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ABSTRACT OF THE DISSERTATION

A Study on Discontinuous Petrov-Galerkin Finite Element Methods in Semi-linear Problems and
Adaptivity

by

Jor-el Thomas Caparas Briones

Doctor of Philosophy in Mathematics with a Specialization in Computational Science

University of California San Diego, 2022

Professor Michael Holst, Chair

In numerical analysis, finite element methods are a method of approximating solutions to

differential equations on a domain. In such methods, the solution function is approximated by partitioning

the domain into a mesh of elements, and testing candidate functions in a discrete trial space on that mesh

against a discrete space of test functions. We explore certain classes of finite element methods called

discontinuous Petrov-Galerkin (DPG) finite element methods, where the test space functions are allowed

to be discontinuous across elements, and test spaces are selected specifically to optimize stability.

Because we are concerned with the accuracy of our approximation, we place focus on how the

error behaves in DPG methods. We explore how DPG methods in semi-linear problems, as well as how

DPG problems can interact with adaptive methods, a different framework for finite element methods. In

addition, we establish some results about the error of DPG approximations, particularly the error using

the subspace dual norms that arise from the construction of the test spaces.
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Chapter 1

Introduction

We often model real world phenomena with differential equations, since behaviors of phenomena

often change over time and space. In solving differential equations, we can simulate these phenomena in

specific settings or over some period of time. In mathematics, there are often modeling equations whose

exact solutions cannot be obtained analytically, even if it is known that solutions exist. In such situations,

we often attempt to approximate solutions numerically, to be able to better understand the behavior of

the physical phenomena that the equations themselves model. To that end, different numerical methods

were developed to approximate solutions to these equations. In particular, this paper focuses on the

specific aspects of one such method known as the finite element method.

1.1 Weak Formulation for Finite Element Methods

In the most general case, we consider the problem in which given some differential equation F on

some domain Ω, contained in some space X, and some forcing function f . Our goal is to find a function

x P X that solves the differential equation:

F pxq “ f (1.1)

Often, the original problem (1.1), known as the strong formulation, is intractable, or it cannot

be solved analytically, so we look toward approximating the solution using the weak formulation of the

problem. While we may not be able to find a solution directly, we can instead create some approximation

by comparing the differential equation to some test space Y . So, we compare the residual F pxq ´ f against

some test space Y . In other words, we try to find a function x P X such that, for all y P Y :

xF pxq ´ f, yy “ 0 (1.2)
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Under certain conditions, the solution xw to the weak formulation (1.2) would coincide with the

solution to the strong formulation (1.1). The weak form is an analogue to dot products in inner product

spaces: If the inner product of some element x “ F pxwq ´ f and every other element y in the space is

0, then x must itself be 0, and therefore F pxq “ f . However, in general, the comparison of the residual

F pxq ´ f and every element of some space Y is not guaranteed to be an inner product. It could be the

case that neither the test nor trial space is an inner product space, or that the norm of interest is not the

inner product norm, or that the test and trial spaces themselves are not equal. Nevertheless, the idea is

preserved for these methods.

In many applications, we may use integration to compare the residual to the test space. This

involves first integrating the equation against functions y in a test space Y as follows:

ż

F pxqy “

ż

fy (1.3)

Our goal is then to find some function x P X for which the equation above holds for all y P Y .

For finite-dimensional spaces and under some other assumptions, the function that solves this system

would also solve the strong formulation. Otherwise, the solution to this weak formulation (1.3) serves as

an approximation to the solution to the original problem (1.1). In this paper, we are largely concerned

with linear and semi-linear problems, in which the weak formulation can be reduced to forms that are

linear in Y , and contain some part that is linear in X.

1.2 Discrete Weak Formulation and Convergence of FEM in
the Linear Problem

For linear problems, we integrate the residual F pxq ´ f against a test space Y , as in (1.3). The

differential equation is then reduced to a bilinear form that is linear in both the X and Y parts, and a

forcing function that acts as an element of the dual of the test space Y .Then, the weak formulation for

the linear problem is as follows: For some bilinear form ap¨, ¨q : X ˆ Y Ñ R, and some forcing functional

f P Y 1, we find some x P X such that

apx, yq “ fpyq @y P Y (1.4)

Because the trial and test spaces themselves are often infinite-dimensional, we cannot solve

even this weak form exactly through numerical methods. So instead, we approximate solutions using

finite-dimensional subspaces of the trial and test spaces.
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We have the following similar weak formulations using the finite-dimensional subspaces for our

trial and test spaces. We have discrete subspaces Xh and Yh of our trial space X and our test space Y ,

respectively. For some bilinear form ap¨, ¨q : Xh ˆ Yh Ñ R, and some functional f P Y 1
h, we find some

xh P Xh such that

apxh, yhq “ fpyhq @yh P Yh (1.5)

With the formulation in place, one must define the functions on the test and trial spaces to

approximate the solution function. This is cumbersome on large, or strangely shaped domains, and there

would not be an easy way to define said functions over arbitrary domains. In order to have a methodical

approach to approximating the solution function we turn to finite element methods. In finite element

methods, we break the problem domain Ω into a mesh of elements, onto which we define functions. In

doing so we can have some kind of partition for a number of domains, and we can approach each domain

with the same method.

We can, for example, split the domain into a uniform mesh of triangular elements, and define a

basis of linear functions on each element. For each element K, we define a set of basis functions, often

comparable for each element. Then, we attempt to find, using some algorithm built to solve the problem,

the best approximation to the solution. The resulting function would approximate the whole solution,

and would be the result of combining the approximations made on each element.

Because the discrete function spaces are finite-dimensional and the discrete weak formulation

relies on a bilinear form, we can solve the weak formulation by solving a linear system. We take Xn

and Yn to be finite dimensional subspaces of dimension n of the trial space X and the test space Y ,

respectively. We let Xn have basis tϕiu and Yn have basis tψiu. Then the problem (1.5), in which we find

an approximation xh, reduces to solving the well-posed matrix problem:

Aα “ b, A P Rnˆn, α, b P Rn, xh “

n
ÿ

i“1

αiϕipxq.

We solve the system to find a vector of coefficients αi for our basis functions ϕi, to construct

our solution function xh. The matrix A is known as a stiffness matrix, where Aij “ apϕi, ψjq, while b

corresponds to the forcing function f and bj “ fpψjq. In practice, linear solvers would be used to solve

the resulting linear system and generate the Galerkin solution function.

For classical finite element methods, the solution functions xh,K on each element must agree with

the functions of adjacent elements along any shared boundaries or corners, thus the resulting approximate

3



solutions are continuous, which affords them the advantages of continuity. As will be discussed in chapter

2, it may be the case that the solution functions do not agree on the element boundaries, and in particular

for discontinuous finite element methods.

Once the solution function is constructed, we use tools to estimate the error of the approximate

solution function against the true solution for the weak formulation. If the error of the approximate

solution function is too large, then the test and trial spaces are refined, either by refining the mesh into yet

smaller elements, or enriching the function space in which the functions reside with more basis functions.

The hope is that with a more refined function space or a finer mesh, parts of the solution that may

not be easily approximated–such as discontinuities, rapid oscillations, or other non-smoothness–may be

approximated more accurately. This process is repeated until the error is within some tolerance, and the

result is an approximate solution to the weak form of the differential equation.

Classical finite element methods relied on the following assumptions about the problem:

(A1) The bilinear form is continuous, i.e. for some constant M ą 0,

|apx, yq| ď M}x}}y}

(A2) The bilinear form is coercive, i.e., for some constant m ą 0

|apx, xq| ě m}x}2

(A3) For all yh P Yh, we have for our approximate solution xh and the exact solution x, that:

apxh, yhq “ apx, yhq

which results in Galerkin orthogonality, i.e.

apx´ xh, yhq “ 0

In particular, the second assumption of coercivity (A2), along with the forcing function f being

in Y 1, are sufficient conditions for the problem to be well posed, in that a solution that exists must be

unique. We reprove this result below:

Theorem [Coercivity Implies Uniqueness]. If a bilinear form is coercive (A2) in the discrete weak
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formulation above (1.5), then any Galerkin solution to the system must be unique.

Proof. Suppose x1 and x2 are both Galerkin solutions for the discrete weak formulation (1.5):

apxh, yhq “ fpyhq @yh P Yh

In other words, we assume that for all yh P Yh

apx1, yhq “ apx2, yhq “ fpyhq

Then we have, for all yh P Yh:

apx1 ´ x2, yhq “ apx1, yhq ´ apx2, yhq “ fpyhq ´ fpyhq “ 0

But x1 ´ x2 P Yh since the discrete trial and test spaces are equal. And therefore, by coercivity

(A2) and the above:

0 “ |apx1 ´ x2, x1 ´ x2q| ě m}x1 ´ x2}2 ùñ x1 “ x2 a.e.

The uniqueness of the solution follows.

The well-posedness of this problem, including the uniqueness of the solution, follows from the

coercivity condition with the restriction on the forcing function f . this result is better known as the

Lax-Milgram Theorem [11].

Also, from the assumptions (A1)–(A3), we establish a very important quasi-optimality result

for finite element methods, known as Cea’s Lemma. In this result, reproved below, we establish that

the approximate solution found with the finite element method is within some scalar factor of the best

approximate solution within the discrete space.

Lemma [Cea’s Lemma]. Given the three assumptions (A1)-(A3) above, there exists some constant

C ą 0 such that, for the Galerkin solution xh to the discrete weak formulation (1.5), and for the exact

solution x for the weak formulation (1.4):

}x´ xh} ď C inf
ξhPXh

}x´ ξh}
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Proof.

}x´ xh}2 ď
1

m
|apx´ xh, x´ xhq| (by coercivity (A2))

“
1

m
|apx´ xh, x´ ξhq ` apx´ xh, ξh ´ xhq| (Due to linearity of the bilinear form)

“
1

m
|apx´ xh, x´ ξhq| (Due to Galerkin orthogonality (A3))

ď
M

m
}x´ xh}}x´ ξh} (by continuity of bilinear form (A1))

ùñ }x´ xh} ď
M

m
}x´ ξh}

Letting C “ M
m , and taking the inf over all ξh P Yh, we establish the desired result.

Or in other words, the Galerkin approximation found by this method is no worse than the best

approximation multiplied by some factor, that is ideally small. If we refine the discrete subspaces so that

the error between the weak solution and best approximation in the discrete subspace goes toward 0, then

the error between the discrete weak Galerkin solution and the weak solution must also go to 0. Hence, if

the weak solution x is approximable, and if we can refine the space indefinitely to the point that the best

approximation error converges to 0, then we guarantee that the error from the Galerkin approximation

may also converge to 0. We show these results with an example below.

The classical model problem in finite element methods is the Poisson equation. For some forcing

function f , and over some domain Ω, we find some function x P X such that:

´∆x “ f

Converting this to the weak formulation, we have, for some test space Y , and for all y P Y :

ż

Ω

´y∆x “

ż

Ω

fy

And integrating by parts and with appropriate boundary conditions on the boundary of the

domain δΩ, such as Dirichlet boundary conditions:

ż

Ω

∇x ¨ ∇y “

ż

Ω

fy

We take fpyq “
ş

Ω
fy, and apx, yq “

ş

Ω
∇x ¨ ∇y, which we call an energy inner product, which

6



induces an energy norm for the finite element method, with the bilinear form a, namely:

|||x||| “
a

apx, xq

If X and Y were both H1pΩq, we have that:

|apx, xq| “ }∇x}2L2

And in particular, by the Poincare inequality and by definition of the H1 norm, for some constants

C1, C2 ą 0:

C1}x}2H1 ď }∇x}2L2 ď C2}x}2H1

In other words, for this specific case, the energy norm is equivalent to the H1 norm, and error

estimation in the energy norm can be seen as comparable to a error estimation in a standard error norm.

