
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Using Case-Based Reasoning to Improve the Quality of Feedback Provided by Automated
Assessment Systems for Programming Exercises

Permalink
https://escholarship.org/uc/item/0r05m1m4

Author
Kyrilov, Angelo

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r05m1m4
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Using Case-Based Reasoning to Improve the Quality of Feedback Provided by
Automated Assessment Systems for Programming Exercises

A dissertation submitted in partial satisfaction of the requirements

for the degree of Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Angelo Kyrilov

Committee in charge:

Professor David Noelle, Chair
Professor Stephanie August
Professor Marcelo Kallmann
Professor Shawn Newsam

2017

Copyright c�

Angelo Kyrilov, 2017

All rights reserved

The dissertation of Angelo Kirilov Kyrilov is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California, Merced

2017

iii

Stephanie August

Marcelo Kallmann

Shawn Newsam

David C. Noelle

Abstract

Information technology is now ubiquitous in higher education institutions worldwide.

More than 85% of American universities use e-learning systems to supplement traditional

classroom activities. An obvious benefit of these online tools is their ability to automati-

cally grade exercises submitted by students and provide immediate feedback. Most of these

systems, however, provide binary (correct/incorrect) feedback to students.

While some educators find such feedback is useful, we have found that binary instant

feedback causes plagiarism and disengagement from the exercises as some students may

need additional guidance in order to successfully overcome obstacles to understanding.

In an e↵ort to address the shortcomings of binary feedback, we designed a Case-Based

Reasoning (CBR) framework for generating detailed feedback on programming exercises by

reusing existing knowledge provided by human instructors. A crucial component of the

CBR framework is the ability to recognize incorrectness similarity between programs. Two

programs are considered to be similarly incorrect, if they contain similar bugs, which ensures

that corrective feedback generated for one program, is equally appropriate for the other.

We investigated several approaches for computing incorrectness similarity, including

static analysis of source code, execution traces of running programs, and comparing out-

puts from test cases. We found that, given the kind of errors committed by our students,

the dynamic approach of comparing outputs from test cases proved to be the most accurate

method of computing incorrectness similarity.

We built an e-learning system, called Compass, on top of the CBR platform that we

developed. Compass was deployed in a live classroom environment at the University of

California, Merced, in the Spring 2017 semester. We compared data collected from this class

to data from previous instances of the course, where students were completing the same

exercises but received binary instant feedback.

We found that the introduction of Compass, and the detailed feedback it is able to

generate on programming exercises, led to a statistically significant decrease in plagiarism

and disengagement rates. In addition, we found that students were able to complete exercises

faster, with fewer errors. All these factors are associated with improved student learning.

Another significant aspect of Compass is that it scales well to large class sizes. This is

because the number of di↵erent mistakes made by students is relatively small and the number

of students making the same mistake as other students is large. These two conditions enable

the CBR engine of Compass to handle a large number of students with minimal instructor

intervention.

iv

v

Work is currently underway to incorporate Compass into other undergraduate courses

at the University of California, Merced. As future work, we are planning to investigate the

e↵ects of Compass on underrepresented student populations. We have reasons to believe

that Compass can provide much needed help to students who may lack confidence to seek

such assistance on their own.

To my wife and my son.

vi

Acknowledgments

This dissertation would not have been possible without the help and support I have received

from many people. First and foremost, I would like to thank my adviser David Noelle for

everything he has done for me throughout my time at UC Merced. In my weekly meetings

with David we did not only discuss matters related to my research, but a wide variety of

topics that contributed significantly to my academic development. David was always there

to help, through all the ups and downs, showing great care and understanding no matter

what obstacles I was facing. I will always owe a debt of gratitude to David for everything

he has done for me.

I would also like to recognize the other members of my committee: Stephanie August,

Marcelo Kallmann, and Shawn Newsam. I want to thank each of them for attending my qual-

ifying exam and my final defense and for reading my dissertation and providing constructive

feedback.

I also received invaluable advice from my lab mates at the Computational Cognitive

Neuroscience Lab at UC Merced. I would like to thank William St. Clair, Je↵ Rodny, Jacob

Rafati, Tim Shea, and Narjes Tahaei for all the stimulating discussions. I am also grateful

to my lab mates for sitting through practice rounds of conference presentations and posters,

and for giving me helpful suggestions.

