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RESEARCH

Detecting significant genotype–
phenotype association rules in bipolar disorder: 
market research meets complex genetics
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Abstract 

Background: Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For 
bipolar disorder (BD), several genome‑wide association studies (GWAS) have been performed. Similar to other com‑
plex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To 
overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large 
consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making 
use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype–phenotype 
relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, 
to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We 
applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. 
In a discovery step, 20,882 candidate association rules were extracted.

Results: Two of these rules—one associated with eating disorder and the other with anxiety—remained significant 
in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds 
ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings.

Conclusion: Our approach detected novel specific genotype–phenotype relationships in BD that were missed by 
standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, 
it may facilitate identifying highly specific genotype–phenotype relationships in subsets of genome‑wide data sets of 
other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.

Keywords: Bipolar disorder, Subphenotypes, Rule discovery, Data mining, Genotype–phenotype patterns
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Background
It is widely accepted that the high heritability of around 
80% for bipolar disorder (BD) is conferred by a poly-
genic component yet to be understood in its complexity 
(McGuffin et  al. 2003; Craddock et  al. 2005). Genome-
wide association studies of BD have identified several 
genome-wide significant variants and also hinted at the 
existence of many more variants which fail to achieve 
the rigorous threshold of genome-wide significance 
(p < 5.0e−08) but contribute to the overall variance when 
considered within the context of polygenicity (Lee et al. 
2012a, b; Sullivan et al. 2012; Schulze et al. 2014). How-
ever, the number of newly identified variants is far below 
original expectations, with limited sample sizes being 
one of the explanatory factors. The largest sample for a 
meta-analysis of GWAS of BD to date comprised nearly 
64,000 participants (Sklar et al. 2011). Although this is an 
impressive sample size, GWAS of other phenotypes, such 
as adult height, have demonstrated that samples three-
times this figure are required to achieve an adequate 
number of significant findings (Lango Allen et al. 2010). 
Recent successes of the Psychiatric Genomics Consor-
tium (https ://pgc.unc.edu/) in schizophrenia genet-
ics where case–control samples have already exceeded 
100,000 individuals suggest that continued enlargement 
of sample size will also increase the yield of genome-wide 
significant findings for BD. Clinical heterogeneity of the 
BD phenotype may also have hampered success in iden-
tifying vulnerability genes. DSM (American Psychiatric 
Association 2000) and ICD (World Health Organization 
2011) present a list of possible symptoms, each of which 
must persist for a minimum period of time for the diag-
nosis to be assigned. Since a diagnosis of BD is based 
upon the presence of a minimum number of these symp-
toms, the diagnosis can be assigned for varying symptom 
constellations. Thus the nature and number of the under-
lying clinical symptoms, as well as the time periods over 
which they occur, show substantial variation between 
patients. Thus, the clinical presentation is diverse, and 
differing disease courses are observed within each diag-
nostic category.

We hypothesize that heterogeneity can be reduced 
and the number of identified variants increased by ana-
lyzing the joint effect of several genetic variants on spe-
cific subsets of clinical items identified in BD patients 
(Purcell et al. 2009; Lee et al. 2011). We hypothesize that 
systematic data mining approaches from other fields can 
be applied to analyses of GWAS data. Popular methods 
such as support vector machines, Bayesian networks, and 
association rule mining (ARM) have been successfully 
applied in industry. ARM is one of the most important 
and well researched techniques of data mining (Kotsi-
antis and Kanellopoulos 2006). It aims to extract casual 

structures among sets of items in data bases for discov-
ering and predicting regularities and has been applied 
extensively to market research (Agrawal et al. 1993; Ngai 
et al. 2009) in order to analyze customer habits. For sev-
eral years now, it has been applied to biological data, in 
particular microarray data for gene expression analysis 
(Martinez et  al. 2008; Liu et  al. 2011). We consider this 
approach highly appropriate for genome-wide data, since 
its main goal is to unravel unknown associations between 
source data, i.e. customer profiles in market research, 
and potential targets, i.e. their buying behavior, which 
can then be used for target prediction (Fig. 1). Within the 
context of genome-wide data, the source data are genetic 
variants and the potential targets are symptom clusters. 
The aim of the present study is to apply this data mining 
approach to GWAS datasets of BD in order to identify yet 
undetected genotype–phenotype associations, searching 
for associations between frequently occurring genotype 
combinations and symptom clusters.

