
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Architectural support for efficient on-chip parallel execution

Permalink
https://escholarship.org/uc/item/0r1593xh

Author
Brown, Jeffery Alan

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r1593xh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Architectural Support for Efficient On-chip Parallel Execution

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Jeffery Alan Brown

Committee in charge:

Professor Dean Tullsen, Chair
Professor Brad Calder
Professor Sadik Esener
Professor Tim Sherwood
Professor Steven Swanson

2010

Copyright

Jeffery Alan Brown, 2010

All rights reserved.

The dissertation of Jeffery Alan Brown is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To Mom.

iv

EPIGRAPH

Do what you think is interesting, do something that
you think is fun and worthwhile, because otherwise
you won’t do it well anyway.

—Brian Kernighan

Numerical examples, are good for your
soul.

—T. C. Hu

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita and Publications . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Complications from Parallelism 2
1.2 Memory Latency & Instruction Scheduling 3
1.3 Cache Coherence on a CMP Landscape 4
1.4 Thread Migration . 5

1.4.1 Explicit Thread State: Registers 6
1.4.2 Implicit State: Working Set Migration 7

Chapter 2 Experimental Methodology & Metrics 8
2.1 Execution-driven Simulation 8

2.1.1 SMTSIM . 9
2.1.2 RSIM . 10

2.2 Metrics . 11
2.2.1 Weighted Speedup 11
2.2.2 Normalized Weighted Speedup 13
2.2.3 Interval Weighted Speedup 14
2.2.4 Interval IPC & Post-migrate Speedup 15

Chapter 3 Handling Long-Latency Loads on Simultaneous Multithread-
ing Processors . 17
3.1 Introduction . 17
3.2 The Impact of Long-latency Loads 18
3.3 Related Work . 20
3.4 Methodology . 22

vi

3.5 Metrics . 26
3.6 Detecting and Handling Long-latency Loads 26
3.7 Alternate Flush Mechanisms 31
3.8 Response Time Experiments 33
3.9 Generality of the Load Problem 36
3.10 Summary . 39

Chapter 4 Coherence Protocol Design for Chip Multiprocessors 42
4.1 Introduction . 42
4.2 Related Work . 44
4.3 A CMP Architecture with Directory-based Coherence . . 46

4.3.1 Architecture . 46
4.3.2 Baseline Coherence Protocol 49

4.4 Accelerating Coherence via Proximity Awareness 51
4.5 Methodology . 56
4.6 Analysis and Results . 56
4.7 Summary . 63

Chapter 5 The Shared-Thread Multiprocessor 65
5.1 Introduction . 65
5.2 Related Work . 67
5.3 The Baseline Multi-threaded Multi-core Architecture . . 68

5.3.1 Chip multiprocessor 69
5.3.2 Simultaneous-Multithreaded cores 69
5.3.3 Long-latency memory operations 70

5.4 Shared-Thread Storage: Mechanisms & Policies 71
5.4.1 Inactive-thread store 71
5.4.2 Shared-thread control unit 72
5.4.3 Thread-transfer support 72
5.4.4 Scaling the Shared-Thread Multiprocessor 74
5.4.5 Thread control policies — Hiding long latencies . 75
5.4.6 Thread control policies — Rapid rebalancing . . . 79

5.5 Methodology . 82
5.5.1 Simulator configuration 82
5.5.2 Workloads . 84
5.5.3 Metrics . 85

5.6 Results and Analysis . 86
5.6.1 Potential gains from memory stalls 86
5.6.2 Rapid migration to cover memory latency 87
5.6.3 Rapid migration for improved scheduling 89

5.7 Summary . 91

vii

Chapter 6 Fast Thread Migration via Working Set Prediction 93
6.1 Introduction . 93
6.2 Related Work . 96
6.3 Baseline Multi-core Architecture 97
6.4 Motivation: Performance Cost of Migration 98
6.5 Architectural Support for Working Set Migration 102

6.5.1 Memory logger 103
6.5.2 Summary generator 107
6.5.3 Summary-driven prefetcher 108

6.6 Methodology . 110
6.6.1 Simulator configuration 110
6.6.2 Workloads . 110
6.6.3 Metrics . 112

6.7 Analysis and Results . 113
6.7.1 Bulk cache transfer 113
6.7.2 Limits of prefetching 115
6.7.3 I-stream prefetching 116
6.7.4 D-stream prefetching 117
6.7.5 Combined prefetchers 118
6.7.6 Allowing previous-instance cache re-use 119
6.7.7 Impact on other threads 120
6.7.8 Adding a shared last-level cache 121
6.7.9 Simple hardware prefetchers 121

6.8 Summary . 122

Chapter 7 Conclusion . 124
7.1 Memory Latency in Multithreaded Processors 125
7.2 Cache Coherence for CMPs 126
7.3 Multithreading Among Cores 127

7.3.1 Registers: Thread Migration & Scheduling 128
7.3.2 Memory: Working Set Prediction & Migration . . 129

7.4 Final Remarks . 130

Bibliography . 131

viii

LIST OF FIGURES

Figure 1.1: Example chip-level parallel architecture 2

Figure 2.1: Interval weighted speedup compression function 15

Figure 3.1: Performance impact of long-latency loads 19
Figure 3.2: Throughput benefit of a simple flushing mechanism 28
Figure 3.3: Comparison of long-load detection mechanisms 29
Figure 3.4: Performance of flush-point selection techniques 30
Figure 3.5: Performance of alternative flush mechanisms 33
Figure 3.6: Mean response times in an open system 35
Figure 3.7: Impact on alternate SMT fetch policies 37
Figure 3.8: Performance with different instruction queue sizes 38

Figure 4.1: Baseline chip multiprocessor . 47
Figure 4.2: A traditional multiprocessor . 48
Figure 4.3: Proximity-aware coherence . 52
Figure 4.4: Potential benefit from proximity-aware coherence 58
Figure 4.5: Reduction in L2 miss-service latency 60
Figure 4.6: Reply-network utilization . 61
Figure 4.7: Speedup from proximity-aware coherence 62

Figure 5.1: The Shared-Thread Multiprocessor 71
Figure 5.2: Idle time from memory stalls in fully-occupied cores 87
Figure 5.3: Performance of stall-covering schemes 88
Figure 5.4: Performance of dynamic schedulers 89

Figure 6.1: Baseline multi-core processor 99
Figure 6.2: Performance cost of migration 100
Figure 6.3: Memory logger overview . 104
Figure 6.4: Summary-driven prefetcher . 109
Figure 6.5: Impact of bulk cache transfers 114
Figure 6.6: The limits of a future-oracle prefetcher 115
Figure 6.7: Comparison of instruction stream prefetchers 116
Figure 6.8: Comparison of data stream prefetchers 117
Figure 6.9: Speedup from combined instruction and data prefetchers 118
Figure 6.10: Speedup when allowing cache reuse 120

ix

LIST OF TABLES

Table 3.1: Single-threaded benchmarks . 23
Table 3.2: Multi-threaded workloads . 24
Table 3.3: Processor configuration . 25

Table 4.1: Architecture details . 57
Table 4.2: Workloads . 57

Table 5.1: Architecture details . 83
Table 5.2: Component benchmarks . 84
Table 5.3: Composite workloads . 85

Table 6.1: Activity record fields . 103
Table 6.2: Baseline processor parameters 111
Table 6.3: Prefetcher activity and accuracy 119

x

ACKNOWLEDGEMENTS

I thank my advisor, Dean Tullsen, for making this dissertation possible; for

setting an example of professional and personal integrity for us all to aspire toward;

and especially for standing by me during the tough years – when experiments

weren’t working – displaying unwavering confidence at times when I was ready to

panic.

I thank the additional members of my thesis committee – Brad Calder,

Sadik Esener, Tim Sherwood, and Steven Swanson – for donating their valuable

time to me, for reviewing my work, and overseeing the completion of this disserta-

tion. I send further thanks to Geoff Voelker and Glenn Reinman, for contributing

at earlier stages of this work, and to Geoff for providing a voice of calm counsel

and reassurance over the years. To you all, I’m humbled by your assistance; thank

you.

Thanks to my mother, to which I owe everything in life, for always being

there for me with unconditional moral support; for burying me with books since

before I could walk, then engaging and encouraging me ever since: from reviewing

spelling while driving to school (“o-c, e-a-n”), to listening with bewildered patience

each time I would explain how I still wasn’t finished with graduate school. I love

you Mom; you are the best.

I wouldn’t be who I am today without my big brother. The years we spent

finishing each others’ sentences were the happiest of my life. I only ever wanted to

be like you; I would give absolutely anything to have you back.

I thank my stepfather, for setting a lifelong example of what it means to

stand up and be a man; for teaching me that anything worth doing, is worth doing

right; for teaching me to be curious, to always wonder what’s over the next hill,

around the next bend in the river; for supporting us in the most important ways.

Five by five, Chief. I’m sorry I couldn’t finish this a few months sooner for you.

I thank my father, for his endless patience during my formative years; for

encouraging me to ask questions; for always having time for one more “why?”, no

matter how exhausted he was; for teaching me that being “just a kid” was not

something to keep me from comprehending or attempting grown-up things.

xi

Life at UCSD has been enhanced by all the great people I’ve met in the

CSE department. Thanks to my lab-mates for keeping life fun. To John, Tim,

and Jeremy: thanks for the hilarious antics over the years; it’s a miracle we didn’t

break anything. Thanks to Jeremy for the times we spent together, those many

hours on sysadmin duty; to Rakesh for teaching me the power of a smile, and of

perspective; to Leo for listening to me complain during the worst of times; to Jack

– a quirky guy, to be sure – for making me laugh, and for being as dependable a

friend as they come. Thank you to my roommates Nathan and Jack, for putting

up with my strange hours, my griping about school, and most of all for keeping

life at home drama-free: school would’ve been impossible without that. I’m going

to miss UCSD — it’s a great place to be!

Chapter 3 contains material from “Handling Long-Latency Loads in a Si-

multaneous Multithreading Processor”, by Dean M. Tullsen and Jeffery A. Brown,

which appears in Proceedings of the 34th annual International Symposium on Mi-

croarchitecture (MICRO). The dissertation author was the secondary investigator

and author of this paper. The material in Chapter 3 is copyright c©2001 IEEE. Per-

sonal use of this material is permitted. However, permission to reprint/republish

this material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Chapter 4 contains material from “Proximity-Aware Directory-based Co-

herence for Multi-core Processor Architectures”, by Jeffery A. Brown, Rakesh Ku-

mar, and Dean Tullsen, which appears in Proceedings of the Nineteenth Annual

Symposium on Parallelism in Algorithms and Architectures (SPAA). The disserta-

tion author was the primary investigator and author of this paper. The material in

Chapter 4 is copyright c©2007 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that the copies are not

made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page in print or the first screen in digital

media. Copyrights for components of this work owned by others than ACM must

xii

be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or email permissions@acm.org.

Chapter 5 contains material from “The Shared-Thread Multiprocessor”,

by Jeffery A. Brown and Dean M. Tullsen, which appears in Proceedings of the

2008 ACM International Conference on Supercomputing (ICS). The dissertation

author was the primary investigator and author of this paper. The material in

Chapter 5 is copyright c©2008 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that the copies are not

made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page in print or the first screen in digital

media. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or email permissions@acm.org.

Chapter 6 contains material from “Fast Thread Migration via Cache Work-

ing Set Prediction”, by Jeffery A. Brown and Dean M. Tullsen, which has been

submitted for possible publication by the Association for Computing Machinery in

Proceedings of the Nineteenth International Conference on Parallel Architectures

and Compilation Techniques (PACT). The dissertation author was the primary

investigator and author of this paper.

xiii

VITA

2000 Bachelor of Science in Computer Science summa cum laude
University of California, San Diego

2000 Internship
Computing Sciences Research Center at Bell Labs
Murray Hill, New Jersey

2001–2003 Graduate Research Fellow
National Science Foundation

2002 Master of Science in Computer Science
University of California, San Diego

2002 Internship
Intel Corporation, Microarchitecture Research Lab
Santa Clara, California

2004 Internship
Intel Corporation, Microarchitecture Research Lab
Santa Clara, California

2006 Instructor
Department of Computer Science & Engineering
University of California, San Diego

2010 Doctor of Philosophy in Computer Science
University of California, San Diego

PUBLICATIONS

“The Shared-Thread Multiprocessor” Jeffery A. Brown, Dean M. Tullsen. Proceed-
ings of the 2008 ACM International Conference on Supercomputing (ICS), pages
73–82, June 2008.

“Proximity-Aware Directory-based Coherence for Multi-core Processor Architec-
tures” Jeffery A. Brown, Rakesh Kumar, Dean Tullsen. Proceedings of the Nine-
teenth Annual Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 126–134, June 2007.

“Speculative Precomputation on Chip Multiprocessors” Jeffery A. Brown, Hong
Wang, George Chrysos, Perry H. Wang, John P. Shen. Proceedings of the 6th
Workshop on Multithreaded Execution, Architecture, and Compilation (MTEAC),
pages 35–42, November 2002.

xiv

“Code-Red: a case study on the spread and victims of an Internet worm” David
Moore, Colleen Shannon, Jeffery Brown. ACM SIGCOMM Internet Measurement
Workshop (IMW), pages 273–284, November 2002.

“Handling Long-Latency Loads in a Simultaneous Multithreading Processor” Dean
M. Tullsen, Jeffery A. Brown. Proceedings of the 34th International Symposium
on Microarchitecture (MICRO), pages 318–327, December 2001.

“Network Performance Visualization: Insight Through Animation” Brown J.A.,
McGregor A.J., Braun H-W. Proceedings of the 1st Passive and Active Measure-
ment Workshop (PAM), pages 33–41, April 2000.

xv

ABSTRACT OF THE DISSERTATION

Architectural Support for Efficient On-chip Parallel Execution

by

Jeffery Alan Brown

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Dean Tullsen, Chair

Exploitation of parallelism has for decades been central to the pursuit of

computing performance. This is evident in many facets of processor design: in

pipelined execution, superscalar dispatch, pipelined and banked memory subsys-

tems, multithreading, and more recently, in the proliferation of cores within chip

multiprocessors (CMPs). As designs have evolved, and the parallelism dividend of

each technique have been exhausted, designers have turned to other techniques in

search of ever more parallelism.

The recent shift to multi-core designs is a profound one, since available

parallelism promises to scale farther than at prior levels, limited by interconnect

degree and thermal constraints. This explosion in parallelism necessitates changes

in how hardware and software interact. In this dissertation, I focus on hardware

aspects of this interaction, providing support for efficient on-chip parallel execution

in the face of increasing core counts.

First, I introduce a mechanism for coping with increasing memory laten-

cies in multithreaded processors. While prior designs coped well with instruction

latencies in the low tens of cycles, I show that long latencies associated with stalls

xvi

for main memory access lead to pathological resource hoarding and performance

degradation. I demonstrate a reactive solution which more than doubles through-

put for two-thread workloads.

Next, I reconsider the design of coherence subsystems for CMPs. I show

that implementation of a traditional directory protocol on a CMP fails to take

advantage of the latency and bandwidth landscape typical of CMPs. Then, I

propose a CMP-specific customization of directory-based coherence, and use it

to demonstrate overall speedup, reduced miss latency, and decreased interconnect

utilization.

I then focus on improving hardware support for multithreading itself, specif-

ically for thread scheduling, creation, and migration. I approach this from two com-

plementary directions. First, I augment a CMP with support for rapidly trans-

ferring register state between execution pipelines and off-core thread storage. I

demonstrate performance improvement from accelerated inter-core threading, both

by scheduling around long-latency stalls as they occur, and by running a conven-

tional multi-thread scheduler at higher sample rates than would be possible with

software alone. Second, I consider a key bottleneck for newly-forked and newly-

rescheduled threads: the lack of useful cached working sets, and the inability of

conventional hardware to quickly construct those sets. I propose a solution which

uses small hardware tables that monitor the behavior of executing threads, pre-

pares working-set summaries on demand, and then uses those summaries to rapidly

prefetch working sets when threads are forked or migrated. These techniques as

much as double the performance of newly-migrated threads.

xvii

Chapter 1

Introduction

Much progress in processor architecture can be characterized as the success-

ful exploitation of parallelism in computation, by increasingly-parallel hardware.

Each generation of hardware is capable of performing many more simultaneous

operations than its predecessor, prompting the recurring challenge of keeping that

hardware occupied with useful work. There is an ever-growing gap between the

amount of raw parallelism available in hardware, and the effectiveness with which

we are able to use it. As transistor development continues apace, architecture

design becomes more demanding: with ever-more transistors at our disposal, we

must expose and exploit ever-more parallelism in order to efficiently utilize them.

The raw hardware in a processor is highly parallel by nature, yet the amount

of parallelism available at a point in computation – the number of independent op-

erations which can begin at that point – varies greatly, both with overall workload

and also moment-to-moment within a single workload. A central theme in pro-

cessor design is the organization of hardware, and the software interface to that

hardware, so that computation can be expressed as fragments which hardware

can execute efficiently, overlapping operations wherever possible for higher perfor-

mance.

The focus of this dissertation is enabling efficient, on-chip parallel execution.

We will consider a prototypical chip-level parallel architecture, some roadblocks to

utilizing increasingly-parallel hardware, and methods to mitigate those problems.

1

2

Core 1

Package

...

...

...

Mesh network links
to more cores

I/O

Thread 1

Thread 2

Exec.
engine
(SMT)

Caches

. .
 .

Core detail

Figure 1.1: Example chip-level parallel architecture.

1.1 Complications from Parallelism

Consider the prototypical chip-multiprocessor, or CMP, depicted in Fig-

ure 1.1. This chip is composed of several tiles, interconnected by an on-chip mesh

network; each tile contains a superscalar, simultaneous-multithreaded general-

purpose processor core, cache storage, and network interface hardware. Such a

processor has abundant opportunities for parallel execution:

• Instruction-level parallelism (ILP): Pipelined execution breaks each instruc-

tion into multiple steps, and overlaps the steps of different instructions, al-

lowing the next instruction to begin execution before a given instruction is

complete. Furthermore, superscalar hardware allows multiple independent

instructions to begin execution at the same time. Both features multiply

potential parallelism.

• Same-core, thread-level parallelism (TLP): During execution, there are points

where a given software thread does not offer many independent instructions,

leaving the execution hardware mostly idle. One approach to boost resource

utilization is Simultaneous Multithreading (SMT): modest additional hard-

ware allows instructions from multiple software threads to contend for execu-

tions resources in each cycle. Aside from explicit synchronization operations,

instructions from different threads are guaranteed independent of each other,

3

enabling better utilization of each core’s parallel execution hardware without

relying on additional speculation.

• Cross-core parallelism: The tiles shown in Figure 1.1 operate independently

of each other, except when communicating either with each other for cache-

coherence purposes, or with off-chip devices (e.g. memory). As such, software

threads submitted to different cores execute independently; each additional

core contributes another set of execution units, offering yet more parallelism

throughout the system.

While this example is a contemporary design that offers significant paral-

lelism and promises to scale well with increased transistor counts, we will see that

straightforward implementations of multi-core designs fall short of their potential.

The introduction of more complicated interconnects and contending cores give

rise to bottlenecks which are not a factor in single-core designs. We will identify,

explore, and address several of these problems.

1.2 Memory Latency & Instruction Scheduling

One common performance obstacle for general-purpose processors is long-

latency memory operations – i.e. loads that miss in local caches – which can occur

unpredictably. While such a request is pending, the processor cannot complete

dependent operations, effectively decreasing the amount of parallelism available in

that instruction stream.

Simultaneous multithreading processors were introduced in part to better

utilize processors in such situations, by freely scheduling instructions from inde-

pendent threads to cover deficits in the instruction-level parallelism available from

any one thread. SMT copes well with short- to medium-term latencies – e.g. cache-

misses which are serviced on-chip – since it is able to bring in additional instructions

as needed, on a cycle-by-cycle basis, without the thread-switching overhead that

prevents prior multithreading techniques from being profitably applied at these

time scales.

4

In Chapter 3 of this dissertation, we show that the use of SMT introduces a

new scheduling problem: SMT processors do not handle very-long-latency opera-

tions as well as other models of multithreading; even the best among the resource-

allocation policies of prior work fall victim to resource hoarding, which arises in the

face of long-latency loads. By holding resources when stalled for a long-latency

load, a stalled thread impedes the execution of others, even though there is no

explicit dependence between them, and without any performance gain that might

justify the resource imbalance. The root of the problem is that, even under the best

of the prior policies, stalled threads are able to both hold previously-acquired exe-

cution resources, and to continue to trickle in additional instructions; the scheduler

has no way to revoke these resources.

We present hardware techniques to identify instances of resource-hoarding

behavior, before they lead to pathological slow-down: we detect when a thread

is stalled on a load which has missed in the L2 cache – a simple “cycles-since-

issue” timer suffices – and then flush dependent instructions from the responsible

thread, using existing speculative-execution facilities. After reclaiming execution

resources from the stalled thread, we block it from fetching until the offending load

completes, allowing co-scheduled threads better use of the system in the meantime.

We show that this leads to significantly higher and more predictable throughput

for all threads.

1.3 Cache Coherence on a CMP Landscape

In current multi-core designs, common hardware memory models feature

shared memory, wherein any core can directly access any piece of physical memory

at any time. Cache coherence is necessary in such systems to ensure that caching is

done safely: individual cores have their own caches for the sake of performance, and

when one core attempts to write to a block which is also cached on another, action

must be taken to prevent inconsistency. As coherence policy governs all interaction

between processors and memory modules, both the policy and implementation are

performance-critical details of our increasingly-parallel systems.

5

Cache coherence has been well-studied over the years, traditionally in the

context of large distributed-memory machines. Traditional systems present indi-

vidual processors grouped with memory modules into compute nodes, which are

separated from other nodes through a relatively high-latency interconnect; local

memory is “closer” than peer processors or their memory. Multi-core designs of-

fer a different processor-memory topology: the processors themselves are tightly

grouped, often fabricated together on the same die, with a fast on-die intercon-

nect; memory modules are separated from the processors by another, high-latency

interconnect. Peer processors are then “closer” than any memory, and this offers

different communication trade-offs.

In Chapter 4 we evaluate a directory-based coherence protocol on a CMP

system. We show that simply implementing traditional directory protocols within

a chip does not provide the most effective solution, due to the altered commu-

nication latency landscape. We demonstrate an improved protocol which prefers

communication with on-chip peers over off-chip memory: in the service of L2

cache misses, we query the caches of “bystander” nodes listed as sharers, before

resorting to main-memory access; these queries are further ordered to minimize

reply-network bandwidth utilization. Our protocol customizations decrease over-

all miss-service latency by searching on-chip where possible, and decrease the to-

tal amount of communication performed system-wide by preferring shorter return

paths for data-carrying replies.

1.4 Thread Migration

As system core counts increase and software is adapted to utilize these

cores, thread-level parallelism is taking on ever-increasing significance in the quest

for performance. Though this progression presents interesting programming model

and operating system challenges, the efficiency of underlying thread-management

mechanisms is inescapably critical: software solutions to the problems of expressing

TLP still rely on the underlying hardware to carry out scheduling decisions.

Our growing dependence on thread-level parallelism ensures that thread-

6

management mechanisms will hold a central role in enabling system-wide perfor-

mance scaling. Any inefficiencies in thread activation, deactivation, spawning, or

migration will take a toll, both by decreasing the rate at which scheduling decisions

can profitably be made, and increasing the minimum granularity for profitably cre-

ating new threads – or activating worker threads from an idle pool – to exploit

short-term or irregular parallelism.

1.4.1 Explicit Thread State: Registers

While several historical parallel systems featured efficient hardware context-

switching, these machines sacrificed single-thread performance, required extensive

additional hardware for thread state storage, or required workloads be expressed as

data-flow streams. Parallel systems today, by contrast, typically perform schedul-

ing using minimal hardware support – privileged software makes scheduling deci-

sions, which are then effected by executing a series of ordinary loads and stores

followed by a specialized jump instruction – with minimum latencies of hundreds

to thousands of cycles.

In Chapter 5 we start with a multi-core SMT processor, to which we add a

mechanism for rapidly moving architected thread state between execution pipelines

and shared, off-core inactive-thread storage. We implement these context switches

by halting a thread’s normal execution, and then injecting register “spill” and “fill”

pseudo-instructions into the pipeline. Each of these pseudo-instructions uses the

existing renaming and dependence-resolution hardware to copy one logical register

value between the core execution state and a small transmit/receive buffer, which

is in turn transferred to or from the shared inactive-thread storage. This enables

low-latency “multithreading-like” context switching across cores, with latencies in

the dozens of cycles.

Using minimal additional hardware, this approach combines the relative

simplicity of contemporary multi-core designs with the flexibility and high utiliza-

tion of large-scale multithreaded systems. We demonstrate that this system can

perform scheduling quickly enough to allow for thread scheduling to take advantage

of idle resources during memory stalls, and to reschedule batches of threads to de-

7

tect and avoid inter-thread resource conflicts more effectively than with unassisted

software.

1.4.2 Implicit State: Working Set Migration

Even with the hardware support we provide in Chapter 5, the performance

cost of creating or moving a thread remains high, requiring tens of thousands of

commits for performance to recover afterward. The most significant source of this

degradation is due to the lack of cache-resident working set. While architected

thread state (e.g. register values) can be easily cataloged and transferred, instruc-

tion and data working sets are not explicitly exposed to hardware, and migrated

or spawned threads are left to implicitly recreate their own working set as they

generate demand references. Unfortunately, the lack of a resident working set lim-

its the amount of ILP visible to the processor – everything becomes stalled for

cache misses – severely restricting the rate at which the thread can generate new

demand references to bring in more of its working set.

In Chapter 6, we frame this working-set problem more specifically in terms

of performance degradation subsequent to individual thread migrations. We show

that performance suffers greatly in these instances, due to cache effects, effectively

placing a lower limit on the grain-size which is available for scheduling. We also

show that simply copying existing cache state is ineffective over the time scales in

which performance suffers the most.

We introduce a mechanism to address this. Our system creates compact

summaries of a threads’ working sets as they execute, and uses that summary data

to efficiently prefetch useful instruction and data working sets when a thread is

moved to a different core. Thread summary data is passively collected by a set

of small hardware tables which are inspired by prefetcher design – with one table

detecting striding memory accesses, another detecting repeated accesses to heap

objects, etc. – and summary data is compacted into a simple range-encoded format

for transfer to other cores and later prefetching. We evaluate a range of behavior-

specific hardware tables, and find that even a combination of the simplest ones as

much as doubles the performance of threads shortly after migrations.

Chapter 2

Experimental Methodology &

Metrics

The central ideas we present in this dissertation apply to a variety of in-

struction sets and underlying processor architectures. However, for the sake of

experimental evaluation, we must select a specific execution platform, an imple-

mentation methodology, suitable workloads, and evaluation metrics which fairly

capture the phenomena we seek to address. In the following sections, we describe

our choices for each of these.

2.1 Execution-driven Simulation

We rely on processor and memory-system simulators to implement and

evaluate our proposed architectures. Simulation has long been an accepted basis

for architectural experimentation, in part due to the relative ease of simulation

compared to the enormous expense of physically implementing modern micropro-

cessors. While recent advances in prototyping technology such as FPGAs have

brought experimental hardware into the reach of university courses and research

projects, simulation-driven evaluation remains dominant in the field of computer

architecture research.

Simulation allows us to evaluate experimental models at the level of detail

with which we conceive them; a researcher need only implement the details they

8

9

consider significant, versus requiring full implementation at the lowest levels before

measurements are possible. Simulation readily admits the use of oracle techniques,

such as latency-free communication, or perfect knowledge of future behavior; this

is useful for limit studies. Within a given research budget, simulation allows for

more rapid exploration, and hence a wider variety of models and parameters may

be considered, but with the pitfall than an incautious researcher may overlook

important factors when constructing models, leading to unrealistic results.

There are a variety of approaches to simulation, offering different trade-offs

in simulation speed, accuracy, and implementation complexity. In this disserta-

tion we study multi-core processors featuring aggressive cores, designed to exploit

instruction-level parallelism (ILP) in general-purpose computation. Our workloads

are multi-threaded, featuring both cooperative multithreading (with communicat-

ing threads) and competitive multithreading (with independent threads). Both

high-ILP execution and multithreading lead to substantial re-ordering of oper-

ations: individual cores aggressive overlap execution with outstanding memory

operations, while concurrent execution allows re-ordering among different threads;

these re-orderings have been shown [PRA97a, KT98] to significantly affect the

resulting performance. Trace-based simulators are, in general, unable to capture

the execution and network effects of dynamic reordering; given its importance in

determining overall performance, we thus rely on execution-driven simulation in

this dissertation.

We use two well-known processor and memory-system simulators: SMTSIM

and RSIM.