In particular, for equivalent norms } ¨ }N1
and } ¨ }N2

we have that convergence of the error in one norm

implies convergence of the error in the other:

}x´ xh}N1
Ñ 0 ðñ }x´ xh}N2

Ñ 0

However, there are limitations to the classical method that have led others to alter the method

by weakening the initial assumptions of the method. Solutions may belong to a space that is different

than the test space, and are better approximated with a different space. If the solution is not an H1pΩq

function, for example, then H1pΩq may not be an appropriate choice for the trial space, but it may be

useful to exploit the fact that H1pΩq is an inner product space by using it as a test space. Even if one

could in theory indefinitely refine the mesh to get an accurate approximation, the number of elements in

a uniformly refined mesh increases exponentially. For practical uses, the computational power required

to perform computations on the mesh is a limiting factor to how much the mesh can be refined, and

therefore, how accurate a numerical solution would be. And in most cases, real world applications would

rely on differential equations that result in a non-linear form, rather than a bilinear form, and addressing

non-linear problems is a widely researched topic for finite element methods [13].
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Convergence of Finite Element Methods

We are interested as well in the convergence of finite element methods, and in particular that the

error of our approximation tends to 0 as we continue refining the mesh.

One way we can do this is to exploit orthogonality or quasi-orthogonality in a symmetric bilinear

form. While bilinear forms are not necessarily symmetric, as they are in the example of the Poisson

equation above, we consider the following. Should the bilinear form be symmetric, and if we had a

classical finite element method, in which continuity, coercivity, and Galerkin orthogonality (A1)-(A3) are

maintained, we can establish contraction if we also have the following:

}xh ´ xh`1}2 ě C}x´ xh}2

For some constant C P p0, 1q. In other words, the true error between the Galerkin solution and

the regular weak solution is bounded above by some factor times the distance between two successive

solutions.

Proof. By Galerkin Orthogonality (A3) and the symmetry of the bilinear form, we have:

|||x´ xh`1|||2 ` |||xh`1 ´ xh|||2 “ apx´ xh`1, x´ xh`1q ` apxh`1 ´ xh, xh`1 ´ xhq

“ apx´ xh`1, x´ xh`1q ` apxh`1 ´ xh, xh`1 ´ xhq

` apx´ xh`1, xh`1 ´ xhq ` apx´ xh`1, xh`1 ´ xhq

“ apx´ xh`1, x´ xh`1q ` apxh`1 ´ xh, xh`1 ´ xhq

` apxh`1 ´ xh, x´ xh`1q ` apx´ xh`1, xh`1 ´ xhq

“ apx´ xh, x´ xhq “ |||x´ xh|||2

Then we have, from the extra bound on the error, and the above Pythagorean-esque identity:

|||x´ xh`1|||2 “ |||x´ xh|||2 ´ |||xh`1 ´ xh|||2 ď |||x´ xh|||2 ´ C|||x´ xh|||2 “ p1 ´ Cq|||x´ xh|||2

Since 0 ă 1´C ă 1, the error in each successive iteration is smaller than the error of the previous

iteration, by a factor of
?
1 ´ C and the error contracts toward 0.

8



1.3 Variations on the classical method

As problems become more challenging, we turn to weakening our assumptions to broaden the

scope of which classes of problems we can approach. For the rest of the chapter, we focus on doing so in a

number of ways. To address cases where the trial space needs to be of broader scope than the test space,

we turn to mixed methods, also known as Petrov-Galerkin methods, in which the trial and test space

differ. To address cases in which indefinite uniform refinement becomes computationally expensive, we

turn to adaptive finite element methods. For adaptive finite elements, the mesh is only refined in regions

of the domain where the error is estimated to have a higher error, whereas regions where error is estimated

to be low are only refined to maintain mesh regularity. And finally, to address cases in which the discrete

weak formulation does not result in a bilinear form, we turn to nonlinear cases that semi-linear. In such

cases, there is still a bilinear form, but the discrete weak formulation has some non-linear part that needs

to be controlled.

Petrov-Galerkin Finite Element Methods

In one such variation, we find that solutions to the problem may not exist in our test space, so we

expand our trial space to include more functions. In such methods, known as Petrov-Galerkin methods,

the trial and test spaces differ, and we can no longer assume coercivity. Instead, we have a new assumption

that offers a similar stability result,- known as the inf-sup condition. For our bilinear form a, in lieu of

coercivity, we assume that a satisfies the continuous inf-sup condition and the discrete inf-sup condition,

i.e.:

(A2-1) Continuous inf-sup condition: For the trial and test spaces X and Y , and for some constant β ą 0,

0 ă β ď inf
xPXz0

sup
yPY z0

apx, yq

}x}}y}

(A2-2) Discrete inf-sup condition: For discrete trial and test spaces Xh and YH , and for some constant

βh ą 0,

0 ă β ď inf
xhPXhz0

sup
yhPYhz0

apxh, yhq

}xh}}yh}
“ infyhPYhz0 sup

xhPXhz0

apxh, yhq

}xh}}yh}

In particularly, we assume that the bilinear form satisfies both conditions (A2-1) and (A2-2)

with a shared positive constant, which will be referred to as β. Much like the coercivity assumption in

classic finite element methods, the inf-sup condition implies that any Petrov-Galerkin solution to the weak

formulation must be unique. The result is proven below:
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Theorem [Inf-Sup Implies Uniqueness]. If a bilinear form satisfies the discrete inf-sup condition

(A2-2) in the discrete weak formulation (1.5) above, then any Galerkin solution to the discrete weak

formulation must be unique.

Proof. Suppose x1 and x2 are both Galerkin solutions for the discrete weak formulation (1.5):

apxh, yhq “ fpyhq @yh P Yh

In other words, we assume that for all yh “ inYh

apx1, yhq “ apx2, yhq “ fpyhq

Then we have, for all yh P Yh:

apx1 ´ x2, yhq “ apx1, yhq ´ apx2, yhq “ fpyhq ´ fpyhq “ 0

By our inf-sup condition (A2-2) and Galerkin orthogonality (A3), since x1 ´ x2 P Xh, and if

x1 ´ x2 ‰ 0:

0 ă β ď inf
xhPXhz0

sup
yhPYhz0

apxh, yhq

}xh}}yh}
ď sup

yhPYhz0

apx1 ´ x2, yhq

}x1 ´ x2}}yh}
“ 0

This is a contradiction, and hence it must be the case that x1 “ x2. The uniqueness of the

solution follows.

Much like in the classical case, where the test and trial spaces are the same, it is of great interest

to show that the same quasi-optimality result of Cea’s Lemma holds, a generalization known as the

Ladyzhenskaya-Babuška-Brezzi (LBB) Theorem. Rather than assume that the bilinear form is coercive,

which is not defined for a bilinear form where the trial and test spaces are different, we assume that the

continuous and discrete inf-sup conditions (A2-1) and (A2-2) hold.

Lemma [Ladyzhenskaya-Babuška-Brezzi (LBB) Theorem]. If the assumptions (A1), (A3), (A2-

1), and (A2-2) are met, then the Galerkin solution to the discrete weak formulation (1.5) satisfies the

following quasi-optimality estimate:

}x´ xh} ď C inf
ξhPX

}x´ ξh}

for some constant C ą 0. A short proof of this lemma is provided below:

10



Proof.

}x´ xh} ď }x´ ξh} ` }ξh ´ xh}

ď }x´ ξh} `
1

β
sup

yhPYh,}yh}Y “1

apξh ´ xh, yhq (Due to inf-sup stability (A2-2))

“ }x´ ξh} `
1

β
sup

yhPYh,}yh}Y “1

apξh ´ x, yhq (Due to Galerkin orthogonality (A3))

ď }x´ ξh} `
M

β
}x´ ξh} (Due to continuity of bilinear form (A1))

“

ˆ

1 `
M

β

˙

}x´ ξh}

Since ξh was chosen arbitrarily, we can take the inf over all ξh and establish quasi-optimality:

}x´ xh} ď

ˆ

1 `
M

β

˙

inf
ξhPX

}x´ ξh}

In a paper by Jinchao Xu and Ludmil Zikataov , it was proven that if X is a Hilbert space, then

the stability constant can be sharpened even further, and we can achieve [16]:

}x´ xh} ď
M

β
inf

ξhPX
}x´ ξh}

Discrete Weak Formulation Semi-Linear Problem

Because many problems are nonlinear, there is great interest in solving nonlinear PDE’s. One

such solution is to linearize such differential equations, and then to solve the resulting discrete weak

formulation with bilinear form. However, the linearization does not remove any of the issues posed by

the nonlinear problem, and instead inherits them. It is therefore useful to consider nonlinear problems

without linearization, and what problems can be solved when involving a nonlinear part. Given certain

assumptions, it may be the case that arguments to address the non-linear parts of the problem can be

addressed separately from linear parts, using useful properties of the non-linearity.

The weak formulation for the semi-linear problem is similar to the linear one, but includes a

term that is not linear in X, but is linear in Y . That weak formulation is as follows: For some bilinear

form ap¨, ¨q : X ˆ Y Ñ R, some nonlinear form pbp¨q, ¨q : X ˆ Y Ñ R that is only linear in Y , and some

11



functional f P Y 1, we find some x P X such that

pcpxq, yq :“ apx, yq ` pbpxq, yq “ fpyq @y P Y (1.6)

Much like in the linear problem (1.4), we deal with finite-dimensional subspaces Xh and Yh of the

trial and test spaces, and discretize the formulation. The weak formulation for the discrete semi-linear

problem is as follows. We have discrete subspaces Xh and Yh of our trial space X and our test space Y ,

respectively. For some bilinear form ap¨, ¨q : Xh ˆ Yh Ñ R, some nonlinear form pbp¨q, ¨q : Xh ˆ Yh Ñ R

that is only linear in Yh, and some functional f P Y 1
h, we find some xh P Xh such that

pcpxhq, yhq “ apxh, yhq ` pbpxhq, yhq “ fpyhq @yh P Y (1.7)

When dealing with semi-linear problems, it is often the case that nonlinear parts can be treated

separately from the linear parts. If, for example, the nonlinear part obeyed some kind of controllable

property, we can bound the error similarly to how we would bound it in the linear case.

In one such case, if the nonlinear part obeyed some sort of maximum principle, we can use some

kind of a priori bounds to bound the error [5, 14]. First, as above, we can break the weak form into a

linear and nonlinear part, with the linear part obeying the assumptions, as above. Then, using the a

priori bounds, we can create error bounds comparable to those found in the linear part. An example is

given below.

Problem Statement: Find x such that

´∆x` x3 “ f

x “ 0 on δΩ

Weak Formulation: Find x P H1
0 pΩq such that, for all test functions y P H1

ż

Ω

´y∆x` x3y “

ż

Ω

∇x∇y ` x3y “

ż

Ω

fy

Because the problem is nonlinear, the resulting weak formulation does not lend itself easily to a

bilinear form. Instead, we break down the function into a linear and nonlinear part:

xF pxq, yy “ xLpxq `Npxq, yy “ x∇x,∇yyL2pΩq ` xx3, yyL2pΩq “ xf, yyL2pΩq

12



The linear part being the standard bilinear form for the Poisson equation, and the nonlinear part

being the L2 inner product between the nonlinear term and the test function.

If we can show that the nonlinear term obeys some sort of Lipschitz property, i.e. xx3´y3, zyL2pΩq ď

K}x´ y}}z}, then we can control the nonlinear term so that we satisfy a strengthened Cauchy inequality:

|apx´ x1, x2 ´ x1q| ď C}x´ x1}}x2 ´ x1}

for some C ą 0 that we can make as small as we like. In doing so, we can establish orthogonality in the

energy norm } ¨ } induced by a.

Given x, x1, x2 solutions to the weak formulation and the PG approximation in X, X1, and X2,

successive subspaces in a finite element refinement algorithm, respectively, we have:

}x´ x1}2 “ }x´ x2}2 ` }x1 ´ x2}2 ` apx1 ´ x2, x´ x2q ` apx´ x2, x1 ´ x2q

If we could establish the above strengthened Cauchy inequality, we would have:

}x´ x1}2 ě }x´ x2}2 ` }x1 ´ x2}2 ´ 2C}x1 ´ x2}}x´ x2}

ě }x´ x2}2 ` }x1 ´ x2}2 ´ Cp}x1 ´ x2} ` }x´ x2}q

“ p1 ´ Cqp}x´ x2}2 ` }x1 ´ x2}2q

ùñ Λ}x´ x1}2 ě }x´ x2}2 ` }x1 ´ x2}2,

where Λ “
1

1 ´ C

For this semi-linear example, contraction of the error and error indicator can be achieved, which

is proven in [9] and restated here.

