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Large ElectronPhonon Interaction but 
Low-Temperature Superconductivity in LaB6 
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P. F. WALCH, AND L. R. WINDMILLER 
Argonne National Laboratory, Argonne, Illinois 60439 

AND 

Z .  FISK, R.  F. HOYT, A. C. MOTA, AND R. VISWANATHAN 
University of California at San Diego, L A  Jolla, California 92037 

AND 

D. E. ELLIS, A. J. FREEMAN, AND J. RATH 
Northwestern University, Evanston, Illinois 60201 

Abstract 
Combined experimental and theoretical studies are reported of the Fermi surhce. band structure, 

generalized magnetic susceptibility. electron-phonon enhancement factor I .  and superconducting transi- 
tion temperature T, of LaB,. Whereas the unusually large i. values, ranging from 1.0 to 2.5, are expected 
to result in high ?; values. T, is observed to be only 0.122”K. These results further emphasize the need for 
appropriate theoretical formulations for these systems. 

1. Introduction 

The strong covalent bonding in crystalline phases of boron compounds. which is 
responsible for their being extremely hard. refracting, and stable materials, also 
makes these compounds attractive as possible high-temperature superconductors. 
The hexaborides RB,, which form interpenetrating simple cubic structures of cages 
of boron surrounding metalloid ions [ 11, are among the crystallographically simplest 
of the boride systems. We have studied in detail. both experimentally and theoretically, 
the electronic band structure. Fermi surface, generalized magnetic susceptibility 
x(q). electron-phonon enhancement factor 2.. and superconducting transition tem- 
perature T, of high-purity single crystals of LaB,. Surprisingly, although we deduce a 
very large i. (1.0 to 2.5) and hence expect that T, would be large (naively, the use of 
the McMillan equation results in T, ranging from 27 to 61’ K). inductive measurements 
reveal T, = 0.122”K. This striking failure of theory is related to the very different 
phonon spectra -“hard” boron-based modes and ‘‘soft’’ lathanum-based modes in 
LaB,-compared with those of Nb used in the derivation of the McMillan equation. 
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570 ARK0 ET AL. 

2 The de Haas-van Alphen Effect 

The single crystals used in these experiments were grown in an A1 flux [2]. After 
solidification, the flux was dissolved with concentrated NaOH solution, leaving 
small, faceted, purple clusters. These were separated into individual grains by treat- 
ment with HNO,. Magnetoresistivity showed that the total Fermi surface was open 
(connected) in the [ 1101 and [00l] directions. The single crystal sample used in the 
de Haas--van Alphen experiment weighed 200 micrograms and had a resistivity ratio 
of about 200. The de Haas-van Alphen measurements [3] were taken in fields up to 
72 kG and temperatures down to 0.3"K. The resulting cross-sectional frequencies 
(areas) are plotted in Figure 1. The strongest de Haas-van Alphen oscillations were 
the nearly flat set (constant cross-sectional area) associated with the orbits marked 
X ,  in the (1 10) plane and X ,  in the (001) planes, respectively. Assuming a completely 
spherical shape, the cross-sectional area of 0.216 a.u.2 (at [lOO]) suggested a radius 
of 0.26 a.u., a volume of 0.074 a . ~ . ~ ,  or that each sphere enclosed about 29 % of an 
electron (volume of BZ = 0.51 a . ~ . ~ ) .  Since the other areas of this sheet are bigger, 
this suggested that the "sphere" enclosed exactly 1/3 of an electron, that is, that there 
were three spheres centered at X ,  (or possibly at M ,  which has the same point group 
degeneracy as X ) .  
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Figure 1. Extremal cross-sectional frequencies (areas) of the Fermi surface of LaB,. The 
solid line is derived from an 11-term Fourier series model, fitted at the 15 solid dots. 
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We arbitrarily chose an X centered position connected by spherical necks in the 
[110] directions as our experimental model. This produced two [lo01 hole orbits 
centered at T(y) and M ( p ) ,  respectively. a threefold rosette p, and the important v 1  
orbits, centered at the [110] neck. The 15 points marked as the solid dots were used 
to fit an 1 1-term Fourier-based series, which included full-cubic symmetry [4]. The 
starting coefficients, derived from the band structure (discussed below), were sequen- 
tially varied until no further improvement was found. The final error, fitting to the 
areas given by the dots, was 0.0043 a.u.'. The interpolated areas, based on this model, 
are given as the solid lines in Figure 1. This Fermi surface is shown as Figure 2 and 
may be understood as face-centered cubic stacks of connected spheres, similar to the 
Fermi surface of Cu. 