2.1.1 SMTSIM

Our primary simulator – which we use for all research in this dissertation

except for that in Chapter 4 – is a descendant of the original SMTSIM [Tul96]. We

have extended the original simulator to support multiple cores, multiple levels of

coherent private caches, and a MESI coherence protocol [PP84] atop a broadcast-

based interconnect.

We use SMTSIM to model an out-of-order superscalar processor, includ-

10

ing speculative execution, executing unaltered native DEC OSF/1 Alpha binaries.

This simulator models all typical sources of latency, including instruction exe-

cution, dependence stalls, cache misses, branch mispredictions, TLB misses, and

stalls for coherence transfers. Conflicts are modeled for many types of resources,

including renaming registers, issue queue entries, functional units, commit band-

width, etc. Latency and bandwidth constraints are modeled for all cache, memory,

and interconnect resources. Wrong-path behavior is included, execution down

wrong paths between branch misprediction and branch misprediction recovery.

SMTSIM is highly configurable; we take advantage of this, using different

processor and memory-system configurations for our different studies. In Chap-

ter 3, we simulate a single-core two-way multithreaded processor with eight-wide

issue, to demonstrate in detail the effect of memory stalls on co-scheduled threads.

For Chapter 5, we configure SMTSIM as a four-core processor with a shared L2

cache and two threads per core, and then evaluate extending “multithreading-style”

thread-switching across cores. In Chapter 6, we again model a four-core processor,

but this time with a deeper private memory hierarchy and a single thread per core,

in order to emphasize the ability of our working-set migration system. In each of

these chapters, we provide additional details of the specific configurations used for

that chapter.

2.1.2 RSIM

For the coherence research we present in Chapter 4, we used a derivative

of RSIM [PRA97b], an event-driven multiprocessor and mesh-network simulator.

While SMTSIM models a coherent multi-core processor, it simulates a bus-based

interconnect, which is inappropriate for a processor with more than a handful of

cores due to broadcast scalability problems.

In order to experiment atop a more scalable on-chip network, of the sort we

envision for future chip multiprocessors, we sought a more capable network model

for simulation. In order to experiment with the coherence implementation itself, we

sought workloads which rely significantly on the coherence system; shared-memory

parallel benchmarks in particular. RSIM provides both elements out-of-the-box: it

11

has a very detailed simulation of a 2-D mesh network, and support for benchmarks

from several parallel benchmark suites.

RSIM has detailed models of execution cores, split L1 caches, private L2

caches, and a 2-D mesh network. However, RSIM was constructed to model a

more traditional “cabinet-level” distributed shared-memory multiprocessor. We

modified RSIM to simulate on-chip multiprocessing with an on-chip network; sig-

nificant changes were required to model the proposed directory-based coherence

implementations.

2.2 Metrics

We rely on a variety of metrics when performing our experimental evalua-

tions and when presenting results. These include conventional metrics rooted in

simulated execution time – speedup, request service latency, task response time –

as well as simulated operation counts, e.g. total network message transfers. While

simulated-time speedup is the de facto standard for evaluating experiments on

single-thread workloads, most of the experiments we present in this dissertation

involve parallel workloads, some with cooperating threads and some with compet-

ing threads.

For cooperatively-threaded parallel workloads, speedup is still an appro-

priate metric, so long as the workloads are evaluated over equivalent amounts of

progress in the underlying task. This is the case for the coherence research we

present in Chapter 4: we simulate the entire benchmark execution, so simulated

times across experimental configurations are directly comparable. We report con-

ventional speedup in that chapter.

2.2.1 Weighted Speedup

Workloads composed of competing independent threads pose a methodolog-

ical challenge: unless great care is taken to ensure that every component thread

makes the same amount of progress in each experiment, traditional metrics such

as speedup or aggregate instructions-per-cycle (IPC) are easily skewed by the run-

12

time behavior of individual threads. In parallel execution, each experiment leads

to a different interleaving of instructions from each thread, since the behavior of

each thread influences (by way of resource contention) how it gets interleaved with

others.

This problem is most dramatic when we evaluate policies which may bias

execution against a particular thread or threads. For example, if we were to mea-

sure total IPC over a fixed number of system-wide commits, this metric would tend

to unrealistically favor policies which prefer threads that exhibit higher IPC, by

starving lower-IPC threads of execution resources for the duration of simulation.

Any policy which favors high-IPC threads can boost the total IPC by increasing

the contribution from those favored threads. Such a situation is unlikely to yield

performance gain in a real system, however: while the IPC over a particular mea-

surement interval might be higher, in a practical system low-IPC threads cannot

be deferred forever. Eventually, the system would be left to execute a workload

inordinately heavy in low-IPC threads, and the artificially-generated gains would

disappear. (This problem is explored in more detail in previous work [ST00].)

Many of our experiments are simulated over time-scales which do not cap-

ture the reality of having to execute low-IPC threads eventually. This motivates

the use of a metric which guides us toward better overall performance while tak-

ing into account the relative progress made by each thread in a given experiment.

We evaluate multithreaded performance in terms of weighted speedup (WSU), as

defined in [ST00], and used frequently in other studies of SMT and multi-core

architectures:

Weighted Speedup =
∑

i∈threads

IPCi,experimental

IPCi,standalone

(2.1)

In weighted speedup, each thread’s experimental IPC is derated by its

single-thread IPC, as measured in separate execution on a single core featuring

the same hardware configuration, over the same dynamic instructions committed

during the experimental run. To supply standalone IPC values, we simulate each

benchmark in isolation – on each hardware configuration – logging simulated cy-

cle counts to a database every ten thousand commits. When computing weighted

13

speedups, we query the database for each thread, retrieving the two logged points

nearest the experimental commit count; we apply linear interpolation to estimate

the baseline time to the given commit number.

We use weighted speedup in its original form (Equation 2.1) to report overall

performance results for the Shared-Thread Multiprocessor in Chapter 5.

2.2.2 Normalized Weighted Speedup

We make two modifications to the standard weighted speedup formula when

evaluating overall performance in the load-flushing experiments of Chapter 3:

• Instead of derating each thread by its stand-alone IPC, we derate each thread

by the IPC it achieves on the baseline processor when run within the same

mix of threads.

• We introduce an additional normalizing factor, dividing by the overall thread-

count in each experiment.

The resulting equation we use to compute weighted speedup for the load-

flushing research in Chapter 3 is:

Normalized WSU =
1

|threads|
·

∑
i∈threads

IPCi,experimental

IPCi,baseline

(2.2)

Despite the altered baseline, the spirit of the metric is the same: to make it

impossible to quote artificial speedups by simply favoring high-IPC threads. We

make this modification for two reasons: first, since Chapter 3 focuses on single-

core SMT execution with a constant set of threads for each simulation, a given

set of threads is always co-scheduled, which provides us a well-defined baseline for

comparison; and second, when multiple threads are running slowly together, we

benefit from any of them running faster, regardless of how they would perform

when run independently.

The normalizing factor in Equation 2.2 affords us the convenience of plotting

weighted speedups across workloads with different thread counts on a common axis;

as it is constant for any particular workload, it does not introduce any additional

bias between policies.

14

2.2.3 Interval Weighted Speedup

While we use weighted speedup (Equation 2.1) to report overall performance

results for the Shared-Thread Multiprocessor of Chapter 5, some of the scheduling

policies therein require online estimates of multithreaded performance. Weighted

speedup as a goal function is not suitable for online decision-making, since it

requires detailed single-threaded execution detail, IPCi,single, which is not available

at run-time.

This raises a new challenge: finding a suitable basis for evaluating IPC

samples, such that all values are available at run-time, and which provides a rea-

sonable baseline for the estimation of the changes in performance. IPC itself is a

dangerous metric on which to base runtime optimization decisions, for the same

reasons that it is a misleading indicator of overall multithreaded performance. We

introduce a new metric, interval weighted speedup, an adaptation of traditional

weighted speedup to our online scheduling environment.

To enable online evaluation, we use the aggregate IPC of each thread over

the entire previous round of scheduling as the basis, in place of IPCi,single, when

evaluating the performance of the IPCi,exper samples taken during each sample

interval. This strikes a balance, providing a measure of stability in values – par-

ticularly when comparing alternative schedules within a given round – yet still

adapting over time to changes caused by earlier scheduling decisions.

We make one further modification to weighted speedup: given a direct

application of the Equation 2.1 over shorter time scales, it is possible for individual

quotients within the overall sum to generate very large outputs, e.g. when the

basis IPC for an application is abnormally low due to execution conditions. It

is important to prevent one such component from dominating the overall sum;

while such a sample may cause only a short-term degradation when used for an

individual scheduling decision, it can be disastrous when used with schedulers

which aggregate data over multiple rounds of scheduling. We guard against this

by compressing each thread’s contribution to the sum from [0,∞) down to the

range [0, 4], using a smooth sigmoid function which is nearly linear in the range

near 1.0 (where samples are most frequent).

15

 0

 1

 2

 3

 4

 0 2 4 6 8 10

(Detail at right)

 0.5

 0.75

 1

 1.25

 1.5

 0.5 0.75 1 1.25 1.5

Figure 2.1: Interval Weighted speedup compression function, Equation 2.4.

The resulting equation, incorporating the alternate baseline and the com-

pression function:

Interval WSU =
∑

i∈threads

comp
(IPCi,sample

IPCi,basis

)
(2.3)

comp(x) =
4.0

1 + e(ln(3)+1−x)
(2.4)

Figure 2.1 shows the behavior of the range-compression function of Equa-

tion 2.4. Although we used it in our evaluation, the sigmoid function itself is not

essential; linear scaling with clamping worked nearly as well.

To reiterate, as used within the Shared Thread Multiprocessor chapter,

weighted speedup is the metric we use to evaluate and report performance, while

interval weighted speedup is an online metric used internally to evaluate the effec-

tiveness of scheduling decisions; the latter does not appear in any results.

2.2.4 Interval IPC & Post-migrate Speedup

For the thread-migration research of Chapter 6, we encounter another un-

conventional performance evaluation challenge. For that work, we wish to gauge

the impact of architectural changes on performance in the immediate wake of mi-

gration operations, which we repeatedly induce. By triggering fairly infrequently,

and capturing the immediate post-migration behavior at various intervals, we can

capture both the short-term and long-term performance impact of each migration.

Given the relatively infrequent migrations used in our experimental setup,

traditional whole-program metrics such as IPC are unsuitable for evaluating per-

16

formance over the shorter time scales we are most interested in, since those metrics

will be dominated by the much longer periods between migrations. These long pe-

riods of undisturbed execution are desirable – they allow a given core to “warm

up” to a thread’s execution, providing a contrast for the next time that thread is

migrated – but we do not want their statistics included in the post-migrate per-

formance evaluation. Whole-program metrics also do not provide a useful way to

analyze how the impact of a given migration varies across time scales.

We introduce a new performance metric for Chapter 6, the interval IPC of

a migrating thread. After each migration, we concurrently measure the IPC over

an exponential progression of commit intervals: we measure the time it takes to

commit the 10n instructions immediately following each migration operation, for

n ∈ {0 . . . 6}. We measure time from the first post-migrate fetch until the cycle of

the 10nth commit. This results in a vector of seven measured time values for each

migration, and seven corresponding interval IPCs. For a particular experiment,

we first compute an arithmetic mean for each interval, taken across all migrations

of a single simulation, which results in seven mean interval IPCs per simulation.

Rather than report interval IPCs directly, we compute ratios of these IPCs versus

the interval IPCs of the same thread running on the baseline architecture and

migrating at the same points in execution. We report these rations as either post-

migrate speedup or post-migrate slowdown, depending on the sense of the ratio. We

report means of these ratios, taken across our workload suite.

Chapter 3

Handling Long-Latency Loads on

Simultaneous Multithreading

Processors

3.1 Introduction

Simultaneous multithreading (SMT) [TEL95, TEE+96, YN95, HKN+92]

is an architectural technique that allows a processor to issue instructions from

multiple hardware contexts, or threads, to the functional units of a superscalar

processor in the same cycle. It increases instruction-level parallelism available

to the architecture by allowing the processor to exploit the natural parallelism

between threads each cycle.

Simultaneous multithreading outperforms previous models of hardware mul-

tithreading primarily because it hides short latencies (which can often dominate

performance on a uniprocessor) much more effectively. For example, neither fine-

grain multithreaded architectures [ACC+90, LGH94], which context switch every

cycle, nor coarse-grain multithreaded architectures [AKK+93, SBCvE90], which

context switch only on long-latency operations, can hide the latency of a single-

cycle integer add if there is not sufficient parallelism in the same thread.

What has not been shown previously is that an SMT processor does not

17

18

necessarily handle very long-latency operations as well as other models of multi-

threading. SMT typically benefits from giving threads complete access to all re-

sources every cycle, but when a thread occupies resources without making progress,

it can impede the progress of other threads. In a coarse-grain multithreaded archi-

tecture, by contrast, a stalled thread is completely evicted from the processor on a

context switch; however, with SMT a stalled thread continues to hold instruction

queue or reservation station space, and can even continue fetching instructions into

the machine while it is stalled.

The ability of one SMT thread to uselessly degrade another, in the absence

of any true dependence between them, is a pipeline-level impediment to our over-

all quest in this dissertation for on-chip parallel execution. In this chapter we

demonstrate that an SMT processor can be throttled by a single thread with poor

cache behavior; however, by identifying threads that become stalled, and limiting

their use of machine resources, this problem can be eliminated. This provides not

only significantly higher overall throughput, but also more predictable throughput,

as threads with good cache behavior are much more insulated from co-scheduled

threads with poor cache behavior.

3.2 The Impact of Long-latency Loads

We demonstrate the problem of long-latency loads using a simple exper-

iment, with results depicted in Figure 3.1. For six combinations of two threads

(the actual workloads and experimental configuration are described in Section 3.4),

the figure shows three results: the IPC of each of the two threads running alone,

and of the two threads running together on the SMT processor. In each case the

light bars represent memory-intensive benchmarks, and the gray bars represents

applications with good cache behavior.

This example shows that a thread exhibiting poor cache performance can

become a significant inhibitor to another thread with good cache behavior. There

are two factors that allow an application with poor cache locality to cripple co-

scheduled applications. First, an application that regularly sweeps through the

19

MIX.2.1 MIX.2.2 MIX.2.3 MIX.2.4 MIX.2.5 MIX.2.6
0

1

2

3

4

5
ILP thread
MEM thread

Workload

IP
C

Figure 3.1: The performance of several two-thread mixes of memory-bound and
ILP-bound applications. The stacked bars represent two-thread runs, while the
single bars depict single-thread runs of the two component benchmarks of each
group.

20

shared cache will evict data from the other applications, degrading their cache

hit rates. Second, the memory-bound application can acquire and hold critical

execution resources while it is not making progress due to long-latency memory

operations, degrading every thread’s performance. In this chapter, we focus on the

latter problem.

Few applications contain sufficient parallelism to hide long memory opera-

tions (e.g., more than a dozen cycles). While multithreading allows other threads

to hide that latency, if the stalled thread fills the instruction queue with waiting

instructions, it shrinks the window available for the other threads to find instruc-

tions to issue. Thus, when parallelism is most needed – when one or more threads

are no longer contributing to the instruction flow – fewer resources are available

to expose that parallelism.

This is most clearly demonstrated for the instruction queues by the MIX.2.5

workload, for which the integer queue is on average 97% occupied when at least one

L2 miss is outstanding, but only 62% occupied at other times. Besides instruc-

tion queues, other resources that are potentially held or used by a thread stalled

waiting for a long memory operation include renaming registers and fetch/decode

bandwidth. We will demonstrate that contention for shared resources is by far the

dominant factor causing the poor performance shown in Figure 3.1.

3.3 Related Work

Simultaneous multithreading [TEL95, TEE+96, YN95, HKN+92] is an ar-

chitectural technique that allows a processor to issue instructions from multiple

hardware contexts, or threads, to the functional units of a superscalar architec-

ture each cycle. The experiments in this chapter build upon the SMT architecture

presented in [TEE+96]; previous SMT research has not exposed the problem (or

solutions) examined here. One important reason for that has been the inability of

pre-2000 instantiations of the SPEC benchmark suite to put significant pressure

on a reasonable cache hierarchy.

Less aggressive models of multithreading are less prone to such problems.

21

Coarse-grain multithreading [AKK+93, SBCvE90] is aimed only at the long-latency

load problem, and makes no attempt to address any other machine latency. Be-

cause coarse-grain architectures allow only one thread to have access to execution

resources at any time, they alway flush stalled threads completely from the ma-

chine. Fine-grain multithreading [ACC+90, LGH94] could potentially have shared

scheduling resources which exhibit this problem, depending on the architecture.

However, these architectures (e.g., the Cray/Tera MTA [ACC+90]) have tradition-

ally been coupled with in-order execution, where scheduling windows only need to

keep a few instructions per thread visible.

We ignore the latency of synchronization operations (the other source of

long and non-deterministic latencies) in this analysis. Tullsen, et al.[TLEL99]

have shown the advantage of a synchronization primitive which both blocks and

flushes a thread from the queue when it fails to acquire a lock; however, the

performance implications of not flushing were not investigated, and that paper

gives no indication that a similar technique is necessary for loads.

Previous work on the interaction of SMT processors and the cache hierarchy

has focused on cache size and organization (Nemirovsky and Yamamoto [NY98]),

bandwidth limitations (Hily and Seznec [HS98]), or cache partitioning [TEL95].

Cache prefetching [CB95, MLG92] attacks the long-latency load problem in

a different way, seeking to eliminate the latency itself. Recent work in prefetching

targets multithreaded processors specifically, using idle hardware contexts to ini-

tiate prefetching. These include Collins, et al. [CWT+01], Luk [Luk01], and Zilles

and Sohi [ZS01].

Following the original publication of the work in this chapter, numerous

later research projects have noted the impact of the resource-hoarding problems

we have identified here, and have expanded upon our solution in different ways.

El-Moursy et al. [EMA03] introduce several fetch-gating policies which seek to

avoid the hoarding of instruction queue resources that we identify and react to

here, without the cost of flushing. They evaluate several dynamic fetch-gating

schemes, driven by outstanding load counts and predictions thereof, with an eye

toward reducing queue occupancy with minimal performance degradation.

22

Balanced Multithreading (BMT) [TKTC04] takes advantage of the lull in

forward progress following a stall for off-chip memory access, using it as an op-

portunity to replace the stalling thread with one that is ready for execution. By

rotating additional threads into the processor at opportune times, BMT augments

the ILP visible to an SMT execution engine by bringing in “fresh” threads in the

face of memory stalls, instead of simply flushing instructions and blocking fetch as

we consider here.

Cazorla et al. [CRVF04b] evaluate several of the policies in this chapter

along with several from [EMA03]. They consider in more detail the effects of

both overlapping and sequential memory stalls from multiple threads, and demon-

strate several refinements to our policies which result in improved throughput and

fairness. In further work [CRVF04a], they introduce a detailed feedback-directed

hardware resource management policy which dynamically partitions the instruc-

tion queues and register files among threads to avoid the hoarding we characterize

in this chapter.

Eyerman et al. [EE07] introduce a nuanced approach which predicts, for

each long-latency load event, the amount of memory-level parallelism (MLP) avail-

able at that point in the program. In addition to flushing and stalling, their policy

can also allow a thread to proceed a short distance past each memory stall in order

to expose additional predicted MLP before corrective action is taken. In further

work [EE09], they introduce a detailed cycle-accounting mechanism which explic-

itly accounts for cycles spent stalled for memory, as well as those dominated by

the execution of co-scheduled threads; this provides a online quantification of the

inter-thread resource conflicts we consider only after the fact.

3.4 Methodology

Table 3.1 summarizes the benchmarks used in our simulations. All bench-

marks are taken from the SPEC2000 suite and use the reference data sets. Six are

memory-intensive applications: those which, in our system, experience between

0.02 and 0.12 L2 cache misses per instruction on average, over the simulated por-

23

Table 3.1: The single-threaded benchmarks used in this chapter, along with the
data set and the number of instructions emulated before beginning measured
simulation.

Benchmark Input Fast-forward (×109)

Memory-intensive, “MEM”
ammp ref 1.7
applu ref 0.7
art c756hel.in (ref) 0.2
mcf ref 1.3
swim ref 0.5
twolf ref 1.0
ILP-intensive, “ILP”
apsi ref 0.8
eon cook (ref) 1.0
fma ref 0.1
gcc integrate.i (ref) 0.5
gzip log (ref) 0.1
vortex ref 0.5

tion of the code. The other six benchmarks are taken from the remainder of the

suite and have lower miss rates, and hence higher inherent ILP. Table 3.2 lists the

multithreaded workloads used in our simulations. All of the simulations in this

chapter either contain threads all from the first group (the MEM workloads in

Table 3.2), all from the second group (ILP), or an equal mix from each (MIX).

Most of this chapter focuses on the MIX results; however, the other results are

included to demonstrate the universality of the problem.

We simulate execution with a derivative of SMTSIM [Tul96], as introduced

in Chapter 2. The baseline processor configuration used for most simulations is

shown in Table 3.3. The instruction queues for our eight-wide processor are roughly

twice the size of the four-issue Alpha 21264 (15 FP and 20 integer entries) [Com00].

In addition, the 21264 queues cannot typically remain completely full due to the

implemented queue-add mechanism, a constraint we do not model with our queues.

These instruction queues, as on the 21264, remove instructions upon issue, and

thus can be much smaller than, for example, a register update unit [SV87] which

holds instructions until retirement. Section 3.9 also investigates larger instruction

24

Table 3.2: The multi-threaded workloads evaluated.

ID Component Benchmarks

ILP.2.1 apsi, eon
ILP.2.2 fma3d, gcc
ILP.2.3 gzip, vortex
ILP.4.1 apsi, eon, fma3d, gcc
ILP.4.2 apsi, eon, gzip, vortex
ILP.4.3 fma3d, gcc, gzip, vortex
MEM.2.1 applu, ammp
MEM.2.2 art, mcf
MEM.2.3 swim, twolf
MEM.4.1 ammp, applu, art, mcf
MEM.4.2 art, mcf, swim, twolf
MEM.4.3 ammp, applu, swim, twolf
MIX.2.1 applu, vortex
MIX.2.2 art, gzip
MIX.2.3 swim, gcc
MIX.2.4 ammp, fma3d
MIX.2.5 mcf, eon
MIX.2.6 twolf, apsi
MIX.4.1 ammp, applu, apsi, eon
MIX.4.2 art, mcf, fma3d, gcc
MIX.4.3 swim, twolf, gzip, vortex

25

Table 3.3: Processor configuration.

Parameter Value

Fetch width 8 instructions per cycle
Fetch policy ICOUNT.2.8 [TEE+96]
Pipeline depth 8 stages
Min branch misprediction penalty 6 cycles
Branch predictor 2K gshare
Branch Target Buffer 256 entry, 4-way associative
Active List Entries 256 per thread
Functional Units 6 Integer (4 also load/store), 3 FP
Instruction Queues 64 entries (32 integer, 32 FP)
Registers For Renaming 100 integer, 100 FP
Inst Cache 64 KiB, 2-way, 64-byte lines
Data Cache 64 KiB, 2-way, 64-byte lines
L2 Cache 512 KiB, 2-way, 64-byte lines
L3 Cache 4 MiB, 2-way, 64-byte lines
Latency from previous level L2 10 cycles, L3 20 cycles

(with no contention) Memory 100 cycles

queues.

The policies of the SMT fetch unit have a significant impact on our results.

Our baseline configuration uses the ICOUNT.2.8 mechanism from [TEE+96]. The

ICOUNT mechanism fetches instructions from the thread or threads least repre-

sented in the pre-execute pipeline stages. This mechanism already goes a long

way towards preventing a stalled thread from filling the instruction queue (Sec-

tion 3.9 shows how much worse the load problem becomes without ICOUNT),

but we show that it does not completely solve the problem. In particular, if the

processor is allowed to fetch from multiple threads per cycle, it becomes more

likely a stalled thread (while not of the highest priority) can continue to drib-

ble in new instructions. Our baseline fetch policy (ICOUNT.2.8) does just that,

fetching eight instructions total from two threads. Section 3.9 also looks at fetch

policies that only fetch from one thread per cycle, demonstrating that the problem

of long-latency loads persists even in that scenario.

26

3.5 Metrics

As discussed in Chapter 2, this type of study represents a methodological

challenge in accurately reporting performance results. In multi-threaded execu-

tion, every run consists of a different mix of instructions from each thread, making

aggregate IPC (instructions per cycle) a questionable metric. We evaluate perfor-

mance in this chapter using a modified version of weighted speedup which we dub

normalized weighted speedup, or normalized WSU ; see Section 2.2 for a discussion

of weighted speedup, specifically Section 2.2.2 and Equation 2.2 for details of the

primary metric used in this chapter.

In addition to the normalized weighted speedup metric used throughout

this chapter, in Section 3.8 we also follow the lead of [ST00] by using open system

experiments, measuring mean job response time to assess the benefit of these

optimizations in a dynamic system with jobs entering and leaving the processor

over time.

3.6 Detecting and Handling Long-latency Loads

This section details our primary mechanisms for (1) identifying that a

thread or threads are likely stalled, and (2) freeing resources associated with those

threads.

Identifying stalled threads in most cases operates on two assumptions: that

only loads can incur sufficient latency to require this type of drastic action, and that

if a load takes long enough, it is almost certain to stall the thread. (See [TLEL99]

for a study of synchronization mechanisms on SMT, which is the other potential

source of long thread stalls). Note that in an out-of-order processor, the notion

of a “stalled” thread is much fuzzier than in an in-order processor. In an out-of-

order processor, only those instructions dependent on the load will get stuck in

the instruction queue, but if the memory latency is long enough, eventually the

thread will run out of instructions that are independent of the load (or the active

list/reorder buffer will fill with the stalled load at the head). At that point, the

thread has gone from partially stalled to fully stalled.

27

Freeing resources requires removing instructions from the processor. In

most of our experiments we assume that the processor uses the exact same flushing

mechanism that is used for a branch misprediction, which can flush part of a thread

starting at a given instruction. Such a flush frees renaming registers and instruction

queue entries.

We make the following assumptions in all of the experiments in this chapter.

First, that we always attempt to leave one thread running; we do not flush or

block a thread if all others have already been flushed or blocked. Second, that

any thread which has been flushed is also blocked from further fetching until the

load returns from memory. Third, that the processor core receives little advance

warning that a load has returned from memory. In our case, the two-cycle cache

fill time allows us to possibly begin fetching one cycle before the load data is

available (roughly four cycles too late to get the first instructions in place to use

the returned data immediately). A mechanism that accurately predicted the return

of a load, or received that information from the memory subsystem early, would

allow the thread to bring the instruction stream back into the scheduling window

more quickly, achieving higher performance than shown here at the cost of some

complexity.

We will examine two mechanisms for identifying long-latency loads. Trigger

on miss assumes we get a signal from the L2 cache on each miss, and that the

processor can attribute that miss to a particular thread and instruction. We also

assume that a TLB miss triggers a flush, on the assumption that most TLB misses

will incur expensive accesses to fill the TLB and will often also result in cache

misses after the TLB is reloaded. If the TLB miss is handled by software in the

same thread context, the processor must not flush until after the miss is handled.

A simpler mechanism, trigger on delay, just initiates action when an instruction

has been in the load queue more than L cycles after the load was first executed.

For most of our experiments, L is 15. That is more than the L2 hit time (10

cycles), plus a few more cycles to account for the non-determinism caused by bank

conflicts and bus conflicts.

Figure 3.2 shows just the latter mechanism (T15: trigger a flush after 15

28

ILP
.2

.1

ILP
.2

.2

IL
P.2

.3

ILP
.4

.1

IL
P.4

.2

ILP
.4

.3

MEM
.2

.1

MEM
.2

.2

MEM
.2

.3

MEM
.4

.1

MEM
.4

.2

MEM
.4

.3

MIX
.2

.1

MIX
.2

.2

MIX
.2

.3

MIX
.2

.4

MIX
.2

.5

MIX
.2

.6

MIX
.4

.1

MIX
.4

.2

MIX
.4

.3
0

1

2

3

4

5

IP
C N

o
lo

a
d

flu
sh

in
g

W
ith

 lo
ad

 f
lu

sh
in

g

Figure 3.2: The instruction throughput of all workloads with a simple mecha-
nism for flushing threads waiting for long-latency loads. The contributions of each
thread to the total IPC are shown by the segmented bars. For the MIX results,
the memory-intensive benchmarks are those closest to the bottom of the graph. In
each pair, the left bar uses no flushing, and the right bar uses the T15 policy.

cycles) compared to regular execution (no flushing) for all combinations of work-

loads. This graph plots instructions per cycle, for each thread, and shows that the

performance gains are mostly coming from the non-memory threads being allowed

to run unencumbered by the memory threads, with the memory threads suffering

slightly. Because of the difficulties with using IPC as a performance metric, as

discussed in Section 3.4, further graphs will show normalized weighted speedup

results instead; however, Figure 3.2 does give insight into how the speedups are

achieved. This figure also shows that long-latency load flushing is effective even

when the threads are uniform: all memory-bound or all ILP-bound. The aver-

age normalized weighted speedup for the ILP workloads is 1.03 and for the MEM

workloads is 1.25. Subsequent results will focus on the mixed workloads, however.