Fig. 1 Outline of the overall approach. A main goal of market 
research is to identify rules that predict customer habits based on 
market baskets. In the cartoon, a male customer between 20 and 
25 without children living in the city favours junk food and beer and 
when he goes shopping he will most likely buy brands. Adapting 
this idea to genetic research we try to identify those genetic factors 
from the plethora of genetic factors in the “market basket” that are 
characterized by specific phenotypic features (like specific phobia or 
restlessness). The cartoon contains graphical depictions by Benjamin 
Albiach Galan and Konstantinos Kokkinis

https://pgc.unc.edu/
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Methods
Samples
Genotype and phenotype data were obtained from three 
independent BD case–control samples, the US-American 
GAIN (1000 cases, 1033 controls) (Smith et al. 2009) and 
TGEN (1190 cases, 401 controls) collections (Smith et al. 
2011) and the German BoMa (645 cases, 1310 controls) 
sample (Cichon et al. 2011). Clinical symptoms, sociode-
mographic and environmental features were ascertained 
using structured interviews (DIGS (Nurnberger et  al. 
1994) for GAIIN and SCID-I for BoMa (Spitzer et  al. 
1992). All phenotypes were retrieved from profession-
ally curated databases (Potash et al. 2007; Fangerau et al. 
2004). Detailed information on the samples can be found 
elsewhere (Smith et  al. 2009, 2011; Baum et  al. 2008). 
Descriptive statistics for both samples are provided in 
Additional file 1: Table S1. The total sample for the pre-
sent study comprised n = 5579 subjects (2835 cases and 
2744 controls). The GAIN sample was used for the dis-
covery step, and the TGEN and BoMa samples were used 
for the replication step. Prior to study inclusion, written 
informed consent was obtained from all subjects.

Selection of clinical features
In addition to the two phenotypic specifiers age at onset 
(AAO) and sex, we included a variety of other phenotypic 
feature, for the selection of which we applied the follow-
ing criteria: (i) evidence of familiality and/or heritability 
(Schulze 2006); (ii) a frequency of at least 5% across all 
three samples; (iii) a missing data rate of less than 10%; 
(iv) availability in at least two of the three data sets; and/
or (v) clinical features with a high frequency among BD 
patients, including co-morbid features not being part of 
the diagnosis of BD. In total, we selected 23 clinical fea-
tures (Additional file 2: Table S2), the frequency of which 
was similar across all three samples (Additional file  3: 
Figure S1), and ranged from < 10% (e.g. eating disorder) 
to 80% (e.g. reckless behavior).

Selection of single markers and genetic model
The GAIN and TGEN samples were genome-wide gen-
otyped on the Affymetrix 6.0 SNP array. For the BoMa 
sample, the Illumina HumanHap550 BeadChip was used. 
All genotypes were imputed based on 2.1 million Hap-
Map Phase 2 markers (McMahon et  al. 2010). Due to 
computational runtime constraints, our analysis is based 
on a selected number of markers. We included only those 
SNPs that showed an association p-value of less than 
0.001 in a recent meta-analysis of 4961 BD patients and 
7294 controls (Additional file  4: Text S1, Methods-SNP 
selection). Our resulting SNP set comprised 5487 SNPs, 
on which LD pruning (Additional file 4: Text S1, Meth-
ods-Linkage disequilibrium) was performed in order to 

reduce redundancy within the genotype data before the 
discovery step and to decrease runtime. This left us with 
a total of 1599 SNPs. Of these, 1581 SNPs were avail-
able in all three samples studied. As the ARM approach 
requires binary variables we had to transform the geno-
type information into a binary format (Additional file 4: 
Text S1, Methods-Genetic Models).

