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METHODOLOGY ARTICLE Open Access

Mergeomics: multidimensional data
integration to identify pathogenic
perturbations to biological systems
Le Shu1, Yuqi Zhao1, Zeyneb Kurt1, Sean Geoffrey Byars2,3, Taru Tukiainen4, Johannes Kettunen4, Luz D. Orozco5,
Matteo Pellegrini5, Aldons J. Lusis6, Samuli Ripatti4, Bin Zhang7, Michael Inouye2,3,8,
Ville-Petteri Mäkinen1,9,10,11* and Xia Yang1,12*

Abstract

Background: Complex diseases are characterized by multiple subtle perturbations to biological processes. New
omics platforms can detect these perturbations, but translating the diverse molecular and statistical information
into testable mechanistic hypotheses is challenging. Therefore, we set out to create a public tool that integrates
these data across multiple datasets, platforms, study designs and species in order to detect the most promising
targets for further mechanistic studies.

Results: We developed Mergeomics, a computational pipeline consisting of independent modules that 1) leverage
multi-omics association data to identify biological processes that are perturbed in disease, and 2) overlay the disease-
associated processes onto molecular interaction networks to pinpoint hubs as potential key regulators. Unlike existing
tools that are mostly dedicated to specific data type or settings, the Mergeomics pipeline accepts and integrates
datasets across platforms, data types and species. We optimized and evaluated the performance of Mergeomics using
simulation and multiple independent datasets, and benchmarked the results against alternative methods. We also
demonstrate the versatility of Mergeomics in two case studies that include genome-wide, epigenome-wide and
transcriptome-wide datasets from human and mouse studies of total cholesterol and fasting glucose. In both cases, the
Mergeomics pipeline provided statistical and contextual evidence to prioritize further investigations in the wet lab. The
software implementation of Mergeomics is freely available as a Bioconductor R package.

Conclusion: Mergeomics is a flexible and robust computational pipeline for multidimensional data integration. It
outperforms existing tools, and is easily applicable to datasets from different studies, species and omics data types for
the study of complex traits.

Keywords: Mergeomics, Integrative genomics, Multidimensional data integration, Functional genomics, Gene
networks, Key drivers, Cholesterol, Blood glucose

Background
Most non-communicable diseases stem from a complex
interplay between multiple genes, transcripts, proteins,
metabolites and cumulative exposure to environmental
risk factors [1]. In recent years, the advance of omics
technologies has greatly enhanced our ability to measure
the patterns of molecular entities and interactions at

genome-scale. Public data repositories such as dbGaP
for population-based genetic datasets [2] and Gene
Expression Omnibus and ArrayExpress for gene expres-
sion and epigenomics datasets [3, 4] are continuously
expanding with new experiments, and data acquisition
projects such as ENCODE and GTEx are generating
multidimensional datasets on the regulatory processes
that link DNA variation with intermediate molecular
traits and, ultimately, physiological or pathophysiological
phenotypes [5–7]. Genome-wide association studies
(GWAS), transcriptome-wise association studies
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(TWAS), epigenome-wide association studies (EWAS)
and metabolome- and proteome-wide association studies
have become commonplace in modern biomedical
research. Therefore, data integration and interpretation
has emerged as a new bottleneck on the road to discovery.
The combination of multiple omics studies is appealing,

since a single genomic dataset is unlikely to provide deep
mechanistic insight. Instead of one obvious candidate,
most omic-wide studies produce a pattern of univariate
statistical signals without a clear indication of what would
be a suitable target for interventions [8, 9]. However, by
integrating different types of data, converging patterns
usually emerge and the search space for possible mecha-
nisms can be greatly reduced. For instance, simultaneous
measurement of DNA and RNA (genetics of gene expres-
sion) allows investigators to see if a particular genetic vari-
ant affects the downstream expression of a gene [10, 11],
and functional data such as transcription factor binding,
epigenetic modification or protein regulation from the
ENCODE project [12, 13] can be used to further focus on
the most promising candidates.
Multi-dimensional data integration has been previ-

ously addressed by pathway-based tools such as
MAGENTA [14], iGSEA4GWAS [15], SSEA [16], and
other network-based methods such as WGCNA [17],
postgwas [18], dmGWAS and EW_dmGWAS [19],
DAPPLE [20], NetWAS [21], and MetaOmics [22] have
been developed to identify the biological processes (e.g.
pathways) and specific genes or molecules that may be
involved in pathogenesis. However, the available
methods are typically tailored for a particular application
area (e.g. human genetics with gene expression, protein-
protein interactions or metabolomics) and may not be
suitable for cross-comparison of results across diverse
data types. In addition, the majority of the network tools
start from a limited set of known top loci or genes, but
it may be necessary to include the complete genome-wide
patterns of signals for maximum sensitivity. Commercial
tools such as Ingenuity (http://www.ingenuity.com) have
been available for pathway and network analysis of differ-
ent types of omics data such as gene expression and gen-
etic data. However, these tools are not open source, hence
limiting the accessibility by individual users and lacking
the availability of detailed underlying algorithms and pro-
prietary information. Additionally, the commercial tools
usually do not provide the flexibility to incorporate differ-
ent types of networks and pathways. For example, Ingenu-
ity networks are primarily based on gene-gene
relationships derived from literature rather than data-
driven, tissue-specific network patterns the users may
wish to use. For these reasons, we developed Mergeomics,
an open source software to deliver flexible multi-omics in-
tegration, to identify pathways and model molecular
networks of diseases, and to pinpoint promising targets

for further experiments in a streamlined, generic and
high-throughput manner.
In this report, we describe the main features of

Mergeomics, and present simulations and case studies
to demonstrate its performance. Mergeomics is the first
publicly available implementation of a proven integrative
methodology [23]. It employs two broad areas of
analysis: Marker Set Enrichment Analysis (MSEA)
identifies disease-associated biological processes via inte-
gration of omics-disease association and functional gen-
omics data, and weighted Key Driver Analysis (wKDA)
determines the key drivers that are suitable for targeted
interventions to these processes. Here, we introduce new
algorithms (hierarchical permutations and adaptive test
statistics) and new concepts (co-hubs and weighted key
drivers) to improve the applicability and performance over
previous applications. We also report a case study on cir-
culating cholesterol that shows how multiple human stud-
ies can be combined, and another case study on glucose
regulation that demonstrates analysis across data types
(genome, transcriptome and epigenome) and species (hu-
man and mouse). The source code for Mergeomics is
available in Bioconductor (https://www.bioconductor.org/
packages/devel/bioc/html/Mergeomics.html).