Figure 3.3 shows more mechanisms for identifying long-latency loads, in-

cluding TM (trigger on L2 miss), T5, T15, and T25 (trigger a flush after a load

becomes 5, 15, or 25 cycles old), and T15S (S for selective: only flush if some

resource is exhausted, such as instruction queue entries or renaming registers). T5

flushes after L1 misses and T15 after L2 misses. T25 is an interesting data point,

29

MIX.2.1 MIX.2.2 MIX.2.3 MIX.2.4 MIX.2.5 MIX.2.6 MIX.4.1 MIX.4.2 MIX.4.3 2-thread
 avg.

4-thread
 avg.

0.5

1.0

1.5

2.0

2.5

5.
98

5.
68

5.
32

5.
67

5.
91

no flush

T5

T15

T25

T15S

TM

N
o

rm
a

liz
e

d
 W

S
U

Figure 3.3: The normalized weighted speedup of flushing after long loads, compar-
ing several mechanisms for identifying long-latency loads.

because an L3 miss takes at least 30 cycles; it will identify the same misses as T15,

but identify them later.

The results are both clear and mixed. It is clear that flushing after loads is

important, but the best method of triggering a flush varies by workload. Triggering

after 15 cycles and triggering after a cache miss are consistently good. The selective

flush is best in several cases, but also performs poorly in other cases. When

it performs poorly, it is because a flush is often inevitable (especially since the

stalled thread can still fetch instructions to fill the queue); then, being selective

only delays the flush until some harm has actually been done and allows the doomed

thread to utilize precious fetch bandwidth in the meantime. In other cases, being

conservative about flushing (see both T15S and T25) pays off. This is not so much

because it reduces the number of flushes, but because it allows more loads from

the doomed thread to get into the memory subsystem before the flush. Thus,

performance is best when we can find the right balance between the need to purge

a memory-stalled thread from the machine, and the need to exploit memory-level

parallelism within the memory-bound thread. That balance point varies among

the workloads displayed here.

When there is little contention for the shared resources, flushing after loads

can hinder one thread without aiding the other(s); in our simulations, we only see

30

MIX.2.1 MIX.2.2 MIX.2.3 MIX.2.4 MIX.2.5 MIX.2.6 MIX.4.1 MIX.4.2 MIX.4.3 2-thread
 avg.

4-thread
 avg.

0.5

1.0

1.5

2.0

2.5

5.
68

5.
68

4.
70

3.
64

5.
47

no flush

next

first use

after 10

after 20

next branch

N
o

rm
a

liz
e

d
 W

S
U

Figure 3.4: The normalized weighted speedup of several techniques for selecting
the flush point, after a long-latency load triggers a flush.

that in the MIX.2.2 workload.

The average normalized weighted speedup for load flushing in this figure is

over 2.0 when two threads are active, and 1.13–1.15 for four threads. The two-

thread case is extreme because it is easy for a stalled thread to eventually take

over the processor when we are fetching from two threads every cycle. However,

the four-thread case shows that even when that effect is no longer dominant, all

threads still suffer from the “equal portion” of the machine which is held by a

stalled thread.

Once a thread is identified as stalled and selected for flushing, the processor

must choose an instruction to flush forward from; we examine several schemes.

Next flushes beginning with the next instruction after the load. First use flushes

at the first use of the loaded data. After 10 and after 20 flush beginning 10 or

20 instructions beyond the load. Next branch flushes at the next branch. This

mechanism simplifies load flushing on processors that checkpoint only at branches.

The Alpha 21264 and 21364 checkpoint all instructions, and would have more

flexibility in choosing a flush point. The results presented so far have all used the

flush after first use technique. Figure 3.4 shows the performance of different flush

point selection techniques; the T15 load identification scheme was used for these

experiments.

31

These results show some definite trends. When the load problem is most

drastic (in the two-thread workloads, particularly MIX.2.4), it is critical to flush

as close to the problem as possible, to minimize the held resources. In those cases,

flushing on next, first-use, and (sometimes) first-branch all fit that bill. When the

load problem is less critical, sometimes being more liberal about where to flush

can actually help. However, because there is so much more to gain when the load

problem is most evident, the average results are dominated by mechanisms that

flush close to the load.

Further results in this chapter will use the trigger after 15 cycles scheme to

identify long loads, and will flush beginning with the first use. This policy will be

simply denoted as T15.

The results in this section demonstrate that flushing after a long-latency

load can be extremely effective in allowing non-stalled threads to make the best

use of the execution resources. Flushing a thread is a fairly drastic action to take

on an SMT processor, but appears warranted across a wide variety of workloads.

Among the questions examined in the next section is the effectiveness of less drastic

measures to solve the long-load problem.

3.7 Alternate Flush Mechanisms

This section investigates a wider range of mechanisms to free execution

resources during long-latency loads. It seeks to answer these questions: (1) is the

complexity and performance cost of flushing on long-latency loads necessary, and

(2) what further benefits might be gained from more complex mechanisms?

One simpler alternative would be to only moderate fetching. That is, do

not flush, but immediately stop fetching from a thread experiencing an L2 miss.

This does not clear space occupied by the stalled thread, but prevents it from

taking more than its share while it is not making progress. This is the stall fetch

scheme of Figure 3.5.

Alternatively, we could make it more difficult for a thread to ever occupy

too much of the shared queue. Certainly, a statically partitioned queue does not

32

experience the load problem. However, that is a dear price to pay, sacrificing the

most efficient use of the queue at other times, especially when not all contexts are

active. A middle ground solution, however, would be a hard limit on how many

instructions a single thread could have in the pre-execute portion of the pipeline

(presumably this limit could be turned off when executing in single-thread mode).

We experimented with several different limits, and the best performer appears as

pseudo-static in Figure 3.5. For that policy, no thread is allowed to fetch a new

block when it has more than 20 instructions in the queue stage or earlier if we have

two threads active, or more than 15 instructions if there are four threads active.

More complex mechanisms are also possible. Only slightly more complex

is a hybrid of T15S and stall fetch. This mechanism stops fetching as soon as a

long-latency load is detected, but only flushes if a resource is exhausted. Stopping

fetch for the offending thread immediately increases the chances that no resource

will be exhausted and no flush will be necessary, if all other threads’ queue pressure

is light. This policy is labeled T15SF: stall, then flush.

The last scheme examined adds stall buffers to the processor. This is in-

tended to eliminate the delay in getting instructions back into the instruction

queues. Instructions that belong to a thread that is stalled, and are themselves

not ready to issue, will be issued (subject to issue bandwidth constraints) to the

stall buffer using the normal issue mechanism. When the load completes, in-

structions will be dispatched to the instruction queue (temporarily over-riding the

rename-issue path), again subject to normal dispatch bandwidth. This eliminates

the delay in resuming the stalled thread, allowing it to make more progress as

parallelism allows. Typically, only the load-dependent instructions will go into the

stall buffer, so even a small buffer can allow many independent instructions after

the load to execute and avoid unnecessary squashing. Once the stall buffer fills,

the thread is flushed starting with the instruction that found the buffer full.

Figure 3.5 shows the results. Just stalling fetch improves performance over

no flushing, but falls far short of the other solutions. The pseudo-statically parti-

tioned queue also falls short due to the inherent inefficiencies of placing artificial

limits on threads’ use of the queues. The stall and flush mechanism (T15SF) is a

33

MIX.2.1 MIX.2.2 MIX.2.3 MIX.2.4 MIX.2.5 MIX.2.6 MIX.4.1 MIX.4.2 MIX.4.3 2-thread
 avg.

4-thread
 avg.

0.5

1.0

1.5

2.0

2.5

5.
07

5.
68

5.
67

5.
71

no flush

stall fetch

pseudo-static

T15

T15SF

stall buffer

N
o

rm
a

liz
e

d
 W

S
U

Figure 3.5: The performance of several alternatives to our baseline (T15) load
flushing mechanism.

small change to our previous scheme and does show an improvement over that ap-

proach (T15). The performance of the stall buffer is disappointing. It only solves

half the problem: while relieving the instruction queue, it puts more pressure on

the renaming registers and increases those conflicts.

The T15 mechanism strikes a good balance between implementation com-

plexity and performance, on a wide variety of workloads.

3.8 Response Time Experiments

While our use of normalized weighted speedup addresses most of the me-

thodological concerns with this research, there are some questions which we can

only answer definitively by comprehensively modeling of an open system, with jobs

arriving and departing. For example, one possible issue is whether even normalized

weighted speedup appropriately accounts for the fact that a continued bias against

the slow threads may mean that they stay in the system longer, causing problems

for more threads. In fact, we will show that this isn’t the case, which is not obvious

from the previous experiments.

In this experiment, we modified the simulator to allow jobs to enter the

simulated system at various intervals, and run for a predetermined number of

34

instructions. Because the runtime intervals were, by necessity, much less than

the actual run times of these programs, we still fast-forwarded each job to an

interesting portion of execution before entering it into the system. Since the MEM

threads run more slowly, we used a mix of two ILP threads to every MEM thread;

this yielded a fairly even mix of jobs in the processor at any point in time. We ran

eighteen total jobs in each simulation, with MEM jobs run once each, and ILP jobs

run twice each. In such an experiment, the only useful measure of performance

is average response time (execution time), since the instruction throughput is for

the most part a function of the schedule rather than the architecture. The mean

response times were calculated using the geometric mean due to the wide disparity

in response times for different jobs. In these simulations, all jobs execute for

300 million instructions, then exit the system. In the light load experiment, jobs

arrive every 200 million cycles, in medium load, they arrive every 150 million cycles,

and in heavy load, they arrive every 100 million cycles. For the baseline cases, there

were on average 2.9, 3.4, and 4.5 jobs in the system for the light, medium, and

heavy loads, respectively.

Figure 3.6 presents the results of the three experiments. For each experi-

ment, the ILP and MEM thread response times are shown computed separately as

well as combined. The results show dramatic decreases in response time through

the use of load flushing. Surprisingly, these decreases are not restricted to the ILP

threads: the MEM threads gain very significantly as well, despite being the target

of bias. The gains are significant with both light loads, where the average number

of jobs in the system is closer to the worst-case of two threads, and with heavy

loads, where the average number of jobs is much higher.

These results expose two phenomena not shown in the previous sections.

First, when one thread inhibits the progress of other threads, it only causes fur-

ther queueing delays as more jobs enter the system. Conversely, if a thread can

accelerate a co-scheduled job’s exit from the system, it gains a larger share later to

accelerate its own progress. This is the source of the high speedup for the MEM

threads. With the medium-load workload, load flushing reduced the average num-

ber of jobs in the system from 3.4 to 2.5, which benefited every job.

35

Light load Medium load Heavy load
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ALL.base

ALL.T15

ILP.base

ILP.T15

MEM.base

MEM.T15

M
e

a
n

 jo
b

re
sp

o
n

se
 ti

m
e

 (
bi

lli
o

n
s

o
f c

yc
le

s)

Figure 3.6: The mean response times of jobs in open system experiments. Each
group of bars corresponds to two simulations: one in the baseline configuration, and
one using the T15 policy (trigger 15 cycles after load issue, flushing instructions
from first-use). Geometric means are shown for ALL jobs in each simulation, as
well as for the MEM and ILP subsets of threads in those same simulations.

36

The second phenomenon which degraded the performance of the no-flushing

results was the exaggeration of the two-thread problem seen in earlier results. Since

this experiment saw anywhere from zero to eight threads in the system at any one

time, we would hope that it would not spend too much time in the disastrous two-

thread scenario. However, just the opposite took place, as the poor performance

of the two-thread case made it something of a local minimum that the system

constantly returned to, for some of the experiments. When more than two threads

were in the system, throughput would improve, returning the system more quickly

to dual execution. Similarly, the system was unlikely to move to single-thread

execution if two-thread throughput was low. Thus we see that the poor dual-

thread performance highlighted by previous sections will take a much larger toll

on overall throughput than might be expected statistically — if it is not eliminated

using the techniques outlined here.

3.9 Generality of the Load Problem

The benefit from flushing after long loads will vary with the parameters

of the architecture. This section shows how the technique works under different

assumptions about fetch policies and instruction queue size. By varying those

parameters which most impact the applicability of this mechanism, this section

demonstrates that these techniques solve a real problem that exists across a wide

range of assumed architectures.

The effectiveness of, and necessity for, flushing after loads will necessarily

vary with cache sizes and cache latency. We do not explore this space here, however,

because we will be able to rely on two constants for the foreseeable future that will

ensure the continued and increasing need for this technique: there will always be

memory-bound applications, and memory latencies will continue to grow.

The ICOUNT fetch policy attempts to prevent a thread from ever taking

more than its share of the processor. One reason that threads are able to circum-

vent it in these experiments is that, with a fetch policy that allows two threads to

fetch concurrently, a thread not of the highest priority is still able to add instruc-

37

MIX
.2

_I
C1.

8

MIX
.4

_I
C1.

8

MIX
.2

_I
C2.

4

M
IX

.4
_f

et
ch

2.
4

MIX
.2

_I
C2.

8

MIX
.4

_I
C1.

8

MIX
.2

_R
R1.

8

MIX
.4

_R
R1.

8
0.75

1.00

1.25

1.50
2.85 2.09 3.48 3.47

no flush

T15

Workload_Fetch policy

N
o

rm
a

liz
ed

 W
S

U

Figure 3.7: The normalized weighted speedup of load flushing for different SMT
fetch policies.

tions. Figure 3.7 examines the speedups achieved with various fetch policies, using

the terminology from [TEE+96]. The ICOUNT.1.8 policy fetches up to eight in-

structions from a single thread each cycle. With that scheme a thread cannot fetch

more instructions unless it is the least represented thread that is ready to fetch.

The ICOUNT.2.4 policy fetches four instructions from each of two threads for a

maximum of eight. The ICOUNT.2.8 policy fetches up to eight instructions from

the highest-priority (least-represented) thread, and if fewer than eight instructions

are available from the first thread, attempts to fill the remaining space in the fetch

window with instructions from the second-highest priority thread. ICOUNT.2.8

is the baseline policy used throughout this chapter. The RR.1.8 uses round-robin

priority for fetch rather than ICOUNT.

Figure 3.7 shows that the ICOUNT.1.8 fetch policy goes a long way toward

solving the problem, but it is not sufficient: there is still a significant gain for flush-

ing, especially with two threads. This is because even if the machine is successful

at preventing a thread from occupying more than an equal portion of the proces-

sor, it still loses that equal portion of the instruction window to find parallelism in

38

MIX.2 MIX.4 MIX.2 MIX.4 MIX.2 MIX.4
0.5

1.0

1.5

2.0
no flush

T15

N
o

rm
a

liz
ed

 W
S

U

64 queue entries
(baseline)

128 queue entries 256 queue entries

Figure 3.8: The normalized weighted speedup of load flushing for different instruc-
tion queue sizes. MIX.2.* is the average for all six MIX.2 workloads, and MIX.4.*
is the average for the MIX.4 workloads.

other threads. Fetching from a single thread is not a panacea, anyway, because the

ICOUNT.1.8 policy also has a performance cost not seen in this graph (because the

speedups are normalized to different baselines). With load flushing applied, the

ICOUNT.1.8 result is 9% slower than the ICOUNT.2.8 result with four threads for

the MIX experiments, a result that confirms those in [TEE+96]. The ICOUNT.2.4

results show even greater gains than the ICOUNT.2.8 results. This comes from the

fact that the ICOUNT.2.4 scheme gives the top two threads equal access to fetch,

unlike the ICOUNT.2.8 scheme. With round-robin instruction fetching, we see to

what extent the ICOUNT scheme was protecting the processor from load stalls.

With round-robin fetching (the RR.1.8 results), flushing after loads is absolutely

essential to good performance, regardless of the number of threads.

The size of the instruction scheduling window (in this case, the instruction

queues) will also impact how easy it is for a context to monopolize the structure.

Figure 3.8 shows the performance of load flushing for two larger queue sizes (in

addition to the previous results for 64 total queue entries). As the queues become

39

larger, the processor does become more tolerant of long-latency loads when suf-

ficient thread parallelism exists. With fewer threads, however, it only takes the

stalled thread a little longer to take over the queue, regardless of size.

Another factor that would also affect these results is the presence of other

memory latency tolerance techniques, such as memory prefetching (either hardware

or software). While techniques such as these are less important on a multithreaded

processor, it can be expected that they will be available. In fact, some research

exploits the existence of threads to create prefetching engines [CWT+01, Luk01,

ZS01].

We expect this technique to coexist efficiently with – and in some cases

supplant – prefetching, in terms of performance. No current prefetchers provide

full coverage of cache misses for all important applications; so, a prefetcher could

be used to boost the performance of a particular memory-intensive benchmark,

while a load-flushing technique would still protect system throughput when the

prefetcher fails. A hardware prefetcher for a processor that included this load-

flushing mechanism would have the luxury of focusing on achieving high accuracy,

because high coverage will be less important.

Some environments, however, are inappropriate for prefetching. When

memory bandwidth is limited or heavily shared [TE93], the extra bandwidth gener-

ated by prefetching might be unacceptable, but load-flushing incurs no such cost.

The extra bandwidth required for prefetching is also undesirable for low-power

applications; however, the cost of re-execution after a flush may also be unaccept-

able, in which case stalling fetch or a static or pseudo-static partitioning of the

instruction queues might become more desirable.

3.10 Summary

A thread with a high concentration of long-latency cache misses can reduce

the throughput of a co-scheduled thread by as much as a factor of ten. This

happens when the memory-bound thread constantly fills the instruction scheduling

window with instructions that cannot be issued due to dependence on these long-

40

latency operations. The co-scheduled thread cannot get enough instructions into

the processor to expose the parallelism needed to hide the latency of the memory

operation. Thus, we lose the primary advantage of multithreading.

In this chapter, we have addressed this problem by forcing a thread waiting

for a long-latency load to give up resources, using the same mechanism used for

branch mispredictions, and allowing the thread to resume fetching once the load

returns from memory. This technique achieves a 15% speedup with four threads

active, and more than doubles the throughput with two threads active. Response

time experiments show that under various load levels the average response time

is cut by about a factor of two, including a significant reduction even for the

memory-bound jobs our techniques bias against.

We have also shown that less aggressive techniques (e.g. just stalling fetch,

or limiting full access to the instruction queues) can help, but do not provide

the speedups achieved by flushing. More aggressive techniques, such as providing

dedicated buffers for holding stalled instructions, do provide some further gains,

but may not justify the additional cost.

Acknowledgements

The work in this chapter was funded in part by NSF CAREER grant MIP-

9701708, a Charles Lee Powell faculty fellowship, and equipment grants from Com-

paq Computer Corporation.

This chapter contains material from “Handling Long-Latency Loads in

a Simultaneous Multithreading Processor”, by Dean M. Tullsen and Jeffery A.

Brown, which appears in Proceedings of the 34th annual International Sympo-

sium on Microarchitecture (MICRO). The dissertation author was the secondary

investigator and author of this paper. The material in this chapter is copyright

c©2001 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for cre-

ating new collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained from the

41

IEEE.

Chapter 4

Coherence Protocol Design for

Chip Multiprocessors

4.1 Introduction

Multi-core architectures, particularly chip multiprocessors (CMPs), are be-

coming increasingly popular as a means to enhance the throughput and power effi-

ciency of processors. While initial implementations of multi-core technology from

the general purpose processor industry contained two to four cores [MMG+06,

GAD+06, KST04], core counts are increasing: Sun has shipped systems with eight

cores per die [KAO05], and Intel has demonstrated processors with 48 [HDH+10]

and 80 [VHR+07] cores. Every core added to a system increases the amount of

overall hardware parallelism, raising the ceiling on system-wide throughput; this is

the primary hardware trend which underlies our overall push, in this dissertation,

toward chip-wide parallel execution.

As the number of cores on a processor die grows, and as more and more

shared memory programs are run on these processors, cache coherence is fast be-

coming a central issue for multi-core performance. Cache coherence is the mech-

anism that allows us to retain the value of a given memory block in multiple

processor caches at one time, and still maintain system-wide agreement about the

value of that memory block at any point in program execution. Cache coherence

42

43

requires that we maintain enough information about the possible locations of the

data across various caches so that we can find the data when a new consumer re-

quests a copy, and so that we can communicate the obsolescence of cached values

when someone writes to a memory block which is being shared. Since cache co-

herence involves significant amount of communication, wire speed and bandwidth

are the primary limiters to the performance and scalability of cache coherence.

As interconnection speeds fail to scale well with processor speeds [HMH01] and

as interconnection bandwidth overhead (in terms of area and power) worsens over

time [KZT05], novel mechanisms and policies are needed for accelerating coherence

for a given wire speed and bandwidth.

In this chapter we examine the design of effective coherence mechanisms for

a multi-core architecture that has multiple L2 caches, uses a directory-based cache

coherence protocol, and features a scalable point-to-point interconnect. Multi-core

implementations with small numbers of cores can use a snoop-based cache coher-

ence protocol, which relies on a broadcast-based interconnect – typically a bus – to

implicitly provide global communication of value and state changes, and to provide

a single ordering of all accesses. However, broadcast-based interconnects such as

buses scale poorly as the number of cores grows, motivating the switch to scalable

interconnects and directory-based coherence solutions, which work without the

need for any broadcast medium. Toward this end, we explore the use of directory

protocols for multi-core processors, and tuning the protocols for the unique needs

and opportunities provided by chip multiprocessors. We propose and evaluate a

novel directory-based coherence scheme that improves the performance of parallel

programs on such a processor.

We show that simply implementing traditional directory protocols within

a chip does not provide the most effective solution. This is because those proto-

cols were designed to work under very different topologies than those found on a

chip multiprocessor. Some examples of topological assumptions which hold for a

multiple-chip multiprocessor but not a single-chip multiprocessor, are that, for a

given requester and home node:

1. The home node’s main memory and the home node’s directory are close to

44

each other, and about the same distance (latency) from the requesting node;

2. Once a request has reached the home node directory, the home node memory

is closer than the caches of other nodes; on a traditional multiprocessor, the

biggest latency barriers are between nodes. On a CMP, the latencies between

nodes are small, and the dominant latency barrier is to off-chip memory,

regardless of which node it is associated with.

3. The relative distance between nodes varies little. On a traditional multi-

processor, the communication latency between a given node to the nearest

node and to the farthest node are often within a factor of two of each other,

because latency is dominated in most cases by the off-chip and off-board

latencies. On a chip multiprocessor, although all latencies are smaller in ab-

solute terms, the relative latencies vary significantly; a core six hops away

takes considerably longer to access than one a single hop away.

To take advantage of these differences, we introduce proximity-aware direct-

ory-based coherence. Proximity-aware coherence is motivated by the observation

that, while a cache line can reside in multiple caches in the shared state, there is no

guarantee that the line will be present in the cache of the home node corresponding

to that line. Instead of requiring that the home node always source a given block of

data – contacting very slow off-chip memory if it happens to not exist in the home

node’s caches – proximity-aware coherence enables the closest sharer to source the

data on a read or write request. This results in decreased latency and bandwidth

utilization, especially when the line is not present in the home node’s cache but is

present in the “shared” state in some other cache. Even when the line is present

in the home node’s cache, proximity-aware coherence can still help in reducing the

bandwidth pressure on the interconnect.

4.2 Related Work

Directory-based protocols [LLG+92, LL97] have been proposed for scalable

coherence on distributed shared memory multiprocessors. The coherence proto-

45

col for SGI Origin [LL97] was a four-state “MESI” (Modified, Exclusive, Shared,

Invalid) protocol assuming sequential memory consistency. Directory coherence

for the DASH multiprocessor [LLG+92], on the other hand, utilized a three-state

protocol assuming weak memory consistency. Both these machines featured dis-

tributed shared memory (DSM) and implemented cache coherence with distributed

directories that were stored at each node, but off-chip from the processor itself.

While directory-based coherence has been popular for DSM systems, it has

not been studied in much detail for CMPs utilizing private L2 caches. Most of the

current CMP implementations and proposals either have shared L2 caches with

directories [BGM+00] or private L2 caches with snoop-based coherence [KZT05];

neither of those approaches scale well as the number of cores increases. Huh

et al. [HKS+05] discuss a CMP model with directory-based coherence for their

study of optimal degree of sharing for NUCA caches. They assume a central

directory with constant access time. Zhang and Asanovic [ZA05] also consider

directory-based coherence for one of their CMP models; they assume directory

caches distributed by cache set indices.

Our implementations of directory-based coherence assume a distributed di-

rectory, with an on-chip directory controller and directory cache at each node.

Caching the directory state was proposed [GWM90, ON90] as a means of reducing

the memory overhead entailed by directories. Michael and Nanda [MN99] propose

integrating directory caches inside the coherence controllers to minimize directory

access time. Acacio et al. [AGGD02] study the impact of having first level directory

on-chip caches.

One of our proposed policies, proximity-aware coherence, relies on location

awareness to source shared data. CC-NUMA and COMA architectures [DT99,

ZT97] also use spatial awareness for minimizing latencies. However, those architec-

tures improve performance by retaining local copies of data that would otherwise

require remote access. Proximity-aware coherence, on the other hand, does not

require changing the mapping of data to sharers.

While we assume a conventional interconnect, Eisley and Peh [EPS06] move

much of the coherence-related control and data storage into the network. Tradi-

46

tional sharer sets are replaced by virtual trees maintained within the routers them-

selves, with routers serving as active participants in coherence decisions. Through

different mechanisms, their work and ours realize similar latency benefits on par-

allel workloads.

Chang and Sohi [CS06], seeking to combine the best attributes of both

shared and private L2 caches, introduce a scheme for globally managing data

placement, replication, and migration across the caches of all cores; even single-

threaded workloads benefit through the use of neighboring cache resources. New

policies manage storage through a centralized directory-like structure suitable for

coordinating small numbers of cores. While their cache-management scheme is

orthogonal in concept to that of a coherence protocol, both it and our own opti-

mizations improve performance by avoiding off-chip memory accesses.

Token Coherence [MHW03] provides a framework for decoupling policies for

coherence performance and correctness, the former implemented as performance

protocols, and the latter ensured by correctness substrates. The specific perfor-

mance protocol considered in that work, TokenB, broadcasts requests in order to

avoid resorting to main memory accesses unnecessarily. Our proximity-based co-

herence scheme seeks the same goal, and could itself be expressed as a particular

performance protocol atop a token-based system.

4.3 A CMP Architecture with Directory-based

Coherence

Here we describe the processor architecture that we use for our study, as well

as the baseline implementation of directory-based coherence for this architecture.

4.3.1 Architecture

Our experimental architecture is a chip multi-processor consisting of 16

cores arranged as a 4 × 4 mesh of tiles. Each tile contains an in-order core with

private Level-1 instruction and data caches, a private unified Level-2 cache, a

47

Core L2

Dir.
controller

Net.
switch

Dir.
cache

Mem.
channel

Bus

Tile
0

Tile
1 ...

Tile
15

Figure 4.1: The baseline chip multiprocessor architecture, with 16 tiles. Each tile
contains a core (with L1 caches), an L2 cache, a directory controller, a directory
cache, a network switch, and a memory channel.

directory controller, and a network switch connecting to the on-chip network, as

shown in Figure 4.1. Memory – both directory and regular program memory –

is accessed through on-chip memory controllers, with one located on each tile.

Each memory channel provides access to a different range of physical memory

addresses. The architecture resembles a conventional mesh-connected multi-chip

multiprocessor. The optimizations considered in this chapter exploit, among other

things, the non-uniform latencies between cores inherent in a mesh architecture.

This non-uniformity (in particular, the ratio of the latency for communicating

with a distant node to that for communicating with an adjacent node) will only

increase with larger CMPs; as wire delays increase, the absolute difference between

these latencies will increase as well. Note that, while our baseline is a canonical

architecture, the techniques outlined here can apply to any system with multiple

(L2) caches, whether those caches each serve a single core, or each serve a cluster

of cores.

We contrast this architecture with that of a more traditional multiprocessor

(Figure 4.2), which is composed of multiple chips and typically multiple boards.

A coherence protocol that is designed for the traditional multiprocessor will not

exploit the topology of a chip multiprocessor well; it assumes that, for a given

memory address, node memory is close to the home node directory, and that

48

Core L2

Dir.
Main
memory

Core L2

Dir.
Main
memory

Network

...

Figure 4.2: A more traditional multiprocessor (multi-chip, multi-board).

remote caches are far away. Neither assumption is true on a chip multiprocessor.

We assume that the L2 cache is tightly coupled to the rest of the tile.