Algorithm for association rule mining
The basic idea for identifying genotype–phenotype data 
using these binary genotype data is to (i) receive frequent 
genotype patterns, (ii) to look for significantly associ-
ated phenotypes as candidates, or in terms of the origi-
nal algorithm candidate association rules, in a discovery 
dataset, and (iii) to validate these candidate association 
rules in an independent replication dataset. Figure  2 
illustrates the basic idea of combining genotypic infor-
mation in order to identify frequent genotype patterns 
(left) and evaluate the patterns regarding interesting phe-
notype traits in order to receive a candidate association 
rule like genotype-pattern A implies phenotype-pattern 
B (A ⇒ B) (right).

Identifying frequent genotype patterns
The frequent genotype patterns can be identified in a sys-
tematic manner. Several approaches have been developed 
for association rule mining (Han and Kamber 2006; Mai-
mon and Rokach 2005). Here we use the most common 
Apriori algorithm, as it can be implemented in a straight-
forward manner and shows a good performance for short 
patterns, making it an ideal choice for the present study. 
For details, see Additional file 4: Text S1, Methods-Runt-
ime, Apriori algorithm, and Closed frequent itemsets.

Discovery of candidate association rules
Once a frequent genotype pattern is identified it is tested 
for association with each phenotypic trait, i.e. each of the 
23 selected clinical features. This step involves the gen-
eration of a contingency table for the frequent genotype 
pattern and each clinical feature. Based on this contin-
gency table, the interestingness of an association rule is 
assessed. For details, see Additional file 4: Text S1, Meth-
ods-Association rule discovery.

Replication of candidate association rules
The third stage of our rule mining approach is the rep-
lication of the candidate rules. Significance testing is 
rarely investigated in rule mining (Webb 2006). How-
ever, we considered this to be important as an inherent 
aspect of rule mining is the occurrence of false positive 
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results. We anticipated 50,000 false positives per one 
million tests on the basis of the widely used type I 
error rate of 5%. One approach to correct for this is to 
assume that the association rules are independent and 
apply Bonferroni correction to the test statistics in the 
discovery data only. However, several simulations have 
shown that as well as reducing the rate of false discov-
eries, the Bonferroni approach also reduces the rate 
of true positive findings (Webb 2006). Alternatively, 
permutation tests can be performed to test whether 
or not the association between a genotype pattern 
and a phenotype cluster is random (Additional file  4: 
Text S1, Methods-Permutation tests). However, when 
constrained to a single dataset, both methods are sus-
ceptible to overfitting. Thus, we considered the perfor-
mance of a replication of all candidate rules  nCR in an 
independent dataset a more appropriate alternative as 
this adjusts for potentially spurious sample effects and 
random associations. Using the latter approach and the 
Bonferroni method, we defined a primary test-wide sig-
nificance level αadj for the replication as:

However, as shown by our findings and those of Webb 
(2006), when extracting a set of association rules using 
the ARM approach, the rules are unlikely to be independ-
ent. Thus, this significance testing remains conservative 
and is likely to reject true positive results. Therefore, we 
also report p-values adjusted using the false discovery 
rate (FDR). This is an alternative statistical method to 
adjust for multiple testing: FDR assumes sub-groups of 

αadj = 0.05/nCR.

tests to be dependent. FDR is less conservative, resulting 
in an increase in power at the cost of an increased like-
lihood of type I errors (Benjamini and Hochberg 1995; 
Benjamini 2010).

Analyses
In order to apply our approach to the GWAS data, we 
developed a software tool, termed RUDI (RUle Discov-
erer; http://www.rudi-genet ics.net; see also Additional 
file  4: Text S1). A rule discovery analysis of 1581 SNPs 
(3162 variables) and 23 phenotypic traits in the 1000 
cases from the GAIN sample was performed. Around 
4.286e+09 genotype patterns were tested using the fol-
lowing settings: (a) z-score of 5.0; (b) maximum length 
of the genotype pattern of 3, and (c) absolute minimum 
support of individuals matching the particular genotype 
pattern of 50 (Additional file 4: Text S1, Methods-Param-
eter selection). The runtime on an Intel Xeon X3220 with 
2.4 GHz was around 18 h on a single processor using the 
described settings. A second run was performed to rep-
licate the candidate rules in our replication dataset of 
n = 1835 BD patients (TGEN + BoMa).