Results and discussion
Overview of Mergeomics
Figure 1 shows the information flow within the Mergeo-
mics pipeline. The Marker Set Enrichment Analysis
(MSEA) combines disease association data (e.g., GWAS,
EWAS, TWAS) of molecular markers (e.g., genetic, epi-
genetic and transcript variants), functional genomics
data from projects such as GTEx and ENCODE, and
pre-defined sets of connected genes. The output from
MSEA is a ranked list of gene sets. We collectively de-
note these gene sets – which can be metabolic and sig-
nalling pathways, co-expression modules or gene
signatures – as ‘disease-associated gene sets’. When
multiple datasets of the same data type or different data
types are available for a given disease or phenotype, the
meta-MSEA component that is based on the same
principles as MSEA but performs meta-analysis at the
gene set level can be utilized. The Weighted Key Driver
Analysis (wKDA, on the left in Fig. 1 and detailed in
Fig. 2) was developed to identify local hubs in a gene
network whose neighbours are enriched for genes in the
disease-associated gene sets. Henceforth these hubs are
referred to as key drivers.

Marker set enrichment analysis
Rationale and design
MSEA is based on the idea that a collection of multiple
associations is likely to contain true causal variants even if
causality cannot be reliably established by univariate

Shu et al. BMC Genomics  (2016) 17:874 Page 2 of 16

http://www.ingenuity.com/
https://www.bioconductor.org/packages/devel/bioc/html/Mergeomics.html
https://www.bioconductor.org/packages/devel/bioc/html/Mergeomics.html


analysis. For instance, if multiple genes in a pathway are
implicated, then the pathway as a whole is likely to be
causal even if some of the gene signals were false positives.
The primary inputs for MSEA include 1) marker to
disease association statistics, where markers can be SNPs
from GWAS, genes or transcripts from microarrays or
RNA sequencing, epigenetic markers from DNA

methylation profiling, metabolites from metabolomics or
proteins from proteomics; 2) assignment of markers to
their functional downstream target, and 3) sets of func-
tional units of genes that co-operate or interact to perform
a biological function or process.
MSEA starts with the conversion of a gene set repre-

senting a functional unit into a marker set. The

Fig. 1 Main modules, data flow between them and examples of data types that can be integrated by Mergeomics

Fig. 2 Schematic illustration of the concept of a key driver gene (a) and local hubs with overlapping neighborhoods (b)
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corresponding disease association value for each marker is
then collected for analysis. In most cases, the association
P-values are used. If there are a large number of small P-
values in the marker set compared to what can be ex-
pected by chance, we conclude that the gene set we have
started from is enriched for disease associations (technical
details in Methods). Each step in MSEA is fully
customizable: it allows 1) association studies of different
types or species; 2) different methods of marker-gene as-
signments, including expression quantitative trait loci
(eQTL), transcription factor binding or sequence-
proximity to regulatory or coding sequences; 3) filtering
based on user-supplied confounding dependencies such as
linkage disequilibrium between genetic markers; and it
also utilizes 4) a non-parametric test statistic with multiple
user-definable quantile thresholds to automatically adapt
to a diverse range of association study datasets with differ-
ent sample sizes and statistical power. For added applic-
ability, MSEA runs a hierarchical gene-based permutation
strategy to estimate null distributions that adjusts for
shared markers between genes and gene size.

Parameter optimization
To test the performance and identify optimal parameters
of MSEA, we performed simulation tests based on three
cholesterol GWAS of varying sample sizes (a Finnish
study of 8330 individuals [24], the Framingham Heart
Study with 7572 participants [25], and GLGC with
100,184 people [26]) and a set of known causal lipid
homeostasis genes from the Reactome pathway R-HSA-
556833, “Metabolism of lipids and lipoproteins”. We
resampled genes from this pathway into positive control
signals of different magnitudes, and generated negative
control signals from the gene pool excluding known
cholesterol genes. This procedure was repeated 100 times,
and performance was evaluated as sensitivity, specificity
and positive likelihood ratio, as described in Methods.
We identified two important parameters, the percent-

age of top markers included and the threshold for
confounding marker dependencies, that affect the
performance of MSEA (Additional file 1: Table S1). The
signal to noise ratio typically improved when genetic loci
with relatively stronger associations (e.g., top 50 %
markers) rather than the full association sets were used
(Additional file 2: Figure S1). This confirms previous
findings for complex traits that variants in the extremely
weak association spectrum add noise and contribute
little to disease biology [27]. For GWAS, linkage disequi-
librium is a source of confounding marker dependencies.
MSEA was less sensitive to LD thresholds for better
powered studies such as the GLGC GWAS but smaller
studies benefited from less stringent LD cutoffs, presum-
ably due to improved statistical power (Additional file 2:
Figure S1). Overall, we chose to use the top 50 % of

GWAS loci, and an LD cutoff of r2 < 0.5 as the default
setting for GWAS studies. Of note, differences due to
datasets were typically larger than those due to parame-
ters (Additional file 2: Figure S2) or variations in marker
to gene assignment criteria (Additional file 1: Table S1).

Performance comparison with previous methods
We compared the performance of MSEA to MAGENTA
[14] and i-GSEA4GWAS [15], two widely used implemen-
tations of gene enrichment analysis [28]. Compared to
these methods, MSEA differs in test statistics, confounder
adjustment and flexibility in data input. The same simu-
lated positive and negative control pathways that were
used for calibrating MSEA were also used to compare the
three different methods (Fig. 3). The results are similar
across all three total cholesterol GWAS: i-GSEA4GWAS
lacked specificity and MAGENTA lacked sensitivity,
whereas MSEA provided the best balance and receiver
operator characteristics. The results remain robust when
different false discovery rate (FDR) cutoffs were used
(Additional file 2: Figure S3). Notably, the superior per-
formance of MSEA over the other two established
methods is more obvious when the GWAS involved
smaller sample size (the Finnish and Framingham studies
compared to GLGC) or heterogeneous population (the
Framingham study compared to the more homogenous
Finnish cohort), making MSEA useful for all types of stud-
ies including the underpowered ones. As the above
performance comparison based on simulated positive and
negative controls may give an unfair advantage to MSEA
due to optimized calibration towards the positive controls,
we performed additional tests with 1346 canonical
pathways curated by Reactome [29], BioCarta (http://
cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and KEGG
[30] (Additional file 1: Table S2). Consistent with results
from the simulation approach, MSEA captured the largest
number of true positive signals (calculated as the number
of overlapped significant pathways among all three
GWAS, minus the expected number of overlapped path-
ways from random gene sets).