The tag and status storage are kept separate from the data arrays and close to

the core and router for quick tag resolution. Accesses to resources on other tiles

require that traffic travel through the network switch and over the on-chip network,

experiencing varying access latencies depending on the distance between the tiles

and the loads on the links between them.

We also assume directory caches (DC), one per node, which cache directory

state as it is used by the directory controllers. Instead of accessing the off-chip

directory memory for each coherence operation, the directory controller accesses

the DC instead. All state changes are made to the contents of the DC itself. Only

when there is a miss in the DC does the directory controller need to make an

off-chip access to determine the coherence state of a line; given that only a single

node is designated as the point of contact for directory information for any given

cache line (its “home node”), the corresponding coherence state cannot exist in

another node’s DC, so the directory caches themselves need not be coherent.

The directory cache is organized as a set-associative cache where each cache

line holds state corresponding to multiple contiguous memory blocks, to exploit

spatial locality. A new entry is created in the DC for every line that is loaded. The

directory cache replacement policy is LRU. Note that this organization decouples

49

L2 tags from the coherence directory tags. This enables low-latency access to the

coherence state of a line, even when the line is not present in the L2 of the home

node.

A generic four-state “MESI” protocol [LL97] adapted for CMPs is used as

the baseline protocol for on-chip data coherence. The MESI protocol is named for

the four possible states maintained for each block in a particular cache:

• M, modified: This cache has a modified version of the data, and no other

cache has a copy.

• E, exclusive: This cache has a clean copy, and no other cache has a copy.

• S, shared: This cache has a clean copy, but other caches may also have

copies.

• I, invalid: No data is present.

Additionally, in a directory protocol, the home node must keep track of the

global state of each line, as well as the set of possible sharers of each line, in order

to coordinate writes to shared data.

Our proposed implementation is a variant of this protocol. We now describe

the details of our baseline coherence protocol.

4.3.2 Baseline Coherence Protocol

To illustrate the directory coherence protocol, first consider how an L1 read

miss traverses the memory hierarchy:

• Requester: If the requested location is present in the requester’s L2 cache,

the cache simply supplies the data and no state change is required at the

directory level. If there is an L2 miss, a request is sent to the home node

which is associated with the desired memory address.

• Home node: The directory controller accesses the node’s directory cache,

and directory memory if necessary, to examine the coherence state for the

50

desired cache line. If the home node itself is indicated as a sharer of the

desired data, the directory controller forwards the request to the local L2

cache for service. Otherwise, if the coherence state indicates the block is

shared (and thus unmodified), a read from the main memory attached to the

home node is initiated, and the result subsequently sent to the requester. If

the coherence state instead indicates that the block is dirty (thereby held

exclusively by one node), the request is forwarded to that remote node’s L2

cache for service.

• Remote node: The node with the dirty copy replies with the most up-to-

date version of the data, which is sent directly to the requester. In addition, a

sharing write-back message is sent to the home node to update main memory,

and to change the directory state to indicate that the requester and remote

nodes now have shared copies of the data.

Next, consider the sequence of operations that occurs when a location is

written. We focus here on the case of a write miss.

• Requester: A read-exclusive request is sent to the home node to retrieve

the cache line and gain ownership.

• Home node: The home node can immediately satisfy an ownership request

(from its attached memory) for a location that is in the uncached state. If a

block is in the shared state, then all cached copies must be invalidated. The

entry in the directory cache corresponding to the request address indicates

the nodes that have the block cached. Invalidation requests are sent to these

nodes. For weakly consistent processors, the home node would concurrently

send an exclusive data reply to the requesting node (though data need not be

sent for upgrade misses), and then wait for invalidate ACKs from the other

potential sharers. For strongly consistent processors, the home node waits

until it has received invalidate ACKs from all sharers before replying to the

requester and granting ownership of the block. For both types of consistency,

a request is considered serviced at the home node only after invalidate ACKs

have been received from all previous sharers. If, instead of the shared state,

51

the directory indicates that the desired block is initially dirty, then the read-

exclusive request must be forwarded to the sole owner, as in the case of a

read.

• Remote node: If the directory had initially indicated that the memory

block was shared, then the remote nodes are each sent an invalidation re-

quest to eliminate their copy. Upon receiving the invalidation, each remote

node invalidates the corresponding line, and then replies to the home with

an acknowledgement. If the directory had instead indicated the block was

initially dirty, then the sole owner is sent a read-exclusive request. As in the

case of the read, the remote node responds directly to the requesting node

with the data, and sends the home node a message acknowledging transfer

of ownership.

4.4 Accelerating Coherence via Proximity Aw-

areness

Proximity-aware coherence encompasses the recognition of two facts partic-

ular to chip multiprocessors. First, that an on-chip cache access – even to a remote

node – is always closer than an off-chip memory access. Second, that if there are

multiple sharers of the data, selecting the right source to provide the data (one who

is close to the requester) can reduce both latency and bandwidth utilization. We

present a novel directory-based coherence schemes that exploits these properties.

For conventional directory-based coherence, a read or write miss to a line

that is in the shared or the uncached state always results in the home node sourcing

the data. However, the data may not be in the home node’s L2, and accesses to off-

chip memory are expensive. Proximity-aware coherence relies on the observation

that even if data is not present in the home node’s L2, it might still exist in shared

state in some other L2 on the chip. This relaxes the constraint of the home node

always sourcing the data in such scenarios and instead allows other sharers to

source the data.

52

1 2

3

ACK

Data

Read
Request

Forwarded
Request

Requester

Home
Node

Closest
Sharer

4

(a) Read Miss

L2 Miss

1 2

3

ACK

Data

Write
Miss

Request

Forwarded
Request

Requester

Home
Node

Closest
Sharer

4

(b) Write Miss

L2 Miss

Invalidates

ACKs
Other

Sharers
2

Figure 4.3: Proximity-aware coherence.

53

To illustrate the proximity-aware coherence protocol, first consider how a

read miss traverses the memory hierarchy. Initial actions at the requester remain

the same as in the baseline. The protocol differs at the home node and at the

remote node.

• Home node: The home node examines the directory state of the memory

location. If the block is dirty, the request is forwarded to the exclusive owner,

as in the baseline. If the block is uncached, the home node services the request

from main memory, as in the baseline. Otherwise, the block is clean; if the

home node is indicated as a sharer, the request is forwarded to the home

node’s L2 cache for service. If the home node is not a sharer, but other

nodes are, then the directory controller selects one or more of the potential

sharers to ask for the data. The home node sends a message to the closest

of these sharers, requesting it forward the data to the original requester. If

the protocol supports multiple sharer requests, others are contacted in turn,

until one is found to have the data or the maximum number of requests has

been made.

The directory state is not updated until the directory controller either re-

ceives an ACK from a remote node indicating that the desired data has

been forwarded to the original requester, or every proximity-based request

has been NACKed, at which point the controller gives up on future such

requests and falls back to requesting the data from main memory.

• Remote node: If the remote node is in the dirty state, the same actions

take place as in the baseline. However, if the data is shared and the remote

node has been asked to forward the data to the requester (because it is the

closest sharer), the remote node sources data directly to the requester and

sends an ACK back to the home node. If the requested line is not in the

remote node’s L2 cache when the request from the home node reaches it, the

remote node responds with a NACK.

Now consider the sequence of operations that occurs when there is a write

miss. Again, initial actions remain identical at the requester.

54

• Home node: If the requested line is in the home node’s L2, the same actions

take place as in the case of the baseline coherence implementation.

If the directory indicates that the block is dirty, then the read-exclusive

request must be forwarded to the exclusive owner, as in the case of a read.

If the line is in shared state AND the line is not in the home node’s L2,

forward-exclusive requests are sent in turn to one or more potential sharers,

as in the read-miss case, eventually falling back to reading from main mem-

ory if the forwarding requests fail. Any potential sharers which were not

sent a forward-exclusive request are then sent invalidate requests, in parallel.

Directory state is not updated until replies are received from all sharers.

• Remote node: If the directory had indicated a dirty state, then the exclu-

sive owner receives a read-exclusive request. The coherence transactions in

that case are identical to the baseline coherence implementation.

If the directory had indicated that the memory block was shared, and the

remote node is the subject of a forward-exclusive request, it forwards a copy

of the data (if present) to the original requester, invalidates its own copy,

and responds with an ACK to the home node. If the remote node does not

have the data, a NACK is sent.

Proximity-aware coherence attempts to ensure that if data is anywhere in

the CMP in the appropriate state, a read or write request can be satisfied with-

out the need to do off-chip memory access at the home node. This decreases

the latency of coherence. Also, proximity-aware coherence should result in de-

creased overall bandwidth utilization since the control messages are much smaller

than data messages: even though the number of control messages increases, the

larger data-carrying responses will travel shorter distances. The latency-bandwidth

tradeoffs depend on the spatial location of the nodes and the relative size of the

data messages versus control messages.

The implementation of proximity-aware coherence is a straightforward, safe

extension of the mechanisms present in the baseline system; no additional storage

is required specifically to support it, and the additional state transitions within

55

the directory and cache controllers do not require significant complexity to handle.

Correctness of the underlying protocol is not affected, since 1) the proximity-

aware extensions are applied only to clean data (possibly after invalidates), 2) the

resulting cache blocks are left clean, and 3) the corresponding directory entry is

always updated with a superset of the actual sharers before processing the next

request for the subject memory block.

Note that proximity-aware coherence is not applicable for upgrade misses, as

no data blocks need to be transmitted in that case. Proximity-aware coherence will

work whether the processor supports strong (e.g., sequential) or weak consistency.

While proximity-aware coherence as introduced forwards a single data re-

quest to the sharer nearest each requester, a variety of request policies are possible.

We explore two additional considerations: how many sharers to send proximity

forwarding requests before giving up, and what metric is used to order candidate

sharers.

Forwarding requests to multiple potential sharers pits the benefits of avoid-

ing unnecessary off-chip memory accesses when some of the advertised sharers lack

copies of the data, against the bandwidth and latency costs of the additional con-

trol messages. (It is possible for nodes listed as sharers at the directory to no

longer contain copies of the data, because it has been evicted from the cache).

We consider forwarding requests to the ”nearest” one, two, or three nodes before

falling back to an external memory access.

We consider three node selection policies, which are used to order the poten-

tial recipients of a proximity forwarding request. The first, near, orders candidates

by the Manhattan distance from each remote node to the requester. The second,

via, orders candidates by the sum of the Manhattan distances from the home node

to each remote node, and from each remote node to the requester. The final policy,

rand, simply chooses nodes from the sharer set at random.

In reporting results, we combine the node selection policy and try-count,

e.g., a policy which attempts to source data from two remote nodes nearest to

the requester is referred to as near2. We refer to the policy of consulting a single

sharer at random before reverting to main memory simply as rand.

56

4.5 Methodology

We perform all evaluations with a modified version of RSIM [PRA97b],

as introduced in Chapter 2. Home nodes are assigned based on a “first-touch”

policy [LL97]; this ensures that the “home” designation is assigned to a node that

is likely to be an active sharer of the data. We assume 70 nm technology (based

on BPTM [CSO+00]) and model a 3 cycle network hop, which includes includes

the router latency and an optimally-buffered 5 mm inter-tile copper wire on a high

metal layer. The latencies are modeled by assuming a 24 FO4 processor clock cycle

[HP04]. Memory channels are assumed to have RDRAM interfaces. Table 4.1 lists

the important system parameters used in the experiments.

The workloads we use to evaluate our coherence mechanisms are listed in

Table 4.2. These are all parallel workloads and represent a wide variety in their

computation-communication ratio. The applications also have varying degrees of

sharing and synchronization, and represent diverse application domains.

4.6 Analysis and Results

Next, we present our evaluation of the proposed proximity-aware coherence

policies. All our evaluations assume a sequentially consistent processor with MESI

baseline protocol as described in Section 4.3.2. Evaluations are presented for

256 KiB L2 caches unless otherwise noted.

With proximity-aware coherence we seek to eliminate accesses to memory

for any data held in an on-chip cache, and to minimize the distance traveled for any

cache-to-cache transfers. The first goal, in particular, exploits the unique property

of chip multiprocessors (vs. traditional distributed shared memory multiproces-

sors) that the latency of communication between compute nodes – and thus the

latency of seeking data from a peer core’s cache – is significantly lower than the

latency of seeking data from one’s own local memory.

The effectiveness of this technique, then, will depend in large part on how

often a requested line is not present at the queried home node – which would

typically result in a memory access – yet is present in some other node’s caches.

57

Table 4.1: Architecture details.

Parameter Value

Processor model in-order
Issue-width dual-issue
Instruction window (entries) 16
Load/store queue (entries) 16
Branch predictor bimodal (2K)
Number of integer ALUs 2
Number of FP ALUs 1
Cache line size 64B
L1 I-cache size/associativity 32KiB/4-way
L1 D-cache size/associativity 32KiB/4-way
L1 Load-to-use latency 1 cycle
L1 replacement policy Pseudo-LRU
L2 cache size/associativity 256KiB/8-way
L2 load-to-use latency 6 cycles
L2 replacement policy Pseudo-LRU
Directory cache size/associativity 16KiB/4-way
Directory cache load-to-use latency 1 cycle
Directory cache replacement policy LRU
Network configuration 4× 4 mesh
One-hop latency 3 cycles
Worst-case L2 hit latency (contention-free) 48 cycles
Number of memory channels 16 (1 per L2)
Directory memory latency 30 cycles
External memory latency 256 cycles

Table 4.2: Workloads

Benchmark Benchmark Suite Problem Size

APPBT NAS 64× 64× 64, 30 iterations
FFT SPLASH2 64K points
LU SPLASH2 256× 256 matrix, 8× 8 blocks
MP3D SPLASH 48000 nodes, 20 timesteps
Ocean SPLASH2 130× 130 array, 10−9 error tolerance
QuickSort TreadMarks 512K integers
Unstructured Wisc Mesh.2K, 5 timesteps

58

appbt fft lu mp3d ocean quicksort unstruct
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
5
4
3
2
1

Fr
ac

tio
n

of
 re

ad
 m

iss
es

 to
 s

ha
re

d
lin

es

Figure 4.4: Fraction of read misses to shared lines for which the home node is not
a sharer, but another node is. The higher the bars, the more potential benefit
from proximity-aware coherence. The segments of each bar indicate the minimum
number of hops from a sharer to the requester, for each miss.

We characterize this frequency in Figure 4.4, which shows the fraction of read

misses to a shared line (i.e. lines for which the corresponding directory entry lists

the line in the “shared” state) that do not have the home node listed as a sharer.

The higher the bars, the higher the opportunity for initiating proximity-aware

cache-to-cache transfers. These results include the effect of the first-touch home

node assignment policy, which increases the chance that the home node is an active

sharer. In the absence of this policy, the potential for proximity-aware coherence

would be even greater.

Note also, in Figure 4.4, that the results for each benchmark are broken

down in terms of the distance from the requester of the closest node that is listed

in the directory as a sharer. So, if the requester is node 0 (the top left tile of

the chip), and the closest sharer for the requested line as listed in the directory is

node 15 (the bottom right tile of the chip), it adds to the stacked bar corresponding

to 6 (because nodes are six network hops apart).

There are two things to note in this graph. First, we can see that it is quite

common for shared data to not be found in the home node, but exist elsewhere

on the chip. In fact, this happened for nearly half of read misses to shared lines

59

(43%). The actual percentage does depend significantly on the data access pat-

terns, however, and therefore we observe a significant variance by benchmark. For

example, for unstruct and ocean, the requester is often the home node as well and

thus only 14% and 22% of read misses to shared lines, respectively, have the home

node not listed as a sharer. fft experiences a very small number of read misses to

shared lines, essentially all of which are hosted by the home node. Data migration

patterns are more aggressive for appbt and mp3d, resulting in a high fraction of

read misses to shared lines with non-home sharers: 74% and 78%, respectively.

Another observation from the graph is that most of the requests can be

satisfied by nodes that are one hop away. While this is not very surprising –

the average distance between two nodes in a 16 × 16 tiled processor is only three

hops – it does mean that proximity-aware coherence, done properly, can result in

significantly reduced average L2 miss latency.

While Figure 4.4 shows the potential for proximity-aware coherence, the

numbers do represent an upper bound, since there is no guarantee we will find the

data at the closest apparent sharer. Evictions in the individual caches cause the

sharer set in the directory to always be a superset of the actual sharers. Thus,

while this result gives an accurate account of how often a sharer exists, there will

be times that – depending on evictions in progress – finding a sharer takes multiple

queries.

A more direct measure of success for this technique coherence is the re-

duction in average L2 miss latency, when proximity-aware coherence is applied.

Figure 4.5 shows the average latency of an L2 miss for a multi-core processor

enhanced with proximity-aware coherence. The results are normalized against L2

miss latencies for the processor with baseline coherence. As can be seen, proximity-

aware coherence can often result in significant reduction in latency of coherence

operations. Latency reductions of up to 79% (quicksort) were observed. Average

latency reduction was 24.6%.

Proximity-aware coherence has two distinct enhancements: elimination of

unnecessary memory accesses, and the minimization of distance traveled by shared

data. The similarity of the three bars in each group indicates that the former is

60

appbt fft lu mp3d ocean quick
sort

un-
struct

mean
0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9
1

1.1

rand
near1
via1

No
rm

al
ize

d
L2

 m
iss

 la
te

nc
y

Figure 4.5: Mean L2 miss-service latency with proximity-aware coherence, normal-
ized (base = 1.0). The rand policy queries a random on-chip sharer, near1 queries
one sharer closest to the requester, and via1 queries one sharer with a minimum
distance along the home-requester path.

clearly the more important factor driving performance in these experiments; all

three distance protocols achieve strong gains, but the difference between them is

slight.

However, it is still worth noting that via performs slightly better than ran-

dom and near. Random (rand) represents a baseline distance-oblivious heuristic.

Near minimizes the distance from the sharer to the requester, but in many cases

the total hops traveled from the home node to the requester (via the sharer) is

greater than the minimal number of hops from the home node to the requester.

This is because the control message must travel from the home node to the sharer

which, although presumably close to the requester, may be distant from the home

node. So while the distance traveled by the data is minimized, the total distance is

not. The via enhancement greatly increases the likelihood that the combined dis-

tance traveled by the control message and the data is no greater than the minimal

distance. This results in reduced overall L2 miss latency.

An associated effect of performing a spatial optimization (e.g., near and

via) is that the average bandwidth pressure on the interconnect is reduced. This

is because the sourced data now traverses a shorter distance, on average, from the

61

appbt fft lu mp3d ocean quick
sort

un-
struct

0

25

50

75

100

125

150

175

200

225

250

275

rand
near1
via1

Re
pl

y-
ne

tw
or

k
by

te
s

pe
r L

2
m

iss

Figure 4.6: Reply-network utilization, in terms of total network traffic generated
for each miss. (Each individual link transit counts toward the total.)

sharer to the requester. Figure 4.6 shows the average number of bytes of data

transferred per L2 miss for the three proximity-aware policies. We observe up to

6% reduction in bandwidth requirements for via and near over random. In a system

where contention for some links was high, we would expect that reduced bandwidth

to translate more directly into latency reductions (due to reduced queueing). How-

ever, the SPLASH2 benchmarks put very little overall pressure on our assumed

interconnect.

In fact, there are several reasons why we believe these results understate

the potential gains of the proximity-aware coherence, and the spatial optimizations

(e.g., via) especially. The SPLASH2 benchmarks have small working sets relative to

our cache sizes. This has two effects: contention for links is low, and the number of

L2 misses per instruction is generally quite small. This means that the sensitivity

of these results to the actual L2 miss latency is much lower than most realistic

parallel commercial workloads. Additionally, we will see even greater gains as the

number of cores – and thus the maximum and average distance between cores –

increases. With future many-core systems composed of tens to hundred of cores,

the impact of proximity-aware coherence overall as well as of the node-selection

62

appbt fft lu mp3d ocean quick
sort

un-
struct

mean
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

rand
near1
via1Sp

ee
du

p

Figure 4.7: Speedup from using proximity-aware coherence, on a processor with
sequential consistency.

policy will only increase.

In spite of the benchmark limitations discussed above, the significant reduc-

tion in average L2 miss latency through proximity-aware coherence does translate

into improved system performance. Figure 4.7 shows the performance of the three

proximity-aware policies normalized against the baseline coherence protocol. As

can be seen, proximity-aware coherence can result in speedups up to 75% with an

average speedup of 16%. The via policy results in the highest system performance.

We also evaluate the impact of the near and via policies with try-counts

of two and three, i.e., retrying one or two additional potential sharers, after the

failure of the first proximity-read request, before falling back to the use of main

memory. The use of additional requests increases the success rate of proximity-

read sequences by a mean of 7% for near2 and via2, and 9% for near3 and via3.

Unfortunately, these gains are offset by increases in bandwidth utilization, as well

as some increases in the L2 miss-service latency (since retries are handled serially).

While lu benefits from retries with an additional 1% decrease in mean L2 miss-

service time and an additional 0.2% increase in speedup, the suite-wide impact of

retries is negligible.

63

4.7 Summary

In this chapter, we have taken a step in exploring the design of directory co-

herence protocols for chip multiprocessors. Future multi-core designs will continue

to feature multiple L2 caches and scalable interconnects. We have seen here that

simply implementing traditional directory protocols on a multi-core architecture

does not provide the best design.

In particular, we have shown a multi-core specific customization of directory

coherence – proximity-aware coherence – which resulted in speedups up to 75% over

a traditional directory coherence protocol applied directly to a multi-core processor,

with average speedup of 16%. Reduction in average L2 miss latency for coherence

misses was even greater: per-benchmark average miss latency was reduced up to

79%, with a suite-wide average reduction of 25%. More importantly, the results

suggest that as multi-core designs are scaled up, both in terms of number of on-die

cores as well as the sizes of the data and working sets of applications, the potential

for proximity-aware coherence will increase.

Acknowledgements

The work in this chapter was supported in part by NSF grant CCF-0541434

and Semiconductor Research Corporation grant 2005-HJ-1313.

This chapter contains material from “Proximity-Aware Directory-based Co-

herence for Multi-core Processor Architectures”, by Jeffery A. Brown, Rakesh Ku-

mar, and Dean Tullsen, which appears in Proceedings of the Nineteenth Annual

Symposium on Parallelism in Algorithms and Architectures (SPAA). The disserta-

tion author was the primary investigator and author of this paper. The material in

this chapter is copyright c©2007 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that the copies are not

made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page in print or the first screen in digital

media. Copyrights for components of this work owned by others than ACM must

64

be honored. Abstracting with credit is permitted. To copy otherwise, to repub-

lish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or email permissions@acm.org.

Chapter 5

The Shared-Thread

Multiprocessor

5.1 Introduction

As processor manufacturers further develop multi-core designs, the success-

ful exploitation of thread-level parallelism is central to sustaining the scaling of

system-wide performance. As introduced in Chapter 1, while the details of express-

ing TLP in software may vary, the efficiency of the underlying hardware support for

thread manipulation and scheduling is inescapably critical. For general-purpose

computing workloads – wherein the amount of parallelism is not constant – we

desire an architecture which achieves good performance on a single thread, with

performance improving as more threads are added, up to a relatively high number

of threads.

Designs with many relatively small cores offer high peak throughput, but

provide high per-thread latencies and perform poorly when thread-level parallelism

is low. A processor with fewer, more powerful cores will provide lower per-thread

latencies and good few-thread performance, but will be comparatively inefficient

when running many threads. If we add multithreading [TEL95, TEE+96] to the

latter design, we achieve a better tradeoff: providing both low latency when offered

few threads, and high throughput when running many threads. However, there is

65

66

a limit to how far throughput gains will scale, since very large cores do not scale

even their peak throughput linearly with area.

In this chapter, we describe an architecture which features relatively mod-

est cores with only minimal support for on-core multithreading (i.e., simultaneous

multithreading, or SMT), augmented with fast off-core thread storage, thus sup-

porting more threads chip-wide than allowed by the SMT cores themselves. Peak

performance on such an architecture will scale roughly linearly until the number

of threads reaches the number of cores, will continue to scale well as the number of

threads increases to the total number of SMT contexts, and continue to climb mod-

estly as even more threads are added. We call this architecture the Shared-Thread

Multiprocessor (STMP).

The Shared-Thread Multiprocessor enables distinct cores on a chip multi-

processor to share thread state between them. This shared thread state allows the

system to not only mix on-core and off-core support for multithreading – providing

high ILP with minimal design overhead – but, by scheduling threads from a shared

pool onto individual cores, also allows for rapid movement of threads between cores.

This approach enables, for the first time, low-latency “multithreading-type” con-

text switches between distinct cores. In this way, it combines the simplicity of

multi-core designs with the flexibility and high utilization of aggressively multi-

threaded designs.

This architecture offers several benefits, compared to a conventional chip

multiprocessor:

• By providing more thread state storage than available in the cores themselves,

the architecture enjoys the ILP benefits of many threads, but carries the in-

core complexity of supporting just a few.

• Threads can move between cores fast enough to hide long-latency events such

as memory accesses. This enables very-short-term load balancing in response

to such events.

• The system can redistribute threads to maximize symbiotic behavior and bal-

ance load much more often than traditional operating system thread schedul-

67

ing and context switching.

5.2 Related Work

Tune et al. describe Balanced Multithreading, (BMT) [TKTC04], which al-

lows a single processor core to combine the benefits of simultaneous multithreading

and a form of coarse-grain multithreading. In their preferred design, the SMT core

only supports two hardware threads, keeping complexity low and the register file

small. However, this is supplemented with off-core thread storage, which allowed

thread state to be brought into the core quickly when an SMT context became idle

due to a long-latency event. This adds little or no complexity to the core because

it relies on injected instructions to transfer context state in and out.

In this way, more than two threads time-share the two SMT contexts. BMT

achieves the instruction throughput of an SMT core with additional hardware

threads, without the full hardware costs: two SMT-scheduled threads augmented

with two coarsely-scheduled threads can exceed the IPC of three SMT threads.

The Shared-Thread Multiprocessor is an extension of the BMT architec-

ture. In STMP, the off-core thread storage is shared among a pool of cores. This

brings several new capabilities not available to BMT: the ability to dynamically

partition the extra threads among cores, the ability to share threads to hide laten-

cies on multiple cores, and the opportunity to use the shared-thread mechanism

to accelerate thread context switching between cores (enabling fast rebalancing of

the workload when conditions change).

Other work has examined thread scheduling policies to maximize the com-

bined performance of threads on a multithreaded processor [ST00, PELL00]. In

Chapter 3, we identified the importance of accounting for long-latency loads and

minimizing the negative interference between stalled threads and others on the

same core. Both BMT and STMP address those loads, by first removing stalled

threads and then injecting new threads which are not stalled.

Constantinou et al. [CSM+05] examine several implications of thread migra-

tion policies on a multi-core processor migration. However, they do not examine

68

these issues in the context of the type of hardware support for fast switching that

our architecture provides.

Torrellas et al. [TTG95] is one of several papers that examine the impor-

tance of considering processor affinity when scheduling threads on a multiprocessor.

In their work, they endeavor to reschedule threads where they last executed, to

minimize cold cache effects. We find that processor affinity effects are also ex-

tremely important in the STMP.

Spracklen et al. [SA05] argue for the combination of multiple SMT cores

within a CMP for efficient resource utilization in the face of high-TLP, low-ILP

server workloads. Their focus is primarily on such workloads, sacrificing single-

thread performance for a design tailored to maximize throughput, without paying

particular attention to the movement of threads. The STMP exploits high ILP

when it is available, and offers fast context-switching to other threads in order to

boost system throughput when ILP is lacking.

Dataflow architectures [Arv81, AN90] offer an alternative to traditional

ILP-based designs. Stavrou et al. [SKET07] consider the implementation of hard-

ware support for data-driven multithreaded computation on top of a conventional

CMP. Their design uses additional per-core hardware to coordinate data move-

ment and the scheduling of threads as live-in data become ready; threads are

explicitly compiled as slices of decomposed dataflow and synchronization graphs.

Prefetching and cache conflict tracking are used to avoid long-latency memory stalls

during a thread’s execution. The STMP, in contrast, uses traditional functional

unit scheduling and control-driven instruction streams, detecting and reacting to

long-latency memory events as they occur.

5.3 The Baseline Multi-threaded Multi-core Ar-

chitecture

The next two sections describe the processor architecture that we use for

this chapter. This section describes a conventional architecture which is the base

upon which we build the Shared-Thread Multiprocessor described in Section 5.4.

69

Our baseline is a multithreaded, multi-core architecture (referred to sometimes as

chip multithreading [SA05]). Several examples of this architecture already exist in

industry [CFS+04, FMJ+07, KAO05, JN07].

5.3.1 Chip multiprocessor

We study a chip multiprocessor (CMP) design consisting of four homoge-

neous cores. Each core has an out-of-order execution engine and contains private

first-level instruction and data caches; the four cores share a common second-level

unified cache.