3. Electronic Band Structure, Density of States, and Generalized Susceptibility 

The electronic band structure was calculated by means of the discrete variational 
method (DMV), a method able to treat general nonspherical, nonmufh-tin potentials 
[ S ] ,  found to be important in systems like LaB,. 

The Hartree-Fock-Slater (HFS) effective Hamiltonian was 

(1) H = T + T, + v, 
where the first two terms were the kinetic energy and Coulomb potential, respectively, 
and the exchange operator V, was approximated by the local potential (in Hartree 

1 
t 

Figure 2. Fermi surface of LaB,. 
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atomic units), 
v x = - 3 a ( ' )  113 

While various theoretical prescriptions for selection of a value for the adjustable 
parameter a have been presented in the literature [6-91, the current calculations were 
performed with the value of cx = 1 first suggested by Slater [6]. The crystal charge 
density p was approximated by the superposition of atomic (ionic) densities as 

(3) P = c P "  
V 

It is important to note that the full crystal potentials are determined without making 
the usual muffin-tin averaging approximations. Thus all aspherical "crystal field" 
terms are retained. When the potential is approximated by its muffin-tin average, 
the solution to the Schrodinger equation is separable within each sphere, and the 
first principals A P w  and KKR methods can be applied [lo]. This model ofthe potential, 
while adequate for most metals, is often a serious oversimplification when one is 
treating nonmetals and compounds [ 11--131. 

Approximate eigenvalues and eigenfunctions of the HFS Hamiltonian are generated 
by means of a DMV which has been previously applied to a number of energy band 
problems [l 1, 121. These calculations involve the selection of a discrete set of sample 
points in coordinate space, definition of an error functional connected with the 
Schrodinger equation, and minimization of the error functional over the discrete 
grid of sample points by a variational procedure. These direct numerical-variational 
techniques have been used with considerable success in treating potentials of very 
general form. A brief summary of the DMV follows; explanations in greater detail 
may be found elsewhere [13, 141. 

The approximate wave functions are expanded in a fixed basis set, 

(4) 

where the basis functions x j ( k ,  r )  are Bloch orbitals of wave vector k belonging to 
the jth irreducible representation of the crystal translation group. For this paper 
the basis orbitals are in turn constructed from linear combinations of Slater-type 
orbitals (STO) centered at nuclear sites. This LCAO basis is most appropriate for 
forming crystal wave functions for those systems in which the atomic character of 
the constituent atoms is maintained to a large degree. Systems in which the bonding 
between atoms is strong and highly directional are conveniently described in terms 
of this basis. 

We define the error functional for state i at point r as 

( 5 )  b i ( r )  = ( H  - ci) $i(r) 

and minimize the expectation values (x j lS i )  over some grid of sample points { r p ) ,  
obtaining the matrix secular equation 

(6) HC = SCE 
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for determining the variational coefficients Ci j (k ) .  These equations are identical to 
the conventional Rayleigh- Ritz equations, except that the matrix elements are 
given as a sample mean, such as 

(7) 

Here w ( r )  is a weight function, generally chosen so that matrix elements converge to 
their integral values as the number of sample points is increased. Careful choices of 
weight function and sample point distribution lead to rapid convergence to the 
Rayleigh-Ritz eigenvalues. 

Basis functions for the variational calculations were constructed as Bloch sums 
of STO functions centered on the lanthanum and boron sites. Considerable expcri- 
mentation was done by varying the number and type of STOS to determine the effects 
of basis truncation on the band energies. The bands discussed here were generated 
from a 134 STO function set as this represents a reasonable compromise between 
accuracy and computational cost. There are ten boron basis functions of roughly 
"double zeta" [15] quality on each ligand site. The lanthanum basis includes seven 
sets of d orbitals, but no f orbitals. After considerable testing, $orbital contribution 
to energies near the Fermi surface was deemed to be inconsequential in comparison 
to lanthanum d-orbital and ligand orbital contributions. Convergence of band 
energies as a function of the number of sampling points per cell was also investigated. 
An optimum choice to achieve sufficient accuracy at reasonable cost was a 3972-point 
mesh. The metal sphere radius was compressed in order that the resulting high density 
of points would lead to an adequate description of the complicated wave function 
behavior near the lanthanum nucleus. The large number of interatomic sampling 
points made it possible to adequately converge the diffuse 5d and 6s lanthanum or- 
bital contribution to the Bloch functions. 

