

(i,t) :Di,t=1

Wi,tτi,t

⎤

⎦

Table 3 
Two-way fixed effects results with log total water usage as the dependent variable, using cluster-robust standard errors and wild bootstrap critical values. Actual 
clusters, effective clusters, number of observations, critical values, 95% confidence intervals, and sample restrictions are also shown. Each column corresponds to a 
specific sample restriction described in the final row of the table.  

Model (1) (2) (3) (4) (5) 

π̂ (%) (S.E)  9.65 (16.0) -0.24 (28.8) -1.21 (14.6) 21.0 (28.7) -5.10 (16.8) 

N 2,707 2,175 1,458 1,249 946 
Actual Clusters 19 19 10 9 19 
Effective Clusters 16.9 13.0 8.17 8.94 16.9 
Bootstrap critical values [-1.97, 2.15] [-2.10, 2.36] [-2.51, 2.06] [-2.33, 2.34] [-2.48, 1.67] 
Bootstrap 95% CI (%) [-21.9,44.1] [-60.8,67.9] [-38.0,28.9] [-46.0,88.2] [-36.5,33.2] 
Restrictions None 1-year post Region 1 Region 2 Peak only  

Table 4 
Estimated mean monthly percentage change in total water usage (θ̂), total recycled water usage, total water usage after treatment, displacement, and bootstrap 95% 
confidence intervals for displacement across all sample restrictions. Each column corresponds to a specific sample restriction described in the final row of the table.  

Model (1) (2) (3) (4) (5) 

π̂ (S.E)  9.65 (16.0) -0.24 (28.8) -1.21 (14.6) 21.0 (28.7) -5.10 (16.8) 
Total recycled water usage (cu m) 756217 137823 567207 249009 471221 
Total water usage by treated units (cu m) 1565720 933064 1107308 458412 1101772 
Treated observations 681 120 326 355 232 
Displacement 81.7% 102% 102% 68% 113% 
Bootstrap 95% CI (%) [36.6,158] [-174,1150] [57.3,220] [18.4,257] [41.7,216] 
Restrictions None 1-year post Region 1 Region 2 Peak only  
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Due to the staggered adoption of treatment, Wi,t is non-constant 
across units or time periods. Accordingly, only under the assumption 
of a constant treatment effect, τi,t = τ ∀ i, t, does the two-way fixed 
effects estimator estimate an average treatment effect in this setting. 
Given this constraint, the assumption of a constant treatment effect is 
adopted moving forward. See Appendix A.3 for additional discussion of 
two-way fixed effects estimation and the estimation of the weights 
attached to the fixed effects estimator. The two-way fixed effects esti
mator is used to estimate the constant treatment effect, τ, the percentage 
change in total water usage that results from the connection of parks to 
recycled water infrastructure. Using the estimate of the effect of recycled 
water access on total water usage, one can again estimate the 
displacement ratio. However, before estimation of displacement is dis
cussed, one must consider statistical inference. 

2.2.5. Inference 
So far, this research has shown how one obtains an unbiased point 

estimate for the effect of recycled water on total water usage given the 
study design and data structure. However, it is also critical to perform 
proper statistical inference, the calculation of appropriate standard er
rors for the estimates. Classical standard errors assume that there is no 
correlation between the error terms (the unobserved factors), εit , in the 
fixed-effects model. However, in the data it is likely that there is cor
relation, specifically among the multiple observations for each park. The 
park fixed effect accounts for all components that are site specific and do 
not vary over time, such as the soil condition and the size of the park. But 
there are other components that are also specific to the park but that do 
vary over time, such as the intensity of usage of athletic fields. These 
factors cause the unobserved components, captured in the error terms, 
to be correlated over time at the park level. As the specific form of these 
correlations is unknown, one can account for this by allowing for general 
correlation patterns across the errors for each park. Formally, the error 
terms are clustered by park and cluster-robust standard errors are 
reported. 