The cores communicate with each other and with the L2 cache over a

shared bus; data caches are kept coherent with a snoop-based coherence proto-

col [KEW+85]. Off-chip main memory is accessed via a memory controller that is

shared among cores. While this relatively simple interconnect does not scale up

to many cores, it suffices for four cores, and still features the essential property

that inter-core communication is much faster than memory access, with latency

comparable to that of an L2 cache hit. Our STMP extensions can apply to more

scalable interconnects, such as point-to-point mesh networks, but we utilize this

simpler symmetric interconnect in order to focus on the STMP implementation

itself.

5.3.2 Simultaneous-Multithreaded cores

Each core of our chip multiprocessor features Simultaneous Multithread-

ing [TEL95, TEE+96] (SMT) execution, with two hardware execution contexts

per core, similar to several recent processor designs [CFS+04, KM03].

Two-way SMT allows for two threads to share a core’s execution resources

within any cycle, enabling efficient resource utilization in the face of stalls. SMT

has been shown to effectively hide short-term latencies in a thread by executing in-

structions from other threads. It provides significant gains in instruction through-

put with small increases in hardware complexity. We evaluate our Shared-Thread

Multiprocessor designs on top of SMT in order to demonstrate that there is addi-

70

tional potential for performance gain beyond what SMT is able to capture. SMT

is less successful at hiding very long latencies, where at best the stalled thread be-

comes unavailable to contribute to available ILP, and at worst stalls other threads

by occupying resources.

The inclusion of SMT support is not essential in the design of the STMP;

single-threaded cores could apply coarse-grain multithreading, switching in threads

from the shared off-core thread pool. Such an architecture would still offer signifi-

cant advantages over a single-threaded CMP without inactive-thread storage, but

we find the SMT-based architecture more attractive, because the second thread on

each core allows the processor to hide the latency of the thread swap operations

themselves.

5.3.3 Long-latency memory operations

A typical memory hierarchy features successively larger and slower memory

units (caches) at each level. In such a system, individual memory instructions may

vary widely in response times, ranging from a few cycles for a first-level cache hit,

to hundreds of cycles for a main-memory access, to essentially unbounded latencies

in the event of a page fault.

While out-of-order execution is able to make progress in the face of mem-

ory operations taking tens of cycles, those which take longer rapidly starve the

processor of useful work: once the memory instruction becomes the oldest from

that thread, there is a finite dynamic-execution distance following it beyond which

the processor is unable to operate, due to resource limitations. In Chapter 3 we

explored this phenomenon, in particular the impact of long-latency loads on SMT

processors, along with several mechanisms for detecting these situations and miti-

gating the impact on co-scheduled threads.

Our baseline SMT processors include a similar long-latency-load detection

and flushing mechanism: when a hardware execution context is unable to commit

any instructions in a given cycle, and the next instruction to commit from the

resident thread is an outstanding memory operation which is older than a time

threshold, it is classified as “long-latency”, and action is taken. In the baseline

71

L2 cache
Shared off-core
thread storage

Core

L1

Interconnect

Core

L1

Core

L1

Core

L1

Figure 5.1: The Shared-Thread Multiprocessor.

system, instructions younger than the load are flushed while the load remains; the

experimental STMP systems described below also use this signal as an input to

scheduling decisions.

5.4 Shared-Thread Storage: Mechanisms & Pol-

icies

In the Shared-Thread Multiprocessor architecture, we augment the CMP-

of-SMTs described in Section 5.3 with several relatively inexpensive storage and

control elements.

5.4.1 Inactive-thread store

We add an off-core inactive-thread store: storage for the architected state

of numerous threads. This storage is used to hold additional threads beyond those

supported by the hardware execution contexts. Per-thread state consists primarily

of logical register values, the program counter, and a system-wide unique thread

ID. This state occupies a fixed-size store of a few hundred bytes per thread, which

is accessed non-speculatively in a regular fashion; it can be implemented efficiently

with a small amount of SRAM. This is shown in Figure 5.1.

72

5.4.2 Shared-thread control unit

We introduce additional control logic which coordinates the movement, ac-

tivation, and deactivation of threads. The shared-thread control unit resides with

the inactive-thread store and implements the various scheduling policies we ex-

plore. This control unit communicates with execution cores over the processor in-

terconnect, receiving occasional notification messages from cores containing recent

thread performance or status-change notifications, and sending messages which

signal cores to trigger thread migration. This unit may be implemented in various

ways, from a simple automaton to perhaps a small in-order processor (with some

associated working memory), depending on the complexity of the scheduling policy

desired.

As an alternative to using a discrete shared-thread control unit, its function-

ality may be implemented within the cores themselves in a scalable peer-to-peer

fashion, which would be particularly beneficial as the number of cores is increased.

We focus on a discrete implementation for this study.

5.4.3 Thread-transfer support

To each execution core, we add a mechanism to rapidly transfer thread

state between the execution core with its internal data structures, and the simpler

inactive-thread store.

Communication with the shared-thread control unit and its associated stor-

age takes place across the processor interconnect, which is optimized for the trans-

fer of cache blocks. To maximize communication efficiency, we add a small cache-

block sized spill/fill buffer to each core, which is used for assembling thread-transfer

data into cache-block sized messages. The spill/fill buffers are fixed-sized SRAM

structures, which are accessed sequentially from beginning to end.

The primary concerns when removing a thread from a core are stabilizing a

consistent, non-speculative view of the thread state, and then extracting that state

from the on-core data structures into a concise form suitable for bulk transfers. We

re-use mechanisms present on typical out-of-order processors to perform most of

the detailed work involved with thread movement. We introduce two new micro-

73

instructions, spill and fill, which each transfer a single register value to or from the

next location in the spill/fill buffer. These new micro-instructions each specify a

single logical register operand; they are injected into an execution core in a pre-

decoded form just before the register-rename stage, where they re-use the renaming

and dependence logic to locate the appropriate values.

Each spill instruction extracts one architected register value, utilizing ex-

isting register-read ports and honoring any in-flight data dependences. When the

spill completes execution, it appends the value to the spill/fill buffer. Each fill

instruction reads one value from the spill/fill buffer as it executes, and writes to

an architected register when it completes execution. When the buffer is filled by a

write from a spill instruction, the entire buffer is bulk-transferred to the inactive-

thread store, much like the delivery of a cache write-back. When the buffer is

emptied by a read from a fill instruction, a flow-control indication is sent indicat-

ing that the core is ready for another block. (There is a small amount of ancillary

data in these messages.)

In addition to the existing logic used to access registers, a new data pathway

is necessary between the spill/fill buffer and whichever functional units it is most

convenient to map spill and fill instructions to. Since spill and fill instructions are

never introduced speculatively, are never used with overlapping register numbers,

and always access the spill/fill buffer in order, adding this new data pathway is

unlikely to introduce significant complexity to the processor.

Finally, each processor core is augmented with a small amount of spill/fill

control logic, responsible for sending periodic performance counter samples to the

shared-thread control unit, and for reacting to thread-swap requests. When a

thread-swap request is received from the shared-thread control unit, the spill/fill

control logic initiates a flush of the indicated hardware thread context – effectively

causing an asynchronous trap – and then begins injecting spill or fill instructions

(as appropriate), instead of vectoring to a conventional operating-system trap han-

dler. This logic is also responsible for stalling fetch on the corresponding hardware

context until the thread swap is complete. Note that, since each core supports

two-way SMT execution, normal execution of a separate workload may proceed in

74

one context while another is performing a swap.

Processors without explicit register renaming may still implement these

spill and fill instructions, through whatever mechanism the processor uses to map

between architected register numbers and run-time storage. We expect these new

instructions to be trivial to represent in the existing internal instruction represen-

tation of most microarchitectures.

In summary, then, the bulk of the support for the STMP is in the thread

storage and control, which is at about the same level (e.g., in distance and latency)

from the cores as the L2 cache, but is much smaller. Other support that needs

to be added to each core is relatively minor, and none of this functionality affects

potential critical timing paths (such as renaming, instruction scheduling, register

access, etc.) within a core.

5.4.4 Scaling the Shared-Thread Multiprocessor

In this chapter, we focus on a single implementation featuring four cores

sharing thread state. As the number of cores increases, we could scale this ar-

chitecture in two ways. We could increase the number of cores sharing a single

centralized thread store, or we could increase the number of STMP instances. It

is unclear that much would be gained by sharing thread storage directly among

more than four cores, due to increases in latency and contention. Instead, we en-

vision “islands” of STMPs, each a small set of cores clustered around their own

inactive-thread store. A 64-core CMP, then, might have 16 thread storage units,

each servicing four cores. Movement between thread stores would be supported,

but with much less frequent movement, and need not be as fast. Future work is

necessary to fully analyze these options. However, if we assume the approach which

clusters STMP cores, then our results, which focus on four cores, are indicative of

not just that configuration, but also the characteristics of each cluster of cores in

a larger configuration.

The mechanisms we present here are focused on the migration of registers

and associated state; they assume a fairly generic memory and interconnect layout.

The underlying system described in Section 5.3.1 offers a shared L2 cache, with

75

relatively low access latency. An important alternative case is that of an architec-

ture with private L2 caches, which would still support efficient register migration,

but which would experience more performance degradation due to cache effects

subsequent to migration. While we focus on the shared-L2 case here, we will re-

turn to the private-L2 case in Chapter 6, and address post-migration cache effects

in detail.

5.4.5 Thread control policies — Hiding long latencies

We consider a variety of policies for coordinating the motion of threads

within the processor. The shared-thread control unit implements these policies,

relying on status messages from individual cores for samples of performance data as

well as notification of long-memory stall detection. For the sake of simplicity, these

policies are centrally managed; more advanced implementations could coordinate

peer-to-peer directly between cores.

The policies we evaluate fall into two distinct classes of policies, intended

to exploit different opportunities enabled by the STMP: first, the ability to move

threads quickly enough to react to very short-term thread imbalances resulting

from long-latency operations; second, the ability to perform coarser-grained load-

balancing, but at time scales much shorter than possible in an operating system. In

this section we consider policies targeting the former opportunity, while we target

the latter in Section 5.4.6.

Here, we focus on cases where threads are more numerous than cores,

wherein some of the (multithreaded) cores are be more heavily loaded than others.

When a thread on a less-loaded core stalls for a long-latency memory access –

as characterized in Section 5.3.3 – it leaves the execution resources on that core

under-utilized relative to the more heavily-loaded cores; in effect, hardware con-

texts on a core experiencing a stall will become relatively “faster” while the stall is

outstanding. These policies seek to exploit the decreased contention on cores expe-

riencing memory stalls. While this is possible when thread load is evenly balanced,

it is less likely: it requires two threads to be stalled on the same core to create a

significant opportunity for thread movement. Therefore, the load-imbalance phe-

76

nomenon exploited in this section is best illustrated when there are 5–7 threads on

the (eight-thread) processor. In such scenarios, some cores will have one thread

scheduled, and others two threads. If a thread scheduled by itself experiences a

full-memory-latency stall, its parent core essentially sits idle for hundreds of cy-

cles, while other cores are executing two threads. Because a four-wide superscalar

processor running two threads typically achieves less than twice the throughput as

when running a single thread, this imbalanced load is likely inefficient. If we can

quickly move a co-scheduled thread to the temporarily-idle core, these two threads

executing on separate cores may execute faster than they would when co-scheduled

on a single core.

It should be noted in this section and the next, that we only show a sub-

set of the policies considered. Typically, the shown policy is a tuned, effective

representative of a class of similar policies.

The specific policies evaluated in this study are:

• Stall-chase: The stall-chase policy aggressively targets individual memory

stalls. When a thread is detected as having stalled for a miss to memory,

active threads on other cores are considered for immediate migration to the

site of the stall. The results presented use a policy which selects the thread

with the lowest recent sampled IPC for migration; other selection policies

we have evaluated include choosing the thread with the smallest L1 cache

footprint, the thread which has has been running the longest since its last

migration, and choosing a thread at random.

• Runner: Under the runner policy, one or a subset of threads are designated

as “runners”, which will be opportunistically migrated toward stall-heavy

cores; non-runner threads do not move, except in and out of inactive-thread

storage, and back to the same core. This policy recognizes the high impor-

tance of processor affinity: most threads will run best when returning to the

same core and finding a warm cache. The “runner” designation is used in

the hope that some applications will inherently suffer less performance loss

from frequent migrations than others. (The runner policy is similar to the

77

stall-chase policy in that long-memory stalls “attract” other threads; they

differ in the selection of the thread to be migrated.)

This policy attempts to negotiate some of the more difficult tradeoffs facing

these policies. If we seldom move threads between cores, then when we do

move them, they tend to experience many L1 cache misses immediately as

they enter a cold cache. If we move threads often enough that cold caches are

not a problem, we are then asking all L1 caches to hold the working set of all

threads, which puts excessive pressure on the L1 caches. By designating only

a few threads as runners, we allow those threads to build up sufficient L1

cache state on the cores they visit frequently, decreasing the cost of individual

migrations; additionally, each core’s L1 cache now need hold the working set

of only a few threads.

When a non-runner thread is detected as having stalled for a long-memory

operation, the shared-thread scheduler decides whether to move the runner

from its current location to the stalling core. Experimentally, interrupting

the runner in order to migrate it whenever a long stall is detected on another

core proved too disruptive to its forward progress; the results we present use

a more relaxed policy, wherein the shared-thread scheduler records long-stall

detection events, and when the runner itself stalls for a memory access, it

is opportunistically migrated to the core with the most recent non-runner

stalls. This decreases the amount of idle time which a runner may exploit for

any one memory stall, but mitigates the performance impact on the runner

itself. Over time, the runner gravitates towards those applications which

stall for main memory most often.

While this policy is unfair over the short term to the runner threads – which

suffer more than the threads pinned to particular cores – this unfairness can

be mitigated by rotating which threads serve as runners over larger time

intervals.

• Conflict: The conflict policy migrates threads away from cores with execu-

tion resource contention, towards those which are experiencing many mem-

78

ory stalls. It conservatively prefers to leave threads in-place, minimizing

interference with normal execution. When the system detects that a thread

has stalled for a long-latency memory access, it considers the amount of

execution-resource contention that the corresponding core has experienced

recently (within the last 10,000 cycles; this is a parameter). If the conflict

rate – the mean number of ready instructions unable to issue per cycle due

to resource exhaustion – exceeds a threshold, the already-stalled thread is

evicted and sent to wait at the inactive-thread store. When the correspond-

ing memory access completes, the thread is sent for execution on the core

whose threads have experienced the highest rate of long-memory stalls in

recent history.

In order to decrease spurious thread movement, additional conditions apply:

threads are returned to their previous core if the stall-rate of the candidate

core does not exceed that of the previous core by a threshold (5%); the initial

thread swap-out is suppressed if a pre-evaluation of the core selection criteria

indicates that it is already scheduled on the “best” core; and, stalled threads

are never moved away from an otherwise-empty core.

For this set of policies we do not demonstrate the cases where the number of

threads is less than the number of cores (this becomes simply multi-core execution)

or where the number of threads is greater than the number of SMT contexts. In

the latter case, the STMP architecture clearly provides gains over a conventional

architecture, but we do not show those results because they mirror prior results

obtained by BMT [TKTC04]. Consider the case where we have 12 threads; a

reasonable setup would have each core executing a set of three threads over time,

in round-robin fashion, using the BMT mechanisms to swap an active thread for

an off-core thread when an L2 miss is encountered. There would be no immediate

advantage in re-assigning threads to different cores when a thread stalls for a miss,

because each core already has threads available to tolerate that miss.

On the other hand, we may want to re-balance those threads occasionally,

to ensure that we are running a complementary set of applications on each core;

those rebalancings are best done at a much coarser granularity than the polices

79

described above, which target the covering of individual misses. Such rebalancing

mechanisms are described in the next section.

5.4.6 Thread control policies — Rapid rebalancing

One advantage of the STMP over prior architectures, including BMT, is its

ability to redistribute threads quickly between cores. Other architectures would

rely on the operating system to make such changes; however, the operating system

is not necessarily the best place to make such load balancing decisions. We advo-

cate making some of these decisions in hardware, because in this architecture the

hardware (1) has performance data indicating the progress of each thread, (2) has

the mechanisms to context switch without software intervention, and (3) the cost

of context switches is so low that it is economical to make them far more often than

system software can consider. This rapid rescheduling ability allows the system

both to find good initial schedules more quickly than unassisted software, and to

react very quickly to later phase changes.

This group of policies considers, in particular, cases where there are more

overall software threads than there are hardware execution contexts. These policies

would also be effective when there are fewer threads than total contexts, as there

would still be a need to consider which threads are co-scheduled and which run with

a core all to themselves. We focus on the over-subscribed case, which combines

stall-by-stall round-robin movement of threads to and from a core, with occasional

re-shuffling among cores at a higher level. We evaluate several thread re-scheduling

policies for this over-subscribed execution mode.

Our baseline for performance comparison is a model where the cores still

share thread state, enabling hardware-assisted thread swapping, but the threads

are partitioned exclusively among cores, and this partitioning rarely changes (i.e.,

at the scale of OS time-slice intervals).

The re-balancing policies considered are:

• Symbiotic scheduler: This policy alternates through two phases, a “sam-

pling” phase and a “run” phase, evaluating random schedules for short inter-

vals and then using the best of the group for much longer execution intervals.

80

Prior work [ST00] has found this style of policy effective for single-core SMT

execution.

In a sampling phase, a sequence of random schedules – in our experiments,

19 random schedules as well as an instance of the best schedule from the

previous run phase – are evaluated for performance. Each schedule is ap-

plied in turn; first, threads are migrated to the cores indicated by the sched-

ule. Next, the threads are left undisturbed (i.e. no cross-core migrations

are scheduled) for one sampling period in order to “warm up” execution re-

sources. (Threads may still be rotated through a single core, as in Balanced

Multithreading [TKTC04], during this time.) After the warm-up time has

expired, the threads are left undisturbed for another sampling period, during

which performance counters are collected. The counters are evaluated, then

sampling continues at the next candidate schedule. The entire sequence of

scheduling, warming up, and measuring each candidate in turn, makes up

one sampling phase.

After the sequence of candidate schedules is exhausted, a “run” phase begins.

The shared-thread control unit chooses the schedule from the sampling phase

with the best observed performance, applies it, and then leaves that schedule

to run undisturbed for much longer than the duration of an entire sampling

phase (20 times longer, in our experiments). Afterward, the next sampling

phase begins.

• Medium-range predictor: This policy incorporates performance observa-

tions collected over many sampling periods, considering the correlation of

overall performance with the pairs of applications that are co-scheduled in

each. These observations are summarized in a compact data structure, a

table from which predictions can be generated about arbitrary future sched-

ules.

Simplified, the schedule performance predictor operates by maintaining a

matrix that, with application IDs as coordinates, indicates the mean perfor-

mance measured across all samples when those applications were resident on

81

the same core. The predictor takes as input (schedule, performance) tuples

of performance observations; the overall performance is added to the ma-

trix cells corresponding to each pair of co-scheduled applications. A second

matrix is maintained with sample counts to allow for proper scaling. Any

candidate schedule can be evaluated against these matrices to yield a perfor-

mance estimate. The matrices are continuously aged over time, so that more

recent observations carry more significance than older ones.

Additional details of the medium-range predictor merit discussion. To make

use of its collected performance samples, we have developed a straightforward

greedy algorithm which synthesizes new “good” schedules. These schedules are

good in the sense that, when evaluated in the context of past measurements, their

forecast performance tends toward optimal. That is, given collected performance

and count observation matrices P and C, and a fixed performance forecasting

function fc, the algorithm outputs a schedule s which tends to maximize the

value of fc(P, C, s). This is a heuristic, however, and optimality bounds are not

established.

Note that this scheduler does not guarantee optimal future performance;

in a sense, it runs the performance predictor in reverse, directly constructing a

new schedule which the predictor considers to be good, tying the overall resulting

performance to the accuracy of the predictor. The greedy schedule synthesizer

constructs a schedule from the matrix of aggregated performance measurements

by starting with an empty schedule, then successively co-scheduling the pair of

applications which corresponds to the next-highest performance point in the ma-

trix. (Several additional conditions apply, to ensure reasonable schedules result,

to account for applications scheduled solo, etc.)

One additional use for the greedy schedule synthesizer is to generate sched-

ules which represent the least-sampled portions of the schedule space. This is

accomplished by creating a performance-sample matrix with each element set to

the negative of the corresponding element in the sample-count matrix, and run-

ning the algorithm on that; since the greedy algorithm attempts to maximize the

resulting expected-performance sum, it selects the near-minimal (negated) sample

82

counts.

The medium-range predictor operates by using the greedy schedule synthe-

sizer to construct a good schedule. This schedule is run for several sampling periods

– 20, in our experiments – followed by an alternate schedule to ensure diversity in

the measurement space. We generate alternate schedules either at random (mrp-

random), or specifically targeting the least-sampled portions of the schedule space

(mrp-balance).

5.5 Methodology

We evaluate the Shared-Thread Multiprocessor and a variety of scheduling

policies through simulation, using a modified version of SMTSIM [Tul96], as intro-

duced in Chapter 2. Starting with the multi-core baseline described in Section 5.3,

we implement the STMP mechanisms and policies described in Section 5.4. We

do not simulate the computation needed to implement the on-line thread control

policies; however, these policies utilize very simple operations on small numbers

of performance samples, which we expect could be performed with negligible over-

head.

5.5.1 Simulator configuration

We assume a four-core multiprocessor, with the execution cores clocked at

2.0 GHz; for ease of accounting, all timing is calculated in terms of this clock rate.

Table 5.1 lists the most significant of the baselines system parameters used in our

experiments. While the 500 cycle main-memory access latency we specify would

be high for a single-core system with two levels of caching, it is not unreasonable

for a more complex system: in separate work, we have measured best-case memory

access latencies of over 300 cycles on four-way multiprocessor hardware, with cores

clocked at 1.8 GHz.

83

Table 5.1: Architecture details.

Parameter Value

Pipeline length 8 stages minimum
Fetch width 4
Fetch threads 2
Fetch policy ICOUNT
Scheduling out-of-order
Reorder buffer 128 entries
Integer window 64 insts
FP window 64 insts
Max issue width 4
Integer ALUs 4
FP ALUs 2
Load/store units 2
Branch predictor 8 KiB gshare
BTB 256-entry, 4-way
Cache block size 64B
Page size 8 KiB
Cache replacement LRU, write-back
L1 I-cache size/assoc. 64 KiB/4-way
L1 D-cache size/assoc. 64 KiB/4-way
L1 D-cache ports 2 read/write
L2 cache size/assoc. 8 MiB/8-way
L2 cache ports 8 banks, 1 port each
ITLB entries 48
DTLB entries 128
Load-use latency, L1 hit 2 cycles
Load-use latency, L2 hit 13 cycles
Load-use latency, memory 500 cycles
TLB miss penalty +500 cycles

84

Table 5.2: Component benchmarks.

Benchmark Input Fast-forward (×106)

ammp 1700
art c756hel, a10, hc 200
crafty 1000
eon rushmeier 1000
galgel 391
gap 200
gcc 166 500
gzip graphic 100
mcf 1300
mesa -frames 1000 763
mgrid 375
parser 650
perl perfect 100
twolf 1000
vortex 2 500
vpr route 500

5.5.2 Workloads

We construct multithreaded workloads of competing threads by select-

ing subsets of the SPEC2000 benchmark suite. Starting with a selection of the

16 benchmarks as detailed in Table 5.2, we construct workloads for a given thread

count by selecting subsets of the suite such that each subset contains the desired

number of threads, and so that all subsets with a given thread count, when taken

together, yield roughly the same number of instances of each benchmark. The

16 benchmarks were chosen arbitrarily to allow for this convenient partitioning,

without requiring an excessive number of simulations to evenly represent individual

benchmarks.

Table 5.3 details the composition of the workloads used in this study. We

simulate each multithreaded suite until (# threads×200×106) overall instructions

have been committed.

This evaluation of our thread-migration system does not make special ac-

commodations for different classes of workloads – e.g. soft real-time, co-scheduled

shared-memory – though such workloads are not intrinsically excluded. We focus

85

Table 5.3: Composite workloads.

ID Component Benchmarks

5a ammp, art, crafty, eon, galgel
5b gap, gcc, gzip, mcf, mesa
5c mgrid, parser, perl, twolf, vortex
5d ammp, crafty, galgel, gcc, mcf
5e mgrid, perl, twolf, vortex, vpr
5f art, eon, gap, gzip, mesa
6a ammp, art, crafty, eon, galgel, gap
6b gcc, gzip, mcf, mesa, mgrid, parser
6c mgrid, parser, perl, twolf, vortex, vpr
6d ammp, eon, gcc, mesa, vortex, vpr
6e art, crafty, galgel, gzip, mcf, perl
7a ammp, art, crafty, eon, galgel, gap, gcc
7b gzip, mcf, mesa, mgrid, parser, perl, twolf
7c art, eon, gap, gzip, mesa, vortex, vpr
7d ammp, crafty, galgel, gcc, parser, twolf, vpr
7e gap, mcf, mgrid, perl, twolf, vortex, vpr
8a ammp, art, crafty, eon, galgel, gap, gcc, gzip
8b mcf, mesa, mgrid, parser, perl, twolf, vortex, vpr
8c ammp, crafty, galgel, gcc, mcf, mgrid, perl, vortex
8d art, eon, gap, gzip, mesa, parser, twolf, vpr
10a ammp, art, crafty, eon, galgel, gap, gcc, gzip, mcf, mesa

on the SPEC2000 suite as a source of diverse execution behavior largely to stream-

line experimental evaluation; extending the system to consider explicit information

about alternate workload types is an interesting avenue for future research.

5.5.3 Metrics

As discussed in Chapter 2, evaluating the performance of concurrent execu-

tion of disparate workloads presents some challenges; using traditional metrics such

as total instructions-per-cycle (IPC) tends to favor any architecture that prefers

individual benchmarks which exhibit higher IPC. We use a metric with a built-in

fairness criterion, weighted speedup. See Section 2.2 for a discussion of weighted

speedup, specifically Section 2.2.1 and Equation 2.1 for details of primary perfor-

mance metric used in this chapter. Several dynamic schedulers evaluated in this

86

chapter utilize a modified version of weighted speedup, named interval weighted

speedup, which is adapted to provide on-line results during simulation. See Sec-

tion 2.2.3 for discussion, and Equations 2.3 and 2.4 for the relevant equations.

To underscore the difference between performance metrics used in this work:

Weighted speedup is the metric we use to evaluate and performance. Interval

weighted speedup is an online metric used by our architecture to evaluate or estimate

the effectiveness of schedules and make scheduling decisions, but it does not appear

in any results.

5.6 Results and Analysis

In this section, we evaluate the performance of a Shared-Thread Multipro-

cessor, considering several distinct modes of operation. All results are reported for

the hardware configuration as described in Section 5.5.1, unless otherwise noted.

5.6.1 Potential gains from memory stalls

This section demonstrates one axis of the opportunity for the STMP. Even

a moderately-sized core with SMT support frequently experiences idle cycles where

no execution progress is being made. We see in Figure 5.2 the total amount of time

in which cores are effectively idle – with all active execution contexts unable to be

used – due to long-latency memory operations, as described in Section 5.3.3. The

values shown are the fraction of the overall execution time that each core spends

completely idle, summed across all cores.

From this result we see that even when the full SMT capacity of the cores

is used (8T), there remains significant idle execution capacity. Simply applying

STMP, even without dynamic thread movement policies, should significantly re-

duce the idle cycles. Additionally, we see that the problem is more acute when

not all of the cores are able to exploit SMT. We see that in many instances, the

equivalent of an entire additional “virtual core” is available, if we can find a way

to effectively utilize the combined lost cycles.

87

5T 6T 7T 8T
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2MiB L2
8MiB L2

Thread count

M
e

a
n

id
le

 c
o

re
-c

yc
le

s

Figure 5.2: Total core-cycles (per processor cycle) where a fully-occupied core is
effectively idle due to stalled memory instructions. Means are taken across all
workloads for a given thread-count. Values above 0 indicate potential gains.

5.6.2 Rapid migration to cover memory latency

This section evaluates the use of the STMP to rapidly migrate individual

threads between cores in response to stalls for memory access.

Figure 5.3 shows the weighted speedups achieved by several different thread-

migration policies, with the five-threaded workloads described in Section 5.5.2.

(Recall that our processor has four two-way SMT cores, for a total of eight execu-

tion contexts.) We use the five-thread case to exercise our policies because it is a

region where we expect to see frequent imbalance.

For the sake of comparison, we also evaluate each workload under all pos-

sible static schedules, wherein threads do not migrate during execution. The best-

static result shows the highest weighted speedup achieved by any static schedule

for each workload. mean-static shows the arithmetic mean weighted speedup for

each workload over all static schedules; it reflects the expected performance from

assigning threads to cores at random, then not moving them during execution.

