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ABSTRACT

The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis.
Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental
and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in
epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia
organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to
maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems
to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation meth-
ods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical
models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future
experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
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I. INTRODUCTION

This paper reviews approaches for inferring and applying forces
while observing epithelial dynamics. Our ultimate goal is to help
researchers close the loop between in silico and experimental (in vivo
and in vitro) biophysical models for both understanding and predict-
ing collective epithelial cell behaviors. Section I motivates the need to
understand cellular migration, the role of mechanosignaling in its reg-
ulation, and the need for mapping in silico biophysical models onto
in vivo and in vitro experiments. Section II introduces a range of
in vitro reduced order models from 3D tissues to single cells in con-
trolled environments and how we can obtain new insight at these dif-
ferent scales (Fig. 1). Section III reviews the three most common
classes of in silico biophysical models and their benefits and limita-
tions. Finally, Sec. IV discusses how these experimental and in silico
biophysical models can be integrated and inform each other.

A. Properties of epithelial dynamics

The collective properties of epithelia define their abilities to per-
form tasks integral to life including tissue growth and develop-
ment,1–10 wound repair,11–14 nutrient absorption,15 and preventing
pathogenic invasion.16 As an active material, the epithelium and its
collective properties are defined by changes at the cellular level. These
collective properties are a combination of cellular movements within
the tissue, cell renewal, cell death, and inter/intracellular tensions.17–20

For example, epithelial migration patterns facilitate changes in cell
division and cell death necessary for tissue morphogenesis.14,21,22 In
the healthy intestinal epithelium, migration from the intestinal crypt
drives cellular extrusion at the top of the villus.22 In zebrafish injury,

significant cell migration, proliferation, and extrusion are observed to
occur simultaneously during wound repair.14 For many processes that
dictate epithelial dynamics, collective cell migration is a reoccurring
trait that defines the physical state of the epithelium.

Development. The controlled collective movements of epithelial
cells are necessary for the growth and formation of tissues during
development.1–10 Embryonic processes including gastrulation, epiboly,
oogenesis, and convergent extension that require epithelial migration
are seen ubiquitously across different model organisms. During gastru-
lation, the migration of cells drives furrow formation and creation of
germ layers.2,3 During epiboly, epithelial cells spread in a coordinated
manner to cover the entire embryo.5 During convergent extension as
portions of the embryo change shape or elongate, cells must actively
migrate and rearrange to mitigate tissue deformation and maintain tis-
sue integrity.6–10 Even after development, epithelial migration contin-
ues to be essential for the homeostasis of mature tissues across all
organisms.

Homeostasis. Adult tissue is often thought of as an immobile epi-
thelium that provides functions such as filtration of waste products or
nutrients while also acting as a barrier to infectious agents. However,
continuous cell renewal and collective epithelial movements are critical
for regulating many aspects of adult tissue. The repair of epithelial
damage (i.e., wounds) occurs both internally (e.g., lungs, gut) and
externally (e.g., skin) and requires the coordinated movement of epi-
thelial cells.11–14 Without proper epithelial homeostasis and wound
repair, our organs are at risk of pathogenic invasion, poor nutrient
absorption, and ultimately organ failure.

Dynamic signaling. Collective cell migration can be prompted by
various cues: directional fluid flow,23 chemical (chemotaxis),24 physical
(plithotaxis),25,26 bio-interface (haptotaxis),27 substrate stiffness (duro-
taxis),28 and even electrical (galvanotaxis).29 These migratory regula-
tors, or taxis processes, have been extensively reviewed.27,28,30–33

However, existing studies on the relationships between mechano-
signaling pathways and epithelial migration at the tissue level often
neglect localized, intercellular mechanical forces and long range
dynamic changes that can influence migration.34–36 Whether in a
developing tissue or adult tissue, the epithelial environment is not
static. It is incredibly dynamic. Many mechanical forces occur within
these environments in a localized or regionalized context via local tis-
sue deformation. Developing tissues continuously bend, fold, constrict,
or stretch, imposing local forces on groups of cells.8,22,37–45 An open
question is to what extent mechanical perturbations regulate cell
migration, and if these resulting cellular movement patterns can be
predicted in silico. An increased understanding of epithelial cell migra-
tion will be critical to predicting and controlling deviations from nor-
mal development and adult epithelial tissue homeostasis. Testing and
validating these models requires new controlled techniques for apply-
ing mechanical perturbations in vitro.

B. Mechanosignaling in the dynamical epithelium

At the cellular level, epithelial cells exert forces on neighboring
cells as well as on the extracellular matrix (ECM). Neighboring cells
are “stitched” together by cell–cell adhesions, where homotypic bind-
ing of E-cadherins is thought to initiate binding of like cells. E-
cadherins then indirectly link to junction-supporting F-actin
bundles via intracellular intermediate proteins such as b-catenin and
a-catenin,46 making up adherens junctions46 [Fig. 2(a)]. Cadherin

FIG. 1. In vitro experimental models of varying complexity used to study collective
epithelial mechanics. (Left) Spheroids and organoids are the most complex in vitro
models. Cell sheets and cell lines are amenable to engineering interventions that
allow researchers to investigate the impact of external forces on the epithelium.
(Right) The simplest model, a single cell, can also be useful to infer properties of
collective cell behavior.
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complexes are further stabilized by other proteins such as vinculin and
p-120 catenin.47,48 Mechanical cues can either release the catenin pro-
teins from the adherens junction or recruit them, which have implica-
tions on the stability of cell–cell adhesion and cell behavior.49–52

Cell–cell contacts are then stabilized by other junctions, e.g., tight junc-
tions and desmosomes, which further reinforce or regulate cell–cell
adhesion.53,54 Mechanically linked cells also bind to the ECM via focal
adhesion complexes and hemidesmosomes.55 These complexes anchor
to F-actin and other cytoskeletal filaments.56,57 During migration,
branching F-actin pushes the cell membrane forward within protru-
sions known as lamellipodia. The adhesion sites between cells and
their substrate that guide lamellipodia formation are known to experi-
ence mechanical crosstalk. For example, the number of adhesion sites,
types of integrin mediated adhesions (via different ECM proteins), or
viscoelastic relaxation can all influence the persistence and speed of
cell migration.27,28,58 Many of these mechanisms operate through
mechanotransduction pathways to indirectly modulate intracellular
signaling. For example, branching F-actin can be regulated by
rhoGTPases, including cdc42 and Rac1.59,60 Lamellipodia at the front
of the cell work in unison with actomyosin driven contractions at the
rear to propel the cell forward with a lateral front–rear polarity [Fig.
2(b)]. While lamellipodia are most commonly observed on leader cells
at the edge of an expanding epithelium, cryptic lamellipodia are pro-
duced by follower cells to chase leader cells.61,62 As leader cells migrate,
they can induce tension on follower cells to guide follower cell polari-
zation via E-cadherin andMerlin.4,34 However, cells behind leader cells
can help determine leader cell migration.63,64 Therefore, there exists an
intricate network of mechanical regulation among cell–cell and
cell–ECM interactions to guide cell migration.

Many of these mechanical complexes (e.g., intercellular tension,
cell contractility and cell traction) along with shape descriptors
(e.g., cell area and perimeter) can be used as inputs within in silico bio-
physical models. For example, factors that affect cell–cell and

cell–ECM adhesion (e.g., cadherins, integrins, desmosomes, and hemi-
desmosomes) can be modeled as frictional forces;65,66 cells must over-
come these adhesions to migrate along the substrate. By manipulating
these different variables experimentally, experiments and theoretical
models can help inform one another to help researchers both under-
stand and predict intercellular signaling and force propagation.

C. Choosing an experimental model system: Setting
the stage for in vitro studies

In vivo epithelial models have illustrated the necessary role for
collective migration in tissue repair and development. These models
most commonly include zebrafish (e.g., epiboly, gastrulation) and
Drosophila (e.g., germ band extension, gastrulation, border cell migra-
tion, wing development) though other systems exist.67 To isolate
mechanistic elements associated with cell migration, observational
studies often rely on genetic knockouts and pharmacological
approaches combined with imaging techniques. Light microscopy has
been particularly valuable. For example, fluorescent labels have helped
researchers understand protein localization during specific develop-
mental events, including the distribution of myosin during cellular
movements in Drosophila.68 More recently, several engineered inter-
ventions have helped identify the role of mechanical forces in in vivo
epithelia.69 For example, F€orster Resonance Energy Transfer (FRET)
sensors encoded into Drosophila revealed that mechanical tension
through cell–cell contacts is critical in directing cell movement.4,70,71

Oil and actuated ferrofluid droplets have been used to infer tissue
forces in zebrafish using known mechanical properties of the drop-
lets.72,73 Recent advances in cell segmentation (i.e., reducing cell–cell
borders to a polygonal packing structure) have offered a noninvasive
method to infer forces between cells within Drosophila and
quail.39,74–77 Laser ablation, a more invasive technique, has helped vali-
date these force inferences77 [Fig. 3(b)]. Laser ablation can also be used
to induce wounds to study collective cell dynamics during wound
healing of the Drosophila pupae.78 More recently, “synthetic
mechanosignaling” tools (i.e., optogenetics) have been expanded to
inhibit or facilitate protein function in a spatiotemporal manner. For
example, optogenetically controlled RhoA has been used to manipu-
late mechanical forces during Drosophila tissue folding and morpho-
genesis79,80 [Fig. 3(a)].