Theorem [Quasi-Orthogonality and Contraction of Error]. We define the following:

e1 “ }x´ x1}X e2 “ }x´ x2}X E1 “ }x2 ´ x1}X

With corresponding error indicators:

η1 “ η1px1q « e1 η2 “ η2px2q « e2

13



Let the following assumptions hold:

(Q1) (Quasi-Orthogonality) For some Λ ě 1 for (Λ sufficiently close to 1),

e2k`1 ` E2
k ď Λe2k ùñ e2k`1 ď Λe2k ´ E2

k

(Q2) (Upper Bound on Error using Error Indicator) DC1 ą 0 s.t.

e2k ď C1η
2
k

(Q3) (Error Indicator Reduction) DC2 ą 0 and ω P p0, 1q s.t.

η2k`1 ď C2E
2
k ` p1 ´ ωqη2k

Let X1 Ă X2 Ă X be a triple of Banach spaces, let x P X, x1 P X1, and x2 P X2, with the

errors defined as above. Let β P p0, 1q be arbitrary, and assume the constant Λ in the quasi-orthogonality

assumption satisfies the following bound:

1 ď Λ ă 1 `
βω

C1C2

With the constants as defined in the above assumptions. Then there exists γ ą 0 and α ă 1

where:

e22 ` γη22 ď α2pe21 ` γη21q

Adaptive Finite Element Methods (AFEM)

In another variation to the method, we address a problem in the computational intensity of the

finite element algorithm. For a number of problems, it may be the case that certain parts of the domain

would be well approximated at earlier refinements of the mesh, whereas other parts of the domain would

take many iterations to arrive at a suitable level of accuracy. Each uniform refinement of a mesh would

greatly increase the number of elements, and therefore the computational time.

Adaptive finite element methods are a variation of this method that aims to cut the computational

time and resources by focusing mesh refinements on areas of the domain where error would be high, while

not refining the mesh as readily where the error is already low.
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These methods present their own issues that are not present in uniform refinement schemes. In

particular, maintaining some degree of regularity over the mesh, and estimating the relative error of the

individual elements of the mesh proves to be problematic.

If such issues can be resolved, the basic algorithm for adaptive methods is as follows:

(AFEM-1) Find the Petrov-Galerkin approximation xh for the discrete subspace Xh.

(AFEM-2) Estimate the error ηk for each element K of the mesh, for this approximation xh.

(AFEM-3) Mark some subset of elements to be refined using some kind of marking scheme, such as the

Dorfler marking scheme [7]. This is the main difference between an adaptive scheme and a standard

refinement scheme. Which elements are refined and which ones are not is dependent on the error

estimators on the elements in the domain, and the algorithm adapts to address those errors.

(AFEM-4) Refine the mesh at the marked elements, and any surrounding elements as needed to maintain

the desired regularity of the mesh.

Once the mesh is refined, we repeat the process, much like in classical finite element methods,

until the approximated error is below some level of tolerance. Within this algorithm would be some kind

of error estimator η that can be used to estimate the error on each element. Such error estimators would

be useful if they possessed properties that made them comparable to the true error εh [15]. In particular,

for error indicators ηh on elements K (ηhpKq), and the sum total of such errors on the whole domain,

ηhpΩq, and for some constants C1, C2 ą 0:

(EI-1) Error indicators form an upper bound on the true error.

}x´ xh}2 ď C1ηhpΩq2

(EI-2) Each error indicator on an element K forms some kind of lower bound on the true error on that

element.

ηhpKq2 ď C2pεhpKq2 ` oscpωhpKqq2

where oscpωhpKqq2 is an oscillation term.

With these assumptions, the error indicators are roughly equivalent to the true error, in such a

way that marking elements for refinement based on such error indicators can produce meaningful results.
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1.4 Standard issues in FEM problems

While we can establish these results with the assumptions above, establishing the assumptions

themselves proves to be difficult, particularly the stability conditions. In Petrov-Galerkin methods, for

example, even if the continuous inf-sup condition is established, that does not immediately imply the

discrete inf-sup condition is held, nor does it imply that each discrete subspace could share the same

stability constant. For a problem unstable enough, it could be the case that the stability constant goes to

0 as we continue to refine our discrete subspace.

Establishing the stability assumptions at all is itself a challenge, and often relies on assumptions

to be made on the mesh, such as angle conditions, or on the problem itself. And even if stability is

established, we may not know what the constants themselves are. If, for example, the inf-sup or coercivity

constants are small, and the continuity constant is large, then the Galerkin solution to the problem, while

some constant factor away from the best approximation to the problem, may be very far from the best

approximation. Even if the problem was well posed in such a scenario, Galerkin approximations to the

solution may not converge to the weak solution as quickly as needed. Thus, we turn to methods that

would enforce some sort of stability inherently, as closely to an optimal level of stability as possible.
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Chapter 2

Discontinuous Petrov Galerkin Methods

We are interested in a problem that is well-posed, in that a unique solution to the problem exists,

and that the solution’s behavior depends continuously on boundary conditions. Thus the existence of a

inf-sup constant or a coercivity constant is vital to showing the problem is well posed. Moreover, the

quasi-optimality quasi-stability constant depends on the continuity and inf-sup or coercivity constants.

Even if an inf-sup constant existed for both the whole space and the discrete trial and test spaces, if it is

small, then the resulting quasi-stability constant would be large, and the Galerkin solution to the problem

could potentially have a comparably large error to the best approximation in the trial space. Establishing

the existence of an inf-sup or coercivity constant at all requires careful selection of test and trial spaces.

2.1 The Ideal DPG Method: Formulation 1 (Trial to Test
Operator)

In order to address the problem of stability, we consider a different formulation of the problem.

In particular, we select the discrete test spaces specifically to establish well-posedness and a better

quasi-stability constant. We consider a mixed finite element method on a linear problem, with some

Hilbert trial space X and some Hilbert test space Y . We are trying to find some x P X such that:

apx, yq “ fpyq @y P Y (2.1)

A method was proposed by J. Gopalakrishnan and L. Demcowicz [6], in which we use a semi-norm, in

which the Petrov-Galerkin approximation we find is one that is optimally efficient, with continuity and

inf-sup constants equal to 1. The method is described below.
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First, we define an energy norm on X as follows:

}x}E “ sup
}y}“1,yPY

|apx, yq| (2.2)

This energy norm, if the assumptions of the inf-sup condition and the continuity assumption hold, is

equivalent to the associated norm on our trial space X. The result is proven below:

Theorem [Conditions for Equivalence of the Energy Norm]. If the bilinear form ap¨, ¨q follows

the above assumptions with continuity constant }a} and with inf-sup constant γ, then the energy norm as

defined above is equivalent to the norm on X for which the assumptions hold

Proof. From the continuity assumption, we have:

}x}E “ sup
}y}Y “1,yPY

|apx, yq| ď sup
}y}Y “1,yPY

}a}}x}X}y}Y “ }a}}x}X

And from our inf-sup assumption, we have:

}x}E “ sup
}y}Y “1,yPY

|apx, yq| “ sup
}y}Y “1,yPY

}x}X

ˇ

ˇ

ˇ

ˇ

a

ˆ

x

}x}X
, y

˙
ˇ

ˇ

ˇ

ˇ

ě }x}X inf
}x}X“1,xPX

sup
}y}Y “1,yPY

|apx, yq| ě γ}x}X

So we have:

γ}x}X ď }x}E ď }a}}x}X

By the Riesz representation theorem, since ap¨, ¨q is bounded and linear in the second component,

we have that there is some operator T : X Ñ Y 1 such that for each x P X, there is some Tx P Y such that

apx, yq “ pTx, yq for all y P Y . We define a seminorm in X, which coincides exactly with the above sup

norm [6], as follows:

|x| “
a

pTx, Txq “ }Tx}Y (2.3)

The equivalence of the energy norm (2.2) and the trial-to-test seminorm (2.3) is shown below:
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}x}E “ sup
}y}Y “1,yPY

|apx, yq| “ sup
}y}Y “1,yPY

|pTx, yqY | ď sup
}y}Y “1,yPY

}Tx}Y }y}Y “ }Tx}Y

But for y “ Tx
}Tx}Y

, we have:

|apx, yq| “

ˇ

ˇ

ˇ

ˇ

ˆ

Tx,
Tx

}Tx}Y

˙
ˇ

ˇ

ˇ

ˇ

“
}Tx}2Y

}Tx}Y
“ }Tx}Y

So the energy norm attains its sup at a specific value of y, and moreover, that sup is precisely the

seminorm defined above. With this seminorm we have the following.

First, the continuity constant is 1, since:

apx, yq “ pTx, yq ď }Tx}Y }y}Y “ |x|}y}Y

Second, the inf-sup constant is also 1, since:

inf
xPX,|x|“1

sup
yPY,}y}Y “1

|apx, yq| “ inf
xPX,|x|“1

sup
yPY,}y}Y “1

|pTx, yqY |

ě inf
xPX,|x|“1

ˇ

ˇ

ˇ

ˇ

pTx, TxqY

}Tx}Y

ˇ

ˇ

ˇ

ˇ

“ inf
xPX,|x|“1

}Tx}Y “ inf
xPX,|x|“1

|x| “ 1

Under this semi-norm, using the results from above, we get that the Petrov-Galerkin approximation

xh abides by:

|x´ xh| ď 2 inf
ξhPXh

|x´ ξh|

However, since X and Y are Hilbert spaces, we have from the result proven by Xu and Zikatanaov

[16] that

|x´ xh| “ inf
ξhPXh

|x´ ξh|

In other words, the Galerkin solution to the discrete weak formulation is the best approximation

in the discrete trial space, under the seminorm as defined above. For each discrete trial space Xh with

basis te1, e2, ..., enu, if the corresponding discrete test space had basis tTe1, T e2, ..., T enu, the test space

basis is called a basis of optimal test functions, since the test functions guarantee the optimal inf-sup and
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continuity constants are achieved, and the best approximation property is realized.

To that end, for a practical implementation of the method, Gopalakrishnan and Demcowicz have

the following steps:

1. A mesh with a variational formulation and an underlying test space Yh that allows for inter-element

discontinuities is developed.

2. The trial subspace Xh is selected to have good approximation properties, as is the case for many

finite element methods.

3. The optimal test functions are approximately computed on an element by element basis. This is

accomplished by approximating the trial to test operator T on each element, and finding some

Tn : Xn Ñ Ỹn such that for all ỹn P Ỹn,

pTnxn, ỹnq “ bpxn, ỹnq

and Tn is injective on Xn

Ỹn in this case would be a space of computationally convenient discontinuous functions used to

construct the optimal test functions. Such a space must itself be selected prior to constructing the

test space basis, and it must have dimension at least as large as Xn to enforce the injectivity of Tn.

If the trial subspace Xn has basis te1, e2, ..., eku, then the corresponding discrete test space Yn has

vectors tTne1, Tne2, ..., Tneku “ tt1, t2, ..., tku, which form a basis, since Tn is injective.

4. Finally, given the trial to test operator approximated in the subspace, the resulting system, which

corresponds to a symmetric positive definite stiffness matrix, is solved. We prove that the system is

symmetric positive definite below.

Theorem [Stiffness Matrix is SPD]. Using the injective operator Tn as described above, the resulting

stiffness matrix formed with the bilinear form bp¨, ¨q is symmetric positive definite.

Proof. We have that the basis for the discrete trial space Xn is given by te1, ..., eku, while the basis

for the discrete trial space Yn is given by tTne1, Tne2, ..., Tneku “ tt1, t2, ..., tku The pi, jqth entry of the

resulting stiffness matrix M is therefore given by bpei, tjq. But we observe by the construction Tn:

Mij “ bpei, tjq “ pTnei, tjqY “ pti, tjqY

“ ptj , tiqY “ pTnej , tiqY “ bpej , tiq “ Mji
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So M is symmetric.

We used the fact that Tn is injective to conclude the vectors tt1, t2, ..., tku formed a basis, and are

therefore linearly independent. Given stiffness matrix M whose pi, jqth entry is given by bpei, tjq, and

some nonzero vector v “ pv1, v2, ..., vnqT , we have:

vTMv “ pv1, v2, ..., vnqMpv1, v2, ..., vnqT

“

k
ÿ

i“1

k
ÿ

j“1

Mijvivj “

k
ÿ

i“1

k
ÿ

j“1

bpei, tjqvivj “

k
ÿ

i“1

k
ÿ

j“1

pTnei, TnejqY vivj

“

k
ÿ

i“1

k
ÿ

j“1

pviti, vjtjqY “

k
ÿ

j“1

˜

k
ÿ

i“1

viti, vjtj

¸

Y

“

˜

k
ÿ

i“1

viti,
k

ÿ

j“1

vjtj

¸

Y
˜

Letting t “

k
ÿ

i“1

viti

¸

“ pt, tqY “ }t}2Y ą 0

The last inequality holds, since by the linear independence of the basis, t must be non-zero

whenever v is. This shows that M is also positive definite. In particular, since t “ t “
řk

i“1 viti, this

implies that t “ Bv, where B is a matrix whose columns are the basis for Yh, and M “ BTB.