I would like to thank my parents, Violeta and Kiril, for all the sacrifices they made to

help me get where I am today. They have supported me through good times and bad, and I

have always been able to count on them. I hope that I have been able to make them proud.

My brother Michael made significant contributions to the development of the Compass e-

learning system described in this dissertation. I would like to thank him for all the advice on

software engineering best practices, and for simply being there when I was facing technical

challenges. The modular and scalable system design, and the fact that the development

process went smoothly, is in large part thanks to Michael’s advice.

Last but not least, I would like to thank my wife Mayya and my son Kiki for everything

they had to endure over the years to help me complete my degree. Their love and support is

what got me through my studies at UC Merced. I apologize to them for all the evenings and

weekends when I had to work and was not able to spend time with them. As I move onto

the next chapter of my career, I hope I can be the husband and father that they deserve.

vii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Challenges in Computer Science Education 1
1.2 The Promise of E-Learning . 3

1.2.1 Learning Management Systems . 3
1.2.2 Automated Assessment for Computer Science 4

1.3 Dissertation Contributions . 5
1.3.1 Problems with Binary Instant Feedback 5
1.3.2 Common Programming Errors Committed by Students 5
1.3.3 Novel Application of Case-Based Reasoning 6
1.3.4 Innovative E-Learning System . 6
1.3.5 Improved Student Performance in Programming Exercises 7

1.4 Dissertation Outline . 7

2 Background and Related Work 8
2.1 E-Learning . 8

2.1.1 Learning Management Systems . 9
2.1.2 Computing Augmented Learning Management Systems 11
2.1.3 Massive Online Open Courses . 12

2.2 Automated Assessment of Programming Exercises 12
2.2.1 Our e-Learning Environment . 14

3 Adverse E↵ects of Binary Instant Feedback 16
3.1 Introduction . 16
3.2 Plagiarism and Disengagement Due to Binary Instant Feedback 17
3.3 Investigative Study . 18
3.4 Results of Study . 20
3.5 Discussion . 22
3.6 Conclusion . 23

viii

CONTENTS ix

4 Case-Based Reasoning for Automated Assessment 25
4.1 Introduction to Case-Based Reasoning . 25

4.1.1 Knowledge Representation . 27
4.1.2 Case Retrieval . 27
4.1.3 Case Reuse . 27
4.1.4 Case Revision . 28
4.1.5 Case Retainment . 28

4.2 Applications to Automated Assessment . 29
4.3 Similarity With Respect to Incorrectness . 31

4.3.1 Introduction . 31
4.3.2 Dynamic Methods . 32
4.3.3 Static Methods . 34
4.3.4 Discussion . 35

5 The Compass E-Learning System 38
5.1 Introduction . 38
5.2 System Organization . 39

5.2.1 Server-side Components . 40
5.2.2 User Interface . 41

5.3 User Experience . 43
5.4 Conclusion . 46

6 System Evaluation 47
6.1 Introduction . 47
6.2 Methods . 48
6.3 Results . 50
6.4 Discussion . 52

7 Conclusion 55
7.1 Dissertation Summary . 55
7.2 Discussion . 58
7.3 Limitations and Future Work . 60

Bibliography 62

A Automated Assessment in First-Order Logic 66
A.1 Introduction . 66
A.2 System Description . 67
A.3 System Evaluation . 69
A.4 Conclusion . 72

B Data Sets 73

CONTENTS x

B.1 Honest Sequence Lengths . 73
B.1.1 Data . 73
B.1.2 ANOVA Results . 76

B.2 Rates of Plagiarism . 77
B.2.1 Data . 77
B.2.2 ANOVA Results . 78

List of Figures

2.1 The instructional process . 11
2.2 Automated grading system interface . 15

3.1 Mean number of plagiarized exercises per student (with standard errors of the
mean) . 21

3.2 Mean number of honest sequences per student (with standard errors of the mean) 21

4.1 A typical case from printer manufacturer help desk 26
4.2 The case-based reasoning methodology . 27
4.3 The CBR process . 28
4.4 A case-based reasoning framework for automated feedback generation on pro-

gramming exercises . 31
4.5 An example of two similarly incorrect programs. 32

5.1 A flowchart of the automated grading component of the proposed system 41
5.2 The student interface of Compass . 42
5.3 The instructor interface of Compass . 43
5.4 An incorrect C++ solution . 44
5.5 The feedback provided by Compass . 45