Despite the physiological relevance of in vivo models, they are
complex. Numerous interacting variables in the in vivo environment
make it difficult to isolate the effect of mechanical forces on epithelial
growth andmigration. Specifically, it is difficult to directly connect cell–-
cell mechanics and local mechanical tissue deformations to tissue rheol-
ogy (i.e., migration). Furthermore, in vivo biophysical studies are often
expensive with experimental setups that may be difficult or elaborate. In
vitro studies can supplement those done in vivo by providing informa-
tion under more controlled conditions where single variables (e.g., trac-
tion force) are manipulated. Biophysical in silico models can then help
by providing continuous feedback between theory and experiments.

In this review, we describe micromanipulation tools available to
probe collective epithelial dynamics (with a focus on migration) in four
scales of in vitro models: spheroids/organoids, tissue sheets, cell lines/
doublets, and single cells. For each of these cellular structures, we
review the following themes: (i) methods to infer forces, (ii) methods to
apply forces (including controlling the biophysical environment and
local vs global mechanical manipulation), and (iii) limitations/

FIG. 2. Mechanosignaling at the adherens junction aids in collective cell migration.
(a) The force-sensitive adherens junction has been shown to regulate mechanical
forces between cells and dissipate them via intercellular signaling. (b) Cross section
of collectively migrating epithelial cells, which rely on adherens junction to mechani-
cally link cells together and transduce signals.
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advantages of the model system. Finally, we discuss biophysical in silico
models that can inform and guide our understanding of the
experiments.

II. IN VITRO MODELS AND MECHANICAL
MANIPULATION TECHNIQUES FOR THE STUDY
OF COLLECTIVE EPITHELIAL MIGRATION

In vitro experiments allow control of boundary conditions and tis-
sue geometry while quantitatively describing the relationship between
spatiotemporal mechanical inputs and epithelial migration. A number
of devices that allow the application of mechanical perturbations to an
epithelium in vitro have been proposed and will be reviewed below.

A. 3D spheroids and organoids

Spheroids and organoids are powerful 3D in vitro models that
offer the possibility of carrying out high-throughput assays in a con-
trolled microenvironment. Many 3D in vitro models are valuable for
answering questions related to disease or understanding tumor inva-
sion (i.e., metastasis), phenomena extensively reviewed elsewhere.81–83

Our interest is in how organoids have been used to study epithelial col-
lective dynamics (i.e., migration and mechanosignaling).84

In vitro organoids are most commonly generated from stem cells
that differentiate into clusters representative of the cell types found in
organs, typically on glass or gel substrates (sometimes referred to as
“bottom-up” assembly).85–87 Alternatively, spheroids are manufac-
tured “top–down” either by mixing multiple cell types in a mold or by
allowing a sheet of a single cell type to fold or aggregate into a 3D
structure.88–90 Spheroid and organoid models have both been
deployed to mimic healthy and pathological tissue microenviron-
ments, reviewed here.91 For example, stem cells can differentiate in 3D
to form an intestinal epithelium for disease modeling85 or be directed
to form an intestinal lumen through biofabrication methods.92,93

1. Methods to infer force from 3D spheroids
and organoids

Inferring forces exerted or transmitted by epithelia help research-
ers connect mechanical cues to epithelia behavior. When considering
how engineering tools can be implemented for 3D in vitro studies to
measure migration and mechanosignaling, we do not need to look
much further than methods used in vivo. These shared methods for
in vitro applications have answered a variety of questions on epithelial
cell behavior. Additionally, they have utilized human derived cells. For
example, cell segmentation via image analysis has been used to discover
an increase in fluidity of human carcinoma epithelial cells during tumor
progression88 [Fig. 4(a)]. Other methods referenced earlier including
FRET molecular tension sensors94 and oil droplets embedded in the tis-
sue90 [Fig. 4(b)] are amenable to in vitro 3D systems as well.

While both in vivo and 3D in vitro epithelia consist of large multi-
cellular tissues, in vitro environments offer several additional
approaches for inferring cellular forces. Since organoids or spheroids
can exist on a substrate or within an extracellular medium,95 traction
force microscopy (TFM), or monolayer stress microscopy can be used
to infer local cellular stresses to help researchers understand the forces
that drive migration.96 To perform TFM, gels such as polyacrylamide
(PA) or polydimethylsiloxane (PDMS) are fabricated with embedded
fluorescent microbeads.96,97 Cells exert traction on the gels, resulting in
measurable displacements of the beads, from which one can infer the
forces or traction stresses that generate the corresponding displace-
ments.98 TFM is a particularly powerful force inference technique as it
can be used to dissect the temporal and spatial variations of tractions
associated with collective cell movements in different environments.
For example, studies of ovarian tumor spheroids have shown that can-
cer cell clusters generate force to gain access to the submesothelial envi-
ronment. By blocking force transmitting proteins (i.e., a5b1 integrin,
talin I, and myosin II), researchers were able to block metastatic escape
of ovarian cancer cells.99 Furthermore, TFM can be combined with pro-
tein dysregulation methods to determine how specific proteins regulate
epithelia traction and migration. For example, suppression of E-
cadherin and induction of basement membrane expression influenced
branching morphogenesis (i.e., migration) of stratified epithelia in a 3D
spheroid model.100 An alternative form of TFM involves individual cells
or whole spheroids grown on fabricated elastic micropillars,101,102 where
pillar deflection provides a direct measurement of traction force.
Additional methods include elastically compressed PA “force sensors”
embedded within the tissue itself, which can connect local mechanical
forces to changes in cell behavior. This method has shown that
increased pressure near the core of a carcinoma spheroid is accompa-
nied by cell shape anisotropy and minimal cell proliferation.103 Custom
tools such as microtweezers have also been built to measure the stiffness
of organoids.102,104 Methods that can quantify and measure mechanical
stresses within 3D epithelial models can help researchers understand
the complicated relationship between intercellular forces and migration.
Direct manipulation of the microenvironment can also provide infor-
mation on causal relationships, as discussed in Sec. IIA2.

2. Methods to apply force to 3D spheroids
and organoids

a. Engineering the biophysical microenvironment. There are sev-
eral methods to engineer the microenvironment of a spheroid or

FIG. 3. In vivo experimental models. (a) Optogenetic RhoGEF2 can be used to trig-
ger apical constriction of specific cells in the Drosophila embryo. (b, top) Laser
ablation of cell–cell junctions in the Drosophila notum has validated (b, bottom) seg-
mentation inferred intercellular tension levels. (a) Adapted from Izquierdo et al.,
Nat. Commun. 9, 2366 (2018).79 Copyright 2018 Author(s). (b) Adapted from Kong
et al., Sci. Rep. 9, 14647 (2019).77 Copyright 2019 Author(s), licensed under
Creative Commons Attribution 4.0 International (CC BY 4.0). Scale bars:
a¼ 10lm, b¼ 5lm.
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organoid, including altering substrate stiffness, ECM composition, or
geometric confinement. Each method may be used to mimic specific
conditions (e.g., disease states) and connect these inputs to changes in
collective epithelia behavior.