It is especially useful that the DPG stiffness matrix is symmetric positive definite, as such matrices

have convenient properties that make solving linear systems less computationally intensive.

2.2 DPG Method: Formulation 2 (Minimizing the Residual)

In practice, the trial to test operator T is not an explicitly defined operator, or even one that is

easily approximated over an entire mesh. In order for the problem of finding optimal test functions to be

computationally feasible, it is better to compute some approximation to this operator on each element

separately. To that end, we allow the functions in the test space to be discontinuous between elements, so

that the approximate operator Tn can be computed per the basis functions on each element of the test

space independent of the other elements in that space.

Not much is known about this theoretical trial-to-test operator, so we look to another formulation

of the problem to define the operator more explicitly, by following the method outlined in [6]. Consider

the following, where we view the bilinear from and the forcing function as operators in Y 1. (As before,

lpyhq “ xf, yhy)
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Bxhpyhq “ lpyhq @yh P Yh

where B : X Ñ Y 1 is defined for each xh P Xh as:

Bxhpyhq “ xBxh, yhy “ bpxh, yhq @yh P Yh

We try to minimize the following residual:

argmin
xhPXh

1

2
}Bxh ´ l}2Y 1

Consider the Riesz Operator on Y, RY : Y Ñ Y 1 defined for all y P Y as:

py, δyq “ RY ypδyq @δy P Y

Since the Riesz operator and its inverse is an isometry, we have:

argmin
xhPXh

1

2
}Bxh ´ l}2Y 1 “ argmin

xhPXh

1

2
}R´1

Y pBxh ´ lq}2Y

Taking the Gâteaux derivative of 1
2}R´1

Y pBxh ´ lq}2Y at xh, for all δxh P Xh, and setting the

result to 0, we have:

0 “
`

R´1
Y pBxh ´ lq, R´1

Y Bδxh
˘

Y
“ pBxh ´ lqpR´1

Y Bδxhq

We define T “ R´1
Y B and yh “ R´1

Y Bδxh for each δxh P Xh. Minimizing the residual then

amounts to finding xh such that:

Bxhpyhq “ lpyhq @yh “ R´1
Y Bδxh “ Tδxh P Yh

And this is exactly the original problem, but with more explicitly defined test functions using well-studied

operators. Note that, for the remainder of the paper, we define the following operators. We define some

operator B : X Ñ Y 1, where for some x P X the trial space, and for all y P Y the test space, and for some

weak formulation linear in y (and possibly in x):

Bxpyq “ pbpxq, yq (2.4)
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And then as above, we will refer to the operator T : X Ñ Y , the trial to test operator, using the

inverse of the Riesz operator on Y and the above defined operator B (2.4):

T :“ R´1
Y B (2.5)

We also similarly define Th as a discrete approximation to T which would be in practice the

operator that is computed for this method. For each element K in the mesh, we similarly define

TK :“ RY pKq´1B and Th,K :“ R´1
h,Y pKq

B as the trial to test operators restricted to these elements, with

corresponding restricted inverse Riesz operators. Thus, given these operators, we have an error estimator:

ηK “
1

2
}R´1

Y pKq
pBxh ´ lq}2Y pKq (2.6)

While the Riesz operator itself is a better known operator in mathematics, it is still the case that

problems associated with using the trial to test operator are also problems with using the Riesz operator.

It is difficult to compute the Riesz operator RY explicitly over the entire mesh, due to sheer compuational

complexity. Literature has indicated that such an operator can be approximated across an entire mesh [6].

This however, requires a large amount of computational overhead. In one paper, a multigrid preconditioner

for the Laplace operator is used to approximate the Riesz operator RV : H´1pΩq ÞÑ H1
0 pΩq. This however

required a multigrid mesh and global computation and other computational overhead [1, 2].

Instead, we attempt to approximate RY element by element, allowing for discontinuities between

elements in the test space. In doing so, the element-wise Riesz operator becomes simpler to compute, since

computations are localized rather than global across the entire domain. However, even if we go element

by element, the Riesz operator is still an infinite-dimensional operator, and thus difficult to approximate.

Thus each element my element operator must be given some sort of discretized approximation. By allowing

for these discontinuities and discretizing this trial to test operator, we are able to generate a test subspace

that would, under the seminorm

2.3 Existing DPG Approaches to Nonlinear problems: Lin-
earization

A standard approach to nonlinear problems is to linearize the problem, as in with some derivative,

and then to solve the linear problem.

A number of papers [10, 12, 13] approach nonlinear problems as follows. The algorithm begins

with some guess for the solution x0. Then the linearized problem is used to find some solution increment
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function ∆x P X such that:

blinrx0sp∆x, yq “ flinrx0spyq @y P Y

blin is the derivative of the nonlinear form, and blinrx0sp∆x, yq “ Dubnlrx0sp∆x, yq. flin is the

forcing term, which represents the nonlinear residual, and flinrx0spyq “ fpyq ´ bnlpx0, yq. Then, the

solution x0 is incremented by the optimal increment ∆xoptn , which is found my minimizing the following

residual, similar to minimizing the residual in the linear problem:

∆xoptn “ argmin
∆xnPXn

}Blinrx0s∆xn “ flinrx0s}Y 1

where Blinrx0s is defined using the bilinear form blinrx0s and the Riesz representation theorem.

Once the solution is incremented, if the test space norm is the graph norm, then the test space norm is

also updated, and the process is repeated once the spaces are refined. In updating the test space norm in

each iteration, discrete stability can be established for the linearized problem [10].

Linearizing a nonlinear problem is a common approach to nonlinear problems, but linearizations

inherit the problems of their nonlinear counterparts. Thus it is of interest to approach nonlinear problems

without linearization of the nonlinear parts, and instead treating the nonlinear parts separately. Through

exploiting certain properties of certain classes of problems, we may be able to approach nonlinear problems

without having to linearize them.

For example, in a paper by Carstensen, DPG is also applied to nonlinear problems, by exploiting

problems in which the nonlinear part is differentiable. The problem now has two parts: a bilinear part

bp¨ , ¨q with b : Y ˆ Y Ñ R, and a nonlinear, differentiable part np¨ ; ¨q with n : X ˆ Y Ñ R, which is linear

in the second part [3]. The goal is to find some pxh, yhq P Xh ˆ Yh such that:

bpyh, ηhq ` npxh; ηhq “ lpηhq @ηh P Yh

n1pxh; ξh, yhq “ 0 @ξh P Xh

Like the linearized example above, this method does rely on the nonlinear part to be differentiable

and uses that differentiability in finding the weak solution. However, unlike in the Linearized examples

above, this method approaches the nonlinear problem by having a form that specifically includes some

nonlinear part that is only linear in the second part.
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Given some regular solution to the weak formulation x, for some ϵ ą 0 and for xh P Bpx, ϵq:

(CAR-1) The inf-sup condition holds for the derivative, i.e.

inf
ξhPXh

sup
yhPYh

|n1pxh; ξh, yhq| ě β

(CAR-2) We can establish quasi-stability in that:

}x´ xh}X ` }yh}Y ď Cpx, ϵq inf
ξhPXh

}x´ ξh}X

(CAR-3) We can establish equivalence of the error indicator (Residual norm) and the norm in X:

C1}x´ xh}X ď }l ´Bxh}Y 1 ď C2}x´ xh}

In particular, this approach to a nonlinear problem is such that the Galerkin Solution xh produced

by the method is required to be within some small ϵ ą 0 of the regular weak solution x, to guarantee the

existence of the inf-sup constant for the nonlinear part. The theorem is restated below:

Theorem [Stability of non-linear solution (Carstensen)]. Given a regular solution x to Bpxq “ F ,

there exists an open ball Bpx, ϵq :“ tx̃ P X : }x ´ x̃}X ă ϵu, of radius ϵ ą 0 around x such that, for all

x̃h P Bpx, ϵq XXh Ă Dh, the following discrete inf-sup condition holds:

0 ă
βpx;Xh, Yhq

2}Πh}
ď βpx̃h;Xh, Yhq :“ inf

ξhPSpXhq
sup

ηhPSpYhq

b1px̃h; ξh, ηhq

Much like the standard assumption that a mesh be sufficiently fine for approximations to converge,

Carstensen’s approach requires the solution itself to a priori achieve some level of accuracy for the DPG

method to be well posed.

Similarly, Carstensen requires that xh to be sufficiently close to the regular weak solution x for

the standard quasi-stability result from linear DPG methods. That theorem is restated below:

Theorem [Quasi-optimality of Non-linear DPG (Carstensen)]. Given a solution x to Bpxq “ F ,

there exist constants ϵ ą 0 and Cpx, ϵq ą 0 such that any solution pxh, yhq to the nonlinear weak

formulation above with }x´ xh}X ă ϵ satisfies:

}x´ xh}X ` }yh}Y ď Cpxϵq inf
ξhPXh

}x´ ξh}X
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2.4 Problems with DPG and Criticisms

When viewing DPG through the idealized DPG method, where we approximate a trial to test

operator by choosing functions specifically, a number of issues arise. First, the seminorm (2.3), based on

the trial to test operator T : X Ñ Y determines the optimal convergence of the Galerkin approximation

to the weak solution. However, this semi-norm itself is constructed based on the selection of functions

for a test subspace Yn, and, in the idealized method, the initial underlying subspace Ỹn from which the

operator T is approximated. Demcowicz and Gopalakrishnan assert that in certain schema, the selection

of the underlying subspace to select optimal test functions could be automatic with hp adaptivity, but

leaves to question how a such an underlying subspace can be selected in other cases [4].

Even if an appropriate underlying subspace Ỹn is selected, there is the issue of the seminorm itself,

which is exactly the sup norm on the discrete test subspace Yn. Because the sup norm takes the sup of

the bilinear form across all unit vectors in the discrete subspace, the sup norm of any xn would depend on

the selection of such a subspace. But this means that, because the mesh and underlying function spaces

are repeatedly refined, the nature of the energy norm itself changes at every iteration of the method.

This brings into question how meaningful the convergence is, since the seminorm and sup norm

are not consistent throughout. One could have a best approximation under some semi-norm, but that may

be itself not comparable to the best approximation in a later iteration. It is true that the sup norm is

itself equivalent to any norm on the trial space, but only when the continuity and inf-sup conditions hold

for that sup norm. And because the subspaces from which the sup norm is defined will change at every

iteration of the method, it may not be known that the inf-sup constants relating the sup norm to the

trial space norm do not also change. Should the continuity constant hold for the continuous problem, the

discrete problem inherits the same constant, but the same is not true of the inf-sup constant. Thus we

return to the same problem that motivated DPG in the first place: stabilizing the method by guaranteeing

discrete stability. We can guarantee discrete stability per iteration, but since the seminorms at each

iteration are not the same as norms in any containing spaces, we do not know if the discrete stability is

meaningful.

Outside of that, should a desirable underlying subspace be selected, the method still requires

one approximate the operator Tn for each trial subspace Xn. The success of the ideal method depends

on how well this operator is approximated. The method offsets this by allowing for element by element

computations, but still requires a very careful selection of functions on some underlying subspace of the

test space.
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So, in order for the method to be meaningful, the error estimates at each iteration and error

indicators for any adaptive methods must correspond in some way to some error norm on the whole trial

space. Should the discrete sup norm error estimates not be equal to the sup norm on the whole space,

then we aim for the errors to be equivalent or near equivalent to those errors. Moreover, we would like

some way to quantify the difference between the discrete residual error norms, based on a discrete test

subspace Yh and its dual Y 1
h, and the standard residual error norm, based on the whole test space.