The best-static result represents a reasonable goal for our policies, as it is

unattainable without oracle knowledge. In theory, we could beat best-static by ex-

88

5a 5b 5c 5d 5e 5f
0

1

2

3

4

5

6

mean-static
conflict
runner
stall-chase
best-static

Workload ID

W
e

ig
ht

e
d

 S
p

e
e

d
up

Figure 5.3: Performance of several stall-covering schemes on five-thread workloads.

ploiting dynamic changes in the workload, but none of these results achieve that.

mean-static represents a reasonable baseline, as it represents what an OS sched-

uler might do, given the STMP hardware but no useful information about thread

grouping. In these results, weighted speedup is computed relative to single-thread

execution. Thus, for a five-thread, four-core configuration, a weighted speedup

(WSU) of 4.0 is the minimum expected, and a WSU of 5.0 would indicate we

are achieving the performance of five separate cores. Thus, the range of improve-

ments we are seeing in these results is definitely constrained by the limited range

of possible WSU values.

The conflict policy performs very close to the oracle static scheduler. This

policy succeeds because it inhibits switching too frequently and it targets threads

known to be on oversubscribed cores for movement. Because it only moves these

threads, the instances where movement significantly degrades progress of a thread

are lessened: the selected thread was struggling anyway.

We see that the runner policy performs significantly better than stall-chase.

The two schemes are similar, with the primary difference that the former requires

no core’s L1 cache to support the working set of more than two threads at a time,

significantly mitigating the lost L1 cache performance observed for the latter policy.

89

1 10 100 1000
5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

symbiosis
mrp-balance
mrp-random
software

Sampling interval (kcyc)

W
e

ig
ht

e
d

 S
p

e
e

d
up

Figure 5.4: Performance impact of several dynamic-scheduling algorithms on a
ten-thread workload, versus sampling interval.

Although runner provides performance gains in all cases over the baseline, it always

suffers slightly compared to the less aggressive conflict because the frequency of

ineffective migrations is still high.

Thus, we demonstrate two schemes that show improvement over a con-

ventionally multithreaded chip multiprocessor. conflict, in particular, allows the

processor to match the performance of an ideal oracle schedule: one which per-

fectly places threads in the optimal core assignment, with no overheads associated

with identifying the optimal assignment at runtime. This result is very signifi-

cant, because it shows that it is indeed possible to support multithreaded-style

thread context-sharing between distinct CMP cores; in fact, they can share con-

texts quickly enough to even hide frequent memory latencies.

5.6.3 Rapid migration for improved scheduling

This section explores the second expected benefit of the STMP architecture,

the ability to do frequent re-evaluation of the thread-to-core assignment. These

results focus on policies which migrate threads between cores much less frequently

than those of the previous section, but potentially far more frequently than could

90

be done by system software alone. Figure 5.4 shows the performance of some of

the policies discussed in Section 5.4.6.

The baseline software scheduler – which uses our best symbiotic scheduling

mechanism, but at a time scale possible in software – is shown as the horizontal

line. It should be noted that the baseline makes use of our STMP architecture,

e.g. allowing three threads to share two SMT contexts an a core, and it uses

our best mechanism to re-evaluate schedules; the baseline only lacks the ability to

re-evaluate schedules at a rate faster than OS time-slice intervals.

We see that the symbiotic scheduler is able to achieve some gains over the

software scheduler for intermediate levels of rescheduling. The more often we re-

sample and re-schedule the threads, the quicker we are able to react to changes in

the workload.

However, the reason that the results peak in the middle is that there are

offsetting costs to rescheduling too frequently. The first reason, which our results

have shown to be less of a factor, is the cost of migrating threads (primarily the

cold cache effects).

The second, more important but less obvious factor, is our reliance on

performance predictions, which become inherently less reliable as the sampling

intervals shrink. All of our schemes depend on some kind of predictor to estimate

the schedule quality. For the symbiotic scheduler, the predictor is a direct sample

of each schedule; for the others, they use predictors based on some kind of history.

The inherent advantages of rescheduling more quickly are offset by the inaccuracy

of the predictor. For example, the shorter our sampling intervals in the symbiosis

scheduler, the more noisy and less reliable the sample is as a predictor of the

long-term behavior of that schedule.

The medium-range predictor provided more accurate predictions of future

performance. While predictions proved relatively accurate, it did not outperform

the much simpler symbiotic scheduling policy; the predictor-based scheduler still

tended to schedule more thread movement than the symbiosis policy, losing per-

formance to scheduling overhead. Of the two predictor-based policies shown, mrp-

random tended to marginally outperform mrp-balance. This is counterintuitive:

91

both policies explicitly deviate from the current “expected best schedule” in or-

der to explore new ground, with the latter explicitly targeting the least-sampled

regions of the schedule space; one would suspect that mrp-balance would thus

be more successful at introducing useful diversity at each step. However, as the

predictor-based scheduler learns more about the performance correlation between

threads, it naturally begins to avoid co-scheduling threads which do not perform

well together. Over time, then, some of the the under-sampled regions of the sam-

ple space are avoided specifically due to bad performance, and the mrp-balance

scheduler can force execution back into these regions. The mrp-random scheduler

has no such bias.

These results demonstrate that with a very simple hardware re-scheduler,

there is clear value to load-balancing and re-grouping threads at rates significantly

faster than possible in a software scheduler. These results indicate that in this

type of aggressive multithreaded, multi-core processor, an operating system is no

longer the best place to make all scheduling decisions.

5.7 Summary

The Shared Thread Multiprocessor extends multithreading-style thread in-

teraction to operate between the cores of a chip multiprocessor. In this chapter

we have demonstrated that, beyond the gains of previous work – where external

thread storage is used to improved the performance of a single SMT processor –

the STMP can be exploited in two unique ways:

• At fine time scales, when long-latency memory stall events create transient

load imbalances between cores, we can improve overall throughput by quickly

moving a thread between cores to exploit otherwise idle resources; hardware

thread-sharing support is fast enough that we can move threads at the level

of individual stalls.

• At coarser time scales, we are able to repartition the thread-to-core mapping

quickly and efficiently, allowing us to re-evaluate scheduling decisions and

92

react to emerging application behavior. While sampling too frequently ren-

dered scheduling decisions unreliable, we identified a middle ground in which

it was profitable to make decisions more quickly than possible with software

mechanisms alone.

In both scenarios, the efficient implementation of scheduling primitives in

hardware has enabled resource-aware scheduling of parallel workloads – typically

performed by operating systems or run-time libraries – to be performed at much

finer granularity, improving system-wide performance.

Acknowledgements

The work in this chapter was supported in part by NSF grant CCF-0702349

and Semiconductor Research Corporation grant 2005-HJ-1313.

This chapter contains material from “The Shared-Thread Multiprocessor”,

by Jeffery A. Brown and Dean M. Tullsen, which appears in Proceedings of the

2008 ACM International Conference on Supercomputing (ICS). The dissertation

author was the primary investigator and author of this paper. The material in

this chapter is copyright c©2008 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that the copies are not

made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page in print or the first screen in digital

media. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1

(212) 869-0481, or email permissions@acm.org.

Chapter 6

Fast Thread Migration via

Working Set Prediction

6.1 Introduction

Increasing processor core count has become the preferred avenue for achiev-

ing performance growth. Continued proliferation of largely independent cores

within systems will leave us increasingly dependent on high levels of workload

thread-level parallelism (TLP) to sustain the desired scaling of system perfor-

mance. This will require the development of new language, compilation, and

execution models that offer enough TLP to sustain high throughput on future

many-core systems. Continuing along on the trajectory introduced in Chapter 1,

in this chapter we focus on hardware support necessary to enable that development.

An important barrier to the viability of such development is the inability

of processors to execute short threads efficiently: while efficiently initializing the

control and register state of a new thread is straightforward – for example, via the

mechanisms discussed in Chapter 5 – the overhead of populating a core’s caches

with a suitable working set dominates, dooming young threads to perform poorly.

Aggressive threading schemes will be most effective if they have the freedom to

exploit parallelism in threads which are tens or hundreds of instructions long.

However, current machines cannot move or fork execution between cores profitably

93

94

at ranges below tens or hundreds of thousands of instructions; a great deal of

potential parallelism is unavailable due to the cost of moving or starting a thread.

Beyond the untapped potential of parallelism available to short threads, we

also see frequent demand for efficient working-set migration in traditional paral-

lelizing schemes, both at loop-level – where threads spawned for a loop iteration

inherit the state of the serial code leading to the loop – and at task-level, where a

parallel task inherits the state of its caller.

Several recently proposed applications of parallel hardware also benefit

from efficient working-set migration. Speculative multithreading [SBV95, HWO98,

QMS+05, SM98] breaks serial execution into potentially parallel threads, with each

thread inheriting the execution context of the previous thread. Helper threads

[CSK+99, CWT+01, ZS01] also utilize parallel hardware for speedup, but without

actually offloading computation; even in these cases each new helper thread ex-

ecutes within the same address space as the main thread, inheriting its memory

state.

Heterogeneous multi-core proposals [KFJ+03, KTR+04] move threads be-

tween cores of different capabilities in order to optimize power-performance-area

trade-offs. These proposals use frequent sampling, via heavy thread migration, to

discover beneficial thread-to-core mappings. The initial studies migrated threads

conservatively, due to the high cost of migration; presumably, the lower that cost,

the more quickly the architecture can adapt, and the higher the potential gains.

Other research migrates threads at points when thread-level parallelism

changes [AGS05], and at system calls [MMB+08, CWS06]. Software data spread-

ing [KST10] migrates threads at compiler-determined points in order to effectively

utilize the aggregate capacity of multiple private caches. Even when multi-cores

are not being exploited for performance, thread migration can be frequent; e.g.

some schemes advocate core-hopping for thermal management [CGG04].

These techniques all share the property that a thread begins or resumes

execution on one core after the working set it needs to execute at full speed has

been built up on another core (primarily in the caches). As a result, the “working

set” of the thread must migrate from one core’s caches to another’s.

95

In conventional systems, the primary mechanism for working set migration

is executing code on the target core. Execution generates demand misses which

retrieve the necessary data, from either another core or from a shared level in

the cache hierarchy. This is a particularly inefficient mechanism for building a

working set after migration, since the speed at which data migrates is limited by

the rate at which this “migration engine” – the executing code – can generate

additional memory requests, but that execution itself is severely hamstrung by

cold cache effects. This vicious cycle limits migration speed to well below what

the interconnect and caches themselves are capable of sustaining.

In this chapter, we explore several mechanisms for predicting and migrating

the working set of a thread from one core to another. We introduce a three-

step approach to enable working set migration: first, we augment each core with

simple hardware to capture the access behavior of threads as they execute. Next,

when deactivating an executing thread, we summarize the captured behavior into a

compact representation of likely future instruction and data accesses, and transfer

that summary along with other thread state. Finally, we apply the summary data

at the new core, using it to rapidly prefetch upcoming memory blocks.

Our primary purpose in this chapter is to evaluate a diverse set of potential

mechanisms which strive to capture access behavior, and measure how effectively

each of these mechanisms predict future accesses. Though we present a frame-

work with which we evaluate schemes of varying complexity, we achieve our best

performance results using a combination of the most inexpensive capture-tables.

This is encouraging: useful performance gains are realized at low cost using small,

low-complexity tables, maintained using only the address stream of an executing

thread.

We make the following important contributions: We demonstrate that

demand-fetching is not a reasonable mechanism to fill the caches post-migration,

resulting in highly serial accesses. We show that conventional hardware prefetch-

ers are not useful over the time intervals in which performance degradation is the

most dire. We show that, unlike the common case of execution without migra-

tion, instruction-stream misses are more common and significantly more critical to

96

post-migration performance than data stream misses. We demonstrate that trans-

ferring the actual contents of the private caches is surprisingly ineffective, and over

several sampling intervals, is worse than doing nothing. With the addition of just

a few small, simple tables to monitor access activity, along with a prefetcher that

exploits the contents of those tables, we achieve as much as a 2X performance

boost for short threads.

6.2 Related Work

Chapter 5, along with previous work [TKTC04], describes support mecha-

nisms for migrating register state in order to decrease the latency of thread activa-

tion and deactivation; however, performance subsequent to migration suffers due

to cold-cache effects. This chapter complements those studies, as it specifically

addresses post-migration cache misses which limit the gains of those techniques.

Choi, et al., explore the complementary problem of effective branch prediction for

short-lived threads [CPT08].

Stream buffers [Jou90, PK94] introduce small, associative structures which

track ongoing data access patterns. More advanced stream buffers [SSC00] extend

this idea, allowing for an advanced predictor to be shared among many streams.

Our scheme is built similarly, with the added ability to extract and transfer sum-

maries. Our techniques can leverage much of the hardware that is already present

in such stream buffers. We model a discrete hardware predictor-directed stream

buffer in the style of [SSC00], omitting the shared Markov predictor, as part of

our baseline. We also add the ability to transfer stream-buffer state as a potential

working set predictor.

Sair et al. [SSC02] survey several successful prefetching approaches, and

demonstrate an approach to classifying memory access behaviors in hardware:

the memory access stream is matched against behavior-specific tables operating

in parallel. They use this information to quantify the miss patterns of several

benchmark suites. We utilize some similar structures in the capture stage of our

working-set migration.

97

Speculative Precomputation [ZS01, CWT+01] targets specific memory in-

structions which are observed to degrade performance due to poor cache behavior.

They employ helper threads, distilled from the original code, which prefetch future

data into the cache, on multithreaded or CMP [BWC+02] architectures. Focusing

on misses, these schemes target the subset of the future working set which is not

currently cached.

Runahead Execution [MSWP03] prefetches by speculatively executing the

same application, but ignoring dependences on long-latency misses. This seems

well-suited to our need to prefetch what would normally be cache hits in addition to

misses, and able to cover a substantial amount of working set with little metadata

overhead. However, this scheme is hamstrung in the post-migration environment

by the lack of instruction cache state at the target core; stalling to service I-cache

misses serializes short-term prefetching.

Several dependence-following schemes [APD01, CSCT02] enable prefetching

dependence chains through memory. While valuable, these techniques alone are of

limited utility immediately after a migration, due to their serial progression. (We

incorporate this style of prefetching with our pointer-chase sub-table.)

Dead-block prediction [LFF01] introduces a predictor which tracks the life-

times of L1-resident cache blocks, predicting when many cache blocks are no longer

needed and may be evicted before replacement demands it. An additional table is

then used to predict likely successors for early-evicted blocks. They use the dead-

block predictor and the correlations it exposes to prefetch likely misses, and use

the freed L1 storage as a prefetch buffer. That work motivates ours in the sense

that we also find that caches often hold much more than the current working set;

put another way, the current cache contents are not the best predictor of future

working sets.

6.3 Baseline Multi-core Architecture

In this chapter, we study a chip multiprocessor (CMP) design consisting of

four identical cores. Each core has a four-way superscalar, out-of-order execution

98

engine. Because of its ability to exploit memory level parallelism, this core will be

less sensitive to cache migration effects than a less aggressive design. Cores have

private first-level instruction and data caches, and a private second-level unified

cache; see Figure 6.1. Off-chip memory is accessed via a shared four-channel off-

chip memory controller. Specific parameters of the core and memory subsystems

are detailed in Section 6.6.1. The four cores communicate over a shared bus.

Caches are kept coherent with a MESI coherence protocol [PP84] and snooping;

our technique would readily apply to systems with more scalable interconnects and

more numerous cores.

In this study, virtually all misses (over the post-migration regions of in-

terest) are serviced core-to-core rather than off-chip; consequently, we expect our

results to be nearly identical to what would be observed in a system with a shared

on-chip L3 cache, e.g. Intel Nehalem [Int08]. We confirm this is in Section 6.7.8.

We assume the cores of our CMP feature hardware support for thread ac-

tivation and deactivation, as discussed in detail in Chapter 5 and in prior studies

of thread scheduling [TKTC04]. While those works used hardware support to im-

plement complex scheduling and time-sharing policies, in this chapter we use it as

a simple and explicit mechanism for adding and removing executing threads from

cores. Most speculative multithreading proposals also assume hardware support

for thread movement and spawning. Traditional system-software-driven migration

would have much higher overhead, and expose the cache migration costs less; how-

ever, even in that scenario our experiments confirm that the cache migration costs

are still the dominant cost of migration in most cases. We believe that direct

OS involvement in all thread movement is quickly ceasing to be a viable model,

but even the OS overhead for migration can be significantly reduced from current

levels [SMM+09].

6.4 Motivation: Performance Cost of Migration

There are many execution scenarios which require the working set of a

thread on one core to migrate to another: system load balancing, thread spawn-

99

L2

DataInst

Core

L2

DataInst

Core

L2

DataInst

Core

L2

DataInst

Core

Mem
chan

Mem
chan

Mem
chan

Mem
chan

Bus

↔

↔

↔

↔

Figure 6.1: Baseline multi-core processor.

ing, loop-level parallelism, task-level parallelism, helper threads, speculative multi-

threading, single-ISA heterogeneous multi-core adaptation, thermal management,

etc. Virtually all of these will become more common as core counts increase, given

the already lower costs of communication; in nearly every case, these mechanisms

will be even more effective if the cost of migrating thread state is decreased.

Although the principles from this research apply in all of these cases, for

clarity of evaluation, we specifically target the case of single-thread migration at

arbitrary points in the program. This most directly reflects migration for load-

balancing, migration for thermal management, and migration-based sampling of

schedules on heterogeneous multi-cores. Our results would also directly apply to

speculative multithreading, transaction-based parallel code, etc., where migration

instead tends to occur at particular points in the program. Our evaluation migrates

at arbitrary program points; this considers – in an informal sense – the expected

behavior over a large number of possible thread trigger points.

To evaluate various migration support mechanisms, we repeatedly move a

single executing thread among a set of cores, at arbitrary points in the program.

There are several costs incurred in migrating a thread: transferring thread register

state, transferring TLB state, recreating branch predictor state, etc.; however, the

largest amount of program state on a core resides in the caches. As a result,

the cost of transferring cached state dominates thread re-start performance. In

100

no help
copy I+D

copy stream info
oracle prefetch

instant-copy I+D
instant-copy L1+L2

0

2

4

6

8

10

12

1.000

10^0 commits
10^1 commits
10^2 commits
10^3 commits
10^4 commits
10^5 commits
10^6 commits

Architectural support for data migration

P
o

st
-m

ig
ra

te
 s

lo
w

d
o

w
n

Figure 6.2: The cost of migration, in reduced instruction throughput, for various
assumptions about the migration of data. The baseline is instant replication of all
private caches.

addition, that state is moved very slowly, because it is only demand-fetched as the

thread executes on the new core, and after migration that thread is executing (and

demand-fetching) extremely slowly.

Figure 6.2 gives the result of an experiment that illustrates the cost of migra-

tion and the potential to reduce the cache-related portion of that cost. We force a

single thread to migrate round-robin among four cores, moving every 1 million com-

mits, and record the time it takes to start-up and commit the next 1, 10, 100 . . . 106

instructions after each migration. We perform this experiment across our bench-

mark suite, with varying amounts of architectural (and oracle) support for mi-

gration. We show slowdown relative to the ideal case where all cache contents

(instruction, data, L2) are instantly transported to the new core for free. It takes,

on average, 7 times as long to commit the 100th instruction in the default migra-

tion case – “no help” – compared to cost-free cache migration. (We assume there is

a background load that causes cache state to get evicted before the thread returns

to the original core, but which does not otherwise impair the thread.)

101

The impact of several migration-support schemes is shown. For the feasible

schemes, “copy I+D” bulk-copies both first-level caches by transferring a list of

their tags to the new core and then fetching them via core-to-core transfers; “copy

stream info” transfers just the metadata from the first core’s hardware prefetch

stream buffer to the second, allowing it to resume fetching any streams it was

following. For the idealized schemes, “oracle prefetch” uses perfect knowledge

of near-future accesses to fetch the required blocks at the new core, requesting

them via the memory hierarchy as the thread restarts and modeling the costs of

these requests; “instant-copy I+D” instantly transfers the contents of the first-

level instruction and data caches to the new core, cost-free; finally, “instant-copy

L1+L2” instantly transfers all cached data, cost-free.

This graph provides several key insights. First, we see that unless a thread

executes on a core for many instructions before being migrated again, the cost of

migration is not amortized in the realistic schemes. At 10,000 commits, the cost is

still very high (2X slowdown); for shorter threads, migration cost is extreme. Note

that several speculative multithreading proposals routinely execute threads under

100 instructions [MG02], as do helper-thread proposals [ZS00]. Several transac-

tional memory programs (for Transactional Coherency and Consistency) showed

average transaction lengths in the low hundreds [CCM+06].

We also see that transporting whole caches proactively – the “copy I+D”

case – is not particularly effective: there is too much data, and not all of it will be

accessed, either soon or at all. It is worse than doing nothing over short intervals,

and takes about 10,000 instructions to be amortized enough to approach break-

even. While not shown, the cost of copying the larger L2-resident state is even

worse.

As an alternative, we could copy prefetcher state; this is the “copy stream

info” case. Over the short term, we see this is more effective than moving the entire

L1 cache state, since prefetcher state is small and directly targets future accesses.

It is still not particularly effective, however, since it represents only a small fraction

of the future working set: the stream buffer is built to target future misses in the

data stream, data which is expected to be absent from the previous cache; what

102

we really want is something similar to the stream buffer, but trained on the entire

access stream, not just the misses. Furthermore, this scheme does not prefetch the

future instruction stream. Immediately after migration, there is a large demand

for instructions. The lack of I-stream prefetching is greatly exacerbated by the

inability to overlap multiple demand-fetched I-misses.

At the short time scales we are most interested in for migration support,

conventional hardware prefetchers are unable to contribute much: they do not have

enough time to learn about an incoming thread’s behavior, since the thread itself

is struggling to execute.

6.5 Architectural Support for Working Set Mi-

gration

In the previous section we demonstrated that observing and characterizing

the miss stream is not sufficient to cover many migration-related misses; we need

to characterize the access stream instead. We construct a working set predictor

which works in three stages. First, we observe the access stream of an executing

thread, and capture patterns and behaviors. Second, we summarize this behavior

and transfer the summary data to the new core (we try to minimize the size of

this summary, because this transfer can interfere with the transfer of register state

and other data). Third, we apply the summary via a prefetch engine on the target

core, to rapidly fill the caches in advance of the execution of the migrated thread.

First, we will discuss the architecture of a set of potential capture engines.

In this discussion, we consider a number of hardware tables that capture a wide

variety of access patterns to better evaluate the design space, and determine which

mechanisms are most effective in this scenario. This system operates on informa-

tion about committed instructions, and does not directly supply data to any part of

the pipeline, allowing for a conservative implementation outside of critical timing

paths.

103

Table 6.1: Activity record field superset.

Field Description

time Cycle of corresponding commit
addr Virtual address of access
width Width of access
op-type I-fetch, Load, or Store
app-id Address-space ID
pc Taken-branch PC (only for fetch after a taken branch)
addr-regnum Logical register used for address
offset Address offset immediate value
data-regnum Logical source/destination register
addr-regval Input value from address register
data-regval Input value from data register
service-level Most distant level of memory hierarchy contacted
mem-delay Total time from address generation to memory completion

6.5.1 Memory logger

Within each core, we add a memory logger, a specialized unit which records

selected details of recent memory activity. This unit passively observes the current

thread as it executes, but does not affect execution.

From the existing structures, details of each committed memory instruction

and instruction cache access are collected into an activity record, which is sent to

the memory logger for analysis. This can be implemented conservatively outside of

the main pipeline, incurring extra communication latency if need be. If the memory

logger becomes swamped with data and is unable to accept new input temporarily,

records may safely be discarded; only the fidelity of summary information will

suffer. Table 6.1 shows the fields collected in each activity record. This is a

union of fields used by all the potential capture mechanisms; the set can later be

pared down (significantly) to match the particular subset of capture tables actually

implemented.

The memory logger can be implemented as one or more small content-

addressable memory (CAM) tables, with associated control logic. These tables are

indexed using various portions of the information in an activity record. Each of the

individual table structures is tailored to capture a specific class of memory access

104

...

pc

data

addr

Stride logic Pointer logic

. . .

Activity record

Figure 6.3: Memory logger overview.

pattern: one table tracks striding accesses, another tracks pointer traversals, etc.

Figure 6.3 shows an overview of the memory logger architecture.

As we begin this study, we start out concerned less with the cost of the

memory logger or component tables, and more with exploring a variety of possibil-

ities. After considering schemes of varying complexity with all of the logger fields

available, we will see that we can drastically pare down the set of fields, achiev-

ing our best results relying only on the addr field for both I-stream and D-stream

accesses.

Lookup, replacement, and aging

Each potential memory logger table uses fully-associative lookup and a

simple gated-round-robin replacement policy, similar to “second-chance” page-

replacement in operating systems. (These lookup and replacement policies are

not intrinsic to the design of the system; more typical set-associative CAMs may

be used instead.) Each table maintains per-entry match statistics.

To track the expected accuracy of individual tables, we use a simple scheme

to obtain an age-adjusted hit metric. Every epoch (a certain number of memory

operations executed), the cumulative number of hits is halved (shifted right), and

105

the number of hits for the current epoch is added in. The choice of epoch size also

conveniently establishes the maximum value of the hit counter.

Table types

Each candidate table within the memory logger targets a specific type of

access pattern. (Note that we are not proposing these tables themselves as novel

prefetching schemes; several of the underlying ideas are discussed in Section 6.2,

and [SSC02] surveys several more.) Our tables are:

• NextBlock{Inst,Data}: These tables detect sequential block accesses, for

both instruction and data accesses. Lookup is performed with the block-

aligned memory address; beyond the common hit and usage counters, the

only information associated with each address is its presence. On a hit, the

block address is incremented to the next block. Similarly, on a miss the next

block address is written into the address field. We use two of these tables:

one for instructions, and one for data.

• StridePC: This table tracks individual instructions which walk through

memory in fixed-sized steps. Lookup is performed using the program counter

(PC). For each PC, the stride table tracks the previous memory address and

the difference between the previous two memory addresses. On a PC match,

the new stride is compared with the stored stride; if they match, this is a

hit. If the PC or stride do not match, a new entry is allocated.

• Pointer, Pointer-chase: With these, we seek to capture the set of active

pointers: addresses which are used to store other addresses. Table lookup is

performed using the effective address of a memory reference, while replace-

ment is performed using the data value read by a load instruction. Matching

in this manner, we detect values output by previous loads which are used as

inputs to subsequent memory operations (including instruction fetches), sim-

ilar to pointer-cache [CSCT02] and dependence-based [RMS98] prefetching.

Replacement is only performed when the memory operation being consid-

ered is an aligned, pointer-width load to a writable register. We consider

106

two variants: Pointer just tracks recently loaded values which are later used

as addresses, without following them, while Pointer-chase replaces an entry

with the returned value when a load match is observed. In this manner,

Pointer-chase detects and follows the latest node in list traversals, and is

capable of following those lists further at prefetch-time.

• Same-object: This table captures accesses to ranges of memory which use a

common base address, as is common for structure access and object-oriented

code. Table lookup takes place using the “base address” associated with a

memory operation, rather than the effective address. This takes advantage of

the “base+offset” addressing mode available in many instruction sets. The

same-object table tracks the minimum and maximum offset values for match-

ing loads, learning the extents of currently-active objects. This table ignores

operations with negative offset values, or with the base address sourced from

the stack pointer or global pointer registers.

• SPWindow: In order to prefetch relevant data near the top of the stack, we

simply record the value of the stack pointer register. This does not require

actual table storage; the prefetcher fetches a window of data near the recorded

stack pointer value, hoping to get the current stack frame of local variables.

• {Inst,Data}MRU: These tables simply record the most recent addresses

accessed. If the current access is not a hit in the table, it replaces an ex-

isting entry. We have one table for instructions and one for data. These

track addresses at a coarse granularity of four-cache-block alignment, allow-

ing them to cheaply account for a larger number of blocks without increasing

the amount of tag maintenance.

• BTB: This table captures taken branches and their targets. Table lookup

and replacement use the PCs from I-fetch accesses which immediately follow

a taken branch in the correct-path instruction stream, i.e. branch target

PCs. Each table entry records the most recent inbound branch PC for that

target.

107

• BlockBTB: This is a cache-block-aligned variant of the BTB table above.

The table operation is the same, except that both taken branch PCs and

target addresses are block-aligned. This variant loses detail, but allows a

greater amount of the instruction working set to be characterized with a

given table size.

• RetStack: The return stack is a hardware structure in modern processors

that predicts (very accurately) the target of return instructions corresponding

to the current call stack. This table uses activity record fields to maintain a

shadow copy of the return stack, and prefetches blocks of instructions near

the top few frames on the return stack.

• PCWindow: As with SPWindow above, this also does not require an actual

table; we simply use the PC of the first post-migrate instruction, and prefetch

a window of instructions near that PC.

