
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Bi-Branch Meta-Learning for Few-Shot Word Sense Disambiguation

Permalink
https://escholarship.org/uc/item/0r56j71p

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Chen, Qingying
Zhang, Jing
Zhang, Peng
et al.

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r56j71p
https://escholarship.org/uc/item/0r56j71p#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Bi-Branch Meta-Learning for Few-Shot Word Sense Disambiguation
Qingying Chen, Jing Zhang, Peng Zhang1, Hui Gao

qchen414@gatech.edu, {zhang jing, pzhang, hui gao}@tju.edu.cn
Tianjin University, Peiyangyuan Campus: No.135 Yaguan Road, Tianjin, China

Abstract
Word Sense Disambiguation (WSD) has been a fundamen-
tal task for human language understanding. In specific con-
texts, a word may have different meanings. For rarely seen
word senses, the disambiguation becomes challenging with
limited examples. Meta-learning, as a widely adopted ma-
chine learning method for few-shot learning, addresses this by
extracting metacognitive knowledge from training data, aid-
ing models in “learning to learn”. Hence, the advancement of
meta-learning hinges on leveraging high-quality metacognitive
knowledge. In light of this, we propose a Bi-Branch Meta-
Learning method for WSD to enrich and accumulate metacog-
nitive insights. Our method employs two branches during
training and testing. During training, we use a bi-branch loss
with original and augmented data from large language models
to compensate for data scarcity. In testing, information from
base classes generates bi-branch scores to refine predictions.
Experiments show our method achieves a 74.3 F1 score in few-
shot scenarios, demonstrating its potential for few-shot WSD.
Keywords: artificial intelligence; computer science; natural
language processing; few-shot learning; word sense disam-
biguation; meta-learning

Introduction
Word sense disambiguation (WSD) is the cornerstone of
many downstream tasks (Blevins & Zettlemoyer, 2020). Es-
sentially, WSD aims to distinguish the sense of a word given
a specific context and different candidate senses. Understood
from the perspective of Natural Language Processing (NLP),
WSD is a multi-classification task given specific inputs and
classes.

However, one big challenge in WSD is the “long-tail” dis-
tributions of word senses. This means that most senses have
scarce examples in the corpus while the examples of a small
proportion of word senses dominate the majority of scenarios.
Additionally, the most frequent sense (MFS) accounts for the
majority of the corresponding samples for each word. Such
an extremely skewed sense distribution often leads many
WSD systems to favor selecting MFS for each word while
neglecting the less frequent sense (LFS). Yet to gain reliable
performance on WSD, a system ought to be equally proficient
in distinguishing LFS and MFS. To address such limitations,
few-shot learning (FSL) methods have long been used for the
WSD task. FSL refers to a type of machine learning problem
that only contains limited examples to learn the target task.

One promising paradigm among FSL methods is meta-
learning. Essentially, meta-learning is “learning to learn”

1Corresponding author: Peng Zhang

through successively training models on different tasks while
traditional machine learning methods improve models over
multiple data instances (Hospedales, Antoniou, Micaelli, &
Storkey, 2021). The motivation behind meta-learning is to
accumulate experiences across diverse tasks to enhance per-
formance on new and unseen tasks. This intention aligns with
the human learning process in the concept of metacognition,
which is often simply defined as “thinking about thinking”
(Hospedales et al., 2021; Livingston, 2003).

Building on this commonality, we propose that they are
likely to have similar construction. Therefore, it is plausible
that meta-learning also incorporates metacognitive knowl-
edge, as it is regarded as a fundamental component in the
initial definition of metacognition. Metacognitive knowledge
encompasses insights into managing cognitive processes and
achieving goals effectively (Flavell, 1979). Given this per-
spective, we infer that in meta-learning on few-shot tasks, the
overfitting phenomenon (See section Preliminaries) might be
caused by the lack of the accumulation of metacognitive in-
sights. Therefore, to improve the performance of language
models on WSD with extremely few examples, we propose a
bi-branch meta-learning method in both the training and test-
ing phases. We aim to compensate the insufficiency of the
metacognitive knowledge in meta-learning with the informa-
tion from the base classes and the ample augmented data.

During the training phase, we design a bi-branch training
loss to guide the model to learn the WSD task and to allevi-
ate overfitting at the same time. One branch is the training
loss of the supervised meta-learning on the WSD task; for
the other branch in training, we first employ Large Language
Models (LLMs) to implement data augmentation by para-
phrasing sentences, then compute an unsupervised paraphras-
ing training loss based on the original data and augmented
data. Both branches of loss are calculated with a metric-based
meta-learning method. They together constitute the bi-branch
training loss for optimizing our bi-branch model.

