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LANDSCAPES OF CANCER: INTEGRATIVE APPROACHES DESCRIBING 

NON-CODING REGULATORY REGIONS, CANCER-SPECIFIC RNA SPECIES, AND 

TRANSCRIPTIONAL HETEROGENEITY IN TUMOR PROGRESSION 

Brian J Woo 

ABSTRACT 

While large-scale sequencing efforts have focused on the mutational landscape of the coding 

genome, the vast majority of cancer-associated variants lie within non-coding regions. In the 

context of tumor progression, these regions may harbor key regulatory drivers, yet an integrated 

method to discover and interrogate functional regions remains unexplored. In chapter 1, we 

present an integrative computational and experimental framework to identify recurrently mutated 

non-coding regulatory regions that drive tumor progression. Applying this framework to 

sequencing data from a large prostate cancer patient cohort revealed a large set of candidate 

drivers. We use (i) in silico analyses, (ii) massively parallel reporter assays, and (iii) in vivo 

CRISPR interference screens to systematically validate mCRPC drivers. One found enhancer 

region, GH22I030351, acts on a bidirectional promoter to simultaneously modulate expression 

of U2-associated splicing factor SF3A1 and chromosomal protein CCDC157. SF3A1 and 

CCDC157 promote tumor growth in vivo. We nominate a number of transcription factors, notably 

SOX6, to regulate expression of SF3A1 and CCDC157. Our integrative approach enables the 

systematic detection of non-coding regulatory regions that drive human cancers.  

Outside of cis-acting genomic regulatory elements that can play a driving role in driving cancer, 

the broad reprogramming of the cancer genome leads to the emergence of molecules that are 

specific to the cancer state. We previously described orphan non-coding RNAs (oncRNAs) as a 

class of cancer-specific small RNAs with the potential to play functional roles in breast cancer. 
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progression. Expanding upon this idea, in chapter 2, we report a systematic and comprehensive 

search to identify, annotate, and characterize cancer-emergent oncRNAs across 32 tumor 

types. We leverage large-scale in vivo genetic screens in xenografted mice to functionally 

identify driver oncRNAs in multiple tumor types. We not only discover a large repertoire of 

oncRNAs, but also find that their presence and absence represent a digital molecular barcode 

that faithfully captures the types and subtypes of cancer. Importantly, we discover that this 

molecular barcode is partially accessible from the cell-free space as some oncRNAs are 

secreted by cancer cells. In a large retrospective study across 192 breast cancer patients, we 

show that oncRNAs can be reliably detected in the blood and that changes in the cell-free 

oncRNA burden captures both short-term and long-term clinical outcomes upon completion of a 

neoadjuvant chemotherapy regimen. Together, our findings establish oncRNAs as an emergent 

class of cancer-specific non-coding RNAs with potential roles in tumor progression and clinical 

utility in liquid biopsies, providing the first tumor-naive minimum residual disease monitoring 

approach for breast cancer. 

Lastly, we explore the utilization of intrinsic transcriptional noise encoded within the cell as a 

mechanism of tumor proliferation and resistance in the face of unfamiliar microenvironments. 

More specifically, intratumoral heterogeneity (ITH) is recognized as a driver of therapeutic 

resistance and fatal cancer recurrence. ITH occurs at both a genetic and transcriptional level 

and enables tumor cells to adapt to variable environmental pressures, such as hypoxia, immune 

surveillance, and targeted molecular therapy. In chapter 3, through integrating in silico analysis 

of BRCA TCGA-RNA-Seq data, in vivo CRISPRi screens, and in vitro single-cell 

transcriptomics, we identify RNF8 and MIS18A as drivers of transcriptional heterogeneity. 

Modulating expression of these two genes impacts cellular fitness, chemotherapeutic sensitivity, 

and metastatic potential in a proportional manner, underscoring their roles in driving cancer 

progression. Analysis of human breast cancer patient data reveals that increased expression of 
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these genes correlates with detrimental survival outcomes. This study expands our 

understanding of transcriptional regulators of ITH and their potential as therapeutic targets. 

In summary, this dissertation explores how regulatory elements—namely enhancers, non-coding 

RNAs, and chromatin organizers—can drive cancer progression, shape tumor heterogeneity, 

and offer new avenues for clinical biomarker development and therapeutic intervention. 
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CHAPTER 1: INTEGRATIVE IDENTIFICATION OF NON-CODING REGULATORY 

REGIONS DRIVING METASTATIC PROSTATE CANCER 

1.1: Introduction 

Non-coding DNA regions are increasingly recognized as cancer drivers1–3. However, several 

challenges have limited our ability to systematically annotate oncogenic non-coding genomic 

elements. First, for the coding genome, the recurrence of functional mutations has long been 

leveraged to identify cancer relevant genes4–6. However, the paucity of whole-genome 

sequencing data relative to exome sequencing data limits the number of times mutations in 

non-coding DNA regions may be observed. This is further compounded by the much larger 

non-coding space relative to that of coding sequences. Secondly, while a number of heuristics 

have been developed to identify functional mutations in the coding genome (e.g. the ability to 

distinguish between sense, missense, and nonsense mutations), the concept of functionality in 

the non-coding space is more difficult to capture7–12. Currently, the standard statistical approach 

to identify mutational hotspots in the non-coding space is to form a background distribution and 

use an appropriate set of covariates to detect mutational events that occur more than expected 

by chance above background3,13–16. More recently, machine learning algorithms have been used 

to identify driver events in non-coding regions17–20.  

Nevertheless, we are not aware of any study that integrates statistical techniques using 

single-base-resolution machine learning platforms with state-of-the-art experimental approaches 

to functionally capture non-coding drivers of tumor progression. Several recent studies have 

focused on primarily approaching this problem from a computational perspective, but largely 

have not been able to functionally characterize non-coding driver regions to a significant 

degree3,13. To address this gap, we developed an ensemble of statistical and deep learning 

models, trained on metastatic castration-resistant prostate cancer (mCRPC) genomes, to 

1 
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identify non-coding regulatory regions that drive prostate cancer progression. For this, we relied 

on whole-genome sequencing (WGS) and matched RNA-seq data generated from our recent 

multi-institutional study on more than 100 mCRPC patients21. Given the genetic heterogeneity 

and long-tail nature of driver mutations in mCRPC22, using data from a large multi-institutional 

study is essential to effectively capture driver regulatory elements. We then used data 

generated from two separate experimental modalities to assess the functional impact of our 

computationally nominated regulatory elements on gene expression and tumor growth. First, we 

devised a massively parallel reporter assay (MPRA) to assess the impact of each 

mCRPC-associated region on transcriptional control23. In parallel, we leveraged CRISPR 

interference (CRISPRi) to carry out a pooled genetic screening strategy in mouse xenograft 

models.  

By integrating data from various modules in our combined computational and experimental 

platform, we identified a recurrently mutated regulatory region, previously annotated as 

GH22I030351, that controls a bi-directional promoter driving the expression of both SF3A1, a 

U2-associated splicing factor, and CCDC157, a poorly characterized putative chromosomal 

protein. We confirmed that silencing this regulatory region in prostate cancer cell lines with 

CRISPRi reduced subcutaneous tumor growth. Our follow-up functional studies revealed that 

both SF3A1 and CCDC157 promote prostate cancer tumor growth in xenograft models. We also 

performed CLIP-seq and RNA-seq in SF3A1-over-expressing cells and found up-regulation to 

be linked to changes in the mCRPC splicing landscape. Finally, we identified multiple 

transcription factors, namely SOX6, that regulate expression of SF3A1 and CCDC157 upstream 

of GH22I030351, and functionally validated SOX6 in vivo, observing increased tumor growth in 

xenografted mice injected with SOX6 knockdown cells.   

2 
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1.2: Identifying hotspots in non-coding regions using a regression-based model  

For coding sequences, commonly used tools such as MutSigCV11 have been developed to 

assess the accumulation of mutations along the entire gene body in a given cohort to boost 

signal from observed mutations. We took a similar approach in the non-coding sequence space 

by combining counts across annotated regulatory regions in order to identify those that were 

recurrently mutated in our cohort of 101 mCRPC samples (see Methods). We fit a GLM-based 

model using mutational density as the response variable and a set of covariates we defined 

(Fig. 1.1a, Supplemental Fig. 1.1a-d; see Methods for a detailed explanation). The resulting 

model, named MutSpotterCV (Mutational density Spotter using CoVariates), achieved a 

Pearson correlation of 0.55 between observed vs. predicted mutational densities across 

genomic regions (Fig. 1.1b). Using MutSpotterCV, we observed a small subpopulation of 

regulatory regions with substantially higher observed mutational densities above that expected 

by chance. By systematically performing outlier detection analysis, MutSpotterCV flagged a total 

of 1,780 regions as a set of candidate functional regions harboring mutational hotspots (Fig. 

1.1b; see Methods for detection criteria), which amounted to 1.1% of all mutated regulatory 

regions. Furthermore, we found all covariates to be significantly associated with the response 

variable in the model, suggesting they independently and significantly contributed to the 

prediction of mutational density (Supplemental Fig. 1.1d). In our previous study, we had 

identified patients in our cohort with pathogenic mutations in prostate cancer driver genes21. 

Here, we observed that a number of our non-coding mutational hotspots were proximal to a 

subset of prostate cancer driver genes, i.e. AR, FOXA1, and TP53. We therefore asked whether 

any of these non-coding mutational outliers were more or less likely to occur in patients with 

known pathogenic mutations in coding regions of these driver genes. Interestingly, we did not 

find any such association (P=0.39, two-sided Fisher’s exact test). In addition, among the 1,780 

mutational hotspots identified here, six of them were found to harbor non-coding driver hits in 
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myeloid MPN, melanoma, and prostate adenocarcinoma by a recent pan-cancer study on 

non-coding regions13.  

Lastly, in order to confirm the robustness of our study, we also examined the consequence of 

different modifications to MutSpotterCV to assess the impact of varying covariate choices on the 

final results (Supplemental Fig. 1.1e-l, see Methods). We first considered copy number 

variation (CNV), a common genetic change in metastatic prostate cancer. To investigate the 

impact of CNV on the sensitivity of MutSpotterCV predictions, we used CNV as a feature in the 

model and examined resulting called mutational hotspots. We found that the identity and 

number of final mutational outliers were not significantly different in the presence or absence of 

CNV as a feature of the model (Fig. 1.1e-f). This suggests that the detected mutational hotspots 

are mainly driven by SNVs and indels, independent of CNV. To further evaluate the robustness 

of our GLM model and its sensitivity to the choice of PC3 cell-line epigenetic features, we then 

replaced the given PC3 cell line epigenetic features with three other orthogonal datasets: (i) 

epigenetic features derived from mCRPC patients27, (ii) ATAC-seq data from TCGA primary 

prostate cancer samples28, and (iii) epigenetic features from the LNCaP cell line for the 

ENCODE project29. In each case, the updated model recaptured approximately 70% of the 

previously identified candidate mutational hotspots in non-coding regions (Supplemental Fig. 

1.1g-l). 

 

1.3: A multimodal convolutional neural network for accurate prediction of mutational 

density 

We set a high threshold for detection of outliers by MutSpotterCV; however, we recognized that 

MutSpotterCV calls may still be dependent on the assumptions of our underlying model. 

Specifically, a GLM measures the linear dependence of the response variable on its predictors. 
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Therefore, to ensure the robustness and reproducibility of our findings and capture potential 

nonlinear relationships among variables, we also developed a separate deep-learning-based 

model, termed DM2D (Deep Model for Mutational Density), to assess (i) whether it would be 

capable of achieving higher accuracy for predicting mutational density than MutSpotterCV, and 

(ii) the overlap between called putative mutational hotspots. DM2D is a convolutional neural 

network (CNN) model, which uses sequence and epigenetic data as multi-channel input with 

single-base resolution (Fig. 1.1c, see Methods). Once trained, this CNN model performed 

substantially better than GLM, and achieved a Pearson correlation of 0.85 between observed 

and predicted values (Fig. 1.1d, Supplemental Fig. 1.1o). However, this increase in accuracy 

was not accompanied by a significant change in identity of previously called outliers. About 90% 

of non-coding mutational hotspots that were detected by MutSpotterCV were also called by 

DM2D. 

In our computational methodology, we rigorously selected the most promising candidates for 

non-coding mutational hotspots using two orthogonal approaches, GLM and CNN. While this 

process enriches for regions with significant potential to harbor driver mutations, it should be 

emphasized that we primarily utilize this computational step to generate hypotheses, not 

conclusions. This computational enrichment step serves as the foundation for subsequent 

experimental steps that measure functionality.  

 

1.4: Quantifying the regulatory functions of identified non-coding mutational hotspots 

Our focus on annotated non-coding regions was based on the underlying assumption that these 

regions carry out regulatory functions in gene expression control, which in turn may play a role 

in driving prostate cancer progression. To test this assumption, we used transcriptomic data 

from all patients to assess the putative effects of mutations in our non-coding mutational 
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hotspots on gene expression. For each non-coding mutational hotspot, we divided our patient 

cohort into two groups: mutant and reference. We defined mutants as patients carrying 

mutations in that specific hotspot and references as those that do not. We required each 

non-coding hotspot to include at least four patients in the mutant category, and hotspots that did 

not satisfy this criterion were removed (Supplemental Fig. 1.1p). Specifically, we asked 

whether genes in the vicinity (within 15 kb, consistent with the input length of our BlueHeeler 

model) of these regions were significantly up- or down-regulated in tumors that harbored 

mutations in cognate regions. In total, we performed differential gene expression analysis for 

1,692 flanking genes in the vicinity of non-coding mutational hotspots. 

Using DESeq230, we found 104 differentially expressed genes in the vicinity of 98 hotspots (P 

<0.05; see Methods for details on selection criteria). These 98 hotspots, which we termed 

Candidate Driver Regulatory Regions (CDRRs), harbored a total of 885 mutations. The 

distribution of these mutations among tumors was scattered (Supplemental Fig. 1.1m), 

suggesting the final CDRRs were not overly biased by a particular tumor. We noted that one of 

our CDRRs, located in the 3’ UTR of the oncogene FOXA1, was also identified as a non-coding 

driver in prostate cancer by a recent pan-cancer study13. 

Next, to functionally validate these CDRRs, we used a massively parallel reporter assay 

(MPRA), which allows for scalable measurement of enhancer activity across thousands of 

sequences (Fig. 1.2a, see Methods). In our MPRA analysis, performed in biological triplicate 

(Supplemental Fig. 1.2a), barcodes assigned to 358 fragments of interest and their scrambled 

controls were observed at sufficient read counts for downstream analyses (>25 reads per 

barcode). Specifically, we included in our MPRA library the reference human genome 

sequences for each fragment, as well as all mutant variants observed in our patient cohort. We 

used logistic regression to compare enhancer activity between reference and scrambled 
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sequences. At an FDR of <0.01 and effect size of 1.5-fold differential expression, roughly a third 

of our fragments showed a significant effect on transcriptional activity (Fig. 1.2b). 

In order to reveal potential active motifs embedded in these functionally active regions, we 

performed regulon analysis as well as de novo motif discovery (see STAR Methods). This 

analysis revealed JunD, an AP-1 transcription factor, to be significantly associated with 

increased enhancer activity in our MPRA system (Supplemental Fig. 1.2b). This is consistent 

with the known role of AP-1 factors as foundational drivers of prostate cancer progression32,33. 

For example, it has been shown that JunD has an essential role in prostate cancer cell 

proliferation, and also is a key regulator for cell cycle-associated genes34. JunD employs c-MYC 

signaling to regulate prostate cancer progression, and is a coactivator for androgen-induced 

oxidative stress–a key role player in the prostate cancer onset and progression35-37. In addition 

to the analysis described above, which relies on annotated binding sites, we also used the 

primary sequence of our fragments to directly perform de novo motif discovery using FIRE36. As 

shown in Supplemental Fig. 1.2b, we discovered two motifs, one of which has similarities to 

the binding site of the transcription factor SMAD. Overall, the MPRA analysis revealed 

fragment-level readouts of transcriptional activity, and the putative regulators that underlie their 

activity. 

Given that for the majority of putative regulatory regions more than one fragment per mutation 

was included in our MPRA library, we then performed a region-level analysis by integrating 

measurements for the fragments across each region. Achieving statistical significance in this 

analysis would require concordant effects from multiple fragments in the same direction, 

highlighting the functional relevance of the identified regulatory regions and providing a rational 

approach for prioritizing their collective impact on gene expression (Supplemental Fig. 1.2c). 

Taken together, results from our endogenously controlled MPRA highlights the identification of 

multiple regulatory sequences in CDRRs associated with mCRPC. 
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1.5: A systematic CRISPR interference screen for non-coding drivers in xenograft models 

Our analyses of gene expression data from mutated and unmutated samples for each region of 

interest, coupled with a large-scale and systematic MPRA analysis, provided strong evidence 

for many of our CDRRs to have a regulatory function in gene expression control. However, it 

remained unclear whether each of these CDRRs contributed causally to gene expression 

programs that drive prostate cancer progression. To assess this, we measured the impact of 

silencing these candidate regions on prostate cancer tumor growth in xenograft models using 

CRISPRi. To systematically target our CDRRs, we engineered an sgRNA library of ~1,000 

sgRNAs that specifically targets these regions (5 guides per region), including 10 non-targeting 

sgRNA sequences as controls (Fig. 1.2c). We transduced C4-2B (a metastatic 

castration-resistant, osteoblast derivative of LNCaP) CRISPRi-ready cells with this library and 

compared guide representation among cancer cell populations grown subcutaneously in vivo, or 

grown in vitro for a similar number of doublings (Supplemental Fig. 1.2d). This comparison 

allowed us to quantify the phenotypic consequences of silencing each region. As shown in Fig. 

1.2d, there were a number of guides that showed significant association with in vivo growth. 

Moreover, as we had included five independent sgRNAs per regulatory region, we also 

performed an integrative analysis to combine the phenotypic consequences of guides targeting 

each region. This allowed us to assign a combined summary phenotypic score to each CDRR. 

We identified CDRRs with strong, significant and specific in vivo growth phenotypes in the 

C4-2B prostate cancer cell line (Supplemental Fig. 1.2e). Similar to our MPRA measurements, 

this CRISPR-based phenotyping strategy highlighted the identification of multiple functional and 

driver non-coding regions among mCRPC-associated CDRRs. 

8 



1.6: Assessing the contribution of individual mutations to CDRR activity  

The MPRA and CRISPRi screens described above measured the integrated regulatory and 

phenotypic impact of hyper-mutated regulatory regions in mCRPC. However, the contributions 

of individual mutations to the enhancer activity of their containing CDRRs remained unexplored. 

To shed light on the effects of these mutations at  base-resolution scale, we employed two 

complementary strategies: (i) we used our MPRA assay data to compare the regulatory activity 

of the reference allele vs. mutant variants, and (ii) we trained a deep learning model to learn the 

grammar underlying gene expression regulation in prostate cancer. We then used this 

knowledge to assess the impact of the observed mutations on the expression of its target genes 

in silico. 

In the MPRA assay, in addition to reference sequences per fragment, we also included all 

observed mutant variants in our patient cohort (Supplemental Fig. 1.3a). This allowed us to 

functionally assess each mutation in CDRRs and measure their phenotypic consequences 

relative to their reference allele. As shown in Fig. 1.3a, of the more than 350 mutations reliably 

assayed in the library, about one-third had highly significant impacts on reporter expression 

relative to the reference allele (FDR <0.01, effect size >1.5-fold). As indicated in Supplemental 

Fig. 1.3b, mutations in CDRRs effectively impacted the underlying regions’ activity in prostate 

cancer cells, highlighting the regulatory consequences of the observed mutations. This 

observation on its own, however, does not imply that the other two-thirds of mutations are 

phenotypically neutral. An important caveat here is that our MPRA system removes mutations 

from their endogenous context and the functionality of some variants may be lost in this 

transition. Therefore, we also took advantage of a machine learning model as a complementary 

strategy to study these mutations within their larger endogenous context in silico.  
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In recent years, deep-learning-based models have proved successful in linking genotypic 

variation to phenotypic outcomes. As a result, a number of models have emerged that predict 

the impacts of single-base substitutions, particularly in non-coding regions, on resulting gene 

expression38–42. We developed a base-resolution deep-learning model that learns the regulatory 

context of mCRPC in relation to the regulatory activity of promoters/enhancers. This model uses 

a 215 bp-input promoter sequence on one side and an embedding of the cancer cell state on the 

other to predict the expression of a given gene (Supplemental Fig. 1.3c, see Methods). Our 

deep-learning model, which we named Blue Heeler (BH), accomplished this task and predicted 

gene expression in mCRPC samples using promoter sequences (Fig. 1.3b, Supplemental Fig. 

1.3d). More importantly, it also helped us prioritize functionally relevant mutations and better 

understand their impact on gene expression control.  

To take a deeper dive and better understand the sequence-function relationships we observed 

in cells, in vivo, and in silico, we integrated our results to prioritize the strongest 

mCRPC-associated regulatory regions. Through this selection process, we nominated a 

previously annotated enhancer on chromosome 22 as a driver of prostate cancer progression, 

geneHancer ID: GH22I030351 (Supplemental Fig. 1.3e). Specifically, GH22I030351 showed 

the most significant enhancer activity after aggregating fragment activity in our MPRA data 

(Supplemental Fig. 1.2c, see Methods for aggregation details). Targeting GH22I030351 with 

CRISPRi showed the strongest impact on tumor growth in xenografted C4-2B cells, and 

mCRPC patients with mutations in this enhancer showed a significant increase in the 

expression of the genes previously associated with this enhancer (Fig. 1.3c-d). In addition, in 

almost all cases, observed mutations in this regulatory region significantly increased the activity 

of this enhancer in our MPRA measurements (Fig. 1.3e). Since this enhancer is ~20kb 

upstream of CCDC157, we used our pre-trained BH model to analyze this enhancer in silico. 

(We specifically used CCDC157 from the four gene targets because GH22I030351 strictly falls 
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within the range of distance from the transcription start site that BH is trained on.) First, as 

expected, we observed that feature attribution scores, as measured by sequence making, 

sequence variations, and saliency scores, identified GH22I030351 as an important region in 

regulation of CCDC157 expression (Fig. 1.3f). Moreover, while in silico saturation mutagenesis 

experiments across the CCDC157 promoter revealed both loss- and gain-of-function mutations, 

the mCRPC patient mutations in this enhancer were deemed to be largely gain-of-function 

alterations by the model. This is consistent with our findings from MPRA measurements and the 

direction of gene expression changes in clinical samples. Together, these observations indicate 

that GH22I030351 is a strong contender as a non-coding driver in mCRPC by acting as a 

positive regulator of the expression of its targets.  

 

1.7: SF3A1 and CCDC157 promote prostate cancer downstream of GH22I030351  

To validate our results from our in vivo CRISPRi screen, we used our best-performing sgRNA 

from the CRISPRi screen to silence GH22I030351 in C4-2B cells and performed subcutaneous 

tumor growth assays. As shown in Fig. 1.4a, consistent with the results from our pooled screen, 

we observed a significant reduction in tumor growth in xenografted mice in 

GH22I030351-silenced cells. Next, we performed quantitative real-time PCR for the four target 

genes described for this enhancer, namely SF3A1, CCDC157, TBC1D10A, and RNF215. We 

observed a significant reduction in the expression of SF3A1 and CCDC157, but not TBC1D10A 

or RNF215 (Fig. 1.4b, Supplemental Fig. 1.4a). This observation implies that the reduction in 

tumor growth associated with GH22I030351 resulted from the reduced expression of either, or 

both, SF3A1 and CCDC157. Interestingly, this observation is consistent with results from 

whole-genome in vitro CRISPRi screens in isogenic LNCaP and C4-2B lines43. As shown in 

Supplemental Fig. 1.4b, sgRNAs that targeted the promoters of SF3A1 and CCDC157 resulted 
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in a significant reduction in proliferation in this dataset. However, since these genes share a 

bidirectional promoter, CRISPRi signals may very well leak from one gene to the other. 

Therefore, to identify which of these two genes promotes prostate cancer growth, we used 

inducible shRNAs to independently knock down SF3A1 and CCDC157 in C4-2B cells and 

measure proliferation and colony formation in vitro (Fig. 1.4c-d). Interestingly, we observed that 

constitutive expression of shRNAs against either of these genes was not tolerated by prostate 

cancer cells, which implies that both of these genes may be acting as drivers. In addition, as 

shown in Fig. 1.4e-f, over-expression at the GH22I030351, SF3A1 or CCDC157  locus in C4-2B 

cells resulted in enhanced tumor growth in xenografted mice. To understand the functional 

genetic relationship between GH22I030351, SF3A1 and CCDC157, we engineered a 

SF3A1/CCDC157 dual-knockdown (DKD) C4-2B line to assess whether the presence of SF3A1 

and CCDC157 are necessary to observe this in vivo driver phenotype of GH22I030351 (Fig. 

1.4g). We found that in the absence of SF3A1 and CCDC157, silencing GH22I030351 did not 

show a phenotype, further suggesting that GH22I030351 is acting via SF3A1 and CCDC157 to 

drive tumor growth. These studies establish GH22I030351 as a major enhancer that 

simultaneously controls both SF3A1 and CCDC157, both of which can act as prostate cancer 

drivers. 

 

1.8: SF3A1 over-expression reprograms the splicing landscape of prostate cancer cells 

Reprogramming of the alternative splicing landscape is a hallmark of prostate cancer44. Since 

SF3A1 is a known splicing factor and a known component of the mature U2 small nuclear 

ribonucleoprotein particle (snRNP), our observation that SF3A1 up-regulation is implicated in 

prostate cancer progression further highlights the importance of splicing dysregulations in 

mCRPC45,46. We asked whether mutations in GH22I030351, which lead to increased SF3A1 
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expression, are accompanied by splicing landscape alterations. For this, we used the 

mixture-of-isoforms (MISO) analytical package47 to calculate the percent-spliced-in (Ψ) for 

annotated cassette exons that are expressed in our mCRPC cohort. As shown in Fig. 1.5a, we 

observed significant alterations in the splicing landscape of cassette exons in 

GH22I030351-mutated samples, however, this observation on its own does not necessarily 

implicate downstream SF3A1 up-regulation as the immediate cause. While SF3A1 is a 

canonical component of U2 snRNP, it also directly binds RNA and therefore may influence 

splicing directly through interactions with target RNAs48. In order to assess this possibility and 

draw a more causal link, we decided to specifically focus on transcripts that are directly bound 

by SF3A1. We used CLIP-seq to map SF3A1 binding sites in C4-2B CRISPRi-ready cells at 

nucleotide resolution49. We annotated roughly 40,000 binding sites across the transcriptome, the 

majority of which fell in intronic regions (Supplemental Fig. 1.5a). This extensive intronic 

binding is consistent with the role of SF3A1 as a splicing factor. More importantly, since 

CLIP-seq provides base-resolution interaction maps, we used high-confidence SF3A1 binding 

sites to ask whether there were any specific sequence features preferred by SF3A1. As shown 

in Fig. 1.5b, systematic sequence analysis revealed a significant enrichment of CU-rich 

elements in SF3A1 sites. Interestingly, it is known that SF3A1 binding to U1 snRNA is directed 

through an interaction with the terminal CU in the U1-SL4 domain50. Cassette exons with direct 

SF3A1 binding also showed increased usage in GH22I030351-mutated tumors (Fig. 1.5c, 

Supplemental Fig. 1.5b). 

We then performed total RNA sequencing in SF3A1 over-expressing C4-2B cells, relative to 

mock-transduced control. As shown in Supplemental Fig. 1.5c, we observed a number of 

cassette exons that are significantly up- or down-regulated upon SF3A1 over-expression. More 

importantly, we observed a significant and clear enrichment of SF3A1-bound cassette exons 

among those that are up-regulated in SF3A1 over-expressing cells (Supplemental Fig. 1.5d-e). 
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Finally, comparing the changes in splicing caused by mutations in GH22I030351 to those 

caused by over-expression of SF3A1 showed that while there was no correlation in alternative 

splicing patterns across all cassette exons, exons bound by SF3A1 were similarly enriched 

among the most affected exons in both cases (Fig. 1.5d). Taken together, these observations 

further highlight a direct link between SF3A1 up-regulation and subsequent RNA binding, and 

changes in the prostate cancer splicing landscape. 

 

1.9: Putative transcription factors driving GH22I030351-mediated regulation of gene 

expression 

We then sought to identify the upstream transcriptional regulators of SF3A1 and CCDC157 

expression that may be impacted by observed mCRPC mutations. We hypothesized that in 

addition to having a sequence motif match to the GH22I030351 region, given the association of 

this region with tumor progression, its regulators would also exhibit a metastasis-relevant 

property, such as increased expression specific to metastatic prostate tumors. While we found 

34 transcription factor sequence motifs with significant enrichment at the genomic window 

intersecting the observed mutations, only 6 were associated with metastatic prostate tumors. 

We further investigated the top three candidates, SMAD2, TEAD1, and SOX6, and found that 

the sequence motif match for each of these transcription factors overlapped with mutations 

observed in our patient cohort (Fig. 1.6a-c, Supplemental Fig. 1.6a). To identify potential 

changes in transcription factor binding, we performed differential motif analysis to examine the 

impact of each mutation on FIMO enrichment (Fig. 1.6a-c). An A > G mutation within the SOX6 

motif decreased both motif enrichment score and the associated p-value (Fig. 1.6a). An T > G 

mutation within the TEAD1 motif had a similar impact (Fig. 1.6b). The A > G mutation observed 

within the SMAD2–4 motif, however, resulted in an increased motif score, even with observed 

negative enrichment (Fig. 1.6c). We confirmed these results experimentally by performing in 
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vitro MPRA ChIP-seq in C4-2B (Fig. 1.6d); these findings in tandem support our hypothesis that 

functional mutations show differential binding to their cognate transcription factors.  