The appropriate method of inference with cluster-robust standard 
errors depends on the number of clusters, not the number of observa
tions, and on, in particular, the effective number of clusters. The effec
tive number of clusters, defined by Carter, Schnepel, and Steigerwald 
(2016), accounts for variation across clusters in the observed and un
observed components (for example, if the general correlations in the 
unobserved components vary across clusters, as they likely do) and 
adjusts the number of clusters downward to account for this variation. 
The effective number of clusters can be estimated using the code 
developed by Lee and Steigerwald (2018) in the Stata package clusteff. 

Because the effective number of clusters in our data is small, the 
recommendation of Lee and Steigerwald (2018) is followed, and the 
wild cluster bootstrap is used to compute the critical values for the 
t-statistic. The procedure outlined by Cameron and Miller (2015) is used 
to obtain the bootstrap critical values. In detail, the vector of estimated 
residuals for each cluster, {ε̂it}

T
t=1 is multiplied by either 1 or -1 with 

equal probability. A bootstrap sample is created by combining the re
sidual vectors with the regressors and estimating the coefficient of in
terest using OLS. The cluster-robust t-statistic is computed for the 
bootstrap sample. The procedure is repeated a maximum of 1,000 times 
(if the maximum number of combinations of clusters is less than 1,000, 
each combination is sampled once) and the distribution of the test sta
tistics determines the upper and lower wild cluster bootstrap critical 
values. 

2.2.6. Estimating the displacement ratio 
The previous sections outline the difference-in-differences frame

work in the context of estimating and inferring the effect of access to 
recycled water on total water usage. One can use the estimated treat
ment effect to estimate the displacement ratio. First, the relationship 
between the treatment effect and the displacement ratio must be 

established. In the framework outlined above, θis the average treatment 
effect, the average percentage change in total water usage of treated 
parks caused by the connection to the recycled water infrastructure. But 
how does the change in total water usage relate to the displacement 
ratio? Clearly, θdoes not directly reveal the rate of displacement. In 
order to estimate the displacement ratio, d, one needs to calculate the 
total volume of recycled water and potable water used by treated units 
after treatment. 

Let, R =
∑n

i=1

∑T

t=1
Rit:Dit=1, where Rit:Dit=1is the volume in levels of 

recycled water used at site i at time t such that park i is treated in time t. 
Thus, R is simply a measure of all the recycled water used by all parks 
over the observed time frame, measured in volume. Let, P =

∑n

i=1

∑T

t=1
Pit:Dit=1, where P is the potable equivalent of R. Thus, P is simply a 

measure of all the potable water used by treated parks after treatment. 
And let, T = P + R, defining T as the total water use by treated parks 
after treatment. 

θ measures the average percentage change in total water usage after 
connection to recycled water over the study period. One observes T, the 
total post-treatment water use of treated sites. Thus, the total post- 
treatment water use in treated parks in the absence of treatment is T

1+θ , 
since T

1+θ ⋅(1 + θ) = T. This means that connecting the parks to recy
cled water has changed total water use by θ

1+θ⋅T. The total change in 
water usage is equal to the change in potable water usage plus the 
change in recycled water usage, θ

1+θ⋅T = ΔP+ ΔR, where ΔPis the 
change in potable water usage relative to the counterfactual of no 
treatment and ΔR = R, since without treatment recycled water use 
would have been zero. Thus, one can define an equation for the volu
metric change in potable water usage as a result of connecting parks to 
recycled water infrastructure: 

ΔP =
θ

1 + θ
⋅T − R (5) 

The displacement ratio, d, is simply a ratio defining the volume of 
potable water consumption avoided by each unit of recycled water 
consumption. That is: 

d =
− ΔP
ΔR

(6) 

This indicates that a displacement rate of 1 is achieved when each 
unit of recycled water consumed decreases potable water consumption 
by one unit. By plugging in Eq. (5), the displacement ratio can be defined 
as follows: 

d =
− ΔP
ΔR

=

−

(
θ

1+θ⋅T − R
)

R
= 1 −

θ T
(1 + θ)R

(7) 

If the percentage change in total water usage is zero, i.e. θ= 0, then 
d = 1. This is representative of a scenario where each unit of recycled 
water used reduces potable water use by one unit. However if the total 
change in water usage, θ

