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ABSTRACT OF THE THESIS

Effects of Electronic Coherence in Ultrafast Spectroscopy

By

Kochise Bennett

Master of Science in Physics

University of California, Irvine, 2016

Professor Shaul Mukamel, Chair

Electronic dynamics takes place on the attosecond timescale. Recent technological advance-

ments permit the creation of light pulses with durations in the attosecond regime, opening up

the possibility of monitoring this ultrafast dynamics in real time. In particular, it becomes

possible to observe the time-dependent interference between material electronic states, thus

tracking the electronic energies temporally. This information, originating in the coherence

terms in the electronic density matrix, can provide spectral information in the time-domain.

Such an approach is particularly useful when the desired information is transient. In this

thesis, we examine how electronic coherences contribute to photoelectron and a variety of

x-ray Raman signals. We then utilize photoelectron spectroscopy and linear off-resonant

Raman (TRUECARS) to track the dynamics of a model system by way of example.
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Chapter 1

Introduction

Light forms the basis of vision, our primary means of obtaining sensory data about the ex-

ternal world. Wtih Maxwell’s seminal work in the early 1860’s, the first steps were taken

on the long road to understanding the nature of light and how it interacts with matter. A

theory of light-matter interaction not only puts us in a position to comprehend in detail how

our faculty of vision operates but also to pursue other means of using light to gain knowledge

about objects. Indeed, the past century is replete with examples of the reciprocity of our

understandings of light, matter, and how they interact. Attempts to explain blackbody radi-

ation, the photoelectric effect, and atomic emission spectra, were all famously instrumental

in the early development of quantum mechanics.

Since the pioneering work of Ahmed Zewail and the many who followed in his footsteps,

it has been known that the ultrashort, coherent laser pulses that had recently been devel-

oped could be used to track the nuclear motion and thus monitor chemical dynamics in real

time (see [2, 3] and references therein). The idea of creating molecular movies to visually

reconstruct chemical reactions, obtaining clear physical pictures, is obviously very enticing.

As pulse technology has continued to develop into the x-ray and attosecond regime, it has
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become possible to generate wavepackets of electronic excitations that evolve collectively as

well as to probe ultrafast reaction dynamics such as occurs at certain key nuclear configu-

rations called conical intersections, near which the nuclei move on a similar timescale to the

electrons. The analysis of such signals and what information may be extracted from them

has been an exciting area of recent inquiry. The goal of this manuscript is to introduce the

basic formalism for describing a broad variety of spectroscopic techniques and analyze in

depth several example signals, calculating them for a model system and demonstrating their

information content in each case. We will show that attosecond x-ray spectroscopies form a

powerful toolbox for monitoring ultrafast nuclear and electronic dynamics and, in particular,

that the ability to monitor the time-dependent electronic coherences opens up exciting new

ways to probe chemical dynamics in regions of NACs such as CIs or avoided crossings.

1.1 Background

a 
c 
d 

x 
y 

Figure 1.1: Level scheme for the broadband x-ray Raman experiment. a, c, d are low-
frequency, valence electronic excitations and x, y are high-frequency core excitations.

Our goal in this manuscript will be to develop some understanding of the role of electronic

coherences in ultrafast spectroscopies, typically on the attosecond-femtosecond timescales
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employing pulses in the extreme ultraviolet (XUV) to x-ray regime (we will refer to the

pulses as “x-ray” throughout the manuscript). Although the discussion and formalism could

be laid out quite generally, i.e., for an arbitrary energy-level scheme, we will concretize the

subject by considering a system with two manifolds of electronic eigenstates; a lower manifold

consisting of the ground state and valence excitations and an upper manifold consisting of

a core excitation (core energy-levels are generally in the XUV to x-ray energy range) and

valence excitation substructure (i.e., the direct product of a set of valence excitations and

a single core excitation). This general level scheme is depicted in Fig. 1.1. Except for the

scale of the energy gaps, this is the same level structure as formed by the direct product of

a valence excitation and a set of vibrational excitations. As a result, the signals discussed

generally possess analogs in the longer-wavelength regimes.

While our discussion of spectroscopic techniques must be limited in scope, we can gain a great

deal of generality by introducing the “pump-probe” conceptual framework. We can imagine

an arbitrarily-complex state preparation process (the pump) that yields an initial state. The

state is allowed to evolve freely for some time before analysis via a probe, which may consist

of one or more pulses. As long as the externally applied potentials (the pump and probe)

are temporally well-separated, this dissection of the interactions into pump and probe is

unambiguous. Since any technique could be considered as a sufficiently-complex probe, this

separation is somewhat artifical. It is useful, however, to focus on what information about

a given initial state may be obtained from different probing processes in a general sense.

We thus consider the pumped state as arriving from a black-box process and express the

signals in terms of the evolution of this pumped state. In this manuscript, we will limit our

discussion to transient absorption, various types of Raman, and photoelectron spectroscopy.

These correspond to direct transitions between core levels (i.e., intermanifold transitions),

Raman transitions between valence levels (i.e., intramanifold transitions), or direct excitation

of electrons to continuum states which are not yet included in our model and will be added in

chapter 4. Through this development, we will discover that our analysis naturally leads to a
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large catalog of possible signals, some of which are quite novel [?]. An understanding of each

of these possible probes and what information it accesses gives us a toolbox of techniques to

probe system dynamics at various energies and timescales.

While the most obvious distinguishing feature of x-ray pulses is that they are a direct probe

of core-level excitations, they possess two distinguishing and complementary features; a

large bandwidth (on the order of eV) and an ultrashort duration (as-fs). The first of these

properties permits the creation of wavepackets of valence electronic excitations via x-ray

Raman processes, as well as the simultaneous probing of a broad spectral region. The second

property permits the probing of ultrafast dynamics and, together, these imply the abilitiy to

create wavepackets of valence excitations and monitor their subsequent evolution, in analogy

to the use of lower-energy Raman interactions to create and monitor vibrational wavepackets.

An equally exciting application however, is the possibility of monitoring ultrafast nuclear

dynamics, and thus chemical reactions. This would allow the probing of reactions that

take place on too-short a timescale for other spectroscopic techniques. Thus, although the

energy-scales being probed in the problem might not seemingly call for an x-ray probe, the

timescales might make x-rays necessary.

The inclusion of nuclear degrees of freedom, on top of the electronic, complicates matters

since there are now three energy scales (vibrational, valence, and core). Equivalently, this in-

troduces an additional level of time-dependence not present vibrational-valence spectroscopy

and opens up a brand new avenue to probing nuclear dynamics. There are various levels

of theory at which this topic may be approached. From the eigenstate perspective, the

inclusion of the nuclear degrees of freedom adds a vibrational substructure to the valence

excitations. Generally, a complete eigenstate solution of the joint electronic-nuclear is nu-

merically taxing, particulary with more than one relevant nuclear coordinate. However, we

are interested only in spectroscopic signals, which are determined by the transient response

of the material. Fortunately, this response, and the associated signals, can be obtained via
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a direct, real-space time-propagation scheme (such as the Lanczos algorithm) described in

appendix C.1 that is much faster than a full diagonalization.

Chemical reactions can be understood in terms of the motion of molecular nuclei along

energy surfaces, the shape of which is determined by the electronic eigenvalue problem

Ĥel(q̂)|εl(q̂)〉 = ε̂l(q̂)|εl(q̂)〉 (1.1)

where Ĥel is the electronic Hamiltonian, |εl(q̂)〉 is the state with energy ε̂l(q̂) and l runs

over valence (a) and core (x) excitations. This equation is solved for each value of the

nuclear coordinates, yielding the set of energy surfaces that determine the nuclear dynamics.

The set of nuclear coordinates is collectively denoted q̂ ≡ {q̂1, . . . , q̂n}, the exact number

of which is not important but we label as n for concreteness. Throughout this manuscript,

we will use bold to indicate a vector quantity and the circumflex to represent an operator.

The treatment of the nuclei is thus fully quantum-mechanical and the electronic energy

ε̂l is an operator due to the nuclear dependence. This procedure is known as the Born-

Oppenheimer approximation (BOA) and is exact in the adiabatic limit in which the nuclei

move infinitesimally slowly relative to the electrons. This picture can be fully corrected by

the inclusion of intersurface couplings, called non-adiabatic couplings (NACs) or Non-BOA

terms, that are due to the nuclear kinetic energy operator. These terms are often negligible

but become important when the electronic potential surfaces cross (a conical intersection

or CI) or nearly so (a so-called avoided crossing). These important, and not uncommon,

exceptions to the BOA are an active area of research and will inform the model we analyze

in chapters 3 and 4. In this manuscript, we will not concern ourselves with the solution

of the electronic eigenvalue problem or the determination of the electronic transition dipole

moments or NACs, taking these to be given as functions of the nuclear coordinates. The

practical calculation of these quantities is generally a highly nontrivial problem that forms

the subject of quantum chemical electronic structure theory.
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To approach the problem of spectroscopic signals dependent on nuclear, valence, and core

dynamics, we proceed in two steps. We first give an account of off-resonant and resonant

x-ray Raman spectroscopy under the assumption of static nuclei (chapter 2), developing

a multitude of probe techniques and giving examples of each for a sample level-scheme

so as to illustrate their properties and use. The subsequent chapter utilizes one of these

techniques, the off-resonant linear technique with a shaped pulse (known as TRUECARS),

to examine the dynamics of a schematic 1-D model system as well as a more realistic 2-D

model representing a CI in acrolein. This technique has a unique sensitivity to electronic

coherences and is particularly easy to simulate. In chapter 4, we discuss time-resolved

photoelectron spectroscopy (TRPES) and utilize this example to explore several levels of

theory at which the nuclear motion may be included before simulating the photoelectron

signal for the 1- and 2-D model systems of chapter 3. While TRUECARS and TRPES are

only a few of the many possible signals, including those discussed in chapter 2, their analysis

is sufficiently informative to provide a qualitative understanding of what other probes might

yield and a general picture of the role of various probes in our toolbox.

1.2 Defining the Problem

In this section, we begin to formalize the above discussion and lay the groundwork for

the evaluation of signals in the following chapter. Along the way, we will elucidate the

assumptions under which we approach the problem. Spectroscopic signals are calculable via

the time-dependent expectation value of a material operator. Throughout the manuscript,

we evaluate these expectation values perturbatively in the electric field amplitude using the

interaction picture with respect to the field-matter interaction. Terms in this perturbation

series expansion are represented by loop diagrams [4, 5] in Hilbert space, which we employ in

favor of the Liouville-space theory. The Liouville-space description is necessary when system-
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bath coupling is important and pure dephasing alters the dynamics. However, it complicates

the description of the signals by forcing us to work with ladder diagrams, which are more

numerous than loop diagrams since the relative order of ket vs. bra interactions is then

important. Such an extension is necessary to fully describe the decoherence times but not to

analyze the impact of electronic coherences while they remain, though it clearly has practical

bearing on the observability of certain signals. As will be discussed in greater detail below,

the present treatment is even general enough to incorporate system-bath interactions during

the pump or the pump-probe delay period provided that such interactions are negligible

during the probing process itself.

In this manuscript, we consider a system of identical, non-interacting molecules coupled to

an externally applied electric field. Aside from a wavevector phase-matching factor that

enforces momentum conservation, the response from such a system is just the response of

a single molecule scaled by the number of molecules in the sample. The phase-matching

condition is important experimentally for discriminating various signals (such as the various

contributions to four-wave-mixing spectroscopy [6]) and justifies the focus on particular

diagrams but does not affect the calculation of those diagrams, and thus the signals. We

will thus generally ignore the phase-matching condition, only recollecting it occasionally

to discuss the contributions of various diagrams. While most experiments are performed

on many-molecule samples, many samples are sufficiently dilute so that their constituent

particles may be considered as non-interacting. There are corrections to this picture, such as

cascading contributions and molecule-molecule interactions, but they are beyond the scope

of the present work. Within the dipole approximation, such a system can be described by

the following Hamiltonian

Ĥ(t) = Ĥmol + Ĥfield + ĤI(t) (1.2)
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where

Ĥmol = T̂ + Ĥel = −1

2

∑
i

1

mi

∇2
i +

∑
l

ε̂l(q)|εl(q̂)〉〈εl(q̂)|. (1.3)

is the molecular Hamiltonian written as the sum of the nuclear kinetic energy T̂ and the

electronic Hamiltonian Ĥel,

Ĥfield =

∫
d3k

(2π)3
ωkâ

†
kâk (1.4)

is the Hamiltonian of the electromagnetic field written in terms of creation and annihilation

operators, â†k and âk, for field mode k, and

ĤI = −Ê(t) · V̂(t) (1.5)

is the dipolar field-matter coupling written in terms of the electric field operator Ê(t) and

the electronic transition dipole operator V̂(t). We utilize atomic units (h̄ = e = me = 1)

throughout and all time-dependencies are due to working in the interaction picture, wherein

the interaction-free evolution is built into the operators. For an arbitrary operator Ô, we

have

Ô(t) ≡ ei(Ĥmol+Ĥfield)tÔe−i(Ĥmol+Ĥfield)t. (1.6)

where we could include Ĥfield in this interaction-free propagation for completeness but it

will not be relevant in this manuscript since the quantum-nature of the field will only be

used to derive arbitrary-order signal expressions (see appendix A), a semiclassical treatment

being invoked for the actual calculation of expectation values. Note that, due to the dipole

approximation and the single-molecule assumption, the spatial structure of the field is not

relevant. The single-molecule assumption can be relaxed and, provided the field-matter in-
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teraction volume is large compared to the wavelength, the associated spatial integration over

the phase factors eik·r is the origin of the aforementioned delta-function enforcing momentum

conservation and the factor of the number of molecules in the sample. Such complications

must be taken into account when considering wavevector-dependent signals, such as four-

wave mixing, probing the spatial structure, as in diffraction, or discussing the effects of

molecule-molecule interactions. The expansion of the electric field operator in plane wave

modes is given by Eq. A.2 and the electronic transition dipole operator can be written as

V̂(t) =
∑
xa

V̂xa(q̂, t)|εx(q̂)〉〈εa(q̂)|+ H.c., (1.7)

where we we consider only core-valence transition dipole moments in this manuscript. This

reflects our focus on x-ray wavelengths, beyond the range of valence excitations. Note that

the electronic Hamiltonian, Ĥel, is presumed diagonalized. In this manuscript, we do not

discuss the problem of determining the electronic structure or its solution, but rather take

the eigenstates, eigenvalues, and transition dipole moments V̂kl(q̂) to be given from quantum

chemistry calculations.

A vast array of spectroscopic signals and techniques can be understood from studying the

evolution and properties of systems described by Eq. 1.2. Neglecting the q̂-dependence leads

to a simplified Hamiltonian that applies to molecules in which the nuclei are static on the

experimental timescale as well as to atoms, the latter of which lack internal nuclear coordi-

nates. Time-dependence in spectroscopic signals is then determined by the electronic eigen-

frequencies. The overlay of the coupled electronic-nuclear dynamics continuously changes

these frequencies, complicating the signal but providing information on the evolution of the

system. Additionally, the nuclear kinetic energy operator T̂ can couple electronic energy

levels, leading to transitions between electronic states that become important near avoided

crossings or CIs.
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While an exception to the Born-Oppenheimer approximation, CIs are ubiquitous in chemistry

and determine the outcome and rates of nearly all photochemical reactions. By coupling

nearby electronic surfaces, NACs provide radiationless de-excitation pathways for photo-

excited molecules. This mechanism is well-known to serve the function of protecting the

DNA base thymine from photodamage via UV excitation from sunlight as well as. . . and

countless other examples. It is no surprise then that conical intersections have been an

active area of intense research. The complicated entangled dynamics of the nuclei with

valence and core electrons makes spectroscopic signals more difficult to interpret but allows

a window into the progression of chemical reactions at crucial points in time. Making sense

of spectroscopic signals that probe this complicated regime, transient dynamics of multiple,

interacting energy-scales, requires tools that lie at the intersection of attosecond x-ray science,

theoretical spectroscopy, quantum chemistry, and quantum dynamics. Clearly, this is a huge

field of research and we cannot hope to offer more than a modest introduction backed by

hopefully helpful and clear examples.
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Chapter 2

Spectroscopy of Electronic Excitations

Many spectroscopic techniques involve the creation and manipulation of coherences followed

by a stimulated Raman detection of a probe pulse [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

The field of multidimensional spectroscopy was launched by looking at the delays between

impulsive stimulated Raman events [19]. In the simplest conventional one-dimensional (1D)

time-domain stimulated Raman technique, the molecule is first prepared in a vibrational

superposition state by an off-resonant Raman pulse and, after a variable delay period T , the

transmission change of a second probe pulse is detected. The transmission oscillates with

T between gain and loss at the vibrational period, and a Fourier transform then reveals

the vibrational frequencies [20, 21, 22]. Optical Raman techniques have been applied to

study electron transfer and nonadiabatic dynamics at conical intersections. Using recently

developed FEL and HHG sources [23, 24, 25], Raman techniques can be further extended

to the X-ray regime [26, 27, 28, 29, 30] whereby the system is initially prepared in the

superposition of valence electronic states and an X-ray Raman probe then reveals information

about electronic, rather than vibrational, coherence.

In this chapter, largely adapted from reference Ref. [31], we give an account of electronic
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spectroscopy neglecting nuclear motion. The analysis thus applies to atoms or to molecules

in the frozen-nuclei approximation. First, in section 2.1, we describe off-resonant Raman

signals. These can be understood with a simplified interaction Hamiltonian in which the

linear polarizability α̂ is coupled to the electric field intensity, rather than the dipole being

coupled to the field amplitude. In the second section, we generalize the previous discussion,

defining the resonant linear polarizability α̂(ω) in terms of which resonant Raman as well

as transient absorption and stimulated emission signals may be written. Throughout this

chapter, we omit reference to the nuclear coordinates q̂, which will be reintroduced next

chapter.

In sections 2.1-2.2, we consider both linearly- and quadratically-scaling terms in the electric

field intensity. The basis of our description will be a frequency dispersed signal

S(fd)(ωs,Λ) =

∫
dt〈 ˙̂
Ns〉(t) (2.1)

defined as the integrated rate of change of photons in a “signal” mode of the electromagnetic

field, i.e., the frequency-dispersed probe transmission. Note that defining the signal in this

way assumes that one particular mode can be discriminated and seperately observed, i.e., an

infinitely sharp spectrometer. Equation (2.1) depends on the set of parameters Λ defining

the pulse parameters and the initial state (pumped) state of the system. Other detection

protocols can be defined in terms of this base signal. In particular, we can define the total

photon gain/loss as well as the field energy gain/loss

S(N)(Λ) =

∫
dωS(fd)(ωs,Λ) S(E)(Λ) =

∫
dωωS(fd)(ωs,Λ). (2.2)

These are just the zeroth and first moments of the frequency-dispersed signal. They have

straightforward physical interpretations and provide a different perspective on the system dy-

namics, as will be demonstrated with both resonant and off-resonant signals. Moreover, they
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require no frequency-selective detectors or spectrometers and are thus easier to implement

easier to implement experimentally.