To assess the regulatory potential of these transcription factors, we then performed 

CRISPRi-mediated knockdown of each and measured changes in the expression of SF3A1 and 

CCDC157. For all three transcription factors, SMAD2, TEAD1, and SOX6, a concomitant 

increase in the expression of these target genes was observed; however, SOX6 silencing 

showed the strongest effect size for both SF3A1 and CCDC157 (Fig. 1.6e). Consistently, we 

observed that subcutaneous injection of C4-2B cells with SOX6 knockdown resulted in 

increased tumor growth in xenografted mice, and that this in vivo phenotype was dependent on 

GH22I030351 activity (Fig. 1.6f). In contrast, SMAD2 and TEAD1 knockdown cells did not show 

a significant change in tumor growth (Supplemental Fig. 1.6b). We also observed SMAD2 as 

one of the transcriptional regulators of prostate cancer cells in our MPRA analysis 

(Supplemental Fig. 1.2b). Taken together, our observations implicate multiple transcription 

factors, most notably SOX6, that regulate expression of SF3A1 and CCDC157 downstream of 

GH22I030351.  

 

1.10: Discussion  

The oncogenic driver events in non-coding regulatory regions are increasingly gaining 

recognition, with the TERT promoter standing out as a prime example51,52. Compared to driver 

mutations in coding sequences, our understanding of non-coding variants has been hindered by 

the much larger size of the non-coding genome, the absence of clear direct functional 

consequences of mutations in non-coding regions, and the limited availability of WGS data for 

patient cohorts. In this study, we have described an integrative computational-experimental 

framework to systematically identify non-coding drivers of human cancers. This framework 
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combines the power of in silico machine learning models with the throughput of massively 

parallel reporter assays and large-scale in vivo genetic screens, and is readily generalizable to 

other cancer models as well.  

During the course of our study, several independent groups have tackled this foundational 

problem as well. First, a recent pan-cancer study integrated 13 well-established driver discovery 

algorithms to nominate driver events in coding and non-coding regions in more than 2,600 

whole genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset across 27 

tumor types, including a total of 199 prostate tumors13,59. Curiously, their only plausible 

non-coding driver hit in regulatory regions of prostate tumors was the promoter of the lncRNA 

gene RP5-997D16.2, having two mutations in their prostate cancer cohort. The authors 

indicated that they were unable to functionally characterize this non-coding driver, and that there 

was a lack of overall support for its role based on other evidence. However, by restricting 

hypothesis testing to boost their statistical power, the authors were also able to find another 

non-coding hit in the 3’ UTR of the oncogene FOXA1. Interestingly, this same region was also 

tagged as a CDRR in our computational analyses.  

More recently, another pan-cancer study of about 4,000 whole genomes on 19 tumor types (with 

a total of 341 prostate tumors) from PCAWG and the Hartwig Medical Foundation (HMF) 

combined two statistical tests to nominate recurrent mutation events in coding and non-coding 

regions, using a maximum resolution of 1kb tiling window3. The study nominated driver events in 

the coding region, but not the non-coding region, of SF3B1 in breast, leukemia, and pancreas 

tumors. Curiously, they also found evidence of strong mutagenic processes, but not driver 

events, in the vicinity of five prostate-tissue specific genes, namely ELK4, KLK3, TMPRSS2, 

ERG, and PLPP1. Of note, we also identified KLK3 as one of the flanking genes in the vicinity of 

one of our non-coding mutational hotspots. However, KLK3 did not exhibit a significant 
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difference in gene expression levels between mutant and reference in our cohort, and thus we 

excluded this gene and the neighboring non-coding region from further analysis.  

Although these two recent studies had 2-3 times the whole-genome sample size compared to 

that used in our study, their inability to identify any significant driver events in non-coding 

regions implies that detecting such events in non-coding regions requires a more 

comprehensive integration of computational and experimental methods. Our results strongly 

indicate that a computational prioritization fails to paint the full picture, and experimental tools, 

such as CRISPRi screens and MPRAs, should be part of the discovery platform, rather than a 

final step for targeted verification of some findings. Our study underscores the significance of a 

targeted cohort with a specific cancer type. Moving forward, we anticipate this integrated 

framework to be of use for non-coding driver discovery in other cancer patient populations.   

 

1.11: Limitations of the Study 

In predicting mutational hotspots computationally, we utilized epigenetic features derived from 

the PC3 cell line. We acknowledge the potential discrepancies between the epigenetic marks of 

the PC3 cell line and those present in prostate tumors. To address these concerns, we 

conducted validation analyses using alternative epigenetic data sources, including ATAC-seq 

data from TCGA prostate cancer samples and the LNCaP cell line (see STAR Methods). 
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1.12: Figures 

 

Figure 1.1. Regression and deep learning models effectively predict the background 
mutational density in regulatory regions. (a) Genomic regions have a background mutation 
rate which is a function of their sequence context, functional annotation classes and underlying 
epigenetic features. We developed an outlier detection model based on a generalized linear 
regression model (GLM), termed MutSpotterCV, to use such features to estimate the expected 
mutational density in a given region. (b) The scatter plot of observed vs. predicted mutational 
density values (normalized) generated by the MutSpotterCV achieved a Pearson correlation of 
0.55. We used the predictions of this model to perform an outlier analysis to identify regulatory 
regions that are mutated at a substantially higher rate than expected by chance. The resulting 
outlier regions are marked in red. (c) We also tested the ability of models with increased 
complexity to perform this prediction task. One of our best-performing models was a deep 
convolutional neural network (CNN). The input to this model is a multilayered encoding of 
sequence and epigenetic signals. (d) This model, named DM2D, achieved a Pearson 
correlation of 0.85, far exceeding that of MutSpotterCV. Nevertheless, the identity of final 
outliers identified by both models were virtually the same. Therefore, we deemed these regions 
as regulatory elements that are hyper-mutated in mCRPC samples. The same outliers are 
colored in (b) and (d).  
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Figure 1.2. Regulatory and fitness consequences of mCRPC-associated non-coding 
regulatory regions. (a) Schematic of the MPRA used to assess the enhancer activity of 
regulatory sequences hyper-mutated in mCRPC and their scrambled control as background. (b) 
A volcano plot showing the measured enhancer activity for each regulatory segment (WT 
sequence) relative to its scrambled control. (c) Schematic of our in vivo CRISPRi strategy 
designed to identify regulatory regions that contribute to subcutaneous tumor growth in 
xenografted mice. (d) In vivo fitness consequences of expressing sgRNAs targeting mCRPC 
hyper-mutated regulatory regions. The x-axis shows the calculated fitness scores (Rho), where 
positive values denote increased tumor growth upon sgRNA expression and negative values 
denote the opposite. The y-axis represents -log10 of P-value associated with each enrichment.  
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Figure 1.3. Base-resolution in vitro and in silico assay reveal the functional 
consequences of mCRPC-associated mutations. (a) A volcano plot demonstrating the impact 
of individual mutations relative to their reference allele on enhancer activity. (b) The overall 
performance of our Blue Heeler model (BH) in predicting gene expression for held-out 
instances. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) (c) Comparison of mutational impact on the 
expression of downstream genes and the overall impact of the mutated regulatory regions 
based on our in vivo screen. A previously annotated enhancer, with geneHancer id 
GH22I030351, shows a strong phenotype in xenografted mice, and patients with mutations in it 
show generally increased expression in downstream genes. (d) Comparing the expression of 
genes associated with GH22I030351 in mCRPC patient samples with and without mutations in 
this enhancer. The combined P-value shows the overall effect of mutations across all these 
genes. (e) In four out of five cases, measuring the impact of mutations observed in our cohort 
show a general increase in regulatory activity of GH22I030351 in our MPRA measurements. (f) 
CCDC157 (ENSG00000187860) promoter sequence, which is immediately downstream of 
GH22I030351, was used to dissect the impact of mutations in silico based on feature attribution 
scores from our BH model. The top panel shows the results of an in silico saturation 
mutagenesis experiment, in which the impact of every mutation upstream of CCDC157 on its 
expression was measured. We observed both gain-of-function and loss-of-function mutations. 
The regulatory region of interest is shown as a box and the mutations observed in patients are 
marked by dashed lines. We have also reported saliency scores for this promoter. We further 
zoomed in on saturation mutagenesis results for our regulatory region of interest to show: (i) the 
distribution of impact scores for types of mutations, (ii) importance score for loci mutated in 
patients with the exact mutation shown as a bounded box, and (iii) saliency score associated 
with each mutated locus.  
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Figure 1.4. GH22I030351 promotes prostate cancer growth through modulation of SF3A1 
and CCDC157 expression. (a) Subcutaneous tumor growth in CRISPRi-ready C4-2B cells 
expressing non-targeting control or sgRNAs targeting GH22I030351. Two-way ANOVA was 
used to calculate the reported P-value. Also shown is the size of extracted tumors at the 
conclusion of the experiment (day 18 post-injection); P calculated using one-tailed t-test (n=8 
and 7, respectively). Data are represented as mean ± SEM. (b) SF3A1 and CCDC157 mRNA 
levels, measured using qPCR, in control and GH22I030351-silenced C4-2B cells (n=3). P based 
on a one-tailed Mann-Whitney U test. (c) Comparison of proliferation rates, as measured by the 
slope of log-cell count measured over 3 days, for control as well as SF3A1 and CCDC157 
knockdown cells (n=6 per shRNA condition). Hairpin RNAs were induced at day 0 and cell 
viability was measured at days 1, 2, and 3. (Figure caption continued on the next page.) 

22 



(Figure caption continued from the previous page.) P-values were calculated using least-square 
models comparing the slope of each knockdown to the control wells. (d) Colony formation assay 
for SF3A1 and CCDC157 knockdown cells in the C4-2B background. Hairpin RNAs were 
induced at day 0 and colonies counted at day 8. P-values were calculated using one-tailed 
Mann-Whitney U tests. (e) Subcutaneous tumor growth in C4-2B cells over-expressing SF3A1 
and CCDC157 ORFs in a lentiviral construct. Tumors were measured using calipers at ~3 
weeks post-injection and P-values were calculated using a one-tailed Student’s t-test. (f) Size of 
extracted tumors in subcutaneous tumor growth in CRISPRa-ready C4-2B cells expressing 
non-targeting control, or sgRNAs targeting GH22I030351, at the conclusion of the experiment 
(day 22 post-injection); P calculated using one-tailed t-test (n=8 and 8, respectively). (g) 
Subcutaneous tumor growth in CRISPRi-ready C4-2B cells expressing non-targeting (CTRL) 
sgRNAs, C4-2B cells expressing shRNAs against SF3A1 and CCDC157 (DKD), or 
CRISPRi-ready C4-2B cells expressing sgRNAs targeting GH22I030351, and the DKD lentiviral 
construct (sgGH22I030351 + DKD). Tumors were measured using calipers at ~3 weeks 
post-injection and P-values were calculated using a one-tailed Student’s t-test.  
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Figure 1.5. SF3A1 up-regulation results in splicing alterations similar to those observed 
in GH22I030351-mutated tumors. (a) A volcano plot comparing cassette exon usage 
(percent-spliced-in, Ψ) between tumors with mutations in GH22I030351 relative to other 
samples in our cohort. Marked are cassette exons with larger than 10% change in Ψ (ranging 
between -1 to 1) and a P-value of <0.01. (b) SF3A1 CLIP-seq in C4-2B lines allowed us to 
identify, at base resolution, high-confidence binding sites of SF3A1 by mapping 
crosslinking-induced deletions. We used FIRE36 to discover the most significant sequence motif, 
and here we report its associated mutual information (MI) and z-score. (c) The enrichment of 
cassette exons bound by SF3A1 among those with higher Ψ in samples with mutations in 
GH22I030351. For this analysis, we ordered all annotated cassette exons based on their ∆Ψ 
values from -1 (left) to +1 (right). We then grouped them into equally populated bins and 
assessed the non-random distribution of SF3A1-bound cassette exons across these 
measurements using MI31. Individual bins are colored based on their hypergeometric P-value as 
well. (d) Comparison of changes in Ψ values in GH22I030351-mutant and SF3A1 
over-expression samples. We observed a significant enrichment of SF3A1 binding among those 
cassette exons that are simultaneously up-regulated in both GH22I030351-mutant and SF3A1 
over-expression samples. It should be noted that unbound cassette exons do not show a 
correlation between these two sets of comparisons.  
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Figure 1.6. Putative transcription factors that regulate gene expression through 
GH22I030351. (a) Mutations in GH22I030351 alter transcription factor binding. Left: sequence 
motif of SOX6. Shown is the mutation observed in DTB_176_BL compared to the reference 
genome. Middle: bar plot shows the FIMO enrichment score of SOX6 motif for the reference 
genome (green) and the patient’s sequence (red). Right: bar plot shows the difference in motif 
score (red) and difference in -log10 p-value (blue) of motif enrichment in the patient harboring 
the mutation with respect to the reference genome. (b–c) Similarly, shown for a SMAD2–4 and 
TEAD1 motif. (d) In vivo MPRA ChIP-seq  assay for TEAD1, SOX6, and SMAD2. X-axis shows 
the log2 relative enrichment of the mutant allele with respect to the reference allele. (e) 
Changes in the expression of SF3A1 and CCDC157 in response to silencing transcription 
factors we hypothesized to regulate their expression. P calculated using a one-tailed Welch's 
t-test. (f) Subcutaneous tumor growth in SOX6 knockdown and control cells in xenografted mice 
(n=8). P calculated using two-way ANOVA using time as a covariate. Data are represented as 
mean ± SEM.  
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Supplemental Figure 1.1. MutSpotterCV effectively predicts the background mutational 
density in regulatory regions. (a) Number of mutations (including SNVs and indels) per 
sample per regulatory region sorted in a descending order. (Figure caption continued on the 
next page.)  
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(Figure caption continued from the previous page.) As shown here, the total number of 
mutations were largely similar across these patients; one hypermutated sample was removed to 
avoid bias. Each color shows the proportion of mutation counts in the corresponding regulatory 
region. (b) Depiction of our one-hot encoding strategy to uniquely tag overlapping functional 
genomic regions. (c) Distribution of the lengths of regulatory regions after one-hot encoding as 
inputs to the MutSpotterCV. (d) The forest plot of the final MutSpotterCV model covariates 
showing all features are significant in the final prediction. (e-f) Comparison of MutSpotterCV with 
and without copy number variation (CNV) as an additional covariate. Shown are (e) the 
correlation between predicted mutational densities with and without CNV, and (f) the Venn 
diagram of the MutSpotterCV-predicted outliers with and without CNV. (g-l) Comparison of 
MutSpotterCV using epigenetic features from PC3 cell lines (default) vs. other datasets. Panels 
(g, h) compare with mCRPC patient-derived epigenetic features, (i, j) with ATAC-seq primary 
prostate tumor (TCGA), and (k, l) with LNCaP cell-line epigenetic features. In each case, the 
correlation between predicted mutational densities using PC3 vs. the other dataset is shown. 
Venn diagrams illustrate the overlaps between the final predicted outliers when using PC3 
cell-line compared to the other datasets. (m) Distribution of mutations in CDRRs in patient 
samples. (n) Number of mutants per non-coding mutational hotspots. We required each 
non-coding hotspot to include at least four mutants (dashed red line) (o) The validation loss and 
Pearson correlation for the DM2D model as a function of epochs.  
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Supplemental Figure 1.2. Functional characterization of hyper-mutated regulatory 
regions in prostate cancer. (a) Our MPRA assay was done in biological triplicate. Here, we 
show the pair-wise comparison of normalized counts between replicates. The counts are 
normalized by library size factor. (b) Gene-set enrichment analysis of enhancer activity as 
measured by our MRPA measurements. For this analysis, the ratio of reference allele to 
scrambled control was used to sort regulatory regions from repressive (left) to activating (right). 
The values were then grouped into equally populated bins. In case of annotated ENCODE 
binding sites, iPAGE was used to identify the trans factor whose binding sites are enriched at 
the two ends of this spectrum. As shown here, JunD binding was significantly associated with 
increased enhancer activity. The bottom heatmap shows a similar heatmap for the discovered 
motifs. For each motif, FIRE reports the mutual information value (MI) and the associated 
z-score. The motifs were compared against the database of known motifs using Tomtom (MEME 
suite). (c) Enhancer activity of hypermutated regulatory regions as an aggregate of their 
assayed segments in our MPRA measurements. See STAR Methods of the details of this 
aggregation. (d) We performed CRISPRi in vivo screens in three mice (1-3), two flanks (L and 
R) each. Here, the pairwise correlation coefficients of sgDNA counts in each tumor are shown. 
The counts were summed across these tumors and compared to an in-vitro-grown library to 
calculate a fitness score associated with each regulatory region. (e) Aggregate phenotypic 
scores for each hypermutated regulatory region assayed for in vivo tumor growth in the C4-2B 
background. For this analysis, results from individual sgRNA activities targeting the same 
regulatory regions were combined into a singular measure. 

 

28 



 

Supplemental Figure 1.3. Measuring functional consequences of mutations in regulatory 
regions. (a) Schematic of our MPRA setup for measuring the functional impact of mutations. (b) 
The combined effect of mutations in each regulatory region measured using MPRAs. (c) The 
general schematic of our Blue Heeler (BH) model, which combines sequence and cell-state 
embeddings to predict expression of a given gene. (d) The training of the BH model is over 
~7,000 training batches. Shown here are the loss and Pearson correlation for the validation set. 
The final chosen model is marked by a dotted line. (e) Through a combined analysis of in 
culture, in vivo, and in silico observations, we nominated GH22I030351 as the strongest 
candidate non-coding driver in mCRPC.   
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Supplemental Figure 1.4. Functional targets of GH22I030351. (a) Unlike SF3A1 and 
CCDC157, CRISPRi-mediated inhibition of GH22I030351 in C4-2B prostate cancer cells did not 
have an impact on the expression of TBC1D10A and RNF215. Therefore, the functional 
consequences of GH22I030351 silencing on prostate tumor growth in xenografts is unlikely to 
be through the function of these annotated target genes. (b) The phenotypic score associated 
with CRISPRi-mediated silencing of GH22I030351 downstream targets in two isogenic prostate 
cell lines, namely LNCaP and C4-2B, in a published large scale pooled in vitro growth screen[S1]. 
Negative scores imply reduced representation in the population upon knock-down.  
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Supplemental Figure 1.5. Splicing reprogramming through SF3A1 up-regulation. (a) 
Annotation of SF3A1 binding sites, determined using CLIP-seq in the C4-2B prostate cancer cell 
line. As expected, the absolute majority of binding sites were in intronic regions. (b) Cassette 
exons that are bound by SF3A1 show a significant increase in their Ψ in GH22I030351-mutated 
samples in our mCRPC cohort. Reported are the median and Wilcoxon signed rank test. (c) 
Volcano plot of changes in alternative splicing patterns in cells over-expressing SF3A1 (C4-2B 
background). The analysis was performed using MISO and exons with ΔΨ >10% and Bayes 
factor >5 are marked as significant. (d) Enrichment of SF3A1-bound exons among those 
up-regulated upon SF3A1 over-expression, and their depletion among those with lower Ψ. 
Reported are the mutual information and the associated z-score. The ΔΨ bins with statistically 
significant enrichment or depletion (based on hyper-geometric P) are marked with a solid 
border. (e) A sashimi plot for exon 9 of CDH1 as an exemplary target of SF3A1. Shown here is 
the cassette exon, the identified SF3A1 binding sites, and the Ψ estimates for control and 
SF3A1 over-expression samples. 
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Supplemental Figure 1.6. SOX6, SMAD2, and TEAD1 identified as putative transcription 
factors impacted by mutations in GH22I030351. (a) Sequence motif with mutations observed 
among patients for SMAD2-4 (top) and TEAD 1 (bottom). The top part shows the sequence logo 
and the bottom panels correspond to a patient’s sequence or the reference GRCh38/hg38 
genome sequence. (b) Unlike SOX6, silencing SMAD2 or TEAD1 did not significantly impact 
subcutaneous tumor growth in xenografted mice. 
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1.13: Methods 

Data and Code Availability 

● MPRA, CRISPR, and CLIP-seq screening data generated as part of this study is 

deposited to Gene Expression Omnibus (GEO), and is under the reference SuperSeries 

ID GSE274769. 

● MutSpotterCV is available at github.com/goodarzilab, and the corresponding DOI is 

provided in the Key Resources Table (Software and Algorithms). 

● Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

Cell lines and Cell culture 

C4-2B prostate cancer cell line was acquired from ATCC. All cells were cultured in a 37°C 5% 

CO2 humidified incubator. C4-2B was cultured in RPMI-1640 medium supplemented with 10% 

FBS, glucose (2 g/L), L-glutamine (2 mM), 25 mM HEPES, penicillin (100 units/mL), 

streptomycin (100 μg/mL) and amphotericin B (1 μg/mL) (Gibco). All cell lines were routinely 

screened for mycoplasma with a PCR-based assay. To select transgenic lines, puromycin was 

used at 8ug/mL final concentration. For inducible expression, doxycycline was used at 10ng/mL. 

Mouse Models 

Male NSG mice were purchased from Jackson Laboratory (Strain#005557). All animal 

surgeries, husbandry and handling protocols were completed according to University of 

California IACUC guidelines. 

MutSpotterCV Model Rationale 

Mutational density is highly varied and heterogeneous across the genome, and broadly 

impacted by genetic and epigenetic factors. Therefore, to identify regulatory regions that are 
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mutated more than expected by chance, we first needed to generate an accurate model of 

background mutation rates for all regions of interest. 

For this, we made two key assumptions: (i) the vast majority of the non-coding regulatory 

regions do not harbor driver mutations and therefore are not recurrently mutated significantly 

above background (Supplemental Fig. 1.1a), and (ii) regulatory regions with similar sequence 

and epigenetic features are more likely to have similar mutational densities. Given these two 

priors, the expected mutational density of a given region can be calculated using a predictive 

model trained on our cohort’s whole-genome sequencing data. Should such a model achieve 

high accuracy across genomic regions, its predictions can be used as a baseline estimate for 

expected background mutational density and can in turn be leveraged to identify significant 

outliers as mutational hotspots. 

Since this problem is a regression analysis at its core, we took advantage of generalized linear 

models (GLM) to estimate mutational density in each regulatory region as a function of i) the 

region’s putative functional annotation, ii) sequence context, and iii) epigenetic features 

associated with the region, which are known to impact local mutation rates24,25. To achieve this, 

we first one-hot encoded the annotated regulatory elements, generating a total of 728,208 

non-overlapping genomic functional regions that were uniquely tagged (Supplemental Fig. 

1.1b-c). This prevented heterogeneous functional annotations within a contiguous region and 

ensured that each mutation in the cohort would only be counted once even if it occurred in 

overlapping segments. Next, to capture the sequence context, we measured dinucleotide 

frequencies, which are known to be non-randomly distributed. However, since the 16 

dinucleotides are not entirely independent and show collinearities, we performed principal 

component analysis (PCA) and chose the first seven principal components, which together 

captured ~80% of the total variance. Finally, as we did not have access to epigenetic data for 

patients in our cohort, we used the ENCODE database and picked epigenetic factors  from the 
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PC3 prostate cancer cell line as input features (covariates) to our regression model. Similar to 

sequence context, since many of these measurements were collinear, we used a 10-PC 

projection of the data to represent ~80% of variance in epigenetic space. Specifically, we used 

three sets of covariates: (i) a functional classification of each region, (ii) a PCA embedding of 

dinucleotide frequencies, and (iii) a PCA embedding of epigenetic signals (Fig. 1.1a, 

Supplemental Fig. 1.1d).  

We defined genomic functional regions by compiling coding and non-coding genomic 

annotations–namely promoters, enhancers, promoter/enhancers, 3’UTRs, 5’UTRs, CpG islands, 

and gene bodies (both upstream and downstream of all annotated genes). Binary variables 

were created to record the affiliation of the non-overlapping genomic regions with each of the 

functional classes. We then mapped more than 1.8×106 high-confidence, single-nucleotide 

variations (SNVs) and short indels present in our cohort onto these functional regions. About 

one in five regions had at least one mutation from at least one patient (Supplemental Fig. 

1.1a). Unmutated regions were excluded from the rest of the analysis. The overall average 

mutation frequency (mutations per Mb) in functional regions was 4.1/Mb, marginally below the 

4.4/Mb reported in an earlier  study on whole-exome mCRPC26. However, we found that 

mutational frequencies tended to be higher in shorter CpG islands (median: 4.91/Mb) and 

promoters (median: 5.60/Mb) than in longer exonic regions (median: 0.78/Mb), suggesting that 

observed mutations are distributed non-randomly and disproportionately with regions’ sequence 

length. This confirms that mutations are not uniformly distributed among functional regions, 

further supporting our choice to include ‘functional classes’ as a categorical covariate in our 

model. 
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Data collection and preparation for the MutSpotterCV model 

The annotated data for the genomic functional regions were downloaded from three publicly 

available databases for hg38 as follows. 5k upstream and 2k downstream of all genes, 

untranslated regions, and CpG islands were downloaded from UCSC genome database 

https://genome.ucsc.edu, with 446,983 entries. Genes were downloaded from ENSEMBL 

https://www.ensembl.org having a total number of 64,561 entries. Finally, promoters, enhancers, 

and promoters/enhancers were downloaded from GeneHancer https://www.genecards.org with 

250,733 number of entries. These resulted in a total number of 762,277 functional genomic 

regions which were made consistent in terms of baseness, and subsequently, refined by 

removing duplicated regions and mitochondrial/unknown chromosomes and random contigs. 

These regions were further refined by removing very small (<50 bp) and very large (>10,000 bp) 

regions, resulting in a total of 674,330 annotated functional regions. 

There are many overlapping segments among these regions which will bias the downstream 

analyses, as a mutation can be located in a shared segment and thus counted twice or more, 

and thus artificially overestimates the mutational density in the region. We thus fragmented 

overlapping regions using one-hot encoding technique. This technique guarantees that each 

now-fragmented segment appears only once in the downstream analyses and avoids mutation 

overcount (Supplemental Fig. 1.1b). This resulted in 728,208 one-hot encoded, 

non-overlapping genomic functional regions that are individually labeled by a nine-bit binary digit 

based on the contribution of each of the nine genomic functional regions (Supplemental Fig. 

1.1b). Each bit would serve as a covariate in the final regression model. Moreover, the length 

distribution of regions reveals that one-hot encoding produces functional regions with a 

smoother distribution (Supplemental Fig. 1.1c). 

Next, for each one-hot encoded, non-overlapping functional region we calculated dinucleotide 

densities and GC content using KENT utility version 403 developed by the UCSC 
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(http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/). We then downloaded 17 available 

epigenetic features for the cell line PC3 from ENCODE (https://www.encodeproject.org/) with a 

total number of 18,062,440 entries in the bed format. These features were then mapped onto 

our functional regions and subsequently each region was assigned a 17-bit binary number, 

depending on whether the epigenetic feature existed (1) or not (0) within the region. Each bit 

represents a covariate in the regression model. Therefore, the total number of covariates in 

these three classes are 9 + 17 + 17 = 43. However, unsurprisingly, the covariates in sequence 

context class and GC-content are not independent, nor are the covariates in epigenetic features 

class. We thus replaced these two classes by their principal components (PCs). As a result, the 

16 dinucleotide densities and GC-content were replaced by seven PCs, while 17 epigenetic 

features were replaced by 10 PCs. In both cases PCs captured >= 80% of variations in data. 

The selection of PCs encapsulated most of the information embedded in the dinucleotide 

sequence context. Furthermore, in selecting PCs, we aimed to avoid feature interdependence 

while simultaneously reducing the number of covariates. This procedure leaves us with a total of 

26 new covariates. As can be seen in Supplemental Fig. 1.1d, all final covariates are 

statistically significant, meaning they independently contribute to the model prediction. 

The small somatic variations, including single nucleotide variations (SNVs) and indels in our 

cohort are obtained from matched tumor-normal samples as detailed in Quigley et al.21. Briefly, 

somatic variations were called by comparing matched normal-tumor samples using Strelka 

version 2.8.060 and Mutect version 1.1.761, filtered for PASS-designated variations. The total 

number of small variations in our cohort is 1,890,644 including 1,286,214 SNVs and 604,430 

indels. We then cleaned up the somatic variations data by removing mutations on 

unknown/mitochondrial chromosomes, potential germline mutations (frequency > 1% in the 

1000Genome project dataset62, and single nucleotide polymorphisms recorded in dbSNP63. This 

left us with a total number of small variations of 1,874,951 including 1,278,920 SNVs and 
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596,031 indels. These mutations were mapped onto our one-hot encoded, non-overlapping 

genomic functional regions using bedtools v2.29.2. Consequently, the mutational density for 

each functional region was calculated as the number of mutations divided by length to serve as 

the response variable in our background genomic mutation rate model. Functional regions with 

zero mutational density were excluded from the rest of the analysis. 

Regression model 

With the mutational density as the response variable and 26 covariates, we ran the generalized 

linear model (GLM), using Gamma distribution for the error structure with the default inverse link 

function and a variance proportional to  (with  being the expected value of the response) in R µ2 µ

version 4.0.0. We used a power transformation of the response variable (mutational density) to 

ensure that the residuals followed a Gamma distribution, and subsequently verified that Gamma 

was the closest known distribution to our empirical data via a Cullen-Frey graph using the 

package fitdistrplus version 1.1-1 in R.  

Statistical outlier detection 

By systematically comparing the observed vs. expected mutational density, one can determine 

statistical outliers which serve as the first set of initial candidates for mutation hotspots in this 

work. Our criteria for a region to be a statistical outlier were i) to harbor at least three mutations 

ii) the deviance residual of the mutational density be at least one interquartile above the upper 

quartile64. These criteria marked 1,780 functional regions as statistical outliers (Fig. 1.1b) which 

served as the initial set of candidates of being mutational hotspots within the non-coding 

regulatory regions. Due to the exploratory  nature of our analysis, we relaxed multiple testing 

corrections for outlier detection.  