A.1 Components of the Automated Grading System 68
A.2 The student user-interface of the automated grading system 69
A.3 Mean over students of the sum of scores on all of the relevant questions. A

maximum of 24 points could be earned. Error bars display one standard error
of the mean. The asterisk (⇤) indicates that the di↵erence in mean scores is
statistically significant at the ↵ = 0.10 level. 70

A.4 Mean scores for each question type. The maximum possible score for each ques-
tion was 6 points. Error bars display one standard error of the mean. An asterisk
(⇤) indicates that the di↵erence in mean scores is statistically significant at the
↵ = 0.10 level, and a double asterisk (⇤⇤) marks significance at the ↵ = 0.05 level. 71

xi

List of Tables

3.1 Submission sequence length statistics . 20
3.2 Summary of analysis results . 22

4.1 Summary of data from manual clustering . 30

6.1 Honest Sequence Length Statistics . 51
6.2 Average number of plagiarized submissions per exercise 51
6.3 The average number of students who do not attempt an exercise, expressed as a

percentage of the class . 52

xii

Chapter 1

Introduction

1.1 Challenges in Computer Science Education

In addition to the many benefits of higher education, degree holders enjoy more employment

opportunities and greater financial stability. A recent report by the National Center for

Education Statistics shows that, on average, the annual salaries of university graduates are

$25,000 higher than those of people who never went to college. A study by the Bureau of

Labor Statistics looked at employment rates in the United States over the period 1990 -

2012. They report that in 1990, the employment rate was 90% for college graduates, and

75% for people with no university education. In 2012 these figures were 84% and 63%,

respectively, showing a disproportionate decrease in the employability of people without

university education. This is explained by the fact that much of the economic growth over

the last two decades has been driven by industries with high entrance requirements, such as

the IT industry, which is projected to grow 22% by 2018. It is also estimated that, over the

next decade, universities in the United States will only produce 60% of the Computer Science

graduates needed to meet industry demands. In an increasingly hostile global economic

climate, the United States can not a↵ord to fall behind in the production of employees

for the fastest growing industry. Actions that can be taken in an attempt to resolve this

situation include: introducing Computer Science in K-12 curricula, encouraging women and

underrepresented groups to participate in Computer Science, and reducing the attrition rates

in undergraduate Computer Science, which is the focus of this proposal.

Beaubouef and Mason (2005) suggest that high attrition rates in Computer Science can be

attributed to factors such as poor student advising on the part of university administration,

inadequate math and problem solving skills of incoming students, insu�cient amounts of

1

CHAPTER 1. INTRODUCTION 2

practice and feedback, and poorly designed laboratory sessions. Since the first issue is

administrative in nature and the second one is related to Computer Science in K-12, they

are not dealt with here. Instead this proposal aims to address the issue of insu�cient amounts

of practical work in undergraduate Computer Science courses as well as to o↵er strategies

for designing a better laboratory experience for students.

Freshman Computer Science courses typically have large enrollment numbers, so if in-

structors wish to include a significant laboratory component for students to practice their

programming skills, members of the teaching team will either have to incur the high labor

cost associated with grading, or they will have to use automated grading systems. Beaubouef

and Mason (2005), as well as many other instructors, have expressed strong opposition to

automated grading systems because they believe students deserve to have their code eval-

uated by a competent human programmer, who can provide meaningful feedback. This is

currently a valid concern, since automated grading systems for Computer Science usually

produce binary feedback. One of the major contributions of the proposed work will be to

address this concern by using Case-based Reasoning to enable automated grading systems

for Computer Science to provide high-quality feedback to students, while keeping instructors

in the loop, without forcing them to do significant amounts of additional work.