In the testing phase, we aim to leverage information from
base classes seen in the training process for calibrating the
final predictions. Specifically, the final sense prediction is
made by two branches of classification score. One branch is
the classical similarity score adopted from Prototypical Net-
work (Snell, Swersky, & Zemel, 2017), which is also applied
for computing loss during training. The other is the base sim-
ilarity score, the similarity between the distributions on the
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base classes for the support set and query set (See section
Preliminaries).

Our bi-branch meta-learning model is evaluated on a uni-
fied evaluation framework for WSD proposed by Raganato,
Camacho-Collados, Navigli, et al.. Without any dictionary
definitions (or gloss), our model achieves a 74.3 F1 score un-
der constrained training and testing conditions, which is com-
petitive to other non-gloss baselines without such settings.
Our experiment further indicates that such performance of
the bi-branch model resulted from a robust capacity to dis-
ambiguate in both MFS and LFS situations. The bi-branch
meta-learning method thus is potentially a simple and effec-
tive solution not only to WSD but also to other few-shot tasks.

Preliminaries
In this section, we provide an overview of the preliminary
knowledge relevant to our work. We aim to acquaint read-
ers from diverse backgrounds with the essential concepts and
terminologies for understanding our work.

Meta-Learning
Meta-learning, as described above, focuses on “learning to
learn” through iterative tasks. More specifically, the training
set and testing set in meta-learning both consist of episodes
rather than individual data instances. Each episode is solving
a specific task Ti, which includes a set of training examples
called support set Dsupport , and a query set Dquery for evaluat-
ing. There is a forward propagation and update of the gradient
after each episode. In this way, episodic learning is able to
utilize limited resources effectively for better generalization
and robustness. Typically, the setting where each episode has
N classes in Dsupport and K examples per class, is called an
N-way K-shot setting.

For WSD, the disambiguation of a word within a context is
naturally a classification task that can be treated as an episode.
Thus, the disambiguation of a word with N selected senses
and K examples for each sense is an N-way K -shot task in
episodic learning (Holla, Mishra, Yannakoudakis, & Shutova,
2020). When K is extremely small, the case becomes few-
shot learning where the metacognitive knowledge might be
activated during the training. This assertion is built on the
opinion of Flavell (1979) - metacognitive knowledge is trig-
gered when the task is novel or incomplete (Wenden, 1998).

Metric Learning
Metric-based meta-learning (or metric learning), is a typical
genre of meta-learning. Its purpose is to train the model’s
feature-capture capacity by reducing the distances between
similar instances and widening the distances between dissim-
ilar ones (Kaya & Bilge, 2019). The computation of these
distances (or metrics) may vary from specific task require-
ments, primarily in the way of different similarity metrics.
Higher similarity values indicate a shorter distance between
samples, while lower values imply a greater distance.

Specifically, for classification tasks like WSD, metric
learning models first learn to extract feature information from

base classes by optimizing the similarity between query sam-
ples from Dquery and support samples from Dsupport . Dur-
ing this process, models are encouraged to discern the pat-
terns and similarities within the training data, just as children
develop their metacognition through pertinent factual knowl-
edge about the cognitive process (Alexander, Carr, & Schwa-
nenflugel, 1995). Subsequently, during the testing phase, the
similarity is used as the classification score to classify the
query samples. In this work, we introduce two types of simi-
larity to form the bi-branch classification score in the testing
phase - classical similarity from Prototypical Network, and
base similarity proposed in the work of Wang, Zhao, Li, and
Tian (2020) (See section Methodology).

Data Augmentation
Data Augmentation (DA) is a widely applied technique for
FSL. It enlarges the data with newly created synthetic data
or modified instances of the original data (Li, Hou, & Che,
2022). As described in Introduction, we incorporate aug-
mented data along with the original data to compute a
branch of training loss, compensating for the insufficiency of
metacognitive knowledge. Such an insufficiency might result
in overfitting, a phenomenon in machine learning where the
model tries to fit to the noise rather than identify a predic-
tion rule during training (Dietterich, 1995). Overfitting leads
to poor performance on testing despite extremely great per-
formance during training. In this work, we apply the para-
phrasing technique to paraphrase the original data as the aug-
mented data.