The energy bands for LaB, are plotted along symmetry lines in Figure 3; the 
corresponding Hamiltonian was generated from neutral atom configurations. with 
an exchange scaling parameter ct = 1 .O. Aspherical (nqmuffin-tin) contributions to 
the crystal potential were found to be sizable. The input charge densities and atomic 
Coulomb potentials were computed from the accurate Hartree -Fock orbitals of 
Clementi [15]. Past experience indicates that the computed energy bands are rela- 
tively insensitive to the ionicity of the input atomic configurations [ 121. The calculated 
energies are estimated to be converged to within f 0.01 Ry. As expected, the bands 
show LaB, to have metallic properties with the Fermi energy lying inside the fourth 
band at -0.720 Ry .  

The energy bands were calculated at 18 k points. This number was judged to be 
suitable for an adequate understanding of the Fermi surface and the density of states. 
Computer time pcr  k point on the IBM-360/195 at Argonne National Laboratory 
was about lo00 seconds of CPU time with approximately 10,000 kbyte/sec of core 
charge. Fifteen of the k points were chosen to lie along high symmetry dirrections 
and three were points of lowest symmetry. An approximate balance of k-space volume 
per point was achieved by spreading the points on or near the k = 0, n/4a n/2a 
3n/4a, n/a planes in numbers roughly proportional to the planar area. Because of 
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Figure 3. Electronic band structure of LaB, in the vicinity of E, .  

extreme complexity and length of these calculations, i t  was not feasible to fully test 
the sensitivity of the energy bands to scaling of the a parameter. However, the relevant 
eigenvalues at k = 0 (r point) were found to undergo an approximately rigid shift of - +0.4 Rydberg when a was varied from 1.0 to 2/3, the value suggested by Kohn, 
Sham and Gaspar [7, 81. It is reasonable to assume that the shifting of the bands at 
other k points could also be roughly approximated by a rigid shift. 

The band structure (Figure 3) shows an X centered sphere whose diameter (di- 
rectly from the figure) is 3.77 cm or a radius of 0.28 a.u. The neck lies along the r to M 
direction, and has a diameter of 1.79 cm or a diameter of 0.27 a.u. compared to a model 
diameter of 0.25 a.u. The X to R radius is 1.60 cm or 0.24 a.u. compared to the Fermi 
surface model of 0.24 a.u. Again, due to cost, a nonrelativistic model was used. A 
few additional points were found on the symmetry axes used to plot Figure 3, since 
the details of the crossing near X and at the neck near c4 helped us to understand 
the topology and absolute radii in the band model. 

This set of 18 points was then fit to an interpolation scheme, here a symmetrized 
Fourier series. The 1 1-term fit was used (for each of the bands in Figure 3) to produce 
the density of states shown in Figure 4, and the Fermi energy of - 0.72 Ry was found 
by direct integration. This set of Fourier coefficients was used to calculate a selected 
area from Figure 1. The error directly from the band structure was 0.013 a x 2 ,  or 
about 6 %. 

Since no f basis functions were included in the calculations given in Figure 2, the 
wave functions at the Fermi energy are, within this model, a mixture of La 5d and B 
2s-2p orbitals. (In preliminary calculations we found [ 161 that the energy eigenvalues 
near the Fermi energy were insensitive to the presence or absence off  states in the 
basis.) We interpret the two sets of bands near - 1.2 and - 0.6 Ry as due to bonding 
and antibonding 2s-2p boron orbitals (as in the model calculations [17] of Longuet- 
Higgens and de V. Roberts) combined with structure from the LA 5d bands. 
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ENERGY IN RYDBERGS 

Figure 4. Electronic density of states of LaB, in the vicinity of E,.  

As discussed by Freeman and coworkers elsewhere in this volume [18], diver- 
gences in the generalized static electronic susceptibility determines possible instabili- 
ties in metals. For systems like La&, our interest lies in the fact that peaks in ~ “ ( q )  
may lead to “soft” phonon modes which would strongly affect the superconducting 
properties. 

We have calculated the momentum dependence of the RPA susceptibility of the 
44th band, using an 1 l-term Fourier series fit to the band structure and the analytic 
tetrahedron linear energy method of Rath and Freeman [19]. The results are shown 
in Figure 5. Note that the ordinate has been scaled in each of the three directions 
so that they coincide at 1/2 of a respective reciprocal lattice distance. 