Many undergraduate Computer Science instructors try to provide their students with

practical experience through weekly lab sessions, where students are normally expected to

complete programming assignments, possibly with the help of teaching assistants. Walker

(2004) believes that running labs in such a way is detrimental to students. He argues that

lab sessions turn into “teacher-assisted debugging sessions” where learning and development

of programming skills is not fostered because students are preoccupied with trying to get

the output of their programs to match the expected output. Students will often passively

wait for a teaching assistant to o↵er advice. This process is frustrating for students and

teaching assistants alike. A student may need to wait a long time before his/her question

gets answered, while teaching assistants may find themselves explaining the same concept

numerous times. While waiting for the teaching assistant, some students would attempt to

perform an Internet search to find a solution to their problem, while others would resort to

randomly changing their code in the hopes of arriving at the correct output. It is clear that

good programming and problem solving practices are not followed in the typical Computer

Science lab session, which is another problem addressed in this proposal.

A possible reason for the ine↵ectiveness of typical Computer Science lab sessions is the

fact that they follow a synchronous learning approach, meaning that learning takes place at

a specific time and place, the pace is set by the instructor, and assessment takes place at

CHAPTER 1. INTRODUCTION 3

the same time (and place) for every student. In short, whenever learning happens according

to a schedule, the learning is synchronous. There are many disadvantages to synchronous

learning, some of which have existed since the dawn of education. One such disadvantage

is the use of classroom environments. In order for learning to take place, students have

to be present at a location at a specific time. This strict requirement can make education

inaccessible to many individuals, resulting in an underutilization of teachers. The invention of

the printing press in the fifteenth century made books more widely available than ever before.

This invention was significant for education because it lifted the restrictions imposed by

classroom learning. This was the beginning of asynchronous education because learners could

read the subjects that interested them and they could do so in their own pace. This only made

informal education asynchronous, because student-teacher interactions and assessment, two

key components of formal education, were still synchronous, and therefore formal education

was still synchronous.

1.2 The Promise of E-Learning

In order for students to enjoy all the benefits of asynchronous learning in their formal edu-

cation, there would have to be a way for students and instructors to communicate reliably

and quickly from remote locations, and there would have to be no scheduled assessments.

Students should be allowed to cover relevant materials in any order they wish, taking as

much time as needed. They should also be able to ask instructors for clarifications at any

time (and from any place), and assessments should be taken when students are ready. His-

torically, this has been di�cult to implement, but modern technologies, such as e-learning,

have already made it possible to provide at least partially asynchronous learning, with the

potential for more.

1.2.1 Learning Management Systems

Since its emergence, the Internet has had the potential to impact education in similar pro-

portions to the printing press, a potential which is still largely unrealized because many

current e-learning systems do not take full advantage of the available technology. Most

e-learning e↵orts amount to deployment of Learning Management Systems (LMS). These

systems mainly serve as repositories for course materials. They also provide the means for

students to communicate with each other and with instructors, which is an important com-

ponent of asynchronous learning. Students can also use the LMS to submit assignments and

CHAPTER 1. INTRODUCTION 4

keep track of grades. Well known examples of such systems, also known as virtual classroom

environments, are Moodle and Sakai.

A drawback of LMSs is that they do not provide automatic assessment, which is needed for

asynchronous education. Automated grading is di�cult to do in general because assessment

methods that are easy to automate, such as multiple choice questions, are not suited to

testing higher-order problem solving and reasoning skills, while techniques that are suited

to testing these skills, such as essay-type questions, are hard to automate. Many virtual

classroom environments make use of multiple choice questions, graded automatically, as well

as essay-type questions, graded through peer-grading systems.

1.2.2 Automated Assessment for Computer Science

In Computer Science, it is reasonable to ask students to write computer programs in order

for their knowledge and skills to be assessed. It is relatively easy to automatically determine

whether or not a computer program is correct. In the process of designing the programming

assignment, the instructor can provide a set of test cases, where each test case is a set of

inputs and their associated output. A program submitted by a student can be evaluated by

compiling and running it on the test cases provided and seeing if its outputs match those

provided by the instructor. A grade for the programming assignment can be computed as a

function of the test cases.