To that end, we look to the second formulation of DPG, where we consider refinements based on

minimizing the residual of the discrete weak formulation. In that framework, when we are computing

error, we are trying to find a function εh P Yh such that, for our DPG approximation xh, and for all

vh P Yh [4]:

xεh, vhy “ Apxh, vhq ´ Lpvhq (2.7)

Or in other words, we find our error estimation function εh “ R´1
Yh

pAxh ´ Lq, and then compute

its discrete dual norm.

In doing so, the error converges to 0, with the optimal stability constants. However, much like in

the idealized method, rather than being a standard error norm, the error norm for the method is one

based on test functions specifically selected to generate the optimal convergence rate. Thus, while the

method uses the Riesz operator, which is more studied and well understood than a so-called trial-to-test

operator, a common criticism of the method is still that the convergence in this error norm does not

necessarily imply that the approximate solutions converge to the exact solution at all. The error norms

are themselves are sup values based on the subspace selection for Yh.

If compared the the exact solution to the problem using a standard norm, such as H1 or L2, it

may be the case that the approximate solution could be very inaccurate. It is therefore important to

relate the DPG error norm with the standard norms and norms that remain consistent throughout each

iteration, as such norms are the most commonly studied and regarded as the baseline for convergence

arguments.

2.5 Addressing the Criticisms to DPG

The error estimation function for DPG is tied to a method that is stable but is generated

specifically to converge, and depends on the discrete test function subspace. Even if the solution could be

approximated using the norm that resulted from these functions, that may not necessarily imply that the
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solution converges in a norm of interest. The error estimator }εh}Yh
should be itself equivalent to the

error in a more standard norm that is not dependent on the functions in the space, and can therefore be

applied to all discrete subspaces. Below is a set of assumptions that allow for the DPG error indicator to

exhibit the same behavior as a standard error indicator in an adaptive algorithm, presented by Carstensen

et al in [4].

We begin by making several assumptions on the linear problem, namely:

(B1) The bilinear form is continuous in the sense that

|apx, yq| ď M}x}X}y}Y @x P X, y P Y

Discrete continuity automatically follows from the continuity from the continuous problem.

(B2) The bilinear form satisfies the continuous inf-sup condition:

inf
}y}Y “1

sup
}x}X“1

|apx, yq| “ inf
}x}X“1

sup
}y}Y “1

|apx, yq| ě γ ą 0

(B3) For discrete subspaces Xh, Yh,There exists some linear operator Πh : Y Ñ Yh such that for all

ξh P Xh and for all y P Y :

apξh, yq “ apξh,Πyq ùñ apξh, y ´ Πyq “ 0

This operator is known as the Fortin operator, and its existence in the context of DPG is proven in

[8]. We also see operators with this property in other Petrov-Galerkin contexts, referred to as a

Galerkin projection operator [9].

The discrete inf-sup condition follows from the second and third condition above. A proof of this

is below:

Theorem [Galerkin projection implies discrete inf-sup]. Given the continuous inf-sup condition

assumption above and the existence of the projection operator Π, the following discrete inf-sup condition

holds:

0 ă Cpγ, }Π}q ď inf
}xh}Xh

“1
sup

}yh}Yh
“1

|apxh, yhq|
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In other words, the discrete inf-sup condition holds for all discrete trial and test subspaces, with

a constant that depends only on the continuous inf sup constant and the projection operator }Π}.

Proof. From the continuous inf-sup condition:

γ ď inf
}x}X“1

sup
}y}Y “1

|apx, yq| ď inf
}xh}Xh

“1
sup

}y}Y “1

|apxh, yq|

“ inf
}xh}Xh

“1
sup

}y}Y “1

|apxh,Πyq| “ inf
}xh}Xh

“1
sup

}y}Y “1

}Πy}|apxh,Πyq|

}Πy}

ď }Π} inf
}xh}Xh

“1
sup

}yh}Yh
“1

|apxh, yhq|

ùñ 0 ă
γ

}Π}
ď inf

}xh}Xh
“1

sup
}yh}Yh

“1

|apxh, yhq|

It follows that, if the Fortin operator exists for each iteration of the algorithm, that we can

establish discrete stability. If the operator norm is bounded below by some }Π} across all iterations of

the algorithm, then this discrete stability is held throughout each iteration. Since in that case there

would be both discrete continuity and a discrete inf-sup condition, by Cea’s lemma, we have the following

quasi-optimality estimate:

}x´ xh}Xh
ď
M}Π}

γ
inf

ξhPXh

}x´ ξh}X

So if we may choose discrete test spaces to allow for the existence of a Fortin operator, we can

maintain discrete stability under the semi-norm and under the norm over the overall space. Moreover,

if such an operator exists, by using similar proofs as in the previous chapter, we can establish that the

problem is well-posed, even while using the DPG semi-norm.

We can also extend this equivalence argument if we use the error indicator function in the residual

method as an element by element error indicator for adaptivity. Given the assumptions above, as well

as the discrete inf-sup condition that follows, we show that the residual from the discrete dual norm is

roughly equivalent to the norm in the trial space X, similar to standard equivalence arguments for a

posteriori error for adaptive finite element methods.

First, we define the error estimation functions ε and εh as follows. ε P Y is the function such

that, for the solution xh P Xh to the discrete weak formulation:

xε, yy “ apxh, yq ´ fpyq @y P Y (2.8)
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In particular, this residual error function norm coincides exactly with the residual error. In other

words, }ε}Y “ }Axh ´ F }Y 1 , which we prove below:

Lemma [Error function norm is equal to residual dual norm]. The norm of the residual error

function defined above is equal to the residual dual norm:

}ε}Y “ }Axh ´ F }Y 1

Proof.

}Axh ´ F }Y 1 “ sup
yPY,}y}“1

apxh, yq ´ fpyq “ sup
yPY,}y}“1

xε, yy ď sup
yPY,}y}“1

}ε}Y }y}Y “ }ε}Y

But the sup is attained with y “ ε
}ε}

, so the two norms are equal. In particular, we proved that

the residual dual norm is equivalent to the trial space norm if the bilinear form is continuous and abides

by the inf-sup condition, so this error function norm would be equivalent to the error in the trial space.

Similarly, εh P Yh is the function such that, for the solution xh P Xh to the discrete weak

formulation, as in [2.7]:

xεh, yhy “ apxh, yhq ´ fpyhq @yh P Yh

Both functions exist by the Riesz representation theorem. The norm of the latter function is used

to approximate the residual error. We also define a difference function δ “ ε´ εh. We notice that δ K Yh,

since for any yh P Yh:

xδ, yhy “ xε´ εh, yhy “ xε, yhy ´ xεh, yhy “ rapxh, yhq ´ fpyhqs ´ rapxh, yhq ´ fpyhqs “ 0

With these functions as defined above, we also define an error indicator function η below, restricted

to each element:

ηK “ }L´Axh}Y 1
h,K

“ }εh}Yh,K (2.9)

Because convergence in the DPG norm is dependent on the norm of the dual space or the discrete

test spaces, rather than the continuous test space, it is important to prove that the discrete dual norm of
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the residual error is comparable to the error on the discrete space. For the linear problem, Carstensen,

Demcowicz, and Gopalakrishnan prove that the error indicator function would be equivalent to the error

in the trial space norm, in the same was adaptive finite element algorithm error indicators are equivalent

to the error in the trial space [4]. In adaptive finite element theory, it is the case that error indicators are

desired to be equivalent in that it is bounded above and below by some scalar multiple of some standard

error norm, with some controllable oscillation term that may affect the reliability of the error indicator.

Theorem [Linear DPG error indicator equivalence to standard error norm]. With the above

assumptions, with L P Y 1, x “ A´1L, and xh P Xh, and with η “ }L ´ Axh}Y 1
h

“ }εh}Yh
and oscpLq “

}L ˝ pI ´ Πq}Y 1 we can establish the following:

1. η ď }A}}x´ xh}X (efficiency)

2. γ2}x´ xh}2X ď η2 ` poscpLq ` }Π}ηq2 (reliability)

3. oscpLq ď }A}}I ´ Π}minξhPXh
}x´ ξh}X (controlling oscillation term)

Proof. Efficiency follows immediately below:

η “ }L´Axh}Y 1
h

“ }Ax´Axh}Y 1
h

“ }Apx´ xhq}Y 1
h

ď }A}}x´ xh}X

Reliability requires the use of the continuous inf-sup condition, the fact that δ “ ε´ εh K Yh, and

the third assumption regarding the projection Π:

}δ}2 “ xδ, δy “ xδ, δ ´ Πδy “ xε, δ ´ Πδy ` xεh,Πδy

ď }L ˝ pI ´ Πq}}δ} ` }εh}}Π}}δ}

ùñ }δ} ď }L ˝ pI ´ Πq} ` }εh}}Π}

Reliability then follows by using the Pythagorean theorem, so that }ε}2} “ }δ}2 ` }εh}2, and,

with the inf-sup condition:

γ2}x´ xh}2 ď }ε}2 “ }εh}2 ` }δ}2 ď }εh}2 ` p}L ˝ pI ´ Πq} ` }εh}}Π}q2

And finally, we control the oscillation term. For any y P Y with }y} “ 1 and for any ξh P Xh:
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L ˝ pI ´ Πqpyq “ Lpy ´ Πyq “ apx, y ´ Πyq “ apx´ ξh, y ´ Πyq

ď }A}}I ´ Π}}x´ ξh}

The result follows from taking the minimum over all ξh P Xh

Because the functions are allowed to be discontinuous in DPG, given some mesh or triangulation

of elements T , with elements K P T , we can define a total error indicator by the sum of element-wise

error indicators.

η “
ÿ

KPT
ηK

And the above proof also follows for each element’s error indicator. Because of this, these

element-wise error indicators can be used as error indicators for an adaptive algorithm, with potential to

combine adaptive finite element theory with DPG theory.
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Chapter 3

Applications to DPG Methods

3.1 Setup to the Semi-Linear Approach for DPG

DPG methods for nonlinear problems often involve the linearization of the original nonlinear

problem, or rely on approximated Galerkin solutions to be within a small neighborhood of the weak solution

to converge [3, 13]. This often results in the common assumption that the initial mesh is sufficiently

fine [3]. However, we are interested instead in dealing with approaching in non-linear problems without

relying on linearization, or on Galerkin solutions to be specifically within some ball of the weak solution.

Much of existing DPG theory, including the optimal efficiency constant, relies on the problem itself to be

linear or linearized [6, 3, 10, 13]. Our aim for this section is to show that, for certain classes of semi-linear

problems, we can also achieve some of the stability stability results of the linear problems.

The setup for the semi-linear approach is similar to the linear one. There is some trial space X

used to approximate the solution function, and some test space Y against which the trial space functions

are compared. The semi-linear form has two parts: a bilinear part ap¨ , ¨q with a : X ˆ Y Ñ R, and a

nonlinear part pbp¨q , ¨q with b : X ˆ Y Ñ R, which is linear in the second part, Y . Much like in the linear

function, there is some forcing function L P Y 1. There is the weak formulation in which the goal is to find

some x P X, where:

pcpxq, yq : apx, yq ` pbpxq, yq “ Lpyq @y P Y (3.1)

Because the trial and test spaces are infinite dimensional, we approximate the solution using

some finite subspaces Xh Ă X and Yh Ă Y , thus resulting in a discrete weak formulation. The goal for

the discrete weak formulation is to find some xh P Xh such that:

pcpxhq, yhq :“ apxh, yhq ` pbpxhq, yhq “ Lpyhq @yh P Yh (3.2)
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For the semi-linear for, we define corresponding operators C : X Ñ Y 1, A : X Ñ Y 1, and

B : X Ñ Y 1 so that for all x P X, y P Y , Cxpyq “ pcpxq, yq, Axpyq “ apx, yq, and Bxpyq “ pbpxq, yq. In

doing so we can develop analagous results using the residual of the semi-linear problem. And we also

make the following assumptions to the linear part of the semi-linear problem and on the whole problem,

similar to those made to approach the linear problem:

(C1) c is a bounded nonlinear form, with continuity constant }c}:

}c} “ sup
xPXz0

sup
yPY z0

pcpxq, yq

}x}}y}
ă 8

This implies that b is similarly bounded, with some norm }b}

(C2) For the linear part of the nonlinear problem, a satisfies the continuous inf-sup condition:

0 ă β :“ inf
xPXz0

sup
yPY z0

apx, yq

}x}}y}
“ inf

yPY z0
sup

xPXz0

apx, yq

}x}}y}

(C3) Xh Ď X and Yh Ď Y are closed subspaces that admit a bounded linear operator Π : Y Ñ Yh with

operator norm }Π} ă 8 and the property apXh, pI ´ ΠqY q “ 0, i.e.