Tailoring substrate stiffness is one method that enables research-
ers to measure changes in tissue fluidity under specific pathological
conditions. For example, altering the substrate rigidity of murine sar-
coma spheroids resulted in different forms of motile behavior, ranging
from a “running spheroid” to a flattened spheroid moving as a film105

[Fig. 4(d)]. In other studies, tunable substrate stiffness can regulate col-
lective migration via changes in tissue folding.106

Changing the ECM is another minimally invasive way to alter
the collective dynamics of a spheroid. Some studies have shown that
the concentration of ECM can change the degree of migration of
tumor spheroids.107 In collagen, for example, human mammary gland
organoids show increased branching and migration.108

Spheroids or organoids can be subjected to varying degrees of
geometric confinement as well. By varying the spatial constraints,
researchers can recapitulate a diseased or developmental microenvi-
ronment. For example, patterned substrates of different geometries
have been used to regulate the tube size and folding architecture in the
development of neural tube organoids43 [Fig. 4(c)]. Tailoring geomet-
ric confinement is commonly done using pre-determined geometric
patterns of ECM for cell growth and migration. These shapes can be
sized and designed for diverse studies ranging from single cells109–111

to entire monolayers and tissues.25,112 Several methods can be used to
fabricate specific shapes or patterns of ECM. Popular methods include
microcontact printing,113 co-polymerization via hydrogel “lift-off,”109

and light-induced photomolecular adsorption of proteins.114–116

Beyond changing the substrate stiffness or the geometry of the
microenvironment, cellular biomechanics can also be tuned by
introducing biochemical reagents, pharmacological approaches, or
gene editing.94,95 For example, genetic mutation of force sensitive a-
catenin revealed that tension at the adherens junction is critical to
the formation of multi-cellular structures during epithelial spheroid
development.117

Organoid and spheroid models have largely focused on engineer-
ing the microenvironment of 3D in vitro systems and measuring force
generation, deformations, or fluidity. Thus far, there are limited engi-
neered devices (e.g., cell stretchers) applied to loading or deforming
epithelial spheroid or organoids.118,119

b. Local force application. In vitro spheroids and organoids are
also advantageous in that they allow local force gradients to occur nat-
urally as they would in vivo. Relating local mechanical deformations to
global cell migration or tissue rheology remains, however, challenging.
The methods used to apply local forces to 3D cellular structures are
largely the same in vivo and in vitro. Optogenetic synthetic mechano-
signaling has for instance been used to demonstrate the role of the
WNT pathway in embryonic dynamics120 and that of the Notch1
pathway in breast cancer cells.121 Laser ablation has been used to relax
tension on ECM fibers and reduce tumor invasion.89

3. Advantages and limitations of 3D spheroids
and organoids

3D in vitro multi-cellular structures provide important models
for the study of in vivomechanosignaling. They are cost-effective, rela-
tively high-throughput, and offer control over cell types and the
microenvironment. They retain, however, substantial complexity.
Multiple cell types or self-organizing structures can make it difficult to

FIG. 4. In vitro 3D experimental models. (a) Cell segmentation has been used to
quantify cell shape and subsequent increase in tissue fluidity for cancerous (MDA-
MB-436) compared to noncancerous (MCF-10A) breast epithelial spheroids.88 (b)
3D fluorocarbon oil droplets embedded in mesenchymal cell aggregates can map
out the internal forces exerted by cells.90 (c) To control organoid development, the
underlying geometry of the ECM can be controlled43 or (d) the stiffness to regulate
tissue organization and cell migration.105 (a) Adapted from Grosser et al., Phys.
Rev. X 11, 011033 (2021).88 Copyright 2021 American Physical Society. (b)
Adapted from Lucio et al., Sci. Rep. 7, 12022 (2017).90 Copyright 2017 Author(s),
licensed under Creative Commons Attribution 4.0 International (CC BY 4.0). (c)
Adapted with permission from Karzbrun et al., Nature 599, 268–272 (2021).43

Copyright 2021 Springer Nature. (d) Adapted from Beaune et al., Proc. Natl. Acad.
Sci. U. S. A. 115, 12926–12931 (2018).105 Copyright 2021 National Academy of
Sciences of the United States of America. Scale bar: a¼ 100 lm.
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introduce and isolate mechanical variables. Their large size can also
hinder imaging accessibility and dissection at the molecular level.
Overall, spheroid and organoid models are largely advantageous for
modeling disease or cancer invasiveness, but do not often re-capitulate
collective migration seen in developing embryos or wound repair.

B. 2D cell sheets

The reduced dimensionality of 2D cell sheets allows researchers
to introduce mechanical perturbations that control, limit, or enhance
cellular movements (Fig. 5). Within an in vitro 2D environment, cells
explore the XY plane typically on an ECM coated substrate made from
a hydrogel, plastic, or glass. 2D epithelial sheets also exist in vivo (e.g.,
lungs, kidneys, intestines), though may have different regions of fold-
ing and diverse topologies depending on the organ.

1. Methods to infer force from 2D cell sheets

Just as in other experimental models, extensive information
about cellular behavior can be extrapolated through time-lapse or
video microscopy. In a 2D system, however, researchers are able to
answer questions about collective cell behavior in a more controlled
environment with specific mechanical inputs. For example, wound
healing assays are a common method to better understand cell migra-
tion. Open gaps or “wounds” in an otherwise confined system are
most commonly created using physical barriers34,122,123 or scratch
assays.124,125 Cellular migration in these 2D systems can be imaged
by wide-field fluorescence and bright-field imaging modalities
[Fig. 6(a)].63 Fluorescence microscopy combined with wound healing
assays and genetic knockdown experiments has matched transcription
factor (TF) regulation or activation of pathways to migration of cells.
For example, mechanical tension between cell–cell contacts causes the
release of junctional merlin to the cytoplasm, which activates Rac1 and
subsequent lamellipodium formation for cell migration.34

Time-lapse image stacks can be used to quantify cell migration
and can also be combined with multiple force inference techniques
that are more difficult in 3D systems. Particle image velocimetry (PIV)
is a widely used tool to quantify cellular movements by capturing the
migratory “flow” of cells across the XY plane.35,126,127 Images are bro-
ken down into an array of windows, each with a distinct arrangement
of pixels that can be tracked between frames. PIV is especially useful in
quantifying migration directionality and velocity. Combining migra-
tion tracking with TFM in expanding cell monolayers has revealed a
highly heterogeneous spatiotemporal distribution of traction forces
that extend throughout an epithelial sheet.64 TFM combined with fluo-
rescent live-cell imaging can further reveal how cytoskeletal filaments
influence cell migration128 or change structure as a function of
mechanical tension at cell–cell contacts.129–131

Beyond video microscopy used for TFM or PIV, segmentation tools
are increasingly deployed to relate cellular structure to epithelia mechan-
ics.76,132,133 For example, cell morphology obtained from segmentation of
tissue imaging has helped predict changes in cell tractions or cell move-
ments during cell migration.63 Shape descriptors derived from epithelial
cells (e.g., area, perimeter, mean cell shape) can then be used as useful
inputs for in silico biophysical models. Since segmentation can also be
used to infer intercellular tension,134 combining tools such as segmenta-
tion and PIV provides powerful opportunities to connect the mechanical
state of the cell-edge network and epithelial migratory behavior.

With imaging methods on an even smaller spatial scale, research-
ers can start to determine the proteins responsible for transmitting
mechanical load during traction and migration. For example, E-
cadherin FRET probes have shown E-cadherin is under tension as
cell–cell contacts are actively stretched.135 Interestingly, this tension
seems to relax over time.129 These same sensors have also shown E-
cadherin tension is highest inside expanding monolayers compared to
the leading edge, corroborating TFM data.64,128

A more invasive method to infer force properties of cell–cell con-
tacts is laser ablation. Laser ablation can also be used to induce wound
closure for single cells (e.g., apoptotic induced extrusion), which can
be used to assess the mechanics behind localized wound closure.21,136

However, as mentioned in Sec. IIA, laser ablation is invasive, requires
specific equipment, and single cuts can affect the tension states of
other regions of the tissue.

2. Methods to apply force to 2D cell sheets

a. Engineering the biophysical microenvironment. Many methods
exist to manipulate the microenvironment of epithelial sheets for the
purpose of connecting mechanical inputs to collective epithelia behav-
ior: geometric confinement, substrate stiffness, substrate topography,
and ECM composition.