Grading systems of this kind allow instructors to o↵er formative assessment, which takes

place during the learning process and its main purpose is to provide informative feedback

to students and enable them to rectify problems with the material in a timely fashion.

Teachers can also use the results of formative assessment in order to make modifications to

their teaching strategy as necessary. This is contrasted with summative assessment, which

is done at the end of a course, such as assigning a course grade. It is meant to determine

whether or not a student has su�ciently mastered the necessary skills and knowledge in

order to proceed to the next phase of the education process.

Many existing e-learning systems for Computer Science make use of automated grading

schemes to provide formative assessment. Well known examples of such systems include

Coursera and EdX, which are both platforms for Massive Online Open Courses (MOOCs).

In addition, there are thousands of smaller-scale systems that are designed to supplement

classroom instruction of Computer Science. One such example is SATS (Student Adminis-

tration and Testing System), developed in the University of California, Merced, and used in

several undergraduate Computer Science courses.

CHAPTER 1. INTRODUCTION 5

Systems like the ones above facilitate true asynchronous learning, especially in MOOCs

where there is no classroom. Despite this fact, current e-learning systems for Computer

Science still have shortcomings. This is exemplified by the poor pass rates and retention

rates in MOOCs and the non-significant e↵ect e-learning systems are having in traditional

universities. A possible explanation for this is related to the binary nature of the feedback

produced by the systems. In the case of incorrect submissions, e-learning systems are unable

to o↵er the student any guidance.

1.3 Dissertation Contributions

1.3.1 Problems with Binary Instant Feedback

Ridgway et al. (2007) points out that poorly designed formative assessment systems often

have negative e↵ects on students. Binary feedback of the form “Correct/Incorrect” may be

su�cient for some, but the majority of students often need more guidance. It is not di�cult

to see that getting feedback that only says “Incorrect” can be frustrating and demotivating

for students. It is Beaubouef and Mason’s main argument against automated assessment

in Computer Science. We investigated the e↵ects of binary instant feedback on student

performance and behaviors and found that it causes disengagement and plagiarism. As far

as we know, this was the first study exploring binary feedback for computer programming

exercises, and it exposed a serious flaw of automated assessment systems, of which many

educators were unaware. The full details of the study appear in Kyrilov and Noelle (2015a).

1.3.2 Common Programming Errors Committed by Students

In order to be able to provide better feedback to students on programming exercises, it was

important to characterize the kinds mistakes students were making in their solutions. Exist-

ing literature on this topic focuses predominantly on compiler errors (Brown and Altadmri,

2014). We ask our students to test their code locally, before submitting it for evaluation, so

compiler errors are caught and addressed by students before they make their first submission.

We conducted a study to find the most common reasons for students submitting incorrect

solutions for programming exercises in our laboratory sessions, and found that incorrect

formatting of output was the most common problem. Other issues included hardcoding of

inputs, instead of reading them from the user, and not testing beyond the sample input-

output pair provided as part of the exercise statement. The full details of this study can

CHAPTER 1. INTRODUCTION 6

be found in Kyrilov and Noelle (2016). The results of this study enabled us to prevent the

most common error from occurring in the future, by simply verifying the formatting of the

output. The instructor e↵ort required for this step is minimal, and the benefits to students

are significant.

1.3.3 Novel Application of Case-Based Reasoning

Case-based reasoning is a machine learning technique that has been successfully applied in

several domains, such as medical diagnoses and generation of legal advice (Begum et al.,

2011). We were the first to apply the technique to automated assessment of computer pro-

gramming exercises, and the design for our framework first appeared in Kyrilov and Noelle

(2014). The technique relies on reusing knowledge gathered from past student-instructor

interactions in order to generate meaningful feedback for students who submit incorrect so-

lutions to programming exercises. Case-based reasoning is highly suited in situations where

similar problems occur often, and can be solved in the same way. This is true of under-

graduate Computer Science laboratories, where many students make the same programming

mistakes.