In our model, statistical testing looks for regions where the residuals significantly deviate from 0. 

There are a number of methods, including Studentized Residuals and the Interquartile Range 
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(IQR) method. Outlier analysis is an extreme version of these approaches and they are far more 

restrictive and conservative than statistical tests. For instance, when we apply Studentized 

Residuals to our MutSpotterCV model, we pinpoint 6,047 regions (p<0.05). These regions 

account for 70% of the outliers initially identified in our outlier analysis, representing 1,250 out of 

the original 1,780 outliers.  

Copy number alterations 

We quantified the sensitivity of the MutSpotterCV’s predictions to the copy number alteration, as 

this feature is widely present in our cohort21. We performed this by adding copy number 

alterations as continuous predictors to the regression model. To do so, we took the DNA copy 

number variants that had been computed in our cohort binned into windows of 3Mbp by using 

Canvas version 1.28.0-O0107365 and Copycat (https://github.com/chrisamiller/copyCat). First, 

we mapped the binned windows into our functional regions, and then for each region we 

replaced the copy number variants by five quantiles, i.e., min, 1st quartile, median, 3rd quartile, 

and max. This procedure adds five predictors to the original regression model. Nevertheless, 

there was no significant change in the final predicted statistical outliers in the presence of copy 

number variations as extra predictors (Supplemental Fig. 1.1e-f).  

MutSpotterCV on coding sequence 

Additionally, to benchmark the MutSpotterCV, we evaluated it on the coding sequences in our 

cohort. The analysis identified 183 genes with potential mutational hotspots. Notably, 11 of these 

genes (p = 0.007, hypergeometric test) have been previously validated as relevant in prostate 

cancer and other cancer types21,22,66. 
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Integration with gene expression data 

To find the association of statistical outliers with gene expression in our cohort we first find 

genes in the 15k bp flanking regions of either ends of all regions. There are a total of 1,692 

genes in the flanking regions of 1,264 non-coding mutational hotspots. Notably, not every 

non-coding mutational hotspot is proximal to a gene. For every statistical outlier, we grouped the 

cohort into mutation-free (reference) and mutation-bearing (mutant) patients, i.e. patients who 

do not, or do, have mutations in that non-coding mutational hotspot. Subsequently, for every 

flanking gene we performed differential gene expression analysis using DESeq2 version 

1.28.130.  

We find 160 genes with significant change in their expression levels in two groups of patients (P 

< 0.05) proximal to 152 non-coding mutational hotspots. We did not perform multiple testing 

correction, as, on average, there is rarely more than one gene located in the vicinity of each 

non-coding hotspot. We then further refined the list by setting the minimum number of mutated 

patients per region to four, which resulted in 104 flanking genes in the vicinity of 98 non-coding 

regulatory regions, termed candidate driver regulatory regions (CDRRs), which harbor a total of 

885 mutations. Tumor purity was not a major concern in our analyses as samples were isolated 

using laser capture microdissection21.  

Model robustness with respect to epigenetic features 

The selection of epigenetic features from the PC3 cell line for our computational model may 

raise concerns about how representative these features are compared to those found in situ 

within mCRPC tumors. To address these concerns and to evaluate the robustness of our model 

regarding the source of epigenetic data, we modified the model by replacing PC3 epigenetic 

features with three other orthogonal datasets: I) patient-derived epigenetic features from 

metastatic castration-resistant prostate cancer (mCRPC)27, II) ATAC-seq data from TCGA 
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prostate cancer samples28, and III) epigenetic features from the LNCaP cell line for the 

ENCODE project29.   

As depicted in Supplemental Fig. 1.1g-l, substituting PC3 epigenetic features with those from 

any of these alternative sources does not significantly alter the model's final predictions. In fact, 

the correlation with the PC3-based predictions remains high (R ≈ 0.8), with at least 66% of the 

final candidate non-coding regions being consistently identified across different epigenetic 

datasets. Specifically, by replacing the PC3 cell line with mCRPC epigenetic features or 

ATAC-seq data, our updated model recaptured approximately 70% of the previously identified 

candidate non-coding regions. Among the final 98 Candidate Driver Regulatory Regions 

(CDRRs) identified originally using PC3 epigenetic features, 67 and 65 remained significant 

when using mCRPC epigenetic features or ATAC-seq data, respectively. In both cases, our main 

candidate enhancer region GH22I030351 remains significant.  

Using discrete mutation counts under negative binomial (NB) 

We also modified our model by replacing the continuous predictor of mutational density with a 

discrete predictor of mutation counts. This adjustment aimed to identify regulatory regions with 

mutation counts significantly exceeding expected values under NB tests using the lengths of the 

regions as the offset, setting FDR < 0.1. Notably, this method identified 841 regions that 

overlapped with the 1,780 outliers initially detected by our original model, capturing 

approximately 47% of these initial outliers. Nevertheless, the Pearson correlation between 

observed and predicted mutation counts per regulatory region, was only 0.36 in NB. This 

represents a significant decrease compared to our GLM and CNN models, which had Pearson 

correlations of 0.55 and 0.85, respectively, as shown in Fig. 1.1b of the manuscript. 
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DM2D and the Blue Heeler model  

DM2D is a deep convolutional neural network to predict the mutational density values as a 

function of the underlying DNA sequence and broad functional sequence categories, namely 

“Gene”, “Enhancer”,”downstream” and “upstream” of genes, “UTR”, “Promoter”, “CpG” island, 

and “PromHancer” (promoter or enhancer). We used a seven-channel input layer: four channels 

were used for one-hot encoding DNA sequence, and to ensure our results were not dependent 

on the choice of specifically PC3 as our prostate cancer cell line model, the other three 

channels were used for epigenetic data from LNCaP–namely, DNase hypersensitivity, H3K4me3 

signal, and CTCF binding sites (ENCODE database). After the convolutional blocks, the 

resulting sequence and chromatin data embedding is combined with the functional category of 

the input region and passed on to a fully connected layer for mutational density prediction. 

More specifically, the “sequence encoder”, with a 7-channel input (3 epigenetic signals and 4 

one-hot encoded sequence) contained four convolution blocks, with (16, 32, 32, 32) filters and 

(4,25,25,25) kernel sizes. All blocks applied batch normalization, rectified linear units, max 

pooling (window sizes of 4, 10, 10, 10), and 0.25 dropout. The resulting tensors were flattened, 

concatenated to a one-hot encoded sequence category (size 9), and passed on to fully 

connected layers with size 24, 12, and 1 respectively. All layers applied batch normalization, 

rectified linear units, and dropout (0.1). The final layer predicted the mutational density values. 

For training a Nadam optimizer was used with learning_rate= 0.001, clip_norm=0.5, and 

clip_value=1. We used MSE as the loss function and trained the model for 20 epochs with a 

batch size of 128. 15% of samples were held-out as a validation set. 

Our Blue Heeler (BH) model is inspired by Basenji39, with multiple convolutional and dilated 

convolutional layers. The promoter sequence (starting ~32 kb upstream of TSS) is represented 

as a one-hot encoded 4-channel input, and then processed through a series of convolutional 
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and residual dilation blocks. The resulting sequence embedding is then merged with the output 

of a cancer state encoder, which provides an embedding of the gene expression profile of each 

tumor. This cancer-state encoder is pre-trained as a variational autoencoder prior to transfer to 

the final model. The final layer of the model is a fully-connected layer that predicts expression of 

a gene given its promoter sequence and the gene expression state of the corresponding 

sample. The underlying concept is that the convolutional blocks learn the cis-regulatory 

elements and the combinatorial code between them to predict the expression of every gene in a 

given sample based on the occurrence of these elements along the promoter sequence. 

More specifically, BH contains two inputs, a one-hot encoded sequence input and a sample 

state input. The former is passed a 215 kb long sequence and the latter a 256-dimensional 

embedding. For each sample, this embedding was generated using a variational autoencoder 

with a hidden layer of size 2560, and applying batch normalization and rectified linear units 

(except for the final layer in the decoder). Expression values were pre-processed by applying 

rank-based inverse normal transformation prior to training. The Pearson correlation between the 

reconstructed gene expression values across >100 samples and their input values was on 

average 0.92. Augmentation: the training data loader, which iterates through promoter 

sequences of genes, randomly selects one of the samples and uses its embedding as input to 

the sample state module. Similarly, the promoter sequence, or its reverse complement (with a 

50:50 chance) is transformed to a one-hot encoded tensor that is passed on the sequence 

encoder. Task: the model is then trained to predict the expression of the input gene in the 

context of the randomly selected sample. Convolutional blocks: four convolutional blocks with 

(64, 32, 32, 32) filters and (16,8,8,8) kernel sizes.  All blocks applied batch normalization, 

Gaussian error linear units, 0.2 dropout, and max pooling of (16,8,8,8). Dilated convolutional 

blocks: four densely connected dilated layers with 32 filters and kernel size of 3 and dilations of 

2j (where j is the dilated layer number) to increase the receptive field of the sequence encoder. 
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These layers also apply GELU and batch normalization. Regression head: fully connected 

layers with 1056 and 64 hidden sizes were used to connect the output of the sequence and 

sample state encoders to the regression head. Training: an Adam optimizer with 

learning_rate=0.001and clip_grad_norm of 10 was used to minimize an MSE loss. The model 

was trained for 60 epochs; 10% of genes were held out as a test set, and 2.5% for validation. 

The remainder were used for training. The performance of the model was assessed using 

Pearson correlation applied to all the held-out genes across all samples. 

Sequence motif analysis 

For the MPRA data, we asked whether there were binding sites associated with any known 

transcription factors that were significantly enriched among the regions with regulatory activity in 

our MPRA system. For this, we systematically intersected annotated binding sites 

(narrowPeaks) from the ENCODE database across all profiled transcription factors with the 

population of fragments cloned in our MPRA library. We then used iPAGE31 to ask whether 

these annotated binding sites showed a significant association with enhancer activity.  

We used FIMO (v5.3.2)67 and JASPAR database core vertebrate non-redundant set of motifs68 

to identify all of the sequence motif matches at the genomic window chr22:30351638–30352714 

(hg38 assembly) overlapping the 9 single nucleotide polymorphisms. 

 

We performed DESeq2 (v1.28.1) differential gene expression analysis comparing metastatic to 

the primary tumors and found that 6 of the 34 transcription factors which have a sequence motif 

match to the enhancer are significantly upregulated in the metastatic tumors. These included 

SOX6, SMAD2, TEAD1, PBX3, TEAD2, and SMAD3. We chose the top 3 (SOX6, SMAD2, and 

TEAD1) for in vitro validation. 
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Library cloning and sequencing validation 

For our CRISPRi library, a library consisting of guides targeting 190 elements was designed and 

ordered from Twist Biosciences. The pool was resuspended to 5ng/μL final concentration in 

Tris-HCl 10mM pH 8, and a qPCR to determine Ct to be used for downstream library 

amplification was performed (forward primer: ATTTTGCCCCTGGTTCTTCCAC, reverse primer: 

CCCTAAGAAATGAACTGGCAGC) using a 16-fold library dilution.  

 

The library was then amplified via PCR, and ran out on a 2% agarose gel to check library size 

(expected band of 84bp). PCR product was then cleaned up using a DNA Clean and 

Concentrator kit-5 (Zymo Research Cat. #D4003), and eluted in 15μL H2O. Cleaned product 

was digested overnight using FD Bpu1102I (Thermo Fisher Cat. #FD0094), and then further 

digested for 1hr using FD BstXI (Thermo Fisher Cat. #FD1024). Inserts were then ligated into 

pCRISPRi/a v2 backbone in a 50ng reaction with 1:1 insert:backbone ratio for 16hrs 16C. 

Ligated products were then ethanol-precipitated overnight at -20C, cleaned, and then 

transformed into 100μL NEB Stables (NEB Cat. #C3040H), followed by maxiprep plasmid 

isolation.  

 

For sequencing validation, 1μg plasmid DNA was then digested in 50μL volume for 1hr with FD 

BstXI (Thermo Fisher Cat. #FD1024). Digested plasmid DNA was then Klenow-extended using 

added UMI linker (sequence: CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and 

then cleaned up using a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033). 

Indexing PCR (forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; 

reverse primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

Tcgactcggtgccactttttc) was then performed in 30μL final volume, followed by gel purification 
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(Takara Bio Cat. #740609.50). Samples were then pooled and sequenced on a lane of HiSeq 

4000 SE50 at the UCSF Center for Advanced Technology (CAT).  

 

Viral transductions 

3 million HEK293Ts were seeded in a 15cm plate. 24hrs later, HEK293Ts were transfected with 

TransIT-Lenti (Mirus Bio Cat. #Mir6603) reagent. Viral supernatant was harvested, aliquoted, 

flash-frozen, and then stored -80C for long-term storage.  

100K C4-2B CRISPRi cells were then seeded in a 6-well plate for viral titering. Using a range of 

100-, 200-, and 400μL viral supernatant, cells were transduced, adding polybrene to 8ug/mL 

final concentration. 48hrs post-transduction, cells were passed through flow cytometry on the 

FACS Aria II in the UCSF CAT, and %BFP+ was recorded.  

 

Cell preparation for subcutaneous injection 

For subcutaneous growth rate measurements, C4-2B (CRISPRi-ready with appropriate sgRNA, 

CRISPRa-ready with appropriate sgRNA, or C4-2B expressing shRNAs) were grown in a 15cm 

plate and allowed to expand. On the day of injections, cells were harvested and resuspended to 

final concentration 1 million/50μL in 1:1 PBS/matrigel. Bilateral subcutaneous injections in 50μL 

final volume were then performed in male, 8-12 week-old age-matched male NOD scid gamma 

(NSG) mice. Tumor growth rate measurements were made every day until endpoint (roughly 3 

weeks after injection). 

For the in vivo CRISPRi screen specifically, 6 million C4-2B CRISPRi cells were seeded into a 

15cm plate and allowed to grow overnight. On the following day, 5.55mL of lentivirus was added 

to cells (target 33% MOI), with polybrene added to final concentration 8ug/mL. Media was then 

changed 24hrs post-transduction,  and puromycin was added 72 hrs post-transduction to final 

concentration 2ug/mL.  
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We then partitioned into 3 arms the transduced C4-2B CRISPRi cells. Specifically, 200K cells 

were split into a 15cm plate for in vitro long-term passage (for purposes of growth 

normalization). 200K cells were pelleted and frozen at -80C for downstream gDNA extraction, 

for ‘t0’ collection. 9 million cells were resuspended to final concentration 1 million cells/50μL in 

1:1 PBS/matrigel. Bilateral subcutaneous injections in 50μL final volume were then performed in 

male, 8-12 week-old age-matched male NOD scid gamma (NSG) mice (n = 3). 

 

Tumor gDNA extraction and library preparation 

Tumors were then harvested 4 weeks post-injection and processed using Quick-DNA midiprep 

plus kit (Zymo Research Cat. #D4075). For each processed tumor, genomic DNA was digested 

in 15ug-scale, 50μL volume reactions with FD BstXI. Digested genomic DNA was then 

Klenow-extended using added UMI linker (sequence: 

CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and then cleaned up using a Zymo 

DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033). Indexing PCRs (forward 

primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; reverse primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

Tcgactcggtgccactttttc) were then performed in 30μL final volume, followed by gel purification 

(Takara Bio Cat. #740609.50). Samples were then pooled and sequenced on a lane of HiSeq 

4000 SE50 at the UCSF Center for Advanced Technology (CAT).  

 

LentiMPRA library cloning  

MPRA analysis involves measuring the difference between enhancer activity associated with 

each fragment and its matched scrambled control. This activity is calculated by comparing the 

ratio of reference/scrambled in the RNA population to the same ratio in genomic DNA (gDNA) 

samples, which captures their representation in the original library. 
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LentiMPRA was performed according to Gordon et al58. Briefly, a CRS library consisting of 3665 

elements was designed and ordered through Twist Biosciences. A first-round PCR reaction was 

performed to add vector overhang sequence upstream and minimal promoter and adaptor 

sequences downstream of the CRSs. PCR products were then combined, and cleaned up using 

1:1 HighPrep PCR reagent (MagBio Genomics Cat. #AC-60050), eluting in 50μL elution buffer. 

A second round of PCR was then performed to add a 15-bp barcode and vector overhang 

sequence downstream of the first-round PCR fragment. PCR products were then combined and 

ran on two 1.5% TAE-agarose gels, and the resulting band at 419 bp was gel excised and 

purified using the QIAquick Gel Extraction Kit (Qiagen Cat. #28706X4), eluting in 50μL elution 

buffer. Resulting DNA was purified using 1.2:1 HighPrep PCR reagent. pLS-SceI backbone was 

then digested with AgeI-HF (NEB Cat. # R3552S) and SbfI-HF (NEB Cat. #R3642S) overnight, 

and then purified using 0.65:1 HighPrep PCR reagent. Linearized pLS-SceI and insert DNA was 

then recombined using NEBuilder HiFi DNA Assembly Master Mix (NEB Cat. #E2621L) for 60 

min at 50C, and resulting product purified using 0.65:1 HighPrep PCR reagent. Undigested 

vector was then cut using I-SceI for 1 hr, and resulting DNA purified using 1.8:1 HighPrep PCR 

reagent, eluting in 20μL elution buffer.  

 

For electroporation, 100ng of recombination product was then added to 100μL of NEB 10-beta 

electrocompetent cells (NEB Cat. #C3020K). Electroporation was conducted in a Gemini X2 

electroporator and cells were shocked with 2.0kV voltage; 200 ohms resistance; 25 uF 

capacitance; 1 pulse; 1 mm gap width. Cells were then grown in 1mL fresh Stable Outgrowth 

Medium  for 1 hour 37C with agitation, and 2μL of bacteria were diluted in 400μL LB medium + 

100 mg/mL carbenicillin for colony counting. Undiluted bacteria were plated onto other 

carbenicillin plates and grown at 37C overnight. 8 colonies were chosen from the dilution plate 

and sent for Sanger sequencing. 5mL LB media was added to each plate for scraping using a 

cell lifter, and plasmid was purified using the Qiagen Plasmid Plus Midi Kit. 
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LentiMPRA CRS-barcode association sequencing 

PCR to add P5 flow cell sequence and the sample index sequence upstream and P7 flow cell 

sequence downstream of the CRS-barcode fragment was performed using primers 

pLSmP-ass-i741 and pLSmP-ass-gfp. PCR products were then combined and gel extracted 

(470bp) under blue light, followed by purification using QIAquick Gel Extraction Kit. DNA was 

then purified using 1.8X HighPrep PCR reagent, and DNA was sequenced using a MiSeq v2 (15 

million reads) kit using custom primers pLSmP-ass-seq-R1 (CRS upstream forward), 

pLSmP-ass-seq-R2 (CRS downstream reverse), pLSmP-ass-seq-ind1 (Barcode forward), and 

pLSmP-rand-ind2 (sample index) as described previously.  

 

Lentivirus packaging  

10 million 293T cells were seeded into a 15-cm plate and incubated for 2d. Transfection was 

then carried out as described previously, using 60μL EndoFectin (GeneCopoeia Cat. #EF001), 

10 μg plasmid library, 6.5 μg psPAX2, and 3.5 μg pMD2.G. Cells were incubated for 14 hours 

and then media was replaced with 20mL DMEM supplemented with 40μL ViralBoost (AlStem 

Cat. #VB100) reagent, and incubated for 48 hours. GFP expression was confirmed using 

fluorescence microscopy and viral supernatant was then filtered using a 0.45μm filter. 

Supernatant was concentrated using 1⁄3 volume Lenti-X concentrator reagent (Takara Cat. 

#631232), centrifuging for 1500g 45 mins 4C and resuspending the resulting lentivirus pellet in 

600μL DPBS.  

 

Lentivirus titration 

100K C4-2B cells were seeded into wells of a 6-well plate. To calculate viral titer, lentiviral library 

was then infected in a 2-fold upwards range (0, 1, 2, 4, 8, 16, 32, 64μL), gDNA was extracted, 

and qPCR was performed to determine MOI for each lentiviral library condition.  

49 



 

Lentivirus infection and library preparation 

Using a target of 100 integrations per barcode, 1.1 million C4-2B cells were seeded in a 10cm 

plate, in three biological replicates. Cells were incubated overnight and culture media was 

refreshed with polybrene at 8 ug/mL final concentration. 87μL virus was then added to plates 

and culture media was refreshed with no polybrene the following day. GFP fluorescence was 

confirmed 2d after, and culture media was removed. Cells were washed 3 times with DPBS and 

the AllPrep DNA/RNA Mini Kit (Qiagen Cat. #80204) was used to simultaneously extract 

DNA/RNA from plates, eluting DNA/RNA fractions in 30μL Buffer EB/RNAase-free H20 

respectively. RNA samples were then treated with DNAse and reverse-transcription (RT) 

reactions were performed in 8-strip PCR tubes. These reactions add a 16-bp UI and P7 

flowcells sequence downstream of the barcode, using low-complexity amounts as previously 

described.  

 

DNA samples were then diluted to 120ng/μL final concentration. 100μL of DNA or RT products 

respectively (for 12 μg DNA or entire RT product) were then used for a first-round PCR reaction 

to add the P5 flow cell sequence and sample index sequence upstream and a 16-bp UMI and 

P7 flow cell sequence downstream of the barcode. DNA was then purified using 1.8X HighPrep 

PCR reagent and eluted in 60μL elution buffer. A preliminary qPCR reaction was set up to find 

the number of PCR cycles required for the subsequent second-round PCR reaction with P7 and 

P5 primers. 23 cycles were then used for the second-round PCR reaction, DNA was purified in a 

1.8X HighPrep PCR reagent clean-up, and sample run on 1.8% wt/vol agarose gel. The band at 

162 bp was excised and purified using the QIAquick Gel Extraction Kit and purified 1.8X. DNA 

and RNA samples were then pooled in a single LoBind tube with 1:3 ratio, and final sequencing 

library sent out to the Center for Advanced Technology (CAT) at UCSF for sequencing on two 

HiSeq 4000 lanes.  
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CLIP-seq of SF3A1 in C4-2B CRISPRi cells UV-Crosslinking 

Six 15cm plates of C4-2B CRISPRi cells were seeded for a total of 3 biological replicates. Cells 

were then harvested 48 hours later and then were crosslinked on a 254nm UV crosslinker set to 

400mJ/cm2, transferred to 15mL tubes, spun at 1500xg 4C for 2 mins, and then frozen as dry 

pellets at -80C for long term storage. 

  

Bead Preparation 

For bead preparation, 60μL Protein A beads were then washed 2X in low salt wash buffer (1X 

PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL CA-630), adding 2μg anti-SF3A1 

(Proteintech Cat. #15858-1-AP) and then rotating at 4C for 1hr. For cell lysis, cells were then 

resuspended in 600μL cold low salt wash buffer + 6μL SuperaseIN (Invitrogen Cat. #AM2696) + 

1X protease inhibitor cocktail (Thermo Fisher Cat. #78425)  and incubated on ice for 10 mins. 

  

RNase Treatment and Immunoprecipitation 

Cells were then equally divided and treated with either 20μL RNase high mixture (RNase A 

1:3,000  + RNaseI 1:10) or 20μL low mixture (RNase A 1:15,000 + RNaseI 1:500) and 

incubated at 37C for 5 mins, and then combined and spun at 4C max speed for 20 mins. 

Clarified supernatant was added to prepared beads and rotated end-over-end at 4C, for 2 

hours. Beads were collected on magnet and washed 2X with 1mL cold low salt wash buffer, 2X 

with 1mL high salt wash buffer (5X PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% IGEPAL 

CA-630), and then 2X with 1mL cold PNK buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2). 

 

RNA Dephosphorylation 

For RNA dephosphorylation, 2.5μL 10X PNK buffer (500mM Tris pH6.8, 50mM MgCl2, 50mM 

DTT), 2μL 10X T4 PNK (NEB Cat. #M0201L), 0.5μL SuperaseIN, 20μL nuclease free water was 
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added per reaction, and incubated at 37C for 20 mins in a thermomixer (mix 1350 rpm 15s/5 

mins rest). Beads were then washed 1X with 1mL PNK buffer, 1X with 1mL high salt wash 

buffer, and 2X with 1mL PNK buffer. 

  

PolyA-tailing, N3-dUTP end labeling, and Dye labeling 

RNP complexes were then polyA-tailed by addition of 0.8μL yeast PAP (Jena 600U/ul), 4μL 5X 

yeast PAP buffer, 1μL 10 mM ATP (unlabeled), 0.5μL SuperaseIN, 13.7μL nuclease free water, 

and incubated at 22C for 5 mins in thermomixer (shake 1X 15s 1350 rpm). After 5 mins 

incubation, beads were washed 2X with 500μL cold high salt buffer, then 2X 500μL cold PNK 

buffer. Samples were then N3-dUTP labeled with 0.4μL yeast PAP, 2μL 5X yeast PAP buffer, 

0.25μL SuperaseIN, 2μL 10mM N3-dUTP, 5.35μL nuclease free water, and incubated for 20 

mins at 37C in a thermomixer with intermittent shaking (15s/5 mins rest, 1350 rpm). Samples 

were then washed with 2X 500μL cold high salt wash buffer, then 2X with 200μL cold 1X PBS. 

For dye labeling of N3-labeled RNA, 20μL 1mM 800CW DBCO in PBS was then added, and 

incubated in a thermomixer protected from light at 22C for 30 mins with intermittent shaking 

(15s/5 mins rest, 1350 rpm). Beads were then washed 1X with 500μL high salt wash buffer, then 

1X with 500μL PNK buffer and then resuspended in 20μL loading buffer (1X NuPAGE loading 

buffer + 50 mM DTT diluted in PNK buffer), and then heated at 75C for 10 mins shaking at 1000 

rpm, protected from light. Supernatants were transferred to clean microfuge tubes. 

PAGE and transfer 

Samples were then run on a 12-well Novex NuPAGE 4-12% Bis-Tris gel (1mm thick) at 180V for 

90 mins along with IR-labeled protein standard in 1X MOPS running buffer at 4C, 

light-protected. Gel was then transferred to protran BA-85 nitrocellulose membrane in Novex 

X-cell apparatus using 1X NuPAGE transfer buffer with 15% EtOH for 75 mins at 30V. 

Membrane was then rinsed in PBS, and imaged with a Licor Odyssey instrument. 
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Proteinase K digest and RNA capture 

Nitrocellulose membrane was excised at the expected range size (140-150kDa) for SF3A1, to 

capture RNA-protein complexes. Membrane was placed into a clean microfuge tube, and 200μL 

Proteinase K digestion buffer (100mM Tris-HCl pH 7.5, 100nM NaCl, 1mM EDTA, 0.2% SDS), 

12.5μL Proteinase K, was added. Samples were then incubated at 55C for 45 mins in a 

thermomixer at 1100 rpm. Samples were spun and the supernatant was transferred to clean 

microfuge tubes, and the final solution was adjusted to ~500mM NaCl by adding 19μL 5M NaCl 

and 11μL nuclease free water. Salt-adjusted solution was then added to pre-washed oligo-dT 

dynabeads, incubating for 20 mins at 25C in a thermomixer with intermittent shaking (1350 rpm, 

10s/10 mins, 300 rpm remainder of time). Beads were then washed 2X with 100μL cold high salt 

wash buffer, 2X with 100μL cold PBS. Samples were eluted from beads with 8μL of TE buffer 

(20 mM Tris-HCl pH 7.5, 1mM EDTA), heated at 50C for 5 mins, and 7.5μL of supernatant was 

transferred into a clean PCR tube on ice. 

 

cDNA synthesis and PCR  

For annealing, to 7.5μL eluted RNA 2.5μL smRNA mix 1 (Takara Cat. #635031) and 1μL 10μM 

UMI RT primer (seq: 

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC

CGATCTTTTTTTTTTTTTTT 

) were added, heated at 72C 3 mins in a thermocycler, and then placed on ice for 5 mins. 9μL 

RT mix (6.5μL smRNA Mix 2, 0.5μL RNAse inhibitor (Invitrogen  Cat. #AM2696), 2μL 

PrimeScript RT (200U/ul)) was then added to samples on ice, and the following program was 

run: 42C 60 mins, 70C 10mins, 4C hold.  
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For indexing PCR, 78μL PCR mix (24μL H20, 50μL 2X SeqAmp CB PCR buffer (Takara Cat. 

#638526), 2μL SeqAmp DNA polymerase ((Takara Cat. #638509), 2μL 10μM universal reverse 

primer (seq: CAAGCAGAAGACGGCATACGAG)) was added to each cDNA sample, followed by 

2μL of 10μM indexed forward primer (seq: AATGATACGGCGACCACC). The following program 

was run for: 98C 1 min, [98C 10s, 60C 5s, 68C 10s, repeat 18X], 4C hold. Product was size 

selected 1.1X using a Zymo Select-a-Size Magbead Kit (Zymo Cat. #D4085), and the final 

product was eluted in 16μL H20. Samples were quantified via Agilent Tapestation 4200 and 

submitted for sequencing on a lane of HiSeq 4000 SE 50.  

 

Binding Analysis 

We used 10nt-long sequences flanking thousands of SF3A1 binding sites to identify sequence 

preferences for this RBP. To generate a background set of sequences, we also scrambled each 

binding site while maintaining its dinucleotide content. 

 

Cell growth assays 

For assaying cell proliferation, CellTiter-Glo 2.0 Cell Viability Assay (Promega Cat. #G9241) was 

used. 1K C4-2B cells were seeded per well in 3 separate opaque 96-well plates for 

luminescence measurement at days 1, 2, and 3. 6 wells were seeded per cell condition in 100μL 

volume media. 24h after seeding, media was replaced with fresh media containing doxycycline 

at 10 ng/mL final concentration. Cells were then harvested according to manufacturer’s protocol. 