Geometric confinement within a 2D environment provides a pas-
sive way to constrain a tissue and therebymanipulate interfacial tension
on specific regions of cells. Geometric confinement via protein micro-
patterning indirectly applies edge tensions and intercellular tensions to
cells that can influence their collective dynamics. For example, protein
shapes designed for higher amounts of interfacial tension (e.g., star vs
circle) have been shown to control locations of cellular extrusion events

FIG. 5. Global and local deformations of epithelia. Epithelial tissues experience a
range of mechanical forces, some of which are (left) global and (right) local. Most
engineered devices, including cell stretchers, have mimicked global forces (e.g.,
compression and tension) by applying a more evenly distributed strain field through-
out the tissue using elastomeric substrates. Few studies have focused on local
forces and their impact on epithelial collective behavior. These forces can originate
from local regions of deformation (e.g., shear forces, tissue bending, or apical
constriction).
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within the tissue via changes in nematic order.21 Furthermore, protein
patterns have regulated migratory oscillations and proliferation pat-
terns as a function of geometric confinement.112,137,138

Beyond regulating the geometric confinement to control the
collective motion of cellular sheets, the stiffness of the underlying
substrate can also be tuned by creating hydrogels of varying polymeri-
zation parameters.38,139 Different stiffnesses can be used to mimic spe-
cific disease states and correlate these conditions to changes in the
expansion of an epithelium. Physiological stiffnesses of epithelia are
generally reported in the range of 1–500 kPa (depending on the tissue
or if malignant)140,141 accompanied by changes in collective cell
dynamics (e.g., stiffness and migration142). Stiffer substrate conditions
can also regulate the rate of wound closure by increasing actomyosin
dynamics, YAP activation, and subsequent migration rates.143–145

One can additionally engineer substrates with nanofabricated
topography to investigate substrate based mechanotransduction (e.g.,
microgrooves146) of expanding or confluent epithelial sheets. Substrate
topography has been shown to increase the persistence of migration of
MCF10A epithelial cells,147 which is likely influenced by their ability
to re-orient and elongate along the direction of the groove.148 On a
larger scale, the topography of the ECM has been altered to have cur-
vature (i.e., hills and valleys) on the order of micrometers,149 which
has implications for tissue thickness and nuclear morphology.

Studies have also manipulated collective cell migration by tuning
the underlying ECM. Different ECM proteins (e.g., laminin, fibronec-
tin, collagen, and their various sub-types) have different binding
domains that connect to various integrin a and b subunits of cells.
These integrin sub-units subsequently regulate cell migration differ-
ently, as quantified in an expanding 2D epithelium. For example,
fibronectin has been shown to enhance migration and alter epithelial
organization in both developing and adult tissues.150–152 In another
study, fibronectin gradients have been attributed to directional cell
migration, with implications for cellular collectives.153 ECM concen-
tration has also been shown to affect migration speed of epithelial ker-
atocytes, where cell collectives had a lower velocity on denser collagen
networks.154

The way in which researchers modify the biophysical environ-
ment, whether it be via ECM modification or altering substrate stiff-
ness, will largely depend on the questions at hand. 2D epithelial
models enable a large combination of force inference techniques such
as traction force microscopy or migration analysis within a confined
or expanding sheet.

b. Global force application. To directly study the effect of cell–cell
mechanics on collective cell migration, engineers have designed and
utilized novel systems such as elastomeric cell stretchers. These poly-
mer stretching devices are made from commonly used elastomers (i.e.,
PDMS or silicone rubber) and when stretched are assumed to apply a
homogeneous, global strain field across the entire tissue. Cell stretchers
can provide a useful approach for tackling a number of open questions
in epithelia mechanics. Future studies may, for instance, examine tem-
poral variations, downstream effects on cell migration, or employ dif-
ferent substrates, such as ones based on viscoelastic materials.

Cell stretchers can vary in several ways, starting with their actua-
tion methods. Stretch actuation can be induced pneumatically via vac-
uum,155–157 mechanically,158–160 or through a dielectric elastomer
actuator161,162 [Figs. 6(b) and 6(c)]. Furthermore, cell stretchers can
induce either uniaxial or biaxial strain on a tissue in a static or cyclic
dependent manner. Some have been 3D printed159,163 or have been
easily fabricated133,158 to improve accessibility. They have even been

FIG. 6. In vitro 2D experimental models. Several techniques have been used in
conjunction with light microscopy to quantify migration and force exertion by migrat-
ing epithelial sheets. (a) An expanding MDCK epithelium in brightfield (top) can be
combined with TFM (middle) and segmented (bottom) to correlate changes in phys-
ical changes in cell shape with cell migration.63 When applying external forces to
epithelia, cell stretcher can be actuated (b) mechanically via motors174 or (c) pneu-
matically.133 (d) More limited studies of local actuation include an MDCK epithelia
grown on a microfabricated silicon platform, where the center of the epithelium can
be subjected to either a mid-plane tension or shear strain to induce collective migra-
tion.35 (a) Adapted from Vishwakarma et al., Nat. Commun. 9, 3469 (2018).63

Copyright 2018 Author(s). (b) Adapted from Roshanzadeh et al., Sci. Rep. 10,
18684 (2020).174 Copyright 2020 Author(s). (c) Adapted from Hart et al., Cell. Mol.
Bioeng. 14, 569–581 (2021).133 Copyright 2021 Author(s), licensed under Creative
Commons Attribution 4.0 International (CC BY 4.0). (d) Adapted with permission
from Garcia et al., J. Micromech. Microeng. 30, 125004 (2020).182 Copyright 2020
IOP Publishing Ltd. Scale bar: a¼ 100 lm, d¼ 200 lm.
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commercialized (Flexcell International Corporation, Red Dog
Research, Strex Cell). Several reviews have been written solely on cell
stretching devices.164,165 Here, we will focus on studies that have exam-
ined the role of stretch in regulating epithelia organization and inter-
cellular signaling within a 2D sheet.

Uniaxial tension: The simplest uniaxial stretchers apply a static
stretch to the substrate and enable the observation of the tissue
response. These methods may be useful to gain fundamental insight
into how epithelial cells handle mechanical load. For example, uni-
axial tension has connected force sensitive proteins at cell–cell con-
tacts to mitotic activity and division along the axis of stretch.155 It
has also showed that mechanical strain on E-cadherin drives the ini-
tial stages of the cell cycle via b-catenin and YAP activation.156,166 In
addition to demonstrating the importance of direct cell–cell linkages,
such experiments have established that stretch activated ion chan-
nels such as Piezo1 influence cell division, causing phosphorylation
of the ERK pathway and driving cells into mitosis.167 Intercellular
tension can also orient the mitotic spindle during cell division.155,168

Taken together, preferential division along the long axis of stretched
cells155 may be an adaptive mechanism for epithelial cells to combat
external mechanical stresses169 and facilitate tissue elongation and
renewal. Beyond the role of static stretch in epithelial cell division,
static stretch has been shown to limit epithelial cell migration.133

However, this migratory response can depend on the cell type, as
stretch increased directed migration of fibroblasts.170 Additional
experiments will help elucidate the mechanisms of static stretch in
collective epithelial behavior.

Devices with more complex actuation methods (e.g., vacuum
controllers171 or innovative systems built from LEGOsTM158) have
been engineered to study the role of cyclic stretch on epithelial behav-
ior. Studies have shown that during cyclic uniaxial stretch, cell orienta-
tion changes periodically in intestinal epithelial cells172 and endothelial
cells.173,174 This phenomenon has been observed in fibroblasts as
well.175,176 On a molecular level, changes in cellular reorientation have
been correlated with restructuring of the cytoskeleton173,177 or to the
growth of focal adhesions in osteosarcoma epithelial cells.178

Interestingly, cyclic stretch has shown minimal effect on nuclei posi-
tioning or nuclei orientation.158 Stretch-induced reinforcement mech-
anisms, including cell division and cytoskeletal restructuring, are,
however, limited in their capacity to maintain epithelia integrity, as the
tissue eventually ruptures when subjected to high stretch amplitudes
and frequencies.179

Biaxial tension: Biaxial cell stretchers can apply uniform strains
resulting in uniform tissue growth and may be more physiologically rele-
vant for certain tissue types (e.g., lung). Most studies employing biaxial
stretch have focused on cyclic protocols. It was found that, while both
cyclic uniaxial and biaxial stretch induce gap formation,179,180 biaxial cyclic
stretch can also increase the ability of epithelial monolayers to withstand
chemical disruption, as seen with human pulmonary artery endothelial
cells.180 Cyclic stretch under physiologically relevant stretch also induced a
quicker recovery of gaps/wounds compared to higher pathological stretch,
potentially due to increased activation of Rac.181 The variations in the abil-
ity of epithelial wounds to form or repair may also be associated with the
magnitude of applied stretch or the density of the epithelium itself.179

Cell stretchers continue to be optimized for higher imaging reso-
lution160 and fabrication accessibility.133,158,159,183 In addition to cell
stretchers that exert tension, devices that apply both uniaxial and

biaxial compression to manipulate cell packing and extrusion have
also been developed.158,159,184 Devices have been custom engineered to
probe the mechanics of suspended epithelia185 in either compres-
sion186 or tension.185 Unlike traditional cell stretching studies, sus-
pended monolayers are devoid of cell–ECM interactions and can be
used to isolate the effect of cell–cell interactions on epithelia behavior.
Mechanical stretch of a suspended epithelium has validated that
stretch causes division along the long axis rather than along the mono-
layer stress axis.187 When subjected to compression, a suspended epi-
thelium buckles in a manner reminiscent of an elastic material, but
recuperates tension in an actomyosin dependent manner.186 Of
course, the limitation of studying suspended epithelia is its lack of cell
migration. An open question moving forward is how observed
changes at cell–cell contacts correlate with changes in collective cell
migration throughout the tissue.