The information accessed in the above signals obviously depends to a high degree on the

pulse shapes, which we must therefore specify to give example spectra. We will consider two

cases, experiments performed with pulses of arbitrary bandwidth (termed broadband) and

experiments performed with hybrid broadband-narrowband pulses formed by the temporal

overlay of their constituents. Depending on the signal, the latter can decouple the spectral

and temporal resolution, since they will be determined by different components of the field

the intensities of which are separately scalable. However, pure broadband signals are simpler

experimentally and the additional complication may not be necessary depending on the

system and what information is sought. This will be quantified and explicated further after

the presentation of the signals.

Throughout, we apply the signals to a simple model system to analyze the electronic level

structure and dynamics of perturbatively-prepared excitations. This analysis reveals several

differences in the way that electronic coherences versus populations contribute to the various

signals. This understanding will be exploited in the next chapter when nuclear dynamics are

considered.

2.1 Off-Resonant Raman Signals

The field-matter interaction Hamiltonian for an off-resonant Raman process is given by

ĤI(t) = α̂(0)(t)|E(t)|2, (2.3)
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Figure 2.1: Loop diagrams representing the off-resonant linear (a) and quadratic (b) signals
as well as the resonant linear (c) and quadratic (d) signals. In all diagrams, the system is
assumed to be prepared from the ground state by some unspecified process (depicted by
the grey rectangles). The preparation process terminates at time τ0 after which the system
evolves freely until it begins interacting with the probe which is taken to be centered at time
t0. The delay parameter T = t0−τ0 is therefore shown next to the diagrams. Note that in the
off-resonant case, no core-valence coherences are created while these are created for certain
times in the resonant case. For the linear processes ((a) and (c)), ωca > 0 implies a red
(Stokes) contribution while the reverse condition implies a blue (anti-Stokes) contribution.
For quadratic signals, this analysis holds only for one of the two relevant diagrams and so
the quadratic signals are more difficult to interpret (since it depends on the state d). Details
of the loop diagrams are given in [1].
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where α(0) represents the off-resonant, polarizability, which is a Hermitian operator in the

valence space. That is, it is assumed to have the structure

α̂(0) =
∑
ab

α
(0)
ab |a〉〈b|. (2.4)

In many systems, there are dipole-forbidden transitions due to symmetry. That is, there

exist at least some states for which Vab vanishes identically. These transitions are therefore

inaccessible via direct dipolar excitation as in transient absorption. This is an important

fact and is one of the key reasons to perform Raman experiments in the first place. The

separation into absorption- and Raman-active modes is well-known in the context of vibra-

tional spectroscopy in the infrared wavelengths [32, 6]. All this being said, we will not be

concerned with the selection rules associated with α̂ as we will not be comparing to direct

valence spectroscopy (i.e., in the visible to deep UV range or on the order of eV).

The frequency-dispersed transmission of the probe pulse (heterodyne-detected, frequency-

dispersed photon-number change) is given by

S
(fd)
O (ω,Λ) = 2=

∫ ∞
−∞

dteiω(t−t0)E∗(ω)E(t)〈α̂(0)(t)〉(t), (2.5)

where The O subscript indicates an off-resonant signal, and =(<) denotes the imaginary

(real) part. From Eqs. (2.2), we have

S
(N)
O (Λ) = 2=

∫
dt|E(t)|2〈α(0)(t)〉(t) (2.6)

S
(E)
O (Λ) = −2<

∫
dtĖ∗(t)E(t)〈α̂(0)(t)〉(t) (2.7)

where, for brevity, we suppress the limits of integration when the domain is all-space (i.e.,∫∞
−∞ →

∫
), a convention we will adopt throught this manuscript. Before proceeding to

analyze the particular information one obtains from these signals, we can already tell some

15



general features of off-resonant Raman. As the integrand in (2.6) is real, S
(N)
O identically

vanishes at all orders. Thus, there is no net emission or absorption of photons. Instead,

off-resonant Raman processes preserve the total number of photons while redistributing

them betwen modes of the electromagnetic field, using the matter degrees of freedom as

intermediaries. This leads to a red (Stokes) or blue (anti-Stokes) shift in the pulse spectrum

corresponding to a loss or gain of field energy due to interaction with the material.

As described in appendix D.0.2, the expansion of Eqs. (2.5)-(2.7) perturbatively in ĤI to

obtain signals may be done with the density matrix ρ or, assuming a pure state, with the

wavefunction |ψ〉. In this chapter, we will present formal time-domain expressions in both

representations as well as eigenstate expansions of these in the more general density-matrix

representation. As discussed in appendix D.0.2, the time-evolution in the two pictures will

be the same since we assume Hamiltonian (commutator) evolution of ρ during the probing

process. The difference then is simply the compact handling of the mixed state. Thus,

depending on the state of the system, we use one of

〈α̂(0)(t)〉(t) = 〈ψ(τ0)|Û †(t, τ0)α̂(0)(t)Û(t, τ0)|ψ(τ0)〉 ↔ Tr [α̂(0)(t)Û(t, τ0)ρ(τ0)Û †(t, τ0)]

(2.8)

where U(t, t′) = T e−i
∫
ĤI(τ)dτ is the time-ordered exponential propagator and |ψ(τ0)〉 (ρ(τ0))

is the state (density matrix) immediately following the end of the pumping process. To

obtain explicit expressions for off-resonant signals, we need only expand Eqs. (2.5)-(2.7) to

the desired order. As mentioned above, these can then be evaluated either by taking matrix

elements in the molecular eigenstates or via direct propagation. This latter approach is more

easily carried out in the wavefunction representation and we therefore give formal expressions

both in terms of ρ and |ψ〉.
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2.1.1 Linear Off-Resonant Raman Signals

Expanding Eq (2.5) to linear order in the field intensity, i.e., zeroth order in the interaction

Hamiltonian, we obtain

S
(fd)
OL (ω, T ) = 2=

∫
dteiω(t−t0)E∗(ω)E(t) Tr [α̂(0)e−iĤ0(t−τ0)ρ(τ0)eiĤ0(t−τ0)], (2.9)

where we explicitly list only the most important of the pulse-dependent parameters, the

delay time T . It is also worth recalling that, as throughout this manuscript, we assume the

pump and probe are temporally well-separated so that E(t) = 0 for t ≤ τ0. When working

with a pure state, the trace operation can be recast as a usual wavefunction expectation

value.

Tr [α̂(0)e−iĤ0(t−τ0)ρ(τ0)eiĤ0(t−τ0)] = 〈ψ(τ0)|eiĤ0(t−τ0)α̂(0)e−iĤ0(t−τ0)|ψ(τ0)〉, (2.10)

This technique would seem the simplest, most obvious to examine. Yet, from the diagram

in figure 2.1(a), it is clear that no transitions are possible in the absence of coherences in the

initial density matrix. It is then as if the pulse did not interact at all with the material and

the signal would thus vanish. Thus, this signal is frequently unobserved due to the absence

of electronic coherences.

This technique is essentially a stimulated Raman pump-probe and is the off-resonant ana-

logue of transient absorption. Here, the photons undergo a redistribution among field modes

rather than being absorbed.
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Linear Broadband (LB) Probe

We now expand the signal (Eq. (2.9)) in molecular eigenstates and substitute into Eq. (2.2)

to obtain

S
(fd)
OLB(ω, T ) = −2

∑
a,c

|E(ω)||E(ω − ωac)|α(0)
ca |ρac| sinφac(T ), (2.11)

S
(E)
OLB(T ) = −

∑
a,c

∫
dω

2π
|E(ω)||E(ω − ωac)|α(0)

ca |ρac|ωac sinφac(T ). (2.12)

Here, ρac = |ρac|eiφ
ρ
ac is the initial density matrix, the phase is given by φac(T ) = ωacT −φρac,

and we neglect the linewidth for the valence states. In Eq. (2.11), terms in which ωac > 0

(ωac < 0) lead to broad peaks below (above) the central pulse frequency which we denote as

“red” (“blue”) in allusion to the direction of the spectral shift. Each pair of states therefore

generates a complementary pair of red and blue contributions. The two oscillate in T with

a π phase shift (as sine is an odd function of its argument). The frequency-dispersed signal

therefore oscillates between Stokes (positive red contributions and negative blue) and anti-

Stokes (negative red contributions and positive blue) processes as shown in Fig. 2.2(a1).

Equation (2.12) is plotted in Fig. 2.2(b1) but, aside from indicating that some nontrivial

phase is involved (since the signal doesn’t vanish for T → 0), not much information is directly

apparent from the time-domain measurement. Taking the Fourier transform
∫
dTeiΩTS(T ) =

S(Ω) (Fig. 2.2(c1)) reveals peaks at each transition energy ωac whose heights are given

by the factor ωacαca|ρac|. The ratios of these peak heights thus give information on the

polarizabilities or the magnitudes of the initial coherences. Finally, it is worth noting that

φaa(T ) = 0,∀T so that populations do not contribute to the off-resonant linear broadband

signal. This confirms the aforementioned fact that these signals provide a background-free

detection of electronic coherences, a useful property that will be leveraged in chapter 3.
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Linear hybrid (LH) probe

A hybrid probe is a shaped pulse consisting of a broadband attosecond pulse E(ω) =

|E0(ω)|eiφ0 and a narrowband femtosecond pulse E1(t) = |E1|e−iω1t+iφ1 centered at frequency

ω1. The signal is the frequency-dispersed transmision of the broadband component and, in

this case, Eq. (2.9) yields

S
(fd)
OLH(ω, ω1, T ) = −4π|E0(ω)||E1|

∑
a,c

α(0)
ca |ρac| sinφ1

ac(T )δ(ω − ω1 − ωac), (2.13)

where φ1
ac(T ) = ωacT − φρac + φ0 − φ1. Note that if the broadband and the narrowband

components have the same phase, φ0 = φ1, then φ1
ac(T ) = φac(T ). Due to the dependence

on the relative phase of the pulses φ0 − φ1, observation of the linear hybrid signals requires

phase-control (averaging over random φ0, φ1 causes the signal to vanish). Eq. (2.13) yields

clearly resolved Raman resonances unlike the LB case where the red (ωac > 0) and blue

(ωac < 0) components only enter through the pulse envelope. This signal, depicted for

ω1 = ω0 in Fig. 2.3(a1), shows sharp peaks at each transition frequency ωac. Of particular

significance is the ability to extract the phase φρac from the oscillations of the separate peaks.

This information is not available in the LB signal.

Calculation of the energy change is slightly more subtle; the hybrid pulse contains both

broad and narrowband components and we need to take into account the contribution to the

signal where the last interaction is with narrowband component. This results in

S
(E)
OLH(ω1, T ) = −4π

∑
a,c

|E1||E0(ω1 − ωac)|α(0)
ca |ρac|ωac sinφ1

ac(T ). (2.14)

Note the similarity between this and Eq. (2.11) (they only differ by the factor ωacE(ω)). The

ω integration erodes the sharp resolution afforded by the narrowband pulse, leaving virtually

the same result as the S
(fd)
OLB signal. The S

(E)
OLH signal is shown in Fig. 2.3(b1). Note that
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the presence of the ωac factor which reverses the sign under a → c relative to Eq. (2.11)

rendering both red and blue contributions the same sign for a given T . The sign of S
(E)
OLH(T )

then indicates whether the process is Stokes (S(E)(T ) < 0) or anti-Stokes (S(E)(T ) > 0).

Energy conservation implies that the pulse energy change and the molecular energy change

must have equal magnitude and opposite sign. In particular, the diagram in Fig. 2.1(a)

assumes that, after preparation, the molecule is in the superposition of states a and c and

the final state of the molecule after interacting with transmitted pulse is a population cc.

Similarly using the permutation a↔ c one can end up in the final state aa. If the energy of

state a is higher (lower) than that of c this is a Stokes (anti-Stokes) process.

2.1.2 Off-Resonant Signals Quadratic in the Probe

Quadratic signals, i.e., second-order in the probe intensity, are obtained by expanding Eqs.

(2.2) to first-order yielding

S
(fd)
OQ (ω, T ) = 2=i

∫
dt

∫ t

−∞
dt′eiω(t−t0)E∗(ω)E(t− t0)|E(t′ − t0)|2 (2.15)

× {〈α̂(t)α̂(t′)〉 − 〈α̂(t′)α̂(t)〉},

S
(E)
OQ(T ) = 2=

∫
dt

∫ t

−∞
dt′Ė∗(t− t0)E(t− t0)|E(t′ − t0)|2

× {〈α̂(t)α̂(t′)〉 − 〈α̂(t′)α̂(t)〉}, (2.16)

where the two-point time correlation functions of the off-resonant polarizability α̂(0) can be

expressed in terms of the density matrix

〈α̂(t)α̂(t′)〉 = Tr [eiĤ0(t−τ0)α̂(0)e−iĤ0(t−t′)α̂(0)e−iĤ0(t′−τ0)ρ(τ0)], (2.17)
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which we will use for general eigenstate expansions, or the wavefunction

〈α̂(t)α̂(t′)〉 = 〈ψ(τ0)|eiĤ0(t−τ0)α̂(0)e−iĤ0(t−t′)α̂(0)e−iĤ0(t′−τ0)|ψ(τ0)〉 (2.18)

which is convenient for nuclear dynamics simulations.

Quadratic Broadband (QB) Probe

The frequency-dispersed quadratic signal (2.15) for a broadband probe expanded in eigen-

states reads

S
(fd)
OQB(ω, T ) = −2

∫
dω′

2π
|E(ω)||E(ω′)|

∑
a,c,d

α
(0)
cd α

(0)
da |ρac| cosφac(T )

× [|E(ω − ωdc)|E(ω′ + ωda)| − |E(ω + ωda)||E(ω′ − ωdc)|], (2.19)

where the first (second) term in the square brackets corresponds to the left (right) diagrams

in Fig. 2.1(b). Equation (2.19) has a more complex dependence on the Raman shift ωac

than the linear signal (2.11). The field envelopes are now shifted by the electronic transition

frequencies ωad and ωdc which yields difference ωdc−ωda = ωac. The quadratic signal oscillates

with a phase that depends on states d other than a and c that create the resonance and

involves the phases of the polarizability α̂(0).

Comparing this to the corresponding linear signal (Eq. (2.11)) shows that a π/2 phase change.

As a result, the fact that φaa(T ) = 0 no longer eliminates contributions from populations and

they form a time-dependent background to all quadratic signals. Because the initial density

matrix is assumed to be perturbative (so that the ground state dominates the populations)

the contribution due to populations is primarily Stokes overall. Since the contribution due

to the populations is Stokes and the oscillating coherences are too weak to overcome this,

the overall process is Stokes at all times T (as illustrated in Fig. 2.2)(a2).
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The energy change signal (Eq. 2.16) is given by

S
(E)
OQB(T ) = −

∫
dω

2π

∫
dω′

2π
|E(ω)||E(ω′)|

∑
a,c,d

|E(ω + ωda)||E(ω′ − ωdc)|

× (h̄ωda + h̄ωdc)|ρac|α(0)
cd α

(0)
da cosφac(T ). (2.20)

Since the populations contribute a static off-set, there is now a strong zero-frequency peak

in the Fourier transform of Eq. (2.20). Additionally, the peak heights are no longer as

simply related to the αac, ρac as in the linear case. In particular, since the peak heights are

determined by a free summation over the intermediate state d, the terms in this sum can

interfere constructively or destructively leading to enhanced or suppressed peaks (note that

the ωac = 4 eV peak is suppressed in Fig. 2.2)(c2).

Quadratic Hybrid (QH) Probe

Again expanding the quadratic frequency-dispersed transmission signal (2.15) in eigenstates

but this time considering a hybrid field, we obtain

S
(fd)
QH (ω − ω1, ω1, T ) = −4π

h̄2 |E0(ω)||E1|2
∑
a,c,d

α
(0)
da α

(0)
cd |ρac| cosφac(T )

× [|E0(ω1 + ωda)|δ(ω − ω1 − ωdc)− |E0(ω1 − ωdc)|δ(ω − ω1 + ωda)] . (2.21)

As in the linear case, the narrowband pulse allows us to clearly resolve the transition peaks.

Unlike the linear signal (2.13), the quadratic hybrid signal is independent of the phases of

the narrowband and broadband pulses, φ1 and φ0, and is therefore observable without phase-

controlled pulses. Just as in the broadband case, the signal is sensitive to populations which

contribute a static Stokes spectrum. In Fig. 2.3(a2), we plot this signal for ω1 = ω0 as well

as separate plots for the contributions due to populations and coherences.
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Summary of Off-Resonant Stimulated Raman Techniques.

Signal S(fd) S(E)

SOLB Eq. (2.11): Oscillatory gain/loss pat-
tern shows Stokes/anti-Stokes oscil-
lations in T .

Eq. (2.12): No spectral resolution
due to ω integration. May visual-
ize weak transitions due to weighting
ωac.

SOLH Eq. (2.13): High spectral resolution
compare to SOLB. Each peak oscil-
lates at it’s frequency ωac and with
phase φρac.

Eq. (2.14): Does not carry new infor-
mation compared to S(fd).

SOQB Eq. (2.19): Always Stokes due to
dominance of populations (which do
not contribute to linear signals).

Eq. (2.20): Transition spectra can be
achieved by Fourier transform over
T .

SOQH Eq. (2.21): spectral and temporal
resolutions are higher than SOLH (not
conjugated) but retrieval of frequen-
cies and phases is more complicated.

Eq. (2.22): with Fourier transform
over T can visualize weak transitions.

Table 2.1: Summary of off-resonant Stimulated Raman Techniques. The total photon num-
ber change S(N) vanishes at all orders.

To calculate the integrated signals we must also include contributions from diagrams whereby

the last interaction is with narrowband pulse E1. The corresponding pulse energy change

which includes both broadband and narrowband components is

S
(E)
QH(ω1, T ) = −2|E1|2

∑
a,c,d

α
(0)
cd α

(0)
da |ρac| cosφac(T )

× [ωdc|E0(ω1 + ωdc)||E0(ω1 + ωda)|+ ωda|E0(ω1 − ωda)||E0(ω1 − ωdc)|].