1+θ⋅T , is equal to the recycled water usage, R, 
then d = 0. This is representative of a scenario where the recycled 
water is used in addition to the potable water. Thus, each unit of recy
cled water displaces zero units of potable water. In order to estimate the 
displacement ratio and the change in potable water use, one can simply 
plug in an estimate of the average treatment effect, θ̂, and the observed 
total water usage, T, and recycled water usage, R, by treated units post- 
treatment: 

d̂ = 1 −
θ̂T

(1 + θ̂)R
(8) 

For a known displacement ratio, one can utilize the displacement 
ratio to easily calculate potable water savings,ΔP, as ΔP = − d̂R. 
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Importantly, the estimating equation for the displacement ratio de
pends on whether one considers the treatment effect,θ, in percentage 
terms or levels. Consistent with the assumptions of this work and the 
treatment effect estimation outlined above, the equations presented in 
this section are concerned with a treatment effect estimating the per
centage change in total water usage. Appendix A.1 discusses the esti
mation of the displacement in level terms, while Appendix A.2 provides 
additional details and examples regarding the estimation of 
displacement. 

3. Results 

The following section presents the results of the two-way fixed effects 
regression to estimate the treatment effect for the previous described 
sample of 19 parks. Also presented, is the estimated treatment effect 
under various sample restrictions. In Section 3.2 the estimated treatment 
effects are used to estimate the corresponding displacement ratios using 
the results of Section 2.2.6. 

3.1. Fixed-effects regression 

Using the data described in Section 2.1 and the regression specifi
cation given by (4), the effect of water recycling conversions on total 
water usage was estimated (i.e. on potable + recycled water usage). 
These results pertain to the effect of water recycling conversions on 
potable water usage for the treated sites of interest – with discussion of 
the external validity of the results left to the discussion section. In col
umn (1) of Table 3, the estimate θ̂ uses the entire set of 2,836 obser
vations. The point estimate indicates that the introduction of recycled 
water infrastructure increased total water usage by 9.65%. Due to the 
lack of precision, however, one is unable to conclude that the intro
duction of recycling has an effect on total water usage. The test for 
cluster heterogeneity was conducted using the program developed by 
Lee and Steigerwald (2018), called clusteff. This test is used to determine 
the appropriate method of calculating the 95% confidence interval of 
the estimates. The effective number of clusters is 16.9, which is 
considered small enough to advise the use of wild bootstrap critical 
values for inference, as described in Section 2.2.3. The use of wild cluster 
bootstrap, the method advised by Lee and Steigerwald(2018) for infer
ence when the effective number of clusters is small, results in a 95% 
confidence interval of [-21.9,44.1] for the effect of recycled water 
conversions on the percentage change in total water usage across the 
sites. This implies an increase in total water use across sites, though not a 
statistically significant change. 

To further examine the overall estimate, which implies no effect of 
recycling on total water use, several sample restrictions were applied. 
First, perhaps there is an initial reduction in water use, which diminishes 
over time. In Column (2) only the first year of water usage after con
necting to recycled water was included. Again, one observes a small 
coefficient with a wide confidence interval regarding the effect of 
recycled water on total water usage. Second, it may be that water usage 
is most sensitive to recycling when water demands are highest, namely 
June through September. Attention was restricted to these four months 
in Column 5. Again, one is unable to conclude that access to recycled 
water changes total water usage. Columns (3) and (4) restrict the sample 
to one of the two regions within EBMUD. This restriction is imposed to 
explore if there is a fundamentally different response to recycled water 
conversions by region. Although the point estimates are quite different, 
the lack of precision again does not provide conclusive evidence that 
access to recycled water changes total water usage. 

3.2. Displacement and total potable water savings 

In Section 2.2.6 the calculation of displacement in treated sites was 
introduced as Eq. (8). Table 4 presents displacement findings for each of 

the sample restrictions. The 95% confidence interval for the displace
ment ratio is calculated using an analogous procedure, where one sub
stitutes the upper and lower boundaries shown in Table 3 for ̂θ in Eq. (8) 
to generate the upper and lower boundaries for the displacement ratio. 
For example, in the full sample (column 1), the point estimate of 

displacement is calculated as: d̂ = 1 − θ̂T
(1+θ̂)R

= 1 − 0.0965∗1565730
(1+ 0.0965) ∗756217 =

81.7%. The bootstrap 95% CI immediately follows by substituting the 
upper and lower boundaries of the 95% CI from Table 3 for θ̂. 