Briefly, CellTiter-Glo 2.0 Reagent and cell plates were equilibrated to RT 30 mins prior to use. 

100μL CellTiter-Glo 2.0 Reagent was then added via multichannel to each well and mixed at 

300 rpm for 2 mins at RT; the plate was incubated for 10 minutes at RT, covered. Plate 

luminescence was then recorded on a SpectraMax iD5 multiplate reader. 
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For colony formation assay, 2.5K C4-2B cells were seeded in triplicate in a 6-well plate. 24h 

after seeding, media was replaced with media containing doxycycline at 5 ng/mL final 

concentration. 8 days after doxycycline induction, colonies were stained and imaged. Briefly, 

media was removed and cells were washed with 1mL PBS at RT. Cells were then fixed in 4% 

PFA (Alfa Aesar Cat. #43368-9L) for 10 minutes at RT, and then stained in 0.1% crystal violet 

(Sigma-Aldrich Cat. #V5265-250ML) for 1h at RT. Wells were then washed 3X with ddH20 at RT 

until colonies were visible. Colonies were imaged on an Azure c200 and counted. 

 

ChIP 

For the in vitro ChIP-seq done in C4-2B, 100K C4-2B parental cells were seeded in triplicate in 

6-well format, 36 wells total. 18 wells were then transduced with 32μL concentrated virus of 

lentiMPRA library and expanded for 48h. Pellets were then collected for all conditions and 

frozen in -80C.  

Pellets were then used as input to the Pierce Magnetic ChIP kit (Thermo Fisher Cat. #26157). 

To shear gDNA as input to IP, a 21g needle was used to resuspend the sample 10X, followed by 

resuspension with a 28g needle 10X. For MNase treatment, 2μL of a 1:40 dilution of the 

provided MNase stock solution was used for each sample. For the IP, 4μL JunD antibody 

(Thermo Fisher Cat. #720035), 4μL SMAD2 antibody (Thermo Fisher Cat. #51-1300), 1μL 

SOX6 antibody (Thermo Fisher Cat. #PA5-30599), or 5μL TEF1 antibody (Thermo Fisher Cat. 

#PA5-66495) was added to each sample in triplicate and allowed to rotate for 48h at 4C. For 

binding, samples were incubated with Protein A/G beads for 2 hours. 
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Library preparation 

For preparing sequencing libraries, a first-round PCR amplifying the enhancer region of interest 

was performed with 200μL PCR reaction split into 4 50μL tubes (100μL NEB Ultra II Q5 master 

mix (NEB Cat. #M0544L), 50μL  DNA sample, 1μL  100μM forward primer (seq: 

GGGGAACTCGGAGCAATTCC), 1μL 100μM reverse primer (seq: 

CCACCTCAGATAGAATGGGC), 48μL ddH20) with the following program: 98C 30s, [98C 10s, 

66C 75s, repeat 25X], 72C 5mins. Samples were then re-pooled and then cleaned up 1.24X 

using a Zymo Select-a-Size Magbead Kit (Zymo Cat. #D4085), eluted in 25μL ddH20, and then 

used as input into a second-round PCR adding Illumina sequencing primer sites (50μL NEB 

Ultra II Q5 master mix , 25μL DNA sample, 0.5μL 100μM forward primer (seq: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGGGAACTCGGAGCAATTCC), 0.5μL 

100μM reverse primer (seq: 

CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTCCACCTCAGATAGAATGGGC), 24μL 

ddH20), with the following program: 98C 30s, [98C 10s, 66C 75s, repeat 6X], 72C 5mins. 

Samples were then cleaned up 1.24X using a Zymo Select-a-Size Magbead Kit  and eluted in 

25μL ddH20. A final indexing PCR was done with 100μL PCR reaction (50μL NEB Ultra II Q5 

master mix, 25μL DNA sample, 0.5μL 100μM forward primer (seq: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT), 

0.5μL 100μM reverse primer 

(seq:CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCT), 24μL  ddH20), with the following program: 98C 30s, [98C 10s, 66C 75s, repeat 

6X], 72C 5mins. Samples were cleaned up 1.24X using a Zymo Select-a-Size Magbead Kit, 

eluted in 15μL ddH20, quantified via an Agilent Tapestation 4200, and then submitted for 

sequencing on a lane of NovaSeq X PE100 at the UCSF CAT. 
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RNA-seq 

RNA-seq was done on SF3A1 over-expression and control cell lines. RNA was extracted from 

samples by column clean up using Zymo Quick-RNA Microprep Kit (Zymo Cat. #R1050). 

RNA-seq libraries were prepared from these samples using the SMARTer® Stranded Total 

RNA-Seq Kit v3 - Pico Input Mammalian (Takara Cat. #634485) kit according to manufacturer's 

instructions. Sequencing was performed on an Illumina NextSeq 5000. 

 

Quantification and Statistical Analysis 

All software used was described in the main text or the appropriate methods section. Statistical 

tests, as well as statistical comparisons between groups, for each figure were denoted in the 

corresponding figure legend. P-values for each statistical test were noted in each figure panel, 

and (adjusted) P-values of 0.05 or lower were considered significant. 
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CHAPTER 2: SYSTEMATIC ANNOTATION OF ORPHAN RNAS REVEALS 
BLOOD-ACCESSIBLE MOLECULAR BARCODES OF CANCER IDENTITY AND 

CANCER-EMERGENT ONCOGENIC DRIVERS 

 

2.1: Introduction 

Cancer-emergent macromolecules, defined as molecules that are uniquely present in cancer 

cells, have become the focus of many studies in recent years. Structural variations that lead to 

the expression of cancer-specific fusion proteins have long been known to play a major role in 

tumorigenesis2–4. Tumors have also been shown to generate neoantigens, cancer-specific 

peptides that are absent in normal tissue, through the disruption of various cellular 

mechanisms5,6. Extrachromosomal DNA (ecDNA) is another class of cancer-emergent 

molecules that can drive oncogenesis7,8. We previously reported the discovery of orphan 

non-coding RNAs (oncRNAs) in breast cancer, small non-coding RNAs that are expressed in 

cancer cells but are absent in non-transformed tissue1. We showed that one oncRNA, a small 

RNA derived from the TERC transcript, plays a functional role in breast cancer metastasis by 

disrupting a miRNA-mRNA regulatory network controlling the expression of prometastatic 

genes1. However, the extent to which oncRNAs may contribute functional roles in tumor 

progression across tumor types remains largely unexplored. In this study, we set out to 

systematically annotate oncRNAs across human cancers and discovered a large set of 

oncRNAs that are not only cancer-emergent but also cancer-specific and therefore provide a 

digital molecular barcode that can reliably discriminate different cancer types or even subtypes. 

Furthermore, we developed a large-scale in vivo genetic screening strategy to identify driver 

oncRNAs in multiple xenograft models of cancer. We discovered and subsequently validated 

several functional oncRNAs that impact tumor growth, indicating that they may have roles in 

disease progression.  
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We had previously shown that a fraction of oncRNAs are actively secreted by breast cancer 

cells and can potentially serve as a cancer-specific signal to distinguish serum samples from 

breast cancer and healthy patients. However, whether this signal was sufficiently strong to 

inform clinical practice in minimally-invasive clinical applications was unknown. Here, we found 

that many of the newly annotated oncRNAs are also actively secreted across different cancers, 

implying that this oncRNA molecular barcode is partially blood-accessible and can provide an 

opportunity for a sensitive and versatile liquid biopsy strategy for multiple cancers. Minimal 

residual disease (MRD) monitoring in breast cancer via circulating tumor DNA (ctDNA) analysis 

is technically challenging given the low ctDNA concentration during treatment, requiring 

tumor-informed assays to detect low tumoral variant frequencies 9. In a first-in-class application 

of oncRNAs to liquid biopsy in MRD detection, we performed a large retrospective analysis of 

breast cancer patients in an neoadjuvant chemotherapy setting. We demonstrated that cell-free 

oncRNAs provide a tumor-naive strategy for MRD applications in breast cancer with minimal 

sample volume and limited depth of sequencing. Altogether, our study encapsulates the first 

comprehensive effort to annotate oncRNAs across human cancers and reveal their potential as 

digital biomarkers for cancer cell identity, functional macromolecules in cancer progression, and 

blood-accessible, prognostic biomarkers. This work sets the stage for future investigations into 

the roles of oncRNAs in cancer biology and their applications in precision oncology strategies. 

 

2.2: Systematic annotation of orphan non-coding RNAs across human cancers 

To systematically discover and annotate orphan non-coding RNAs, we started with raw small 

RNA sequencing data from the full The Cancer Genome Atlas (TCGA) dataset, which consists 

of roughly 10,400 tumor biopsies across 32 cancer types and 679 tumor-adjacent normal 

samples across 23 tissue types10. We first generated read-clusters by merging overlapping 

reads across all samples. We defined oncRNAs as those read-clusters that are significantly 
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detected among the samples of a given cancer but are largely absent from the normal samples 

across all tissues. Because TCGA lacks data from most blood cancers and non-cancerous 

biofluids, we first used smRNA sequencing data from non-cancerous samples in the 

Extracellular RNA Atlas (exRNA Atlas) to filter our read-clusters (Supplemental Fig. 2.1A)11. 

We then removed read-clusters present in more than 10% of the TCGA tumor-adjacent normal 

samples for any of the tissue types. We systematically assessed the cancer-specific expression 

of the remaining smRNAs by using Fisher's exact test to compare cancer samples from each 

tissue type against tumor-adjacent normal samples from all tissue types. Loci that were 

significant after multiple testing correction in at least one cancer type were annotated as 

oncRNAs.  

By applying this framework, we discovered roughly 260,000 high-confidence oncRNA loci that 

are specifically expressed in one or more cancers (Fig. 2.1A and Supplemental Fig. 2.1B). For 

example, we annotated 15,827 oncRNAs in breast cancer (TCGA-BRCA) and analyzed their 

presence and expression across both breast cancer and tumor-adjacent normal samples across 

all tissue types (Supplemental Fig. 2.1C–D). Overall, we annotated between 104 and 105 

oncRNA species for each cancer type in TCGA (Supplemental Fig. 2.1E); some oncRNAs 

were unique to specific cancers while others were detected in more than one cancer (Fig. 

2.1B). Despite the low prevalence of any single oncRNA across all cancer samples 

(Supplemental Fig. 2.1F), we observed that the binary patterns of presence and absence of 

multiple oncRNAs, which we have named oncRNA fingerprints, are readily distinguishable 

between cancer types. Comparing the median Jaccard similarity of oncRNA fingerprints 

between samples from the same cancer tissue type versus all other cancer tissue types, we 

found significantly higher similarity among samples from the same tissue-of-origin 

(Supplemental Fig. 2.1G). Therefore, each cancer type can be represented as a barcode 

based on the pattern of expressed oncRNAs (Fig. 2.1A, C and Supplemental Fig. 2.1H).  
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To formalize this relationship, we took advantage of machine learning-based classifiers to 

assess the extent to which the oncRNA fingerprint from a given sample could be used to identify 

its tissue-of-origin (TOO). For this task, we first split the samples from TCGA into train and test 

datasets (80:20 ratio). Within the training set, we used recursive feature elimination in a 5-fold 

cross validation setup to reduce the feature space (from 260,968 to 1805 oncRNA features) and 

identify a robust set of oncRNAs to use as our fingerprint. We then trained an XGBoost classifier 

with 500 trees on this set of 1805 oncRNAs to predict TOO on the whole training cohort. 

Applying the resulting model on the test data, we observed a strong performance with 90.9% 

accuracy. The performance metrics for each cancer are listed in Supplemental Fig. 2.1I, and 

the resulting confusion matrix reported in Fig. 2.1D shows the fraction of samples of each 

cancer type that were correctly predicted. This confusion matrix is comparable to gene 

expression-based, genetic algorithm/k-nearest neighbors and convolutional neural network 

classifiers for TOO, including the higher number of mistakes in distinguishing rectal 

adenocarcinomas (READ) from colon adenocarcinoma (COAD), which were also found in other 

studies to be biological similar and often grouped together12–14. Interestingly, we also found that 

our model’s errors were enriched with misclassifications between different squamous cancers (P 

= 1.24 × 10-13, Fisher’s Exact Test), including bladder urothelial carcinoma (BLCA), cervical 

squamous cell carcinoma (CESC), esophageal carcinoma (ESCA), head and neck squamous 

cell carcinoma (HNSC), and lung squamous cell carcinoma (LUSC), consistent with previously 

reported unsupervised clusterings of different squamous tumors by various molecular 

platforms15,16. To emphasize the digital nature of oncRNA barcodes capable of distinguishing 

different cancer types, we plotted the binary expression patterns of oncRNAs selected by the 

XGBoost classifier for TOO classification (Supplemental Fig. 2.1J). These results suggest that 

oncRNA expression patterns are informative of the underlying cancer biology, and thus our 

model can capture the heterogeneity of human cancers.  
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We also observed quantitative differences in the expression of oncRNAs beyond their binary 

presence-absence patterns, and thus asked whether including the relative oncRNA expression 

level could further improve our model’s TOO predictions (Supplemental Fig. 2.1K, L). To do 

this, we trained an XGBoost classifier using the counts per million (cpm)-based oncRNA 

expression profiles, using the same 80:20 ratio to split our samples into training and testing 

datasets. We found that the model trained on cpm data performed equally well with negligible 

differences and picked up important oncRNA features with similar patterns of expression as the 

binary model (Supplemental Fig. 2.1M–Q). The similarity in model performance of “digital” 

models trained on binarized oncRNA expression and “analog” models trained on normalized 

oncRNA expression data suggests that oncRNAs provide a digital barcode of cancer cell 

identity that is robust to the challenges in precise quantification of small RNA species.  

 

Taken together, we have identified a large number of oncRNAs that are not only 

cancer-emergent but also reflective of cancer tissue-of-origin. We posited two likely routes for 

these orphan non-coding RNAs to emerge: (i) activation of cryptic promoters that lead to new 

transcriptional events and (ii) aberrant nucleolytic digestion of longer RNAs. We previously 

described T3p, a breast cancer-associated oncRNA derived from the TERC transcript, as an 

example of the latter pathway1. Mapping all of our newly identified oncRNAs to their genomic 

locations suggests that 58.9% of oncRNAs may originate from existing longer RNAs. In contrast, 

the 41.1% of oncRNAs that map to intergenic regions are more likely produced by 

cancer-specific transcriptional activation (Supplemental Fig. 2.1R). To explore this hypothesis 

further, we used roughly 386 ATAC-seq samples from TCGA to compare chromatin accessibility 

between samples as a function of oncRNA expression across tumors17. Approximately 10,000 

intergenic oncRNA loci were captured at sufficient depth in the corresponding ATAC datasets. 

For a third of these loci, we observed a positive association between oncRNA expression in the 

small RNA data and chromatin accessibility in the ATAC-seq dataset, of which 1,989 oncRNA 
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loci showed statistically significant associations at an FDR of 1% (Fig. 2.1E). As expected, this 

association is entirely one-sided and we did not observe any oncRNAs in loci with closed 

chromatin. In Fig. 2.1F and Supplemental Fig. 2.1S, we show the chromatin accessibility 

scores and relative expression of the top significant and expressed oncRNA loci as examples. 

This strong association between chromatin accessibility and oncRNA expression further 

supports our annotations and hypothesis that oncRNA biogenesis may arise from novel 

transcription events. 

 

2.3: oncRNA expression patterns are associated with cancer subtypes 

In the previous section, we made two important observations: (i) oncRNAs show strong 

tissue-specific expression patterns and (ii) intergenic oncRNAs are associated with chromatin 

accessibility in cancer cells. Based on these findings, we hypothesized that oncRNA fingerprints 

may reflect the cellular state of cancer cells. To assess this possibility, we sought to identify 

oncRNAs whose presence or absence were informative of cancer subtypes. For this purpose, 

we used the Prediction Analysis of Microarray 50 (PAM50) breast cancer subtype classification 

(i.e., basal, HER2+, and luminal A and B) as well as the consensus molecular subtype (CMS) 

framework in colon cancer 14,18. Following the CMS classification system methodology, we 

combined the TCGA COAD and READ cohorts into a single colorectal cancer (CRC) cohort for 

all subsequent analyses 14. Of the 15,827 breast-cancer associated oncRNAs, 1,006 show 

significant subtype-specific patterns across the TCGA BRCA cohort (Fig. 2.2A). For the TCGA 

CRC cohort, 1,198 of 57,632 CRC-associated oncRNAs demonstrate a significant association 

with CMS groups (Fig. 2.2B). In Fig. 2.2C-D, we also included the normalized expression of 

several oncRNAs significantly associated with tumor subtypes after multiple testing correction 

(Fig. 2.2A, B), highlighting the different quantitative patterns of expression across subtypes. 

Furthermore, we identified thousands of oncRNAs that were exclusively detected in samples of 
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a given subtype for both breast and colorectal cancers, albeit insignificant when tested for 

subtype association across all samples (Fig. 2.2E, F).  

 

We then asked whether the cancer-associated oncRNAs could be leveraged to distinguish 

tumor subtypes using machine learning models. In a 5-fold cross-validation scheme, we used 

each training fold to train a multiclass XGBoost classifier. We then measured the performance of 

the model on the respective held-out fold. Breast cancer subtype classifications achieved AUCs 

between 0.83 and 0.99; similarly, colon cancer CMSs resulted in AUCs ranging between 0.73 

and 0.94 (Fig. 2.2E–F). More detailed metrics of model performance for breast and colorectal 

cancers are reported in Supplemental Fig. 2.2A-B, respectively. Interestingly, we observed that 

the breast cancer model made a higher number of mistakes when distinguishing subgroups of 

luminal breast cancers, luminal A and luminal B, which are known to be more closely related 

and harder to distinguish19 (Supplemental Fig. 2.2C). We did not observe any notable patterns 

of confusion for CMS classification (Supplemental Fig. 2.2D). We also show the binary patterns 

of all the oncRNA features selected by the XGBoost classifier within each training fold across all 

samples and the relative expression of the oncRNAs with the top 10 average feature importance 

score (Supplemental Fig. 2.2E–H). Our results indicate that the XGBoost model is able to learn 

and leverage a subset of informative oncRNAs from oncRNA fingerprints to accurately classify 

cancer subtypes for both breast and colorectal cancers. Together, these results further establish 

the utility of oncRNAs in not only distinguishing cancer tissue-of-origin, but also capturing their 

underlying cancer subtype identity. 

 

2.4 A systematic search for functional oncRNAs across multiple cancers 

Given the regulatory potential of novel oncRNAs through oncRNA-RNA or oncRNA-protein 

interactions, we had previously investigated the possibility that oncRNAs may be adopted by 
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cancer cells to engineer cancer-specific regulatory pathways1. Specifically, we uncovered one 

such oncRNA, T3p, and showed that it promotes breast cancer metastasis by dysregulating 

endogenous RISC complex activity. However, the extent to which other oncRNA species may 

play a functional role in cancer remains unexplored. The sheer number of oncRNA species 

emphasizes the need for systematic approaches to screen for functional representatives, in 

particular to identify oncRNAs that may drive tumorigenesis. To tackle this question, we 

developed a large-scale pooled in vivo screening framework to rapidly identify functional 

oncRNAs through gain- and loss-of-function studies. Our approach, schematized in Fig. 2.3A, 

involves generating two libraries of lentiviral constructs: 1) a gain-of-function library encoding 

oncRNAs under the control of a U6 promoter to increase their expression; 2) a loss-of-function 

library of Tough Decoys (TuDs) to sequester oncRNAs, thereby inhibiting their endogenous 

functions20. To generate these libraries, we focused on four major cancers: breast, colon, lung, 

and prostate. We selected a human cell line with established xenograft models for each cancer: 

MDA-MB-231 for breast, SW480 for colon, A549 for lung, and C4-2B for prostate. We then used 

small RNA sequencing data from these cell lines to select expressed oncRNAs that were 

associated with each cell line’s respective tumor type in TCGA. For each cell line experiment, 

roughly 100 of the top expressed oncRNAs were selected for inclusion in the gain-of-function 

and loss-of-function (oncTuD) libraries. We also included non-targeting scramble sequences as 

endogenous controls. We transduced each of the four cell lines with their corresponding libraries 

and compared the representation of oncRNA/oncTuD species among cancer cell populations 

grown in mammary fat pads (MDA-MB-231) or subcutaneously (SW480, C4-2B, A549) in vivo, 

or grown in vitro for a similar number of doublings (Supplemental Fig. 2.3A). For each 

oncRNA/oncTuD instance, we compared their normalized counts between in vivo grown tumors 

and in vitro controls to identify those oncRNAs whose expression or TuD-mediated 

sequestration resulted in changes in the relative representation in the tumor context. We posited 

that changes in the baseline representation of cells harboring the cognate oncRNA or oncTuD 
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lentiviral construct result from a selection pressure during tumorigenesis, which we can use as a 

criterion to identify functional oncRNAs. 

 

To identify oncogenic driver oncRNAs in our gain-of-function screens, we searched for those 

with increased expression in the tumors from the xenografted mice. We discovered several 

candidate functional oncRNAs in the breast and colon cancer screens; however, the lung and 

prostate cancer screens did not nominate any significant oncRNAs (Fig. 2.3B, C and 

Supplemental Fig. 2.3B). Similarly, for the oncTuD screens, we selected oncRNAs whose 

antisense TuDs showed a reduced representation in the tumors. As shown in Supplemental 

Fig. 2.3C–D, a handful of oncRNAs showed a significant phenotypic effect within each cancer 

with the exception of breast cancer, which did not have oncRNAs with a significant phenotypic 

effect in the oncTuD screen. Our results indicate that between the gain and loss-of-function 

screens, roughly 5% of oncRNAs showed a significant tumor growth phenotype. This suggests 

that our earlier identification of T3p as a promoter of breast cancer metastasis was not a unique 

discovery and that cancer-emergent oncRNAs likely play unexplored roles in disease 

progression across human cancers. Together, these findings establish a systematic means of 

nominating likely functional oncRNA candidates impacting oncogenesis. 

 

2.5 Two oncRNAs that promote tumor growth and in vivo metastatic colonization of 

breast cancer cells 

We next selected two exemplary breast cancer oncRNAs for a deeper analysis of their function. 

In Fig. 2.3D, we compared the normalized expression levels of these two oncRNAs between 

TCGA-BRCA cancer and tumor-adjacent normal tissue samples and demonstrated the highly 

cancer-specific expression pattern of these oncRNAs (referred to by their respective genomic 

coordinates oncRNA.ch7.29 and oncRNA.ch17.67). Both oncRNA.ch7.29 and oncRNA.ch17.67 
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map to the 3’ UTRs of cancer-associated genes, SCRN1 and PSMD12 respectively. We also 

investigated the association of oncRNA expression with patient survival and found that these 

two oncRNAs were both significantly associated with poor clinical outcomes, further highlighting 

their potential functional role in breast cancer progression (Fig. 2.3E). However, we did not find 

any significant associations when we stratified oncRNA expression by cancer stage or receptor 

subtype for either oncRNA (Supplemental Fig. 2.3E). To identify cellular processes and 

pathways that are associated with each of these two oncRNAs, we used the TCGA breast 

cancer dataset to compare the transcriptomic profiles between samples in which the oncRNA 

was detected versus those where it was not. We performed differential gene expression 

analysis and found significant changes in the gene expression landscape of tumors expressing 

each oncRNA (Supplemental Fig. 2.3F). Subsequent pathway analysis similarly revealed 

significant modulated pathways associated with the expression of each oncRNA, raising the 

possibility that they are acting downstream of these functional oncRNAs to drive cancer 

progression (Fig. 2.3F, Supplemental Fig. 2.3G)21. Of note, we observed a significant 

association between oncRNA.ch7.29 expression and up-regulation of genes in the EMT 

pathway, and significant associations between oncRNA.ch17.67 and up-regulation of genes in 

the DNA repair and E2F pathways.   

 

We then performed in vivo tumor growth and metastasis assays to further validate the 

oncogenic role of these two oncRNAs. To test their effect, we first transduced MDA-MB-231 

cells with oncRNA.ch7.29 or oncRNA.ch17.67 under the control of a U6 promoter for increased 

expression. Overexpression of oncRNA.ch7.29 and oncRNA.ch17.67 both significantly 

increased the primary tumor growth rates of cells implanted in the mammary fat-pad of NOD 

scid gamma (NSG) mice by 2.6 and 1.7 folds, respectively, relative to scrambled controls (Fig. 

2.4A). We then injected these transfected cells into the venous circulation of NSG mice and 

measured their lung metastatic colonization over time via bioluminescence imaging. Both 
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oncRNA.ch7.29 and oncRNA.ch17.67 overexpressing cells had significantly increased capacity 

for lung colonization when compared to controls (Fig. 2.4B, Supplemental Fig. 2.4A). We 

repeated these experiments in an independent breast cancer cell line, HCC1806 genetic 

background (HCC-LM2 22), to ensure that our observations were not cell line dependent. We 

found that HCC-LM2 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 also exhibited 

significantly higher primary tumor rates and metastatic capacity (Fig. 2.4C–D, Supplemental 

Fig. 2.4B).  

 

We next asked if the function of these oncRNAs was mediated through the associated pathways 

we identified in TCGA-BRCA. To test this, we compared the transcriptomes of our cancer cells 

lines overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 relative to controls in both genetic 

backgrounds (Fig. 2.4E, Supplemental Fig. 2.4B). Pathway analysis of differential expression 

patterns revealed modulations in key oncogenic pathways that were also observed in our 

oncRNA association analysis in TCGA (Supplemental Fig. 2.4C–D), highlighting reproducible 

modulations of cellular pathways. Specifically, over-expressing oncRNA.ch7.29 resulted in an 

increase in the expression of epithelial-mesenchymal transition-related (EMT) genes, consistent 

with our observations in TCGA-BRCA tumors expressing oncRNA.ch7.29 (Fig. 2.4F, 2.3F). 

Likewise, oncRNA.ch17.67 overexpressing cells demonstrated perturbation of the E2F pathway 

in a similar pattern as TCGA-BRCA tumors expressing oncRNA.ch17.67 (Fig. 2.4F, 2.3F). While 

many significant oncRNA-associated pathways were shared among the HCC-LM2 and 

MDA-231 genetic backgrounds, we note that the E2F target regulon was not shown to be 

significantly associated with oncRNA.ch17.67 in MDA-231 cells (Supplemental Fig. 2.4D). 

Together, our findings strongly support that a subset of oncRNAs drive oncogenesis, likely by 

perturbing specific gene pathways. 
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2.6 Annotation of cell-free orphan non-coding RNAs across models of cancer 

We have shown that oncRNA fingerprints represent a digital molecular barcode that effectively 

captures cancer type identity and are associated with modulations of cellular pathways that 

drive cancer progression. Importantly, oncRNA fingerprints have also shown the potential to be 

accessible from the extracellular space; we previously observed that a subset of breast cancer 

oncRNAs are secreted from breast cancer cells at detectable levels1. To investigate whether 

secreted oncRNA fingerprints are generalizable to other cancer types, we selected 25 

established human cancer cell lines representing nine tissues of origin – blood, bone, breast, 

colon, kidney, lung, pancreas, prostate, and skin. After growing the cell lines in vitro, we 

collected conditioned media with exosome-depleted FBS in biological replicates, extracted RNA 

from the cell-free conditioned media, and performed smallRNA sequencing. It is known that 

many small RNAs, such as microRNAs, YRNAs, and tRNA fragments are secreted into the 

extracellular space 23–26. As shown in Fig. 2.5A–B and Supplemental Fig. 2.5A, annotated 

small RNA profiles from biological replicates cluster together and, overall, cell lines from the 

same tissue of origin show similar patterns. We used this dataset of cell-free RNA content to 

identify oncRNAs that are expressed and secreted from each cell line. Overall, we observed 

cell-free small RNA reads mapping to thousands of oncRNA loci, making this biotype a 

significant contributor to the extracellular RNA space relative to other biotypes of smRNAs (Fig. 

2.5C). Roughly 0.5% of cell-free RNA reads were annotated as oncRNAs in our pipeline with 

about 30% of our pancancer list of oncRNAs detected in at least two cell lines (Supplemental 

Fig. 2.5B). Similar to our observation in tumor biopsies, we observed tumor type-specific 

oncRNAs among the cell-free oncRNAs (Fig. 2.5D). Furthermore, UMAP visualization 

suggested an overall similarity between cell-free oncRNA fingerprints from cell lines of the same 

tumor type as their 2D UMAP projections clustered more closely together (Fig. 2.5E). Similar 

clusterings of cell lines were also observed in the 2D PCA space of their oncRNA fingerprints 
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(Supplemental Fig. 2.5C). To quantify this similarity, for each cell line, we compared the median 

correlation between its oncRNA profile with those from cell lines of the same tissue versus all 

other cell lines. Consistently, we observed a higher correlation between lines from the same 

tissue of origin than cell lines from different tissues of origin (Supplemental Fig. 2.5D). Taken 

together, our systematic analysis of cell-free RNA species secreted by cell line models of cancer 

demonstrates that oncRNAs contribute to the cell-free RNA content of cancer cells and that 

cell-free oncRNA expression profiles also reflect tumor type-specific patterns in these models.  

 

2.7 Circulating oncRNAs capture short-term and long-term clinical outcomes in breast 

cancer 

Thus far, we have established that cell-free oncRNAs faithfully reflect cancer type identity. Since 

oncRNAs are cancer-emergent, their presence in circulation points to the presence of an 

underlying tumor that is actively releasing them. This notion is supported by our previous work 

showing that circulating T3p oncRNA can be used to detect breast cancer from serum in 

patients1. To assess the clinical utility of circulating oncRNAs as a cancer-specific biomarker, we 

performed a retrospective ancillary study on longitudinally collected samples from high-risk early 

breast cancer patients enrolled in the multicenter neoadjuvant I-SPY 2 TRIAL (NCT01042379)27. 