(2.22)

Note that in the quadratic case the energy flux involves also another state d in addition to

states a and c, so the different fluxes corresponding to all relevant pairs of states should be

added to get the overall energy change of the pulse.
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Figure 2.2: (Color online) (a1) and (a2): Off-resonant linear and quadratic frequency-
dispersed signals (Eqs. (2.11) and (2.19)) at various times T after state preparation (T
advances in units of ∼60 attoseconds as the dashes lengthen). (b1) and (b2): Off-resonant
linear and quadratic broadband energy signal as a function delay time T (Eqs. (2.12) and
(2.20)). Note that the linear signal oscillates about zero but the quadratic signal has a static
offset corresponding to the contribution from populations. (c1) and (c2): Fourier transforms
of (b1) and (b2). In the linear case, peaks corresponding to all ωca coherences are visible. In
the quadratic case, there is a large central peak at zero corresponding to the populations. In
the quadratic signal, the states c− a are coupled indirectly through a third state d and the
summation over intermediate states can suppress or enhance the Raman peak magnitudes
relative to their linear proportions.
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Figure 2.3: (a1) and (a2):Off-resonant linear and quadratic hybrid frequency-dispersed sig-
nals (Eqs. (2.13) and (2.21)) at various times T after state preparation (T advances in units
of ∼60 attoseconds as one goes up the vertical axis). The quadratic signal is split into
the static contribution due to populations (a2 top spectrum) and the time-dependent con-
tribution due to coherences (a2 lower spectra). In contrast to the broadband signals, the
narrowband pulse allows us to resolve the individual transition peaks. (b1) and (b2): Off-
resonant linear and quadratic hybrid energy signals (Eqs. (2.14) and (2.22)) as a function of
narrowband frequency ω1 and delay time T (T advances in units of ∼60 attoseconds as the
dashes lengthen). The broadband detection renders individual transition peaks unobserv-
able and the result is similar to the broadband case (Eq. (2.22)) but symmetric (rather than

anti-symmetric) about ω = ω0. Note that S
(E)
QH(T ) < 0 revealing that the quadratic process

is always Stokes while the linear process oscillates between Stokes and anti-Stokes.
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2.1.3 Discussion of Off-Resonant Signals

Having obtained eigenstate expressions for a variety of off-resonant Raman signals, we present

example spectra calculated from a simple model consisting of a ground state and two valence

excitations at εa(c) ∈ {0, 2.7, 6.8} (eV). The polarizabilities αac are symmetric but otherwise

random numbers of O(.1 − 1) and the ρac are random but taken from a pure perturbative

state (i.e., a state |ψ〉 in which the ground state amplitude is near unity in magnitude).

Figure 2.2 shows the linear and quadratic off-resonant broadband signals side-by-side. We

do not plot S(N) since it vanishes in the off-resonant regime. For the frequency-dispersed

signal (Eqs. (2.11), (2.13), (2.19), and (2.21)), the broadband detection makes discerning

individual transitions impossible but nicely illustrates the Stokes/anti-Stokes oscillations in

time. In the linear case, the red contributions are positive and the blue are negative at T = 0

so the process is Stokes at this time and oscillates with T . The quadratic detection is always

Stokes due to the population contributions. The time-domain energy signal (Eqs. (2.12),

(2.14), and (2.20), and (2.22)) confirms that the quadratic process is always Stokes while the

linear process oscillates between Stokes and anti-Stokes. Transforming these signals reveals

the ωca transitions (though the quadratic possesses a large Ω = 0 peak due to populations

that is of course missing from the linear signal).

For comparison, the linear and quadratic hybrid signals are shown in figure 2.3. The spectral

resolution of the narrowband pulse gives sharp peaks at the ω−ω1 = ωac. In the linear case,

each ωac peak is due to a term that oscillates with this same frequency. However, in the

quadratic case, each oscillating term contains peaks at all different ωda, ωdc (as per Eq. (2.21))

and the phases of the peak oscillations do not as directly reveal the phases φρac. Note that the

intermediate summation in the quadratic signal implies that peaks will be visible even for

states not initially occupied (i.e, for which ρac = 0) while the peaks observable in the linear

signal are restricted to those initially occupied. Linear off-resonant signals therefore vanish
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for systems in their ground state and purely probe transient, excited-state phenomena.

In summary, S(fd) shows an oscillatory pattern of gain and loss features in the red and blue

regimes that depend on the initial phase of ρac. This information is integrated out in S(E)

where the entire probe pulse envelope exhibits Stokes (loss) or anti-Stokes (gain) shifts peri-

odically [33]. The broadband signals alone do not possess a sufficient resolution to directly

observe the transition spectrum and only access to it through the Fourier transforms of the

energy signals S(E)(T ). Utilizing a hybrid broad-narrow pulse combined with frequency-

dispersed detection allows high spectral and temporal resolution thus permitting spectral

snapshots to be taken that clearly resolve all transitions and therefore permit extraction

of the phases from the oscillation patterns. In the linear case, this requires control of the

relative pulse phases (the phases cancel in the quadratic case). The quadratic and linear

signals generally carry the same information about coherences but this is accessed without

the background due to populations in the case of linear signals. One important caveat to

this is that the magnitudes of the various transition peaks can be enhanced or suppressed by

the interference of different pathways (characterized by the intermediate state d). Since each

oscillation term contributes to multiple peaks through this intermediate state, a given peak

ωac will not oscillate at the corresponding phase φρac, making retrieval of the wavepacket’s

phase more difficult in the quadratic case.

2.2 Resonant Stimulated Raman Techniques

The off-resonant techniques considered in section 2.1 conserve the number of probe photons.

Photon energy gets redistributed among the broadband modes: S(N) vanishes while S(E) is

finite. When the X-ray pulses are resonant with core transitions, true photon absorption

can take place. This renders S(N) finite as well, revealing new matter information. In this

regime, the field-matter interaction Hamiltonian may no longer be recast using a frequency-
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independent, off-resonant polarizability but should rather be described by a dipole interaction

Hamiltonian as in Eq. (1.5). This interaction Hamiltonian is very general and leads to a

variety of techniques, such as the photon echo, double quantum coherence, sum/difference

frequency and harmonic generation, and general n-wave-mixing experiments. Our focus

will be on obtaining the resonant analogues of the Raman signals discussed in the previous

section and we will therefore keep only those terms in the expansion that correspond to

diagrams of the form in Fig. 2.1. This and other complications, to be clarified later, prevent

us from writing arbitrary-order expressions in the form of Eqs. (2.5)-(2.7) that specify only

the resonant-Raman-type contributions in which we are interested. We will find that, under

certain assumptions, these signals may be recast in terms of a frequency-dependent, resonant

polarizability α̂(ω) that represents consecutive creation and annihilation of a core excitation.

This will be accomplished by integrating over the time spent in the core excited state, thus

combining the two core-valence transition dipole operators into an effective valence-valence

x-ray polarizability.

2.2.1 Linear Probe

The frequency-dependent resonant analogue of Eq. (2.9) is

S
(fd)
RL (ω, T ) = 2=iE∗(ω)

∫
dteiω(t−t0)

∫ t

−∞
dt′E(t′)〈V̂ (t)V̂ (t′)〉 (2.23)

while integrated photon number and pulse energy change are given by

S
(N)
RL (T ) = 2=

∫
dt

∫ t

−∞
dt′E∗(t)E(t′)〈V̂ (t)V̂ (t′)〉 (2.24)
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and

S
(E)
RL (T ) = 2<

∫
dt

∫ t

−∞
dt′
dE∗(t)
dt0

E(t′)〈V̂ (t)V̂ (t′)〉 (2.25)

respectively. Equation (2.23) is obtained by expanding Eq. (A.4) to first order in ĤI and

keeping only the term analogous to Eq. (2.9). We have therefore omitted the contribution

due to 〈V̂ (t′)V̂ (t)〉. Throughout this thesis, it is our assumption that the pumped state

contains no core excitations. Thus, the omitted term vanishes within the rotating wave

approximation, since the dipole interaction at t corresponds to a photon emission event.

Equation (2.23) therefore corresponds to transient absorption while the omitted term is

stimulated valence-core emission.

Linear Broadband (LB) Probe

Expanding the frequency-dispersed transmission (2.23) as a sum over states and evaluating

time integrals we obtain

S
(fd)
RLB(ω, T ) = −2

∑
a,c

|ρac|
(
α(EE)′

ca (ω) sinφac(T )− α(EE)′′

ca (ω) cosφac(T )
)
, (2.26)

where Φac(T ) = ωacT − φρac, α′ and α′′ represent the real and imaginary parts of the polar-

izability

α(jk)
ca (ω) =

∑
x

Ẽ∗j (ω)Ẽk(ω + ωj − ωk + ωca)(ek · Vcx)(ej · Vxa)
ω + ωj − ωxc + iΓx

, (2.27)

where ωm, m = j, k is the central frequency of the pulse given by Em(t) =
∫

dω
2π
Ẽm(ω)ei(ω+ωm)t,

where we redefined the frequency domain amplitude Ẽm(ω) to be centered at zero frequency

(for a Gaussian pulse with bandwidth σm, Ẽm(ω) = 1√
2πσm

e
− ω2

2σ2
m ), Γx is the inverse core

excited state lifetime, which is assumed to be shorter than the valence excitations a and
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c. Thus, the polarizability implicitly depends on the pulse parameters, such as its central

frequency. For j = k, Eq. (2.27) reduces to the commonly used polarizability (see Eq. (5)

of [34]). Note that in the off-resonant case the polarizability matrix elements are real and

the second term in Eq. (2.26) vanishes and the Stokes and anti-Stokes components oscillate

with opposite phase as seen in Section II. The integrated photon numbe signal (2.24) is

S
(N)
RLB(T ) =

2

h̄2

∑
a,c

|ρac|α(EE)′′

ca cosφac(T ), (2.28)

where the integrated polarizability is given by

α(jk)
ca =

∫ ∞
−∞

dω

2π
α(jk)
ca (ω) (2.29)

and we used the symmetry α
(EE)
αβ = α

(EE)
βα . We first note that the signal is given by the

imaginary part of the polarizability. Therefore, when the polarizability is real (as in the

off-resonant case) the signal vanishes, which is consistent with our earlier results. Again,

the Stokes (ωac > 0) and anti-Stokes (ωac < 0) components oscillate with an opposite phase.

The energy change of the pulse signal (2.25) is given by

S
(E)
RLB(T ) = −

∑
a,c

|ρac|
[
ωacα

(EE)′

ca sinφac(T )− (β(EE)′′

ca + β(EE)′′

ac ) cosφac(T )
]
, (2.30)

where the tensor β represents the first moment of the polarizability:

β(jk)
ca =

∫
dω

2π
(ω + ωj)α

(jk)
ca (ω). (2.31)

Unlike the photon number signal (2.28), the energy change (2.30) involves both the real

part of the polarizability tensor and the imaginary part of its first moment. Equation (2.30)

reduces to Eq. (2.12) in the off-resonant case, where the polarizability is real and the second

term vanishes.
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Linear Hybrid (LH) Probe

The frequency-dispersed transmission of the broadband pulse E(ω) in the presence of the

narrowband pulse E1 is given by

S
(fd)
RLH(ω − ω1, ω1, T ) = −2

∑
a,c

|ρac|
(
α(01)′

ca (ω) sinφac(T )− α(01)′′

ca (ω) cosφac(T )
)
, (2.32)

where the ω1 dependence is now implicitly included in α
(01)
ca by setting Ẽ1(ω) = Ẽ1δ(ω).

The integrated photon number for a shaped pulse has to be calculated differently than the

broadband case. In particular, one has to take into account the photon number change in

both the broadband and narrowband pulses. This yields

S
(N)
RLH(ω1, T ) = −2

∑
a,c

|ρac|
(

[α(01)′

ca + α(10)′

ca ] sinφac(T )− [α(01)′′

ca + α(10)′′

ca ] cosφac(T )
)
,

(2.33)

where the first (second) terms in each square bracket represents the last interaction with

the broadband (narrowband) pulse. For the hybrid pulse, both α′ and α′′ contribute to the

signal, thus providing additional molecular information than the simple broadband pulse.

Furthermore, the form of the anti-Stokes and Stokes polarizabilities suggests that the signal

depends exclusively on the phase difference between both broadband and narrowband fields

φ0 − φ1 which provides an additional control knob. Note, that in general the hybrid polar-

izabilities α
(10)
ac are not symmetric under permutation of their indices. However in the limit

when φ0 = φ1, we have α
(10)
ac = α

(01)
ca and Eq. (2.33) yields

S
(N)
RLH(ω1, T ) =

2

h̄2

∑
a,c

|ρac|[α(01)′′

ca + α(10)′′

ca ] cosφac(T ). (2.34)
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Finally, the total pulse energy change (narrowband and broadband components) can be

obtained similarly

S
(E)
RLH(ω1, T ) = −2

∑
a,c

|ρac|
(

[β(01)′

ca + β(10)′

ca ] sinφac(T )− [β(01)′′

ca + β(10)′′

ac ] cosφac(T )
)
.

(2.35)

2.2.2 Quadratic Probe

The diagrams for the quadratic signal are depicted in Fig. ??(d). We read the signal from

the diagrams in Hilbert space to obtain

S
(fd)
RQ (ω, T ) = 2=

∫
dt

∫ t

−∞
dt′
∫
dt1

∫ t1

−∞
dt′1Ẽ∗(ω)E(t′ − t0)ei(ω+ω0)(t−t0)

×[E∗(t1 − t0)E(t′1 − t0)〈V̂ (t)V̂ (t)V̂ (t1)V̂ (t′1)〉+ E(t1 − t0)E∗(t′1 − t0)〈V̂ (t′1)V̂ (t1)V̂ (t)V̂ (t′)〉],

(2.36)

where the first (second) term in Eq. (2.36) represents the left (right) diagram in Fig. 2.1(d).

Extension of the upper limit of dt1 integration to ∞ follows from the assumption of a

sufficiently short core-excitation lifetime or under the assumption that the (chronologically)

first two interactions are temporally well-separated from the final two. This is the key

assumption which permits the recasting of the quadratic resonant signals in terms of an

effective polarizability in the form of Eq. (2.27). In the most general case, the upper limit of

the dt1 integration should be set at t′ and t for the first and second terms above respectively,

as can be seen from the diagrams. The corresponding photon number and energy change

signals are given by Eqs. (2.2).
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Quadratic Broadband (QB probe)

For a broadband pulse we expand the signal (2.36) in eigenstates which yields a compact

formula

S
(fd)
RQB(ω, T ) = −=2i

∑
a,c,d

[α
(EE)
cd (ω)α

(EE)
da − α

(EE)
da (ω)α

(EE)∗
dc ]ρac(T ), (2.37)

where ρac(T ) = |ρac|e−iφac(T ). In the off-resonant case α′′ = 0 and Eq. (2.37) reduces to Eq.

(2.19). The integrated photon number signal reads

S
(N)
RQB(T ) = −4

∑
a,c,d

|ρac|α(EE)′′

cd [α
(EE)′

da sinφac(T )− α(EE)′′

da cosφac(T )], (2.38)

which clearly vanishes in the off-resonant case when α′′ = 0. The total energy change of the

pulse is given by

S
(E)
RQB(T ) = −=2i

∑
a,c,d

[β
(EE)
cd α

(EE)
da − β

(EE)
da α

(EE)∗
dc ]ρac(T ). (2.39)

Quadratic Hybid (QH) probe

The frequency-dispersed transmission of the broadband component of a hybrid broad-narrow

probe reads

S
(fd)
RQH(ω − ω1, ω1, T ) = −=2i

∑
a,c,d

[α
(01)
cd (ω)α

(10)
da − α

(01)
da (ω)α

(01)∗
dc ]ρac(T ), (2.40)

which is similar to Eqs. (9)-(10) of [35] for the model with zero linewidth of electronic

states. The integrated photon number signal, which includes the change in both broadband
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and narrowband fields, is

S
(N)
RQH(ω1, T ) = −=2i

∑
a,c,d

[α
(01)
cd α

(10)
da + α

(10)
cd α

(01)
da − α

(01)
da α

(01)∗
dc − α(10)

da α
(10)∗
dc ]ρac(T ) (2.41)

and the energy change of the pulse is given by

S
(E)
RQH(ω1, T ) = −=2i

∑
a,c,d

[β
(01)
cd α

(10)
da + β

(10)
cd α

(01)
da − β

(01)
da α

(01)∗
dc − β(10)

da α
(10)∗
dc ]ρac(T ). (2.42)

2.2.3 Discussion of Resonant Signals

For the simulations of the resonant signals, we extended the model used in the off-resonant

case to include core states with energies εx(y) ∈ {136, 141.5, 149.5} (eV). Figure 2.4 shows

the resonant linear and quadratic broadband signals. The frequency-dispersed signals (a/b)

contain the valence-core resonances but not the Raman (this is due to the lack of field

resolution). However, the Raman transitions ωac are in the same region as the shifted

valence-core transitions ωxa − ω0 so they appear similar. Since the ωxa peaks can arise from

any a, c pair in the summation, the phases φρac are not directly accessible as the phases of

peak oscillations. Taking Fourier transform of the energy of photon number signals (c) and

(d) gives peaks corresponding to the Raman transitions only since these are the oscillation

frequencies. As in the off-resonant case, the linear and quadratic signals have different

relative peak intensities controlled by the different forms of the coupling.

Figure 2.5 shows 2D spectra of the resonant linear (left column) and quadratic (right col-

umn) hybrid frequency-dispersed signals for populations only (top panels) and populations

and coherences together at different times (remaining panels). As ω1 − ω0 varies, peaks

corresponding to Raman transitions (ωca) move along diagonals forming resonant streaks.

In contrast, the core transitions ωxa do not vary with ω1 and therefore, each transition forms

a series of repeated vertical peaks where the ωxa transition intersects the diagonal streaks.
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The magnitude of these peaks then reveals the strength of the coupling between the core

and Raman transitions. Note that the population contribution makes only a single diagonal

streak in the linear case but results in all streaks in the quadratic case (this is due to the

summation over the intermediate state d). For the linear signal, we can therefore identify

each linear streak with a particular a, c pair in the summation and each streak will un-

dergo Stokes/anti-Stokes oscillations at the respective phase Φac(T ), therefore allowing the

retrieval of the phases φρac.