However, paraphrasing-based DA is a persistent challenge.
Back translation, as a mainstream approach, relies on bilin-
gual parallel corpora. Another approach that involves origi-
nal text-oriented augmentation through synonym replacement
may alter the intended meaning (Sun, Ouyang, Zhang, & Dai,
2021). In contrast, PROTAUGMENT (Dopierre, Gravier, &
Logerais, 2021) fine-tunes a paraphrasing model for effective
augmentation without domain-specific training. Yet it still
needs an extra training process.

Different from the above approaches, we use Large Lan-
guage models (LLMs) to augment data. LLMs have been
proven to be a powerful tool in a wide range of NLP tasks,
including text generation. Therefore, LLMs offer a simple
and efficient solution to DA by generating paraphrased texts
- DA can be achieved in the way of natural human dialogues.
In this work, we select ChatGPT (Ouyang et al., 2022) to
paraphrase the samples in the training dataset.

Methodology
In this section, we will formally introduce the task defini-
tion of WSD and illustrate how our bi-branch meta-learning
method works. The entire training and testing phases of our
model are shown in Fig 1.

Task Definition
WSD, from the perspective of artificial intelligence, is to
computationally identify the sense of a word with a specific
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Figure 1: The bi-branch meta-learning method illustration, where the purple dashed line separates two branches in each phase.
The left part illustrates the training phase, with supervised learning loss L̃ and unsupervised paraphrasing loss L. Green solid
lines with arrows indicate pulling the representations closer while red dashed ones indicate pushing them away. The right part
shows the testing phase, with two similarity scores φ( j) and ϕ( j) constituting the final prediction ψ( j).

context (Navigli, 2009). Given a context C that consists of
a sequence of k words (w1, ...,wk), a WSD system can as-
sign a sense y to each to-be-disambiguated word wi, where
yi ∈ Swi ⊂ S, Swi is the collection of all the candidate senses
of word wi, and S is all the senses included in the corpus.
We further denote the input of a sample for the WSD system
as C = (C, t), where t is the position of the target word in the
context. Theoretically, each sample in Dsupport and Dquery can
be considered as the input C of the WSD system. The sense
prediction ŷ of a sample generated by a WSD system can be
expressed as ŷ = f (C), where the function f is the WSD sys-
tem itself.

Bi-Branch Train
We adopt a bi-branch training loss on supervised and unsu-
pervised learning during the training process, as shown in the
left part of Fig 1.

Branch 1: Supervised Meta-Learning In the supervised
meta-learning branch, we first calculate the prototype repre-
sentation for each support set and the context representation
of each query sample. Then we use the representations to
calculate the supervised learning loss2.

1) Prototype representation In Prototypical Network,
each class (i.e. sense in our task) is treated as a prototype. The
purpose of Prototypical Network is to minimize the represen-
tation distance between the query sample and the prototype
of its corresponding class, while maximizing the distances
between the query sample and other prototypes (See Fig. 1).

The prototype representation ppp j of a sense j for a word w
is computed as follows:

ppp j =
1

|C j(w)| ∑
C∈C j(w)

fθ(C), (1)

2We adopt the structure of MetricWSD (Chen, Xia, & Chen,
2021) to compute supervised learning loss.

where C j(w) contains all the support examples of sense j for
the word w, fθ(C) is the representation of a context C for the
word in the tth position.

In this work, we use the pre-trained language model BERT
(Devlin, Chang, Lee, & Toutanova, 2019) to initialize our
context encoder. The context representation is the tth out-
put of the context encoder if the position of the to-be-
disambiguated word is t. fθ(C) is thereby represented as:

fθ(C) = BERT(C)[t], (2)

where fθ is the context encoder. If a word is split into mul-
tiple pieces, we take the average of these pieces’ context en-
coding as its representation. For unlabeled context without
word position in unsupervised paraphrasing loss, we take the
first encoding output as its representation, i.e. t = 0.

2) Supervised learning loss To construct the supervised
learning loss based on prototypical representations, we intro-
duce the classical similarity, which reflects the distance be-
tween a query sample and a support set. In the first branch,
the classical similarity between a query sample within a con-
text C′ and the prototype of sense j is computed as follows:

φ
( j) = sim(ppp j, fθ(C

′
)), (3)

where sim(·, ·) is the similarity function. During the evalua-
tion of training, the prediction ŷ is made by:

ŷ = argmax
n

(φ(n)), (4)

as the higher the classical similarity is, the closer the query
sample and the support set are. Then the supervised learning
loss L̃ is computed with φ( j) in the way of cross-entropy loss:

L̃ =
1

|C(w)|

|C(w)|

∑
i=1

Li,Li =− ∑
j∈Sw

yij log(pij), (5)
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where Li is the loss of each query sample, C(w) is all the
query samples for a word w, Sw is all the senses of w. yij is
a sign function and pij is the probability that the sense of the
query sample is j:

yij =

{
1, if i = j
0, otherwise

,pij =
φ( j)

∑k∈Sw φ(k)
(6)

Branch 2: Unsupervised Paraphrasing Learning The
second component of the training loss is derived from un-
supervised paraphrasing learning3. The minimization of this
loss pulls closer a sentence’s entire representation and its data
augmentation representation while pushing away other orig-
inal sentences’ data augmentation representations (See the
bottom left of Fig 1). In this way, the model is encouraged
to absorb more metacognitive knowledge by generalizing the
unlabeled sentences, and so as to improve overfitting caused
by insufficient data in the original WSD task.

1) Data augmentation representation The data augmen-
tation representation of an original sentence is computed as
the average of representations of its augmented sentences4.
The prompt we used for ChatGPT to paraphrase data is:

user: {Input: [Sentence to be paraphrased]}
Please generate M variants of the user’s input and the
numbering style should be 1. 2. 3. and so on.

where M is the number of all the paraphrased instances for
an original sentence xu ∈ U , and U is the collection of all
the sentences in the training dataset, with the labels removed.
The data augmentation representation pppxu for an unlabeled
sentence xu is calculated as:

pppxu =
1
M

M

∑
m=1

fθ(xm
u ), xm

u = (xm
u ,0), (7)

where xm
u is the mth paraphrased sentence for xu.

2) Unsupervised learning loss Same to supervised learn-
ing loss, we calculate the classical similarity φ(xv) between
the representation of a sentence u and the data augmentation
representation pppxv of another sentence v:

φ
(xv) = sim(pppxv , fθ(xu)). (8)

During training, the unsupervised paraphrasing learning en-
courages φ(xv) to approach 1 when u = v and approach 0 oth-
erwise. For consistency, we compute the unsupervised para-
phrasing loss L with the cross-entropy method similar to Eq.
5 and 6. The final bi-branch training loss L is computed as:

L= (1−ωT )L̃+ωT L, (9)

where T is the consumed training time in each epoch, and ω

is a positive hyperparameter to adjust the proportions of L and
L̃. The effect of L increases as time goes by.

3Here we follow the computation of PROTAUGMENT.
4The representation is the first output since there are no labels.

Bi-Branch Test
During testing, the model predicts the sense through two sim-
ilarity scores: classical similarity score φ and base similarity
score ϕ. The former is introduced in Bi-Branch Train. The
latter refers to the similarity between two distributions: 1) dis-
tribution of the query sample on base classes; 2) distribution
of a support set (in the way of a prototype) on base classes.

Bi-branch classification score intends to calibrate the final
prediction by leveraging implicit information from the base
classes, which can be considered as one origin of metacogni-
tive knowledge in meta-learning. The bi-branch classification
score has been proven to be effective in image classification
(Wang et al., 2020), which is built on the observation that
most current metric learning strategies focus on the inner rela-
tionship between Dsupport and Dquery but do not make full use
of the base classes. More specifically, most existing metric
learning methods only involve φ while the bi-branch method
further introduces ϕ to adjust the final prediction score, as
depicted in the bottom right of Fig 1.

Branch 1: Classical similarity classification score For
meta-learning methods, the structure of the episode is shared
within the training and testing. Therefore, the computation
of classical similarity classification score φ( j) for assigning a
query sample to the sense j is the same as in Eq. 3.

Branch 2: Base similarity classification score While orig-
inally used for image classification, we believe that the base
similarity classification score is more effective for WSD. In
WSD, base classes refer to the senses of a word that appeared
in training. Unlike in the image classification task, where
classes in an episode are randomly chosen from the entire
training dataset, there is some conceptual overlap between
different senses of a word (Klein & Murphy, 2002). There-
fore, the base similarity built on base classes is more likely to
provide additional information in few-shot WSD.

Accordingly, the base similarity ϕ( j) is computed as:

ϕ
( j) = sim(ρquery,ρ

( j)
support). (10)

where ρquery is the query sample’s distribution on base
classes, and ρ

( j)
support is the distribution of prototype ppp j for

sense j on base classes 5:

ρquery = sim′( fθ(C
′
),BBB),

ρ
( j)
support = sim′(ppp j,BBB).