We extracted cell-free RNA from 1mL serum samples from 267 breast cancer patients treated in 

the I-SPY 2 TRIAL with standard neoadjuvant chemotherapy (NAC) alone or combined with 

MK-2206 (AKT inhibitor) or Pembrolizumab (PD-1 inhibitor) treatment. For each patient, we 

processed longitudinal serum samples collected at pretreatment (T0) and prior to surgery (T3) 

for small RNA sequencing. For 192 patients with T0 and T3 samples that passed our quality 

control filters, we measured total oncRNA burden, defined as the sum of all oncRNA species 

across all loci normalized by library size, for each time point. We then used the change in 

oncRNA burden before and after treatment (ΔoncRNA) as a measure of residual oncRNA 
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burden. Detailed descriptions of our final patient cohort in our analysis are summarized in Fig. 

2.6A and Supplemental Fig. 2.6A. In Supplemental Fig. 2.6B, we report the distribution of the 

resulting residual oncRNA burden classes across cancer subtypes, stages, and node status. 

Importantly, consistent with the response to treatment in the majority of patients, we observed a 

significant overall reduction in oncRNA burden after neoadjuvant chemotherapy (Fig. 2.6B, 

Supplemental Fig. 2.6C). 

 

Short-term clinical responses to NAC, i.e., pathologic complete response (pCR) and residual 

cancer burden (RCB) class, are strongly associated with favorable outcomes in the ISPY-2 trial. 

Thus, we first examined whether our ΔoncRNA calls were associated with these early clinical 

readouts. We used logistic regression to capture the association between high residual oncRNA 

burden after NAC with pCR and high RCB classification, respectively. As shown in Fig. 2.6C, in 

both cases, we observed a significant association between residual oncRNA burden and 

short-term clinical responses. 

 

With a median follow-up of 4.72 years in our study, we next sought to measure the extent to 

which residual oncRNA burden captures long-term clinical outcomes. For both overall survival 

and disease-free survival, we observed that high ΔoncRNA is significantly associated with poor 

survival outcomes (Fig. 2.6D, Supplemental Fig. 2.6E). These associations were not highly 

sensitive to the choice of threshold for the high residual oncRNA burden call in patients 

(Supplemental Fig. 2.6F). Finally, we asked whether residual oncRNA burden provided 

additional information over pCR and RCB class regarding long-term survival. For this, we 

performed multivariable Cox regression analyses, and in both cases we observed that residual 

oncRNA burden remains significantly informative of survival even when controlling for pCR or 

RCB (Fig. 2.6E and Supplemental Fig. 2.6G). Residual oncRNA burden also provided 

additional information when we controlled for tumor subtype and patient age (Supplemental 
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Fig. 2.6H), highlighting the limitations of subtyping in predicting treatment response and the 

added benefit of disease monitoring via oncRNA burden dynamics. These findings further 

highlight the tumor as the source of circulating oncRNAs in blood and establish these cell-free 

RNA species as clinically relevant liquid biopsy biomarkers that can be accessed from low 

volumes of blood.  

 

2.8 Discussion 

In this study, we discovered and systematically annotated a previously unknown class of 

cancer-specific RNA species, oncRNAs, which have largely remained unexplored in the context 

of cancer biology. Our analysis not only reveals that these oncRNAs exhibit remarkable cancer 

type and subtype specificity, but also highlights the possible functional roles of oncRNAs for 

cancer progression. Leveraging our in vivo screening platform, we revealed that a small subset 

of oncRNAs significantly impacts tumor growth phenotypes. We consider oncRNAs that (i) 

display cancer-specific expression in both TCGA tumors and cancer cell line models, (ii) present 

a phenotypic effect in our functional screens, (iii) demonstrate significant association with poor 

clinical outcomes and (iv) cancer-relevant gene pathways as prime candidates for further 

functional or biogenesis investigations.  

 

Although the molecular mechanism of action and biogenesis of oncRNA.ch7.29 and 

oncRNA.ch17.67 remains unknown, this study substantially expands our catalog of 

cancer-engineered oncogenic pathways and opens exciting new avenues for exploring 

oncRNAs as novel therapeutic targets in cancer. Specifically, we found oncRNA.ch7.29 and 

oncRNA.ch17.67 to be significantly associated with modulations in EMT and E2F pathways, 

respectively. EMT is a crucial hallmark for cancer progression, particularly through loss of 

cell-adhesion, resistance to apoptosis, and acquired invasiveness 29. While non-coding RNAs 
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like miRNAs have been shown to regulate cancer cell invasion and metastasis by targeting the 

mRNA of EMT-inducing transcription factors, our results suggest that cancer cells can also 

co-opt the complex EMT process via novel cancer-emergent RNA species 30–32. The E2F target 

regulon collectively controls cell cycle progression and are commonly activated in cancer cells to 

drive tumor proliferation 33. Consequently, there has been much attention for therapeutic 

interventions that affect E2F activity via targeting the CDK-RB-E2F axis throughCDK4/6 

inhibitors for breast cancer 34. oncRNA.ch17.67’s upregulation of E2F genes may partially 

explain the increased tumor proliferation rate observed in our xenograft models and present as 

another potential therapeutic target to control E2F’s activity. Given E2F’s non-canonical role in 

apoptosis, metabolism, and angiogenesis, oncRNA.ch17.67 may also promote metastasis in a 

cell proliferation-independent manner 33,35. Because oncRNAs are largely absent in normal cells, 

targeting these cancer-associated pathways via oncRNAs may offer a specific therapeutic 

advantage by minimizing on-target toxicity and therefore reducing patient side effects.  

Most importantly, our study shows that oncRNAs can be reliably detected in the circulating blood 

of cancer patients, making them valuable biomarkers for clinical applications. The current 

state-of-the-art liquid biopsy strategies for minimal residual disease detection in breast cancer 

rely on development of tumor-informed bespoke assays for detection of high variant allele 

frequency (VAF) mutations in the blood 36,37. Due to low DNA shedding from breast tumors, 

however, even with these bespoke assays DNA-based modalities are often not sensitive 

enough to reliably detect residual disease after clinical intervention36. Circulating oncRNAs allow 

us to overcome these limitations for liquid biopsy markers. The much larger feature space of 

oncRNAs confers higher robustness against the zero-inflated nature of circulating biomarkers. 

Additionally, cancer cells actively secrete RNA; whereas DNA is passively shed as a result of 

cell death38. Thus, cell-free RNA biomarkers are often more abundant than their DNA 

counterparts, making oncRNAs highly sensitive biomarkers that can be detected even in low 

volumes of blood after treatment. Furthermore, detecting circulating oncRNAs preclude the 
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need to profile patients’ primary tumors, providing a tumor-naive approach to monitoring cancer. 

Other cell-free RNAs, including microRNAs, repeat element derived RNAs, and transfer 

RNA-derived small RNAs, have also been of recent research interest for their potential as 

circulating biomarkers of cancer39–42. While prior studies have shown cfRNA profiles to be 

promising for applications in cancer detection, cfRNA signatures have primarily been discovered 

directly from human plasma samples and are unlikely to be directly representative of the 

underlying tumor biology or state. These signatures also predominantly rely on RNAs of known 

annotations that can originate from any cell and may not be directly secreted by cancer cells. 

Furthermore, investigations of cfRNAs as clinical biomarkers have largely been restricted to 

applications in cancer detection with limited success.  

 

In our retrospective study, we investigated the utility of circulating oncRNAs for minimum 

residual disease detection and predicting clinical outcome in a neoadjuvant chemotherapy 

setting. We combined all oncRNA species to define an oncRNA burden score and found the 

dynamic changes in the oncRNA burden score in response to neoadjuvant chemotherapy to be 

strongly associated with both short-term clinical responses and long-term survival outcomes. 

These results establish oncRNAs as biomarkers for minimally invasive and real-time monitoring 

of underlying cancers, which can significantly help guide cancer management. We anticipate 

that future liquid biopsy studies with substantially larger cohort sizes as well as larger collected 

blood volumes and deeper sequencing of the cell-free RNA content will enable us to delve 

deeper into the wealth of information offered by oncRNAs and potentially reveal new 

cancer-subtype signatures, cancer subtype switching occurrences, or relationships to treatment 

response.  

 

In conclusion, our study has unveiled a previously unannotated class of RNA species, 

oncRNAs, which hold immense potential for both disease monitoring and therapeutic 
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applications in cancer. As we continue to investigate the various roles and information carried 

out by individual oncRNAs, we anticipate that these RNA species will prove to be invaluable 

tools in the ongoing battle against cancer. 

2.9: Limitations of the Study 

We view our found number of significant oncRNA species hits to be a conservative estimate due 

to several factors. First, the lentiviral constructs described here are not guaranteed to up- or 

down-regulate their cognate oncRNAs: RNA Polymerase III-driven exogenous oncRNAs may be 

more unstable than endogenously expressed and processed oncRNAs, and TuDs may 

insufficiently inhibit their target oncRNAs, requiring fine-tuning of TuD design (i.e. optimizing 

thermodynamic properties) for adequate potency 28. Second, functions of oncRNAs are likely 

context-dependent, and the inclusion of other xenograft models will likely yield additional 

functional species. Finally, xenograft models only capture some aspects of tumor growth, 

lacking key characteristics such as adaptive immunity and native tumor microenvironment. 

Despite these limitations, our findings establish a systematic approach of combining in vivo 

screens and computational analysis to nominate new oncRNA drivers of oncogenesis.  
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2.10: Figures 

 
 

 
 

Figure 2.1. Systematic annotation of oncRNA loci across human cancers using small 
RNA sequencing data from TCGA and exRNA atlas. (A) A binary heatmap representing the 
presence and absence of oncRNA species across human cancers. Here we show a subset of 
2,808 of the top significant oncRNAs. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) The subset was created by selecting 100 of 
the most significant oncRNAs for each cancer type as determined by the Fisher exact test and 
collapsing oncRNAs selected multiple times. Each column represents an annotated oncRNA, 
and each row represents one TCGA sample. Rows were grouped based on their tumor type 
(TCGA code) and columns were clustered based on their patterns. (B) Number of oncRNAs 
associated with the major human cancers, namely lung, breast, and gastrointestinal cancers, 
depicted as an UpSet plot. The vertical blue bars represent the oncRNA counts across one or 
more cancers with the exact numbers included at the top. (C) A 2D UMAP projection 
summarizing the oncRNA profiles across TCGA cancer samples. Samples are colored by tumor 
type. (D) The confusion matrix for tissue-of-origin classification based on oncRNA presence and 
absence in each sample. The matrix was row-normalized. (E) A volcano plot representing the 
relationship between chromatin accessibility and oncRNA detection. The x-axis represents, for 
each oncRNA, the log2 median difference in chromatin accessibility between samples in which 
the oncRNA was present versus absent. The y-axis shows the significance of the observed 
differences based on FDR corrected P values calculated using a one-sided Mann-Whitney test. 
A total of 10,290 oncRNA loci were considered for this analysis based on the coverage of ATAC 
data. Of these, 3,255 showed a positive association between oncRNA presence and increased 
chromatin accessibility; of these, 1,989 were also statistically significant at an FDR of 1%. (F) 
Chromatin accessibility signal of four exemplary oncRNA loci from (E), grouped by the detection 
of the cognate oncRNA in the small RNA dataset of each sample. Values are shown as violin 
plots and boxplots. The boxplots show the distribution quartiles, and the whiskers show the 
quartiles ± IQR (interquartile range). Also reported are the number of samples in which the 
oncRNAs were detected as well as their associated corrected P values. 
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Figure 2.2. Annotation of subtype-associated oncRNAs across breast and colorectal 
cancer samples. (A–B) Binary heatmaps of oncRNAs associated with breast cancer subtypes 
(A) and colorectal cancer CMS labels (B). (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) One-way ANOVA tests followed by FDR 
correction were used to identify oncRNAs with significant associations. (C–D) Exemplary 
subtype-associated oncRNA loci along with their expression patterns for breast cancer subtypes 
(C) or colon cancer CMS labels (D). The expression values are natural log transformed and P 
values were calculated using a one-way ANOVA test. (E–F) The number of oncRNAs that were 
detected in one or more breast cancer subtypes (E) or colorectal cancer CMS labels (F) shown 
as UpSet plots. (G–H) ROC curves for XGBoost multiclass classifiers that predict the breast 
cancer subtype or colon cancer CMS label based on oncRNA presence/absence fingerprints 
averaged across held-out validation sets in a 5-fold cross validation setup. 946 and 514 
samples were tested in breast and colorectal cancer respectively and the resulting mean and 
standard deviation of AUCs were calculated for each subtype across the 5 folds.  
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Figure 2.3. Systematic annotation of driver oncRNAs using a scalable in vivo genetic 
screening approach. (A) Workflow schematic of oncRNA cancer and oncRNA TuD functional 
screens. (B-C) Volcano plots of oncRNA functional screen results for breast cancer 
(MDA-MB-231) and colorectal cancer (SW480), respectively. In vivo growth phenotypic score 
refers to enriched representation of cancer cells transduced with cognate oncRNA upon tumor 
growth in the xenograft model. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) (D) Expression levels of two example 
oncRNAs with significant tumor growth phenotype from the functional screen in TCGA-BRCA  
tumor and tumor-adjacent normal tissues. P values were calculated using a one-tailed 
Mann-Whitney test. (E) Survival of TCGA-BRCA patients stratified by expression level of 
cognate driver oncRNA. P values were calculated using a log-rank test. (F) Informative iPage 
pathways associated with TCGA-BRCA cancer samples expressing cognate oncRNAs 
compared to TCGA-BRCA cancer samples with no detectable respective oncRNAs. Top panel 
shows gene expression differences in discrete expression bins. Genes that are up-regulated in 
oncRNA expressing cancer samples are in the right bins, whereas bins to the left contain genes 
with lower expression. The heatmap shows the corresponding pathway in relation to the 
expression bins. Red entries indicate enrichment of pathway genes in a given expression bin 
whereas blue entries indicate depletion. Enrichment and depletion are measured using 
log-transformed hypergeometric P values. 
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Figure 2.4. In vivo validation of functional oncRNAs in xenograft models of breast cancer. 
(A) Left: Growth of MDA-MB-231 tumors overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 
relative to controls in the mammary fat-pad of NSG mice. 2 tumors per mouse and n=4 mice for 
each cohort. P values were calculated using two-way ANOVA. Right: Ex vivo tumor 
measurements after tumor excision. P values were calculated using a one-tailed Mann-Whitney 
test. Tumors overexpressing oncRNA.ch7.29 were 2.6 fold larger than controls. Tumors 
overexpressing oncRNA.ch17.67 were 1.7 fold larger than controls. (B) Bioluminescence 
imaging plot of lung colonization by MDA-MB-231 cells overexpressing oncRNA.ch7.29 or 
oncRNA.ch17.67 compared to control. n = 5 per cohort. P values were calculated using two-way 
ANOVA. (C) Left: Growth of HCC-LM2 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 
and HCC-LM2 controls in the mammary fat-pad of NSG mice mammary fat-pad assays. n=4 for 
each cohort. P values were calculated using two-way ANOVA. Right: Ex vivo tumor 
measurements after tumor excision. P values were calculated using a one-tailed Mann-Whitney 
test. Tumors overexpressing oncRNA.ch7.29 were 1.6 fold larger than controls. Tumors 
overexpressing oncRNA.ch17.67 were 1.8 fold larger than controls. (Figure caption continued 
on the next page.)  
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(Figure caption continued from the previous page.) (D) Bioluminescence imaging plot of lung 
colonization by HCC-LM2 cells overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 compared 
to control. n = 5 per cohort. P values were calculated using two-way ANOVA. (E) Volcano plots 
of differentially expressed genes in HCC-LM2 cells overexpressing oncRNA.ch7.29 or 
oncRNA.ch17.67 compared to HCC-LM2 controls. The P value cut-off corresponds to a 10% 
FDR. (F) Representative pathways associated with HCC-LM2 overexpressing oncRNA.ch7.29 
or oncRNA.ch17.67 compared to controls generated using iPAGE. Top panel shows gene 
expression differences in discrete expression bins. Genes that are up-regulated in oncRNA 
over-expressing cells are in the rightmost bins, whereas bins to the left contain genes with lower 
expression in oncRNA over-expressing cells. The heatmap shows the enrichment or depletion 
of the corresponding pathway in each expression bin. Red entries indicate enrichment of 
pathway genes in a given expression bin whereas blue entries indicate depletion.  
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Figure 2.5. Analysis of cell-free RNA content across a large panel of cancer cell lines.  
(A) Pair-wise correlation heatmap for small RNA abundance in the cell-free RNA extracted from 
conditioned media. The counts for annotated small RNAs, such as miRNAs, tRNA fragments, 
snoRNAs, and etc, were used to generate this heatmap. (B) A 2D UMAP plot summarizing the 
abundance of small RNAs in the cell-free space across the cell line models we have profiled (in 
biological replicates). The points are colored based on the tissue-of-origin. (C) Contribution of 
each annotated family of small RNA species to their cell-free RNA content relative to annotated 
RNAs, omitting cell-free RNA with no known annotations. The values are normalized across cell 
lines and oncRNAs are shown in blue. (D) An UpSet plot of oncRNA counts detected in the 
cell-free RNA fraction of cell lines from each tissue-of-origin. Cell-free oncRNAs show 
tumor-specific patterns of expression. (E) 2D UMAP summary of oncRNA profiles across 
cell-free RNA profiles collected.  
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Figure 2.6. Changes in circulating oncRNA content over the course of neoadjuvant 
chemotherapy is informative of short-term and long-term clinical outcomes. (A) Overview 
of patient and tumor characteristics tabulated based on changes in oncRNA burden (ΔoncRNA). 
(B) Normalized oncRNA burden (counts per million) before (T0) and after (T3) neoadjuvant 
chemotherapy. P value was calculated using a one-tailed Wilcoxon test. (C) Forest plots for 
logistic regression models predicting pathologic complete response (pCR) or high residual 
cancer burden (RCB III) as a function of ΔoncRNA after neoadjuvant chemotherapy. One-tailed 
P values are also included. (D) Survival in patients grouped based on their oncRNA burden 
(ΔoncRNA). Reported are the hazard ratio and P value based on a log-rank test. (E) A forest 
plot for a multivariate Cox proportional hazard model including both ΔoncRNA and pCR as 
covariates. 
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Supplemental Figure 2.1. Discovery and profiling of oncRNAs in cancer tissues. 
(A) Table of publicly available datasets from the exRNA Atlas used to filter RNAs. (B) A heat 
map of normalized expression of oncRNAs across TCGA samples. (Figure caption continued on 
the next page.) 
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(Figure caption continued from the previous page.) Each row represents a sample and each 
column represents an oncRNA. (C-D) Binary and normalized expression heatmap of oncRNAs 
annotated in the TCGA-BRCA cohort, respectively. A total of 16,474 breast cancer oncRNAs 
were annotated and plotted here. (E) Log10 number of oncRNAs annotated in each cancer type. 
(F) Density plot of the fraction of TCGA samples for which each of the 260,968 onRNAs was 
observed. (G) Median Jaccard similarity of oncRNA profiles between cancer samples from the 
same cancer tissue group versus different cancer tissue groups. P value was calculated using a 
one-tailed Wilcoxon test.  (H) PCA plot of oncRNA profiles of all TCGA cancer samples. Points 
are colored by the cancer types. (I) Performance metrics of the tissue-of-origin (TOO) 
XGBclassifer trained on binary oncRNA profiles and evaluated on the held-out dataset. (J) 
Binary heatmap of the oncRNAs used as binarized features for the TOO XGBclassifier model. 
(K) Expression levels of top 10 important and (L) prevalent oncRNAs in the TOO XGBclassifier 
model trained on binary oncRNA profiles. Ranking of oncRNA feature importance is based on 
average information gain as determined by the model during training. (M) Performance metrics 
of the final XGBclassifer trained on normalized oncRNA expression profiles (counts-per-million) 
and evaluated on the held-out dataset. (N) The confusion matrix for tissue-of-origin classification 
based on normalized expression of oncRNAs in each sample. The matrix was row-normalized. 
(O) Heatmap of the normalized expression of oncRNAs used as features for the TOO 
XGBclassifier model in (L). (P) Expression levels of top 10 important and (Q) prevalent 
oncRNAs in the TOO XGBclassifier model trained on normalized oncRNA expression profiles. 
(R) Upset plot depicting the overlaps of oncRNAs with established genomic features. The other 
category refers to overlaps of oncRNAs to the opposite strand of the genomic features. 
oncRNAs with no overlaps with the genomic features were placed in the intergenic category. (S) 
Normalized expression levels of four exemplary oncRNAs. Expression level of cognate oncRNA 
was used to split samples into detected and not detected groups for the chromatin accessibility 
analysis (Fig. 2.1F). Values are shown as violin plots and boxplots. The boxplots show the 
distribution quartiles, and the whiskers show the quartiles ± IQR (interquartile range). Also 
reported are the number of samples in which the oncRNAs were detected. 
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Supplemental Figure 2.2. Analysis of subtype specific oncRNAs in breast and colorectal 
cancers. (A) Performance metrics of the breast cancer subtype XGBclassifer averaged 
(standard deviation) across 5 folds. (Figure caption continued on the next page.) 

98 



(Figure caption continued from the previous page.) (B) Performance metrics of the colorectal 
cancer subtype XGBclassifer averaged (standard deviation) across 5 folds. (C) The confusion 
matrix for breast cancer subtype classification averaged across 5 folds for the XGBclassifier. 
The matrix was row-normalized. (D) The confusion matrix for colorectal cancer subtype 
classification averaged across 5 folds for the XGBclassifier. The matrix was row-normalized. 
(E–F) Binary heatmap of oncRNAs used as features by the XGBclassifier for breast cancer (E) 
and colorectal cancer (F). (G–H) Expression levels of top 10 important oncRNAs in the 
XGBclassifier models trained on binary oncRNA expression profiles to predict breast cancer 
subtype (G) and colorectal cancer subtype (H). 
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Supplemental Figure 2.3. In vivo screen to identify oncRNAs with functional roles during 
cancer progression. (A) PCA plot of oncRNA and oncRNA Tough Decoy (oncTuD) expression 
in breast (BRCA; MDA-MB-231), colorectal (CRC; SW480), lung (LUAD; A549), and prostate 
(PRAD; C4-2B) cancer cell lines transduced with cognate oncRNA (green) or oncTuD (purple) 
libraries. Each cancer gain-of-function and loss-of-function screen was done in replicates. (B) 
Volcano plots of onRNA functional screen results for lung cancer (A549) and prostate cancer 
(C42B), respectively. In vivo growth phenotypic score refers to enriched representation of 
cancer cells transduced with cognate oncRNA upon tumor growth in the xenograft model. (C–D) 
Volcano plots of onRNA TuD functional screen results for breast cancer (MDA-MB-231) and 
colorectal cancer (SW480) (C) and lung cancer (A549) and prostate cancer (C42B) (D). (Figure 
caption continued on the next page.) 
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(Figure caption continued from the previous page.) (E) Log2 count matrices of TCGA breast 
cancer samples stratified by cancer stage (top) or subtype (bottom) for which two driver 
oncRNAs with significant tumor growth phenotype were present or absent. (F) Volcano plots of 
differentially expressed genes in TCGA-BRCA tumors expressing the specified oncRNA 
compared with tumors in which cognate oncRNA was undetected. (G) Full list of informative 
iPage pathways associated with TCGA-BRCA tumors expressing cognate oncRNAs compared 
to TCGA-BRCA tumors in which respective oncRNAs were not detected. 
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Supplemental Figure 2.4. Validation of function oncRNAs In vivo models of cancer 
progression. (A) Area under the curve (AUC) of the bioluminescence plots from the lung 
colonization assays with MDA-MB231 cell lines (left) and HCC-LM2 cell lines (right), 
corresponding with Fig. 2.4B, D, respectively.  P values were calculated using a one-tailed 
Mann-Whitney test. (B) Volcano plots of differentially expressed genes in MDA-MB231 cells 
overexpressing oncRNA.ch7.29 or oncRNA.ch17.67 compared to MDA-MB231 controls. (C–D) 
Informative iPage pathways associated with HCC-LM2 cells overexpressing oncRNA.ch7.29 or 
oncRNA.ch17.67 compared to controls (C) and MDA-231 cells overexpressing oncRNA.ch7.29 
or oncRNA.ch17.67 compared to controls (D).  
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Supplemental Figure 2.5. oncRNAs reflect cancer cell line identity in extracellular space.  
(A) PCA plot of the cell-free smRNA expression profiles of 25 cancer cell lines. Points are 
colored by the tumor type of the cell lines. (B) Density plot of the fraction of reads annotated as 
oncRNAs across all cancer cell lines in (A).  (C) PCA plot of the cell-free oncRNA expression 
profiles in the cancer cell lines. Points are colored by the cell lines’ corresponding tumor types. 
(D) Median Pearson correlation of oncRNA profiles between cell lines of the same tumor type 
(within) and cell lines of the same tumor type versus all other cell lines (between). Each 
connected pair of points consists of one reference tumor type. Tumor types with higher 
between-cancer tissue group correlations are colored orange, while tumor types with higher 
within group correlations are colored purple. Also reported is the P value calculated using a 
two-tailed paired Student’s t-test. 
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Supplemental Figure 2.6. Analysis of residual oncRNA burden in the ISPY-2 trial cohort. 
(A) Summary statistics of the ISPY-2 trial patient cohort (n = 192). Only patients with samples 
that passed our quality control filters for both time point 0 (prior to neoadjuvant chemotherapy) 
and time point 3 (prior to surgery) are included in this table. (B) Distributions of residual oncRNA 
burden (ΔoncRNA) levels among ISPY-2 patients, grouped by breast cancer subtype, tumor T 
classification, and node status. Shown are both the counts and normalized proportion of 
patients within each stratified ΔoncRNA level. (C) Number of oncRNA species detected in 
patient serum before (T0) and after (T3) neoadjuvant chemotherapy. (D) ΔoncRNA of patients 
grouped by clinically determined residual cancer burden (RCB) class. RCB 0 indicates 
pathological complete response while RCB III indicates high residual cancer burden. (E) 
Distant-metastasis free survival of patients grouped by ΔoncRNA. Also reported are the hazard 
ratio and P value based on a log-rank test. (F) Scatterplot of number of patients called as high 
ΔoncRNA versus resulting log-rank test -log10 P values using the cognate ΔoncRNA 
stratification. Points are colored by the resulting log2 hazard ratio. The ΔoncRNA threshold used 
for grouping high and low residual oncRNA burden in our reported survival analyses resulted in 
27 high ΔoncRNA patients. (G–H) Forest plots of multivariate Cox proportional hazard model 
with ΔoncRNA and RCB class as covariates (G) and ΔoncRNA, subtype, and age as covariates 
(H). HER2 positive samples were excluded due to small sample size, and samples with missing 
clinical data were omitted. 

 

 

104 



2.11: Methods 

Identification of oncRNAs in The Cancer Genome Atlas 

11,082 TCGA small RNA-seq data were downloaded from the Genomic Data Commons in BAM 

format (hg38). Sample metadata was fetched using the GDC API. Reads were given a 

sequence complexity score using the DUST algorithm and removed from downstream analysis if 

the associated sequence complexity fell below a threshold (DUST score > 3) 43. After conversion 

to BED format, unique small RNA loci across all samples were merged using mergeBed to 

create a comprehensive list of expressed small RNA loci. Loci longer than 200 base pairs were 

split via peak calling with SciPy (v.1.5), restricting loci peak lengths to be between 15 and 200 

base pairs. 

 

Non-cancerous extracellular and biofluid smRNA-seq data from the exRNA Atlas were 

downloaded in FASTQ format from the Gene Expression Omnibus (GEO) and the database of 

Genotypes and Phenotypes (dbGAP) and preprocessed in accordance with the cognate library 

preparation. Reads were then aligned to the genome (hg38) to generate BAM files. After 

applying the above low-complexity sequence filter, reads were converted to BED format. 

IntersectBed was used to create TCGA smRNA loci count tables for the exRNA Atlas samples. 

SmRNA loci observed in more than 7 exRNA Atlas samples were removed. The sample 

threshold was selected by using an elbow plot. 

 

After filtering the TCGA smRNA loci by exRNA Atlas samples, we used the smRNA loci list to 

generate counts for each TCGA sample. The resulting smRNA loci counts, library size 

normalized counts (counts per million), and metadata for each sample were saved in a NoSQL 

database (MongoDB), aggregated and indexed by the smRNA loci.  
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To identify “orphan” smRNAs across TCGA, we first applied a filter to retain smRNAs that were 

largely absent in normal samples. Tumor-adjacent normal samples from TCGA were first 

stratified based on tissue type. SmRNAs that were observed in more than 10% of normal 

samples for any of the tissue types were removed. Only tissues with at least 10 normal samples 

were used for this normal tissue filtering step, which included 14 different tissue types. We then 

removed RNAs that were largely absent in cancer samples. For this step, we stratified cancer 

samples into 32 tissue types, and only retained smRNAs that were present in at least 10% of 

the cancer samples for at least one tissue type. For each cancer tissue type, we then used 

Fisher’s exact test to compare the presence and absence of the remaining smRNAs of tumor 

samples from the cognate cancer tissue type and normal samples from all tissue types. We 

selected  smRNAs that were significantly present in the tumor samples of at least one tissue 

type, using an FDR cutoff of 0.1. After discovery of cancer-enriched smRNA loci, we then 

filtered our list of annotations against known smRNAs and miRNAs from publicly available 

annotations. SmRNAs overlapping by genomic coordinate with any of the existing annotations 

were removed. Lastly, we applied a filter using smRNA-seq libraries from 30 non-cancerous 

serum samples (cell-free RNA sequencing described below). Cancer-enriched smRNA loci that 

were detected in more than one of the samples were removed from our final annotated list of 

oncRNAs.  