Meta-MSEA: gene-set level meta-analysis of multiple
association studies
Rationale and design
For a disease phenotype, it is typical that multiple associ-
ation studies of either the same data type (e.g., multiple
GWAS) or different data types (e.g., an EWAS plus a
TWAS) are available. Aggregating multiple studies of
the same disease is an appealing strategy to increase
signal-to-noise ratio, but marker-level integration is usu-
ally complicated by technical challenges. Therefore, we
developed Meta-MSEA, which performs gene set-level
meta-analysis of multiple association studies to avoid the
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need to match data platforms, species or ethnicity, an
advantage not present in previous methods.

Performance evaluation
Mergeomics was specifically designed to produce output
that is suitable for gene set-level meta-analysis (detailed in
Methods). In particular, the reported P-values from per-
mutation analysis are always greater than zero, and can be
converted to Z-scores by using the inverse Gaussian dens-
ity function. To demonstrate the practical benefits of
Meta-MSEA, we applied Meta-MSEA to the three choles-
terol GWAS used in the calibration analysis, and then
compared the results with those from the marker-level
meta-analysis of the GWAS (denoted as meta-GWAS).
While retaining the same-level of specificity, Meta-MSEA
showed better sensitivity, positive likelihood ratio and lar-
ger area under the ROC curve (Fig. 4). These results sug-
gest that the gene set-level meta-analysis is more powerful
than the traditional marker-centric approach to meta-
analysis when investigating perturbations to biological
processes.

Weighted key driver analysis (wKDA) to detect disease
regulators
Rationale and design
The MSEA and meta-MSEA components of Mergeomics
identify pathways or co-regulated gene sets that are

perturbed in a disease. However, these analyses do not
provide information on the detailed interactions between
disease genes or help choose which gene to pursue in
further mechanistic studies. To provide the answers, the
key driver analysis (KDA) was previously developed to
detect important hub genes, or key drivers, whose net-
work neighbourhoods are over-represented with disease
associated genes [23, 31]. The key driver concept is based
on the projection of the disease-associated gene sets onto
a network model of gene regulation that represents
molecular interactions in the full system (Fig. 2a). How-
ever, the original KDA ignored the edge weight informa-
tion generated by most network inference algorithms. As
edge weight typically represents association strength or
reliability of the connection between genes, this data
carries valuable topological information. Here, we intro-
duce wKDA, a new algorithm that takes into account edge
weights to increase accuracy (Fig. 2). Briefly, the edge
weights are encoded as local node strengths in the neigh-
bourhood of a hub, and then aggregated to estimate an
effective membership score for a disease-associated path-
way (technical details in Methods). This approach serves
two purposes: firstly, the key driver scores can be quickly
recalculated after permuting the node labels thus enabling
the empirical estimation of the null distribution and,
secondly, the key driver score takes the local connectivity
into account when evaluating the impact of a node.

Fig. 3 Comparison of three pathway enrichment methods across three GWAS. Performance is evaluated by sensitivity (a), specificity (b), positive
likelihood ratio (sensitivity/(1-specificity)) (c) and receiver operating characteristic curve (d–f). Sensitivity was defined as the proportion of positive
control pathways detected at FDR < 25 %. Specificity was defined as the proportion of negative controls rejected at FDR≥ 25 %. Error bars
denote the standard error of simulation results
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wKDA starts by searching a network for candidate hub
genes and ignores genes with few connections. It then col-
lects the neighbouring genes for each candidate hub, and
estimates the contribution of the disease-associated genes
within the neighbourhood of the hub. If the contribution
is stronger than what would be expected by chance, we
conclude that the hub is a key driver of the disease-
associated gene sets (Fig. 2a).
If a subnetwork of genes has multiple highly intercon-

nected genes at the center, it is critical to consider them
collectively due to the inherent topological redundancy.
For practical purposes, we developed the co-hub concept
for wKDA (Fig. 2b) by selecting one of the central genes
as the independent hub, and the rest as co-hubs. The
rationale is two-fold: first, the statistical power is
increased by only considering the independent hubs
when adjusting P-values, as they also capture the signals
from their respective co-hubs. Second, the co-hub
concept is a useful qualitative measure when selecting
the most promising subnetworks and key drivers for
experimental validation. For instance, if a key driver has
co-hubs with known functions, these can give clues as to

the role of poorly understood genes. On the other hand,
if a key driver is to be perturbed in an experiment, it
may be important to incorporate the co-hubs as integral
parts of the experimental design.

Performance evaluation of wKDA and comparison with KDA
To evaluate the performance of wKDA in comparison to
the unweighted KDA, we used the reproducibility of KDs
of a given gene set mapped to independently constructed
gene networks as the performance measure. We first set up
three disease-associated gene sets as the test gene sets.
These included two lipid subnetworks (denoted as Lipid I
and Lipid II) derived from a previous study [23] and the R-
HSA-556833 (Metabolism of lipids and lipoproteins) path-
way from Reactome. To identify KDs of these test gene sets,
we also set up four gene regulatory networks of two tissues
(2 independent networks per tissue). The gene-gene inter-
action network models were probabilistic Bayesian gene
regulatory networks constructed from multiple adipose and
liver datasets (Additional file 1: Table S3). We organized
these networks into two independent weighted adipose net-
works and two independent weighted liver networks using