Figure 2.6 displays linear and quadratic hybrid energy and photon number signals. In both

cases, the contribution due to populations is stronger than that from coherences. This is

due to the resonant nature of the signal since the population contribution vanishes for linear

off-resonant signals. Unlike in the off-resonant case, the signal contains sharp peaks due to

the valence-core transitions but the same lack of field resolution prevents direct identification

of the Raman transitions. These can however be obtained via the Fourier transform. Figure

2.7 shows the Fourier transform (magnitude) with respect to delay time T of the linear and

quadratic photon number and energy signals. The quadratic is notably weaker but all four

signals show the same basic pattern of ωxa − ω0 resonances along the y-axis and Ω = ωac

resonances along the x-axis.

2.3 Summary of Raman Signals

The above two sections present an account of off-resonant and resonant Raman spectroscopies

in terms of the polarizability α̂, formed from the consecutive creation and annihilation of a

core excitation.

We presented a systematic classification scheme applicable to spectroscopic techniques in

which a nonstationary state’s creation is well-seperated from it’s detection (pump-probe
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style spectroscopies). In this scheme, a particular spectroscopic technique is specified by

the choice of state preparation and detection procedures. We consider various detection

procedures and examine what sort of information one may obtain and in what ways the

signals considered differ. We demonstrated the various signals for a model consisting of a

few valence and a few core states and calculated the frequency-dispersed, photon number,

and energy change signals for both linear or quadratic field intensity scaling and broad or

hybrid spectral field shapes.

There are two mechanisms whereby the photon modes can change their occupation numbers.

A photon can either redistribute amongst the modes, swapping from one frequency to another

as in Raman interactions or, alternatively, it can be absorbed or emitted by matter. The

former process is governed by the real parts of the polarizabilities α (and β) while the

latter is governed by the imaginary parts. In the off-resonant regime, only the redistributive

mechanism is operative. In the resonant regime, both contribute and oscillate with different

phases in delay time T (the redistributive being a Sine funcion and the absorbtive/emittive

being a Cosine).

The spectrum of the nonstationary state (the energy levels of the occupied states), can be

obtained by taking the Fourier transform of any of the time-dependent signals, resonant or

off-resonant. The relative magnitude of the various peaks in these signals varies depending

on the coupling constants for each signal. In the simpler, linear signals, the relative peak

magnitudes are directly indicative of the product of the coherence ρac and the polarizability

αac, while in the quadratic case, there is an additional α and a free summation over the

intermediate state. Using broadband pulses, we had to sacrifice the time resolution to obtain

frequency resolution of the ωac transitions. This limitation was surpassed by using a shaped,

hybrid pulse consisting of broad and narrowband components. The resultant frequency-

dispersed signals naturally show the peaks at the ωac transitions which oscillate in time. In

the linear case, each peak oscillates with its own phase ωacT+φρac, thus allowing determination
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of the phase induced by the state preparation process. This technique therefore exploits the

simultaneous resolution of narrowband and detected frequencies combined with the time-

resolution granted by the broadband pulse to obtain the phases of the electronic wavepacket.

Without frequency-dispersed detection, one is left with the photon number and energy change

signals. Even though they contain less information than the frequency dispersed hybrid

signals, the resolution granted by the narrowband pulse allows one to access essentially the

same information as the frequency dispersed broadband signal.

Finally, we note that the present formalism also applies to optical signals. X-ray signals

allow one to probe valence excitations rather than vibrations. Furthermore, both the initial

preparation and/or the preparation process can then be the product of an X-ray scattering,

photoionization, or Auger process (as recently discussed in [36, 30]) in addition to an X-ray

Raman process. The signals obtained by a Raman probe then detect both the amplitude and

phase of the coherent superpositions of singly or doubly ionized states. These are signatures

of many- body effects in the photoionization and the Auger processes.

Compared to previous work, here we present the most general systematic description of a

series of x-ray Raman signals. Using abbreviations of the signals of the present paper in

earlier work [21] S
(fd)
QH , S

(N)
QB , and partially S

(N)
QH signals. Using the present terminology, the

signals studied in [37] are S
(fd)
QH and S

(fd)
LH while in [38], the S

(N)
QH signal was investigated.
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Figure 2.4: (Color online) (a): Resonant linear broadband frequency-dispersed signal for
the populations (time-independent) and coherences at T = 0 (left) and time evolution of
coherences (right). (b): Resonant quadratic broadband frequency-dispersed signal for the
populations (time-independent) and coherences at T = 0 (left) and time evolution of coher-
ences (right). For coherences in both (a) and (b), T advances in units of ∼60 attoseconds as
one goes up the vertical axis. (c1) and (c2): Resonant linear (c1) and quadratic (c2) broad-
band energy signal Fourier transformed. (d1) and (d2): Resonant linear (d1) and quadratic
(d2) broadband photon number signal Fourier transformed.
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Figure 2.5: (Color online) Resonant linear (left column) and quadratic (right column) hybrid
frequency-dispersed signals. The top of each column is the time-independent contribution
due to populations. The second panel from the top is the total signal at T = 0 and the
remaining two panels per column are for T = 240(as) and T = 480(as). This form of the
signal allows one to disentangle valence-core (ωxa) transitions from Raman (ωca) transitions.
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Figure 2.6: (Color online) (a): Resonant linear hybrid energy signal for coherences at mul-
tiple times T (top) and comparison of populations with initial coherences (bottom). (b):
Resonant linear hybrid photon number signal for coherences at multiple times T (top) and
comparison of populations with initial coherences (bottom). For time-dependence of coher-
ences, T advances in units of ∼60 attoseconds as one goes up the vertical axis.
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Figure 2.7: (Color online) (Resonant linear (left column) and quadratic (right column) hybrid
photon number (top) and energy change (bottom) signals. These signals show Ω resonances
at the Raman transitions ωac allowing their separation from the valence-core transitions ωxa.
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Chapter 3

Transient Redistribution of Ultrafast

Electronic Coherences

The photochemistry of molecules is of considerable fundamental interest with direct im-

pact on synthesis [39], chemical sensors [40], and biological processes [41, 42, 43, 44, 45].

As discussed in chapter 1, conical intersections of electronic states provide a fast, sub-100-

femtosecond non-radiative pathway that controls product yields and rates in virtually all

photochemical and photo-physical processes. At a CI, electronic and nuclear degrees of

freedom become strongly coupled and the Born-Oppenheimer approximation, which allowed

their separation, breaks down. Strong experimental evidence for CIs is based on the obser-

vation of fast conversion rates or other indirect signatures (e.g., suppression of vibrational

absorption peaks [46]). However, their direct experimental observation has not been reported

yet. The main obstacle is the rapidly decreasing electronic energy gap during the dynamics,

requiring an unusual combination of temporal and spectral resolutions which is not available

via conventional femtosecond optical and infrared experiments [41, 47, 48, 49].

We describe here a novel, background-free technique, recently proposed to directly and
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unambiguously monitor the passage through a CI by using recently-developed attosecond

broadband X-ray sources (the contents of this chapter being largely taken from [50]). Avail-

able optical techniques monitor state populations [41, 49] or look for signatures in transient

vibrational spectra to identify CIs [46, 48, 51, 52]. The technique looks directly at elec-

tronic Raman resonances created by the electronic coherence generated as the system passes

through the CI and is not sensitive to electronic populations. The time-dependent energy

splitting between the two adiabatic surfaces as well as the phase of the wave function can be

directly read off the Raman shift between gain and loss features in the Stokes and anti-Stokes

signals. Simulations demonstrate how this new method allows the precise timing of when

and how a nuclear wave packet reaches and passes through the CI.

3.1 TRUECARS

Any direct measurement of CIs simultaneously requires ultra-fast time resolution and ade-

quate spectral resolution in order to resolve the time dependent electronic energy gap. As

the nuclei approach a CI from the vertical transition Franck-Condon point of an optical ex-

citation (Fig. 3.1(a)), they acquire large velocities and the passage through the CI or a seam

occurs in a few femtoseconds [53, 47, 54, 55]. With the ongoing development of free-electron

lasers (FELs) [56, 57] and high-harmonic-generation (HHG) sources [58], (near transform

limited) pulses in the extreme UV to soft X-ray region with a few femtoseconds and down

to the attosecond durations and several-electron-volt bandwidth [59, 60, 61, 25, 23] become

available. This makes it possible to directly probe CIs as we presently show.

The TRUECARS (Transient Redistribution of Ultrafast Electronic Coherences in Attosecond

Raman Signals) technique proposed here is a novel extension of time-domain coherent anti-

Stokes Raman spectroscopy (CARS) [62, 63, 33, 64], commonly used to probe vibrational

coherence. In CARS, a pair of optical pulses generates a coherence between vibrational states
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Figure 3.1: Schematic representation of the TRUECARS detection scheme. (a) A nuclear
wave packet is promoted from the ground state (GS) by a pump-pulse EP to an excited
electronic state. As it passes the coupling region around the CI, a coherence is created
between the two electronic states. The broadband E0/narrowband E1 hybrid pulse probes the
electronic coherence between the nuclear wave packets on different surfaces. (b) Schematics
of the pump and hybrid-probe pulse sequence. (c) Illustration of the signal calculated for a
one-dimensional nuclear model. The energy splitting of the electronic states involved in the
coherence (solid line) can be read from Raman shift.
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which is subsequently detected via a Raman process induced by a second pair of pulses. The

detected spectrum is displayed versus the time delay T between the two pairs of pulses,

revealing the time-dependent vibrational coherence and its dephasing. The temporal and

spectral resolution may be enhanced by taking the second pulse pair to be a hybrid pulse –

a combination of a narrowband (picosecond) and a broadband (femtosecond) pulse which is

known as hybrid CARS [65, 66].

The TRUECARS technique, sketched in Fig. 3.1, extends hybrid CARS in two important

respects: (i) A combination of attosecond/femtosecond X-ray pulses is used to probe elec-

tronic coherence rather than conventional optical pulses that probe vibrational coherence.

(ii) The coherence is not created directly by applied pulses as in CARS but is generated

internally by the propagation through the CI following photoexcitation. A pump pulse first

brings the molecule into an excited electronic state, preparing a non-stationary nuclear wave

packet which then propagates towards the CI. The electronic coherence is not generated

directly by the pulse but instead builds up during the time-evolution of the wave packet as

it approaches the vicinity of the CI where the non-adiabatic intersurface coupling is present.

A hybrid broadband/narrowband X-ray pulse then probes this electronic coherence by the

time-resolved gain and loss of the positive and negative stimulated Raman components (see

Fig. 3.1(b) for depictions of the pulse sequence). Resolving the entire spectrum of electronic

Raman transitions (Fig. 3.1(c)) requires pulses with a few-electronvolt bandwidth and ob-

serving the CI dynamics requires pulses with a duration on the order of few femtoseconds or

less.

As the technique is off-resonant, the molecule is coupled to the intensity of the off-resonant

probing fields via the electronic polarizability operator α̂ and the matter-probe interaction

Hamiltonian is

ĤI(t) = α̂(t)|E0(t) + E1(t)|2 (3.1)

45



where E0 and E1 are the attosecond (broadband) and femtosecond (narrowband) components

respectively of the probing field. The off-resonant electronic polarizability α̂ is the transition

polarizability describing the Raman transitions between valence states. We do not include

the photo-ionization processes in the simulations. It has been experimentally shown that

X-ray Raman signals can successfully compete with the ionization background [29, 67]. To

simplify the analysis, we assume both components to have the same carrier frequency ω1.

The TRUECARS signal is defined as the frequency-dispersed photon number change of the

attosecond field and is given by

S(ω, T ) = 2=
∫ +∞

−∞
dt eiω(t−T )E∗0 (ω)E1(t− T )× 〈ψ(t)|α̂|ψ(t)〉 (3.2)

where T is the time-delay between the probe field and the preparation pulse and |ψ(t)〉 is the

total (nuclear and electronic) wavefunction. The probing fields are assumed to be temporally

well-separated from the preparation process. The signal carries a phase factor ei(φ1−φ0), where

φi is the phase of the field Ei. This factor causes the signal to vanish when averaged over

random pulse phases; observation of TRUECARS therefore requires control of the relative

pulse phases. Note that terms corresponding to electronic populations do not contribute

since they carry no dynamical phase and vanish when taking the imaginary part in Eq. (3.2).

TRUECARS therefore provides a background-free measurement of electronic coherence. It is

also important to note that, due to the frequency-dispersion of the broadband pulse E0(ω),

the field-matter interaction time is limited by the E1 pulse envelope. The temporal and

spectral resolutions of the technique are not independent but are Fourier-conjugate pairs,

both determined by the corresponding temporal and spectral profiles of E1. In order to

resolve the changing energy gap along the CI, E1 must be shorter than the dynamics while

spectrally narrower than any relevant energy splitting. For example, resolving a 0.1 eV energy

difference implies at least a 6.5 fs pulse duration so dynamics faster than this will not be

resolved.
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The pulse configuration in TRUECARS is similar to transient absorption. The difference,

besides the phase-matching requirement, is that the probe pulse is not resonant with any

material transitions and is therefore not absorbed. Instead, there is an oscillatory redis-

tribution of intensity between loss (positive Stokes/negative anti-Stokes) and gain (posi-

tive anti-Stokes/negative Stokes) that can affect the frequency-resolved transient intensity.

The signal is linear in the probe intensity E0E1. Stimulated Raman spectroscopy (SRS)

[68, 69, 70, 71, 72] uses the same pulse sequence but detects the quadratic signal E2
0E2

1 .

TRUECARS is therefore phase dependent whereas SRS is phase independent. The quadratic

signal would allow greater resolution, since temporal and spectral resolution could then be

set by the broadband and narrowband pulses respectively and would not be Fourier limited

[69]. However, the quadratic signal is typically dominated by contributions stemming from

electronic populations [73] and it is not therefore a background-free measurement of the elec-

tronic coherence. The linear TRUECARS signal is therefore a much cleaner way to measure

the passage through a conical intersection.

Qualitative understanding of the TRUECARS signal can be facilitated by a semi-classical

picture. We expand the electronic wave function in the adiabatic basis and assume that the

nuclei follow the classical equations of motion:

|ψ(t)〉 =
∑
a

ca(t)e
−i

∫ t
−∞ εa(τ)dτ |a(t)〉 (3.3)

where the instantaneous states |a(t)〉 and energies εa(t) vary with time through their de-

pendence on the nuclei while the coefficients ca(t) vary due to the non-adiabatic coupling

between the electronic surfaces near CIs. The coherence between the surfaces thus propa-

gates with a time-dependent dynamical phase which generates oscillations in T with evolving

period and frequency (ωr). The energy splitting between the electronic states can thus be

read not only from ωr but also from the oscillation period in T (as can be seen by inserting

Eq. (3.3) into (3.2)).
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To clearly point out the unique features of the TRUECARS signal, Fig. 3.1(c) shows a sim-

ulation of a single vibrational mode with a long electronic coherence time. The model is

constructed from two electronic states, which are represented by two displaced harmonic po-

tentials and a Gaussian diabatic coupling. This model can represent, e.g., a simple diatomic

molecule with an avoided crossing. A full quantum dynamical wave packet calculation is car-

ried out on a numerical grid with a displaced Gaussian wave packet as initial condition and

the TRUECARS spectrum is calculated according to eq. 3.2. In the absence of electronic

coherence, the signal vanishes (this is the case in the beginning of the dynamics, Fig. 3.1(c)).

As the wave packet approaches the non-adiabatic coupling region, an electronic coherence

builds up and the signal appears. After it has passed the intersection, the splitting between

the states increases again. The signal shows an oscillation of gain and loss features in the

Stokes and anti-Stokes regime. The energy splitting (solid line) can be read directly from the

Raman shift ωr = ω−ω1. The broadening of the signal in ωr is caused by the non-vanishing

width of the nuclear wave packet, which covers a range of finite width of the potential energy

surface. The signal builds up on both red- (ωr < 0) and blue- (ωr > 0) sides of the spec-

trum, appearing as two oscillating peaks. When the red side is positive and the blue side

negative, the energy flows from the pulse to the molecule and the process is of Stokes type

while opposite conditions yield an anti-Stokes process. The interaction with the molecule

thus redistributes the field photons, either shifting the probe pulse toward the red or the blue

side of the spectrum, but the total number of photons is conserved [31]. This is due to the

off-resonant nature of the Raman probe used here (there is no absorption or stimulated emis-

sion) and is the origin of the ‘Redistribution’ in TRUECARS. This also leads to the absence

of a Rayleigh peak at ωr = 0, which would come from electronic populations, making the

signal background-free (induced only by electronic coherences). The signal oscillates with

time T back and forth between Stokes and anti-Stokes and the oscillation period corresponds

to the coherence period (the oscillations speed up and the positions of the peaks in frequency

spread apart mirroring the separation of potential energy surfaces). The oscillation period
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Figure 3.2: (a) Simulated TRUECARS Signal (Eq. 3.2) for the two-dimensional nuclear
model with a pulse length of 1.2 fs (E1). The solid line indicates the average splitting of the
potential energy surfaces. (b) The time dependent expectation value of the polarizability.
(c) Elements of the reduced density matrix of the electronic subsystem. Blue and black:
populations of the adiabatic S2 and S1 state respectively. Red line: the magnitude of the
electronic coherence.

in T therefore also reveals the separation of adiabatic potential energy surfaces, while the

magnitude of the signal envelope reveals the decay of the electronic coherence.

3.2 Simulations and Discussion

We now demonstrate the power of TRUECARS by wave packet simulation on a more realistic

model system with two vibrational modes and two electronic states S1 and S2 and typical

molecular parameters (depicted schematically in Fig. 3.1(a)). This is the minimal model

required to describe a CI [74]. The two coordinates resemble the branching space of a CI

and are displacements along the derivative coupling vector xh and the gradient difference

vector xg. The initial condition is at the Franck-Condon point, chosen to be in the vicinity

of the CI to allow the wave packet to reach the CI in a short period of time. Examples of

molecules with ultrafast non-adiabatic dynamics include cyclohexadiene [75], ethylene [53],

pyrazine [76], and DMABN [55]. The wave packet simulations are carried out numerically
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on a grid in the electronic and nuclear space using the diabatic basis and are transformed

into the adiabatic basis as needed. The details of the calculations are given in the SI.