Displacement, and in turn potable water savings, is present across all 
sample restrictions, except model specification 2, where a positive 
displacement rate cannot be confirmed. Columns (1), (2), and (5) of 
Table 4 show that the point estimate of monthly displacement hovers 
around 100% regardless of whether the post-treatment observations are 
restricted to just the first post-treatment year or only the summer 
months. Columns (3) and (4) suggest that displacement may be higher in 
region 1 in comparison to region 2. 

Using the elements of Table 4, namely displacement and total recy
cled water usage, the total amount of potable water saved during the 
study period was estimated using Eq. (6) and compared with California 
household usage. In 2016, average residential water usage in California 
was 0.32 cubic meters (85 gallons) per person per day (Legislative An
alyst’s Office, 2017). This quantity varies by season, and in the peak 
months of June through September residential usage was 0.413 cubic 
meters (109 gallons) per person per day. In the sites in our sample that 
converted to recycled water, it is estimated that a total of 617829 cubic 
meters of potable water (756217cu m ∗ 0.817) were saved during the 
study period, or approximately 30.3 cubic meters per site, per day. Thus, 
the estimate of daily potable water savings over the ten treated sites is 
enough to cover the daily usage of 946 California residents. 

4. Discussion 

This research produced the first quasi-experimental estimate of the 
potable water savings that arise from recycled water conversions, and 
the first quasi-experimental displacement metric in the industrial ecol
ogy literature. In the East Bay Municipal Utility District, conversions 
from potable to recycled water achieve high levels of potable water 
savings and displacement at the sites of conversion. Because the data 
were collected from only one water district in a relatively small 
geographical area, future research can examine the relevance of our 
conclusions on a larger sample of water districts from diverse geographic 
areas, for example in other parts of California or across Australia, where 
infrastructure conversions to recycling have become common in recent 
decades. Moreover, since the study sample is of public parks, future 
research is needed to investigate wastewater displacement rates in in
dustrial or residential settings. Such an undertaking would be aided by 
collection of observable characteristics that predict water usage such as 
rainfall, temperature, and local income levels. A more sophisticated 
approach, such as propensity score matching, may need to be applied in 
a more geographically diverse sample if the treatment is not assigned 
randomly conditional on these observables. In general, these concerns 
pertain to the external validity of our findings – the extent to which 
conclusions from this study can be generalized outside of the specific 
context of inquiry. As such, we hope future research investigates similar 
questions regarding material displacement in other contexts and for 
other materials. 

4.1. Conclusions 

From this work, one cannot conclude that total water usage is 
affected by connection to recycled water infrastructure. As a result, the 
best estimate of the displacement rate is 81.7%, though due to the large 
statistical uncertainty, it may be significantly higher or lower. We 
cannot conclude with confidence that displacement is incomplete. These 
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findings are somewhat surprising to both the authors of this research and 
the community affairs representative from EBMUD who supplied these 
data. The unit cost of recycled wastewater is less than that of potable 
water, and recycled wastewater is sometimes perceived as an abundant 
resource relative to potable water, which can lessen the sensitivity of 
users to drought conditions. However, for EBMUD the recycled water 
program is part of a greater water conservation unit. Thus, it is possible 
that the treated units are exposed to additional information about con
servation best practices, a possible mechanism that could contribute to 
the observed outcome. Still, the current estimate of the displacement 
ratio is 0.817, meaning each unit of recycled water used avoids the use 
of 0.817 units of potable water usage. This suggests that in EBMUD 
conversions to recycled water lead to high displacement resulting in 
significant potable water savings. The presented research provides sta
tistical evidence to support this for the first time in the literature, and the 
finding should be encouraging to water districts and management en
tities that are considering the expansion of non-potable, discretized 
recycled wastewater infrastructure in an effort to save potable water. 
Furthermore, conversions to recycled wastewater as a water source for 
irrigation are expected to increase in the face of climate change. This 
research provides a general methodology that can be readily applied in 
water districts to rigorously monitor the effectiveness of their recycled 
water conversion programs. It can also be applied to other reuse and 
recycling case studies with natural quasi experiments that facilitate DID 
regression analysis. In general, quasi-experimental methodologies 
should be adopted when possible to ensure that policies that intend to 

produce conservation outcomes are meeting these objectives. 
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Appendix A 