Fig. 4 Comparison of performance of SNP-level meta-analysis and pathway-level meta-analysis using simulated gene-sets. Results are produced in
the same workflow as stated in Table 1. a Sensitivity. b Specificity. c Positive likelihood ratio (Sensitivity/(1-Specificity)). d Receiver operating char-
acteristic curve. Error bars denote the standard error of simulation results
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non-overlapping datasets, where edge weight represents the
estimated reliability of an edge between genes.
We used the Jaccard overlap index of the identified KD

genes between the two independent networks of the same
tissue to assess the prediction accuracy of wKDA and
KDA (detailed in Methods). The higher the proportion of
KDs replicated between independent networks using a
method, the higher the Jaccard overlap index and the
higher the reliability and performance of the method. As
shown in Fig. 5, the new wKDA outperformed the un-
weighted KDA for all three test gene sets against inde-
pendent networks in both tissues. To test the sensitivity of
the key driver approach, we also partially randomized the
adipose and liver networks as a model of topological noise.
As expected, when some of the edges were randomly
rewired, the number of consistent key drivers between
two independent networks of the same tissue declined,
and when all edges were rewired, no consistent key drivers
were detected (Fig. 5). Notably, wKDA was able to detect
consistent signals even when half the network was
rewired, thus demonstrating the inherent robustness of
the wKDA concept compared to the unweighted version.
Importantly, because wKDA was specifically designed for
weighted networks whereas the unweighted KDA mainly
focuses on the network topology without considering
weight information, key drivers with high-weight (i.e., high
reliability) edges between subnetwork genes were pre-
ferred by wKDA. This difference likely explains the better

reproducibility of wKDA compared to the unweighted
KDA.

Case study 1: Application of Mergeomics to multiple
cholesterol datasets from different cohorts
In the first case study, we applied the entire Mergeo-
mics pipeline (MSEA, Meta-MSEA, wKDA) to inte-
grate multiple association studies of the same data
type with functional genomics and gene networks.
We utilized the three cholesterol GWAS from the
Finnish, Framingham and GLGC studies described in
previous sections, and performed MSEA on individual
studies followed by Meta-MSEA across studies. Table 1
lists the top pathways from Meta-MSEA, and the full
results are available in Additional file 3. Meta-MSEA
yielded more significant P-values than those obtained
from the pathway analysis of conventional SNP-level
meta-GWAS, which was consistent with the simulated
signals in the calibration tests. Importantly, when we
only included the Finnish and Framingham studies,
the two smaller GWAS in Meta-MSEA, the signals
for the top pathways were comparable to GLGC,
which has 6 times larger samples size than Finnish
and Framingham combined.
We observed 82 significant pathways with a Meta-

MSEA P-value < 0.05. The top hits included major
lipoprotein and lipid transport pathways and the re-
ceptors that mediate lipid transfer to and from

Fig. 5 Performance comparison between wKDA and the unweighted key driver analysis. Two empirical subnetworks (Lipid I & II) were obtained
from a previous publication [23], and a canonical metabolism of lipids and lipoproteins pathway was obtained from the Reactome
database (R-HSA-556833). The methods were tested by projecting the three functional subnetworks onto two independent adipose
networks (a–c) and two independent liver regulatory networks (d–f). The adipose and liver networks were constructed from a collection
of Bayesian tissue-specific network models (Additional file 1: Table S3). Overlap between the tissue-specific key driver signals across two
independent regulatory networks was defined according to the Jaccard index. Overlap ratio was calculated for both original networks and
networks with 25, 50, 75 or 100 % rewiring of edges
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lipoprotein particles. Interestingly, we also found
‘Cytosolic tRNA aminoacylation’ and ‘PPAR-alpha ac-
tivates gene expression’, suggesting that these tran-
scriptional regulatory processes are intrinsically
intertwined with the traditional concepts of enzyme-
driven metabolic pathways in cholesterol biosynthesis and
transport. Because of the presence of overlaps in gene
memberships between certain curated pathways, we
merged the 82 significant pathways into 43 non-
overlapping gene “subnetworks” at a Jaccard index cutoff of
20 %, and performed a second run of Meta-MSEA using
these merged subnetworks to retrieve the top six subnet-
works (Additional file 1: Table S4). The strongest signal was
observed for Subnetwork 1 (P < 10−16) that contained genes
encoding key apolipoproteins and lipid transport proteins
(such as LDLR, CETP and PLTP). Subnetwork 2 (P < 10−8)
included genes related to lipid biosynthesis and catabolism
(including the statin target HMGCR), oxidoreductive en-
zymes, metalloproteins and mitochondria. Subnetwork 3
represents a biologically intriguing connection between cir-
culating cholesterol and the immune system: it contained
proteins that are involved in the transport of fatty acids and
lipids in blood (Albumin and apolipoproteins A1, B, A and
L1), collagen genes and the immunoglobulin family. Sub-
network 4 mainly contained the ATP-binding cassette fam-
ily of transmembrane transporters responsible for lipid and
cholesterol transfer across cell membranes. Subnetwork 5
included genes for metabolizing retinoid, an important

mediator of cholesterol transport and Subnetwork 6 may
reflect the connection between transcriptional regulation
and fatty acid metabolism.
Next, we investigated if specific genes could be the key

drivers for the aforementioned processes. We applied
wKDA to overlay the six cholesterol-associated subnet-
works onto gene regulatory networks in liver and
adipose tissue. The top five key drivers and their co-
hubs are listed in Table 2 with examples of visualization
in Fig. 6, and the full results are available in Additional
file 4. The top adipose key driver for Subnetwork 2 was
ACADVL (very long chain acyl-CoA dehydrogenase),
which catalyzes the first step in mitochondrial beta-
oxidation (Fig. 6a). Notably, the two co-hubs for
ACADVL (PPARA and CIDEA) are also highly relevant
genes for maintaining lipid homeostasis: PPARA is one
of the master regulators of lipid metabolism with clinic-
ally approved class of drugs (fibrates) already in use;
CIDEA has been linked to apoptosis, and mouse knock-
outs have demonstrated significant effects on the meta-
bolic rate and lipolysis [32]. In the liver (Fig. 6b), the top
key driver of Subnetwork 2 was FASN (fatty acid
synthase), which was a key driver in adipose tissue as
well. The second top key driver SQLE (squalene epoxi-
dase) and its co-hubs FDFT1, IDI1, MSMO1, NSDHL,
HMGCS1 and ALDOC either catalyze or regulate
cholesterol biosynthesis. HMGCR, although not listed as
top five key drivers, was a highly significant key driver