The molecule is assumed to be initially in its electronic ground state (S0). An actintic

pump-pulse creates an excitation in the S2 state, thus launching the dynamics. The diabatic

coupling vanishes in the Franck-Condon region to allow for an initial condition in which the

Born-Oppenheimer approximation holds. The initial S1/S2 splitting at the Franck-Condon

point is around 2 eV. The wave packet propagates freely on the S2 surface in the branching

space and approaches the CI. The resulting TRUECARS signal (Eq. 3.2) and the averaged

time-dependent energy splitting is shown in Fig. 3.2(a) (solid line). The qualitative features

are similar to the signal from the diatomic model shown in Fig. 3.1(c). The prepared state

contains no electronic coherence and the signal turns on at around 2 fs, when the system

approaches the non-adiabatic coupling region. The corresponding molecular property gov-

erning the signal, the off-resonant transition polarizability α(t), is shown in Fig. 3.2(b). If the

α̂ is assumed to be independent of the nuclear coordinates, α(t) is directly proportional to

the real part of the electronic coherence. In Fig. 3.2(c), the adiabatic populations are shown

along with the magnitude of the electronic coherence. After the wave packet has passed the

CI at around 6 fs, it travels through a coordinate region where there is a small but finite

splitting between adiabatic potential energy surfaces. The signal broadening stems from two

contributions: The width of the nuclear wave packet, covering a certain range of potential

energy differences, and the spectral width of the probe pulse. The peak maxima are slightly

shifted to larger Raman shifts due to the fact the signal vanishes at ωr = 0 (an effect that

is more pronounced for smaller ωr as is seen for T < 12fs in Fig. 3.2(a)). Additionally the

information about the energy splitting is also contained in the oscillations in T , indicating

that the system is in close vicinity of the CI, as the oscillation frequency is lowered . At

around 15 fs, the energy splitting increases again as can be seen from ωr. Since the S1 and S2

states have different gradients, the overlap between the nuclear wave packets 〈Ψ1|Ψ2〉 decays

and the signal fades out. As can be seen in Fig. 3.2, the passage through the CI happens in
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less than 12 fs. By utilizing 1.2 fs pulses, the wave packet’s arrival at the CoIn can be timed

stroboscopically to within 10 fs. Note that an even shorter coherence lifetime would not allow

for a clear determination of the energy splitting, but would increase the time resolution. As

is clear from the overlay of the energy splitting on the TRUECARS spectra, the technique is

capable of mapping out the potential energy surfaces of the reaction coordinate near the CI.

It thus gives both dynamical information on the temporal and spectral profile of the the CI

by providing information about period of oscillations as well as the phase of the electronic

coherences near the CI. TRUECARS might also be useful to measure the Berry phase [77],

which so far has elluded detection in chemical systems.

In summary, in this chapter we have discussed a resently-proposed spectroscopic technique

(TRUECARS) that can directly monitor passage through conical intersections. The tech-

nique measures the frequency-resolved stimulated Raman scattering of a probe pulse as a

function of the time delay T with respect to the pump pulse. In contrast to most other

methods, TRUECARS is only sensitive to electronic coherences and populations do not

contribute, making it uniquely suited to probing passage through CIs by capturing the elec-

tronic coherences generated by non-adiabatic couplings in the CI vicinity. We simulated the

signal for 1D and 2D vibrational model systems and demonstrated that TRUECARS with

attosecond pulses can be used to measure the time-varying energy gap between two electronic

states. The rapidly decreasing energy gap around the CI is fully visible in the time resolved

spectrum The decay of the electronic coherences contains information about the difference of

the gradients between the electronic states, giving a hint about the geometry of the CI. The

primary limitation to this technique is that decoherence will eventually eliminate the signa

and the technique is most useful when the CI is in close proximity to the Franck-Condon

point. This makes TRUECARS an ideal tool to investigate ultra-fast, photophysical system

dynamics. The experimental parameters required – broadband sub-femtosecond pulses of

∼ 100eV or more and spectral widths of several eV – could be realized in the near future

from state of the art free-electron laser sources [57, 78].
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Chapter 4

Transient Photoelectron Spectroscopy

Photoelectron spectroscopy [79] (PES), in which the kinetic energy of electrons liberated

from a sample via interaction with light is measured, has long been utilized to gain knowl-

edge of the level-structure of molecules and materials. Energy conservation implies that the

photoelectron energy is indicative of the difference between the frequency of ionizing radi-

ation and the ionization potential of the material. More recently, the technique has been

extended to the time-domain. In time-resolved photoelectron spectroscopy [80] (TRPES), a

pump pulse prepares the molecule in a nonstationary state, the dynamics of which are sub-

sequently tracked by varying the delay time (labeled td in this chapter and in appendix B to

avoid confusion with the nuclear kinetic energy operator T̂ ) between the pumping pulse and

a subsequent ionizing XUV or x-ray pulse, the detected quantity being the energy-resolved

(or energy integrated) photoelectron yield. With the advent of ultrashort pulses, such ex-

periments are able to achieve femtosecond resolution of excited state dynamics, allowing one

to stroboscopically track ultrafast photochemical processes and nuclear dynamics.

Special attention has been drawn to the non-adiabatic dynamics through CIs due to their

broad impact on photochemical and even photobiological processes [41, 42, 43, 44, 45]. CIs
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provide ultrafast, non-radiative decay pathways which influence product yields and reaction

rates in virtually all photochemical processes. Near a CI, the nuclear and electronic degrees of

freedom become strongly coupled and the Born-Oppenheimer approximation (BOA), which

is based on the separation of electronic and nuclear frequencies, breaks down [81, 82]. The

passage through a CI can be detected by vibrational spectroscopic signatures [52, 46, 48, 51],

fast population dynamics [41, 49], and TRPES [83, 84]. However, with shorter pulses in the

attosecond regime available, measuring [85] and even controlling the electronic dynamics [86]

becomes possible. With the increasing availability of ultrashort pulses from high harmonic

generation sources [56, 57] and free electron lasers [58], novel techniques based on a direct

measurement of the electronic coherence become feasible [87, 88].

As we saw in the previous chapter, nuclear coupling in the CI-region transfers population

between the electronic states while also generating coherences between them. In this chapter,

we show that TRPES with sub-femtosecond pulses can be utilized to detect the electronic

coherence created by the non-BOA coupling encountered by a nuclear wavepacket as it passes

through the region of a CI. Multimode wave packet simulations of the TRPES of pyrazine

[89, 90] show that the time dependence is essentially an overlay of electronic population with

coherent nuclear dynamics, the latter of which produces oscillations at nuclear frequencies.

This result can be well-understood from the perspective of a semiclassical Fermi Golden Rule

(scFGR, Eq. (4.4)) in which the contributions from the various adiabatic electronic surfaces

add incoherently, weighted by their time-dependent populations. The scFGR is intuitive and

frequently employed to simulate and interpret spectra [84, 83, 91]. The scFGR is applicable

in the BOA, where the electronic states do not couple. We show that electronic coherences

created at CIs result in oscillations in the signal intensity that are missed in the standard

scFGR expressions. Under certain conditions, the period of these oscillations is indicative

of the average energy separation between the neutral electronic potential surfaces. This

is similar to TRUECARS in that we access the transient spectral information temporally.

This effect has been reported form experiments in the NO molecule [92], which showed
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sub-picosecond oscillations. New sub-fs light XUV and x-ray light sources can access the

appropriate time-domain to observe this effect in polyatomic molecules with larger energy

separations.

The focus of this chapter is to demonstrate the signatures of electronic coherence on photo-

electron signals generated by sub-femtosecond pulses. We provide a novel formalism, which

allows for inclusion of the electronic coherences and show how well effects are reproduced

by the various simulation protocols with model systems. In section 4.1, we describe the

model and the semi-classical Fermi golden rule for TRPES. In section 4.2, we obtain an

exact correlation-function expression for the signal as well as a corresponding exact FGR,

written as an expansion in the eigenbasis. From these exact expressions, we then rigorously

derive the scFGR in section 4.3 by making the quasi-static approximation. In the process

we obtain, an additional class of terms, arising from the electronic coherences. We discuss

under what conditions these terms must be accounted for and what information they carry.

In sections 4.4 and 4.5, we compare the features of the different levels of approximation using

simulations for model systems. The content of this chapter is largely taken from Ref. [93].

4.1 Fermi’s Golden Rule for TRPES

We describe TRPES with a Hamiltonian of the form discussed in [36], which neglects the

interaction between the ionized molecule and the photoelectron. We work in the adiabatic

basis and consider a set of neutral electronic states (labeled by a, b as they will generally

be valence excitations) and ionized electronic states (labeled by α). In contrast to Eq.

(1.2), we have no need to consider the Hamiltonian of the field and everything will be done

semiclassically from the start. However, do must introduce a continuum of photoelectron
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states into which the system may emit. We therefore write the total Hamiltonian as

Ĥ = ĤM + Ĥp + Ĥx(t) . (4.1)

where the molecular Hamiltonian is given by Eq. (1.3), nonadiabatic couplings between

ionized states being ignored. Following Ref. [36], we utilize a second-quantized description

of the photoelectron states and a first-quantized description of the bound states. This

facilitates our treatment of PES in analogy with spontaneous light emission and the inclusion

of molecule-photoelectron interactions (the latter are beyond the scope of this thesis and not

included in our model). We take the photoelectron states to be independent of the nuclei and

assume they do not interact with the ion (justified for sufficiently high-energy photoelectrons)

and therefore write

Ĥp =
∑
p

εpĉ
†
pĉp, (4.2)

for the photoelectron Hamiltonian (ĉ†p, ĉp are Fermi creation/annihilation operators for free

photoelectrons with energy εp). Note that the formalism can be straight-forwardly applied

to photo detachment [94] as well, which only differs in the initial and final states (anion to

neutral).

We work in the direct product space of bound (molecular) and continuum (photoelectron)

states and the interaction with the photoionizing x-ray pulse is then written as

Ĥx(t) = −Ex(t)
∑
pαa

µ̂pα,aĉ
†
p|α〉〈a|+ µ̂†pα,aĉ

†
p|a〉〈α|, (4.3)

where Ex(t) is the ionizing x-ray pulse envelope and we neglect possible core excitations of

the type discussed in chapters 2-3. The electronic matrix elements of the transition dipole

remain operators in the nuclear space, as indicated by the circumflex. For simplicity, we
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assume that µ̂ is independent of the momentum p, which is a reasonable approximation for

fast photoelectrons [95], but not for slow electrons which do interact with the ion.

The photoelectron spectrum obtained via ionization by an x-ray pulse with frequency ωx

and pump-probe delay time td (relative to the pump) is most commonly simulated using the

scFGR[84]

Ssc(εp, td) =

∫
dωx|Ex(ωx)|2SscFGR,0(εp, td, ωx) (4.4)

Ssc,0(εp, td, ωx) =
∑
aα

〈|µαa (q(td)) |2ρaa (q(td)) δ(εp − ωx + εα (q(td))− εa (q(td)))〉 ,

where q(t) is the time-dependent set of nuclear coordinates (now written explicitly since

they are computed classically) and 〈. . . 〉 indicates an averaging over these coordinates. This

averaging can be done at various levels of theory (ab-initio multiple spawning [96], surface

hopping [97], etc.). Below, we will derive a fully quantum-mechanical version of the scFGR,

in which the averaging comes as expectation values taken over the time-dependent nuclear

wave function. This derivation will clarify the origin and applicability regime of Eq. (4.4)

while naturally generating additional terms proportional to the electronic coherence ρab.

Note that Eq. (4.4) only contains terms proportional to the populations ρaa. Note also

that the signal is dependent on the power spectrum of the ionizing x-ray pulse |Ex(ω)|2. In

contrast, the coherence terms appear with Ex(ω)E∗x(ω′), which depends on the phase of the

ionizing field.

4.2 The Exact Time Dependent Photoelectron Signal

We follow the microscopic treatment outlined in Refs. [98, 36] and reviewed in apprendix

B.1, defining the photoelectron signal as the energy-resolved, integrated rate of change of the

number of photoelectrons which gives the total energy-resolved photoelectron yield. This
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Figure 4.1: The two loop diagrams for the TRPES signal (Eq. (B.4)). Since the usual rules
for loop diagrams maintain time-ordering, we show these two loops rather than a single loop
with unrestricted times as would be implied by Eq. (4.5).

results in

Se(εp, td) =

∫
dt

∫
dt′Ẽ∗x(t)Ẽx(t′)e−i(εp−ωx)(t−t′)〈µ̂(t)µ̂†(t′)〉0 , (4.5)

where 〈. . . 〉0 indicates an expectation value with respect to the initial state |Ψ(t0)〉 =

|ψ(t0)〉 ⊗ |φ(t0)〉 with ψ0 and φ0 the initial electronic and nuclear wave functions. The

assumption of a product state form for the initial total wave function is justified when a

single excited electronic state can be targeted by the pumping process but the generalization

to a sum of such product states is straightforward if less succinct. The “e” subscript stands

for “exact” and serves to differentiate it from the various approximate expressions defined

below. In the above equation, the photoelectron part of the dipole correlation has been

evaluated (this is possible since [Ĥp, ĤM] = 0) and µ̂ (µ̂†)“annihilates” (“creates”) the ion,

µ̂ ≡
∑
αa

µ̂†αa|a〉〈α| . (4.6)

We note that Eqn. (4.5) assumes a uniform density of photoelectron states and will only be

physical for εp > 0. This can be ensured by shifting the carrier frequency of the ionizing

pulse. We have also expanded the electric field amplitiudes into their positive and negative

frequency components with carrier frequencies (Ẽ (∗)
x (t)e∓iωxt) and kept only the rotating-
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wave terms. Equation (4.5) is the most straighforward way to simulate the time-resolved

photoelectron spectrum and this will be done for 1- and 2-dimensional model systems in

sections 4.4 and 4.5 respectively.

The molecular dipole correlation function in Eq. (4.5) can be straightforwardly expanded in

the eigenstates of Ĥmol in the full nuclear+electronic space. Indexing such states by i, j, k, . . .

and expanding the initial wavefunction |Ψ0〉 =
∑

i ci0|i〉, we obtain

Se(εp, td) =
∑
k

|
∑
i

ci0µkiẼx(εp − ωx − εi + εk)|2 7→
∑
ki

ρii|Ẽxµki|2δ(εp − ωx − εi + εk)

(4.7)

where the last relation follows on assumption of a mixed state with population of state i

given by ρii (electronic decoherence to such a mixed state can be described more rigorously

in Liouville space [36]) and assuming a narrow-band pulse power spectrum. This exact

Fermi Golden Rule (eFGR) in the full nuclear+electronic space is always possible to write

but difficult to implement. The difficulty lies in the calculation of the eigenstates which is

numerically intractible for all but the simplest systems. This form does however reveal that

TRPES can be written as a sum of squares of transition amplitudes and is thus positive-

definite (as must physically be the case). Also of note is the fact that the signal consists

of an incoherent sum of exact population terms that do not mix; population transfer does

not occur. Of course, this is a special property of the eigenbasis and does not generally hold

for the product-state (adiabatic or diabatic) bases. This is of particular importance for CIs

since the “good basis” becomes “bad” near the CI as the BOA breaks down and the nuclei

couple different electronic states.

It is important to note that expressions formally equivalent to Eqs. (B.5) can also be obtained

by calculating the expectation value of the photoelectron population for any time after the

passage of the ionizing pulse. This is easily seen from the fundamental theorem of calculus
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on Eq.(B.1) and the initial condition of no photoelectrons [89, 90]. We have presented

this slightly different derivation to highlight the analogy to light-based signals, which are

derivable from the integrated rate-of-change of the photon number.

For comparison to the eFGR , it will be useful to also develop an understanding for the seper-

ate roles that electronic populations and coherences play in Eq. (4.5) (note that populations

and coherences are basis-dependent and we refer here to the adiabatic basis as opposed to

the full eigenbasis which is not practial to utilize). To that end, we rewrite Eq. (4.5) using

Eq. (4.6) as

Se(εp, td) =

∫
dt

∫
dt′Ẽ∗x(t)Ẽx(t′)e−i(εp−ωx)(t−t′) (4.8)

×
(∑

aα

〈M̂∗
a0(t)µ̂αaM̂αα(t− t′)µ̂†αaM̂a0(t′)〉φ0 +

∑
a6=b,α

〈M̂∗
b0(t)µ̂αbM̂αα(t− t′)µ̂†αaM̂a0(t′)〉φ0

)
.

In the above, we have defined the electronic transition amplitudes

M̂a0(t) = 〈a|e−iĤMt|ψ0〉 (4.9)

M̂αα(t) = 〈α|e−iĤMt|α〉 ,

where the expectation values are now solely over the initial nuclear wavefunction. The

assumption of no coupling between ionized electronic states of the molecule prevents us from

having to consider such terms as M̂βα(t) for β 6= α.

The first term in Eq. (4.8) represents the contribution of electronic populations while the

second term contains the coherence contributions. If the state initially prepared by the pump

contains no electronic coherences (or they dephase before the probe) and the states |a〉 do

not mix during the time propagation (they are eigenstates in the electronic subspace and

the BOA holds), then the coherence terms would vanish by orthogonality. If either of these

conditions is violated, the coherences must be accounted for.
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4.3 The Quasistatic Approximation

To obtain the final FGR-like expression, we will substitute the temporal field envelopes in

Eq. (4.8) for their Fourier transforms and approximate the nuclei as static during interaction

with the ionizing pulse. This gives the quasi-static Fermi Golden Rule (qsFGR):

Sqs(εp, td) = Spop
qs (εp, td) + Scoh

qs (εp, td) , (4.10)

Spop
qs (εp, td) =

∑
aα

ρaa(td)|µαa(td)Ẽx(εp − ωx + εα(td)− εa(td))|2 , (4.11)

Scoh
qs (εp, td) =

∑
a6=b,α

ρab(td)〈φαb(td)|φαa(td)〉µαb(td)µ†αa(td) (4.12)

× Ẽ∗x(εp − ωx + εα(td)− εb(td))Ẽx(εp − ωx + εα(td)− εa(td)) ,

where we have replaced ca(t)c
∗
b(t) = ρab(t) for the electronic populations (a = b) and co-

herences (a 6= b), and explicitly separated the population and coherence terms (εb and µαb

are defined in analogy with Eqs. (B.21) and (B.22)). This is a FGR type expression in

the electronic space where the time dependence due to expectation values is taken over the

time-dependent nuclear wave packet as opposed to the full nuclear+electronic space. Since

the summations in Eq. (4.10) contain far fewer terms than those in Eq. (4.7), this expression

is much more tractable. On the other hand, it includes terms that are absent from the

scFGR (Eq. (4.4)). The scFGR is an approximation to the population part of the qsFGR

(Eq. (4.11)), which we term the quasi-static population Fermi Golden Rule (qspFGR) in

which the nuclear propagation is treated semi-classically to obtain the time-dependence of

the parameters (energies, dipoles, and populations).

Arriving at Eq. (4.8) entails no loss of generality. The key approximation, which is reflected
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in Eqs. (B.17)-(B.18) and (B.20)-(B.22), is that the molecule interacts with the ionizing x-ray

pulse faster than the nuclei can appreciably move (the quasistatic approximation) and that

the timescale of nuclear motion is much longer than the coherent electronic oscillation period.