Devices that apply global forces to epithelia have been instrumen-
tal in unlocking how cell–cell contacts respond to mechanical load,
but more local approaches are needed to dissect how these mechanical
loads are propagated through an epithelium.

c. Local force application. Engineering a method to apply local
forces to an epithelium can be difficult, though necessary to recapitu-
late local forces in vivo that regulate epithelia behavior. Existing strate-
gies to apply local forces to an epithelium have utilized tunable
substrate stiffness, protein micropatterning, high precision microma-
nipulation tools, and more recently synthetic mechanosignaling
approaches. These strategies have been used, and continue to be inno-
vated, to answer questions around how local mechanics influence epi-
thelial force transmission and collective migration.

In a transition from global to local mechanical inputs, gradients
of substrate stiffness can be applied to cell collectives using methods
such as light-induced gel polymerization.188–190 Such stiffness gra-
dients exist in vivo, for example in tumor development.191 By mimick-
ing these mechanical gradients in vitro, researchers can determine how
regional cues transmit signals to influence intercellular signaling. For
example, controlled in vitro studies have revealed that cell migration
can occur in a stiffness dependent fashion,192 the basis for durotaxis.
Cells migrate toward regions of higher stiffness but can also influence
long-range intercellular force transmission.193 There are several helpful
reviews of migration on stiffness gradients.28,30,33,194

Protein micropatterns with defined gaps may be used195–197 to
answer questions surrounding protrusion dynamics of lamellipodia or
to understand epithelial gap closure (i.e., wound healing). However,
there are limited studies using this method to explore local stretch on
regulating collective migration. Other local stretch methods have been
attempted for epithelial sheets using elastomeric substrates with
“trenches”63 on an expanding (i.e., nonconfluent) epithelium.

Micromanipulation tools, including microfabricated platforms,
have also been engineered to directly apply local boundary forces to an
epithelium. By adjusting the mechanical inputs (e.g., strain) and subse-
quently observing epithelial behavior (e.g., signaling or migration),
researchers can understand how mechanical forces are transmitted
between cells. Many of these tools are exclusively compatible with 2D
epithelial sheets. For example, microfabricated silicon devices have
been used to exert a local shear or tension on an epithelium as
observed in tissue morphogenesis35,182 [Fig. 6(d)]. Following local
shear strain, cell collectives actively migrate toward the shear zone in
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an oscillatory manner for several hours after the mechanical perturba-
tion. To understand which protein complexes facilitated the collective
migratory response, the authors combined their micromanipulation
methods with an E-cadherin mutant cell line and pharmacological
approaches. Unlike the global mechanical strain induced by cell
stretchers that have caused epithelial cells to re-orient or divide, local
boundary mechanical strain has found that the epithelium may dissi-
pate mechanical stresses via collective and directed cell migration.
Other micromanipulation methods have investigated the importance
of local mechanics in more specific applications (e.g., disease). For
example, pneumatically actuated PDMS chambers were used to apply
a local mechanical stress on regions of a retinal pigment epithelium198

to assess changes in the progression of choroidal neovascularization.
Various other micromanipulation methods exist that are capable of
applying local forces to epithelial sheets, (e.g., micropipette aspiration,
magnetic twisting cytometry, and atomic force microscopy) though
are largely confined to single-cell force applications and rarely used to
investigate downstream collective epithelial migration or other dynam-
ics. Furthermore, many of these techniques have been exclusively used
to characterize mechanical properties of the static epithelium and not
as a means to study the dynamic epithelium.

The last form of manipulating mechanical inputs on an epithelial
sheet involves local synthetic mechanosignaling via optogenetics.
Optogenetics advances in the last decade allow both spatial and tem-
poral activation of force-sensitive proteins within epithelial sheets,199

which are more amenable to quantifying migration. These experi-
ments allow researchers to cross new mechanical inputs between
experimental and in silico models and determine their effects on col-
lective epithelial behavior. For example, local control of RhoA has
been shown to remodel cell–cell junctions80 and alter cell shape.200

Light-activated RhoA can also control cell traction and subsequent
activation of transcriptional regulator YAP,199 a key player in both cell
proliferation and migration. Other proteins that induce apical con-
striction (e.g., Shroom) can induce folding of an epithelial sheet.201

Aside from contractility based optogenetic tools used in epithelial
sheets, optogenetic tools have also been developed for the migration
regulating proteins cdc42 and Rac1.202–204 While still in its infancy,
future studies in optogenetics have the potential to exert unique, tun-
able control over cell migration and tissue behavior by regulating force
propagation from specific cellular regions. By utilizing optogenetics in
epithelial sheets, local synthetic signaling can be combined with highly
quantifiable cell migration methods.

3. Advantages and limitations of 2D cell sheets

2D epithelial sheets importantly preserve the relevance of cell–cell
contacts, a key component of collective migration. Unlike complex
in vitro 3D systems, 2D epithelial sheets are easily accessible for cell
migration experiments and analysis. Furthermore, they are tunable with
respect to ECM modification, substrate stiffness, and amenable to cul-
ture on microfabricated devices.35,158,171 Since the 2D epithelium is a
more general model, it also allows researchers to control the uncontrol-
lable endogenous factors that are unique to specific in vivo or organoid
environments (e.g., the effect of cell packing density or cell confluency
on collective cell migration). Such biophysical parameters can then be
translated more easily into in silicomodels. However, mechanical forces
applied to 2D in vitro systems can be outside the context of the forces

that occur in vivo. Therefore, force application methods within these
simplified systems should be considered carefully.

C. 1D cell lines and cell doublets

Even more spatially reduced models than cell sheets are linear
epithelial models (1D). Within 1D models, both force transmission
and migration is confined along the direction of a single axis. These
“cell train” models are not just limited to 1D cell lines or cell rings
[Fig. 7(a)], but can include cell doublets which are 1D by nature. Cell
lines are commonly used to study migration, which can be created
through either spatial confinement or protein micropatterning. Cell
doublets can also be spatially confined but are more commonly used
to isolate force transmission at single cell–cell contacts.

1. Methods to infer force from 1D cell lines and cell
doublets

As in other models we have discussed, TFM is a powerful infer-
ence tool for cellular traction stresses. Between cell lines and cell dou-
blets, TFM has been more widely used for cell doublets to assess how
cell–ECM tension influences stability and strength of a cell–cell inter-
action.129,205,206 TFM studies on epithelial cell pairs may be advanta-
geous for dissecting the relationship between geometric confinement
and cell contractility, or manipulating mechanical regulation at a sin-
gle cell–cell contact. The mechanical regulation of single cell–cell con-
tacts can also be combined with FRET to return semi-quantitative
feedback on intercellular molecular mechanics. For example, changing
tension at cell–cell contacts of micropatterned cell doublets showed no
change in E-cadherin tension,129 suggesting that tension over long
time-scales may be supported by junction reinforcement from the
cytoskeleton.

Image analysis, including video microscopy, is again a useful tool
for force inference and quantifying cellular migration. While PIV is
commonly used for 2D epithelial sheets, analysis can be simplified
when cells are confined to moving in a single direction. PIV has
pointed to increased speed and persistence when confining either
breast or kidney epithelial cells to a 1D style of movement,25,147 which
can be explained by a simple random walk diffusion anisotropy model.
Cells have less room to migrate in the y direction and therefore redis-
tribute that migration to the x direction. When these migration studies
were distilled to a cell doublet experimental model, the mode of con-
tact dissociation influenced how cells migrated away from one another
via change in the protrusion angle.207 Taken together, these results
from 1D model systems have brought new insight regarding how the
orientation of force at cell–cell contacts influences migration direction.