Table 1 Top 15 pathways associated with cholesterol levels out of 1346 canonical pathways tested in three GWAS datasets

Pathway MSEA Meta-MSEA Meta-GWAS

Finnish
(n = 8330)

Framingham
(n = 7572)

GLGC
(n = 100184)

Without
GLGC

With
GLGC

Lipid digestion, mobilization and transport 4.16 5.46 6.15 8.67 13.76 5.00

Lipoprotein metabolism 4.67 4.82 5.94 8.59 13.49 5.41

Chylomicron-mediated lipid transport 4.88 4.87 4.72 8.85 12.61 5.03

Metabolism of lipids and lipoproteins 3.15 1.71 6.15 4.00 8.53 3.56

Cytosolic tRNA aminoacylation 3.58 2.09 1.92 4.77 5.86 2.70

Binding and Uptake of Ligands by Scavenger Receptors 1.88 2.29 3.36 3.46 5.86 2.92

Scavenging by Class A Receptors 1.83 2.22 3.22 3.33 5.62 3.47

Metabolism 1.83 1.48 3.94 2.65 5.36 2.98

PPARA Activates Gene Expression 1.66 2.22 2.83 3.17 5.13 1.33

Retinoid metabolism and transport 1.01 2.75 3.04 2.84 4.94 1.42

Regulation of Lipid Metabolism by Peroxisome
proliferator-activated receptor alpha (PPARalpha)

1.32 2.02 2.79 2.64 4.52 1.60

Fatty acid, triacylglycerol and ketone body metabolism 1.48 1.65 2.49 2.49 4.13 1.56

Clathrin derived vesicle budding 1.91 1.27 2.36 2.50 4.05 1.30

Diseases associated with visual transduction 1.41 1.89 2.18 2.62 4.03 2.34

ABC transporters 1.77 0.89 3.16 1.97 4.01 2.75

The results are listed as − log10P-values, and the full table is available in Additional file 3. MSEA was run with top 50 % of markers and LD cutoff r2 < 50 %. The
column ‘Meta-GWAS’ was estimated according to inverse-variance meta-analysis of the cohort specific P-values at individual SNP level, followed by MSEA. The
Bonferroni-adjusted 5 % significance level for 1346 independent tests is at − log10P = 4.43
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(P < 10−14). Subnetwork 2 and Subnetwork 6 shared
multiple common key drivers in the adipose network
(Fig. 6a). These included ACO2 (aconitase 2), an enzyme
that catalyzes citrate to isocitrate in mitochondria, and
ACADVL and its co-hubs. Perturbations to most of the
top key drivers, including ACADVL, FASN, SCD, ACO2,
COL1A2, POSTN, EHHADH, DHCR7, HSD17B7, GC,
AQP8, INSIG1, cause abnormal cholesterol and lipid
homeostasis according to the Mouse Gene Informatics
database and the International Mouse Phenotyping

Consortium [33, 34]. In summary, both literature and
experiments support the fundamental role of the key
drivers in regulating cholesterol metabolism.

Case study 2: Application of Mergeomics to glucose
datasets of various data types and species
The second case study demonstrates the integrated use
of human and mouse resources with diverse data types,
and it provides insights into the genes involved in
glucose metabolism. The human data came from a

Table 2 Key drivers for cholesterol-associated gene subnetworks

Subnetworks −log10 P Functional annotation Top adipose KDs Top liver KDs

Key driver −log10 P Co-hubs Key driver −log10 P Co-hubs

Subnetwork 1
Lipoprotein

16.0 Lipid transport; cholesterol
metabolism; lipoprotein;
blood plasma

- - - SPRY4 9.5 ABCG8

S100A10 4.5 -

Subnetwork 2
Lipid metabolism

8.1 Lipid metabolism;
metalloprotein;
oxidoreductase;
endoplasmic
reticulum

ACADVL 33.7 PPARA, CIDEA FASN 49.0 GPAM, ACLY

FASN 26.8 ME1, ACSS2,
ACLY, ELOVL6

SQLE 37.4 FDFT1, IDI1,
MSMO1, NSDHL,
HMGCS1, ALDOC

SCD 24.0 DNMT3L DHCR7 26.9 PMVK, MUM1,
FDPS, LSS,
RDH11, MVD

CCBL2 23.3 - HSD17B7 23.9 -

ACO2 23.0 AV075202, GPD2,
NDUFV1

MMT00007490 18.8 HMGCR, LSS,
FDFT1, MVD,
ACSL3

Subnetwork 3
Immunoglobulin

6.1 Immunoglobulin V-set COL1A1 12.4 - COL6A3 21.4 -

COL1A2 9.4 COL3A1,COL2A1,
MFAP2

VIM 11.0 -

OLFML3 8.8 - CCDC3 10.4 OLFML3

POSTN 8.3 COL2A1 CXCR7 9.9 -

FN1 7.2 - FBLN2 9.0 -

Subnetwork 4
ABC transport

5.0 ATP-binding cassette genes - - - SPRY4 12.0 ABCG8

MMT00062095 4.3 -

S100A10 3.2 -

Subnetwork 5
Retinoid metabolism

4.5 Retinoid metabolism;
Visual transduction

- - - GC 11.2 RBP4,APOH

TFPI2 3.2 -

AQP8 2.9 -

Subnetwork 6
Transcription

3.8 Transcription regulation; fatty
acid metabolism; acyltransferase

SLC2A5 18.2 - PKLR 23.6 MMT00060232,
ELOVL6

ACADVL 17.7 PPARA, CIDEA PNPLA5 19.0 ACLY, ACACA,
PNPLA3

CPT2 15.9 - PGD 12.2 -

EHHADH 15.1 - FASN 11.6 GPAM,ACLY

ACO2 13.7 AV075202, GPD2,
NDUFV1

INSIG1 10.7 -

Initially, canonical pathways were evaluated for the enrichment of genetic perturbations to circulating cholesterol. As these pathways overlap with each other,
non-redundant “subnetworks” were constructed that represent the most shared core genes between overlapping pathways. To verify the association with choles-
ter, enrichment was re-evaluated for the subnetworks (second column in the table). Statistical significance was estimated as described in Table 1. Functional anno-
tations were determined with the DAVID Bioinformatics Tool [45]. Key drivers and co-hubs were determined with the wKDA module within Mergeomics. Bayesian
networks from multiple mouse studies were combined to create weighted adipose and liver consensus networks [43, 44]. Gene symbols were translated to human
when available
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GWAS of fasting glucose that included 46,186 non-
diabetic participants [35]. The mouse data came from
the Hybrid Mouse Diversity Panel (HMDP), and com-
prised a GWAS [36], TWAS [36] and EWAS [37] of glu-
cose. The HMDP datasets were derived from
genotyping, gene expression profiling, epigenome profil-
ing and clinical phenotyping of 100 mouse strains.
The Meta-MSEA approach was applied to all the hu-