(11)

C′ is the current query sample input, BBB is the matrix consisting
of the prototype vectors for all base classes:

BBB = [[[bbb(1),bbb(2), . . . ,bbb(|Sw|)]]],

bbb(i) =
1

|C(i)(w)| ∑
C∈C(i)(w)

fθ(C), (12)

5sim′(·, ·) refers to another similarity function that can be used
to calculate distributions. It is not necessarily identical with sim(·, ·)
introduced in Eq. 3. We use the cosine similarity function for both
since it performs better than other similarity functions in this work.
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Table 1: F1 scores (%) of our model and previous work on WSD. Dataset ALL concatenates all the test datasets and develop-
ment dataset SE07. Our bi-branch model adopts α = 0.35 (Eq. 13) to calculate the final classification score in the experiments.

Gloss SE07 SE02 SE03 SE13 SE15 ALL
WordNet S1 % 55.2 66.8 66.2 63.0 67.8 65.2
Most frequent sense (MFS) % 54.5 65.6 66.0 63.8 67.1 65.5
Bi-LSTM % 64.8 72.0 69.1 66.9 71.5 69.9
BERT-kNN % 64.6 74.7 73.5 70.3 73.9 72.6
BERT-classifier % 68.6 75.9 74.4 70.6 75.2 73.5
1sent % 67.0 75.0 71.6 69.7 74.4 72.7
Bi-Branch-1shot (ours) % 67.0 76.4 72.8 72.0 75.1 74.3
Bi-Branch-2shot (ours) % 69.2 76.7 74.8 72.2 76.1 74.0
Bi-Branch-3shot (ours) % 68.1 77.0 74.5 72.6 76.0 74.3
MetricWSD-1shot % 67.5 75.1 72.6 71.2 75.0 72.6
MetricWSD-2shot % 68.8 76.4 74.1 71.5 76.1 73.7
MetricWSD-3shot % 68.1 76.6 74.2 72.0 76.5 73.8
EWISE ! 67.3 73.8 71.1 69.4 74.5 71.8
HCAN ! / 72.8 70.3 68.5 72.8 71.1
SVC ! 74.1 79.7 76.1 78.6 80.4 78.3
GlossBERT ! 72.5 77.7 75.2 76.1 80.4 77.0
BEM ! 74.5 79.4 77.4 79.7 81.7 79.0

where bbb(i) represents a base class for a word w, and C(i)(w)
annotates the selected samples in this class.

The final prediction score ψ( j) for assigning the sense j to
a query sample is the linear combination of the two branches
of similarity scores, adjusted by a positive hyperparameter α:

ψ
( j) = αφ

( j)+(1−α)ϕ( j). (13)

Apparently, during the testing phase, the bi-branch clas-
sification score is a non-parametric approach as it only cal-
ibrates on existing data and does not require any update for
the model. Hence, we consider this approach to be a con-
venient and resource-efficient method for handling few-shot
scenarios in the real world.

Experiments
In this section, we perform different experiments to verify
our bi-branch model’s effectiveness. We first assess its over-
all WSD performance against various baseline models. Next,
we analyze its performance across different word frequen-
cies to validate its effectiveness in few-shot scenarios. Lastly,
we conduct ablation and performance experiments to delve
deeper into our model’s capabilities.

Dataset
We evaluate our bi-branch method on the WSD frame-
work. Following the previous work, we train our model on
Semcor and use SemEval-2007 (SE07) as the development
set. Senseval-2 (SE02), Senseval-3 (SE03), SemEval-2013
(SE13) SemEval-2015 (SE15) are used for testing.

Baselines
To analyze the performance of our bi-branch model, we com-
pare it to a series of baseline systems on the WSD task. The
first two are WordNet S1 and MFS (Most Frequent Sense),
where WordNet S1 predicts the first sense in the corpus and
MFS predicts the most frequent sense. We also introduce
several competitive baselines: Bi-LSTM (Raganato, Bovi,
& Navigli, 2017); BERT-kNN and BERT-fine-tuned clas-
sifier, both trained with Bert-base model; 1sent (Hadiwinoto,
Ng, & Gan, 2019); MetricWSD (Chen et al., 2021). Fur-
thermore, we include baselines that leverage gloss informa-
tion for reference: EWISE (Kumar, Jat, Saxena, & Talukdar,
2019), HCAN (Luo et al., 2018), SVC (Vial, Lecouteux, &
Schwab, 2019), GlossBERT (Huang, Sun, Qiu, & Huang,
2019), and BEM (Blevins & Zettlemoyer, 2020).