At the subcellular level, immunohistochemistry (IHC) can
answer questions surrounding protein localization and concentrations
that may be more difficult to observe in larger tissues. For example,
IHC has been used to determine protein localization at cell–cell con-
tacts during single direction movement, including how cryptic lamelli-
podia form under epithelial kidney cell–cell contacts. Further
examination of Rac1 activity has helped determine the relationship
between adherens junctions and downstream signaling to influence
cell polarity.61 For cell doublets, IHC has shown that E-cadherin and
F-actin bundle together at cell–cell contacts,208 where tension is local-
ized to edges of the cell–cell contact.205 These studies also show that
increasing tension at cell–cell contacts does not change E-cadherin
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localization or intensity.129 Even though IHC is just a snapshot of cel-
lular and protein structure, positioning of the centrosome and other
organelles can be used as an indicator of cell polarity during dynamic
processes (i.e., migration direction).209

2. Methods to apply force to 1D cell lines and cell
doublets

a. Engineering the biophysical microenvironment. Cell lines are
commonly created through either spatial confinement or protein
micropatterning. Alternative methods have also been utilized, such as
migration across a cylindrical wire.210 In spatial confinement, cells are
trapped in microfabricated glass or polymer channels anywhere from
5 to 30 lm wide.211,212 Protein micropatterns can be fabricated on
similar dimensions but rely on biopassivation techniques to restrict
the spreading of cells.25,61,114,213,214 These same techniques can also be
used for cell doublets.129,206,215,216

Several modifications to the protein microenvironment for 1D
cell models can be implemented to answer new questions regarding
how cells collectively migrate. For example, researchers havemade new
conclusions regarding how colliding cells interact to overcome contact
inhibition61,217 [Figs. 7(a) and 7(c)]. Protein micropatterns can also
guide directional migration of melanoma cells using asymmetric
“ratcheted” micropatterns.218 There is also evidence that increasing
cell–ECM tension via substrate stiffness proportionally increases cell–-
cell tension.205 Furthermore, varying the collagen gradient can impact
themigratory behavior161 in corroboration with haptotaxis.

Protein micropatterning has been used to regulate cell–cell
junctions for 1D cell doublets in various ways. For example, rectan-
gles of increasing aspect ratios can be used to alter the forces at cell–
cell contacts.129 Specific shapes for cell doublets, including I-shapes
or bowties, can alter the location or stabilization of the cell–cell con-
tact.206,216 Other geometric shapes (e.g., circle, triangle, or square) of
cell doublets have shown changes in junction maturation which has
implications for cell–cell signaling and properties of collective
migration219 [Fig. 7(b)].

b. Global force application. Several studies have globally
stretched cell doublets36,216 to determine how single cell–cell con-
tacts respond to different mechanical inputs. For example, stretch of
a mesendoderm cell doublet on a uniaxial stretcher showed lamelli-
podia extension away from the cell–cell contact.36 This experimental
finding supports a biophysical model in which intercellular tension
directs migration away from the direction of mechanical pull.
Beyond elastomeric cell stretchers for cell doublets, a recently
printed two-photon polymerization device showed strain rate
dependent rupture of cell–cell contacts.216 Even more recently, a
method using a DNA E-cadherin hybrid linker was engineered to
tune the cell–cell adhesion strength in cell doublets.220 Tuning the
adhesion properties of cell–cell contacts may have significant appli-
cations for migrating cell collectives.

c. Local force application. In a cell train, a local force would imply
mechanically perturbing one region of the train. For a cell doublet, a
local force would imply perturbing only one of the cells. Optogenetics
has been useful so far in locally perturbing 1D epithelial models. For
example, an Opto-Rac1 tool was used to locally perturb migration
within a cell line.61 Less common methods have been used to dissect
cell doublets, though in one study a mechanical probe was used to pull
at the cell–cell contact and induce E-cadherin tension.135

3. Advantages and limitations of 1D cell lines and cell
doublets

The 1D model simplifies the mechanical forces acting on cell–cell
contacts by reducing the number of cell–cell contacts per cell. Force
exchanges can be directly in line with cell migration and can make the
relationship between cell–cell signaling and migration easier to under-
stand132 and analyze. Cell doublets allow researchers to more easily
calculate forces acting at single cell–cell contacts with more certainty
compared to larger clusters or collectives.132 Both lines and doublets
also offer high control and tunability and are useful with high resolu-
tion microscopy.

FIG. 7. In vitro 1D experimental models. (a) MDCK epithelial cells have been grown
on micropatterned ECM rings to direct their single-file motion in a circle.61 (b)
Alternatively, linear tracks have also been used to force cell–cell collisions which
can have different implications for cell migration depending on how they interact.217

(a) Adapted with permission from Jain et al., Nat. Phys. 16, 802–809 (2020).61

Copyright 2020 Springer Nature. (b) Adapted from Sri-Ranjan et al., Nat. Commun.
13, 4832 (2022).219 Copyright 2022 Author(s), licensed under Creative Commons
Attribution 4.0 International (CC BY 4.0). (c) Adapted from Scarpa et al., Biol. Open 2,
901–906 (2013).217 Copyright 2013 Author(s), licensed under Creative Commons
Attribution 3.0 Unported (CC BY 3.0). Scale bars: a¼ 50lm, c¼ 10lm.

Biophysics Reviews REVIEW pubs.aip.org/aip/bpr

Biophysics Rev. 4, 021303 (2023); doi: 10.1063/5.0142537 4, 021303-10

Published under an exclusive license by AIP Publishing

pubs.aip.org/aip/bpr


The largest limitation of these reduced 1D models is their lack of
physiological relevance compared to in vivo systems or more complex
in vitro systems.

D. Single cell micromanipulation systems

The most reduced cellular system for studying cell migration and
force transmission is the single cell. However, fewer single cell epithe-
lial studies exist since cell–cell contacts are so critical to epithelial
behavior. Most studies with single epithelial cells primarily focus on
either single cell mechanics (e.g., stiffness) or single cell migration.
Some cleverly designed studies use single cell epithelial models to con-
nect intercellular forces to cell migration.

1. Methods to infer force from single cell systems

For single cells, TFM is a common method to infer force of a
moving cell as a way to understand how its microenvironment influ-
ences migration.221–223 Other methods for single cell force inference
are not necessarily unique from other models, which include tools
such as FRET,224 atomic force microscopy,222 IHC,223 and live cell
imaging.36 Since the focus of this review is on collective cell mechanics,
we will not go in depth into many single cell force inference studies.

2. Methods to apply force to single cell systems

a. Engineering the biophysical microenvironment. As covered pre-
viously in this review, a basic component of the microenvironment for
epithelial cells is substrate composition and mechanics (e.g., the ECM
and stiffness), which is easily tuned for single cell environments
in vitro. With innovative experimental design, many conclusions
regarding collective cell mechanics have been extrapolated from these
findings. For example, cell culture substrates functionalized with cell
contact mimicking E-cadherin has shown stiffness dependent adhe-
sion regulation.221

More complex methods to tailor the microenvironment for single
cells involve protein micropatterning, which offer controlled physical
pathways for single cell migration. Many of these studies involve 1D
tracks or channels where only single cells are allowed to move in the
tracks.211,213 For example, microfabricated tapered channels helped
determine how cancerous vs noncancerous breast epithelial cells navigate
something akin to a tumor microenvironment during metastasis.211

b. Global/local force application. In contrast to using protein
micropatterns to create migration tracks for single cells, numerous
studies have used protein micropatterns to regulate various aspects of
cytoskeletal dynamics (e.g., actin orientation, interfacial tension, chi-
rality, and overall traction force110,111,225,226). More active approaches
have utilized cyclic cell stretchers, where reorientation of NRK epithe-
lial cells occurred through microtubule extension during the relaxation
phase.177 Interestingly, many single cell epithelial studies using
cell stretchers have mainly focused on changes in focal adhesion and
cytoskeletal dynamics, rather than changes in migratory
activity.160,177,178,224

There are few single cell studies that combine an applied force
and the subsequent effect on cellular migration. Limited studies exist
in part because there are few tools (besides TFM) that can apply force
and measure migration. Techniques such as atomic force microscopy,

magnetic or optical tweezers, and micropipette aspiration apply and
quantify forces on cells, but often do not look at actively migrating
cells or how such forces have differing impacts on cell migration.
However, one study utilized magnetic tweezers to connect force to
migration, where E-cadherin coated magnetic beads were pulled
against single mesendoderm cells to measure cell polarization (i.e.,
migration).36

3. Advantages and limitations of single cell systems

Unlike in vitro models that utilize cell collectives, observational
studies of the fundamental single cell can reveal more information
about cell morphology. For example, the lamellipodia can be easily
visualized, unlike the cryptic lamellipodia of moving cells in a sheet.

However, while many single cell epithelial studies attempt to
extrapolate collective behavior, epithelial cell–cell contacts are integral
to both migration and tissue integrity. The lack of this additional com-
plexity should be considered in single cell studies aiming to make con-
clusions about collective cell properties. Furthermore, many tools that
study single cell mechanics largely investigate nonmoving cells outside
the dynamic nature of epithelia.