A.1. Estimating the treatment effect in levels 

As discussed in Section 3.2 of the main text, the parallel trends assumption is not invariant to scaling of the dependent variable. As a result, it is 
sensible to estimate the effect of recycled water on total water usage as well as a percentage change. Here, the two-way fixed effects regression given by 
(5) is estimated using the total water usage in level as the dependent variable. To be explicit, the model is: 

Yit = γ + αi + βt + πDit + εit (A1) 

In this case, the coefficient π has the interpretation of a change in volume. The sign of the coefficients and the width of the confidence intervals are 
consistent with those found in Table 3 of the main text, as expected. 

Table A1 

The process of estimating displacement from a change in the level of total water use is computationally different than the process of estimating 

displacement from a percentage change in water use. Let, R =
∑n

i=1

∑T

t=1
Rit be total recycled water usage and let 

ntreat =
∑n

i=1

∑T

t=1
Dit  

be the number of observations of treated sites. Because θ measures the average monthly change in total water usage after connection to recycled water, 
total water usage is changed by θ⋅ntreat during the study period. 

If total water usage is unchanged, then recycled water has replaced potable water 1 for 1 and the displacement ratio is 1. If, instead, total water 
usage increases, then 1 unit of recycled water replaces less than 1 unit of potable water and the displacement ratio is less than 1. Formally, the 
displacement ratio is (see appendix for additional details): 

Table A1 
Two-way fixed effects results with log total water usage as the dependent variable, using cluster-robust standard errors and wild bootstrap critical values. Actual 
clusters, effective clusters, number of observations, critical values, 95% confidence intervals, and sample restrictions are also shown.   

(1) (2) (3) (4) (5) 

π̂  2.08 -1.13 -1.03 6.25 -1.34 

Total recycled water usage (cu m) 7557.7 1377.4 5069.1 2488.6 4709.3 
Treated observations 681 120 326 355 232 
Displacement 93.4% 104% 102% 68.5% 102% 
Bootstrap 95% CI (%) [70.2,115] [59.5,142] [75.9,135] [-14.6,128] [67.4,135] 
Restrictions None 1-year post Region 1 Region 2 Peak only  
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d = 1 −
θ⋅ntreat

R
(2) 

Total potable water savings immediately follow as: 

ΔP = R ∗ d = R ∗

[

1 −
θ⋅ntreat

R

]

= R − θ⋅ntreat (3) 

In this elementary example, we have only one post-treatment observation of water usage for each site. Thus, we can estimate displacement and 
total potable water savings in the treated site by applying (2) and (3): 

d̂ = 1 −
θ̂⋅ntreat

R22
= 1 −

θ̂
R22

, and ΔP = R22 ∗ d,

where R22 is the recycled water usage observed for the treated site (i=2) in the post-treatment period (t=2), and ntreat is equal to one. It is important to 
note that the numerator in the displacement quantity is an estimate of the average treatment effect for each period t multiplied by the appropriate 
number of time periods, while the denominator is a summation of the observed recycled water usage. This becomes a critical point, as the actual data 
set we collected contains multiple treated sites and multiple post-treatment periods. Handling this data set requires some adaptation of the simple DID 
regression method outlined above, as discussed in the following section. 

A.2. Additional details on the displacement ratio 

The displacement ratio is defined by Zink, et. al (2015) as d = −
ΔQprim
ΔQsec

, where ΔQprim is the change in the quantity of primary material in response to 
a change in the quantity of secondary material ΔQsec. The negative sign dictates that when ΔQprim is negative (i.e. the quantity of primary material 
decreases), displacement is positive. In this research, the secondary material is recycled wastewater and the primary material is potable water. Here, 
we add another layer of sophistication to the definition since we also estimate a counterfactual for potable water usage after the change in the quantity 
of recycled water. 