This is breaks down in the vicinity of a CI where the electronic energy gap vanishes. We

have thus arrived at four versions of the FGR: (1) The exact FGR in the nuclear+electronic

space (Eq. (4.7)), which does not mix populations (specifically, |ψ0〉 = |i〉 ⇒ |ψ(t)〉 ∝ |i〉)

since it is written in the eigenbasis. (2) The “quasistatic” FGR, which approximates the

correlation function (from which the eFGR was obtained) by assuming frozen nuclei during

the ionizing pulse in order to obtain an intuitive formula similar to the eFGR but in a more

numerically tractable basis. (3) The ‘quasistatic population” FGR (qspFGR), which neglects

the electronic coherences in the qsFGR. (4) The “semiclassical” FGR (Eq. (4.4)) which

approximates the qspFGR. Equation (4.11) still contains expectation values of the electronic

energies taken over the exact nuclear wavefunction. Although this is an improvement over

Eq. (4.7) (since the nuclear wavefunction can be numerically propagated without obtaining

the exact eigenstates), Eq. (4.11) is still commonly approximated as in Eq. (4.4) by taking

the nuclei as classical objects moving stochastically and then averaging over the resulting

trajectories.

In this hierarchy of golden rules, the latter two (Eqs. (4.11) and (4.4)) appear nearly identical

and both appear very similar to the exact (Eq. (4.7)). However, as we remarked earlier, the

latter two are written in a product adiabatic basis rather than the full nuclear+electronic

eigenbasis. While this make simulations easier due to the smaller number of terms in the

summation, it also means that the states can couple and will generally mix. This mix-

ing will transfer electronic population between states while generating electronic coherences

(Eq. (4.12)). While the quasi-static assumption of frozen nuclei during the ionization process

may be well-justified for ultrashort pulses, dropping the electronic coherence terms is not jus-

tified when coherences are internally generated by the propagation due to the breakdown of

the BOA and the coupling of electronic states through the nuclei. We have thus shown that
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the FGR approach can easily be extended by the inclusion of coherence terms (Eq. (4.12)) to

obtain the more general qsFGR (Eq. (4.10)). This allows the effects of electronic coherence

on the TRPES signal to be calculated at a similar computational cost to the commonly

employed scFGR. In Sec. 4.4, we will explore the consequences of these internally-generated

coherences and what information may be obtained from their contribution to the signal.

We now examine more closely Eq. (4.12), which encodes the coherence contributions to

TRPES within the quasistatic approximation. It is apparent that, while the population terms

depended on the power spectrum |Ẽx(ω)|2, the coherence terms depend on the frequency-

dependent phase of the ionizing pulse via Ẽ∗x(ω)Ẽx(ω′), opening up another avenue of control

for these signals. Also of note is the nuclear coherence factor 〈φαb(td)|φαa(td)〉 (missing

from the populations since the nuclear wave packets are normalized). This factor represents

the overlap of the nuclear wave packet on state a at time td with that on state b. Since

the two potential surfaces are typically different, the two wave packets will generally not

overlap appreciably after some time. This factor therefore adds a decay that complicates

the observation of the coherence terms and can justify their exclusion, as in the scFGR,

when the decay is sufficiently fast relative the delay times td. This is ordinarily the case,

for example, in slow picosecond TRPES but is not generally true in the ultrafast regime. In

a more comprehensive treatment, nuclear movement during ionization, as well as spectator

modes, would further decohere these terms. While these effects are important, are present

interest is in the effects of the electronic coherences while they are still around.

As will be illustrated in the next section, the most visible signature of the coherence terms in

TRPES is a characteristic oscillatory pattern in the td-dependence of the electronic coherence

ρab(td). The frequency of this beating pattern allows one to determine the separation between

states a, b without direct spectral resolution. In principle, the actual oscillation period is

related to the eigenenergies, which complicates the interpretation of the beating pattern in

the region of the CI. Once the nuclear wave packet is sufficiently far from the CI for the
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inter-surface coupling to be small relative to the electronic energy separation, the frequency

can safely be interpreted as corresponding to the gap. In our models, we find that the onset

of this regime is relatively rapid (within a few fs of the wave packets arrival at the CI). In

this sense, the CI acts as a scatterer that transfers population between the two electronic

states but also sets in motion a coherent oscillation.

Finally, we note that, if one simply invokes the reasonable approximation that ρab(td) ∼

ρabe
−iωabtd , we can transform a↔ b and combine terms to get

Scoh
qs (εp, td) ∼

∑
ab

cos (ωabtd) (4.13)

where we have dropped all other factors inside the summation. This term is clearly not

positive-definite and the coherence term can therefore both enhance or suppress the pop-

ulation term in the photoelectron signal. Thus, the presence of coherence can suppress or

enhance the “primary” photoionization process. This can be understood as the presence of

the coherence opening up new pathways that interfere destructively or constructively with

the population ionization pathways.

4.4 Comparison of the FGR Expressions

In this section, we will simulate the TRPES signal for a model involving a single nuclear

coordinate with the various FGR expressions as well as with Eq. (4.5). The correlation

function expression implicitly includes both population and coherence contributions, as can

be seen from its expanded form in Eq. (4.8), and, combined with a state propagation scheme,

offers an exact way to simulate the full TRPES signal. Rather than specifying the adiabatic

potential surfaces, we will work from the outset in the diabatic basis. This simplification

to a scalar coupling retains the essential physics of an inter-surface coupling in the region

63



of a degeneracy and the population transfer and coherence creation that follows from such

coupling. We assume three relevant electronic states, two unionized (labeled |1〉 and |2〉) and

one ionized (|3〉). The two unionized states intersect and are coupled near the intersection

point and all three surfaces are taken to be harmonic with the same shape. This is the

simplest model that can illustrate the effect of electronic coherences on TRPES signals and

will serve as a readily-comprehensible test-case. The molecular Hamiltonian in the diabatic

basis reads

ĤM =
3∑
j=1

|j〉
(
T̂j + V̂j

)
〈j|+ |1〉V̂12〈2|+ |2〉V̂21〈1| (4.14)

where T̂j ≡ − 1
2m

d2

dx2 , the nuclear kinetic energy operator, is now diagonal in the electronic

space (see appendix C.0.2 for parameters). We give all three diabatic surfaces the same

curvature to maximize the coherence time which is limited by the nuclear wavefunction

overlap.

The initial wavepacket (assumed to be on surface 1 initially) as well as all potential surfaces

and the inter-surface coupling are displayed in Fig. 4.2 (top). We then propagate this initial

wavepacket using a Short Iterative Lanczos (SIL) scheme [99] and calculate the two-time

dipole correlation function, working in the Condon approximation and taking all dipole

elements to be unity for simplicity. More rigorous treatment of µ can be approximated for

example by Dyson orbitals [100], which introduce weight factors for different ion states as well

as angular distributions. The time-dependent populations of the neutral electronic states

and the magnitude of their coherence are plotted in Fig. 4.2 (Bottom). Taking the ionizing

pulse to be a Gaussian with central time td, standard deviation σT , and carrier frequency

ωx (see Eq. (D.3)), we calculate Eq. (4.5) and compare to the qspFGR result (Eq. (4.11))

in Fig. 4.3. This comparison immediately reveals the presence of coherent oscillations in the

directly propagated signal that are absent in the approximate FGR result. This failure of

the qspFGR is due to the fact that the electronic states (whether adiabatic or diabatic) are
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not eigenstates of the molecular Hamiltonian. The coupling V̂12 couples unionized electronic

states and the propagator therefore mixes them. This renders the coherence term in Eq. (4.8)

finite and we must go beyond the qspFGR/scFGR.

Although the restricted time window used to capture the ultrafast dynamics has left us with

insufficient spectral resolution to directly resolve the two unionized surfaces, the beating

pattern reveals their splitting. A visual inspection of the coherent oscillations reveals a

period of roughly 10 fs. The average separation between unionized electronic surfaces from

td = 45 fs to td = 65 fs (roughly the time from first peak to last peak in the oscillation

pattern) corresponds to a beating period of 9.74 fs, a relative error of only 2.6%.

In deriving Eq. (4.11), we have made the quasistatic approximation, where we neglected the

kinetic energy for the duration of the ionizing pulse and the contribution from electronic

coherences. To investigate the relative importance of these two approximations, we also

have computed separately the first term in Eq. (4.8), which neglects coherences but makes

no assumption of frozen nuclei, and Eq. (4.12), which is the contribution from electronic

coherences but assumes frozen nuclei during the ionization. Although it is clear that the

origin of the oscillatory pattern is the coherence terms, we would like to determine how

good the quasistatic approximation is. In particular, if the qsFGR (Eq. (4.10)) is a good

approximation to Eq. (4.5), then this simple patch-up can account for the coherent oscilla-

tions and we could avoid the extra propagation that comes with violations of the quasistatic

approximation. The qsFGR therefore offers a simple extension of the scFGR that captures

the effects of electronic coherences generated internally by the propagation through a region

of nonadiabatic dynamics. It is important to note however, that correctly reproducing these

oscillations will require accurate propagation of the magnitude and phase of the coherence

ρab(td).
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Figure 4.2: (Top) Nuclear dependence of the diabatic electronic energies including the po-
tential coupling the two unionized surfaces. The initial nuclear wavepacket (rescaled for
visualization) is on the V1 surface. (Bottom) The populations and coherence magnitude
for the unionized adiabatic states for the first 96 femtoseconds. It is noteworthy that the
coherence remains appreciable relative to the populations for some time after its creation.
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Figure 4.3: Time-resolved photoelectron spectrum for the 1-D model (appendix C.0.2 sim-
ulated using the qspFGR (Eq. (4.11)) (far left), the full correlation function and a direct
propagation scheme (Eq. (4.5)) (middle left). Note the prominent oscillations in the latter
simulation that reflect the generation of electronic coherence at the CI. This beating pattern
is clearly absent from the scFGR simulation on the left. To assess the relative importance of
(1) the quasistatic approximation and (2) neglecting electronic coherences, we also present
the population-only contribution to the correlation-function expression for TRPES (first
term in Eq. (4.8) (middle left) and compare to the qsFGR (Eq. (4.10)) (far right). Note
the similarity of the exact and quasi-static results. This indicates that the quasistatic ap-
proximation is good enough for qualitative purposes provided electronic coherence terms are
included.
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4.5 Electronic Coherences Created at Conical Inter-

sections

We now present simulations of the TRPES signal for a molecular model system (see appendix

?? for details) representing the branching space of a Conical Intersection [101] by using the

exact expression in combination with a fully quantum propagation. We take into account

two excited electronic states S1 and S2 and the two nuclear coordinates x = (xg, xh) that

resemble the gradient difference and the derivative coupling vector respectively. The cation

states D0 and D1 are used as target states to probe the electron dynamics near the CI. The

cationic potential energy surfaces (PES) are in the same nuclear coordinates but do not

posses a CI in the space used for the simulations. The ionization energies for D0 and D1

at the CI point are 6.9 and 7.5 eV respectively. The molecular Hamiltonian is composed of

a Cartesian-type kinetic-energy operator and the corresponding neutral and cation diabatic

PESs:

H =
4∑
j=1

|j〉
(
T̂j + V̂j

)
〈j|+ |1〉V̂12〈2|+ |2〉V̂21〈1| (4.15)

where V1 and V2 are PESs of the neutral states S1 and S2, V12 is the diabatic coupling, V3

and V4 are the PESs of the cation states D0 and D1 and T̂j ≡
∑

i∈h,g
−1
2m

d2

dx2
i

is the nuclear

kinetic energy operator acting on electronic state j (we use a reduced mass m of 30000 au or

≈ 16 amu). The transition dipole moments between the neutral cation states are assumed

to be constant with respect to the nuclear coordinate. The time evolution is simulated by

wave packet dynamics on a numerical grid using a time stepping scheme (see appendices B.1

and C.1). The initial wave function is created by assuming impulsive excitation from the

electronic ground state S0 to the S2 state.

The time evolution of the populations and the electronic coherence of the neutral states S1
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Figure 4.4: Time evolution of the electronic states populations (S2 red, S1 blue) and the
coherence magnitude (black, dashed) for the CI model.

Figure 4.5: TRPES Signal for CI with 4 fs FHWM and 20 eV central frequency.

and S2 is shown in Fig. 4.4. The wave packet reaches the CI within ≈8-15 fs, resulting in an

overall population transfer of ≈30 %. The electronic coherence build up is maximal at 13.5 fs,

when the main fraction of the wave packet has passed the CI, followed by a decay of the

coherence caused by the different gradients in S1 and S2. At 20 fs, the wave packet returns

and the coherence rebuilds until the second passage through the CI at ≈30 fs. Between 15

and 25 fs the system the systems moves through a region, where coupling V12 is negligible

and the nuclear wave packets propagate freely on the potential energy surfaces. Note that

the term electronic coherence is not clearly defined around the CI since the nuclear and

electronic wave functions are strongly mixed (i.e. around 10 and 30 fs).

The corresponding TRPES signals calculated for the exact correlation function expression

(Eq. 4.5) are shown in Fig. 4.5 and Fig. 4.6 for two ionization pulse lengths. The signal in
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Figure 4.6: TRPES Signal for CI with 200 as FHWM and 20 eV central frequency.

Fig. 4.5 is calculated for an ionization pulse, which is long compared to the time scale of the

electron dynamics (4 fs FWHM). The splitting of both states is spectrally resolved at around

20 fs (the faint signal at 7 eV stems from the S1 state). However, the fast oscillation which

are expected from the coherence contribution can not be resolved with the chosen pulse

length. The signal in Fig. 4.6 is calculated for an ionization pulse short compared to the

time scale of the electron dynamics (0.2 fs FWHM). Here, the spectral features can not be

resolved anymore. The coherent oscillation pattern in the time domain is now fully resolved

and visible between 15 fs and 20 fs. The two ion states are separated by ≈0.6 eV, and they

can not be distinguished for the chosen pulse parameters. However, the coherent oscillation

pattern is not affected by presence of two ion states. The coherent features of the TRPES

signal can be matched in an approximate way against the time evolution of the real part of

the coherence <(ρab) (see appendix B.1.1 for details) shown in Fig. 4.7(a). The adiabatic

and diabatic coherence are identical, while the wave packet leaves the coupling region (Fig.

4.7(b)) and the oscillations in the signal stem solely from the electronic states. This can be

understood qualitatively by the inspection of Eq. (4.8), which separates the contributions

to signal into electronic populations and coherences. Assuming the Condon approximation

and the limit of short ionization pulses (i.e. the nuclei do not move in the ion states) the

second term in Eq. (4.8) is proportional to the real part of the coherence <(ρab). Note that

a negative <(ρab) depletes the signal contribution from the populations due to destructive
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Figure 4.7: (a) Time evolution of the real part of the electronic coherence in the diabatic
basis (blue) and the adiabtic basis (black). (b) Time evolution of the Expectation value of
the diabatic coupling (V12)

interference (as for example at 14.5 fs in Fig. 4.7 and Fig. 4.6).

From the comparison of the signals in Fig. 4.5 and Fig. 4.6, it becomes clear that, in the

exact expression, the signal is fully subject to the Fourier uncertainty – Time and frequency

have to be traded off against each other like in an experiment. However, this is not the case

for the qsFGR, where a change in pulse length only affects the spectral but not the temporal

resolution.

4.6 Conclusions

In this chapter we have presented and analyzed a hierarchy of expressions for the calculation

of TRPES signals. The main results of the chapter are the exact correlation function expres-
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sion (Eq. (4.5)) and the qsFGR (Eq. (4.10)), which extends the widely used scFGR (Eq.

(4.4)) via the inclusion of electronic coherences, accounting for the nuclear overlap between

the electronic states. In contrast to the pure population contribution, this term is sensitive

to the phase of the ionizing electric field and leads to a beating pattern in the photoelectron

yield. In model calculations, we have shown that these oscillations can be resolved by the

use of attosecond pulses. While the exact correlation function method is mainly intended for

use with wave packet propagation protocols on small systems and can be computationally

demanding, the qsFGR can be used along with semi-classical molecular dynamics protocols

to simulate larger molecular systems. The presented formalism can be applied in an anal-

ogous way for the description of photo-detachment signals in anions (A− → A rather than

A→ A+) [94].

In previous studies [89, 90], exact wavefunction propagations were used that are formally

identical to our Eq. (4.5). Those studies focused on coherent vibrational dynamics and slower

electronic population dynamics. Moreover, a common model to consider is one in which each

neutral state ionizes to a separate cationic state. In the absence of intersurface coupling in

the cationic manifold, the coherence terms for such models vanish identically. Although

such coupling had been considered [90], we can see by Eq. (4.8) that the influence of such

terms will be limited by the temporal duration of the ionizing pulse. When only electronic

population dynamics and coherent vibrational dynamics are important, the qspFGR (which

may be approximated by the scFGR) is sufficient to simulate the signal in the quasistatic

limit. This approximation is intuitive and frequently employed [84, 83, 91]. It is only when

the two neutral states can both ionize to the same cationic state and the pulses employed are

sufficiently short to capture the electronic oscillations that the coherence terms are revealed.

The strategies presented to calculate the signal can readily be interfaced with existing non-

adiabatic molecular (quantum) dynamics simulation protocols. The most straightforward

way is to evaluate the correlation function Eq. (4.5) directly from a time propagation of a
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wave function in the combined electronic+nuclear space. For example, the molecular system

can be propagated in a wave packet approach with the Fourier method [99] in a reduced space

of nuclear coordinates [102] including the non-adiabatic couplings [103, 104]. The numerical

evaluation of the correlation function is then straightforward [52]. Alternatively approximate

wave function methods like Multi Configuration Time-Dependent Hartree (MCTDH) [105]

can be used to include more vibrational modes and also to evaluate the correlation function.

Semi-classical wave packet propagation protocols like Ab Initio Multiple Spawning (AIMS)

[96] or Hagendorn wave packets [106] provide access to the nuclear wave function and are

thus also suitable for the the correlation function method. However, the numerical effort to

calculate the signal grows quadratically with the number of time steps, since the correlation

function is a function of two variables (t and t′). Moreover, it requires a propagation on the

potential energy surface of the ionized molecule. This is in contrast to the various derived

FGR expressions, where the numerical effort of the signal calculation only grows linearly

with the number of steps. The exact FGR expression (Eq. 4.7)) requires the eigenstates in

the full electronic + nuclear subspace and is thus limited in its applicability. It may however

be advantageous in special cases where an diagonalization of an approximate Hamiltonian is

feasible (for example in combination with a vibronic coupling Hamiltonian [107]). The linear

scaling with respect to the number of time steps might outperform the cost of diagonalization

in some cases.