@ξh P Xh, y P Y, apξh, yq “ apξh,Πyq

We also note that, due to the Riesz representation theorem, we can, even for the semi-linear

problem, define the following functional: Because the semi-linear problem is still linear in Y , a Hilbert

space, for each x P X, there exists some unique Cx P Y such that, for all y P Y :

xCx, yy “ pcpxq, yq “ apx, yq ` pbpxq, yq (3.3)

Error Representation Function

We also define the error representation similarly to the linear problem, by using the Riesz

representations of the residuals. To do this, te define the error estimation functions ε and εh as follows.

ε P Y is the function such that, for the discrete Galerkin solution xh P Xh to the discrete weak formulation:
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xε, vy “ apxh, yq ` pbpxhq, yq ´ Lpyq @y P Y (3.4)

Similarly, for the problem, we define a εh P Yh as the function such that, for the solution xh P Xh

to the discrete weak formulation:

xεh, yhy “ apxh, yhq ` pbpxhq, yhq ´ Lpyhq @yh P Yh (3.5)

Both functions exist by the Riesz representation theorem. Because Y is typically infinite dimen-

sional, we typically do not use ε to approximate the residual error, and instead use its discrete dual

approximation ε P Yh. Much like in the linear case, that means the error representation function and its

norm depends on our selection of discrete test space, as we are approximating its norm using the discrete

subspace dual norm } ¨ }Y 1
h
.

3.2 A Semi-linear DPG Problem Example

Let our domain Ω be a Lipschitz domain, and let X “ Y “ H1
0 pΩq. We allow our discrete test

spaces Yh to be piecewise discontinuous. We want to find some x P X such that:

apx, yq ` pbpxq, yq “ Lpyq @y P Y “ H1
0 pΩq (3.6)

Or rather, for our discrete formulation, we want to find xh P Xh Ă H1
0 pΩq such that:

apxh, yhq ` pbpxhq, yhq “ Lpyhq @yh P Yh Ă H1
0 pΩq (3.7)

We also assume that the solution must abide by Dirichlet boundary conditions, i.e. x “ 0 on δΩ.

As is the case with many approaches to nonlinear problems, we will attempt to exploit properties

of linearity to show that the problem is well posed and to develop error estimates for the problem.

However, rather than just linearizing the nonlinear problem, and rather than restricting ourselves to a

small ball about the weak solution, we instead turn toward approaches to semi-linear problems for which

the nonlinear part exhibits exploitable properties that are like a linear problem, without being linear. By

weakening our assumptions to allow for a nonlinear part, we extend the class of problems the method

can account for, but establish comparable results to the linear problems. To that end, we also make any

number of the following additional assumptions.
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Semi-linear Problem Assumptions

(S1) Maximum Principle: Suppose that the weak solution u is bounded, in the sense that if u is real

valued, u´ ă upxq ă u`

(S2) Critical Growth: Suppose the domain Ω Ă Rd. There exists some integer n such that for 1 ď n ă d`2
d´2

(when d ě 3) or 1 ď n ă 8 (when d = 2), that the semi-linear form abides by:

ˇ

ˇ

ˇ
cpnqpηq

ˇ

ˇ

ˇ
ď K

for some constant K ă 8. In other words, the non-linear form has some number of bounded

derivatives.

(S3) Strong Cauchy: For all x1 and x2 in the trial space x,

|pbpx´ x1q, x2 ´ x1q| ď C}x´ x1}}x2 ´ x1}

for some C ą 0 that we can make as small as we like.

(S4) Strong Monotonicity: The non-linear form bp¨, ¨q is strongly monotone, i.e. for all x, y P H1
0 :

pbpxq ´ bpyq, x´ yq ě 0

(S5) Lipschitz Constant for the nonlinear form: For all x, y P X, and for some constant kL ą 0

}bpxq ´ bpyq} ď kL}x´ y}X

We also include the continuity assumption and the existence of the projection operator for the

nonlinear problem. In addition, we may make the following assumptions:

(C2-1) The residual operator, Cx´ L, has a bounded derivative and its derivative has a bounded inverse

for all x P H1
0

(C2-2) Coercivity: There is some c ą 0 such that for all x P H1
0 :

c}x}2 ď apx, xq
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(C2-3) Like in (S4), bp¨, ¨q is strongly monotone in H1
0 pΩq, i.e. for all x, y P H1

0 :

pbpxq ´ bpyq, x´ yq ě 0

(C2-4) The bounded operator B corresponds to a nonlinear term in the weak formulation (3.6) that is

bounded by a polynomial that satisfies critical growth conditions (S2).

3.3 Semi-Linear DPG Stability and Optimality Results

From the above assumptions, we can establish a number of stability and optimality results. In

particular, for these semi-linear problems, we would like to establish an equivalence with the residual

norm of the error to the error norm in the trial space, as well as prove some quasi-optimality results.

Theorem [Semi-linear Case 1: Strongly Monotone, Lipschitz]. Suppose the semi-linear formula-

tion is has the Lipschitz property (S5), with continuity constant kL, non-linear part pbp¨q, ¨q is strongly

monotone (S4), and the linear part ap¨, ¨q is coercive with coercivity constant m (A2). Then we have

that the residual error norm abides by the following stability estimates. For some constants CM ą 0 and

cm ą 0, the norm of the error indicator function ε is equivalent to the error of the Galerkin approximation

in the trial space in that:

cm}x´ xh} ď }ε}Y ď Cm}x´ xh}

Moreover, for some constant C ą 0, the error of the Galerkin approximation has the following

quasi-stability result:

}x´ xh} ď C inf
ξhPXh

}x´ ξh}

Proof.

Lipschitz Continuity (S5) of the non-linear form gives us an upper bound to the residual error

norm, since we have:
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}ε}Y “ sup
yPY,}y}“1

pcpxhq, yq ´ fpyq

“ sup
yPY,}y}“1

pcpxhq ´ cpxq, yq

ď sup
yPY,}y}“1

kL}xh ´ x}}y} “ kL}x´ xh}

We also have a lower bound:

}ε}Y “ sup
yPY,}y}“1

pcpxhq, yq ´ fpyq “ sup
yPY,}y}“1

xCxh ´ F, yy

“ sup
yPY,}y}“1

xCxh ´ Cx, yy ě

B

Cxh ´ Cx,
xh ´ x

}xh ´ x}

F

“

ˆ

Cpxhq ´ Cpxq,
xh ´ x

}xh ´ x}

˙

ě a

ˆ

xh ´ x,
xh ´ x

}xh ´ x}

˙

ě m}x´ xh}

So we have:

}x´ xh}2 ď
1

m
apx´ xh, x´ xhq ď

1

m
pCpxq ´ Cpxhq, x´ xhq

“
1

m
xCx´ Cxh, x´ xhy “

1

m
xCx´ Cxh, x´ ξhy

“
1

m
xCx´ Cxh, x´ ξhy ď

1

m
}Cx´ Cxh}Y }x´ ξh}Y

ď
kL
m

}x´ xh}}x´ ξh}

ùñ }x´ xh} ď
kL
m

inf
ξhPXh

}x´ ξh}

It should be noted that while we have this estimate when the non-linear part is globally Lipschitz,

this would imply that the linear part is essentially bounded by some linear function, and thus grows

slower than a linear function. This class of non-linear forms is limited and are very close to linear. It

is therefore of interest to consider a larger class of non-linear functions, and achieve comparable error

estimate results. To that end, we consider Sobolev spaces, which are well studied, as a setting for a specific

class of nonlinear functions that follow the critical growth assumption.

Theorem [Critical growth assumptions imply local Lipschitz condition]. Let Ω Ă Rn be a Lip-

schitz domain, with n ě 2. Let X “ H1pΩq be the trial space.

Suppose that the nonlinear form b follows the critical growth assumption (S2), with bounded
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derivatives up to some k ą 0. Suppose that x P X is the galerkin solution to the weak formulation (3.6),

and has some L8 bound, and let xh be some function in the discrete trial space Xh. Then for some

constant C ą 0, the following Locally Lipschitz condition holds:

pbpxq ´ bpxhq, yq ď C}∇x´ ∇xh}}∇y}

Proof.

Expanding bpxhq with a Taylor expansion, we have:

bpxhq “ bpxq `

k
ÿ

i“1

bpiqpxq

i!
pxh ´ xqi

Since b follows critical growth assumptions, and x is L8, bpnqpxq is bounded for all n ă k and

bpkqpξq is bounded for all ξ P X. So we have, from the above, and for some constant K1 ą 0:

}bpxq ´ bpxhq} “ }

k
ÿ

i“1

bpiqpxq

i!
px´ xhqi}

ď

k
ÿ

i“1

}
bpiqpxq

i!
px´ xhqi}

ď

k
ÿ

i“1

K1}px´ xhqi}p “

k
ÿ

i“1

K1}px´ xhq}iip

By the Poincare-Sobolev inequality, there is some K2 ą 0 such that }px´xhq}ip ď K2}∇px´xhq}2.

So we now have:

}bpxq ´ bpxhq} ď

k
ÿ

i“1

K1}px´ xhq}iip ď

k
ÿ

i“1

K2}∇px´ xhq}i2

“ K2

ˆ

1 ´ }∇px´ xhq}k2

1 ´ }∇px´ xhq}2

˙

}∇px´ xhq}2

We have that for some constant R ą 0:

1 ´ }∇px´ xhq}k2

1 ´ }∇px´ xhq}2
ď R

So it follows that for some C ą 0:
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}bpxq ´ bpxhq} ď C}∇px´ xhq}2

And the result follows.

Theorem [Semi-linear Case 2: Non-linear part with critical growth]. Let Ω Ă Rn be a Lips-

chitz domain, with n ě 2. Let X “ Y “ H1
0 pΩq be the trial space and test space.

Suppose that the nonlinear form b follows the critical growth assumption (S2), with bounded

derivatives up to some k ą 0. Suppose that x P X is the galerkin solution to the weak formulation (3.6),

and has some L8 bound, and let xh be some function in the discrete trial space Xh. Suppose also that

the linear part ap¨, ¨q is coercive (C2-2) with coercivity constant m. Then we have that the residual error

norm abides by the following stability estimates. For some constants CM ą 0 and cm ą 0, the norm of

the error indicator function ε as defined by (3.3) is equivalent to the error of the Galerkin approximation

in the trial space in that:

cm}x´ xh} ď }ε}Y ď Cm}x´ xh}

Moreover, for some constant C ą 0, the error of the Galerkin approximation has the following

quasi-stability result:

}x´ xh} ď C inf
ξhPXh

}x´ ξh}

Proof.

Critical growth assumptions for the non-linear form and L8 bounds on u imply that there exists

some constant kG ą 0 such that:

pbpxq ´ bpxhq, yq ď kG}∇x´ ∇xh}2}∇y}2

give us an upper bound to the residual error norm, since we have:
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}ε}Y “ sup
yPY,}y}“1

pcpxhq, yq ´ fpyqq

“ sup
yPY,}y}“1

pcpxhq ´ cpxq, yq

ď sup
yPY,}y}“1

kG}∇pxh ´ xq}}∇y} ď kG}x´ xh}

We also, with the same proof as in case 1, have a lower bound:

}ε}Y “ sup
yPY,}y}“1

pcpxhq, yq ´ fpyqq

ě a

ˆ

xh ´ x,
xh ´ x

}xh ´ x}

˙

ě m}x´ xh}

So we have:

}x´ xh}2 ď
1

m
apx´ xh, x´ xhq

ď
1

m
pcpxq ´ cpxhq, x´ xhq

ď
1

m
}Cx´ Cxh}Y }x´ ξh}Y

ď
kG
m

}x´ xh}}x´ ξh}

ùñ }x´ xh} ď
kG
m

inf
ξhPXh

}x´ ξh}

So the results follow.

3.4 Proof of Strang’s Lemmas for DPG

Because the DPG method requires the approximation of the Riesz operator, as well as norms

that are reliant on the discrete subspace upon which the discrete formulation is solved, it is useful to

quantify the effect such approximations would have on the error of the approximation. To that end, we

prove analogues to Strang’s lemmas below, for linear DPG.