 

Cancer tissue-of-origin modeling  

To evaluate the utility of oncRNA fingerprints for cancer tissue-of-origin modeling, we first split 

the TCGA samples into training and testing cohorts using a 80:20 train:test ratio, stratified by 

cancer types. We used the same methodology to train our classifier models on binarized, 

“digital” oncRNA profiles and normalized oncRNA expression profiles. Within the training cohort, 

we performed recursive feature elimination in a 5-fold cross validation scheme using a XGBoost 

classifier as our estimator to reduce the number of oncRNAs used as features from 260,968 to 
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1,805 (binary) features and 1,805 (cpm) features. After feature selection, we trained a final 

XGBoost classifier with 500 trees at max-depth of 3 on the full training cohort. The final model 

was evaluated on the held-out test set to calculate accuracy, precision, recall, and f1-scores. 

 

oncRNA and chromatin accessibility association analysis  

TCGA chromatin accessibility data were downloaded from GDC Publication Page 

(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG). Of the 404 unique donors in 

the published study, 386 had matching TCGA smRNAseq data and were selected for inclusion 

in the analysis. Raw count matrices of published pan-cancer peaks of chromatin accessibility 

were normalized by library size. We then used intersectBed to identify ATAC peaks that 

overlapped with our set of oncRNA loci. To search for novel transcriptional activity, we removed 

any oncRNAs that overlapped with known genomic annotations, resulting in 10,725 

oncRNA-ATAC peak pairs. For oncRNA-ATAC peak overlaps with at least 5 samples expressing 

the corresponding oncRNA, we performed an one-tailed Mann Whitney U test to test for higher 

ATAC peak scores in samples that expressed the cognate oncRNA compared to samples in 

which the oncRNA was not detected. P values were FDR corrected, resulting in 1,989 

significant associations.  

 

Cancer subtype analysis and modeling 

Clinical metadata with subtype information for TCGA-BRCA datasets and TCGA-CRC (COAD 

and READ) were downloaded from cBioPortal(https://www.cbioportal.org/) and the Sage 

Bionetworks Synapse (https://www.synapse.org/), respectively. For each cancer, we used 

oncRNAs found to be statistically enriched in the cancer to train and evaluate XGBoost 

classifiers to predict cancer subtypes (Basal, Her2, Luminal A, and Luminal B for BRCA; CMS1, 

CMS2, CMS3, and CMS4 for CRC) in a 5-fold cross-validation setup. For both BRCA and CRC 

we used XGBoost classifiers with 100 trees at max-depth of 3. Performance metrics of the 
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models including AUC of ROC, precision, recall, f1-score, and accuracy were averaged across 

folds.  

 

oncRNA selection for functional screens 

We triaged our list of ~260,000 of oncRNAs to select target oncRNAs for inclusion in our in-vivo 

over-expression and loss-of-function screens. oncRNAs were prioritized based on higher 

expression levels and prevalence across different cell line models of breast (MDA-MB231), 

colon (SW480), lung (A549), and prostate (C4-2B) cancers. Selected oncRNA loci longer than 

38nt were trimmed to capture the region with the highest coverage or split into multiple smaller 

target loci if uniform coverage across the cell lines. The lengths of candidate oncRNA loci 

ranged from 15 to 38 nt after trimming for optimal performance in our TuD constructs. 

 

Library cloning 

For our combined oncTuD library, a library of 788 oligos (consisting of nominated oncRNAs as 

well as their corresponding TuD constructs) was designed and ordered from Twist Biosciences. 

The pool was resuspended to 5ng/uL final concentration in Tris-HCl 10mM pH 8, and a qPCR to 

determine Ct to be used for downstream library amplification was performed (forward primer: 

ATTTTGCCCCTGGTTCTT, reverse primer: CCCTAAGAAATGAACTGG) using a 16-fold library 

dilution.  

 

TuDs 

For TuDs, the library was then amplified via PCR and ran out on a 2% agarose gel to check 

library size (expected band of 200bp). PCR product was then cleaned up using a DNA Clean 

and Concentrator kit-5 (Zymo Research Cat. #D4003), and eluted in 25uL H2O. Cleaned 

product was digested for 90 minutes using FD Esp3I (Thermo Fisher Cat. #FD0454). Digested 

inserts were run on a 8% TBE gel and extracted, and ethanol precipitated overnight in -20C. 
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Inserts were then ligated into pUC6 (Addgene plasmid #49793) in a 100ng reaction with 1:1 

insert:backbone ratio for 16hrs 16C. Ligated products were then ethanol precipitated overnight 

at -20C, and eluted in 4.5ul H2O. 1.5ul ligation product was used for electroporation into 20ul 

MegaX DH10B T1R  electrocompetent cells (Invitrogen Cat. #C640003), followed by maxiprep 

plasmid isolation.  

 

5ug of intermediate pUC6 ligation product was then digested for 90 minutes using AgeI-HF 

(New England Biolabs Cat. #R3552S) and EcoRI-HF (New England Biolabs Cat. #R3101S). 

Digested inserts were then run on a 8% TBE gel, extracted, and then ethanol precipitated 

overnight at -20C. Inserts were then ligated into pLKO.1 (Addgene plasmid #10878) in a 100ng 

reaction with 1:1 insert:backbone ratio for 16 hrs at 16C. Ligated products were then ethanol 

precipitated overnight at -20C, and eluted in 4.5ul H2O. 1.5ul ligation product was used for 

electroporation into 20ul MegaX DH10B T1R  electrocompetent cells (Invitrogen Cat. #C640003), 

followed by maxiprep plasmid isolation.  

 

oncRNAs 

For oncRNAs, the library was then amplified via PCR and ran out on a 2% agarose gel to check 

library size (expected band of 75bp). PCR product was then cleaned up using a DNA Clean and 

Concentrator kit-5 (Zymo Research Cat. #D4003), and eluted in 25uL H2O. Cleaned product 

was digested for 90 minutes using AgeI-HF (New England Biolabs Cat. #R3552S) and 

EcoRI-HF (New England Biolabs Cat. #R3101S). Digested inserts were ran on a 8% TBE gel 

and extracted, and ethanol precipitated overnight in -20C. Inserts were then ligated into pLKO.1 

(Addgene plasmid #10878) in a 100ng reaction with 1:1 insert:backbone ratio for 16 hrs at 16C. 

Ligated products were then ethanol precipitated overnight at -20C, and eluted in 4.5ul H2O. 

1.5ul ligation product was used for electroporation into 20ul MegaX DH10B T1R  

electrocompetent cells (Invitrogen Cat. #C640003), followed by maxiprep plasmid isolation.  
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Sequencing validation 

For sequencing validation, 300ng plasmid DNA was used as input to a first PCR targeting the 

oncTuD amplicon (forward primer: GGAAAGGACGAAACACCGGT; reverse primer: 

ATACTGCCATTTGTCTCGAGGTC) in 50ul volume, and PCR product was cleaned up using a 

Qiagen MinElute PCR purification kit, using a 1:1 volume of NTI cleanup buffer and eluting in 

10ul volume (Qiagen Cat. #28004). 2ul of PCR product was then used as input into a second 

PCR to add Illumina adapter sequences (forward primer: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGAAAGGACGAAACACCGGT; reverse 

primer: 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATACTGCCATTTGTCTCGAGGTC) in 50ul 

volume, and PCR product was cleaned up using Qiagen MinElute PCR purification kit with 1:4 

NTI and eluting in 10ul volume. All 10ul of PCR product from the previous PCR was used as 

input into a final third indexing PCR to add Illumina indices (Illumina TruSeq UDI indices 

UDI009-0017). PCR product was cleaned up using 1X left-hand size selection (Zymo Cat. 

#D4084-4-10). Samples were then pooled and sequenced using a MiSeq v2 kit (Illumina Cat. 

#MS-102-2002).  

 

Lentivirus titration 

2×105 cells per cell line (MDA-MB-231, SW480, C4-2B, A549) were seeded into 6-well plates 

(day 0). 24 hours post-seeding (day 1), 2 wells were counted and cell number per cell line 

recorded. To calculate titer, lentiviral library was added in an upwards range (100, 250, 500ul) in 

3 wells per cell line. 72 hours post-seeding (day 3), puromycin was added to transduced wells, 

as well as an untransduced ‘kill’ well, at 8ug/mL final concentration. 3 days post-transduction 

(day 6), all wells were counted, as well as 2 untransduced and non-selected wells. Based on 

recorded cell number, one selected well per cell line (targeting 10-30% MOI) was used moving 

forward and expanded for future experiments.  
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Cell preparation for subcutaneous injection 

Transduced cells were partitioned into 3 arms for our in vivo functional oncTuD screen. 2×105 

cells per cell line were split into a 15cm plate for in vitro long-term passage, for purposes of 

growth normalization. 2×105  cells per cell line were also pelleted and frozen at -80C for 

downstream t0 gDNA extraction. For MDA cells, 16 million cells were resuspended to final 

concentration 1×106 cells/50ul in 1:1 PBS/matrigel, and bilateral mammary fat pad injections in 

50ul final volume were performed in female, 8-12 week-old age-matched female NOD scid 

gamma (NSG) mice (n = 4). For SW480, C4-2B, and A549 cells, 16 million cells per cell line 

were resuspended to final concentration 1×106 cells/200ul in 1:4 PBS/matrigel, and bilateral 

subcutaneous injections in 200ul final volume were performed in either male (C4-2B) or female 

(SW480, A549) 8-12 week-old age-matched NSG mice (n =4 per cell line).  

 

Tumor gDNA extraction and library preparation 

3-4 weeks post-injection, tumors were harvested and processed using Quick-DNA midiprep plus 

kit (Zymo Research Cat. #D4075). For each processed tumor, gDNA was amplified in the ratio 

of 2.5ul input/25ul reaction volume in a first PCR targeting the oncTuD amplicon (forward 

primer: GGAAAGGACGAAACACCGGT; reverse primer: ATACTGCCATTTGTCTCGAGGTC). 

PCR product was cleaned up using 1X left-hand size selection (Zymo Cat. #D4084-4-10). 10% 

input from the first PCR was used in a second PCR to add Illumina adapter sequences (forward 

primer: ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGAAAGGACGAAACACCGGT; 

reverse primer: 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATACTGCCATTTGTCTCGAGGTC), and 

PCR product was cleaned up using 1X left-hand size selection (Zymo Cat. #D4084-4-10). 10% 

input from the second PCR was used in a last indexing PCR to add Illumina indices (Illumina 

TruSeq UDI indices UDI001-080), followed by 1X left-hand size selection (Zymo Cat. 
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#D4084-4-10). Samples were pooled and sequenced on 2 lanes of NovaSeq SP200 

150x8x8x50 at the UCSF Center for Advanced Technology (CAT).   

 

Cell culture 

All cells were cultured in a 37°C 5% CO2 humidified incubator. SW480 and C4-2B cell lines 

were cultured in RPMI-1640 medium supplemented with 10% FBS, glucose (2 g/L), L-glutamine 

(2 mM), 25 mM HEPES, penicillin (100 units/mL), streptomycin (100 μg/mL) and amphotericin B 

(1 μg/mL) (Gibco). MDA-MB-231 and A549 cell lines were cultured in Dulbecco's Modified Eagle 

Medium (DMEM) supplemented with 10% FBS, glucose (2 g/L), L-glutamine (2 mM), 25 mM 

HEPES, penicillin (100 units/mL), streptomycin (100 μg/mL) and amphotericin B (1 μg/mL) 

(Gibco). All cell lines were routinely screened for mycoplasma with a PCR-based assay. 

 

Target oncRNA expression and clinical association in TCGA-BRCA 

For oncRNAs with potential functional roles, we used the associated TCGA clinical metadata to 

compare their expression across tumor-adjacent normal tissue and cancer tissue and across 

breast cancer subtypes. We also stratified patients based on the expression levels of the 

oncRNAs and generated Kaplan-Meier curves. A log-rank test was used to compare the 

resulting survival curves.  

 

TCGA differential expression analysis and pathway analysis 

Raw gene expression data for the TCGA-BRCA dataset were downloaded from the Genomic 

Data Commons. Expression data were processed and normalized following the guidelines of the 

edgeR pipeline. Samples were grouped by presence or absence of cognate oncRNA and 

compared for differentially expressed genes using edgeR (v. 3.42.4), controlling for covariates 

including age and breast cancer subtype44. The resulting P values and log-fold change of each 
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gene were used by iPage for pathway analysis to identify pathway perturbations associated with 

oncRNA expression21.  

 

Orthotopic Tumor growth assay 

Tumor growth assays were performed by injecting cancer cells (5×105 MDA-MB-231 or 

HCC1806 shctrl, oncRNA.ch7.29, or oncRNA.ch17.67) in 50µl 1:1 PBS:Matrigel (Corning) 

bilaterally into mammary fat pads of eight- to twelve-week old age-matched female NOD/SCID 

gamma mice. Tumor volume was assessed weekly by caliper measurements. Final tumor 

volume was measured ex vivo after surgically removing the tumor. 

 

Metastatic Lung Colonization Assay 

Eight- to twelve-week-old age-matched female NOD/SCID gamma mice (NSG, Jackson Labs, 

005557) were used for lung colonization assays. For this assay, cancer cells constitutively 

expressing luciferase were suspended in 100 μL PBS and then injected via tail-vein (1×105 

MDA-MB-231 or HCC1806 shctrl, oncRNA.ch7.29, or oncRNA.ch17.67). Each cohort contained 

4-5 mice, which in the NSG background is enough to observe a >2- fold difference with 90% 

confidence. Mice were randomly assigned into cohorts. Cancer cell growth was monitored in 

vivo at the indicated times by retro-orbital injection of 100 µl of 15 mg/mL luciferin (Perkin Elmer) 

dissolved in 1X PBS, and then measuring the resulting bioluminescence with an IVIS instrument 

and Living Image software (Perkin Elmer).  

 

Cell line mRNA sequencing and analysis 

mRNA-seq libraries were constructed using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD 

according to the manufacturer’s instructions (Lexogen, Cat. #015). RNA was extracted in 

replicates from MDA-MB-231 or HCC1806 shctrl, oncRNA.ch7.29, or oncRNA.ch17.67; 

100-200ng RNA was then used as input to QuantSeq FWD. mRNA-seq libraries were pooled 
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and sequenced on 1 lane of NovaSeqX 100x6x0x0 at the UCSF Center for Advanced 

Technology (CAT).  

 

We then used cutadapt (v. 3.5) to remove adapter sequences. Preprocessed sequences were 

pseudoaligned to the transcriptome with Salmon (v. 0.14.1) to quantify gene expression. We 

used DESeq2 (v. 1.26.0) to perform the differential expression analysis with default settings 45. P 

values were FDR corrected and used with gene expression data for pathway analysis with 

iPage, as mentioned above.  

 

Conditioned media collection and cell-free smRNA sequencing 

For each cancer of the 25 cancer lines, 200k-300k cells were seeded into a well of a 6-well plate 

in biological duplicate. After 48 hours, media was aspirated, cells were washed with PBS, then 

3mL of fresh media prepared with exosome-depleted FBS was added. After 24 hours, 

conditioned media was collected, then cell-free RNA was extracted immediately with 

Quick-cfRNA Serum and Plasma kit (Zymo) and flash frozen. CfRNA was quantified with Qubit 

RNA HS, and ~14ng of each sample was used as input to construct small RNA-seq libraries 

with SMARTer smRNA-Seq Kit (Takara). For library prep, two modifications were made from the 

manufacturer’s protocol: (a) the stock oligo dT for first strand synthesis was substituted for a 

custom primer with UMI’s (5’CAAGCAGAAGACGGCATA 

CGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTT-

3’) and (b) custom primers with single i5 indices were used for 18 cycles of cDNA amplification. 

For cleanup, the PCR products were column purified as per manufacturer’s recommendations, 

and 175-300 bp PCR products were gel-purified from 8% polyacrylamide gels in TBE buffer. 

When necessary, the resulting libraries were additionally PCR-amplified with universal primers 

(5’-AATGATACGGCGACCACC-3’ and 5’-CAAGCAGAAGACGGCATACGAG-3’). The libraries 
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were sequenced on Illumina HiSeq 4000 or NovaSeq machines at the UCSF Center for 

Advanced Technology, on double-indexed single-end 50 nt runs. 

 

We then used cutadapt (v1.15) to remove the poly(A) tails from the 3’ end and 3 nucleotides 

unconditionally from the 5’ end of each read to remove the template switch oligo. Reads with at 

least 15 base pairs after trimming were aligned to the human genome (hg38) using bowtie2 

(v.2.3.5.1) with the end-to-end and sensitive setting. Libraries with UMIs were deduplicated 

using UMI-tools(v.1.1.0) with the default directional algorithm setting.The aligned BAM files were 

converted to BED format and intersectBed was used to quantify the number of reads mapping 

to known smRNAs (ie: miRNA, tRNA) and our list of annotated oncRNAs. 

 

I-SPY2 Trial and Clinical Samples 

All clinical blood samples were received from the I-SPY2 trial (NCT01042379), an ongoing, 

open-label, randomized, multicenter adaptive, phase 2 platform trial. Detailed description of the 

study design, patient eligibility and enrollment and oversight of the trial have been published 

previously46,47. The protocol for the I-SYP2 trial was approved by the Institutional Review Boards 

at all participating institutions. All patients signed written informed consent to participate in the 

trial and to allow the use of their biospecimens for research purposes.  

 

Blood samples were collected at pretreatment (T0), and after NAC before surgery (T3) in 

marble/tiger-top vacutainer (serum separator) tubes. Tubes were placed upright for at least 15 

minutes to properly clot. Within two hours of collection, tubes were centrifuged at 2500 rpm for 

20 minutes at room temperature and then aliquoted into cryovial tubes and immediately frozen 

at -80C for storage. 

 

 

115 

https://paperpile.com/c/Hrx8WR/l5TP+O7Y2


Serum RNA Extraction and sequencing 

For cell-free RNA extraction from patient serum samples, 0.5–1 mL of serum (stored at -80C 

from collection to extraction) per sample was used. The samples were thawed at room 

temperature and RNA was extracted using Quick-cfRNA Serum and Plasma kit (Zymo) following 

manufacturer's recommendations, eluted in 15 µl nuclease-free water and stored at -80C. Small 

RNA-seq libraries were constructed, sequenced and analyzed as described above for cell line 

conditioned media cell-free RNA. 

 

ISPY-2 survival analysis 

Residual oncRNA burden (ΔoncRNA) for each patient was calculated as:  

ΔoncRNA = NT3 - NT0  

where NT0 and NT3 were the total number of oncRNA species detected per million reads 

sequenced from the serum samples at time point 0 (prior to neoadjuvant chemotherapy) and 

time point 3 (completion of neoadjuvant chemotherapy treatment and prior to surgery), 

respectively. Patients were stratified by ΔoncRNA levels into two groups: i) high and persistent 

residual oncRNA burden and ii) low residual oncRNA burden (Supplemental Fig. 2.4F). Using 

these stratifications we generated Kaplein-Meier curves and performed a log-rank test to 

calculate the associated P value. We used multivariable Cox regression analysis to assess 

ΔoncRNA as an independent predictor of survival after NAC while controlling for established 

clinical variables. To account for the sample size, we performed several iterations of Cox 

analysis with different covariates separately: ΔoncRNA with pCR, ΔoncRNA with RCB class, 

and ΔoncRNA with age and breast cancer subtype.  
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CHAPTER 3: RNF8 AND MIS18A DRIVE TRANSCRIPTIONAL INTRATUMORAL 
HETEROGENEITY AND METASTATIC PROGRESSION  

 

3.1: Introduction 

Tumor heterogeneity is a key mechanism of therapeutic resistance that inevitably leads to 

cancer recurrence and death1-7. Though targeted molecular and immunological therapies can 

initially show high treatment efficiency and reduction in tumor burden, recurrence and 

accompanying therapeutic resistance is almost inevitably fatal8-11. In addition to genetic and 

transcriptional heterogeneity between different patient tumors (intertumoral heterogeneity), 

tumor heterogeneity also occurs on a cell-to-cell level within a single patient tumor (intratumoral 

heterogeneity, or ITH)4,7-8. ITH manifests through both genetic and non-genetic mechanisms, 

with both avenues playing a role in altering downstream cellular phenotypes such as 

transcriptome state12-22. Increased transcriptional plasticity and the ability to access varied 

transcriptional states is a key mechanism by which tumor subpopulations can resist and 

proliferate in unfamiliar microenvironments23-26. We previously demonstrated how inherent 

transcriptional noise facilitates the exploration of transcriptomic states that confer adaptive 

advantages, even in environments not encoded within a cell's native regulatory networks—a 

process we termed stochastic tuning²⁴. In the context of cancer, this phenomenon could allow 

for tumors to thrive in previously unencountered conditions, such as hypoxia or 

chemotherapeutic stress11,23. Once tumor cells identify transcriptional states that enhance 

survival within their microenvironment, they are evolutionarily selected for and pass these 

advantageous states down to progeny, driving the growth of resistant tumor populations. We 

therefore propose that the capacity to expand the total range of searchable transcriptional states 

represents a general mechanism underlying tumor progression. 
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Though the detrimental clinical effects of high transcriptional ITH have been 

well-documented1,6-8, mechanisms driving transcriptomic heterogeneity outside of genetic 

factors, like localized mutations or large-scale focal amplifications14,25, are not well understood. 

To address this gap, we first analyzed human breast cancer TCGA RNA-seq data27 to identify 

genes whose differential expression proportionally altered patient transcriptional heterogeneity. 

We previously showed that the heritability of stochastic tuning was modulated by the presence 

of certain chromatin modifications24. Based on this observation, we focused our search on 

genes classified as chromatin modifiers, also referred to as chromatin organizers (COs) in Gene 

Ontology (GO)28. From this, we nominated a list of 41 COs that had a strong proportional effect 

on impacting genome-wide coefficient of variation (CV, mean-normalized standard deviation) 

after empirically controlling for background noise. To then answer the question of which of these 

nominated COs plays a role in tumor progression, we cloned a CRISPRi sgRNA library 

corresponding to our 41 COs and conducted in vivo CRISPRi survival screening, narrowing our 

CO library by about half (16 total in vivo hits).  

 

Recent technological advances in single-cell library generation and profiling have enabled 

subclonal tracking and perturbation-based studies of ITH at the single-cell level12,29-36. To directly 

compare transcriptional heterogeneity at the cell-to-cell level and experimentally test whether 

our functional COs causally drive transcriptomic heterogeneity, we performed in vitro 

Perturb-seq with 10X 3’-based scRNA-seq readout, comparing effects on transcriptional 

variability between each CO sgRNA. Intersecting our TCGA RNA-seq in silico analysis, in vivo 

CRISPRi functional data, and in vitro Perturb-seq screen data identified two genes previously 

uncharacterized in the context of transcriptional ITH, RNF8 and MIS18A37-42. We find modulating 

expression of either of these genes proportionally affects cellular fitness and in vivo metastatic 

colonization capacity. Furthermore, altered expression of either RNF8 or MIS18A in 

MDA-MB-231 TNBC cell lines sensitizes or protects cells from chemotherapeutic treatment in a 
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knockdown or overexpression state respectively. Using high-throughput scATAC-seq, we find 

that modulating expression of either RNF8 or MIS18A proportionally changes the variance of 

accessible chromatin across the genome, suggesting that RNF8 and MIS18A act globally on 

chromatin accessibility. Finally, we show that changes in single-cell transcriptional heterogeneity 

do not correspond with changes in centromeric histone deposition (CENP-A) in MIS18A-altered 

cell lines, suggesting that MIS18A modulates changes in transcriptional ITH through a 

centromere-independent pathway. 

 

3.2: Analysis of TCGA RNA-seq data reveals chromatin organizers associated with 

changes in patient-to-patient transcriptomic heterogeneity 

To generate an in silico list of chromatin organizers (COs), we first utilized TCGA-RNA-Seq-v2 

data to assess transcriptomic variability in patient cohorts. Conceptually, since TCGA RNA-seq 

data provides FPKM measurements on a patient-by-patient basis, we are using a bulk dataset 

to infer drivers of transcriptional heterogeneity at the single-patient, cell-to-cell level. We justify 

this approach with the following rationale: as the standard deviation of a sequence of 

independent random variables (i.e. FPKM measurements across unrelated patients) is 

proportional to the standard deviation of a single random variable from that set, scaled by the 

square root of n (the number of variables in the sequence), we hypothesized that any genetic 

driver of transcriptomic intratumoral heterogeneity would inherently contribute to transcriptomic 

heterogeneity across patients. We intersected TCGA RNA-seq data with a list of COs collated 

from Gene Ontology, term eukaryota => mammalia => homo sapiens. For each CO, we created 

a list of patient groupings, corresponding to the top and bottom quartile expressers within the 

set of patients. To increase the likelihood that our results were not biased by a particular set of 

patients, we also used patient groupings corresponding to the top and bottom quintile 

expressers as well. For each patient in the top and bottom grouping, we calculated CV for each 
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available gene as well as the resulting CV ratio between patients in each grouping. Specifically, 

for all genes, we calculated CV across all patients in a particular group, and then calculated the 

CV ratio for all genes in this manner. We then generated a p-value for each gene by applying 

CVEquality43 for each gene in the given RNA-seq data, and converted this to a q-value with a 

significance cut-off of ɑ < 0.05.  At this stage, we also recorded the direction of CV change when 

comparing the groupings, i.e. whether or not increased expression of a given CO led to 

increased CV across the given patient set (proportional) or the reverse (anti-proportional). For 

each CO grouping, we then recorded the number of significant genes, i.e. the number of genes 

flagged as significant via CVEquality testing.  

 

To model the noise inherent to this analysis and derive empirical estimates for the amount of 

genes that would arise by chance via this grouping approach, we in parallel randomly sampled 

patients and assigned them into groupings of equal size to the above analysis (i.e. quartile and 

quintile). We used these random groupings of patients (number of groupings used, ngroupings = 50) 

to ask the question of how many genes would show as significant if one were to use any given 

gene to create patient groupings. Re-applying the computational pipeline described above 

allowed us to compute empirically derived scalars for μrandom (mean of the number of significant 

genes arising by chance) and σrandom (standard deviation of the number of significant genes 

arising by chance). For each of the CO groupings above, we used these two scalars to compute 

empirical z-scores for each CO and applied a z-score cutoff (z > 2.5), focusing only on COs 

above this cutoff (Figs. 3.1A, Supplemental Fig. 3.1A, see Methods for more details).  For 

interpretability, we chose to study  proportional COs, i.e. COs that had positive correlation 

between their expression and the resulting transcriptomic CV.   

 

Overlapping nominated COs derived from both our quartile and quintile groupings, our analysis 

gave 41 COs that fulfilled our z-score cutoff (Fig. 3.1B). To better visualize patient 
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transcriptomic profiles, we performed principal component analysis (PCA) and extracted the top 

50 principal components for each patient within each CO quartile grouping (Fig. 3.1C). 

Comparing patients from our CO top-quartile vs. bottom-quartile groupings in transcriptomic 

space, we observed an increase in spread compared to uncorrelated control groupings, 

implying that increased CO expression corresponded to increased transcriptional heterogeneity 

(Figs. 3.1D, Supplemental Fig. 3.1B). Given the well-documented role of genetic copy number 

amplification (CNA) and aneuploidy in driving transcriptomic heterogeneity and cancer 

progression1,6-8,10, we asked whether the increased transcriptomic CV we observed from our 

COs could be explained by an accompanying change in genomic copy number. Interestingly, we 

found that genes with significant transcriptomic CV changes across patient groupings were 

uncorrelated with those with significant CNA changes, suggesting that our observed phenotype 

was due to non-genetic mechanisms (Supplemental Fig. 3.1C). Supporting this hypothesis, we 

also observed that increased transcriptomic heterogeneity across patients in a particular CO 

grouping was not accompanied by a significant change in magnitude of transcriptomic 

expression (Fig. 3.1E). Tumor purity scores across patients included in our CO groupings were 

also high, suggesting that our observed CV analysis was not confounded due to major changes 

in cellular subpopulations across patient groupings (Supplemental Fig. 3.1D). 

 

3.3: Filtering for COs functionally implicated in tumor progression using an in vivo 

CRISPRi screen 

Our analyses of TCGA-RNA-Seq gene expression data from human breast cancer patients 

allowed us to nominate a set of 41 COs that we proposed tune patient transcriptomic 

heterogeneity. We previously reported a link between increased transcriptomic heterogeneity in 

MDA-derived subpopulations and their corresponding metastatic fitness23. To identify COs with 

functional relevance, we aimed to filter COs influencing transcriptional heterogeneity without 
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affecting cancer prognosis, hypothesizing that COs driving transcriptomic heterogeneity would 

also strongly drive tumor fitness in vivo. 

To assess this, we measured the impact of silencing these COs on breast cancer tumor growth 

in xenograft models using CRISPRi. We engineered an sgRNA library of 191 sgRNAs targeting 

each CO (~5 guides per CO including 10 non-targeting sgRNA sequences as controls). We 

selected the MDA-MB-231 cell line for our in vivo screen given its clinically relevant TNBC 

subtype and well-established female NSG mouse xenograft model. We transduced 

MDA-MB-231 CRISPRi-ready cells with our library and performed both orthotopic mammary fat 

pad injections (to model local primary tumor progression), as well as tail vein injections (a model 

of metastatic lung colonization). We compared guide representation among cancer cell 

populations grown in vivo, or grown in vitro for a similar number of doublings (Fig. 3.2A). For 

each of the 41 COs, we compared their in-vitro-normalized counts to identify COs whose loss of 

expression resulted in an accompanying loss of representation in the resulting tumor. Selecting 

for the top 10 COs from either modality on the basis of their combined in vivo z-score, 16 COs 

(about half of our initial library) showed an in-vivo-specific, positive association with in vivo 

tumor growth across both screening modalities (Figs. 3.2A-B). We hypothesized that changes 

in the final representation of cells harboring a particular CO sgRNA resulted from a selection 

pressure during tumorigenesis, suggesting that these 16 COs are functional drivers of breast 

cancer progression.   