man and mouse association studies. The top hits cap-
tured important glucose homeostasis pathways including

glycolysis/gluconeogenesis, beta-cell regulation, incretin
homeostasis, adipocytokine signalling and glucose trans-
port (Table 3, full results in Additional file 5). The re-
sults also implicated mechanistic connections between
lipid metabolism and glucose level based on the findings
of carbohydrate-responsive element-binding protein
(ChREBP), steroid biosynthesis and lipid transport.
Moreover, we highlighted alpha-linolenic acids, an essen-
tial fatty acid, whose role in glucose control and meta-
bolic health is under active investigation [38]. When

Fig. 6 Visualization of adipose (a) and liver (b) networks around top key drivers that were identified for cholesterol-associated subnetworks. Top
key drivers (nodes with the largest size) are selected as the top five independent key regulatory genes (genes whose neighbourhood has less
than 25 % overlap with the neighbourhood of other independent hubs) for subnetwork 2 and subnetwork 6. Subnetwork member genes are de-
noted as medium size nodes and non-member genes as small size nodes. Top co-hubs (co-hubs with FDR < 10−10 in wKDA) are highlighted by
yellow circles. Only edges that were supported by at least two studies are drawn
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comparing the pathway signals across datasets, it is
noticeable that the mouse studies yield relatively
weaker association strength. This could be partly ex-
plained by the tissue-specificity of HMDP data, as
gene expression, methylation and eQTLs used in our
analysis were all from the liver tissue, which could
have missed pathways in non-hepatic tissues. Despite
the weak power of the mouse datasets, 8 out the 13
top pathways demonstrated stronger significance
across studies than in the human GWAS alone
(Table 3). These results (and the earlier example of
circulating cholesterol) demonstrate how Mergeomics
was able to identify important biological signals that
are subtle in any isolated omics dataset, but consist-
ent across multiple data types and species.

Conclusions
The explosion of genomics data has shifted the technical
challenge from data acquisition to data analysis and in-
terpretation. To respond to the challenge, we developed
Mergeomics, a generic pipeline that helps to leverage
combined statistical patterns of univariate associations
of diverse data types and molecular networks to identify
important pathways and key drivers in biological sys-
tems. We demonstrated how to use Mergeomics in
multi-omics projects with human and animal datasets,
and also tested the technical robustness with simulated
examples. Through the case studies of cholesterol and
glucose regulation, we found that gene networks orches-
trated by existing drug targets (such as PPARA and

HMGCR) and less known genes (such as ACADVL and
collagen genes) potentially regulate circulating choles-
terol level, and that both known and novel biological
processes likely participate in the genetic and epigenetic
regulation of glucose levels. This evidence supports the
biological relevance of Mergeomics output. With simu-
lated and real data we demonstrated the robustness of
the algorithms in a wide variety of settings and how
Mergeomics outperformed other popular tools. Import-
antly, the inputs to Mergeomics are fully customizable,
and accommodate any source dataset that can be repre-
sented by i) univariate associations, ii) hierarchical rela-
tionships between markers, genes or gene-sets or iii)
weighted (gene) networks. Therefore, Mergeomics can
guide hypothesis generation across a wide variety of
applications.
We acknowledge the following limitations of Merge-

nomics. First, the current pipeline only takes disease as-
sociation strength and static information but not
directionality and temporal information into consider-
ation, which fortunately covers the majority of available
genomics data, but may limit the detection of additional
biological signals. Second, although genetic information,
when available, can help infer causal relationships, the
bioinformatics analyses from Mergeomics mainly serve
to generate testable biological hypotheses rather than
directly implicating causality. Therefore, the causal roles
of the key driver genes, pathways and networks inferred
by Mergeomics require explicit experimental validation.
Despite the limitations, Mergeomics provides the

Table 3 Pathways associated with fasting glucose across human and mouse association datasets

Pathway MSEA Meta-MSEA

Human Mouse Mouse Mouse

GWAS GWAS TWAS EWAS Value FDR

Glycolysis/Gluconeogenesis 2.56 0.88 3.84 0.63 4.73 2.22 %

Starch and sucrose metabolism 3.67 1.37 3.29 0.17 4.57 2.22 %

Regulation And Function Of ChREBP in Liver 3.10 0.93 2.74 0.41 4.08 3.60 %

Nuclear Receptors in Lipid Metabolism and Toxicity 5.58 0.48 1.99 0.35 4.00 3.60 %

Regulation of gene expression in beta cells 4.16 1.75 1.48 0.19 3.97 3.60 %

Type II diabetes mellitus 2.11 1.09 1.48 1.08 3.66 6.00 %

Integration of energy metabolism 2.42 0.33 2.17 1.09 3.34 10.82 %

Steroid biosynthesis 1.10 2.04 1.27 0.76 3.10 14.34 %

alpha-linolenic acid (ALA) metabolism 3.40 0.32 1.72 0.69 3.09 14.34 %

Incretin Synthesis, Secretion and Inactivation 3.24 1.14 0.09 2.06 3.02 14.34 %

Adipocytokine signaling pathway 2.55 0.41 1.13 1.26 2.94 14.34 %

Chylomicron-mediated lipid transport 0.43 0.89 2.89 1.26 2.92 14.34 %

Glucose transport 5.57 1.31 0.27 0.29 2.92 14.34 %

The results are listed as − log10P-values, and the full table is available in Additional file 5. MSEA was run with top 50 % of markers, and an LD cutoff r2 < 50 % was
applied to the GWAS. For the human GWAS, SNPs were assigned to genes based on a 20 kb window in the genome sequence. For the mouse GWAS, liver eQTL
data were used for gene assignment. The Bonferroni-adjusted 5 % significance level for 1346 independent tests is at − log10P = 4.43
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scientific community with the first open source imple-
mentation of a methodology that has a proven track rec-
ord of successful biomedical applications. Future
development of Mergeomics will focus on addressing
the limitations and improve its flexibility and perform-
ance by incorporating directional information, dynamic
time-course data and prediction of potential therapeutic
agents.