1.3.4 Innovative E-Learning System

We developed an e-learning system, called Compass, which is specifically designed to address

the issue of feedback quality in automated grading systems for programming exercises by

using case-based reasoning. In addition to this, Compass has features for preventing common

errors, such as incorrect output formatting. Compass is built as a web application, available

to students any time from any location. It uses modern standards, such as HTML5, CSS3,

and JavaScript, making it compatible on all modern platforms and devices. The backend

is implemented as a distributed application accessible through RESTful API. This design

allows other front-end interfaces, such as Moodle or Sakai, to easily integrate with Compass,

making it possible for multiple institutions to use the automated assessment components

of the software, without having to adopt our front-end application. This is an important

consideration, since many schools have institution-wide policies governing their choice of

Learning Management Systems.

CHAPTER 1. INTRODUCTION 7

1.3.5 Improved Student Performance in Programming Exercises

We performed a number of statistical analyses to compare the e↵ects the Compass system had

on student performance and behavior. We found that it su�ciently addresses the problems

with binary instant feedback, that we uncovered in an earlier study. The introduction of

high-quality feedback to programming exercises led to a statistically significant decrease

in the time, and attempts, taken by students to correct an initially flawed solution to a

programming exercise. There were also statistically significant reductions in the plagiarism

and disengagement rates, after Compass was introduced.

This could prove to be a significant factor in Massive Online Open Courses (MOOCs),

where low completion rates continue to be an issue. Current MOOCs generally rely on

multiple choice tests, and binary feedback, which have been shown to have negative e↵ects

in a typical classroom environment. The case-based reasoning module of Compass can be

integrated in MOOCs to provide timely, detailed feedback to students, which may lead to

higher retention rates in these courses.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents relevant back-

ground material on e-learning in general and automated assessment in particular. Chapter 3

presents a study on the negative implications associated with binary instant feedback, which

is the typical form of feedback received by students for programming exercises. Chapter 4

introduces the reader to the case-based reasoning framework and the way it is applied to an

e-learning environment. Chapter 5 provides an overall description of the Compass e-learning

system that we designed and built. Chapter 6 describes the study that we conducted in order

to determine whether or not the Compass system adequately addresses the problems with

traditional automated assessment systems, identified in chapter 3. Chapter 7 contains some

concluding remarks. Appendix A presents a study of an alternative automated assessment

system that we built, focusing on exercises in first-order logic. It is not o�cially a part of

the Compass system but it had a statistically significant e↵ect on student performance in

exercises involving translating English sentences to first-order logic. Appendix B contains

the raw data for all the experiments performed in chapter 6.

Chapter 2

Background and Related Work

2.1 E-Learning

The use of any modern technology to aid the education process is referred to as e-learning.

This broad definition encompasses educational technologies that existed before the inter-

net. In those days it was believed that television would revolutionize education, replacing

classrooms with educational TV programs (Rosenberg, 2001). With the exception of a few

educational programs for young children, such as Sesame Street, TV education was not suc-

cessful. The main reason for this was the fact that people underestimated the di�culties

and costs associated with creating educational content for television. Other hurdles, such

as the high cost of distributing course materials via conventional mail, and using telephone

and telegraph services for communication would have hindered the process of TV education.

Despite the fact that television has been ubiquitous since the mid-twentieth century, it failed

to transform education in the way the printing press had done five centuries earlier. The in-

ternet o↵ers e↵ective solutions to the distribution and communication problems experienced

in television education, which led to the development of modern e-learning systems. These

systems make use of the internet in order to deliver education. Rosenberg (2001) identifies

the many benefits of modern e-learning systems, such as:

Lower cost. Since e-learning takes place on the web, costs associated with the traditional

classroom are eliminated. In the long run e-learning is the most cost e↵ective way

to deliver education, easily o↵setting the initial costs involved with development and

deployment of the e-learning system.

Responsiveness. E-learning systems can handle much larger class sizes than the tra-

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

ditional classroom. This allows more people to be trained more quickly, allowing

educators to respond to rapid changes in curricula.

Personalization. In a traditional classroom, all students see the same content but with

e-learning systems it is possible to personalize the experience on the basis of individual

learners.

Timeliness. Users of e-learning systems allow instructors to author new content and to

modify existing materials easily, ensuring students always have access to the most

up-to-date information.