6.5.2 Summary generator

The summary generator activates when a core is signaled to migrate a

thread. As introduced in Section 6.3, our baseline core design assumes some hard-

ware support for thread swapping; at halt-time, the core collects and stores the

register state of the thread being halted. (These techniques will still work absent

hardware thread-swapping support; in such systems, it is important that our tables

gather enough history to ensure we prefetch user state, not just recently accessed

kernel state.)

While register state is being transferred, the summary generator reads

through the data collected by the memory logger, and prepares a compact sum-

mary of the thread’s likely future working set. This summary is transmitted after

the architected thread state, and is used to prefetch the thread’s working set when

it resumes on the new core. During summarization, each table entry is inspected to

determine its likely usefulness, by observing whether its age-adjusted hit counter

exceeds a configurable threshold. Output data from the various tables are packed

into cache-line size blocks for efficient transfer.

108

Summarizing the logged data serves several purposes: (1) Size reduction:

summaries are considerably smaller than the total table storage in the memory

logger. (2) Culling: at any given time, some table entries are unused, or con-

tain relatively unimportant or redundant entries. Short summaries are critical to

getting the migrated thread restarted quickly.

Selected table entries are summarized for transfer by generating a sequence

of block addresses from each, and encoding them for transfer with a simple encod-

ing. For contiguous or striding sequences, we use a simple linear-range encoding;

for example, the summary of an entry in the stride table would be <start address,

stride, length>, which tells the prefetcher to fetch length cache blocks, starting at

start address, with stride stride. For arbitrary address sequences where this simple

linear encoding is not appropriate, we resort to encoding a sequence as an initial

cache block address followed by a sequence of narrow, signed delta-values.

The length parameter for strided accesses is necessary because we prefetch

directly into the caches, as we are trying to fill them as quickly as possible. There-

fore, we do not have the natural throttling effect present in, for example, stream

buffers with dedicated storage (though the presence of finite MSHR resources lim-

its overall prefetcher throughput, judicious length restrictions help individual sum-

maries share those MSHRs). Overall, we have tuned lengths to roughly transfer

enough data to cover the first 1,000 instructions, based on measurements of the

average number of unique blocks touched over all benchmarks.

If we expect to migrate again in short order (e.g., speculative multithread-

ing, transactional codes, etc., which repeatedly execute short threads), we can use

the summary data to pre-fill the memory logger in the new core, since starting the

new memory logger from scratch may not give it time to ramp up before the next

migration.

6.5.3 Summary-driven prefetcher

Rounding out our working-set migration support hardware is the summary-

driven prefetcher itself, depicted in Figure 6.4. When a previously-suspended

thread is re-activated on a core, its summary records are read by the prefetcher.

109

. . .

Receive buffer

To cache request
ports, MSHRs

addr ∆ count

-1

Expander 2 Expander 3

Address stream

Figure 6.4: Summary-driven prefetcher.

Each record is expanded to a sequence of cache block addresses, which are sub-

mitted for prefetching as bandwidth allows. While the main execution pipeline

reloads register values and resumes execution, the prefetcher independently begins

to prefetch a likely working set. Prefetches search the entire memory hierarchy,

and contend for the same resources as demand requests. Once the register state

has been loaded, the thread’s execution begins to compete with the prefetchers for

memory bandwidth; this is modeled.

Unlike the memory logger, it may be more difficult to completely decouple

the prefetch engine from the performance-sensitive parts of the processor. We

model the prefetch engine as submitting memory requests as virtually-addressed

requests at ports of the instruction and data caches, utilizing the existing memory

hierarchy (including MSHRs) as much as possible. While these requests compete

with the thread itself for cache ports, we expect most prefetching to occur while

the thread would otherwise be stalled for memory access. This design does not

require additional ports.

110

6.6 Methodology

We evaluate the prefetching coverage and overall performance of our work-

ing-set migration system using SMTSIM [Tul96], an out-of-order processor and

memory system simulator introduced in Chapter 2. In this section, we present our

processor configuration, our parallel workload composition, and our performance

metric.

6.6.1 Simulator configuration

We configure SMTSIM for multi-core simulation with single-threaded cores

(SMT is not used in this chapter). The system consists of a four-core multipro-

cessor, with cores clocked at 2.0 GHz; timing for other structures is also reported

in terms of this clock rate. Table 6.2 lists the most significant parameters of the

baseline system used in our experiments. Our memory subsystem layout and mod-

eled latencies are based on that of recent Intel Nehalem-based processors [Int08];

bandwidth constraints are based on benchmarking of Nehalem-based systems along

with the specifications of DDR3-1600, to the extent we could adapt our simulator

to model them.

Atop this baseline, we implement and evaluate the working-set migration

architecture described in Section 6.5. All memory logger CAMs are 32 entries, and

we use an easily-implemented replacement policy that is round-robin, but skips

entries accessed recently (within the last 500 lookups).

6.6.2 Workloads

Evaluating the speed of migration is not straightforward. We could exam-

ine a particular environment which benefits from fast migration (e.g. speculative

multithreading, the shared-thread multiprocessor), but the results would be very

specific to those execution models; instead, we strive to model a more generic

environment and produce techniques that are useful in the most general case.

We start with all individual benchmarks from the SPEC2000 suite, running

standalone on a four-core processor. Each benchmark is simulated for 200 million

111

Table 6.2: Baseline processor parameters.

Parameter Value

Clock rate 2.0 GHz
Fetch width 4
Reorder buffer 128 entries
Integer window 64 insts
FP window 64 insts
Max issue width 4
Integer ALUs 4
FP ALUs 2
Load/store units 2
Branch predictor 4 Kib gshare
BTB 256-entry, 4-way
Cache block size 32 B
Page size 8 KiB
L1 I-cache size/assoc. 32 KiB/4-way
L1 I-MSHR 16 entries, 32 waiters each
L1 D-cache size/assoc. 32 KiB/4-way
L1 D-cache ports 2 read/write
L1 D-MSHR 16 entries, 32 waiters each
L2 cache size/assoc. 512 KiB/8-way, per-core
L2 cache ports 8 banks, 1 port each
ITLB entries 48
DTLB entries 128
Load-use latency, L1 hit 2 cycles
Load-use latency, L2 hit 14 cycles
Load-use latency, memory 176 cycles
Load-use latency, cross-core 34 cycles
TLB miss penalty 160 cycles
L1 I-cache ideal b/w 60 GiB/s
L1 D-cache ideal b/w 60 GiB/s
L2 cache ideal b/w 60 GiB/s
Bus ideal b/w 30 GiB/s
Mem ideal b/w 30 GiB/s R, 20 GiB/s W
Thread activate latency 15 cycles, to first fetch
Thread deactivate latency 44 cycles, to fetch available
L1 D-stream buffer 8 streams, 4 blocks/stream
L1 D-stream stride table 256-entry, 4-way

112

commits during their main phase of execution. To evaluate performance subse-

quent to migration, we force threads to migrate round-robin around cores, trigger-

ing a migration every 1 million commits. We consider – as shown previously in

Figure 6.2 – the time to commit 10n instructions after each migration, n ∈ {0 . . . 6}.
Examining performance across this wide range of intervals offers insight into how

long it takes to amortize the cost of a migration, and the expected throughput for

short, medium, and long-lived threads.

In these experiments, we are artificially degrading performance by forcing

threads to move. We do this in order to capture performance degradation char-

acteristics after migrations at arbitrary points in execution, independent of the

specific reasons for migration. While there are many potential reasons for a par-

ticular migration (as discussed in Section 6.1), and a given migration policy may

or may not prove beneficial in the long run, any migration in a real system will be

subject to the overheads we characterize in this work.

We run experiments with a single thread moving among cores, assuming

that caches are empty when the thread returns to a given core. This is a simplified

model; a more realistic environment would have unrelated background threads

occupying other cores, evicting the blocks of the thread under study during its

absence. This simplification allows for evaluation free of noise from other threads.

We also run experiments where we actually simulate background threads;

we evaluate these more realistic background-thread scenarios in Sections 6.7.6 and

6.7.7. For those cases, we use random sets of the other benchmarks running on

the idle cores, with threads on the other cores migrating (between the cores on our

simulated system) about as often as the thread under measurement.

6.6.3 Metrics

As discussed in Chapter 2, evaluating the performance of migration and

short-thread acceleration support presents its own challenges: typical long-term

performance metrics understate the degree to which performance suffers immedi-

ately after migrations, and also provide no insight as to how long performance

takes to recover after migration operations. We introduce a new metric, interval

113

IPC, which we report in terms of post-migrate speedup or post-migrate slowdown,

as appropriate. See Section 2.2.4 for a discussion of interval IPC.

6.7 Analysis and Results

This section examines a number of mechanisms for predicting the future

cache working set of a thread migrating between cores. These mechanisms vary

from simple to complex, ideal to realistic.

6.7.1 Bulk cache transfer

The most straightforward predictor of the future working set is the existing

contents of the caches. We can copy those contents in bulk immediately after

moving register state. We already saw in Figure 6.2 that this was not very effective,

at least over the short intervals, due to the quantity of data transferred and the

amount of data that does not turn out to be useful. (Prior work [LFF01] has shown,

for first-level data caches in particular, that a substantial portion of resident blocks

at any moment will not be referenced before being replaced; replacement policy

research [QJP+07] has shown, for second-level data caches, that many requested

blocks are evicted without being re-used.)

To perform bulk cache transfers at migration time – while the source core’s

pipeline is retrieving register values for transfer – we read out the set of cache tags

belonging to the subject thread, and pack them into a message for transfer to the

target core. We assume simple delta-encoding of cache block addresses, consuming

16 bits per tag on average. Prefetching begins as soon as the message arrives, using

the existing level-1 memory request ports.

Figure 6.5 shows the impact of adding bulk cache transfers to our sin-

gle-threaded workloads, with results broken down by individual cache. Over

the shorter intervals, performance is significantly worse, as the dependence-free

prefetch traffic consumes most available request bandwidth. Without any cache

transfers (the baseline), the thread is already hamstrung by the low rate at which

it can generate new memory references; adding bulk cache requests increases the

114

D-cache I-cache I + D I + D + L2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Bulk-copied subset of cached data

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.5: Impact of adding bulk cache transfers to single-threaded workloads.
Speedups are relative to no migration support.

contention for MSHRs, request ports, and cache replacement priority, worsen-

ing the short-term situation. Over longer intervals, we do see benefit from bulk-

transferring the L1 instruction cache, and from transferring both L1 caches to-

gether.

Moving the data cache by itself has almost no positive effect. This is a

recurring theme in our results: the instruction cache is far more critical to post-

migration performance than the data cache. Instruction cache accesses take place

completely serially in cold cache mode. Data demand misses exhibit some paral-

lelism, and are easily serviced in parallel with the instruction stream misses. This

makes the instruction stream the clear bottleneck in this case. In fact, what we

often find is that if we are getting many I cache misses, any attempt to prefetch the

data stream just gets in the way. The case where all three caches are bulk copied

again sees performance gains at large intervals primarily because the I cache is in-

cluded, and in fact is less effective than the I cache alone. Due to the size of the L2

cache, the transfer cost is not amortized, even over 1 million commits: transferring

I + D + L2 is never better than transferring just I + D.

115

copy I + D instant-copy I + D oracle prefetch I +D
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Post-migrate working set construction

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.6: Impact of a future-oracle prefetcher, compared to instant (free) trans-
fers and bulk cache copying.

6.7.2 Limits of prefetching

Our next experiment attempts to explore the potential of post-migration

fetching support, over blind transfer of cache data. Here, we construct an oracle

prefetcher that knows what L1 cache blocks will be touched in the future. It

prefetches those in order, looking far enough ahead to fill each of the caches halfway.

This result is shown in Figure 6.6. We see that the potential gains are high. Despite

incurring the full cost of sending the summaries and transferring the data, the

oracle’s perfect accuracy allows it to approach the performance of free transfers –

actually doing better at 103 commits – while far outpacing cache copying. Cache

copying suffers from transferring too much data, and doing so with no particular

order, which is unlikely to correspond to the access patterns immediately after

migration.

116

NextBlock(I) BTB BlockBTB RetStack PCWindow InstMRU
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Active I-stream table (solo)

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.7: Impact of various instruction stream prefetchers, combined with an
oracle data stream prefetcher.

6.7.3 I-stream prefetching

I-stream prefetching and D-stream prefetching are of course highly syner-

gistic; we saw this earlier in Figure 6.5, where bulk-copying the D-cache was useless

if the I-stream was left unassisted. Therefore, to evaluate individual tables of our

memory logger that address the instruction cache, we need to assume a good so-

lution for the data stream. In this section, we evaluate the different instruction

stream loggers in the presence of an oracle data stream prefetcher. The oracle still

incurs overhead, but has perfect knowledge of the 1000 commits following each

migration.

We see these results in Figure 6.7. We cannot conclude too much yet from

the absolute speedup, but what we do see is that two very simple approaches are

quite effective over both the short and medium term. PCWindow simply uses

the PC and fetches a window of instructions around it. InstMRU simply records

the most recent instruction accesses. The latter has a significant advantage over

moving the entire cache contents because it can be more timely: being smaller

than the cache, it moves those instructions with the highest locality, more quickly.

117

NextBlock(D)
Pointer

PointerChase
SameObj

StridePC
SPWindow

DataMRU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Active D-stream table (solo)

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.8: Impact of various data stream prefetchers, combined with an oracle
instruction stream prefetcher.

6.7.4 D-stream prefetching

As we successfully prefetch the I-stream into the new caches, the D-stream

then becomes the bottleneck. So again, to evaluate individual tables of our memory

logger that address the data cache, we need to assume a good solution for the

instruction stream. This section, then, evaluates the different data stream loggers

in the presence of an oracle instruction stream prefetcher, where the oracle has

perfect knowledge of I-cache behavior over 1000 commits following each migration.

These results comprise Figure 6.8. Here, the variations are lower than in

the instruction stream case, partially because of the diversity of access patterns,

but also because of overlap. Several of these tables track the same accesses in

different ways. Again, though, we see that we can get away with very simple

tables. DataMRU and StridePC are both good over various intervals.

118

NextBlock(D)
Pointer

PointerChase
SameObj

StridePC
SPWindow

DataMRU

0.0

0.5

1.0

1.5

2.0

2.5

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Active D-stream table (with InstMRU+PCWindow)

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.9: Impact of various combinations of realistic instruction and data stream
prefetchers.

6.7.5 Combined prefetchers

Next, we examine several combinations of instruction and data stream

prefetchers. These represent completely realistic prefetch scenarios with no or-

acle knowledge. For the instruction stream, we use a combination of PCWindow

and InstMRU. Results with just InstMRU were quite similar, because InstMRU

somewhat subsumes PCWindow (the current PC is always in the MRU table).

However, by combining them (at no cost: the PC is available), we fetch a larger

window of instructions around the current PC than we do for the other addresses.

We combine these with several of our data stream predictors, and present

the results in Figure 6.9. We see that, taken individually, the “StridePC” and

“DataMRU” data-stream predictors give excellent performance, at both 100 and

1000 instructions. For threads as short as 100 instructions, then, we can achieve

speedups as high as 2X using this working set prediction framework.

Table 6.3 shows the transfer intensity and the accuracy of several prefetching

schemes. Those include the best two prefetch combinations from the previous

figure, as well as bulk prefetch of the L1 caches. We see from these results that

119

Table 6.3: Prefetcher activity and accuracy, mean over 200 migrations.

Prefetcher Blocks/migrate Accuracy

InstMRU+PCWindow+StridePC 212 64.00%
InstMRU+PCWindow+DataMRU 110 59.44%
Bulk transfer I+D 1195 48.63%

access stream monitoring-based tables provide both more accurate and much more

highly directed prefetching than moving the cache state itself.

6.7.6 Allowing previous-instance cache re-use

Thus far, we have been migrating individual threads in an otherwise idle

system, in order to evaluate prefetching absent interference from other threads.

However, that is not the primary scenario we are targeting; with no other threads

executing, a frequently-migrating thread would quickly build up copies of its work-

ing set on each core, and gain much less from prefetching. Therefore, to simulate

cache interference from other threads, but still maintain a relatively noise-free sim-

ulation scenario, we have assumed thus far that when a thread is migrated to a

core, it may not re-use data already present on that core from a previous instance

— assuming its entire working set has been replaced by other execution.

For a less contrived scenario, in this section we remove the restriction on

cached data re-use. In order to provide cache replacement pressure on the cores

which are not running the thread under evaluation, we schedule an independent

workload (chosen randomly from SPEC2000, as described in the next section)

on each, and move these background threads among cores periodically, outside

of our prefetch-evaluation time periods. Figure 6.10 shows the resulting perfor-

mance. Compared to Figure 6.9, our gains are reduced, but overall performance

trends are similar and remain valid. For example, mean suite-wide speedup for the

“DataMRU” combination over 100 post-migrate commits has dropped from about

2.00 to 1.61. This drop is a combination of the additional cache re-use, along

with contention for interconnect and memory resources. However, the available

performance gains are still quite high.

120

PointerChase SameObj StridePC SPWindow DataMRU
0.0

0.5

1.0

1.5

2.0

2.5

10^0 10^1 10^2 10^3 10^4 10^5 10^6

Active D-stream table (with InstMRU+PCWindow)

P
o

st
-m

ig
ra

te
 s

pe
ed

up

Figure 6.10: Realistic prefetchers, with previous-instance cache reuse and back-
ground thread movement.

6.7.7 Impact on other threads

While we have focused on the benefits of migrate-time prefetching on mi-

grating threads in isolation, it is likely that a four-core system such as ours would

have threads scheduled on some other cores, competing for interconnect and mem-

ory bandwidth. To evaluate the cost of our prefetching scheme on these bystander

threads, we again added four additional non-migrating threads to the system: one

waiting to execute on whichever core our “nomad” thread is using at any given

time, and three others executing on the three remaining cores. (The background

threads are chosen at random from the SPEC2000 suite such that, across all ex-

periments, each individual benchmark is equally represented.)

We find that these background threads suffer negligible overall performance

degradation from the addition of prefetching. This system does not prefetch con-

tinuously, but rather issues bursts of prefetches targeted specifically in response

to thread migrations. Focusing on the short post-migrate time windows when the

prefetcher is actually active, background threads will indeed slow down due to in-

terference, but the impact is small and short-lived. For a specific example, starting

121

with the “StridePC” experiment described in Section 6.7.5, and adding stationary

background threads to the system, we measure a mean background thread speedup

of 0.961 over the time it takes the nomad thread to make 100 post-migrate commits;

as the initial burst of prefetch activity tapers off, bystander performance recovers

rapidly, to a mean of 0.999 speedup by 10000 post-migrate nomad commits.

6.7.8 Adding a shared last-level cache

To demonstrate that our gains are largely insensitive to underlying main-

memory latency, we model the addition of a shared L3 cache. We add an 8MiB

16-way associative shared L3 cache, shared among the cores, with an overall load-

use latency of 40 cycles (L2 latency remains 14 cycles). With this L3 added to both

the baseline and experimental cases, we find that performance is nearly identical

to the results already shown. Returning again to the example of the “StridePC”

experiment from Section 6.7.5, we find that adding the L3 decreases nomad speedup

by a mean of 0.1% for 100 post-migrate commits, and by a mean of 0.10% across

all time scales.

When a thread is migrated, our prefetcher serves to mitigate the impact

of cache misses at its new core. Intuitively, many of these misses and prefetches

will be serviced with core-to-core transfers from the prior core, – without requiring

access to memory – with latency that is competitive with shared-L3 access. While

adding a shared L3 decreases the cost of retrieving those blocks unavailable from

the prior core, it does not address the problem of poor memory parallelism due to

serial demand misses.

6.7.9 Simple hardware prefetchers

While we present a framework which allows for evaluation of several schemes

in concert – we describe a number of capture tables which vary in complexity – we

achieved our best results with a small combination of simple tables, e.g. InstMRU

+ PCWindow + DataMRU.

To contrast with a conventional hardware prefetcher, for this section we add

122

next-block prefetchers to both L1 caches: these prefetch the successor to each block,

at the first touch after that block is filled. Using these prefetchers instead of our

proposed migration-targeting prefetchers, we observed only 1.010 mean speedup

over 100 post-migrate commits. Over longer time scales, the benefits ramp up, to

e.g. 1.104 mean speedup over 10000 post-migrate commits.

We find that over the short time scales we are most interested in for migra-

tion support, these traditional prefetchers are unable to contribute: they fall prey

to the nascent thread’s slow progress, which prevents them being trained quickly

enough to help. However, since our proposed system issues targeted prefetches

only in response to specific migrations, and these conventional prefetchers operate

continuously, the two approaches complement each other.

6.8 Summary

As we proceed further into the multi-core era, migrations – scenarios where

the state of a thread on one core needs to migrate to another core – will occur more

often. Beyond the straightforward benefit of accelerating support for an operation

we expect to become more frequent, speeding up migration will make several new

execution models more applicable and effective: since this support decreases the

cost of creating threads, it leaves each thread with less overhead to amortize away,

thereby allowing profitable operation at finer granularity. This expands the horizon

for finding and exploiting pockets of parallelism.

In this chapter we have described a working set predictor and prefetcher

which greatly speeds up post-migration execution, as much as doubling the per-

formance for short-lived threads. These solutions require small, simple tables to

monitor the access stream of running threads, and a minimal address-generation

engine to issue prefetches for migrating (or newly-forked) threads.

We have shown that I-stream delivery is most critical to post-migrate per-

formance; without assistance, the fetch unit is left to fill the I-cache with serial

demand-misses. However, we have improved the delivery of both the instruction

and data streams, to boost the performance of short threads. We have also shown

123

that simply copying cache contents is extremely ineffective over the short term: it

moves too much data, at too much expense, and much of that data is not useful

over the short term. We have demonstrated techniques that as much as double the

performance for short threads. These solutions required only small, simple tables

to monitor the access streams of a running thread on each core.

Acknowledgements

This chapter contains material from “Fast Thread Migration via Cache

Working Set Prediction”, by Jeffery A. Brown and Dean M. Tullsen, which has been

submitted for possible publication by the Association for Computing Machinery in

Proceedings of the Nineteenth International Conference on Parallel Architectures

and Compilation Techniques (PACT). The dissertation author was the primary

investigator and author of this paper.

Chapter 7

Conclusion

Exploitation of parallelism has for decades been central to the pursuit of

computing performance. This is evident in processor design at many levels: in

the pipelining of execution stages, in superscalar dispatch among replicated func-

tional units, in pipelining and banking of memory subsystems, and more recently,

in the proliferation of self-contained processing cores within multi-core processors.

The shift to multi-core designs is a profound one, since – due to the loose cou-

pling among cores – available hardware parallelism promises to scale much farther

than at prior levels, limited by interconnect degree and thermal constraints. This

explosion in parallelism necessitates changes in how our hardware and software

interact.

In this dissertation we have focused on hardware aspects of this interac-

tion, in order to provide support for efficient on-chip parallel execution in the

face of increasing core counts. We have introduced a mechanism for coping with

increasing memory latencies in multithreaded processors, improved the coherence

subsystem for a chip-multiprocessor landscape, introduced efficient hardware prim-

itives for thread migration and scheduling, and demonstrated an effective system

for predicting near-term working sets, thereby enabling efficient thread creation

and migration. Each of these facets represents an important concern for parallel

execution in future designs; shortcomings in any of these complementary areas will

be a roadblock to continued performance scaling.

124

125

7.1 Memory Latency in Multithreaded Proces-

sors

In Chapter 3, we demonstrated how long-latency memory operations can

overwhelm a simultaneous-multithreaded processor core’s capacity to schedule

around instructions that are dependent on memory operations. Despite SMT’s

ability to share resources among independent threads on a cycle-by-cycle basis,

we saw that a miss-intensive thread can substantially degrade the throughput of a

co-scheduled thread, by up to a factor of ten.

The underlying reason for the observed degradation is that aggressive re-

source management policies, which serve SMT execution well under ordinary ex-

ecution conditions, fall victim to resource hoarding: instructions dependent on

long-latency misses occupy precious execution resources, but are unable to make

forward progress and free those resources in a timely manner. As further depen-

dent instructions are fetched into the pipeline and added to the instruction queues,

fewer and fewer scheduling resources remain available for co-scheduled threads. At

the heart of the problem is the inability of the baseline processor to either re-

voke resources allocated to in-flight correct-path instructions, or to predict these

pathological cases in advance and withhold resources.

We introduced a reactive solution which effectively detects these instances of

pathological resource hoarding as they begin to develop, and responds by flushing

instructions in order to free hoarded resources for use by other threads. This

mechanism avoids affecting the performance of well-behaved computation, does not

need training for any particular workload, does not necessitate additional storage,

and does not depend on any particular programming idioms for detection. In

our evaluation, this technique more than doubled two-thread throughput, and cut

average workload response time by about a factor of two.

126

7.2 Cache Coherence for CMPs

In Chapter 4, we considered the problem of implementing cache coherence

across cores. Today’s dominant multi-core programming models rely on shared

memory: values written to an address by one core will be visible, subject to con-

straints, to subsequent reads of that address on other cores. The cache coherence

system is responsible for coordinating the propagation of memory values between

cores. In order to support shared-memory programming in the face of increasing

core counts, we evaluated the use of directory-based coherence – a traditional ap-

proach to implementing coherence in large-scale multiprocessors – on an aggressive

chip-level multiprocessor with a scalable 2-D mesh interconnect, directory caches,

private L2 caches, and per-tile memory controllers.

We saw that a straightforward implementation of a traditional directory

protocol on a multi-core architecture – while sufficient – failed to take advantage

of the latency and bandwidth landscape typical of current and future chip multi-

processors. In particular, chip multiprocessors differ starkly in several ways from

their predecessors:

• From the perspective of a node experiencing a cache miss for a given block of

memory, the cost of contacting the directory controller at the node responsi-

ble for that block is often, in a chip multiprocessor, drastically lower than the

subsequent cost of accessing the latter node’s attached memory to retrieve a

copy of that block. In a traditional processor, both costs are dominated by

that of inter-node communication.

• From the perspective of the tile which hosts the memory controller for a given

block of main memory, the caches of other nodes in a chip multiprocessor

are much “closer” in terms of latency than main memory. In a traditional

multiprocessor, this is reversed: the cost of communicating with other nodes

tends to dominate that of consulting locally-attached main memory.

• From the perspective of a given node, the latency of communication with

different nodes in a chip multiprocessor varies much more than in a traditional

127

multiprocessor; communicating with a distant core takes several times as long

as with an immediate neighbor. In traditional multiprocessors, the latency of

using the interconnect at all dominates the differences in per-node latencies.

We proposed a multi-core specific customization of directory-based coher-

ence, that takes advantage of these differences by consulting additional cores in

service of some cache misses, obviating some costly off-chip accesses. We further

refined this to account for the travel distances of requests and larger, data-carrying

replies. We demonstrated suite-wide speedup, reduction in average L2 miss service

latency, and a decrease in interconnect utilization.

As we seek to use increasingly parallel chip multiprocessors more effectively

with parallel workloads, overall performance will become increasingly sensitive to

that of the coherence subsystem. As such, it is important to reconsider the design of

coherence mechanisms, ensuring they take into account the unique characteristics

of multi-core architectures.

7.3 Multithreading Among Cores

While the exploitation of parallelism at multiple levels remains necessary

to achieve good performance, the most recent arena for the expansion of on-chip

parallelism – the shift to multi-core processors – is in multiple respects a significant

departure from prior techniques. For the purposes of this dissertation, the most

important of the differences are:

• Scalability: compared to parallelism enhancement via increasing pipeline

depth or issue width, increasing core counts promises to allow performance

scaling over a much larger range of values. Rather than requiring drastic

design changes to the processor, adding additional cores is primarily a process

of replication followed up by interconnect and power scaling.

• Explicitness: unlike lower-level enhancements such as pipelining, the addition

of cores is a change which must be visible to workloads in order for them to

benefit from the additional hardware parallelism. Prior enhancements such

128

as instruction pipelining operate beneath the veil of the instruction-set ar-

chitecture; to utilize additional cores, however, workloads must be presented

as distinct threads for execution on distinct cores.

In order to reap the continued benefits promised by scalability, we have

enhanced the underlying hardware to defray the additional costs imposed by the

new explicitness requirement.

The problem of parallelizing computation, whether in terms of specific work-

loads or of abstract algorithms, is a well-studied area of computer science. Many

approaches have been devised, ranging from purpose-designed inherently-parallel

data flow languages, programming languages amenable to automatic paralleliza-

tion, parallelizing compilers for serial languages, programmer-generated parallel

mark-up directives atop serial languages, down through the software-hardware

stack to unassisted hardware-level parallelization in the form of speculative multi-

threading: the construction of new threads which perform direct computation and

prefetching, yet preserving the instruction-level semantics of the original program.