The different types of the FGR presented here neglect the nuclear propagation in the ionized

states and only require a single time propagation, making them suitable for combination with

semi-classical protocols and the description of larger systems. The scFGR, which neglects

the contributions of the electronic coherences, has been successfully used in combination

with AIMS [84]. An extension to use it with the qsFGR (Eq. (4.10)) seems straightforward,

since AIMS properly includes the necessary nuclear overlap term (Eq. (4.12)). In principle,

the qsFGR expression can also easily be applied to all wave function based methods men-

tioned above, as long as the nuclear overlap term is accessible. In contrast to the correlation
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function, the qsFGR does not require time propagation in the ionized molecular states, sig-

nificantly simplifying its calculation. Simulation protocols like Tully’s fewest switch surface

hopping (FSSH) method [97], which treat the nuclei classically are easy to combine with

the scFGR [36, 108]. However, the basic version of the FSSH algorithm does not account

for the decay of electronic coherences. The result would be an overestimation of coherence

contributions to the TRPES signal. Extensions of FSSH, which allow corrections for coher-

ence decay [109, 110, 111, 112], may be used to approximate the nuclear overlap term in Eq.

(4.12), and combine the class of FSSH methods with the qsFGR. TRPES could provide an

experimental test for the various simulation algorithms.

Our model system simulations clearly indicate that a fast build up of electronic coherences

results in an ultrafast, time-domain oscillation pattern in the TRPES signal. Its oscillation

period is connected to the energy splitting between the neutral electronic states. A compari-

son of the different signals yields the conclusion that the qsFGR is a good approximation for

the inclusion of electronic coherences beyond the scFGR. However, the quasistatic approxi-

mation introduces a unrealistic resolution in the time domain by ignoring the time evolution

of the system within the pulse duration. The qsFGR is thus valid for pulses which are short

compared to the timescale of the internal dynamics with the scFGR making the additional

assumption of neglecting electronic coherences.

In this chapter, we have simulated a model system of a CI between excited molecular states

to demonstrate that the coherent oscillation pattern can be observed in a realistic setting.

To obtain an observable coherence, a system with a CI in the vincinity of the Franck-

Condon point is required to retain a compact wave packet (for example [53, 55, 75, 76]).

The oscillation pattern is revealed if appropriate sub-femtosecond pulses are chosen. The

information about the potential energy surface splitting can then be detected through the

oscillation period in the time domain instead of the frequency domain. Note that this method

accesses information similarly to the resonant linear absorption signal [98, 87]. Finally we
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note that wave functions at CIs are known to have a geometric Berry phase [77] that depends

on the topology and is independent of the details of the potential surfaces. The Berry

phase so far has eluded detection in chemical systems. Spectroscopic signals like TRPES

and TRUECARS [88], which are sensitive to the phase of the pulse and the phase of the

electronic coherences, might also provide a new strategy for the experimental observation of

geometric phases.
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Chapter 5

Conclusion

In this thesis, we have endeavored to provide a very general viewpoint from which to analyze

signals performed with ultrafast x-ray pulses. The first step of this is to separate the last

(or last few) interaction(s) from all previous interactions in the perturbative expansion of a

material expectation value. The latter, called the pump, creates an arbitrary nonstationary

state that evolves freely for at least some finite time before the former interaction(s), termed

the probe. This formulation is quite general. The point is that, provided the pump and probe

are temporally seperable, the information to which a given probe technique is sensitive does

not depend on the (pumped) state of the matter. Thus, by cataloguing a variety of probes

and their properties, we can establish an understanding for what a given signal will show.

Chapter 2 provides a systematic classification scheme for x-ray Raman signals in terms

of correlation functions of the resonant or off-resonant polarizability α̂. The basis of all

signals examined is the frequency-dispersed photon number change, with it’s zeroth and

first moments playing the role of auxilliary signals corresponding to total photon number

change and total field energy change respectively. Each of these three types of signals can

be resonant or off-resonant, linear or quadratic (or higher order) in the field intensity, and
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performed with broadband or hybrid pulses. After systematic analysis on simple model

systems, general properties of all of these signals were obtained, permitting one to select

from this toolbox of techniques based on the information one wants to probe.

In chapter 3, we track the dynamics of 1- and 2-D model systems using the S
(fd)
OLH detection

protocol. Though low-order, this signal is perhaps not as obvious initially since it frequently

vanishes, requiring the presence of electronic coherences in the material as well as control

of the relative phases of the hybrid pulse constituents in order to remain finite. As an off-

resonant signal, it total photon number is conserved and photons are merely redistributed

between the modes of the electromagnetic field. We thus term this technique transient re-

distribution of ultrafast electronic coherences by attosecond Raman spectroscopy or TRUE-

CARS. This technique is analogous to the second half of an electronic coherent anti-stokes

Raman spectroscopy (electronic-CARS) experiment, the primary difference being that the

detected coherence is generated internally by nonadiabatic couplings rather than imprinted

externally via a Raman interaction with a previously-applied laser pulse. This technique di-

rectly times the arrival of the nuclear wavepacket at the region of the CI since this is the point

where the coherences are generated by the NACs. Moreover, the resulting coherent oscilla-

tions reveal the time-evolving gap between the electronic energy levels. Although this is, in

principle, frequency-domain information, it would not be accessible via a frequency-domain

experiment since the nuclear configuration is highly transient.

In chapter 4, we apply a similar analysis to time-resolve photoelectron spectroscopy (TR-

PES). The relevant material parameter is now a two-point time correlation function rather

than a single-time expectation value as in TRUECARS and thus the required time-propagations

are somewhat more demanding. This leads us to explore a hierarchy of ways in which to

account for the nuclear dynamics. Our analysis lead to a quasistatic approximation, in which

the nuclei are taken as frozen during the ionization process, that serves as a sort of middle-

ground between an eigenstate representation and the correlation function expressions. This
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expression is fully quantum-mechanical but readily lends itself to semiclassical or classical

simulation. The approach could also be used to derive a quasistatic approximation for S
(fd)
RQ

by taking the nuclei as frozen during the time spent in a core excited state. Given that this

signal is, at its core, a four-point correlation function, such a simplification could greatly

facilitate calculation.

The extension of spectroscopic techniques into the attosecond and x-ray regimes offers

promising new possibilities for probing matter. Newly-developed XFEL and HHG sources

can produce pulses with these parameters, bringing ultrafast material dynamics that is or-

dinarily unseen into the range of experiment. The dream of making molecular movies,

of stroboscopically watching frame-by-frame as complicated reaction dynamics play out, is

drawing closer. Simulating and interpretating these signals is a significant challenge, as we

begin to enter regimes where long-used approximations lose validity, but one with high re-

ward, improving humanity’s understanding of chemical dynamics. We hope that this thesis

can be of some small help to those who embark on this journey.
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2010.1, a package of ab initio programs, 2010. see http://www.molpro.net.

88



Appendix A

Rate-of-Change of Photon Number

From the field point-of-view, perhaps the simplest starting point from which to derive ex-

pressions for the various spectroscopic signals, is to suppose that we detect the integrated

rate of change of the photon number operator in some “signal” mode

S(Λ) =

∫
dt〈dN̂s

dt
〉(t) = i[Ĥ, N̂s] = i[ĤI, N̂s] (A.1)

where Λ stands for the set of parameters that define the externally applied field and we have

used Heisenberg’s equation of motion and the fact that N̂ fails to commute only with the

interaction part of the Hamiltonian. This definition of the signal corresponds to detecting

the frequency-dispersed gain/loss. Using the mode-expansion of the electric field

Ê(t) = i
∑
kλ

√
2πh̄ωk

V
ε(λ)(k̂)e−iωtâk,λ + H.c. ≡ Ê(+)(t) + Ê(−)(t), (A.2)
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where “H.c.” stands for the Hermitian conjugate and we have split the field into its positive

and negative frequency components, this commutator is evaluated to be

S(Λ) = −=[

∫
dt〈Ê(−)

ks
(t) · V̂(t)〉]. (A.3)

It is possible to derive an equivalent expression from the matter point-of-view, computing the

rate of change of the molecular energy. There are two reasons we prefer the field perspective.

First, there are certain techniques for which the signal emitted at the source is not identical

to the observed signal (what is emitted is not the same as what is detected). In these cases,

post-emission effects must be taken into account and this is best handled from the field-

perspective. Although this type of situation is more common for electronic spectroscopies (in

which electrons rather than photons are detected), detector gating and sensitivity functions,

for example, require such extensions. A second and more fundamental reason is philosophical:

it is the fields that are ultimately detected so it is the field operators that should taken to

be directly connected to the observable quantities such as spectroscopic signals.

We have yet to discuss the state of the electromagnetic field and Eq. (A.3) is sufficiently gen-

eral to accomodate signals that utilize quantum states of light. In this manuscript however,

we will only concern ourselves with heterodyne-detected (or stimulated) signals, in which the

light may be taken as classical, and homodyne-detected (or spontaneous) signals, in which

the signal mode of the elctromagnetic field is initially in the vacuum state |0〉. We explore

these two types of signals below.

A.0.1 Heterodyne-Detected (Stimulated) Signals

When considering the photon gain/loss of externally applied laser beams or pulses, it is

permissible to take the field to be in a coherent state (i.e., an eigenstate of â). This then
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reduces the signal to

S(Λ) = −=[

∫
dtE

(−)
ks

(t) · 〈V̂(t)〉] =−=[

∫
dtE(ks)e

iωst · 〈V̂(t)〉] = (A.4)

−=[E(ks) · 〈V̂(ωs)〉].

In the main text, we will take the externally applied fields to be paraxial and collinear

so that the wavevector dependence may be replaced by the frequency. Either of the final

two expressions may be preferred for simulation purposes depending on whether the time-

or frequency-domain dipole expectation-value is more readily calculable. For example, in

atomic or static molecular spectra, the frequency domain is most easily computed. In the

more complex molecular calculations wherein the nuclear-dependencies and NACs play a sig-

nificant role, the dynamics may be sufficiently complicated that it is difficult to propogate for

the long times necessary for a numeric evaluation of the Fourier Transform. Fortunately, we

will ordinarily be interested in temporally-limited interactions. The field envelopes can then

be used to limit the necessary extent of temporal propagation. Importantly, this approach

is not applicable to spontaneous signals since the emission event is not controlled.
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Appendix B

Simulation Protocols for TRPES

In section 4.4 and Fig. 4.3, we used two different simulation protocols for TRPES with

the same model and initial conditions. These protocols, based on Eq. (4.5) and Eq. (4.11)

respectively, both propagate the full nuclear+electronic wavefunction quantum mechanically.

In this appendix, we will explain in greater detail these two simulation procedures.

B.1 Correlation Function Expression

The photoelectron signal is defined as the energy-resolved, integrated rate of change of the

number of photoelectrons which gives the total energy-resolved photoelectron yield

S(εp, td) =

∫
dt
d

dt
〈n̂p(t)〉. (B.1)

It depends on photoelectron energy εp and the delay time td of the x-ray pulse relative to

state preparation. The signal that we derive generally depends on all parameters describing

the ionizing pulse and can be manipulated by pulse shaping but for simplicity we only

explicitly state the td dependence. Assuming that the photoelectrons are generated only by
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interaction with the x-ray pulse (that is, [n̂p, ĤM] = 0 where n̂p = ĉ†pĉp is the occupation

number of the photoelectron state |p〉), we have, from the Heisenberg equation of motion

˙̂np = −i[n̂p, H] = −iEx(t)
(
µ̂p − µ̂†p

)
, (B.2)

where the operator

µ̂p ≡
∑
αa

µ̂†αaĉp|a〉〈α| (B.3)

annihilates a photoelectron and returns the molecule to an unionized state.

We will carry out the calculation in Hilbert space since we have an eye toward numerical

propagation of the nuclear+electronic wavefunction. We note however that a Liouville space

treatment would facilitate the incorporation of environmental degrees of freedom (spectator

nuclear modes can also be treated at this level) [36]. For simplicity, we will not explicitly

incorporate the pumping process but rather take the system to be prepared in a known

non-stationary state at time τ0. Since the initial state of the photoelectron is the vacuum

|0〉, the expectation values in Eq. (B.2) vanishes to first order in Ex. Under the assumption

that the ionizing x-ray pulse is well-separated temporally from the preparation process, we

may expand the signal to second order in the interaction Hamiltonian to obtain

Se(εp, td) =

∫
dt

∫
dt′θ(t− t′)Ex(t)Ex(t′)

(
〈µ̂p(t)µ̂†p(t′)〉0 + 〈µ̂p(t′)µ̂†p(t)〉0

)
(B.4)

which may also be read directly from the diagrams in Fig. 4.1. Switching t 7→ t′ in the

second term then yields

Se(εp, td) =

∫
dt

∫
dt′Ex(t)Ex(t′)〈µ̂p(t)µ̂†p(t′)〉0 . (B.5)

Since the photoelectron and the molecular Hamiltonians commute, we may factor the ex-
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pectation value and evaluate the photoelectron part yielding Eqn. (4.5), which may also be

written in the frequency domain as

Se(εp, T ) =

∫ ∫
dωdω′

4π2
Ẽ∗x(ω)Ẽx(ω′)〈µ̂(ω + ωx − εp)µ̂†(ω′ + ωx − εp)〉0 , (B.6)

where we have substituted the temporal field envelopes for their Fourier transforms

Ẽx(t) =

∫
dω

2π
Ẽx(ω)e−iωt (B.7)

and the conjugate relation for Ẽ∗x(t). The first simulation protocol is based on Eqn. (4.5)

and directly propagates the total nuclear+electronic wavefunction. Thus, we begin with

the initial state |Ψ0〉 = |φ0〉 ⊗ |1〉 and propagate to some tmax in units of δt (we used

δt = 6th ≈ 120as) via the Lanczos algorithm. This therefore generates a list of wavefunctions

|Ψ12(t)〉 ≡ e−iĤMt|Ψ0〉 0 < t < tmax (B.8)

where the “12” subscript emphasizes that, since the system begins in state |1〉 and ĤM doesn’t

couple neutral and ionized electronic states, the propagation is entirely in the manifold of

nuclear electronic states. For time t, 0 < t < tmax, we apply the dipole operator, thus

generating a list,

µ̂†|Ψ12(t)〉 0 < t < tmax, (B.9)

of the total wavefunction following dipole excitation at time t. In our simulations, we take

the dipole operator to be merely map the wavepackets on the neutral surfaces directly to the

ionic surface. Thus,

µ̂† =
∑
a=1,2

|3〉〈a| ⇒ µ̂†|Ψ12(t)〉 = |φ12(t)〉 ⊗ |3〉 (B.10)
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in our model. The correlation function relevant for the TRPES signal is

〈µ̂(t)µ̂†(t′)〉 = 〈φ12(t)|e−iε̂3(t−t′)|φ12(t′)〉 (B.11)

Since the action of the µ̂’s ionizes the system, the remaining exponential propagates the

nuclear wavepacket along the ionized surface for time t − t′. For every time t′, 0 < t′ <

tmax − δT , we therefore generate a matrix of propagated wavepackets

|φ3(t, t′)〉 = e−iε̂3(t−t′)|φ12(t′)〉 t′ − δT < t < t′ + δT (B.12)

representing propagation in the unionized manifold up to time t′ and then in the ionized

manifold from t′ to t (with no restriction on the relative order of t, t′). The restriction

|t− t′| < δT speeds up the calculation and is valid because the electric field factors Ex(t(′))

restrict t to be near t′ for temporally limited pulses. In our propagation, we used δT = 30fs

for a Gaussian field envelope of σx = 2.5fs. We now obtain the original correlation function

by taking the inner product

〈µ̂(t)µ̂†(t′)〉 = 〈φ12(t)|φ3(t, t′)〉. (B.13)

Multiplying this quantity by the field factors defines a two-time function

K(t, t′) ≡ Ex(t)Ex(t′)〈φ12(t)|φ3(t, t′)〉 (B.14)

and the evaluation of the TRPES signal (Eq. (4.5)) amounts to a 2D Fourier Transform of

this function (actually, a “diagonal” subset of the transformed function K̃(Ω,Ω′) in which

Ω = −Ω′). We thus have

S(εp, T ) = K(εp − ωx, ωx − εp) (B.15)
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which depends on time parametrically through the transformed electric field factors. It is

this result that is displayed as the Se in Fig. 4.3. This same basic procedure was also used

to generate the Spope of Fig. 4.3 except that coherences were projected out.

B.1.1 Semiclassical and Quasistatic FGR

From Eqn. (4.8), we make the variable substitutions τ = t− t′, t̄ = 1
2
(t+ t′) to obtain

Se(εp, T ) =

∫ ∫
dωdω′

2π2

∫
dt̄

∫
dτ Ẽ∗x(ω)Ẽx(ω′)e−i(εp−ωx−ω+ω′

2
)τei(ω−ω

′)t̄ (B.16)

×
(∑

aα

〈M̂∗
a0(t̄+

1

2
τ)µ̂αaM̂αα(τ)µ̂†αaM̂a0(t̄− 1

2
τ)〉φ0

+
∑
a6=b,α

〈M̂∗
b0(t̄+

1

2
τ)µ̂αbM̂αα(τ)µ̂†αaM̂a0(t̄− 1

2
τ)〉φ0

)
.

In order to simplify the exact transition amplitudes introduced above, we will take the nuclei

to be static and neglect the nuclear kinetic energy during the interaction with the ionizing

pulse. We term this the quasistatic approximation. For the middle propagators in Eq. (B.16),

the implications are clear and we may write

M̂αα(τ) 7→ e−iε̂ατ . (B.17)

To handle the remaining transition amplitudes, we propagate under the full Hamiltonian

up to the delay time td and then under the quasistatic approximation. We thus shift the

integration t̄ 7→ t̄+ T and write

M̂a0(td + t̄± 1

2
τ) = M̂aa(t̄±

1

2
τ)M̂a0(td) = e−iε̂a(t̄± 1

2
τ)M̂a0(td) (B.18)

where the first equality follows from neglecting the adiabatic coupling after propagation to

td and the second equality comes directly from neglecting the T̂ terms in ĤM. Inserting this

96



into Eq. (B.16), we obtain

S(εp, T ) =

∫ ∫
dωdω′

2π2

∫
dt̄

∫
dτ Ẽ∗x(ω)Ẽx(ω′)e−i(εp−ωx−ω+ω′

2
)τei(ω−ω

′)(t̄+T ) (B.19)

×
(∑

aα

〈M̂∗
a0(T )eiε̂a(t̄+ 1

2
τ)µ̂αae

−iε̂ατ µ̂†αae
−iε̂a(t̄− 1

2
τ)M̂a0(T )〉φ0

+
∑
a6=b,α

〈M̂∗
b0(T )eiε̂b(t̄+

1
2
τ)µ̂αbe

−iε̂ατ µ̂†αae
−iε̂a(t̄− 1

2
τ)M̂a0(T )〉φ0

)
.