Methods
Market set enrichment analysis
The default setting of MSEA takes as input 1) summary
statistics from global marker association studies (e.g.,
GWAS, EWAS, TWAS), 2) measurement of relatedness
or dependency between genomic markers, 3) mapping
between markers and genes, and 4) functionally defined
gene sets (e.g., biological pathways or co-regulated
genes). For GWAS, SNPs are first filtered based on the
LD structure to select for only SNPs that are relatively
independent given an LD threshold [23] (Details in
Additional file 6). For other types of association studies,
correlations between co-localized markers may be used.
For a given gene set, gene members are first mapped to
markers based on the mapping file and then the disease
association p values of the corresponding markers are
extracted to test for enrichment of association signals
based on the following null hypothesis:

Given the set of all distinct markers from a set of N
genes, these markers contain an equal proportion of
positive association study findings when compared to
all the distinct markers from a set of N random genes

We only focus on distinct markers to reduce the effect
of shared markers among gene families that are both
close in the genome and belong to the same pathway
(and presumably have overlapping functionality).
Furthermore, our software has a feature that merges
genes with shared markers before analysis to further re-
duce artefacts from shared markers. MSEA uniquely
adopts a hierarchical gene-based permutation which
estimates the expected distribution of the test statistic
under the null hypothesis by randomly shuffling the
gene labels while retaining the assignment of mapped
markers to genes, preserving the hierarchical marker-
gene-pathway cascade (Additional file 2: Figure S4). As
an alternative option, the marker labels can also be
shuffled to form the null distribution. Both options are
offered in the R package.
To avoid assessing enrichment based on any pre-

defined association study p-value threshold (e.g., p <
0.05) which can mean different association strengths in
studies of varying sample size and power, we developed

a test statistic with multiple quantile thresholds to
automatically adapt to any dataset:

χ ¼
Xn

i¼1

Oi−Eiffiffiffiffiffi
Ei

p þ κ

In the formula, n denotes the number of quantile
points, O and E denote the observed and expected
counts of positive findings (i.e. signals above the quantile
point), and κ = 1 is a stability parameter to reduce arte-
facts from low expected counts for small gene sets. The
frequency of permuted signals that exceed the observa-
tion is determined as the enrichment P-value. For highly
significant signals where the frequency-based value is
zero (i.e. no permuted signal exceeds the observation),
we fit a parametric model to the simulated null distribu-
tion to approximate the corresponding Z-score (details
in Additional file 6). For meta-MSEA of multiple associ-
ation studies, pathway enrichment Z-scores from each
dataset are first estimated with MSEA. The meta P value
is then estimated by integrating individual Z-scores
using the Stouffer’s method [39].

Weighted key driver analysis
wKDA utilizes both the network topology information
and the edge weight information of a molecular network
when available (illustrated in Additional file 2: Figure S5).
In wKDA, a network is first screened for suitable hub
genes whose degree (number of genes connected to the
hub) is in the top 25 % of all network nodes (Additional
file 2: Figure S5, middle box on the left). We further
classify these genes as either independent hubs or co-
hubs, where a co-hub is defined as a gene that shares a
large proportion of its neighbours with an independent
hub (Details in Additional file 2: Figure S5). Once the hubs
and co-hubs have been defined, the disease-associated
gene sets that were discovered by MSEA or meta-MSEA
are overlaid onto the molecular network to see if a par-
ticular part of the network is enriched for the disease
genes. First, the edges that connect a hub to its neighbours
are simplified into node strengths (strength = sum of adja-
cent edge weights) within the neighbourhood (Plots B-D
in Additional file 2: Figure S5), except for the hub itself.
For example, the top-most node in Plot C has three edges
that connect it with the other neighbours with weights
that add up to 7 in Plot D. By definition, the hub at the
center will have a high strength which will skew the re-
sults, so we use the average strength over the neighbour-
hood for the hub itself. The reduction of the hub
neighbourhood into locally defined node strengths
improves the speed of the algorithm and makes it easier
to define an enrichment statistic that takes into account
the local interconnectivity. In particular, the weighting of
the statistic with the node strengths emphasizes signals
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that involve locally important genes over isolated periph-
eral nodes. In Plot D of Additional file 2: Figure S5, the
overlap between the hub neighbourhood and a hypothet-
ical disease-associated gene set is indicated by the circles
around the top three nodes. The sum of the strengths of
the disease genes is 15, which represents 57 % of the total
sum of 26.4 in the neighbourhood (pie chart in Plot D).
The final enrichment score is estimated as described
below.
The null hypothesis for the enrichment of disease

genes within a subnetwork can be expressed as

Weighted key driver H0: Given the set of nodes
adjacent to a key driver, and with each node having a
local strength as estimated by the mutual connectivity,
the ratio of the sum of strengths of disease genes to the
total sum of strengths of all genes in the key driver
subnetwork is equal to the ratio for a randomly
selected gene set that matches the number of disease
genes.

The test statistic for the wKDA is analogous to the
one used for MSEA

χ ¼ O−Effiffiffi
E

p
−κ

except that the values O and E represent the observed
and expected ratios of disease genes in a hub neighbour-
hood. In particular,

E ¼ NkNp

N

is estimated based on the hub degree Nk, disease gene
set size Np and the order of the full network N, with the
implicit assumption that the weight distribution is iso-
tropic across the network.
Statistical significance of the disease-enriched hubs,

henceforth key drivers, is estimated by permuting the
gene labels in the network and estimating the P-value
based on the simulated null distribution. To control for
multiple testing, we perform adjustments in two tiers.
First, the P-values for a single subnetwork are multiplied
by the number of independent hubs (Bonferroni adjust-
ment). All hubs with adjusted P > 1 are discarded. For
random data, the truncated results will be uniformly dis-
tributed between 0 and 1, and hence they can be treated
as regular P-values. In the second stage, all the P-values
for the subnetworks are pooled and the final FDRs are
estimated by the Benjamini-Hochberg method [40].