Theorem [Strang’s First Lemma (linear DPG, classical)]. Suppose we have a coercive bilinear

form ap¨, ¨q “ xT p¨q, ¨y as in the weak formulation and similarly coercive discretizations ahp¨, ¨q “ xThp¨q, ¨y.

Suppose also that we have the continuous and discretized forcing functions f and fh. Then for some

constant C ą 0 independent of the mesh, the residual error in the approximation assumes the following
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bound:

}x´ xh}Y ď C

ˆ

}Thxh ´ Tx}Y 1
h

` inf
ξhPY

´

}x´ ξh}Y ` }pT ´ Thqξh}Y 1
h

¯

˙

Proof.

We have, from the coercivity and continuity of the bilinear form a:

α}xh ´ ξh}2Y

ď |ahpxh ´ ξh, xh ´ ξhq|

“ |ahpxh ´ ξh, xh ´ ξhq ` apx´ ξh, xh ´ ξhq ´ apx´ ξh, xh ´ ξhq|

“ |apx´ ξh, xh ´ ξhq ` papξh, xh ´ ξhq ´ ahpξh, xh ´ ξhqq

` pahpxh, xh ´ ξhq ´ apx, xh ´ ξhqq|

“ |apx´ ξh, xh ´ ξhq ` xpT ´ Thqξh, xh ´ ξhy ` xThxh ´ Tx, xh ´ ξhy|

ď M}x´ ξh}}xh ´ ξh} ` |xpT ´ Thqξh, xh ´ ξhy| ` |xpThxh ´ Tx, xh ´ ξhy|

ùñ }xh ´ ξh} ď
M

α
}x´ ξh} `

1

α

ˇ

ˇ

ˇ

ˇ

B

pT ´ Thqξh,
xh ´ ξh

}xh ´ ξh}

F
ˇ

ˇ

ˇ

ˇ

`
1

α

ˇ

ˇ

ˇ

ˇ

B

pThxh ´ Tx,
xh ´ ξh

}xh ´ ξh}

F
ˇ

ˇ

ˇ

ˇ

ď
M

α
}x´ ξh} `

1

α
sup

yhPYh,}yh}“1

|xpT ´ Thqξh, yhy| `
1

α
sup

yhPYh,}yh}“1

|xpThxh ´ Tx, yhy|

ď
M

α
}x´ ξh} `

1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

Since, by the triangle inequality,

}x´ xh}Y ď }x´ ξh}Y ` }xh ´ ξh}Y

We have the following:
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}x´ xh}Y ď }x´ ξh}Y ` }xh ´ ξh}Y

ď }x´ ξh}Y `
M

α
}x´ ξh}Y `

1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

“

ˆ

1 `
M

α

˙

}x´ ξh}Y `
1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

ùñ }x´ xh}Y ď
1

α
}Thxh ´ Tx}Y 1

h
` inf

ξhPYh

ˆˆ

1 `
M

α

˙

}x´ ξh}Y `
1

α
}pT ´ Thqξh}Y 1

h

˙

The conclusion follows.

Theorem [Strang’s Second Lemma (linear DPG, classical)]. Suppose we have a coercive bilinar

form ap¨, ¨q “ xT p¨q, ¨y as in the weak formulation and similarly coercive discretizations ahp¨, ¨q “ xThp¨q, ¨y.

Suppose forcing function f is not approximated and is instead exact. Let u be the solution to the weak

formulation, and uh the discrete solution using some subspace of the trial space Xh, and some subspace of

the test space Yh Then the residual error in the approximation assumes the following bound:

}x´ xh}Yh
ď C

ˆ

}Thpx´ xhq}Y 1
h

` inf
ξhPYh

}x´ ξh}Yh

˙

Proof. Because the bi-linear forms are coercive, we have:

α}xh ´ ξh}2Yh
ď |ahpxh ´ ξh, xh ´ ξhq|

“ |ahpxh ´ ξh, xh ´ ξhq ` ahpx´ xh, xh ´ ξhq ´ ahpx´ xh, xh ´ ξhq|

“ |ahpx´ ξh, xh ´ ξhq ` pahpxh, xh ´ ξhq ´ ahpxh, xh ´ ξhqq| ` |ahpx´ xh, xh ´ ξhq|

“ |ahpx´ ξh, xh ´ ξhq| ` |xThpx´ xhq, xh ´ ξhy|

ď M}x´ ξh}}xh ´ ξh} ` |xpThpx´ xhq, xh ´ ξhy|

ùñ }xh ´ ξh} ď
M

α
}x´ ξh} `

1

α

ˇ

ˇ

ˇ

ˇ

B

pThpx´ xhq,
xh ´ ξh

}xh ´ ξh}

Fˇ

ˇ

ˇ

ˇ

ď
M

α
}x´ ξh} `

1

α
sup

yhPYh,}yh}“1

|xpThpx´ xhq, yhy|

“
M

α
}x´ ξh} `

1

α
}Thpx´ xhq}Y 1

h
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Since, by the triangle inequality,

}x´ xh}Yh
ď }x´ ξh}Yh

` }xh ´ ξh}Yh

We have the following:

}x´ xh}Yh
ď }x´ ξh}Yh

` }xh ´ ξh}Yh

ď }x´ ξh}Yh
`
M

α
}x´ ξh} `

1

α
}Thpx´ xhq}Y 1

h

“

ˆ

1 `
M

α

˙

}x´ ξh}Yh
`

1

α
}Thpx´ xhq}Y 1

h

ùñ }x´ xh}Yh
ď

1

α
}Thpx´ xhq}Y 1

h
` inf

ξhPYh

ˆˆ

1 `
M

α

˙

}x´ ξh}Yh

˙

The conclusion follows.

For cases above, bilinear forms can only be coercive if the trial and test spaces are the same, so

that the trial space functions can be in the second part of the bilinear form. The Petrov-Galerkin part of

the simplest case comes from the fact that test subspaces are allowed to be discontinuous, and subspaces

could be different but still have a well defined inner product. However, Petrov-Galerkin methods like

DPG would typically have different function spaces for the trial and test functions, where a bilinear form

related to an inner product would not be defined. In which case, we also consider Strang’s lemmas for

mixed methods, in which the trial and test spaces are different.

Theorem [Strang’s First Lemma (linear DPG, mixed)]. Suppose we have a bilinear form ap¨, ¨q “

xT p¨q, ¨y, as in the weak formulation 1.4, that fulfills the inf-sup condition (A2-1) and the discrete inf-sup

condition (A2-2), with inf-sup constant β. Suppose we also have discretizations with the same inf-sup

constants, ahp¨, ¨q “ xThp¨q, ¨y. Suppose also that we have the continuous and discretized forcing functions

f and fh. Then for some constant C ą 0 independent of the mesh, the residual error in the approximation

assumes the following bound:

}x´ xh}X ď C

ˆ

}Thxh ´ Tx}Y 1
h

` inf
ξhPXh

´

}x´ ξh}X ` }pT ´ Thqξh}Y 1
h

¯

˙

Proof.

We have, from the inf-sup condition and continuity of the bilinear form a:
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}xh ´ ξh}X ď
1

β
sup

yPYh,}yh}Y “1

ahpxh ´ ξh, yhq

“
1

β
sup

yPYh,}yh}Y “1

ahpxh ´ ξh, yhq ` apx´ ξh, yhq ´ apx´ ξh, yhq

“
1

β
sup

yPYh,}yh}Y “1

apx´ ξh, yhq ` apξh, yhq ´ ahpξh, yhq ` apx, yhq ´ ahpξh, yhq

ď
1

β
sup

yPYh,}yh}Y “1

|apx´ ξh, yhq| ` |xpT ´ Thqξh, yhy| ` |xTx´ Thξh, yhy|

ď
1

β
sup

yPYh,}yh}Y “1

M}x´ ξh}X}yh}Y ` }pT ´ Thqξh}Y 1
h

` }Tx´ Thξh}Y 1
h

“
M

β
}x´ ξh}X `

1

β
}pT ´ Thqξh}Y 1

h
`

1

β
}Tx´ Thξh}Y 1

h

Since, by the triangle inequality,

}x´ xh}X ď }x´ ξh}X ` }xh ´ ξh}X

We have the following:

}x´ xh}X ď }x´ ξh}X ` }xh ´ ξh}X

ď }x´ ξh}X `
M

β
}x´ ξh}X `

1

β
}pT ´ Thqξh}Y 1

h
`

1

β
}Tx´ Thξh}Y 1

h

“

ˆ

1 `
M

β

˙

}x´ ξh}X `
1

β
}pT ´ Thqξh}Y 1

h
`

1

β
}Thxh ´ Tx}Y 1

h

ùñ }x´ xh}X ď
1

β
}Thxh ´ Tx}Y 1

h
` inf

ξhPXh

ˆˆ

1 `
M

β

˙

}x´ ξh}X `
1

β
}pT ´ Thqξh}Y 1

h

˙

The conclusion follows.

Theorem [Strang’s Second Lemma (linear DPG, mixed)]. Suppose we have a bilinear form, as

in the weak formulation (1.4), ap¨, ¨q “ xT p¨q, ¨y, that fulfills the inf-sup condition (A2-1) and the discrete

inf-sup condition (A2-2), with inf-sup constant β. Suppose we also have discretizations with the same

inf-sup constants, ahp¨, ¨q “ xThp¨q, ¨y. Suppose forcing function f is not approximated and is instead exact.

Let u be the solution to the weak formulation, and uh the discrete solution using some subspace of the
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trial space Xh, and some subspace of the test space Yh Then the residual error in the approximation

assumes the following bound for some constant C ą 0:

}x´ xh}X ď C

ˆ

}Thpx´ xhq}Y 1
h

` inf
ξhPXh

}x´ ξh}X

˙

Proof.

We have, from the inf-sup condition and continuity of the bilinear form a:

}xh ´ ξh}X ď
1

β
sup

yPYh,}yh}Y “1

ahpxh ´ ξh, yhq

“
1

β
sup

yPYh,}yh}Y “1

ahpxh ´ ξh, yhq ` ahpx´ xh, yhq ´ ahpx´ xh, yhq

“
1

β
sup

yPYh,}yh}Y “1

ahpx´ ξh, yhq ´ ahpx´ xh, yhq

ď
1

β
sup

yPYh,}yh}Y “1

|apx´ ξh, yhq| ` |xThpx´ xhq, yhy|

ď
1

β
sup

yPYh,}yh}Y “1

M}x´ ξh}X}yh}Y ` }Thpx´ xhq}Y 1
h

“
M

β
}x´ ξh}X `

1

β
}Thpx´ xhq}Y 1

h

Since, by the triangle inequality,

}x´ xh}X ď }x´ ξh}X ` }xh ´ ξh}X

We have the following:

}x´ xh}X ď }x´ ξh}X ` }xh ´ ξh}X

ď }x´ ξh}X `
M

β
}x´ ξh}X `

1

β
}Thpx´ xhq}Y 1

h

“

ˆ

1 `
M

β

˙

}x´ ξh}X `
1

β
}Thpx´ xhq}Y 1

h

ùñ }x´ xh}X ď
1

β
}Thpx´ xhq}Y 1

h
`

ˆ

1 `
M

β

˙

inf
ξhPXh

}x´ ξh}X

The conclusion follows.
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We then are also interested in how to characterise the effect of this approximation in the context

of semi-linear problems under the conditions listed in the second section of this chapter. We prove those

results below as well. An important difference is that while the Riesz operator may still exist, it is no

longer a linear operator in this context.

Theorem [Strang’s First Lemma (semi-linear DPG)]. Suppose we have a semi-linear form as in

the weak formulation 3.1:

pcp¨q, ¨q “ ap¨, ¨q ` pbp¨q, ¨q “ xT p¨q, ¨y

with a bilinear part ap¨, ¨q that is coercive as in (A2) and continuous as in (A1), and a non-linear part

pbp¨q, ¨q that is strongly monotone as in (S4) and abides by some Lipschitz condition (S5) or the condition

proven with the discrete maximum and critical growth conditions (S1) and (S2), with some boundedness

constant k. Suppose we similarly have discretizations pchp¨q, ¨q “ xThp¨q, ¨y, ahp¨, ¨q, and pbhp¨q, ¨q. Suppose

also that we have the continuous and discretized forcing functions f and fh. Then for some constant

C ą 0 independent of the mesh, the residual error in the approximation assumes the following bound:

}x´ xh}Y ď C

ˆ

}Thxh ´ Tx}Y 1
h

` inf
ξhPY

´

}x´ ξh}Y ` }pT ´ Thqξh}Y 1
h

¯

˙

Proof.