During experiments, to mimic the real-world word sense
distribution, where the majority of the senses only have ex-
tremely few samples, we set the number K of samples in the
support set in testing as 1, 2, and 3 for episodic learning sys-
tems, corresponding to 1-shot, 2-shot, and 3-shot settings.

Overall Results under Few-Shot Setting
In this section, we present the overall results of our bi-branch
model and the baselines under few-shot settings. Our bi-
branch model achieves the highest F1 scores among most
test datasets when compared to non-gloss WSD systems. It
also outperforms two gloss-involved systems: EWISE and
HCAN. Further, our model is evaluated with few shots dur-
ing both training and testing, distinguishing itself from other
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Figure 2: Left: accuracy across different word and sense frequencies on the test dataset ALL. Right: F1 scores with different
values of α on the test datasets where the highest F1 score of each dataset is annotated with a black dot.

baselines that lack similar settings. In addition, the shot num-
ber K under extreme situations does not necessarily result in
better performance of our model, which might be attributed
to the reliable generalization capacity derived from the ac-
cumulation of metacognitive knowledge. In essence, our
bi-branch model sustains relatively comparable performance
when trained and tested with limited evaluation resources.

We have also observed that incorporating gloss information
into the WSD system may potentially elevate its performance
significantly, as evidenced by notably higher F1 scores com-
pared to other systems. Such performance is probably due
to the integration of a novel source of metacognitive knowl-
edge - embedding gloss allows the system to better regulate
cognitive processes on WSD, just like humans disambiguate
senses with the assistance of a dictionary. Hence, we plan to
incorporate gloss as an additional branch in future iterations.

Performance Across Words and Senses
To assess our model’s capability to distinguish rare senses,
we compare the prediction accuracy of our model with other
models (BERT-kNN, BERT-classifier) in disambiguating
senses of different word or sense frequencies. As shown in
the left part of Fig. 2, our bi-branch model performs the best
across all different frequencies of words. For frequencies of
senses, though BERT classifier works better than other mod-
els on senses that appear over 80 times, it has the lowest ac-
curacy score on the most infrequent samples, meaning that it
is probably overfitted on the frequent senses during training.
The result thereby illustrates that our bi-branch model is an
effective method to tackle the WSD task with long-tail distri-
butions - it enhances the disambiguation of infrequent senses
while maintaining great performance on common ones.

Ablation Study
To assess the impact of the bi-branch on the overall model
performance, we ablate one branch in the training and test-
ing phases respectively. The results are shown in Table 2.
We first remove the unsupervised paraphrasing training loss
L and evaluate the model on SE07. The performance thereby
drops by 0.56 F1 score. This might be because the unsuper-
vised paraphrasing loss prevents the model from overfitting
by encouraging its capacity to extract context information,
not only to fit the WSD task. We also ablate the branch of

Table 2: Ablation results of our model.

Ablation SE07 F1 Difference
Original Model 65.21 /
No Unsupervised Paraphrasing Loss 64.65 0.56
No Base Similarity Score 64.11 1.10

base similarity ϕ in the classification scores. The ablation of
ϕ hinders the performance on SE07 by 1.1 F1 score. This
illustrates the effectiveness of utilizing ϕ to adjust the sense
predictions: there is implied information in base classes that
calibrates the classical similarity on context representations.

Performance Experiment
To investigate the performance differences caused by the in-
ner setting, we conduct performance experiments with differ-
ent settings of α. The parameter α exhibits an inverse linear
relationship with the impact of base similarity ϕ, as depicted
in Eq. 13. The F1 scores on the testing sets are displayed
in the right portion of Fig. 2. The best α value varies by
dataset. This suggests that the linear relationship might not
be enough to fully utilize the assistance from ϕ. Therefore,
our future research may explore more sophisticated mecha-
nisms, such as Gated Linear Units (GLU), for adjusting the
bi-branch classification scores more effectively.

Conclusion
In this work, inspired by the metacognition framework, we
proposed a bi-branch meta-learning method on WSD to
tackle the long-tail distributions of word senses. Experiments
have shown that the bi-branch model has the potential to solve
few-shot problems on WSD as it achieves reliable perfor-
mance with limited resources during training and testing. We
infer such performances come from its great generalization
ability on samples with both frequent and infrequent senses.
This is likely attributed to the enhanced metacognitive knowl-
edge implicated in the base class exploration and data aug-
mentation. In the future, we plan to incorporate the gloss
information as the third branch for prediction calibration and
to introduce a more sensible strategy for branch adjustment.
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