MSEA performance evaluation
MSEA can be reconfigured depending on the type of
dataset and study design. We identified several parameters

that could affect the performance of the pipeline such as
marker filtering by including top disease/trait associated
markers based on a percentage cutoff, marker dependency
or relatedness (such as LD) cutoff for pruning redundant
markers, and the mapping between genes and markers.
Here we focus on the marker filtering percentage and
marker dependency cutoff as they represent the two key
technical challenges. Of note, the mapping between genes
and markers can be defined empirically [10, 12], but we
used a chromosomal distance-based approach for testing
to make Mergeomics consistent with most of the existing
pathway enrichment tools. In fact, for GWAS, the assign-
ment of SNPs to their target genes based on their chromo-
somal location is the commonly adopted approach in
other methods, whereas Mergeomics allows users to apply
any available assignment method, including the data from
tissue-specific eQTL studies and ENCODE.
To evaluate the performance of MSEA in independent

datasets, we collected GWAS summary data for circulat-
ing cholesterol from 7572 individuals in the Framingham
Study [25], 8330 Finnish individuals [24], and 100,184
participants from the Global Lipid Genetics Consortium
[26]. Cholesterol metabolism and transport is one of the
most studied and understood areas of human biology,
which makes cholesterol GWAS [26] an informative
dataset for method assessment. The Framingham and
Finnish studies are completely independent. The GLGC
dataset is the largest meta study for cholesterol traits
and contains the two smaller studies, but the total over-
lap was less than 10 % between the datasets. All partici-
pants were predominantly Caucasian descent, and we
used the corresponding LD data from HapMap [41] and
1000 genomes project [42] in our analyses to remove
redundant SNPs in LD. To determine a suitable combin-
ation of parameters and to compare performance of
different methods, we simulated true positives and true
negatives. True positive signals related to cholesterol
and lipid metabolism were collected from the Reactome
pathway R-HSA-556833, “the metabolism of lipids and
lipoproteins”. These genes were grouped into 300 posi-
tive control pathways, including 100 with size 25, 100
with size 100, 100 with size 250, respectively. Simultan-
eously, 300 negative control pathways with the same size
distribution as the positive control pathways were gener-
ated by randomly selecting genes from the non-
cholesterol gene pool consists of 8633 genes from the
pathway database of Reactome [29], BioCarta (http://
cgap.nci.nih.gov/Pathways/BioCarta_Pathways) and
KEGG [30]. These manually generated control pathways
were combined with 1346 original canonical pathways
for benchmarking.
The control and canonical pathways were analysed by

MSEA and two widely-used existing tools MAGENTA
and i-GSEA4GWAS. The latter two tools estimate the
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genetic associations for each gene, and then test if the
aggregate gene score for a pathway is higher than ex-
pected. MAGENTA identifies the peak disease-
associated SNP for each gene, and then adjusts the stat-
istical significance of the peak SNP according to the size
of the gene, LD and other potential confounders to pro-
duce the gene score. i-GSEA4GWAS uses a similar ap-
proach where a gene is considered significant if it
contains any of the top 5 % SNPs, and the pathway score
is estimated by comparing the observed ratio of signifi-
cant genes within the pathway against the expected ratio
in the full set of genes that were covered by the GWAS.
The performance was evaluated as sensitivity (number
of positive control pathways at FDR < 25 % divided by
total number of positive control pathways), specificity
(number of negative control pathways at FDR < 25 % di-
vided by total number of negative control pathways) and
the likelihood to pick up true positive pathways (Positive
Likelihood Ratio), calculated as sensitivity/(1 −
specificity).
Integrated analysis of diverse data types across species

was tested in the second case study. The datasets in-
cluded a human GWAS for fasting glucose on 46,186
non diabetic subjects [35], and mouse GWAS, EWAS
and TWAS for fasting glucose from the HMDP, which
consists of 100 different mouse strains [36, 37]. The epi-
genome and transcriptome data were generated from
the liver tissues from the mouse strains on standard
chow diet, and mouse liver eQTLs were used in gene-
SNP assignment for the HMDP GWAS data for
consistency. For EWAS data, DNA methylation sites
were mapped to adjacent genes based on a chromosomal
distance of 50 kb. All other MSEA parameters were the
same as those applied in the cholesterol analysis (see the
descriptions of the case studies for more information).

wKDA performance evaluation
We assessed the performance of wKDA based on the ro-
bustness of the key driver signals in independent gene
networks. We collected Bayesian networks that were
constructed from published genomic studies where both
DNA and RNA were extracted from adipose and liver
tissue samples [43, 44]. The collection of Bayesian net-
works was split into two independent sets of weighted
adipose networks and weighted liver networks from
non-overlapping datasets (Additional file 1: Table S3).
Edge weights were quantified based on the consistency
of the edge between datasets. Using these networks and
three test gene sets related to lipid metabolism as inputs,
we ran wKDA to identify liver and adipose key drivers of
the lipid gene sets. To benchmark the wKDA perform-
ance, we compared wKDA with the previously developed
unweighted KDA [23, 31]. The prediction accuracy of
wKDA and KDA was evaluated by the Jaccard overlap

index between the top key driver genes from the two in-
dependent networks of each tissue, which represents the
proportion of KDs that can be replicated between inde-
pendent networks. Jaccard overlap index measures the
overlap between two KD sets X and Y each containing
lists of KD genes, and is calculated based on the follow-

ing formula: overlapðX;YÞ ¼ jX∩Yj
jX∪Yj . The higher the over-

lap or replication rates of KDs detected between two
independent network using a KDA method, the higher
the Jaccard overlap index and the higher the perform-
ance of the corresponding method.

Availability
Mergeomics is available as a freely downloadable Biocon-
ductor package released under GPL license, version 2
(https://www.bioconductor.org/packages/devel/bioc/html/
Mergeomics.html). The package supports full Mergeomics
functionality.
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