 

3.4: RNF8 and MIS18A modulate transcriptomic heterogeneity at a single-cell level 

Given the functional significance of these 16 COs and our original aim being to identify genetic 

drivers of transcriptomic intratumoral heterogeneity, we next asked whether the bulk 

transcriptional correlations observed across patient expression bins (Figs. 3.1, Supplemental 
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Fig. 3.1) reflected causal effects at the single-cell level. Specifically, we asked whether the 16 

functional COs identified through our in vivo CRISPRi screen directly influenced transcriptional 

heterogeneity within individual tumors. To interrogate cell-to-cell transcriptomic variability, we 

cloned our 16 COs into an appropriate sgRNA library backbone and conducted both CRISPRi 

and CRISPRa Perturb-Seq with 10X 3’ scRNA-seq for transcriptomic readout (Fig. 3.3A). 

Mirroring our approach for bulk TCGA-RNA-Seq data, we calculated genome-wide CV for each 

sgRNA group and constructed a random grouping for each sgRNA that served as a background 

control, size-matched for each sgRNA group (see Methods for more details). After confirming 

appropriate knockdown or overexpression for each sgRNA group, we found that less than half 

of our initial 16 functional COs were modulators of transcriptomic variability (Supplemental 

Figs. 3.2A-C).  

Overlapping both CRISPRi and CRISPRa screen modalities, we found that RNF8 and MIS18A 

were the two strongest-acting genes in the context of modulating single-cell transcriptomic 

variability (Fig. 3.3B). Surprisingly, AURKB acted in an anti-proportional manner; however, given 

its crucial role in regulating cell cycle progression, this could be a compensatory effect. We then 

directly compared population transcript CV in cells receiving either RNF8 or MIS18A (Figs. 

3.3C-D). We noted that global mean transcript CV was lower in RNF8- and MIS18A-CRISPRi 

relative to non-targeting sgRNA control when summing across all measured transcripts. This 

was visualized through examining transcript abundance for representative highly variable 

transcripts in either cell line, the spread of which was significantly compacted in their 

corresponding CRISPRi cells relative to control (Figs. 3.3C-D, right panels). A similar trend was 

observed when overexpressing either RNF8 and MIS18A (Supplemental Figs. 3.2D-E). In 

support of this finding, we conducted a similar CV analysis with an orthogonal single-cell 

dataset58 and found that higher RNF8 and MIS18A gene expression was linked to increased 

transcriptomic heterogeneity (Fig. 3.3E). 
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Given our observation that gene expression change of cell cycle regulators such as AURKB did 

not have an expected proportional effect on transcriptional heterogeneity as was seen in bulk 

TCGA-RNA-Seq data (Fig. 3.1B), we asked whether RNF8 and MIS18A were also confounded 

via cell cycle phase correlations (Supplemental Figs. 3.2F-G). We found that both factors were 

largely uncorrelated with cell cycle phase, suggesting that the transcriptional heterogeneity 

modulation found in sgRNA-perturbed cells was through an alternative, non-genetic mechanism. 

In addition, examining the mean transcript expression in either RNF8- or MIS18A-perturbed cell 

lines, we found that altered transcriptional heterogeneity was not explained by a global shift in 

mean transcript abundance (Supplemental Figs. 3.2H-I). Taken together, these data suggest 

RNF8 and MIS18A drive transcriptomic heterogeneity at the single-cell level in a cell-cycle 

independent manner. 

 

3.5: Transcriptional heterogeneity is associated with shifts in chemotherapeutic 

sensitivity and cellular fitness 

Overlapping our in silico analysis of TCGA-RNA-Seq-data, in vivo functional CRISPRi 

modalities, and in vitro Perturb-Seq showed RNF8 and MIS18A to be the most significant 

functional drivers of transcriptional ITH when considering all modalities in combination. 

Continuing from our rationale in filtering for functional in vivo hits (Fig. 3.2), we had previously 

described a link between increased morphological diversity in derived isogenic MDA-MB-231 

subpopulations and their corresponding transcriptional heterogeneity profiles23. To now ask 

whether this previous observation also extended to phenotypic diversity and metastatic fitness 

downstream of RNF8 and MIS18A gene expression, we generated corresponding gene 

knockdown and overexpression lines in MDA-MB-231 CRISPRi-ready and CRISPRa-ready cells 

respectively (referred to as CRISPRi/a lines). We first tested chemotherapeutic sensitivity in 

vitro by treating our CRISPRi/a lines with 5-fluorouracil (5FU) and cyclophosphamide and 
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assessed cytotoxicity 48 hours post-treatment (Figs. 3.4A-B). We found that knockdown of 

either RNF8 or MIS18A led to sensitization of cells to the given drug treatments, whereas 

overexpression conferred a protective effect (Figs. 3.4A-B). Interestingly, we did not find a 

significant difference in cytotoxicity when using taxol (data not shown); this could be due to a 

specific mechanism of protective benefit conferred by overexpressing either gene. Additionally, 

this chemotherapeutic sensitivity was not due to altered cell line proliferation rates 

(Supplemental Fig. 3.3A). As an in vitro readout of metastatic colonization capacity, we found a 

similar phenotype via colony formation assay (Fig. 3.4C). We then assessed cell morphological 

differences between our CRISPRi/a cell lines, given the well-reported importance of morphology 

in signaling pre-disposed risk in human breast cancer patients45-48. Through high-content 

microscopy57, we found that our CRISPRi/a lines proportionally differed in morphology 

heterogeneity scores relative to their non-targeting-sgRNA MDA-MB-231 controls (Figs. 3.4D, 

Supplemental Fig. 3.3B, see Methods for details on morphology analysis).  This is in-line with 

our previous findings that MDA-MB-231 subpopulations with increased morphological variation 

have increased metastatic fitness23; taken in the context of our in vitro Perturb-Seq data, these 

data suggest that transcriptomic heterogeneity proportionally tunes cellular fitness. 

 

Given our previous observation that our bulk TCGA-RNA-Seq analysis did not seem to 

correspond with an accompanying change in CNA (Supplemental Fig. 3.1C), we next wanted 

to ask whether any of the observed phenotypes we found in our CRISPRi/a cell lines could be 

explained by a genetic mechanism. We first asked whether cell cycle phases were significantly 

different between any of our CRISPRi/a lines (Supplemental Fig. 3.4A). We found that, in-line 

with our observations from our Perturb-Seq data (Supplemental Fig. 3.2F-G), there was not a 

significant change in cell cycle phase distributions between our cell lines (Supplemental Fig. 

3.4A, C). Bulk DNA content analysis showed that neither RNF8- nor MIS18A-CRISPRi/a  lines 

showed significantly different DNA content across G0/G1 or G2 phases, suggesting 
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chromosomal amplifications could not explain our observed transcriptomic heterogeneity 

phenotypes (Supplemental Fig. 3.4B). This was further supported by a lack of significant 

change in DNA content CV across phases, further suggesting aneuploidy was not the 

mechanism for the source of observed cell-to-cell transcriptomic variability (Supplemental Fig. 

3.4D). In sum, this data suggests that RNF8 and MIS18A act through mechanisms independent 

of genetic CNA and aneuploidy to alter cellular transcriptional heterogeneity. 

 

3.6: RNF8 and MIS18A drive tumor progression in vivo  

Given our functional in vivo screen data (Fig. 3.2) and in vitro cellular fitness data (Fig. 3.4), we 

asked whether our MDA-MB-231 CRISPRi/a cell lines also drove tumor progression in vivo. We 

found that tuning expression of either gene affected overall tumor burden and mouse survival in 

a proportional fashion (Figs. 3.5A-B), suggesting that RNF8 and MIS18A drive metastasis in 

vivo. To test whether these observed in vivo phenotypes were cell-type specific, we also 

engineered an unrelated line, HCC1806, with both sgRNAs and observed a similar phenotype 

(Supplemental Fig. 3.5A). We then asked whether either of these genes were significantly 

implicated in human breast cancer progression. Using human patient survival data from the 

METABRIC clinical dataset44, we looked at whether expression levels of either RNF8 or MIS18A 

impacted long-term clinical outcomes. We found that RNF8 and MIS18A expression significantly 

partitioned human patients into short- and long-survival cohorts (Fig. 3.5C). MIS18A has been 

well-documented to be part of the centromeric histone (CENP-A) deposition complex37,42; to ask 

whether these observed survival outcomes were MIS18A-specific, we looked at other members 

of this complex and found a similar trend across all members, potentially suggesting a shared 

role of this centromeric deposition complex in driving survival rates (Fig. 3.5C). Interestingly, 

CENP-A was seen to be specifically implicated in metastatic burden progression relative to 

primary progression in our in vivo CRISPRi data (Supplemental Fig. 3.5C). This data suggest 
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that RNF8 and MIS18A are inducers of cellular transcriptomic variability and drive metastatic 

progression in vivo. 

 

3.7: Assessing chromatin accessibility states upon RNF8 or MIS18A expression 

modulation 

RNF8 and MIS18A have been characterized in the context of cancer progression with functions 

in DNA damage repair and centromeric histone deposition37-42; however, a driver role of 

transcriptomic heterogeneity has not been described for either gene. Given that both chromatin 

modifiers play roles in chromatin remodeling and epigenetic modifications, we next asked 

whether chromatin occupancy changes differed globally when modulating expression of either of 

these two COs. Using our CRISPRi/a lines, we hash-pooled the 6 cell lines in question, 

generated nuclei, and ran the pooled fraction using 10X scATAC-seq (Fig. 3.6A). Using 

chromatin accessibility scores generated from ArchR (see Methods for more details), we 

assigned scores across chromatin loci and asked whether accessibility landscapes were 

significantly associated with changes in RNF8 or MIS18A expression. We first found that global 

chromatin accessibility coefficient of variation across our assayed genomic fragments shifted 

proportionally with the level of RNF8 or MIS18A expression (Fig. 3.6B). To visualize this, we 

focused on specific genetic loci and assessed this phenotype individually for each cell line 

condition (Figs. 3.6C-D). In the context of chromatin accessibility, a loss in heterogeneity in 

either RNF8 or MIS18A knockdown nuclei conditions presents as an increased shift towards 

‘fully-closed’ or ‘fully-open’ chromatin (Fig. 3.6C), suggesting that loss of transcriptomic 

heterogeneity (as seen from our in vitro Perturb-Seq data) is associated with a shift towards 

uniform accessibility state upstream of transcription. Conversely, a similar phenotype was seen 

for our RNF8 and MIS18A overexpression nuclei conditions (Fig. 3.6D), where overexpression 

of either CO led to a more mixed accessibility profile (i.e. closer to a 50/50 open/closed 
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chromatin ratio) across a given annotated gene fragment. Notably, modulating expression of 

either RNF8 or MIS18A did not lead to shifts in global mean chromatin accessibility scores 

(Supplemental Fig. 3.6A-B), suggesting that these changes in accessibility variance were not 

due to a global shift towards one particular chromatin state. Overall, this suggests that our 

observed transcriptomic heterogeneity phenotypes from Figure 3.3 are accompanied by global 

shifts in accessibility. 

 

3.8: MIS18A functions through a centromere-independent pathway to modulate observed 

changes in transcriptional ITH 

Lastly, we asked if observed transcriptional heterogeneity changes in our generated RNF8- and 

MIS18A- cell lines were occurring in tandem with these previously reported functions of RNF8 

and MIS18A37-42. Given the more well-defined cancer-driving role of RNF8 in mediating DNA 

damage repair, we specifically focused on MIS18A, which is a key component of the 

centromeric histone deposition complex. We first asked if key centromeric deposition complex 

partners were also implicated in altering transcriptional heterogeneity in our TCGA RNA-seq 

data and single-cell Perturb-seq data37 (Figs. 3.1B, 3.3B). We found that HJURP, the canonical 

chaperone of MIS18A, was relevant in the context of TCGA RNA-seq data but not in our 

Perturb-seq data (Supplemental Fig. 3.2A-B); this could be due to cell-cycle confounding 

effects. Additionally, MIS18B, interaction partner of MIS18A, was implicated in TCGA-RNA-seq 

but not downstream screening modalities (data not shown). Due to the implication of other 

centromeric deposition partners in altering transcriptional heterogeneity, we first examined the 

level of centromeric histone variant CENP-A in our MDA-MB-231 CRISPRi/a cell lines (Fig. 

3.7A). We found that knocking down MIS18A proportionally lowered global amounts of CENP-A. 

Notably, no significant change in CENP-A levels were seen when upregulating levels of MIS18A 

expression (Fig. 3.7A, right panel). It has been shown that loss of MIS18A leads to 

133 



accumulation of minor satellite non-coding RNAs (ncRNAs), concomitant with improper 

metaphase separation and loss of proper centromeric chromatin modifications52-56. Accumulation 

of these minor satellite ncRNA species leads to loss of centromeric methylation, mis-localization 

of centromere-specific interactors, and cell death. To assess levels of these species, we isolated 

RNA from our MDA-MB-231 CRISPRi/a cell lines at 48 hours and 96 hours post-seeding, and 

ran RT-qPCR (Fig. 3.7B). We found that there was no significant accumulation in minor satellite 

ncRNAs at either time point, suggesting that the observed transcriptional ITH in our CRISPRi/a 

cell line models functions through a centromere-independent mechanism. This is consistent with 

our data suggesting that CNA and aneuploidy is not the main driving factor behind our observed 

transcriptional heterogeneity phenotypes, as well as our observation that cell growth rates are 

not significantly lowered in MIS18A CRISPRi cell lines (Supplemental Fig. 3.1C, 3.4). Previous 

data also suggests that MIS18A knockdown leads to milder centromeric deficiency than in total 

MIS18A KO conditions, with MIS18A knockdown being not sufficient to cause centromeric 

deficiencies54. We then stained for CENP-A in our MDA-MB-231 CRISPRi/a cell lines, and saw 

no significant change in CENP-A across MIS18A knockdown conditions (Fig. 3.7C). 

Considering the link between expression of members of the centromeric deposition complex 

and human breast cancer patient survival outcomes (Fig. 3.5C), this could suggest a previously 

unexplored role of this complex in modulating chromatin accessibility and downstream 

transcriptional heterogeneity. For MIS18A in particular, this suggests knockdown drives 

transcriptional ITH and in vivo tumor progression through a pathway independent of centromeric 

deposition. 

 

3.9: Discussion  

ITH remains the main driving mechanism underlying cancer recurrence, which is almost always 

fatal10-19. Specifically, though molecular and immunological therapies frequently lead to initial 
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remission, inherent cellular, genetic and non-genetic heterogeneity allow for tumor 

subpopulations to resist and proliferate. In this study, we propose that transcriptomic 

heterogeneity, usually thought to be effected by abnormalities at the genetic level25-31, can also 

be driven through non-genetic mechanisms, e.g. through changes in global remodeling of 

chromatin accessibility profiles (Fig. 3.5). Using in silico TCGA-RNA-seq analysis, in vivo 

functional CRISPRi screening, and in vitro Perturb-Seq as a combined filter, we identify RNF8 

and MIS18A as modulators of transcriptional ITH. We show that modulating expression of either 

of these two genes in MDA-MB-231 breast cancer cell lines proportionally alters 

chemotherapeutic sensitivity, cellular fitness, and cellular morphology. 

 

We have previously described that expression variability of spliceosomal gene SNRNP40 

contributes to alterations in downstream pre-mRNA transcript variability, in turn driving 

transcriptomic heterogeneity through a non-genetic mechanism23. Similarly, we find in this study 

that chromatin modifiers RNF8 and MIS18A seem to effect changes in transcriptomic 

heterogeneity through mechanisms independent of either cell cycle alterations or chromosomal 

content changes (Supplemental Fig. 3.1, Supplemental Fig. 3.4). We propose that a potential 

mechanism explaining our observed transcriptional phenotypes could be altered chromatin 

accessibility profiles, the variance of which  we find change proportionally with their 

accompanying transcriptomic profiles (Figs. 3.3, 3.6). These chromatin accessibility profiles 

could be stably inherited by future progeny, leading to a sustained change in transcriptomic 

profiles across resulting subpopulations, and in the case of RNF8- or MIS18A-overexpression, 

explain increased observed metastatic fitness (Fig. 3.4). Interestingly, this is in-line with our 

previous observations in yeast that in the absence of a pre-established gene regulatory network 

for a given environment, the presence of certain chromatin modifications drive the heritability of 

stochastic tuning–or in other words, the ability of a given cell population to adapt and proliferate 

under unfamiliar environment challenges24. Taking these studies in summary, we propose that in 
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the absence of a strong genetic driving mechanism, expression of chromatin modifiers such as 

RNF8 and MIS18A can heritably induce transcriptomic heterogeneity and increase the likelihood 

of resistant tumor subpopulation proliferation. 

 

RNF8 and MIS18A presenting as the two strongest Perturb-Seq candidates (Figs. 3.3, 

Supplemental Fig. 3.2) is particularly intriguing given their established roles in DNA damage 

repair and Twist-mediated transcription (RNF8) and centromere function (MIS18A), rather than 

transcriptome regulation47-52. In particular, given its function as a key component of the 

centromeric deposition complex, the dysregulation of which has been shown to directly cause 

chromosomal instability and aneuploidy through improper metaphase separation52,55-56, MIS18A 

contributing to transcriptional heterogeneity through a CNA-independent pathway is surprising 

(Supplemental Fig. 3.4). This suggests that MIS18A could function through a 

centromere-independent pathway to affect transcriptional ITH as suggested in this study (Fig. 

3.7). Future studies will elucidate the mechanism by which MIS18A can drive transcriptomic 

heterogeneity outside of functions in the centromeric deposition complex. Indeed, we observed 

that other members of this complex were implicated in driving detrimental human patient 

survival outcomes (Fig. 3.5C); this role could be shared more generally among this entire 

complex, suggesting a previously undefined role for the deposition complex outside of 

establishing centromeric domains. Similarly, while RNF8 has been linked to transcriptional 

changes mediated through Twist47, the precise mechanisms downstream of RNF8-induced 

transcriptomic heterogeneity remain unclear. Our findings underscore the importance of 

exploring non-genetic pathways in tumor progression and highlight the need for further 

investigation into how RNF8 and MIS18A contribute to ITH phenotypes. 

 

Lastly, we envision that as single-cell studies continue to be adopted in the context of studying 

the dynamics of ITH, significant insights into spatial dynamics of clone-clone interaction will 
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occur. Though data from our study suggests a global change in cellular morphology occurring in 

the context of increased transcriptomic heterogeneity (Figs. 3.4, Supplemental Fig. 3.3), how 

these morphological changes impact greater cell-cell interactions in the tumor microenvironment 

are unknown. Future studies should integrate spatial single-cell imaging techniques such as 

MERSCOPE and time-resolved imaging to elucidate this link between cellular transcriptomic 

heterogeneity and the tumor microenvironment.  

 

We present in this study a scalable computational and experimental workflow to identify and 

validate regulators of transcriptional heterogeneity using bulk RNA-Seq patient data as an initial 

filtering step. We propose that this focus on utilizing bulk patient data as a proxy for single 

cell-to-cell heterogeneity can allow for efficient use of existing and future patient sequencing 

datasets. Given the importance of transcriptomic heterogeneity in driving tumor resistance, we 

believe characterizing regulators of transcriptomic heterogeneity will present additional cancer 

therapeutic targets, particularly as co-treatments in conjunction with targeted therapies.  

3.10: Limitations of the Study 

Our study presented here has the following limitations: (i) we focus primarily on chromatin 

modifiers as noted in the study, due to our prior observations in yeast that transcriptional tuning 

is contingent upon presence of chromatin modifications; (ii) we primarily utilize the MDA-MB-231 

cancer cell line. Future studies will add to mechanism of action of both RNF8 and MIS18A with 

respect to their interactomes and contextualize our scATAC-seq findings with respect to RNF8 

and MIS18A. 
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3.11: Figures 

 
 
Figure 3.1. In silico nomination of chromatin organizers correlated with changes in 
genome-wide transcriptional coefficient of variation. (A) Schematic of computational 
discovery of putative chromatin organizers (COs) implicated in modulating transcriptional ITH. 
(Figure caption continued on next page.)  
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(Figure caption continued from the previous page.) CV analysis was performed on patient bins 
corresponding to the top or bottom quartile of expression for a particular given CO grouping 
factor. Running this CV analysis in parallel using a random gene as grouping factor gave 
empirical estimates of background noise. Normalized z-scores were computed for each given 
CO, and COs above a given z-score cutoff (2.5) were chosen for further experimental analysis. 
(B) Chart of significant outliers from CO analysis as described in (A). CV analysis was 
performed on both the top quartile compared to bottom quartile of CO expression, as well as the 
top quintile compared to bottom quintile. 41 COs satisfied our empirical z > 2.5 cutoff. (C) 
Schematic showing principal component distances from their given centroid (black circle). (D) 
Violin plot showing transcriptomic distance from a bin’s given quartile transcriptomic centroid, 
shown for 2 representative chosen COs, RNF8 and MIS18A (left), as well as for example 
negative control genes where no significant change in transcriptomic distance was seen (right). 
On average, increasing expression of our nominated COs increased transcriptomic spread, or 
distance, of patients within that given bin. P-values given by two-sided Wilcoxon signed-rank 
test. (E) Comparison between calculated CV densities for each patient quartile grouping for 
representative COs (top) as well as their corresponding gene mean densities (bottom). 
Increased CV density shift was not accompanied by a shift in mean gene expression. P-values 
calculated by two-sided Kolmogorov–Smirnov test and adjusted with the Benjamini-Hochberg 
procedure. 
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Figure 3.2. In vivo CRISPRi screening of computationally nominated COs to further filter 
for functionally significant modulators of transcriptomic heterogeneity.  (A) Schematic of 
in vivo CRISPRi screen of putative functional regulators of transcriptional ITH. This 
growth-based screen was carried out in the established MDA-MB-231 female NSG xenograft 
model. (B) (Top) Volcano plot of in vivo CRISPRi screen results for orthotopic injection and 
(bottom) and tail-vein injection routes. The x-axis shows the calculated fitness scores, where 
positive values denote increased tumor growth upon sgRNA expression, and negative values 
denote the opposite. The y-axis represents −log10 of the p value associated with each 
enrichment x-axis: normalized growth impact (sgRNA representation), normalized to in vitro 
endpoint sgRNA representation.  
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Figure 3.3. RNF8 and MIS18A directly modulate transcriptional heterogeneity at a 
single-cell level. (A) Schematic of 10X scRNA-seq v3.1 in vitro Perturb-Seq on selected in vivo 
hits to filter for factors causally modulating transcriptional heterogeneity at a cell-to-cell level. (B) 
Violin plot showing CRISPRi (left) and CRISPRa (right) log-normalized genome-wide CV 
observed at a single-cell level, for the two strongest observed modulators of transcriptional 
heterogeneity from our Perturb-Seq data, RNF8 and MIS18A. Each horizontal line of the violin 
plot represents a single gene across the set of cells with that particular genetic perturbation, 
with the null expectation that a CO with no effect on modulating transcriptomic heterogeneity 
would lead to no net change between the corresponding sgRNA condition and non-targeting 
sgRNA (i.e. y-axis measurement of 0). P-values calculated via one-sample two-tailed Student’s 
t-test. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) (C, D) Left panels: transcriptomic variability 
analysis results showing transcript coefficient of variation for each gene between cells 
transduced with the denoted guide and control cell line. P-value given by two-sided paired 
Student’s t-test. Right panels: Representative highly variable genes are shown to the right. A 
lower spread in observed transcript abundance was seen upon CRISPRi knockdown of either 
RNF8 or MIS18A. (E) CV analysis (see Methods for more details) applied to independent 
patient tumor scRNA-seq dataset58. Each quartile consists of n = 4 patients. P-values computed 
using two-sided Wilcoxon signed-rank test. 
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Figure 3.4. Modulating expression of RNF8 or MIS18A tunes in vitro chemotherapeutic 
resistance and proliferative fitness. (A) Live-dead cytotoxicity assays of given MDA-MB-231 
CRISPRi cell lines treated with cyclophosphamide at 2.5mM (blue) or 5-fluorouracil at 2.5mM 
(red). 48 hours post-treatment, cells were imaged and total death signal (NIRCU x uM2/image) 
was recorded for each given cell line. P-values calculated by one-way ANOVA (n=8 per 
condition). (B) Live-dead cytotoxicity assays of given CRISPRa cell lines treated with 
cyclophosphamide at 2.5mM (blue) or 5-fluorouracil at 2.5mM (red). 48 hours post-treatment, 
cells were harvested for Cell-Titer Glo 2.0 assay (see Methods for more details) and 
luminescence was recorded. P-values calculated by one-way ANOVA (n=8 per condition). (C) 
Colony formation assay of MDA-MB-231 CRISPRi-ready cell line, or CRISPRa-ready cell line, 
stably transduced with the denoted sgRNA. (Figure caption continued on the next page.) 
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(Figure caption continued from the previous page.) P-values calculated by one-way ANOVA 
(n=6 per condition). (D) Cell painting assay of MDA-MB-231 CRISPRa-ready cell line, stably 
transduced with the denoted sgRNA. Morphology heterogeneity score was derived from a 
weighted combination of multiple cell features measured within Cell painting assay, namely cell 
body, mitochondria, ER Golgi, and nuclei features (left barplot). Representative microscopy 
images show a general distension in MDA-MB-231 CRISPRa-ready lines upon overexpression 
of either RNF8 or MIS18A (right, white arrows). Scale bar = 50uM. P-values calculated using a 
one-sided Wilcoxon signed-rank test.  
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Figure 3.5. Modulating expression of RNF8 or MIS18A affects in vivo fitness and 
long-term patient human survival rates.  (A-B) in vivo metastatic lung colonization assay 
results for the given MDA-MB-231 cell lines. Shown is the normalized photon flux at the given 
time point post-injection. Significantly lower lung metastatic burden was observed upon 
CRISPRi-mediated knockdown of either RNF8 or MIS18A (A), with the opposite phenotype 
seen upon overexpression (B). P-values calculated via one-tailed t-test (n = 5 per sgRNA 
condition). (C) Kaplan-Meier (KM) survival curves shown for bottom quartile expressers (red 
line) and top quartile expressers (blue line) in TCGA patient data with the given chromatin 
organizer grouping factors. Lower expression of either RNF8 or denoted members of the 
CENP-A deposition complex generally conferred higher survival rates, with higher expression 
being detrimental. P-value calculated via nonparametric log-rank test. 
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Figure 3.6. Increased expression of RNF8 or MIS18A leads to increased variance in global 
chromatin accessibility. (A) Workflow schematic of Scale and 10X scATAC-seq used to 
interrogate genome-wide open chromatin occupancy in RNF8- and MIS18A-tuned MDA-MB-231 
cell lines. Nuclei were isolated from each of the six individual cell lines, pooled in a barcoded 
Scale 96-well plate, and then prepared using the 10X scATAC-seq v2 workflow. (B) Violin plot 
showing CRISPRi/a genome-wide open chromatin CV observed at the single-cell level, grouped 
by perturbation (x-axis labels). Each line constituting the violin plot represents a single genomic 
locus seen across the set of cells with that designated sgRNA perturbation, with the expectation 
that a perturbation that has no effect on modulating accessibility heterogeneity would lead to no 
net change between the sgRNA condition and control condition (y-axis measurement of 0). (C, 
D) Left plots: binarized open/closed chromatin scores from ArchR across the set of cells with 
that given perturbation (vertical axis) across the shown genomic position (horizontal axis). 
(Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) Yellow box highlights the lowering in 
dispersion of open/closed chromatin upon knocking down expression of either RNF8 or MIS18A 
(C), or the opposite phenotype seen upon upregulating RNF8 or MIS18A (D). Right plot: CV 
calculated for given highlighted genomic locus peak for each particular perturbation condition. 
P-values calculated via Fisher’s exact chi-square test.  
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Figure 3.7. Reduced expression of MIS18A is not accompanied by loss of CENP-A 
function. (A) Immunoblotting of bulk CENP-A levels in given MDA-MB-231 CRISPRi/a cell 
lines. Top: CENP-A blot normalized to tubulin loading control. Bottom: tubulin-normalized image 
quantification between the specified cell lines and non-targeting control. (B) qRT-PCR of minor 
satellite ncRNAs in specified MDA-MB-231 CRISPRi/a cell lines as a measure of defective 
histone modifications (n=4). Shown are GAPDH-normalized transcript levels of minor satellite 
ncRNAs between labeled cell lines. Loss of minor satellite ncRNA species was not seen upon 
CRISPRi knockdown of MIS18A, suggesting that centromere histone modifications are intact in 
our MDA-MB-231 CRISPRi/a MIS18A cell line model. (C) CENP-A immunohistochemistry in 
given MDA-MB-231 CRISPRi/a cell lines. Top: representative immunofluorescence images of 
CENP-A signal and DAPI in MDA-MB-231 MIS18A CRISPRi and non-targeting control lines. 
Bottom: Quantification of CENP-A as a fraction of identified DAPI clusters in the given image. 
Knockdown of MIS18A was not accompanied by a loss of CENP-A signal. Scale bar = 50uM. 
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Supplemental Figure 3.1, related to Figure 3.1. Computational discovery of chromatin 
organizers correlated with global transcriptomic variation. (A) Schematic detailing 
TCGA-RNA-Seq analysis. (B) First two principal components plotted for the specified genes for 
bottom and top quartile of expression. (C) Coefficient of variation analysis of copy number 
alteration (CNA) data for genes analyzed in Fig. 3.1B. CNA CV ratios and expression CV ratios 
are not strongly correlated, suggesting that transcriptomic heterogeneity observed in 
TCGA-RNA-Seq data is not explained by a shift in CNA for the same set of genes. P-values 
given by: two-sided Student’s t-test. (D) (Top) RNF8 and MIS18A expression levels across 
bottom and top quartile of patient expressers; (bottom) tumor purity (ESTIMATE) scores across 
the same group. Low ESTIMATE scores were seen in both patient groupings, suggesting high 
tumor purity. P-values given by two-sided Wilcoxon signed-rank test. 
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Supplemental Figure 3.2, related to Figure 3.3. Modulating expression of nominated COs 
tunes cell-to-cell transcriptomic variability. (A-B) Violin plot showing CRISPRi (A) and 
CRISPRa (B) log-normalized genome-wide CV observed at a single-cell level, for all putative 
modulators of transcriptional heterogeneity from our Perturb-Seq screen, as selected from our in 
vivo screen cutoff. (Figure caption continued on the next page.)  
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(Figure caption continued from the previous page.) Each horizontal line of the violin plot 
represents a single gene across the set of cells with that particular genetic perturbation, with the 
null expectation that a CO with no effect on modulating transcriptomic heterogeneity would lead 
to no net change between the corresponding sgRNA condition and non-targeting sgRNA (i.e. 
y-axis measurement of 0). Random gene groupings (x-axis) of each corresponding sgRNA were 
selected by calculating cell-to-cell CV for a number of cells equal to the number of cells in the 
actual sgRNA group. P-value calculated via one-sample two-tailed Student’s t-test. (C) 
Individual sgRNA knockdown or upregulation shown for each guide in the given CRISPRi or 
CRISPRa library. Middle and right bars: each of the two given sgRNAs in the library for each 
gene. P-values calculated via two-tailed Student’s t-test and adjusted using the Bonferroni 
procedure. (D-E) Left panels: transcriptomic variability analysis results showing transcript 
coefficient of variation for each gene between cells transduced with the denoted guide and 
control cell line. P-value given by two-sided paired Student’s t-test. Right panels: Representative 
highly variable genes are shown to the right. A higher spread in observed transcript counts was 
seen upon CRISPRa overexpression of either RNF8 (D) or MIS18A (E). (F-G) Cell cycle 
analysis of cells with the given sgRNA perturbation, in MDA-MB-231 CRISPRi-ready lines (F) or 
CRISPRa-ready lines (G) (see Methods for more details). A lack of clear association of 
modulation of either gene with cell cycle phase was seen, suggesting that the transcriptomic 
heterogeneity phenotypes seen in Fig. 3.3 were not explained by cell cycle state. P-values 
calculated using two-sided Wilcoxon signed-rank test. (H-I) Gene mean densities for the 
denoted sgRNA perturbation in MDA-MB-231 CRISPRi-ready cell lines (H) or CRISPRa-ready 
lines (I). P-values calculated using the one sample two-tailed Student’s t-test and adjusted using 
the Benjamini-Hochberg procedure. 
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Supplemental Figure 3.3, related to Figure 3.4. Additional morphological characterization 
of MDA-MB-231 cell lines. (A) Cell proliferation rates of the given MDA-MB-231 cell lines, as 
measured by real-time microscopy. P-values calculated by one-way ANOVA (n=8 for each 
condition). (B) Called morphology scores for the specified MDA-MB-231 CRISPRi cell lines from 
Cell Painting assay. Cells were plated in a 96-well plate, stained with appropriate fluorescent 
probes for the corresponding cell feature listed, and imaged at 10X magnification (see Methods 
for more details). Heterogeneity score was determined via combined feature scoring of cellular 
nuclear, mitochondrial, body, and ER Golgi features. Generally lower scores (reflecting lower 
cell body heterogeneity) were seen upon knockdown of either RNF8 or MIS18A. P-values 
calculated by one-sided Wilcoxon signed-rank test.  
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Supplemental Figure 3.4, related to Figure 3.4. DNA content analysis of MDA-MB-231 
CRISPRi/a cell lines suggests a non-genetic mechanism as a driver of transcriptional ITH.  
(A) Flow histograms of generated MDA-MB-231 CRISPRi/a cell lines stained with propidium 
iodide to measure DNA content. G0/G1 peak was called using spiked-in human PBMCs as 
internal control (not shown)49. (B) Mean DNA content measured for each G0/G1 and G2 peak 
for each generated MDA-MB-231 CRISPRi/a cell line. P-values generated using one-way 
ANOVA comparing mean fluorescence intensity of each cell line to its respective control (n = 6). 
(C) Fraction of generated MDA-MB-231 CRISPRi/a cell lines observed in each cell cycle phase. 
P-values generated with one-way ANOVA comparing each cell line to its respective control (n = 
6). (D) CVs observed for each cell cycle phase peak for all generated MDA-MB-231 CRISPRi/a 
cell lines. P-value generated using one-way ANOVA with null hypothesis of equal proportions (n 
= 6).  
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Supplemental Figure 3.5, related to Figure 3.5. In vivo CRISPRi screening of RNF8 and 
MIS18A. (A) HCC1806 in vivo orthotopic growth assay using the specified genetic 
perturbations. Overexpressing either RNF8 or MIS18A leads to significantly increased 
metastatic burden with HCC1806 CRISPRa lines with the specified sgRNA (n = 5 per sgRNA 
condition). (B) Kaplan-Meier (KM) survival curves shown for bottom quartile expressers (red 
line) and top quartile expressers (blue line) in TCGA patient data with the given genes with no 
correlation to transcriptional ITH. Increased expression of the given gene did not correlate with 
lower survival rates in human patients. P-value calculated via nonparametric log-rank test. (C) 
Volcano plot of in vivo CRISPRi screen results of tail-vein burden normalized to orthotopic 
burden (metastatic/primary).  
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Supplemental Figure 3.6, related to Figure 3.6. Global mean chromatin accessibility 
scores are not significantly different between assayed MDA-MB-231 CRISPRi/a lines. 
(A-B) Violin plot showing CRISPRi (A) and CRISPRa (B) genome-wide mean chromatin 
accessibility, pseudo-bulked across cells with the denoted genetic perturbation (x-axis labels). 
Gene accessibility scores were averaged across all assayed genes. Overall chromatin 
accessibility does not significantly shift between RNF8- or MIS18A-perturbed cells, suggesting 
that the observed changes in accessibility heterogeneity from Fig. 3.6B were not a function of a 
change in overall chromatin accessibility. P-values calculated via two-tailed Student’s t-test. 
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3.12: Methods 