Results
N = 20,882 candidate rules satisfied the required thresh-
olds in the discovery data set. The strongest associa-
tion rule showed a p-value of 3.457e−15 (#962) and 
thus reached significance after correction for mul-
tiple testing using the Bonferroni method (adjusted 
p-value = 3.260e−04). When all candidate rules were 

Fig. 2 Illustration of the implemented version of the association rule mining algorithm. The lattice shown left is traversed starting from root {} to 
all leaves. Each genotype pattern (node in the tree) represents a subgroup of patients shown in the genotype matrix G. Additionally, using the p 
phenotype information of the patients from matrix P, we can count genotype and phenotype occurrences in contingency tables. Here illustrated 
for the genotype pattern  g1g2gn with ‘a’ counting all patients where genotype  g1g2gn and phenotype  pi are present, ‘d’ were neither of both are 
present, and ‘b’ and ‘c’ counting patients with presentation of genotype  g1g2gn but not phenotype  pi and visa versa. The lattice is traversed as long 
as there are unprocessed genotype patterns that cannot be pruned before

http://www.rudi-genetics.net
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compared, 15 disjunct phenotype clusters were observed. 
Of these, 11 consisted of a single clinical feature. The 
remaining four consisted of two clinical features (Addi-
tional file 5: Table S3).

Replication of the n = 20,882 candidate rules was then 
performed in our replication dataset of n = 1835 BD 
patients. The level of significance after adjustment using 
the Bonferroni method was 2.394e−06 for a default alpha 
of 5%. Although replication of the top finding from the 
discovery step (#962) failed, two rules met the signifi-
cance threshold:

(i) rule #12978
rs6733011_A_0, rs4113925_T_0, rs3769745_T_0 =>  

‘eating disorder’ (ED)
with a p-value = 3.576e−08 and an odds ratio 

(OR) = 3.566 [0.95 confidence interval (CI) 2.169–5.681];
and (ii) rule #6221
rs858057_G_0, rs4757144_G_0, rs3130781_C_0 =>  

‘simple phobia’ (SP)
with a p-value = 1.780e−06 and an OR = 2.995 [0.95 CI 

1.841–4.730]. Three further rules remained significant 
after FDR correction (Additional file 4: Text S1, Further 
results). A total of 1252 (6.0%) of the candidate rules 
reached nominal significance in the replication sample. 
The distribution of the p-values for all candidate rules in 
the replication dataset fits the expected Chi squared dis-
tribution (Additional file 6: Figure S2).

Association finding with eating disorder
Our top finding, rule #12978, showed a genotype pat-
tern frequency of 5.2–7.4% in the case samples and of 
around 5.2–5.8% in the control populations (Addi-
tional file 7: Table S4). Further details of the genotype 
pattern are shown in Additional file  8: Table  S7. In 
addition to the primary replication within the discov-
ery-replication framework, two types of permutation 
tests (Additional file 4: Text S1, Methods-Permutation 
tests) were performed to estimate: (a) the probability 
of finding a more significant association with the gen-
otype pattern by re-sampling the phenotype; and (b) 
the probability of randomly choosing a genotype pat-
tern that shows at least the same level of significance. 
Both reject the hypothesis of a random association 
based on the empirical p-values observed (4.000e−06 
and 7.000e−06, respectively), based on 1e + 06 trials in 
the discovery data. In a subsequent step, we combined 
the data of all n = 2835 patients and re-evaluated rule 
#12978, i.e. we compared patients with and without an 
eating disorder (BD_ED and BD_nonED, respectively) 
in terms of the genotype pattern of this rule. This com-
bined analysis of cases showed a p-value = 5.300e−14 
and an OR = 4.120 [0.95 CI 2.740–6.068]. Thus, within 
the group of patients carrying the genotype pattern, the 

frequency of a co-morbid eating disorder is increased 
on average by a factor of 4. An association analysis was 
then performed for each of the three SNPs of the geno-
type pattern to determine whether the observed associ-
ation was due to the combination of the three SNPs or 
conferred by only one of them. Single trend tests for the 
phenotype ‘eating disorder’ was performed in each of 
the three datasets using PLINK (Purcell et al. 2007). No 
significant evidence was found to support the hypoth-
esis that the association with the phenotype of the rule 
is driven by a single SNP (Additional file 9: Table S6).