Returning to the example of Section 2.2.1, consider the case where there are two time periods (t=1 is pre-treatment, t=2 is post-treatment) and two 
sites (i=1 is the control site, and i=2 is the treated site). Let Yit = Pit + Rit, where Yit is total water usage in site i in period t, and Pit and Rit are potable 
and recycled water usage. It is assumed that site 1 is a suitable control for site 2, i.e. the identification conditions for DID discussed in Section 2.2.1 are 
met. In addition, site 2 has no access to recycled water in the pre-treatment period, and converts a portion of its supplies to recycled water in the post 
treatment period, while site 1 uses potable water in both periods (i.e. R11,R12,R21, = 0, and R22 ∕= 0). The change in water usage in site 1 is used, the 
control site, as a counterfactual for what would have happened in site 2 in the absence of a conversion to recycled water. Now, one can define a quasi- 
experimental version of the displacement ratio that allows recycled water to also displace counterfactual potable water as: d = −

[P22 − P21 ]− [P12 − P11]
R22

. The 
numerator is a difference-in-differences estimate of the change in potable water usage in the treated site. The denominator is the only non-zero 
quantity of recycled water usage in the system. 

Using the identity Yit = Pit + Rit, displacement can also be expressed as: d = −
[(Y22 − R22)− (Y21 − R21)]− [(Y12 − R12)− (Y11 − R11)]

R22
= −

[Y22 − Y21 ]− [Y12 − Y11 ]− R22 ]
R22

= 1 −
[Y22 − Y21 ]− [Y12 − Y11 ]

R22
. Now, consider the estimation of the DID regression given by (1). The expression [Y22 − Y21] − [Y12 − Y11] is represented by θ, and the 

displacement ratio is d = 1 − θ
R22

. 
In the two-way fixed effects setting, this generalizes to the case of multiple treated units, multiple time periods, and staggered treatment adoption. 

In Eq. (4), π replaces θ as a DID estimate of the treatment effect. Assuming that π⋅ntreat is a suitable proxy for the change in total water usage after 
accounting for counterfactual trends, the equivalent quasi-experimental displacement expression is 1 − π⋅ntreat

R as discussed in Section 2.2.2. 
In order to provide more clarity, several examples are provided of pre- and post-treatment water usage for treatment and control sites in the setting 

with two time periods and two sites, and show how these translate into displacement ratios. In each example, potable and recycled water usage pre- 
and post-treatment are given for the treated site, and potable water use in the pre- and post-treatment periods for the control site (in cu m). From this 
information we calculate θ, and in turn displacement, for each example. Then, we show that calculating displacement from the potable water usage 
gives the same result. We note that the pre-treatment column corresponds to t=1, and the post-treatment column to t=2, such that P1 in the pre- 
treatment column is the potable water usage in site 1 during period 1, or P11. 

Example 1: 
Table A2 
In this first example, total water usage in the control site and the treated site are the same in both the pre- and post-treatment period. Thus, even 

though total water usage increased by 10cu m, θ = 0 because the increase was the same in both sites. Displacement is 100%, because the 110 cu m of 
recycled water displaced both the 100 cu m from the pre-treatment period and the 10 cu m increase in potable water usage that we infer from the 
behavior of the counterfactual (control site). Thus, it is inferred that the introduction of recycled water had no effect on total water usage, and 
displaced potable water on a 1-to-1 basis. 

Table A2 
Pre and post-treatment water usage values for treatment (i=2) and control (i=1) and the displacement calculation for Example 1.   

Pre-treatment (t=1) Post-treatment (t=2) Displacement calculation 

Pi=1  100 110 θ = 0  
Pi=2  100 0 d = 1 −

θ
R22

= 1 −
0

110
= 100%  

Ri=2  0 110 
d = −

[P22 − P21 ] − [P12 − P11]

R22
= −

− 110
110

= 100%   
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Example 2: 
Table A3 
In the second example, total water usage in the control site stays the same in both periods, while the treated site increases its total water usage by 50 

cu m after introducing recycled water. In this case, θ = 50. The 100 cu m of recycled water displaced 50 cu m of potable water usage, and no 
counterfactual potable water. The other 50 cu m of recycled water grew overall water usage at the site. Displacement is then 50%, and the calculation 
is equivalent when using difference-in-differences in total or potable water as shown above. 