Cell lines and Cell culture 

MDA-MB-231 breast cancer cell line was acquired from ATCC. All cells were cultured in a 37°C 

5% CO2 humidified incubator. MDA-MB-231 was cultured in DMEM medium supplemented with 

10% FBS, glucose (2 g/L), L-glutamine (2 mM), 25 mM HEPES, penicillin (100 units/mL), 

streptomycin (100 μg/mL) and amphotericin B (1 μg/mL) (Gibco). All cell lines were routinely 

screened for mycoplasma with a PCR-based assay. To select transgenic lines, puromycin was 

used at 8ug/mL final concentration. 

 

Mouse Models 

Female NSG mice were purchased from Jackson Laboratory (Strain#005557). All animal 

surgeries, husbandry and handling protocols were completed according to University of 

California IACUC guidelines. 

 

In silico nominated sgRNA library cloning and sequencing validation 

For our computationally nominated CRISPRi library, a library consisting of guides targeting 185 

elements (5 sgRNAs each for 37 genes) was designed and ordered from Twist Biosciences. 

The pool was resuspended to 5ng/μL final concentration in Tris-HCl 10mM pH 8, and a qPCR to 

determine Ct to be used for downstream library amplification was performed (forward primer: 

TCACAACTACACCAGAAGccac, reverse primer: TCTTCGTCAAAGTGTTGCcagc) using a 

16-fold library dilution.  

 

The library was then amplified via PCR, and ran out on a 2% agarose gel to check library size 

(expected band of 84bp). PCR product was then cleaned up using a DNA Clean and 

Concentrator kit-5 (Zymo Research Cat. #D4003), and eluted in 15μL H2O. Cleaned product 
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was digested overnight using FD Bpu1102I (Thermo Fisher Cat. #FD0094), and then further 

digested for 1hr using FD BstXI (Thermo Fisher Cat. #FD1024). Inserts were then ligated into 

pCRISPRi/a v2 backbone in a 50ng reaction with 1:1 insert:backbone ratio for 16hrs 16C. 

Ligated products were then ethanol-precipitated overnight at -20C, cleaned, and then 

transformed into 100μL NEB Stables (NEB Cat. #C3040H), followed by maxiprep plasmid 

isolation.  

 

For sequencing validation, 1μg plasmid DNA was then digested in 50μL volume for 1hr with FD 

BstXI (Thermo Fisher Cat. #FD1024). Digested plasmid DNA was then Klenow-extended using 

added UMI linker (sequence: CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and 

then cleaned up using a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033). 

Indexing PCR (forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; 

reverse primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

Tcgactcggtgccactttttc) was then performed in 30μL final volume, followed by gel purification 

(Takara Bio Cat. #740609.50). Samples were then pooled and sequenced on a lane of HiSeq 

4000 SE50 at the UCSF Center for Advanced Technology (CAT).  

 

Viral titering of computationally nominated sgRNA library 

3 million HEK293Ts were seeded in a 10cm plate. 24hrs later, HEK293Ts were transfected with 

TransIT-Lenti (Mirus Bio Cat. #Mir6603) reagent according to manufacturer’s protocol. Viral 

supernatant was harvested, aliquoted, flash-frozen, and then stored -80C for long-term storage.  

200K MDA-MB-231 CRISPRi-ready cells were then seeded in a 6-well plate for viral titering. 

Using a range of 100-, 200-, and 400μL viral supernatant, cells were transduced, adding 

polybrene to 8ug/mL final concentration. 48hrs post-transduction, cells were passed through 

flow cytometry on the FACS Aria II in the UCSF CAT, and %BFP+ was recorded.  
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Cell preparation for subcutaneous injection 

10 million MDA-MB-231 CRISPRi-ready cells were seeded into a 15cm plate and grown 

overnight. On the following day, lentivirus was added to cells with a target MOI of <10%, with 

polybrene added to final concentration 8ug/mL. Media was then changed 24hrs 

post-transduction, and selection was started at 72 hrs post-transduction via puromycin at final 

concentration 1.5ug/mL. 

We then partitioned into 3 arms the transduced MDA-MB-231 CRISPRi-ready cells. Specifically, 

200K cells were split into a 15cm plate for in vitro passage for sgRNA in vitro growth 

normalization. 200K cells were pelleted and frozen at -80C for downstream gDNA extraction, for 

‘t0’ collection.  

 

For the bilateral flank injections, 9 million cells were spun down and resuspended to final 

concentration 1 million cells/50μL in 1:1 PBS/matrigel. Bilateral subcutaneous injections in 50μL 

final volume were then performed in female, 8-12 week-old age-matched NOD scid gamma 

(NSG) mice (n = 3) with 500K cells.  

 

For lung colonization assay, 1 million cells  were spun down and resuspended to final 

concentration 100K /100uL in PBS. Tail-vein injections in 100μL final volume were then 

performed in female, 8-12 week-old age-matched NOD scid gamma (NSG) mice.  

 

Tumor gDNA extraction and library preparation 

Tumors were then harvested 5-6 weeks post-injection and gDNA extracted using Quick-DNA 

midiprep plus kit (Zymo Research Cat. #D4075).  
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For the bilateral flank injections, each tumor gDNA sample (n = 6) was digested in 3ug-scale, 

100μL volume reactions with FD BstXI. Digested gDNA was then Klenow-extended using added 

UMI linker (sequence: CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and then 

cleaned up using a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033), 

eluting twice in 50uL Qiagen EB pre-heated to 70C (final elution volume of 100uL). Indexing 

PCRs (forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; reverse 

primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

Tcgactcggtgccactttttc) were then performed with 500ng tagged gDNA in 100μL final volume with 

the following parameters: 98C 30s, [98C 30s 62C 15s 72C 15s 30X], 10C hold, followed by 

150-1000bp double-sided cleanup (Zymo Research Cat. #D4085). Samples were then pooled 

and sequenced on a lane of HiSeq 4000 SE50 at the UCSF Center for Advanced Technology 

(CAT).  

 

For harvested lungs from lung colonization assay (n=5), lungs were first mouse-cell-depleted 

using Miltenyi Mouse Cell Depletion kit (Miltenyi Cat. # 130-104-694) to enrich human 

MDA-MB-231 cell line xenograft signal. Tumor gDNA was then digested in 3ug-scale, 100uL 

volume reactions with FD BstXI. Digested gDNA was then Klenow-extended using added UMI 

linker (sequence: CTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcttg), and then 

cleaned up using a Zymo DNA Clean & Concentrator-25 kit (Zymo Research Cat. #D4033), 

eluting twice in 50uL Qiagen EB pre-heated to 70C (final elution volume of 100uL). Indexing 

PCRs (forward primer: AATGATACGGCGACCACCGAGATCTacactctttccctacacgacgctc; reverse 

primer: 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGA

Tcgactcggtgccactttttc) were then performed with 500ng tagged gDNA in 100μL final volume with 

the following parameters: 98C 30s, [98C 30s 62C 15s 72C 15s 30X], 10C hold, followed by 
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150-1000bp double-sided cleanup (Zymo Research Cat. #D4085). Samples were then pooled 

and sequenced on a lane of HiSeq 4000 SE50 at the UCSF Center for Advanced Technology 

(CAT).  

 

scRNA-seq sgRNA library cloning 

For our CRISPRi library, a library consisting of guides targeting a total of 16 elements, 

consisting of COs with |z| > 4 across both MFP and TV screens, along with non-targeting 

sgRNAs, was designed and ordered from Twist Biosciences. We selected the top 2 predicted in 

silico protospacers and ordered them as a paired sgRNA cassette for cloning into a compatible 

dual sgRNA lentiviral CRISPR guide vector, pJR85 (Addgene Cat. #140095). The pool was 

resuspended to 10ng/μL final concentration in Tris-HCl 10mM pH 8, and an initial PCR to 

amplify the oligo pool (forward primer: TCACAACTACACCAGAAGccac, reverse primer: 

TCTTCGTCAAAGTGTTGCcagc) was performed with the following cycling conditions: 98C 30s, 

[98C 15s, 56C 15s, 72C 15s 11X], 72C 1 min, 10C hold. The library was then purified via 

Qiagen Min Elute kit (Qiagen Cat.# 28004), eluted in 20uL Qiagen EB, and ~0.8ug was 

recovered post-elution. Purified insert was then digested overnight at 37C with BstXI (Thermo 

Fisher Cat. #FD1024) and Bpu1102l (Thermo Fisher Cat. #FD0094), and run out on a 8% TBE 

gel. The expected insert size of 97bp was cut and extracted via ethanol precipitation (using 3X 

volume 100% EtOH) overnight at -20C. Purified insert was then ligated into 

BstXI/Bpu1102l-digested pJR85 at a 1:1 molar ratio for 16 hrs 16C, and ligation product was 

purified via ethanol precipitation overnight at -20C. Final precipitation product was eluted in 5uL 

H20 and used as input to electroporation using 50uL MegaX electrocompetent cells (Invitrogen 

Cat. #C640003), and culture was prepped in a maxiprep format. 

 

For the second ligation, a golden gate assembly reaction was set up with pJR89 donor vector 

and the generated pJR85 intermediate library described above, with the following cycling 
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conditions: [42C 5mins, 16C 5 mins 30X], 60C 5 mins. Product was ethanol-precipitated at 

-20C, resuspended in 10uL H20, and transformed into 100uL NEB Stable (New England Biolabs 

Cat. #C3040H). 50mL of resulting library transformants was used for midiprep plasmid isolation. 

 

For sequencing validation, 200ng of plasmid library was used for PCR (forward primer: 

AATGATACGGCGACCACCGAGATCTACACCGCGGTCTGTATCCCTTGGAGAACCACCT, 

reverse primer: 

CAAGCAGAAGACGGCATACGAGATcgtgaGCGGCCGGCTGTTTCCAGCTTAGCTCTTAAA) 

with the following cycling conditions: 98C 30s, [67C 10s, 72C 75s 12X], 72C 5 mins, 10C hold. 

The product was size selected for >150bp fragments and quantified via tapestation, and the 

library was sequenced using a MiSeq v2 kit PE150 configuration. 

 

Viral titering 

0.5 million HEK293Ts were seeded in a 10cm plate. 24hrs later, HEK293Ts were transfected 

with the plasmid library using TransIT-Lenti (Mirus Bio Cat. #Mir6603) reagent. Viral supernatant 

was harvested, aliquoted, flash-frozen, and then stored -80C for long-term storage.  

200K MDA-MB-231 CRISPRi-ready cells were then seeded in a 6-well plate for viral titering. 

Using a range consisting of 250uL, 500uL, and 1mL viral supernatant, cells were transduced 

with polybrene at 8ug/mL final concentration. 24h post-transduction, media was replaced with 

fresh media without polybrene. 48hrs post-transduction, cells were passed through flow 

cytometry on the FACS Aria II in the UCSF CAT, and %BFP+ was recorded for each condition, 

and was used to record viral titer for the frozen virus library. 

 

scRNA-seq library workflow & sequencing 

1 million MDA-MB-231 CRISPRi-ready cells were seeded in a 15cm plate. 24h after seeding, 

2mL of virus was added to the plate with polybrene at 8ug/mL final concentration. 24h after 
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transduction, media was changed to polybrene-free media. 48h after transduction, cells were 

trypsinized and passed on FACS, and BFP+ cells were isolated to be used as input to 10X 

scRNA-seq. ~100K BFP+ cells were isolated from flow, spun down at 800g 5 mins RT, and 

resuspended in 100uL PBS. Cells were loaded at a target of 10K cells on a single lane of 10X 

scRNA-seq v3.1, and the manufacturer’s protocol was followed for library preparation. The 

resulting indexed library was sequenced on a lane of NovaSeq 6000.  

 

Colony formation assay 

For colony formation assay, 200 cells per relevant MDA-MB-231 cell line were seeded (n=6) in a 

6-well plate. 8 days after seeding, colonies were stained and imaged. Briefly, media was 

removed and cells were washed with 1mL PBS at RT. Cells were then fixed in 4% PFA (Alfa 

Aesar Cat. #43368-9L) for 10 minutes at RT, and then stained in 0.1% crystal violet 

(Sigma-Aldrich Cat. #V5265-250ML) for 1h at RT. Wells were then washed 3X with ddH20 at RT 

until colonies were visible. Colonies were then imaged on a Bio-Rad ChemiDoc MP imager. 

 

Cell proliferation and cytotoxicity assays 

For assaying cytotoxicity, two assays were used. For the CRISPRa data shown in the main text, 

CellTiter-Glo 2.0 Cell Viability Assay (Promega Cat. #G9241) was used. 5K of the relevant 

MDA-MB-231 cell line was seeded per well in a black 96-well plate (Corning Cat. #3904) for 

luminescence measurement. 8 wells were seeded per cell condition in 100μL volume media. 

24h after seeding, cell media was replaced with media containing either 5FU or 

cyclophosphamide at [5FU]: 5mM; [cyclophosphamide]: 2.5mM. 48h after drug treatment, cells 

were harvested according to manufacturer’s protocol. Briefly, CellTiter-Glo 2.0 Reagent and cell 

plates were equilibrated to RT 30 mins prior to use. 100μL CellTiter-Glo 2.0 Reagent was then 

added via multichannel to each well and mixed at 300 rpm for 2 mins at RT; the plate was 
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incubated for 10 minutes at RT, covered. Plate luminescence was then recorded on a Tecan 

Spark Microplate reader. 

 

For the CRISPRi data in the main text, cells were imaged in real time using an Incucyte SX5. 5K 

of the relevant MDA-MB-231 cell line was seeded per well in a black 96-well plate (Corning Cat. 

#3904). 8 wells were seeded per cell condition in 100μL volume media. 24h after seeding, cell 

media was replaced with media containing 1X NIR live-dead dye (Sartorius Cat. #4846) along 

with either 5FU or cyclophosphamide at [5FU]: 10mM; [cyclophosphamide]: 2.5mM. The plate 

was placed in the Incucyte and imaged at 3-hour intervals at 4X objective with 3 images per 

image snapshot. Death signal was recorded via the respective NIR Incucyte channel, and total 

integrated intensity (NIRCU x uM2/image) was used in the comparison between MDA-MB-231 

cell lines with respective treatments. 

 

High-content microscopy 

The JUMP v3 kit (Revvity Cat. # PING21) was purchased and used to carry out Cell Painting 

morphological assaying57. Briefly, 5K of each respective MDA-MB-231 CRISPRi or 

MDA-MB-231 CRISPRa line were seeded in replicates in a black 96-well plate (Corning Cat. 

#3904). 24h after seeding, 50uL of staining solution 1 was added to each well and placed in an 

incubator at 37C, 5% CO2 for 30 mins.. Cells were then fixed with 50uL 16% PFA (Alfa Aesar 

Cat. #43368-9L) for 20 mins at RT in the dark. For cell feature staining, 50uL of staining solution 

2 was added to each well for 30 mins at RT in the dark. The plate was then stored at 4C in the 

dark in 0.3% NaN3 solution until image processing. 

 

In vivo tail vein injections for individual hit validation 

For in vivo lung colonization assay, MDA-MB-231 (CRISPRi-ready, or CRISPRa-ready with 

appropriate sgRNA) were grown in 10cm plates and allowed to expand. On the day of 
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injections, cells were harvested and resuspended to final concentration 200K/100uL in PBS. 

Tail-vein injections in 100uL final volume were then performed in female, 8-12 week-old 

age-matched female NOD scid gamma (NSG) mice (Jackson labs). In vivo bioluminescence 

was monitored weekly by (intraperitoneal) injection of luciferin and normalized to 

bioluminescence signal immediately following cell injection. 

 

Nuclei extraction  

To isolate nuclei from cells as input to scATAC-seq, cells were trypsinized and 5 x 10^6 cells 

were spun at 300xg for 5 mins at 4C. Supernatant was removed and cells were then lysed in 

1mL lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, .03% IGEPAL-630 

(Millipore-Sigma Cat. #I8896-50ML)) for a total of 15 minutes on ice. Cells were then washed 2X 

in 1mL wash buffer (1% BSA/PBS), spun down at 500xg for 10 mins at 4C, and resuspended in 

1X 10X Nuclei buffer (10X Genomics Cat. #2000207). Nuclei isolation was confirmed via trypan 

blue staining and live-dead quantification on a Countess III FL. For the scATAC-seq experiment 

described in the main text, >99% death was observed, corresponding to isolated nuclei. 

 

Scale pre-indexing and cell line hashing 

For higher throughput and to address batch effects that would arise from loading separate 

samples on separate channels on the 10X platform, nuclei that were isolated were then used as 

input to the Scale pre-indexing kit for scATAC-seq (Scale Cat. #110001), and the manufacturer's 

protocol for hashing was followed. Briefly, nuclei for each of the 6 MDA-MB-231 cell lines were 

diluted to a loading concentration of 4K nuclei/uL (for a target of 20,000 nuclei/well). 5uL was 

loaded per well of the provided ITP, and 4 wells were loaded for each of the 6 MDA-MB-231 cell 

lines. Nuclei were pooled and diluted to a final concentration of 7.142K/uL in the provided 

loading buffer, and 100K nuclei were loaded per channel, 2 channels total, of a 10X Chromium 

X controller. 
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scATAC-seq of isolated MDA-MB-231 nuclei  

For scATAC-seq library generation, we used the 10X scATAC-seq library v2 kit (10X Genomics, 

PN-1000390). The protocol was followed as described starting from step 2 of the protocol, with 

the following modifications: in step 2.5a, 4 cycles were used; steps 3.1p, 3.2a/k, brief vortexing 

was used to mix instead of pipette mixing; step 3.2l, a 5 minute RT incubation was used; step 

4.1c, 2.5uL of either is701, is702 primer (Scale Cat. #110101) was used instead of 10X single 

Index N Set A primer; step 4.1d, 8 cycles were used; step 4.2a/e/n, brief vortexing was used to 

mix instead of pipette mixing; step 4.2o: 5 mins RT incubation was used. 

 

DNA content analysis of generated MDA-MB-231 CRISPRi/a lines  

1 million cells per cell line were trypsinized and spun down for 5 mins 500xg at RT. Human 

PBMCs were also included during this process to serve as internal DNA standard49-51. Cells 

were resuspended in ~0.5mL PBS, and then 70% ice-cold EtOH was added dropwise to cells 

over the course of ~30s with constant vortexing. Cells were then spun down for 10 mins at 

500xg and cells were washed 1X with PBS. Post-wash, cells were resuspended in 1mL PI 

staining buffer (40ug/mL PI (Sigma-Aldrich Cat. #P4864-10ML); 100ug/mL RNAse A (Thermo 

Fisher Cat. #EN0531)) for 1 hr at RT in the dark before running on flow cytometry. 

 

Cell lysates 

For immunoblotting, cells were seeded in 6-well plates and harvested at confluency. Cells were 

washed 3X in 1X PBS, and then lysed in 200ul 1X RIPA buffer with supplemented protease 

inhibitor (50mM Tris pH 8.0 , 150mM NaCl, 1% IGEPAL CA-630, 1% sodium deoxycholate, 

0.1% SDS) for 10 mins on ice. Cell lysates were then passed through a 28g needle 2X to shear 

gDNA, spun down at max speed 4C, and stored at -80C for long-term storage. 
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BCA protein quantification assay 

For BCA assay, working solution was performed according to manufacturer’s protocol. Briefly, 

working reagent was made by mixing reagent B:A in a 50:1 ratio. Samples including standards 

were incubated in 200ul volume at 37C for 30 mins and allowed to cool to RT. Samples were 

then read on a nanodrop and sample concentrations were recorded. 

 

Gel running 

Samples were run on a NuPage 4-12% gradient gel in MOPS SDS running buffer. 15ug of 

protein were loaded per well in 20ul volume at 200V for 50 mins. For transfer, the iBlot3 system 

was used, and the resulting transfer membrane was checked with Ponceau S staining solution 

for proper transfer. 

 

Blocking and antibody incubation 

Membrane was incubated in blocking buffer (5% non-fat milk/PBST). After block, primary 

antibody was added to each cut membrane portion at appropriate dilution in antibody staining 

buffer (2% BSA/PBST) and incubated overnight on a rocker at room temperature. Membrane 

was then washed 3X in 1X PBST for 10 mins on a rocker. Secondary antibody was then added 

at 1:10,000 dilution in antibody staining buffer (2% BSA/PBST) and then incubated for 1hr on a 

shaker with aluminum foil. Membrane was then washed 3X in 1X PBST for 10 mins with foil on, 

and then imaged on an Odyssey fluorescence imager. 

 

Minor satellite ncRNA qRT-PCR 

6-well plates were seeded with MDA-MB-231 CRISPRi/a cell lines at 300K cells/well (n=4 per 

condition). Cells were allowed to grow for 48hrs or 96hrs to allow for accumulation of minor 

satellite ncRNA species, and RNA was then extracted from each well using a Qiagen microprep 

RNA kit. cDNA was then constructed from each RNA sample (RT mixture: 300ng RNA, 5X RT 
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buffer, 6.25ng random hexamers, 0.125ul oligo dT 100uM, 0.25ul dNTP 10mM, 0.125ul 

RNAseOUT, .0625ul Maxima H Minus RT, 200u/ul, 0.3125ul ddH20) with the following thermal 

incubation parameters: [10mins 25C, 15 mins 50C, 5mins 85C]. cDNA was then diluted 10-fold 

in ddH20 to a final volume of 50ul, added to qPCR master mix solution (5ul 2X qPCR MM, 0.3ul 

primer F 10uM, 0.3ul primer R 10uM, 2ul cDNA, 2.4ul ddH20), and cycled with the following 

parameters on a Roche Lightcycler 480: 2 mins 95C, [15s 95C, 45s 60C] x40.  

 

Immunohistochemistry 

6-well plates were seeded with MDA-MB-231 CRISPRi/a cell lines at 50K cells/well and allowed 

to grow for 24hrs prior to staining. Wells were covered to 3mm depth with 4% formaldehyde and 

allowed to sit for 15 mins at room temperature, then washed 3X with 1X PBS. Permeabilization 

buffer (0.2% IGEPAL-630 in PBS) was then added to cells for 5 mins at room temperature, and 

washed 3X with 1X PBS. Cells were then blocked with buffer (2% BSA/PBS) for 60 mins at 

room temperature, and appropriate primary antibody was applied overnight at 4C (anti-CENPA, 

Invitrogen Cat. #MA1-20832). Plate was then washed 3X with 1X PBS, and incubated with 

appropriate secondary antibody for 1hr at room temperature (Invitrogen Cat. #A-11001), 

protected from light. Plate was then washed 3X with 1X PBS protected from light, 

counterstained with 300nM DAPI staining solution (Thermo Fisher Cat. #D1306), and then 

imaged at 10X objective with an Echo Revolve fluorescence microscope.  

 

Quantification and Statistical Analysis 

All software used was described in the main text or the appropriate methods section. Statistical 

tests, as well as statistical comparisons between groups, for each figure were denoted in the 

corresponding figure legend. P-values for each statistical test were noted in each figure panel, 

and (adjusted) P-values of 0.05 or lower were considered significant. Analyses were performed 
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in R, using a combination of Seurat, archR, CellProfiler, tidyverse, ggplot2, ggpubr, ggrepel, 

dplyr, tidyr, gridExtra, cowplot, patchwork, stringr, igraph, ggforce, ComplexHeatmap, rstatix, 

cvequality, EnhancedVolcano. 
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