We furthermore performed an association study of 
the genotype pattern of rule #12978 in cases versus 
controls. No differential distribution of the genotype 
pattern was observed between (a) the BD_nonED cases 
and controls and (b) between all BD cases and con-
trols: However, the genotype pattern was significantly 
associated with BD_ED cases compared to controls 
(p-value = 4.937e−14, OR = 4.107 [0.95 CI 2.735–
6.040]) (Additional file 10: Table S5).

Association finding with simple phobia
The second finding, rule #6221, showed an asso-
ciation with ‘simple phobia’. The genotype frequen-
cies were 5.4–6.9% in cases and 5.1–7.2% in controls. 
In the combined analysis of all cases, we observed a 
p-value = 3.476e−13 (adjusted p-value = 3.427e−02) 
and an OR = 3.551 [0.95 CI 2.453–5.063]. Thus, within 
the group of patients carrying the genotype pattern, 
the frequency of a co-morbid simple phobia increased 
on average by a factor of 3.5. As was the case for the 
rule including eating disorder, the association was not 
conferred by the single SNPs taken separately but only 
in combination (Additional file 9: Table S6). Likewise a 
case–control analysis showed: (a) no differential distri-
bution of the genotype pattern between the BD_nonSP 
cases and controls nor (b) between all BD cases and 
controls. However, we observed (c) a significant differ-
ential distribution between BD_SP cases and controls 
(p-value = 1.686e−11, OR = 3.195 [0.95 CI 2.220–
4.523]) (Additional file 10: Table S5).

Discussion
Application of the ARM data mining approach identified 
significant associations between sets of candidate SNPs 
and BD subgroups characterized by two specific comor-
bid conditions: eating disorder and simple phobia.

Our top finding (rule #12978) highlights an association 
between the genotype pattern of rule #12978 and the sub-
group of BD patients with an eating disorder. The associa-
tion was conferred by the combination of three SNPs but 
not by the individual SNPs. While the proportion of BD 
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patients with an eating disorder was very small (n = 192 
patients; i.e. 6.8% of our sample), this frequency is com-
parable to that reported in other studies (McElroy et  al. 
2006, 2011). Thirty-seven of these patients displayed the 
genotype pattern of rule #12978, which was present in 182 
of all BD patients. Despite the small sample size, the asso-
ciation finding (p-value = 4.937e−14) is rather strong with 
an OR = 4.107 in the combined case–control analysis, an 
effect size typically not seen for diagnosis-based studies.

The likelihood that our findings may be due to chance 
is further decreased when considering the following two 
points: Firstly, the replication sample was comprised 
of two smaller samples, and in both of these samples, 
the effect was in the same direction (with test-wide sig-
nificance being achieved in neither). Secondly, our find-
ings fall in line with reports on the function of the genes 
involved. SNP rs3769745 of rule #12978 is located in the 
intron region of the cyclic nucleotide gated channel alpha 
3 gene (CNGA3) on chromosome 2. In humans, CNGA3 
is implicated in total color blindness (achromatopsia) 
(Ding et  al. 2010; Lam et  al. 2011). Animal studies have 
shown that CNGA3 is required for normal vision (Biel 
et al. 1999), olfactory signal transduction (Leinders-Zufall 
et al. 2007), and involved in nociceptive processing (Heine 
et al. 2011). Further, it is expressed in the mouse brain and 
is reported to influence synaptic plasticity and behaviour 
(Michalakis et al. 2011). Research has also shown that the 
specialized olfactory subsystem to which CNGA3 belongs 
is required for the acquisition of socially transmitted food 
preferences (STFPs) in mice. Mice that lack this gene fail 
to acquire STFPs from other mice, and exhibit an absence 
of neuronal activation of the ventral subiculum of the hip-
pocampus, a brain region implicated in STFP retrieval 
(Munger et  al. 2010). According to the KEGG Database, 
CNGA3 is in a common pathway, i.e. olfactory transduc-
tion (KEGG ID hsa04740), with CALM1, a candidate gene 
for anorexia nervosa (Pinheiro et al. 2010). To the best of 
our knowledge, no association between this variant and 
eating disorder has been reported so far. For the other two 
variants, a plausible support from biological data is not 
available. SNP rs6733011 is located in an intron region of 
the KIAA1211-like (KIAA1211L) gene on chromosome 2 
that encodes the uncharacterized protein C2orf55 (chro-
mosome 2 open reading frame 55). The location is within 
a 500  kb window to rs3769745, but not in the same LD 
block  (r2 = 0.027 and D’ = 0.343 in the discovery dataset). 
Its function remains unknown. SNP rs4113925 is located 
on chromosome 12q24.21 in an intron of the T-box tran-
scription factor (TBX5) gene. This T-box gene has been 
implicated in heart development and disease as well as 
specification of limb identity (Wang et al. 2011).