III. BIOPHYSICAL IN SILICO MODELS OF EPITHELIAL
DYNAMICS

The physical state of epithelia has important consequences for
how cells communicate and how biological tissues respond to force
and deformation. Confluent epithelia can exist in a solid-like
(jammed) state or a liquid-like (unjammed) state. A jammed state is
characterized by compact, roughly isotropic cells with reduced motil-
ity. Cell–cell adhesions are highly mature with few to no neighbor
exchanges. The unjammed state is characterized by a disordered con-
figuration of anisotropic cells with frequent neighbor exchanges.
Neighbor exchanges lead to tissue level rearrangements that allow the
tissue to “flow” and remodel, thus affecting the tissue’s response to
forces and deformations.17,227,228 A physical property that distin-
guishes between the two states is the mean cell shape, as quantified for
instance by q ¼ hPi=

ffiffiffiffiffi
Ai
p
i, where Pi and Ai are the perimeter and area

of the ith cell and the brackets denote an average over all cells in the
tissue.229 Theoretical work229 supported by experiments230 has indi-
cated that a thereshold value q� ’ 3:81 separates jammed (q; q�) from
unjammed (q > q�) tissue.

Confluent epithelia can undergo jamming–unjamming transition
by tuning cell-edge tension, cell motility, and the rate of cell division.17

The tissue jamming transition has been predicted theoretically231,232

and has been observed in vivo in the body axis elongation of Zebrafish
embryos18 where unjamming drives morphogenetic flows.18–20

Unjamming is also thought to play a major role in cancer cell
invasion.107,233

The iterative back and forth between in silico, in vitro, and in vivo
studies has brought forth new understanding of collective cell motion
in epithelia. In silico models are useful to quantify the role of distinct
mechanisms that cannot be disentangled experimentally. For example,
they have provided quantitative understanding of a number of pro-
cesses that affect the onset of cell jamming/unjamming, such as cell
motility,107,231 cell–cell adhesion and cortex contractility,233,234 the
interaction of cells with their environment,107,233 and the rate of cell
division.235,236
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We can classify existing models of epithelia in three groups: Cell
Edge Networkmodels, continuummodels, and agent based models.237,238

A. Cell Edge Network models

Under the heading of Cell Edge Network models, we group a
number of 2D models that describe cells in confluent tissues as irregu-
lar polygons covering the plane, with no gaps between cells and shared
edges representing the network of adherens junctions that connect
neighboring cells.240–242 This 2D representation models a cross section
(e.g., apical or basal surface) of the epithelial tissue layer.243,244

The most popular models of this type are vertex models that
describe the tissue as a network of N polygonal cells labeled by
i ¼ 1; 2;…;N , each with area Ai and perimeter Pi. The mechanical
and structural properties of the tissue are described by energy

E VM ¼
X
i

Ki

2
Ai � A0

i

� �2 þ
X
hl;�i

Kl� ll� þ
X
i

Ci

2
P2
i : (1)

The first term in Eq. (1) quantifies the energy cost for deviation of the
ith cell area from its target value A0

i and capture cell area elasticity,
with associated stiffness Ki. Although tissues are generally practically
incompressible, this term accounts for the fact that cells can change
their 2D cross-sectional area by changing their height. The second
term describes line tension Kl� along cell edges connecting vertices l
and �, with ll� the corresponding cell-edge length, and is summed
over all neighboring cell edges (hl; �i). The line tension is positive
when cortical tension dominates inter-cellular adhesion and negative
otherwise. The last term describes contractility of the cell perimeter of
strength Ci, which is set by various processes in the cell, such as acto-
myosin ring contraction.241

Vertex models have been widely successful in studies of morpho-
genetic tissue remodeling and deformations in 2D20,244–246 and in 3D
epithelial layers and organoids.106,247–250 They have been modified to
include a variety of active processes, such as cell motilty, as in Active
Vertex Models,251 cell-edge tensions fluctuations,252 cell proliferation
and death,169,235 and even to allow for local tearing of the tissue.253

A related class of models consists of Voronoi models, where the
cell energy is written entirely in terms of cell area and perimeter as

E V ~ ¼
1
2

X
i

Ki Ai � A0
i

� �2 þ KP
i Pi � P0

i

� �2h i
: (2)

The Voronoi energy can be obtained from the vertex model energy by
assuming uniform cell edge tensions Kl� ¼ K. An important distinc-
tion between the two models is that in vertex models the degrees of
freedom are the cell vertices, while in the Voronoi model the degrees
of freedom are the centroids of the polygonal cells. This makes
Voronoi models more directly suitable for including cell motility, as
implemented in the Self-Propelled Voronoi (SPV) model.231,251 In the
SPV, the cell centers have a noisy self-propulsion velocity and are
acted upon by forces derived from the energy given in Eq. (2). This
model has been used to study the effect of cell motility on the tissue
jamming–unjamming transition.231 The further addition of alignment
interactions has revealed the possibility of flocking liquid and solid
states, with possible relevance to collective cell migration.254,255

A related model is the Active Tension Model (ATN) that neglects
area elasticity, but includes the mechanical feedback between cell-edge

tension and myosin activation.256 This model can explain the variable
apical areas of ventral cells in early stages of gastrulation in the fruit fly
embryo. Another modified vertex model study links contraction pulses
acting like mechanical ratchets to tissue-scale deformations during
morphogenesis.80

The idea of representing tissues as networks has been shown to
be useful even in the analysis of in vivo experimental data. Using net-
works of cell centers, called cell connectivity networks, a recent study
linked changes in tissue rigidity and tissue viscosity to variation in cell
packing fraction.234

Cell Edge Network models are generally appropriate for conflu-
ent tissue. They have been adapted to allow for the creation of extra-
cellular spaces in vertex models.257,258 Like vertex models, the “active
foam” model258 predicts that edge tension fluctuations control stress
relaxation and tissue fluidization, which is corroborated by in vivo
studies.258 In spite of these adaptations, Cell Edge Network models
may not be ideal for systems that can develop inter-cellular gaps, as for
instance near the transition from epithelial to mesenchymal behavior.
In such cases agent based models, such as active particles or multi-
phase field models may be more appropriate (see Sec. IIIC).

B. Continuum models

Continuum models describe epithelial tissues on scales much
larger than the size of individual cells.259,260 In a continuum model the
tissue is described in terms of a few coarse-grained fields that vary in
space and time, such as the mean cell density, velocity, and polarity.
The tissue dynamics is then controlled by conservation laws and
constitutive equations that capture the system’s symmetries and
mechanical state. Epithelial monolayers are often modeled as active
viscoelastic261 fluids or viscoplastic elastic sheets, with couplings to
internal degrees of freedom that account for active processes, such as
contractility and cellular polarization. Continuum models have been
shown to account for the heterogeneous spatial distribution of cellular
stresses inferred from TFM in both expanding64,130 and confined262

monolayers, and even at the level of cell clusters132 and individual
cells.205 They have also captured collective waves in migrating mono-
layers239 as observed in in vitro experiments.263 Continuum models
have also been used in conjunction with in vitro studies to explain cell
extrusion and apoptosis,21 intercellular force transmission during
migration,63 long range force transmission leading to durotaxis,193 and
curvature dependent mechanics of purse-string contraction during
gap-closure.197

They have also been used to predict the causal relation between
stress patterns induced by myosin contractility and cell flow in in vivo
morphogenesis in Drosophila gastrulation68 and ventral furrow forma-
tion,264 as well as viscosity and cell ingression rates in Zebrafish body
axis elongation19 and surface displacements in early starfish oocyte
development.265

Continuum approaches do not attempt to faithfully incorporate
intracellular processes, but rather aim at characterizing quantitatively
the modes of organization and the materials properties of cell collec-
tives in terms of a few macroscopic parameters, such as cell density
and shape, cell–cell adhesiveness, contractility, polarization and
division/death rates. Each of these quantities may describe the com-
bined effect of a number of molecular processes and signaling path-
ways. An important open challenge is relating the coefficients of
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continuum models to both the parameters of mesoscopic (e.g., Vertex)
models and to quantities controlled in experiments.