To carry out the t̄ and τ integrations, we now formally act with the transition amplitudes

on the initial nuclear wavepacket. This propagates the nuclear wavepacket to time td. We

then take the nuclear wavepacket as frozen for the integrations, allowing us to replace the

ε’s with their expectation values over the frozen wavepacket.

M̂a0(td)|φ0〉 = ca(td)|φa(td)〉 (B.20)

with ca(t) the time-dependent propability amplitude associated with electronic state |a〉 and

φa(td) the nuclear wavepacket on electronic surface a at time T and replace the adiabatic

potentials with

εa(td) ≡ 〈φa(td)|ε̂a|φa(td)〉 (B.21)

εα(td) ≡ 〈φαa(td)|ε̂α|φαa(td)〉.

The second equation follows upon defining the nuclear wavepacket after dipolar excitation

µ̂†αa|φa(td)〉 ≡ µ∗αa(td)|φαa(td)〉. (B.22)

Such an expression is possible to write because the dipole operator µ̂†αa simply maps the

original nuclear wavefunction |φa(td)〉 to a new wavefunction |φαa(td)〉, the details of which

reflect the dependence of the dipole on the nuclear coordinates. The time-dependence of
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the resulting c-number µ∗αa is necessary since the dipole is not unitary and the transformed

nuclear wavefunction has a time-dependent normalization which is absorbed into the µ∗αa.

Thus, in this approximation, the vibronic states can be altered by the dipole operator but

not by the time propagators. Note that if, as in the Condon approximation, the nuclear

wavefunction is unaffected by the electronic dipole operator, we have |φαa(td)〉 = |φa(td)〉

and µ∗αa(td) = µ∗αa and things simplify somewhat. Inserting Eqs. (B.20)-(B.22) into (B.19),

we may now carry out the time integrations since all operators have been replaced by their

expectation values yielding Eqn. (4.10).

The second simulation protocol used is based on Eq. (4.11). We first note that our uniform

dipole operator in the Condon approximation allows us to drop the µαa factor. Using the

same list

|Ψ12(t)〉 ≡ e−iĤMt|Ψ0〉 0 < t < tmax (B.23)

generated in the first protocol, we project onto a neutral state |a〉, defining

〈a|Ψ12(t)〉 = ca(t)|φa(t)〉 (B.24)

in accordance with Eq. (B.20). We now take expectation values of the electronic energies

over this nuclear wavepacket

〈φa(t)|ε̂a|φa(t)〉 ≡ εa(t) (B.25)

〈φa(t)|ε̂α|φa(t)〉 ≡ εα(t).

Combined with the populations |ca(t)|2, these expectation values are then all the ingredients

to Eqs. (4.11), (4.12), and therefore (4.10). For the ionizing field amplitude profile Ex(ω), we

use a Gaussian spectral field envelope of width σ−1
ω ≈ 2.5fs for comparison to the temporal

field envelope used in the previous section. We thereby generate the qspFGR of Fig. 4.3. Note
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that both simulation protocols begin with the same wave function propagated in the neutral

manifold. This propagation is what generates the coherences that lead to the oscillations in

the photoelectron signal. The correlation-function protocol also requires propagation in the

ionized manifold as well as including electronic coherences which are omitted in the qsFGR

(the quasistatic assumption).
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Appendix C

Model Systems for Nuclear Dynamics

In this appendix, we collect the paremeters defining the models used to simulate nuclear

dynamics in chapters 3 and 4.

C.0.2 1D-Model System

To show the basic features of nuclear dynamics, we use a simple, harmonic 1-dimensional

model. The diabatic potential energy curves are given by two displaced parabolas. As

always, all quantities are given in atomic units (h̄ = me = 4πε0 = 1).

H1 =
1

2
0.01 (x− 0.2)2 (C.1)

H2 =
1

2
0.01 (x+ 0.2)2 (C.2)

The diabatic coupling is given by a Gaussian function

H12 = 0.01 exp
(
−x2

)
, (C.3)
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Table C.1: Parameters for the Polynomial expansions of the diabatic states of the two
dimensional model. and couplings (given in atomic units).

Surf. c00 c10 c01 c20 c11 c02 c30 c21 c12 c03
H1 -0.001854 -0.02817 -0.114 0.3156 -0.1576 0.2457 0.1237 0.2883 -0.2856 0.1071
H2 -0.001247 0.01804 0.02297 0.4546 -0.2419 0.2242 0.2404 0.1135 -0.3448 0.07928
H12 0.0006653 -0.05699 -0.001481 -0.02017 -0.06204 0.02157 0.06652 0.05527 0.04719 0.02031

representing an avoided crossing. The reduced mass of the system is assumed to bem = 5100.

The wave packet simulations and the signal calculation is analogous to the two-dimensional

model described in appendix C.1.

C.0.3 2D Model System

For the TRUECARS signal, we use a two-dimensional model system inspired by the S2-

S1 CI in acrolein [113]. The system has been chosen as a role model to obtain realistic

parameters for the energy splittings between the PESs and the couplings. The adiabatic

and diabatic states were calculated in the vinicinty of the CI with the program package

MOLPRO [114] at the CASSCF(6/5)/6-31+G* level of theory. The two coordinates of the

system, xh and xg, correspond to the orthonormal versions of the derivative coupling vector

and the gradient difference vector respectively. The diabatic potential energy surfaces and

the diabatic couplings have been calculated on a 9×9 grid with maximum displacements of

±0.4. The CI is located at the origin of the coordinate system. The resulting data is fitted

to a third order polynomial:

f(xh, xg) = c00+c10xh+c01xg+c20x
2
h+c11xhxg+c02x

2
g+c30x

3
h+c21x

2
hxg+c12xhx

2
g+c03x

3
g (C.4)

The respective parameter sets cij for H1, H2 and H12 are given in tab. C.2. The polynomial

allows for extrapolation of the data to a wider parameter range, necessary to run the wave

packet simulations. The resulting diabatic surfaces, denoted by H1 and H2, are shown in

Fig. C.1. The diabatic coupling H12 is created by eq. C.4 and shaped by gaussian functions.
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Figure C.1: Diabatic potential energy surfaces a) H1 and b) H2. The conical intersection is
in the center of the coordinate system. The red line indicates the intersection between both
surfaces in the diabatic representation.

H12 = f(xh, xg)h(xh) exp

(−x2
g

0.08

)
(C.5)

where h(xh) is

h(xh) =


exp

(
− x2

h

0.18

)
xh < 0

exp

(
− x2

h

0.045

)
xh ≥ 0

(C.6)

The Gaussian envelope lets the diabatic coupling term vanish in areas far from the CoIn and

diabatic states become identical to the adiabatic states. The resulting coupling function is

shown in Fig. C.2. The corresponding adiabatic PESs are readily obtained by diagonalization

of the diabatic surfaces (Fig. C.3).
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Figure C.2: Contourplot of the diabatic coupling element H12.
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Figure C.3: Adiabatic potential energy surfaces. The conical intersection is in the center of
the coordinate system.
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C.1 Vibronic Wave Packet Simulations

The wave packet simulations are carried out on the diabatic surfaces by solving the time

dependent Schrödinger equation numerically on a position space grid by the Fourier method

[99]. The corresponding Hamiltonian in the diabatic representation reads:

H = −1 1

2m

∑
i∈{h,g}

d2

dx2
i

+

H1(x) H12(x)

H12(x) H2(x)

 (C.7)

where the reduced mass m is 30000 au (≈ 16 amu) for both coordinates and x = (xh, xg).

The time stepping

ψ(x, t+ ∆t) = exp (−iH∆t)ψ(x, t) , (C.8)

is calculated with the Short Iterative Lanczos (SIL) method [99], and a step size of ∆t = 4 au

(≈ 100 as). The corresponding diabatic wave function is expressed in terms of the electronic

states:

ψ(x, t) =

φ1(x, t)

φ2(x, t)

 (C.9)

with the normalization
〈
ψ
∣∣ψ〉 = 1. The resulting time series ψ(x, t) is used subsequently in

the signal calculation.

C.1.1 2D Model with Cationic States

?? To discuss photoionization, we extend the two-dimensional model system described in

appendix C.0.3 inspired by the S2-S1 CI in acrolein [113, 52, 36]. The cation states D0 and

D1 are in the same nuclear coordinate system as the neutral states and determined at the
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Table C.2: Parameters for the Polynomial expansions of the diabatic states of the two
dimensional model. and couplings (given in atomic units).

Surf. c00 c10 c01 c20 c11 c02 c30 c21 c12 c03
V3 0.260 0.02054 -0.0402 0.3953 -0.03684 0.1665 0.3105 0.1293 -0.2761 0.1213
V4 0.2862 0.0007407 -0.07507 0.1504 -0.232 0.1897 0.2963 0.2851 -0.3168 0.09636

Table C.3: Parameters for the 4th order parameters of V4 (Eq. (C.10))(given in atomic
units).

c40 c31 c22 c13 c04

0.4607 0.4479 0.2463 -0.1592 0.01413

CASSCF(5/5)/6-31+G* level of theory. The PES for the D0 state is fitted with Eq. (C.4).

The ion state D1 (V4) is fitted by a fourth order polynomial:

f2(xh, xg) = f1(xh, xg) + c40x
4
h + c31x

3
hxg + c22x

2
hx

2
g + c13xhx

3
g + c04x

4
g (C.10)

The respective parameter sets cij for the ion states V s are given in table C.2. The additional

4th order parameters for V4 are given in table C.3. The parameters for the two neutral

states as well as a graphical representation are given in Ref. [88]. The polynomial allows

for extrapolation of the data to a wider parameter range, necessary to run the wave packet

simulations. The potential energy surfaces of the cation states are shown in Fig. C.4.
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Figure C.4: Potential energy surfaces of the cation states a) V3 and b) V4.
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Appendix D

Useful Formulas

We collect here various important formulas used in calculating the signals discussed in the

main text. Due to it’s intimate connection with the material time-propagator, the Fourier

transform of the Heaviside theta function

∫
dtθ(t)eit(ω−ω0+iΓ) =

i

ω − ω0 + iΓ
(D.1)

plays an important role. An ultrashort pulse with central time tj and carrier frequency ωj

can be representated as the sum of positive and negative frequency components

Ej(t) = E∗j (t)eiωj(t−tj) + Ej(t)e−iωj(t−tj) ⇒ Ej(ω) = eiωjtj
(
Ej(ω) + E∗j (ω)

)
(D.2)

where Ej(t) is the spectral pulse envelope centered at tj and Ej(ω) and E∗j (ω) are spectral

pulse envelopes centered at ±ωj respectively. To simulate signals, we will often employ

Gaussian pulses

Ej(t) =
σj√
2π
e−

σ2
j (t−tj)2

2 eiφj Ej(ω) =
1√
2π
e
−

(ω−ωj)2

2σ2
j eiφj (D.3)
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where σj is the standard deviation of the j-th spectral pulse envelope, σ
(−1)
j is the corre-

sponding temporal standard deviation, and φj is an arbitrary phase.

D.0.2 Wavefunction vs. Density Matrix

It is well known that, because of decoherence phenomena due to system-bath interactions,

non-isolated systems can not always be described as a pure state |ψ〉 [6] but rather as a

statistical mixture ρ =
∑

k Pk|ψk〉〈ψk|. Expectation values of operators are evaluated via

〈Ô〉 = 〈ψ|Ô|ψ〉 ↔ Tr [Ôρ]. (D.4)

The time evolutions of |ψ〉 and ρ are given by

|ψ(t)〉 = U(t, t′)|ψ(t′)〉 ↔ ρ(t) = U(t, t′)ρ(t′)→ U(t, t′)ρ(t′)U †(t, t′) (D.5)

where

U(t, t′) = T e−i
∫ t
t′ H

′(τ)dτ (D.6)

is the time-ordered exponential propagator and we work in the interaction picture with

respect to Ĥ ′(t) so that operators pick up the field-free time dependence

Ô(t) = eiĤ0tÔe−iĤ0t. (D.7)

Note that the last arrow in Eq. (D.5) assumes Hamiltonian, commutator evolution of ρ

ρ̇ = −i[Ĥ ′(t), ρ] (D.8)
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and more general evolutions are certainly possible. [NOTE: make reference to masters equa-

tions Lindbladd, etc]. In the most general case, the evolution of the density matrix will be

determined by a tetradic operator L called the Liouvillian

ρ̇lk = −i
∑
mn

Llk,mnρmn (D.9)

In such a situation, it pays recast the problem in Liouville space, in which ρ is a vector and

the above evolution equation can be handled with the usual matrix techniques. There are

thus three levels at which we may describe a quantum system. The Liouville-space approach

is the most general and most numerically taxing. When system-bath interactions are negligi-

ble, we may choose a wavefunction or density-matrix based approach and utilize Hamiltonian

time-evolution in Hilbert space. In this manuscript, we will calculate all expectation values

in Hilbert space. In chapter 2, we give eigenstate expansions in terms of the more-general

density-matrix expressions while also including formal time-evolution expressions in terms

of both ρ and |ψ〉. In chapter 3, we make the simplifying assumption of a pure state for the

purposes of illustrating the nuclear dynamics. Both approaches are then discussed in the

context of photoelectron spectroscopy in chapter 4. Finally, we note that more general prop-

agations can be bundled into the calculation of the “initial” density matrix. This makes the

density-matrix expressions in chapter 2 entirely general as long as system-bath interactions

are negligible during the probing process itself.

D.0.3 Polarizability due to Gaussian Pulses

Above, we have encountered the polarizability due to a hybrid pulse

α(jk)
ca (ω) =

∑
x

Ẽ∗j (ω)Ẽk(ω + ωj − ωk + ωca)(εj ·Vcx)(εk ·Vxa)

ω + ωj − ωxa + iΓx
. (D.10)
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This frequency-dependent polarizability can take the place of the final interaction or an

earlier interaction in the perturbative expansion of a particular signal. In the latter case,

the integrated polarizability

α(jk)
ca =

∫
dω

2π
α(jk)
ca (ω) (D.11)

is required. With the choice of Gaussian pulses, these integrals can be evaluated analytically,

easing the computational burden of simulating signals. In this subsection, we evaluate this

quantity for a hybrid Gaussian pulse. Plugging Eqs. (D.10)-(D.3) into Eq. (D.11) gives

α(jk)
ca =

∑
ν V̂

(ν)
cx V̂

(ν)
xa

3(2π)2σjσk

∫
dω

exp
(
− ω2

2σ2
j

)
exp

(
− (ω+ωj−ωk+ωca)2

2σ2
k

)
ω + ωj − ωxa + iΓx

(D.12)

where ν indexes cartesian coordinates and we have employed an isotropic average to reduce

the dot products between the field vectors and the transition dipole moments. Completing

the square in the numerator gives

α(jk)
ca =

∑
x,ν

V̂
(ν)
cx V̂

(ν)
xa

3(2π)2σjσk
exp

(
−(ωj − ωk + ωca)

2(
1

2σ2
k

− σ2
jk)

)∫
dω

exp
(
− (ω+ω̃)2

σ2
jk

)
ω + ωj − ωxa + iΓx

(D.13)

where we have defined σ2
jk =

2σ2
jσ

2
k

σ2
j+σ2

k
and ω̃ = (ωj − ωk + ωca)

σ2
jk

2σ2
j
. Defining the integral in the

last factor of the above, we shift the integration and employ Eq. (D.1)

A ≡
∫
dω

exp
(
− (ω+ω̃)2

σ2
jk

)
ω + ωj − ωxa + iΓx

= −i
∫ ∞

0

dteit(ωj−ω̃−ωxa+iΓx)

∫
dωeitωe

− ω2

σ2
jk . (D.14)
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Figure D.1: Illustration of the contour of integration for Eq. (D.18).

The dω integration can now be carried out as a simple Gaussian integral via completing the

square. This gives

A = −iσjk
√
π

∫ ∞
0

dteit(ωj−ω̃−ωxa+iΓx)e−
t2σ2

jk
4 (D.15)

Completing the square again then gives

A = −iσjk
√
πe
−

(ωj−ω̃−ωxa+iΓx)2

σ2
jk

∫ ∞
0

dte−
(t−i 2

σjk
(y+iγ))2σ2

jk

4 (D.16)

where we have defined y =
ωj−ω̃−ωxa

σjk
and γ = Γx

σjk
. To do this last integral, we switch to

complex variable τ =
σjk
2

(i(t+ 2γ
σjk

) + 2y
σjk

), resulting in

A = −iσjk
√
πe
−

(ωj−ω̃−ωxa+iΓx)2

σ2
jk

2

iσjk

∫ y+i∞

y+iγ

dτeτ
2

. (D.17)

This last integral may be evaluated using the residue theorem. We employ the contour

shown in Fig. D.1. Since the integrand has no poles in the complex plain, the contour

integral vanishes

∮
C
dτeτ

2

= 0 =

∫ y+i∞

y+iγ

dτeτ
2

+

∫ i∞

y+i∞
dτeτ

2

+

∫ 0

i∞
dτeτ

2

+

∫ y+iγ

0

dτeτ
2

. (D.18)
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Now, it is clear that

∫ i∞

y+i∞
dτeτ

2

=

∫ 0

y

dτ ′eτ
′2
e2iτ ′∞e−∞

2 → 0 (D.19)

so that the closure at i∞ contributes nothing. The integral down the imaginary axis

∫ 0

i∞
dτeτ

2

= −i
√
π

2
(D.20)

is easily evaluated, and the last integral is

∫ y+iγ

0

dτeτ
2

=

√
π

2
erfi(y + iγ) (D.21)

We thus have

A = −πe
−

(ωj−ω̃−ωxa+iΓx)2

σ2
jk [i− erfi(y + iγ)] (D.22)

and

α(jk)
ca =

∑
x,ν

V̂
(ν)
cx V̂

(ν)
xa

12πσjσk
exp

(
−(ωj − ωk + ωca)

2(
1

2σ2
k

− σ2
jk)

)
(D.23)

× exp

(
−(ωj − ω̃ − ωxa + iΓx)

2

σ2
jk

)[
erfi(

ωj − ω̃ − ωxa + iΓx
σjk

)− i
]

where, for brevity, we abstain from re-substituting ω̃ terms of the original quantities. This

expression is useful in simulation certain signals from chapter 2 when utilizing Gaussian

pulses.
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