To investigate whether our finding identified 
genetic markers specific to BD with an eating disorder 

subphenotype or eating disorder per se, we tested a 
potential association of the genotype pattern of rule 
#12978 with an eating disorder phenotype comprising 
anorexia and bulimia in a population-based sample from 
Australia (n = 1672, 12.9% with a diagnosis of anorexia or 
bulimia). We did not see an association of the genotype 
pattern of rule #12978, suggesting that our approach has 
detected a genetic marker for BD with comorbid eating 
disorder rather than for eating disorder per se.

Our second finding, rule #6221, showed an association 
with simple phobia. Two of the three contributing SNPs 
are located within genes. SNP rs4757144 is located in an 
intron region of the aryl hydrocarbon receptor nuclear 
translocator-like (ARNTL) gene, and rs3130781 is located 
in an intron region of the diffuse panbronchiolitis criti-
cal region 1 (DPCR1) gene. The third SNP, rs858057, is 
located at an intergenic region of 20p11.21. An implica-
tion of ARNTL in the etiology disorders via its influence 
on the circadian system has been discussed repeatedly 
(Mansour et al. 2006; Le-Niculescu et al. 2009; Nakatani 
2006; Nievergelt et  al. 2006; Shi et  al. 2008; Sipilä et  al. 
2010). There is further report that genes homologous 
to ARNTL may be implicated in the etiology of anxi-
ety. Sipilä and colleagues (Sipilä et  al. 2010) tested sev-
eral anxiety phenotypes for association with 13 circadian 
genes and found association between social phobia and 
ARNTL2. Thus the ARNTL gene family may be involved 
in this co-morbid phenotype. The second gene, DPCR1, is 
located in the major histocompatibility complex (MHC), 
which hosts genes that are crucial for the functioning of 
the immune system.

While we observed several other genotype–phenotype 
rules that may warrant further in-depth investigation 
(Table  1 and Additional file  4: Text S1, Further results), 
we focused on the rules implicating BD subtypes with 
comorbid eating disorder and simple phobia, respec-
tively, as only these two survived our stringent multi-
tiered evaluation of potential type I error. These steps 
help minimize—if not eliminate- type I error rate in 
ARM due to the overfitting of rules in a particular dataset 
(Han and Kamber 2006).

We would like to point out that the two reported asso-
ciation rules were associated with very low frequency 
phenotypes. This is due to the characteristics of the 
z-score approach applied. Since small proportions of the 
data are more likely to deviate strongly from the ran-
dom distribution, larger effects and thus larger z-scores 
are expected. As only those rules that show a z-score of 
greater or equal 5 are extracted as candidates, this par-
ticular rule measure is biased towards associations with 
low frequency phenotypes. This further explains the rela-
tively small number, i.e. 4 out of 15 (Additional file 4: Text 
S1, Methods-Phenotype cluster), of phenotype clusters 
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that consisted of more than one phenotype. We may thus 
have discarded many potentially true findings. Given that 
our study can be considered a proof-of-concept for the 
application of ARM on GWAS-derived data for a com-
plex phenotype, we opted for statistical stringency rather 
than a merely exploratory pattern mining. While this 
approach resulted in only two findings, they are charac-
terized by effect sizes up to four times larger than typi-
cally seen in GWAS of BD or other complex traits.

Conclusions
In summary, using already available GWAS data sets on 
BD, we have established and implemented a novel data 
mining process for complex genetic data. We identified 
genotype–phenotype patterns highlighting subtypes of 
BD characterized by specific comorbid conditions. These 
two comorbid conditions, eating disorder and simple 
phobia, may delineate more homogenous subgroups of 
BD that warrant further study in genomic studies of BD.