Another key limitation of the most current continuum modeling
approaches lies in the assumption of fixed materials properties of tis-
sues, which is encoded in the choice of a particular constitutive law.
Tissues are able to adapt their mechanical response to perturbations
(both external and internal) and are characterized by multiple relaxa-
tion times. This demands a rheological model capable of capturing
both active solid-like and fluid-like behavior in different regimes of
stress response and to dynamically transition between the two. In
other words, one needs to incorporate the feedbacks between cellular
mechanics, polarized motility, and the regulatory biochemistry of acto-
myosin contractility.259,266 These couplings play an essential role in
the transmission of spatial information in large cell monolayers, medi-
ated by waves, pulses, and a tug of war between cell–cell and cell–
substrate forces.

C. Agent based models

Agent based models describe each individual cell as a discrete
agent with its own biophysical properties and interaction forces with
other cells and with the surrounding environment.267 Agent based
models can be defined on a lattice with cells constrained to occupy
spaces on a discrete grid, as for instance in Cellular Potts models268–270

or Cellular Automaton type models.123,233 They can also be defined
off-lattice as multi-phase field models,271,272 deformable particle mod-
els,179,273 various Spring link models274,275 or 1D train models.61,276,277

Recently, a Cellular Potts model was used to study the role of ECM
confinement on collective and single-cell dynamics.233 Phase field
models were originally developed to study multi-component micro-
structure materials278 and have been adapted to represent epithelial
cells as deformable active particles.271,272,279–284 Each cell (i) is repre-
sented by a phase field [/iðx; tÞ] defined to have value 1 in the region
occupied by the cell and 0 otherwise (refer to Fig. 8). Cell–cell interac-
tions and cell shape are controlled by a Cahn–Hillard phase field free
energy, whose minimum determines the ground state configuration of
the tissue.238 Phase field models can then be augmented to include
cell-individual properties like polarization, contractility, self-
propulsion, as well as cell–cell interactions and active stresses.281,283

Phase field models additionally allow for variations in both cell density
and cell shape and can resolve arbitrary cell shapes. These models
have been used to explore many behaviors of biological tissue, such as
liquid–solid transitions,282 spontaneous emergence of collective cell
migration,272 collective sustained oscillations,112 emergent nematic
behavior and defects on mesoscopic scales,283 differential elasticity of
cancerous vs healthy cells,271,285 and how contractile cells can yield tis-
sue scale extensile behavior.283

Many more modeling approaches exist238 beyond the ones
described above, such as hybrid multiscale models linking continuum
description to agent based description.270,286 In silico modeling is a
powerful tool for filling in gaps in both in vivo as well as in vitro
experiments and can motivate new directions of experimental inquiry.

IV. DISCUSSION
A. Summary of local vs global mechanical
perturbation

There is a broad spectrum of devices that can be used to exert
forces on epithelia for the purpose of understanding collective cell

behavior. These devices can be soft or rigid, transparent or opaque,
low-throughput or high-throughput, etc. However, an important dis-
tinction we want to highlight is the ability for a device to apply a local
force (i.e., region of cells within the tissue) or global force (i.e., the
entire tissue) (Fig. 9). Epithelial tissues in vivo experience a range of
mechanical deformations that are not always uniform across the tissue.
Tissue forces and strains are often regionalized with high variability
across different parts of the tissue depending on the microenviron-
ment or biochemical gradients. So far, most devices in the literature
apply mechanical deformation across all cells (e.g., cell stretchers) or
on a single cell (e.g., atomic force microscopy, optical tweezers, micro-
pipette aspiration). Future studies focused on applying regional or
local strains to epithelia will help elucidate how mechanical cues prop-
agate through the epithelium.

Our limited understanding of how forces propagate through epi-
thelia subsequently hinders our understanding of how local forces
influence migration. Currently in the literature, there are conflicting
models with respect to how intercellular forces direct migration. Many
biological models suggest that cells follow local force,4,34 corroborating
the theory that leader cells pull on follower cells to direct them for-
ward. However, some biophysical models suggest that cells move away
from increasing tension.36,64,130 These models are reminiscent of con-
tact inhibition, where collision of cell–cell contacts cause cells to polar-
ize in the opposite direction and turnaround.217,276,287 Perhaps these
different models can be explained by differences in cell–cell contact
regulation for leader–follower cells vs neighboring cells moving within
a confluent epithelium.

To elucidate the discrepancies between these migration models, a
new class of in vitro studies would be beneficial. Many studies regard-
ing force-induced repolarization have been modeled through simula-
tions and theory,276,287 but few have experimentally taken into
account the complex variables of the cell–cell contact. Even
experimental studies that have made conclusions about intercellular
forces are often based on TFM without external mechanical
manipulation.26,129

In vitro models will be a useful platform to dissect these complex
variables that exist in biology but require micromanipulation techni-
ques to directly probe and manipulate intercellular cues.

B. Additional variables to consider when mechanically
loading cell–cell contacts

Beyond devices and tools that mechanically manipulate regions
of tissue, there are also limited studies on the impact of different kinds
of mechanical strain (e.g., strain rate, magnitude, frequency, or direc-
tionality) of mechanical force and subsequent effects on collective
dynamics. Many different forces exist at cell–cell contacts and these
changes are likely to influence force propagation and subsequent
changes in collective cell behavior.

For example, several studies have shown the physiological signifi-
cance of oscillatory strains as they are needed to drive tissue deforma-
tions or junction remodeling.80 However, many studies apply either
step or single strains to the epithelium. Beyond step vs cyclic strain
application, the rate of strain is another important variable that can be
implemented in future studies.288

Mechanical forces can also vary with respect to their orientation
on cell–cell contacts (e.g., tension and shear). Tugging at cell–cell con-
tacts of different orientations may have implications for junction
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adhesion and downstream signaling.289 Tensile tugging forces, where
force is exerted perpendicular to the cell–cell contact, occur regularly
in developmental events such as invagination, neural tube develop-
ment, and routinely in lung epithelial stretch or in intestinal
crypts.39,41,45,51,290–292 Shear forces, where cell membranes are pulled

laterally past one another, also occur regularly in development (e.g.,
gastrulation and Drosophila genitalia development).39,289,293 Beyond
potential downstream signaling for cellular function, the orientation of
cell–cell contacts under mechanical load may influence their molecular
interactions and ability to collectively migrate. This spectrum of

FIG. 8. In silico models. (a) Vertex model of cells i; j; and k sharing a vertex l under tension from three edges. (b) Multi-phase field model of deformable cells. The bottom
graph shows how the total phase field U ¼

P
i /iðx; tÞ varies in the x direction as we move along the arrow. (c) An example of a continuum picture, where an epithelial

monolayer sits atop a substrate with the edges free to move. Contractile elements generate active contractile stress and cells move by generating traction with the substrate.
(c) Adapted from Banerjee et al., Phys. Rev. Lett. 114, 228101 (2015).239 Copyright 2015 American Physical Society.

FIG. 9. Engineered approaches used to probe and infer mechanics of epithelia. Differentiating local vs global force application techniques can increase our understanding of
how forces are transmitted between cells to influence collective behavior. These methods are discussed in more detail throughout Sec. II with appropriate references that pro-
vide more information on their applications.
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molecular interactions at cell–cell contacts could help explain how dif-
ferent stages of embryo development utilize different modes of cell
migration with regard to retaining cell neighbors. In zebrafish eyelid
closure, cell monolayers utilize collective cell movements while retain-
ing neighbors291 via cell–cell adhesion. In germband extension, cells
actively migrate past one another by breaking and reforming trans-
membrane binding proteins in a process known as intercalation.9

Alternatively, cell–cell contacts under tension may promote adhesion
reinforcement.

Whether cell junctions experience predominantly shear or ten-
sion depends on the dynamics of the local microenvironment (e.g.,
bending, folding, or constriction events).41,45,294 Other cell–cell
mechanics can include compression, which has been shown to lead to
extrusion and subsequent gap closure.295–297

C. Applications for synthetic biology and biomimetics

Epithelia are biological tissues that create and maintain life. At
the core of these studies, researchers stand to gain fundamental under-
standing of how tissues develop, regenerate, and provide protection
for our organs. However, epithelia are also nature’s best examples of
active matter. Understanding the collective and regenerative dynamics
of epithelia will enable the advancement of synthetic materials with far
reaching applications in society. For example, synthetic membranes
could be engineered to alter filtration specificity as a function of envi-
ronmental inputs (e.g., mechanical stress). Other materials could self-
repair when “wounded” from a rip or tear.

Several other reviews focus on additional aspects of collective cell
migration and engineered platforms that have been used for in vitro
cell studies.84,298–301 Several methods in mechanobiology have also
been commercialized in recent years beyond cell stretchers mentioned
earlier (Forcyte Biotechnologies, CYTOO, Alv�eole, 4D-Cell). These
commercialized platforms will help to accelerate mechanobiology
studies in both academia and industry.
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