We have, from the coercivity of the bilinear part a, and the strong monotonicity of the nonlinear

part b:
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α}xh ´ ξh}2Y ď |ahpxh ´ ξh, xh ´ ξhq| ď |ahpxh ´ ξh, xh ´ ξhq ` pbhpxhq ´ bhpξhq, xh ´ ξhq|

“ |pchpxhq ´ chpξhq, xh ´ ξhq ` pcpxq ´ cpξhq, xh ´ ξhq ´ pcpxq ´ cpξhq, xh ´ ξhq|

“ |pcpxq ´ cpξhq, xh ´ ξhq ` pcpξhq ´ chpξhq, xh ´ ξhq ` pchpxhq ´ cpxq, xh ´ ξhq|

“ |pcpxq ´ cpξhq, xh ´ ξhq ` xpT ´ Thqξh, xh ´ ξhy ` xThxh ´ Tx, xh ´ ξhy|

ď pM ` kq}x´ ξh}}xh ´ ξh} ` |xpT ´ Thqξh, xh ´ ξhy| ` |xpThxh ´ Tx, xh ´ ξhy|

ùñ }xh ´ ξh} ď
M ` k

α
}x´ ξh} `

1

α

ˇ

ˇ

ˇ

ˇ

B

pT ´ Thqξh,
xh ´ ξh

}xh ´ ξh}

F
ˇ

ˇ

ˇ

ˇ

`
1

α

ˇ

ˇ

ˇ

ˇ

B

pThxh ´ Tx,
xh ´ ξh

}xh ´ ξh}

F
ˇ

ˇ

ˇ

ˇ

ď
M ` k

α
}x´ ξh} `

1

α
sup

yhPYh,}yh}“1

|xpT ´ Thqξh, yhy| `
1

α
sup

yhPYh,}yh}“1

|xpThxh ´ Tx, yhy|

ď
M ` k

α
}x´ ξh} `

1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

Since, by the triangle inequality,

}x´ xh}Y ď }x´ ξh}Y ` }xh ´ ξh}Y

We have the following:

}x´ xh}Y ď }x´ ξh}Y ` }xh ´ ξh}Y

ď }x´ ξh}Y `
M ` k

α
}x´ ξh}Y `

1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

“

ˆ

1 `
M ` k

α

˙

}x´ ξh}Y `
1

α
}pT ´ Thqξh}Y 1

h
`

1

α
}Thxh ´ Tx}Y 1

h

ùñ }x´ xh}Y ď
1

α
}Thxh ´ Tx}Y 1

h
` inf

ξhPYh

ˆˆ

1 `
M ` k

α

˙

}x´ ξh}Y `
1

α
}pT ´ Thqξh}Y 1

h

˙

The conclusion follows.

Theorem [Strang’s Second Lemma (semi-linear DPG)]. Suppose we have a semi-linear form as

in the weak formulation 3.1:

pcp¨q, ¨q “ ap¨, ¨q ` pbp¨q, ¨q “ xT p¨q, ¨y
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with a bilinear part ap¨, ¨q that is coercive as in (A2) and continuous as in (A1), and a non-linear part

pbp¨q, ¨q that is strongly monotone as in (S4) and abides by some Lipschitz condition (S5) or the condition

proven with the discrete maximum and critical growth conditions (S1) and (S2), with some boundedness

constant k. Suppose we similarly have discretizations pchp¨q, ¨q “ xThp¨q, ¨y, ahp¨, ¨q, and pbhp¨q, ¨q. Suppose

forcing function f is not approximated and is instead exact. Let u be the solution to the weak formulation,

and uh the discrete solution using some subspace of the trial space Xh, and some subspace of the test

space Yh Then the residual error in the approximation assumes the following bound:

}x´ xh}Yh
ď C

ˆ

}Thpx´ xhq}Y 1
h

` inf
ξhPYh

}x´ ξh}Yh

˙

Proof. We have, from the coercivity of the bilinear part a, and the strong monotonicity of the nonlinear

part b:

α}xh ´ ξh}2Y ď |ahpxh ´ ξh, xh ´ ξhq| ď |ahpxh ´ ξh, xh ´ ξhq ` pbhpxhq ´ bhpξhq, xh ´ ξhq|

“ |pchpxhq ´ chpξhq, xh ´ ξhq ` pchpxq ´ chpxhq, xh ´ ξhq ´ pchpxq ´ chpxhq, xh ´ ξhq|

“ |pchpxq ´ chpξhq, xh ´ ξhq ` pchpxhq ´ chpxhq, xh ´ ξhq| ` |pchpxq ´ chpxhq, xh ´ ξhq|

“ |pchpxq ´ chpξhq, xh ´ ξhq| ` |xThpxq ´ Thpxhq, xh ´ ξhy|

ď pM ` kq}x´ ξh}}xh ´ ξh} ` |xpThpxq ´ Thpxhq, xh ´ ξhy|

ùñ }xh ´ ξh} ď
M ` k

α
}x´ ξh} `

1

α

ˇ

ˇ

ˇ

ˇ

B

pThpxq ´ Thpxhq,
xh ´ ξh

}xh ´ ξh}

F
ˇ

ˇ

ˇ

ˇ

ď
M ` k

α
}x´ ξh} `

1

α
sup

yhPYh,}yh}“1

|xpThpxq ´ Thpxhq, yhy|

“
M ` k

α
}x´ ξh} `

1

α
}Thpxq ´ Thpxhq}Y 1

h

Since, by the triangle inequality,

}x´ xh}Yh
ď }x´ ξh}Yh

` }xh ´ ξh}Yh

We have the following:
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}x´ xh}Yh
ď }x´ ξh}Yh

` }xh ´ ξh}Yh

ď }x´ ξh}Yh
`
M ` k

α
}x´ ξh} `

1

α
}Thpxq ´ Thpxhq}Y 1

h

“

ˆ

1 `
M ` k

α

˙

}x´ ξh}Yh
`

1

α
}Thpxq ´ Thpxhq}Y 1

h

ùñ }x´ xh}Yh
ď

1

α
}Thpxq ´ Thpxhq}Y 1

h
` inf

ξhPYh

ˆˆ

1 `
M ` k

α

˙

}x´ ξh}Yh

˙

The conclusion follows.

We are, moreover, interested in how the dual norm error in the test space Y differs from the

discrete test space Yh. We defined above the difference function, δ “ ε´ εh, between the residual error ε

and the approximate residual error εh. By the triangle inequality, we have:

}ε} ď }δ} ` }εh}

Hence controlling the difference would keep the error estimation function εh comparable to the

residual error. For the linear problem, we can show that the error estimator function εh is the best

estimator for the residual error, in the following way.

Lemma [δ in the linear problem]. Given the error estimator functions ϵ and the approximate function

ϵh, for fixed ε, δ is optimized by the error estimator function εh, in that:

}δ} “ inf
ηhPYh

}ε´ ηh}Y

Proof. We use the fact that by construction, δ P Y K
h , hence xδ, yhy “ 0 for any yh P Yh. We have for any

arbitrary ηh P Yh

}δ}2Y “ xδ, δy “ xδ, ε´ εhy “ xδ, ε´ ηhy ď }δ}Y }ε´ ηh}Y

ùñ }δ}Y ď }ε´ ηh}Y @ηh P Yh

ùñ “ }δ} “ inf
ηhPYh

}ε´ ηh}Y
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In the DPG method, discrete test spaces are constructed to allow for the problem to have specific

properties, such as an SPD stiffness matrix, or the existence of a projection operator. Because δ and the

bounds above by Strang’s lemma are affected by the subspace of Yh, the selection of the discrete test

space has a significant impact on the error bounds.

3.5 Adaptive Error Estimator for Semi-Linear Problems

Classical finite element methods would involve a mesh in which the basis functions and mesh

were refined uniformly across all elements. This, however, is computationally intensive, as the number of

elements may increase exponentially at each refinement iteration.

In particular, this amount of refinement would not be necessary for certain problems. If the

solution to an equation was easily approximated except at a few specific points, refining the mesh in the

easier to approximate areas would not improve the error of the approximated solution by much, while still

increasing the problem size. Thus, it may be more useful to only refine areas of the mesh where the error

is large.

This gives way to a posteriori error estimators, which estimate the error on each element after

each refinement step. After the spaces are refined, the space is refined specifically at elements where the

error estimator indicated high error.

Theorem [A Posteriori Error for Semi-linear DPG problems]. Given the assumptions above, we

can establish similar equivalence arguments as in the linear case. i.e. we have:

1. Efficiency: η ď k1}x´ xh}H1

2. Reliability: }x´ xh}H1 ď Cpc, A,Bq infξhPXh
}x´ ξh}H1

3. Control of the oscillation term: }pL´Bxhq ¨ pI ´ Πq} ď Cpc, A,B, I ´ Πq infξhPXh
}x´ ξh}H1

Proof.

η “ }L´ Cxh}Y 1
h

ď }L´ Cxh}H´1 ď k1}x´ xh}H1

Since the residual operator has a bounded derivative, efficiency follows from Taylor expansion,

and k1 above depends on the norm of the derivative operator in Ω

We again use the fact that δ “ ε´ εh K Yh, and the third assumption regarding the projection Π,

and acquire the same result:

}δ}H1 ď }pL´Bxhq ˝ pI ´ Πq}H´1 ` }εh}H1}Π}H´1
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Since the residual operator has an invertible derivative and the inverse of that derivative is

bounded:

k2}x´ xh}2 ď }L´ Cxh}2H´1 “ }ε}2H1 “ }δ}2H1 ` }εh}2H1

ď }εh}2H1 ` p}pL´Bxhq ˝ pI ´ Πq}H´1 ` }εh}H1}Π}H´1q2

Where k2 depends on the norm of the inverse of the derivative

We use the coercivity, monotonicity, and critical growth assumptions to establish the following

result:

c}x´ xh}2H1 ď apx´ xh, x´ xhq

“ apx´ xh, x´ ξhq ` apx´ xh, ξh ´ xhq

“ apx´ xh, x´ ξhq ` pbpxq ´ bpxhq, xh ´ ξhq

“ apx´ xh, x´ ξhq ` pbpxq ´ bpxhq, x´ ξhq

´ pbpxq ´ bpxhq, x´ xhq

ď apx´ xh, x´ ξhq ` pbpxq ´ bpxhq, x´ ξhq

ď CpA,Bq}x´ xh}}x´ ξh}H1

It follows that: }x´ xh}H1 ď Cpc, A,Bq infξhPXh
}x´ ξh}H1

Using the result above, we can bound }pL´Bxhq¨pI´Πq} by Cpc, A,B, I´Πq infξhPXh
}x´ξh}H1 :

pL´Bxhq ¨ pI ´ Πqpyq “ pAx`Bx´Bxhqpy ´ Πyq

“ pAx´Aξh `Bx´Bxhqpy ´ Πyq

“ pAx´Aξhqpy ´ Πyq ` pBx´Bxhqpy ´ Πyq

ùñ }pL´Bxhq ¨ pI ´ Πq} ď }A}}x´ ξh}}I ´ Π} ` k3}x´ xh}}I ´ Π}

ď Cpc, A,B, I ´ Πq inf
ξhPXh

}x´ ξh}H1
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202, 2003.

53

http://arxiv.org/abs/1001.1382

	Dissertation Approval Page
	Dedication
	Table of Contents
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Weak Formulation for Finite Element Methods
	Discrete Weak Formulation and Convergence of FEM in the Linear Problem
	Variations on the classical method
	Standard issues in FEM problems

	Discontinuous Petrov Galerkin Methods
	The Ideal DPG Method: Formulation 1 (Trial to Test Operator)
	DPG Method: Formulation 2 (Minimizing the Residual)
	Existing DPG Approaches to Nonlinear problems: Linearization
	Problems with DPG and Criticisms
	Addressing the Criticisms to DPG

	Applications to DPG Methods
	Setup to the Semi-Linear Approach for DPG
	A Semi-linear DPG Problem Example
	Semi-Linear DPG Stability and Optimality Results
	Proof of Strang's Lemmas for DPG
	Adaptive Error Estimator for Semi-Linear Problems

	References