An important limitation of our approach is that our 
approach was only based on 5487 SNPs that showed 
some evidence of association with BD. As association 
rule mining may detect hidden association of specific 
phenotypes with previously un-identified SNPs, our 
approach may have missed several novel associations. 
This restriction, however, was due to our motivation to 
perform genotype–phenotype dissection on SNPs that 
showed some evidence of association. We were further 
bound by some computational runtime constraints. Fur-
ther extensions of the algorithm will be required to allow 
for a variety of assumed genetic models (here we used 
a dominant genetic model), to optimize computational 
feasibility for an increased number of SNPs (Additional 
file 4: Text S1, Methods-Runtime), and to determine the 

optimal correction methodology for highly correlated 
data.

Our approach highlights a strategy for genotype–phe-
notype dissection and for the identification of genetic 
susceptibility variants beyond initial GWAS of hetero-
geneous disorders. Finally, our results emphasize the 
importance of thorough phenotyping, particularly with 
regard to comorbidity.

Additional files

Additional file 1: Table S1. Descriptive data for patients with bipolar 
disorder and controls.

Additional file 2: Table S2. Details on the 23 phenotypic traits included 
into the study.

Additional file 3: Figure S1. Frequencies of the selected phenotype 
variables in the patients for each bipolar disorder sample. Non‑binary vari‑
ables are mapped to binary variables. Abbreviations: aao = age at onset; 
M = during mania; D = during depression.

Additional file 4: Text S1. Supplementary notes on methods.

Additional file 5: Table S3. Overview of all distinct phenotype clusters 
received from the candidate rules of the discovery step.

Additional file 6: Figure S2. QQ‑Plot of all chi‑squared values of the 
replications step (n=20,882). Expected quantiles are based on a 1 degree 
of freedom distribution. Confidence intervals are based on a 5% error rate. 
The inflation factor was estimated to be 1.140.

Additional file 7: Table S4. Association results for each data set of our 
top finding, pattern #12978.

Additional file 8: Table S7. Details regarding the genotype patterns of 
the top 5 association rules.

Additional file 9: Table S6. Single SNP association results for each SNP of 
our two test‑wide significant findings (Bonferroni) regarding the pheno‑
type cluster of the corresponding association rule.

Additional file 10: Table S5. Association results of the case‑control analy‑
ses for the top 5 replication patterns.

Table 1 Top 10 association rules regarding their p-values in the replication dataset (TGEN + BoMa)

Listed are the rule identifier (PID), the counts per group of the contingency tables, the p-values based on the Chi squared test along with the odds ratios including 
confidence intervals (CI), and results from two multiple correction methods (based on 20,882 tests). The coding of the groups is as follow: G, if genotype pattern is 
present, g if not; P, if phenotype pattern is present, p if not. FDR false discovery rate

PID Groups Statistics Adjusted p-value

GP Gp gP gp p_chisq Odds ratio (0.95 CI) Bonferroni FDR

12978 25 105 107 1598 3.576e−08 3.566 [2.169–5.681] 0.00075 0.00075

6221 26 84 162 1563 1.780e−06 2.995 [1.841–4.730] 0.03717 0.01859

12681 33 103 187 1512 4.648e−06 2.596 [1.682–3.917] 0.09706 0.02771

12981 25 129 107 1574 5.720e−06 2.860 [1.751–4.520] 0.11944 0.02771

6225 25 84 163 1563 6.635e−06 2.862 [1.747–4.545] 0.13855 0.02771

6228 26 93 162 1554 1.585e−05 2.690 [1.661–4.225] 0.33102 0.05517

4428 31 88 212 1504 2.021e−05 2.505 [1.600–3.830] 0.42198 0.06028

6111 21 109 111 1594 4.096e−05 2.779 [1.636–4.529] 0.85530 0.10654

6183 20 66 168 1581 4.592e−05 2.864 [1.652–4.765] 0.95887 0.10654

6178 20 68 168 1579 7.577e−05 2.777 [1.604–4.611] 1 0.15823
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