Example 3: 
Table A4 
Example 3 shows how displacement is calculated when total water usage increases in both treatment and control groups, but the magnitude of the 

increase is different. The difference between the change in total water usage in the treated site and the change in total water usage in the control site is 
50 cu m. Usage in the control site increases from 200 to 250, but in the treated site it increases from 200 to 300 cu m. In this case θ = 50 once again. The 
treated site introduced 230 cu m of recycled water into its supply. This displaced the 130 cu m reduction in potable water usage from pre- to post- 
treatment, and another 50 cu m of counterfactual potable water usage inferred from the increase in potable water usage in the control site. The 
remaining 50 cu m of recycled water grew overall water usage. As a result, 78.3% of the recycled water displaced potable water as shown in the two 
displacement calculations. 

Example 4: 
Table A5 
The final example shows a case where total water usage decreases in the control site. In this example, the difference-in-differences value of θ is 110, 

as total water usage increases from 100 to 200 cu m in the treatment site and decreases from 100 to 90 cu m in the control site. To first order, 150 cu m 
of recycled water displaces 50 cu m of potable water. However, displacement is adjusted for the decrease in water usage in the control site, just as was 
done when the control sites increased water usage in previous examples. Since water usage decreased by 10 cu m in the control site, the 150 cu m of 
recycled water only displaced 40 cu m (50-10) of potable water after adjusting for the counterfactual. Then, for 150 cu m of recycled water, only 40 cu 
m displaced potable water and the displacement ratio is 26.7%. 

Table A3 
Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 
and the displacement calculation for Example 2.   

Pre-treatment 
(t=1) 

Post-treatment 
(t=2) 

Displacement calculation 

Pi=1  100 100 θ = 50  
Pi=2  100 50 d = 1 −

θ
R22

= 1 −
50
100

= 50.0%  
Ri=2  0 100 

d = −
[P22 − P21] − [P12 − P11 ]

R22
= −

− 50
100

= 50.0%   

Table A4 
Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 
and the displacement calculation for Example 3.   

Pre-treatment 
(t=1) 

Post-treatment 
(t=2) 

Displacement calculation 

Pi=1  200 250 θ = 50  
Pi=2  200 70 d = 1 −

θ
R22

= 1 −
50
230

= 78.3%  
Ri=2  0 230 

d = −
[P22 − P21] − [P12 − P11 ]

R22
= −

− 180
230

= 78.3%   

Table A5 
Pre and post-treatment water usage values for treatment (i=2) and control (i=1) 
and the displacement calculation for Example 4.   

Pre-treatment 
(t=1) 

Post-treatment 
(t=2) 

Displacement calculation 

Pi=1  100 90 θ = 110  
Pi=2  100 50 d = 1 −

θ
R22

= 1 −
110
150

= 26.7%  
Ri=2  0 150 

d = −
[P22 − P21] − [P12 − P11 ]

R22
= −

− 40
150

= 26.7%   
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A.3. Testing for negative weights in two-way fixed effects estimation 

The fixed-effects estimator estimates a weighted sum of ATEs across the treated cells. As this is a staggered adoption design, Bfe is more likely to 
assign a negative weight to treatments near the end of the end of the panel, and to groups that adopt the treatment early. The twowayfeweights package 
is used to uncover the weights used in regression 1. No negative weights are assigned in this case. Of the 681 observations, all have positive weights. 

There are two important lessons to learn from this exercise. First, in the staggered adoption design, having a significant number of pre-treatment 
observations is critical to avoiding negative weights in the sum of ATEs as this results in a low average level of treatment for each group. Furthermore, 
negative weights are less likely with a large sample of units that never receive treatment. In this case for instance, data from control units were 
collected. Since these units were never treated, the average treatment in every time period is low, even towards the end of the panel. For further 
information, please see the literature cited in the main text. 

A.4. Data collection and sample statistics 

This section details additional information regarding the data collection and provides sample statstics. The data was collected in batches from a 
contact at East Bay Municipal Utility District. Table A6 outlines the dates of original data requests. The data is collected in real time by EBMUD, and the 
dates provided simply show when requests were made for the data at each site. 

The following table presents site specific statistics (Table A7): 
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