While approaches to workload parallelization are numerous and varied,

if execution takes place on a conventional shared-memory chip multi-processor,

all approaches are affected by the overheads associated with thread creation and

scheduling operations. Since the cost of these thread-management primitives nec-

essarily overshadow any possible gains from workload parallelization – coarsening

the minimum useful computation grain size, and decreasing the frequency with

which scheduling decisions can be considered – we have introduced and evaluated

several techniques to decrease these overheads. We have attacked along two fronts:

first, considering the movement of explicit thread state such as register values, and

then widening our scope to include memory working sets.

7.3.1 Registers: Thread Migration & Scheduling

In Chapter 5, we extended a conventional chip multi-processor model with

hardware support for transferring architected thread state (i.e., register values) in

and out of the execution cores. These transfers have very low latency – tens of

cycles – and overlap with execution in order to minimize disruption to pipeline

129

operation. Coupled with shared, off-core storage for this thread state, we call this

model the “Shared Thread Multiprocessor”.

With this new hardware facility we have enabled cheap, “multithreading-

style” thread interaction between the cores of a chip multi-processor. In our ex-

perimental evaluation, we have demonstrated two immediate gains from this new

ability. First, our new mechanism is fast enough that the latency of a thread mi-

gration is often less than that of an access to off-chip memory; we took advantage

of this by moving threads to take advantage of compute resources left temporarily

idle in the shadow of stalls for main memory access. Second, we took advantage

of the lowered cost of thread scheduling primitives to profitably operate a more

conventional multi-thread workload scheduler at a higher sample rate than would

be possible at time intervals typical of operating system schedulers.

7.3.2 Memory: Working Set Prediction & Migration

In Chapter 6, we continued to pursue high-performance inter-core threading

support, expanding our focus to include the larger problem of managing a thread’s

instruction and data working sets. We started with the observation that, even

given efficient hardware support for register-set transfers, newly-migrated threads

tend to perform very poorly for quite some time after each migration. Even though

register sets and control-flow were being efficiently transferred within tens of cycles,

commit throughput still dropped precipitously after control transfer, bogged down

by sequences of serial cache misses.

After a migration, the target execution pipeline, as well as the caches and

chip-wide interconnect, were being left severely under-utilized due to the lack of

cached instruction and data working sets. The fundamental problem was that the

only way a thread could accumulate a useful working set is by executing instruc-

tions, which generates demand references for the instruction and data blocks that

comprise its working set. Without a cached working set present, that rate of ex-

ecution is very low – due to cache misses – which in turn decreases the rate at

which additional blocks of the working set are requested. These vicious cycles of

poor performance were observed to persist through tens to hundreds of thousands

130

of instructions.

To address this, we introduced a table-driven system which passively ob-

serves threads as they execute, and prepares working-set summaries used to speed

migration. At a target core, a simple prefetcher uses these summaries to rapidly

prefetch useful instruction and data working sets subject only to the throughput

limitations of the underlying caches and interconnect, thereby breaking the cycle

of poor performance.

After evaluating summarizers of varying complexity, we demonstrated that

a practical combination of a handful of the simplest tables as much as doubled the

performance of newly-migrated threads. We observed that the instruction working

set was most critical for performance, due to the inability of the pipeline to progress

beyond instruction-miss stalls. We also showed that a straightforward solution –

copying cache contents outright – was extremely ineffective.

7.4 Final Remarks

Modern processors are not only replete with opportunities for parallel exe-

cution, they depend on it to achieve good performance. As core counts increase,

thread-level parallelism is rising in prominence as a means by which system-wide

performance can continue to grow; efficient hardware support for multi-threaded

execution is critical. In this dissertation, we have identified several impediments

to the performance of parallel execution – in inter-thread scheduling, in memory

coherence implementation, and in support for forking or migrating threads – and

we have presented solutions which improve performance in each of these areas.

Bibliography

[ACC+90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz,
Allan Porterfield, and Burton J. Smith. The Tera computer system.
In Proceedings of the 4th International Conference on Supercomputing,
pages 1–6, June 1990.

[AGGD02] Manuel E. Acacio, José González, José M. Garćıa, and José Duato.
A novel approach to reduce L2 miss latency in shared-memory mul-
tiprocessors. In Proceedings of the 16th International Parallel and
Distributed Processing Symposium, page 25, April 2002.

[AGS05] Murali Annavaram, Edward Grochowski, and John Shen. Mitigating
Amdahl’s Law through EPI throttling. In Proceedings of the 32nd
International Symposium on Computer Architecture, pages 298–309,
June 2005.

[AKK+93] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim,
Donald Yeung, Godfrey D’Souza, and Mike Parkin. Sparcle: An evolu-
tionary processor design for large-scale multiprocessors. IEEE Micro,
13(3):48–61, June 1993.

[AN90] Arvind and Rishiyur S. Nikhil. Executing a program on the MIT
tagged-token dataflow architecture. IEEE Transactions on Computers,
39(3):300–318, March 1990.

[APD01] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Data
prefetching by dependence graph precomputation. In Proceedings of
the 28th International Symposium on Computer Architecture, pages
52–61, July 2001.

[Arv81] Arvind. Data flow languages and architecture. In Proceedings of the
8th International Symposium on Computer Architecture, page 1, May
1981.

[BGM+00] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, An-
dreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert

131

132

Stets, and Ben Verghese. Piranha: A scalable architecture based on
single-chip multiprocessing. In Proceedings of the 27th International
Symposium on Computer Architecture, pages 282–293, June 2000.

[BKT07] Jeffery A. Brown, Rakesh Kumar, and Dean M. Tullsen. Proximity-
aware directory-based coherence for multi-core processor architectures.
In Proceedings of the 19th ACM Symposium on Parallel Algorithms
and Architectures, pages 126–134, June 2007.

[BT08] Jeffery A. Brown and Dean M. Tullsen. The shared-thread multipro-
cessor. In Proceedings of the 21st International Conference on Super-
computing, pages 73–82, June 2008.

[BWC+02] Jeffery A. Brown, Hong Wang, George Chrysos, Perry H. Wang, and
John P. Shen. Speculative precomputation on chip multiprocessors.
In Proceedings of the 6th Workshop on Multithreaded Execution, Ar-
chitecture and Compilation, pages 35–42, November 2002.

[CB95] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data
prefetching for high performance processors. IEEE Transactions on
Computers, 44(5):609–623, May 1995.

[CCM+06] JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen McDon-
ald, Brian D. Carlstrom, Christos Kozyrakis, and Kunle Oluko-
tun. The common case transactional behavior of multithreaded pro-
grams. In Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, pages 266–277, February 2006.

[CFS+04] Joachim Clabes, Joshua Friedrich, Mark Sweet, Jack DiLullo, Sam
Chu, Donald Plass, James Dawson, Paul Muench, Larry Powell,
Michael Floyd, Balaram Sinharoy, Mike Lee, Michael Goulet, James
Wagoner, Nicole Schwartz, Steve Runyon, Gary Gorman, Phillip Res-
tle, Ronald Kalla, Joseph McGill, and Steve Dodson. Design and im-
plementation of the POWER5 microprocessor. In IEEE International
Solid-State Circuits Conference, pages 55–57, February 2004.

[CGG04] Pedro Chaparro, José González, and Antonio González. Thermal-
aware clustered microarchitectures. In Proceedings of the 22nd IEEE
International Conference on Computer Design, pages 48–53, October
2004.

[Com00] Compaq Computer Corporation, Shrewsbury, MA. Alpha 21264 Mi-
croprocessor Hardware Reference Manual, February 2000.

[CPT08] Bumyong Choi, Leo Porter, and Dean M. Tullsen. Accurate branch
prediction for short threads. In Proceedings of the 13th International

133

Conference on Architecture Support for Programming Languages and
Operating Systems, pages 125–134, March 2008.

[CRVF04a] Francisco J. Cazorla, Alex Ramı́rez, Mateo Valero, and Enrique
Fernández. Dynamically controlled resource allocation in SMT pro-
cessors. In Proceedings of the 37th International Symposium on Mi-
croarchitecture, pages 171–182, December 2004.

[CRVF04b] Francisco J. Cazorla, Alex Ramı́rez, Mateo Valero, and Enrique
Fernández. Optimising long-latency-load-aware fetch policies for SMT
processors. International Journal of High Performance Computing and
Networking, 2(1):45–54, 2004.

[CS06] Jichuan Chang and Gurindar S. Sohi. Cooperative caching for chip
multiprocessors. In Proceedings of the 33rd International Symposium
on Computer Architecture, pages 264–276, June 2006.

[CSCT02] Jamison D. Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen.
Pointer cache assisted prefetching. In Proceedings of the 35th Interna-
tional Symposium on Microarchitecture, pages 62–73, November 2002.

[CSK+99] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Rein-
hardt, and Yale N. Patt. Simultaneous subordinate microthreading
(SSMT). In Proceedings of the 26th International Symposium on Com-
puter Architecture, pages 186–195, May 1999.

[CSM+05] Theofanis Constantinou, Yiannakis Sazeides, Pierre Michaud, Damien
Fetis, and Andre Seznec. Performance implications of single thread mi-
gration on a chip multi-core. ACM SIGARCH Computer Architecture
News, 33(4):80–91, November 2005.

[CSO+00] Yu Cao, Takashi Sato, Michael Orshansky, Dennis Sylvester, and
Chenming Hu. New paradigm of predictive MOSFET and intercon-
nect modeling for early circuit simulation. In Proceedings of the 2000
Custom Integrated Circuits Conference, pages 201–204, May 2000.

[CWS06] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Compu-
tation spreading: Employing hardware migration to specialize CMP
cores on-the-fly. In Proceedings of the 12th International Conference
on Architecture Support for Programming Languages and Operating
Systems, pages 283–292, October 2006.

[CWT+01] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher J.
Hughes, Yong-Fong Lee, Daniel M. Lavery, and John P. Shen. Specu-
lative precomputation: Long-range prefetching of delinquent loads. In
Proceedings of the 28th International Symposium on Computer Archi-
tecture, pages 14–25, July 2001.

134

[DT99] Fredrik Dahlgren and Josep Torrellas. Cache-only memory architec-
tures. Computer, 32(6):72–79, June 1999.

[EE07] Stijn Eyerman and Lieven Eeckhout. A memory-level parallelism
aware fetch policy for SMT processors. In Proceedings of the 13th In-
ternational Symposium on High-Performance Computer Architecture,
pages 240–249, February 2007.

[EE09] Stijn Eyerman and Lieven Eeckhout. Per-thread cycle accounting in
SMT processors. In Proceedings of the 14th International Conference
on Architecture Support for Programming Languages and Operating
Systems, pages 133–144, March 2009.

[EMA03] Ali El-Moursy and David H. Albonesi. Front-end policies for improved
issue efficiency in SMT processors. In Proceedings of the 9th Interna-
tional Symposium on High-Performance Computer Architecture, pages
31–40, February 2003.

[EPS06] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence.
In Proceedings of the 39th International Symposium on Microarchitec-
ture, pages 321–332, December 2006.

[FMJ+07] Joshua Friedrich, Bradley McCredie, Norman James, Bill Huott, Brian
Curran, Eric Fluhr, Gaurav Mittal, Eddit Chan, Yuen Chan, Donald
Plass, Sam Chu, Hung Le, Leo Clark, John Ripley, Scott Taylor, Jack
Dilullo, and Mary Lanzerotti. Design of the POWER6 microprocessor.
In Proceedings of the 2007 IEEE International Solid-State Circuits
Conference, pages 96–97, February 2007.

[GAD+06] Michael Golden, Srikanth Arekapudi, Greg Dabney, Mike Haertel,
Stephen Hale, Lowell Herlinger, Yongg Kim, Kevim McGrath, Vas-
ant Palisetti, and Monica Singh. A 2.6GHz dual-core 64bx86 micro-
processor with DDR2 memory support. In Proceedings of the 2006
IEEE International Solid-State Circuits Conference, pages 325–332,
February 2006.

[GWM90] Anoop Gupta, Wolf-Dietrich Weber, and Todd C. Mowry. Reducing
memory and traffic requirements for scalable directory-based cache co-
herence schemes. In Proceedings of the 1990 International Conference
on Parallel Processing, Volume 1, pages 312–321, August 1990.

[HDH+10] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David
Finan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar,
Gerhard Schrom, Fabrice Pailet, Shailendra Jain, Tiju Jacob, Satish
Yada, Sraven Marella, Praveen Salihundam, Vasantha Erraguntla,
Michael Konow, Michael Riepen, Guido Droege, Joerg Lindemann,

135

Matthias Gries, Thomas Apel, Kersten Henriss, Tor Lund-Larsen, Se-
bastian Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijngaart,
and Timothy Mattson. A 48-core IA-32 message-passing processor
with DVFS in 45nm CMOS. In Proceedings of the 2010 IEEE Inter-
national Solid-State Circuits Conference, pages 19–21, February 2010.

[HKN+92] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki
Mochizuki, Akio Nishimura, Yoshimori Nakase, and Teiji Nishizawa.
An elementary processor architecture with simultaneous instruction is-
suing from multiple threads. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 136–145, May 1992.

[HKS+05] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug
Burger, and Stephen W. Keckler. A NUCA substrate for flexible CMP
cache sharing. In Proceedings of the 19th International Conference on
Supercomputing, pages 31–40, June 2005.

[HMH01] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of wires.
Proceedings of the IEEE, 89(4):490–504, April 2001.

[HP04] A. Hartstein and Thomas R. Puzak. The optimum pipeline depth
considering both power and performance. ACM Transactions on Ar-
chitecture and Code Optimization, 1(4):369–388, December 2004.

[HS98] Sébastien Hily and André Seznec. Standard memory hierarchy does
not fit simultaneous multithreading. In Proceedings of the 2nd Work-
shop on Multithreaded Execution, Architecture and Compilation, Jan-
uary 1998.

[HWO98] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation
support for a chip multiprocessor. In Proceedings of the 8th Interna-
tional Conference on Architecture Support for Programming Languages
and Operating Systems, pages 58–69, October 1998.

[Int08] Intel. First the tick, now the tock: Next generation Intel microarchi-
tecture (Nehalem). Intel white paper, 2008.

[JJ92] O’Shea Jackson and Mark Jordan. It was a good day. Fabrication
Review, 3(7), November 1992.

[JN07] Tim Johnson and Umesh Nawathe. An 8-core, 64-thread, 64-bit power
efficient SPARC SoC (Niagara2). In Proceedings of the 2007 Interna-
tional Symposium on Physical Design, page 2, March 2007.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch buffers. In

136

Proceedings of the 17th International Symposium on Computer Archi-
tecture, pages 364–373, June 1990.

[KAO05] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun.
Niagara: A 32-way multithreaded SPARC processor. IEEE MICRO,
25(2):21–29, March 2005.

[KEW+85] Randy H. Katz, Susan J. Eggers, David A. Wood, C. L. Perkins, and
R. G. Sheldon. Implementing a cache consistency protocol. In Proceed-
ings of the 12th International Symposium on Computer Architecture,
pages 276–283, June 1985.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. Single-ISA heterogeneous multi-
core architectures: The potential for processor power reduction. In
Proceedings of the 36th International Symposium on Microarchitecture,
pages 81–92, December 2003.

[KM03] David Koufaty and Deborah T. Marr. Hyperthreading technology
in the netburst microarchitecture. IEEE Micro, 23(2):56–65, March
2003.

[KST04] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 chip:
A dual-core multithreaded processor. IEEE Micro, 24(2):40–47, March
2004.

[KST10] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Software
data spreading: Leveraging distributed caches to improve single thread
performance. In Proceedings of the ACM SIGPLAN 2010 Conference
on Programming Language Design and Implementation, June 2010.

[KT98] Venkata Krishnan and Josep Torrellas. An direct-execution framework
for fast and accurate simulation of superscalar processors. In Proceed-
ings of the 1998 International Conference on Parallel Architectures
and Compilation Techniques, pages 286–293, October 1998.

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Keith I. Farkas. Single-ISA heterogeneous multi-
core architectures for multithreaded workload performance. In Pro-
ceedings of the 31st International Symposium on Computer Architec-
ture, pages 64–75, June 2004.

[KZT05] Rakesh Kumar, Victor Zyuban, and Dean M. Tullsen. Interconnec-
tions in multi-core architectures: Understanding mechanisms, over-
heads and scaling. In Proceedings of the 32nd International Symposium
on Computer Architecture, pages 408–419, June 2005.

137

[LFF01] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction &
dead-block correlating prefetchers. In Proceedings of the 28th Inter-
national Symposium on Computer Architecture, pages 144–154, July
2001.

[LGH94] James Laudon, Anoop Gupta, and Mark Horowitz. Interleaving: A
multithreading technique targeting multiprocessors and workstations.
In Proceedings of the 6th International Conference on Architecture
Support for Programming Languages and Operating Systems, pages
308–318, October 1994.

[LL97] James Laudon and Daniel Lenoski. The SGI Origin: a ccNUMA highly
scalable server. In Proceedings of the 24th International Symposium
on Computer Architecture, pages 241–251, June 1997.

[LLG+92] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich
Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica S.
Lam. The Stanford DASH multiprocessor. IEEE Computer, 25(3):63–
79, March 1992.

[Luk01] Chi-Keung Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading processors.
In Proceedings of the 28th International Symposium on Computer Ar-
chitecture, pages 40–51, July 2001.

[MG02] Pedro Marcuello and Antonio González. Thread-spawning schemes
for speculative multithreading. In Proceedings of the 8th International
Symposium on High-Performance Computer Architecture, pages 55–
64, February 2002.

[MHW03] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token co-
herence: decoupling performance and correctness. In Proceedings of
the 30th International Symposium on Computer Architecture, pages
182–193, June 2003.

[MLG92] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Proceedings of the
5th International Conference on Architecture Support for Program-
ming Languages and Operating Systems, pages 62–73, October 1992.

[MMB+08] Jeffrey C. Mogul, Jayaram Mudigonda, Nate Binkert, Partha Ran-
ganathan, and Vanish Talwar. Using asymmetric single-ISA CMPs
to save energy on operating systems. IEEE Micro, 28(3):26–41, May
2008.

138

[MMG+06] Avi Mendelson, Julius Mandelblat, Simcha Gochman, Anat Shemer,
Rajshree Chabukswar, Erik Niemeyer, and Arun Kumar. CMP im-
plementation in systems based on the Intel Core Duo processor. Intel
Technology Journal, 10(2):99–108, May 2006.

[MN99] Maged M. Michael and Ashwini K. Nanda. Design and performance
of directory caches for scalable shared memory multiprocessors. In
Proceedings of the 5th International Symposium on High-Performance
Computer Architecture, pages 142–151, January 1999.

[MSWP03] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runa-
head execution: An alternative to very large instruction windows for
out-of-order processors. In Proceedings of the 9th International Sym-
posium on High-Performance Computer Architecture, pages 129–140,
February 2003.

[NY98] Mario Nemirovsky and Wayne Yamamoto. Quantitative study of data
caches on a multistreamed architecture. In Proceedings of the 2nd
Workshop on Multithreaded Execution, Architecture and Compilation,
January 1998.

[ON90] Brian W. O’Krafka and A. Richard Newton. An empirical evaluation
of two memory-efficient directory methods. In Proceedings of the 17th
International Symposium on Computer Architecture, pages 138–147,
June 1990.

[PELL00] Sujay Parekh, Susan Eggers, Henry Levy, and Jack Lo. Thread-
sensitive scheduling for SMT processors. Technical Report 2000-04-02,
University of Washington, 2000.

[PK94] Subbarao Palacharla and Richard E. Kessler. Evaluating stream
buffers as a secondary cache replacement. In Proceedings of the 21st In-
ternational Symposium on Computer Architecture, pages 24–33, April
1994.

[PP84] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In Proceed-
ings of the 11th International Symposium on Computer Architecture,
pages 348–354, June 1984.

[PRA97a] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. The
impact of instruction-level parallelism on multiprocessor performance
and simulation methodology. In Proceedings of the 3rd International
Symposium on High-Performance Computer Architecture, pages 72–
83, February 1997.

139

[PRA97b] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM:
An execution-driven simulator for ILP-based shared-memory multi-
processors and uniprocessors. In Proceedings of the Third Workshop
on Computer Architecture Education, February 1997.

[QJP+07] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel S. Emer. Adaptive insertion policies for high perfor-
mance caching. In Proceedings of the 34th International Symposium
on Computer Architecture, pages 381–391, June 2007.

[QMS+05] Carlos Garćıa Quiñones, Carlos Madriles, F. Jesús Sánchez, Pedro
Marcuello, Antonio Gonzáles, and Dean. M. Tullsen. Mitosis compiler:
An infrastructure for speculative threading sed on pre-computation
slices. In Proceedings of the ACM SIGPLAN 2005 Conference on Pro-
gramming Language Design and Implementation, pages 269–279, June
2005.

[RMS98] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence
based prefetching for linked data structures. In Proceedings of the
8th International Conference on Architecture Support for Program-
ming Languages and Operating Systems, pages 115–126, October 1998.

[SA05] Lawrence Spracklen and Santosh G. Abraham. Chip multithreading:
Opportunities and challenges. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pages 248–
252, February 2005.

[SBCvE90] Rafael H. Saavedra-Barrera, David E. Culler, and Thorsten von
Eicken. Analysis of multithreaded architectures for parallel comput-
ing. In Proceedings of the 2nd ACM Symposium on Parallel Algorithms
and Architectures, pages 169–178, July 1990.

[SBV95] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd International Symposium on
Computer Architecture, pages 414–425, June 1995.

[SKET07] Kyriakos Stavrou, Costas Kyriacou, Paraskevas Evripidou, and Pedro
Trancoso. Chip multiprocessor based on data-driven multithreading
model. International Journal of High Performance System Architec-
ture, 1(1):24–43, 2007.

[SM98] J. Gregory Steffan and Todd C. Mowry. The potential for using
thread-level data speculation to facilitate automatic parallelization. In
Proceedings of the 4th International Symposium on High-Performance
Computer Architecture, pages 2–13, January 1998.

140

[SMM+09] Richard D. Strong, Jayaram Mudigonda, Jeffrey C. Mogul, Nathan L.
Binkert, and Dean M. Tullsen. Fast switching of threads between
cores. ACM SIGOPS Operating Systems Review, 43(2):35–45, April
2009.

[SSC00] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-
directed stream buffers. In Proceedings of the 33rd International Sym-
posium on Microarchitecture, pages 42–53, December 2000.

[SSC02] Suleyman Sair, Timothy Sherwood, and Brad Calder. Quantifying
load stream behavior. In Proceedings of the 8th International Sym-
posium on High-Performance Computer Architecture, pages 197–208,
February 2002.

[ST00] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading processor. In Proceedings of the 9th In-
ternational Conference on Architecture Support for Programming Lan-
guages and Operating Systems, pages 234–244, November 2000.

[SV87] Gurindar S. Sohi and Sriram Vajapeyam. Instruction issue logic for
high-performance, interruptable pipelined processors. In Proceedings
of the 14th International Symposium on Computer Architecture, pages
27–34, June 1987.

[TB01] Dean M. Tullsen and Jeffery A. Brown. Handling long-latency loads
in a simultaneous multithreading processor. In Proceedings of the 34th
International Symposium on Microarchitecture, pages 318–327, De-
cember 2001.

[TE93] Dean M. Tullsen and Susan J. Eggers. Limitations of cache prefetching
on a bus-based multiprocessor. In Proceedings of the 20th International
Symposium on Computer Architecture, pages 278–288, May 1993.

[TEE+96] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy,
Jack L. Lo, and Rebecca L. Stamm. Exploiting choice: Instruction
fetch and issue on an implementable simultaneous multithreading pro-
cessor. In Proceedings of the 23rd International Symposium on Com-
puter Architecture, pages 191–202, May 1996.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of
the 22nd International Symposium on Computer Architecture, pages
392–403, June 1995.

141

[TKTC04] Eric Tune, Rakesh Kumar, Dean M. Tullsen, and Brad Calder. Bal-
anced multithreading: Increasing throughput via a low cost multi-
threading hierarchy. In Proceedings of the 37th International Sympo-
sium on Microarchitecture, pages 183–194, December 2004.

[TLEL99] Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy.
Supporting fine-grained synchronization on a simultaneous multi-
threading processor. In Proceedings of the 5th International Sympo-
sium on High-Performance Computer Architecture, pages 54–58, Jan-
uary 1999.

[TTG95] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the
performance of cache-affinity scheduling in shared-memory multipro-
cessors. Journal of Parallel and Distributed Computing, 24(2):139–151,
February 1995.

[Tul96] Dean. M. Tullsen. Simulation and modeling of a simultaneous multi-
threading processor. In Proceedings of the 22nd International Com-
puter Measurement Group Conference, pages 819–828, December 1996.

[VHR+07] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard
Wilson, James Tschanz, David Finan, Priya Iyer, Arvind Singh,
Tiju Jacob, Shailendra Jain, Sriram Venkataraman, Yatin Hoskote,
and Nitin Borkar. An 80-tile 1.28TFLOPS network-on-chip in 65nm
CMOS. In Proceedings of the 2007 IEEE International Solid-State
Circuits Conference, pages 5–7, February 2007.

[YN95] Wayne Yamamoto and Mario Nemirovsky. Increasing superscalar per-
formance through multistreaming. In Proceedings of the 1995 Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, pages 49–58, June 1995.

[ZA05] Michael Zhang and Krste Asanović. Victim replication: Maximiz-
ing capacity while hiding wire delay in tiled chip multiprocessors. In
Proceedings of the 32nd International Symposium on Computer Archi-
tecture, pages 336–345, June 2005.

[ZS00] Craig B. Zilles and Gurindar S. Sohi. Understanding the backward
slices of performance degrading instructions. In Proceedings of the
27th International Symposium on Computer Architecture, pages 172–
181, June 2000.

[ZS01] Craig B. Zilles and Gurindar S. Sohi. Execution-based prediction using
speculative slices. In Proceedings of the 28th International Symposium
on Computer Architecture, pages 2–13, June 2001.

142

[ZT97] Zheng Zhang and Josep Torrellas. Reducing remote conflict misses:
NUMA with remote cache versus COMA. In Proceedings of the 3rd In-
ternational Symposium on High-Performance Computer Architecture,
pages 272–281, February 1997.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Complications from Parallelism
	Memory Latency & Instruction Scheduling
	Cache Coherence on a CMP Landscape
	Thread Migration
	Explicit Thread State: Registers
	Implicit State: Working Set Migration

	Experimental Methodology & Metrics
	Execution-driven Simulation
	SMTSIM
	RSIM

	Metrics
	Weighted Speedup
	Normalized Weighted Speedup
	Interval Weighted Speedup
	Interval IPC & Post-migrate Speedup

	Handling Long-Latency Loads on Simultaneous Multithreading Processors
	Introduction
	The Impact of Long-latency Loads
	Related Work
	Methodology
	Metrics
	Detecting and Handling Long-latency Loads
	Alternate Flush Mechanisms
	Response Time Experiments
	Generality of the Load Problem
	Summary

	Coherence Protocol Design for Chip Multiprocessors
	Introduction
	Related Work
	A CMP Architecture with Directory-based Coherence
	Architecture
	Baseline Coherence Protocol

	Accelerating Coherence via Proximity Awareness
	Methodology
	Analysis and Results
	Summary

	The Shared-Thread Multiprocessor
	Introduction
	Related Work
	The Baseline Multi-threaded Multi-core Architecture
	Chip multiprocessor
	Simultaneous-Multithreaded cores
	Long-latency memory operations

	Shared-Thread Storage: Mechanisms & Policies
	Inactive-thread store
	Shared-thread control unit
	Thread-transfer support
	Scaling the Shared-Thread Multiprocessor
	Thread control policies --- Hiding long latencies
	Thread control policies --- Rapid rebalancing

	Methodology
	Simulator configuration
	Workloads
	Metrics

	Results and Analysis
	Potential gains from memory stalls
	Rapid migration to cover memory latency
	Rapid migration for improved scheduling

	Summary

	Fast Thread Migration via Working Set Prediction
	Introduction
	Related Work
	Baseline Multi-core Architecture
	Motivation: Performance Cost of Migration
	Architectural Support for Working Set Migration
	Memory logger
	Summary generator
	Summary-driven prefetcher

	Methodology
	Simulator configuration
	Workloads
	Metrics

	Analysis and Results
	Bulk cache transfer
	Limits of prefetching
	I-stream prefetching
	D-stream prefetching
	Combined prefetchers
	Allowing previous-instance cache re-use
	Impact on other threads
	Adding a shared last-level cache
	Simple hardware prefetchers

	Summary

	Conclusion
	Memory Latency in Multithreaded Processors
	Cache Coherence for CMPs
	Multithreading Among Cores
	Registers: Thread Migration & Scheduling
	Memory: Working Set Prediction & Migration

	Final Remarks

	Bibliography