The calculated ~ “ ( q )  shows a large maximum approximately two times the value 
of xC (q = 0) at the zone boundary for q along the [I 111 direction and a smaller maxi- 
mum for q along the [110] direction. Although we have not included the effects of 
matrix elements, we believe that (in a simple approximation) the weak momentum 
dependence of the 5d La wave function would not greatly reduce X“ (q)  near the dom- 
inant [ 11 11 peak. The existence of this peak suggests two important conclusions for 
further experimental observations, (1) in systems like La& which are not magnetic, 
the peak leads to “soft” phonon modes and large electron-phonon coupling; (2) in 
rare-earth systems with felectrons the peak leads to a simple rock-salt commensurate 
antiferromagnetic ordering. Both effects should be visible through neutron scattering 
on compounds made from isotopically pure boron 11. 

4. ElectrmPhonon Interaction and Superconductivity 

In Table I we have abstracted measured and calculated masses together with 
deduced enhancements [20]. If we assume that these enhancements are entirely due 
to the electron-phonon interaction, then the coupling is very large. (Indeed one must 
immediately speculate why LaB, does not undergo a phase/ transition. We believe 
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Figure 5. RPA susceptibility in the [ 1001, [ 1101, and [ I 1  11 directions of LaB, 

that the answer lies in the rigidity of the covalently bonded boron cage.) Of interest, 
too, is that the optical mass [21] is about the same as the band mass. Since the bands 
in the vicinity of the Fermi surface are nearly isotropic (we ignore the small necks), 
the (unenhanced) density states mass and optical mass as defined by Cohen [22] 
should be the same. Due to the frequency dependence of the electron-phonon inter- 
action, the optical mass appears “undressed.” The comparison of the optical mass with 
the (enhanced) specific heat mass provides a “band-structureless” estimate of the 
electron-phonon coupling. a fact which has not been emphasized enough before [23]. 

Finally we consider the superconductivity of LaB,. Chemically. Y and La behave 
similarly in many compounds. Elemental La, in its dhcp phase, has a T, of 4.9”K. 
where Y is superconducting only under high pressure. YB, is a superconductor with 
a transition temperature [24] T, of about 7°K. Yet from studies [24] of a series of 

TABLE 1. Electronic masses and enhancements in LaB,. 

7 Electronic specific heat“ 4.75 mJ/K2 2.01 states/eV 
N (  0 )  Density of States at E, 7.70 states/Ry 0.57 statesjeV 

- _ _  _. - - - ._ - .- - -. -. ~ 

2 ,  = b?/N(O)] - 1 = 2.53 

map optical massb 0.21 -0.33 electron masses 
m, band orbital mass on ball 0.29 electron masses 

4, experimental mass on ball 0.62 electron masses 
normal to [ 1001 

normal to [l00] 
i., = (m,y/m,) - I = 1.14 

_. - - . - - -. - - -. - - - - -. -. - - -. - - . . . -. _. .- - - -. -. _ _  - -. .- - -. 

“Reference [201. 
bKeference [21]. 
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La,Y -xB, alloys, superconductivity is rapidly suppressed at about 70 % La. 
Direct measurement on samples grown from extremely pure La (0.999999) and B 
(0.999999) showed an inductive superconducting transition temperature of 0.122‘K. 
Samples grown from less pure materials had lower or broader transition temperatures. 
A magnetic field of a few gauss quenched superconductivity: in spite of the “good” 
metallic conductivity. the susceptibility was then slightly diamagnetic. ( -)5.0 f 
0.5 x lo-’ EMU/g (or in density of states units. (-)0.015 states/eV) compared to a 
Pauli susceptibility based on the band density of states of (+)1.84 x EMU/g. 

By contrast, if we use our highest E., an average specific heat Debye temperature 
[20] of 438,’K. and an average transition metal Coulomb pseudopotential [15] p* 
of 0.13 in the McMillan [25] equation, we arrive at a T, of 61°K; using the smaller 
2.. the result is 27°K. (Based on these parameters, LaB, is very reminiscent of another 
low-density-of-states high-lambda material. NbN, whose T, is about 15°K.) 

But as stated. LaB, is a superconductor only at very low temperatures. We be- 
lieve that the explanation is that the phonon sprectum of LaB, has “hard” boron-based 
modes and “soft” lanthanum-based modes, and is rather different from the Nb 
phononic structure used in the deviation of the McMillan equation. Thus it appears 
that the Eliashberg equations need to be reexamined in detail for each new class of 
material before a reliable McMillan-type equation can accurately predict T,. 
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