Unlimited access. E-learning systems can be accessed from anywhere at any time, a

critical component of asynchronous learning.

Familiarity. Since a large percentage of students are comfortable with computers and the

internet, there is no need to o↵er any specialized training on using e-learning systems.

Universality. Since e-learning systems typically run in web browsers, all users get the

same experience, irrespective of what computer platform they use.

Scalability. E-learning systems are much more scalable than traditional classrooms. The

di↵erence between having 10 students and 10,000 students is not significant, as long

as proper infrastructure is in place.

2.1.1 Learning Management Systems

Since the turn of the century there have been countless attempts at developing e-learning

systems. Most of them were developed by instructors and used within the organization they

were developed, while a few became commercial or open-source products. Blackboard is an

example of a commercial e-learning system, while Moodle and Sakai are open-source. These

mainstream systems are commonly referred to as Learning Management Systems (LMSs).

In general, an LMS is an online platform that o↵ers the following features:

Access to course materials. Instructors can upload educational resources, in the form

of documents, presentation slides, and videos, which students can access anytime from

a device connected to the internet.

Communication. In addition to regular email, an LMS o↵ers discussion forums where

students can post questions and get answers from their peers or from the teaching team.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

There are also instant chat systems in place for real time communication, allowing

e�cient resolution of problems.

Assignment submissions. An LMS allows students to digitally submit solutions to

assignments. Having solutions in digital form allows the instructor to use many other

e-learning tools, such as plagiarism detection software and automated grading software,

which are not typically part of LMSs because they are usually domain specific.

Administrative tools. LMSs allow students to keep track of their grades and to manage

their enrollments online. Administrative functions for instructors are more elaborate,

allowing the instructor to author content, set deadlines and modify the appearance of

the interface in a way that is best suited for the course.

Rössling et al. (2008) present technological and pedagogical guidelines for developing

Learning Management Systems. They stress issues such as platform independence, licens-

ing, dissemination, security and customizability. Most LMSs that exist today are web-based

applications, which ensures platform independence, as long as users have access to the in-

ternet. The authors note that the vast majority of LMSs developed never get used outside

the institution they are developed in, which is ine�cient as it results in a lot of duplication

of previous work. Developers are therefore encouraged to make their systems available to as

wide an audience as possible. Customizability becomes a key issue as adoption rates grow

because di↵erent organizations will have specific requirements that an LMS should meet.

Finally, security is an ever growing concern with online systems due to the increased rates

of collection of personal data. Learning management systems collect large amounts of such

data, making them an attractive target for malicious users. Proper authentication methods

as well as encrypted communications between users and the LMS are important features to

have in place.

It is also important to consider pedagogical issues when designing an LMS. There should

be tools to support the instructional process, which includes the setting of goals, presenting

plans on how to achieve the goals, presenting the actual material, highlighting the learning

outcomes, and providing feedback. An illustration of the instructional process, adapted from

Rössling et al. (2008) appears in figure 2.1

Another area of consideration is individual learning styles. There are di↵erent learning

style frameworks in the literature, including Felder and Silverman’s model (Felder and Silver-

man, 1988), where students are classified as active vs reflective, sensing vs intuitive, verbal

vs visual, and sequential vs global. Kolb’s model of learning styles (Kolb, 1984), suggests

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Goals Planning Outcome FeedbackPresentation

Figure 2.1: The instructional process

four learning styles, namely, diverging, accommodating, converging, and assimilating. A well

designed LMS will enable instructors to cater to di↵erent learning styles at the same time.

It is useful to note that students can change their learning styles depending on context, so

presenting material in di↵erent ways, suited to di↵erent learning styles, is beneficial.

Keeping students motivated is a major challenge in LMS design. Rössling et al. (2008)

highlight two kinds of motivation, namely internal and external. Internal motivation stems

from the learners’ own interest in the subject material, whereas external motivation is de-

rived by factors such as receiving positive feedback, reaching a milestone, or getting a good

grade. Other external motivating factors include high levels of active engagement and the

availability of additional resources to support the learning process.

2.1.2 Computing Augmented Learning Management Systems

Rössling et al. (2008) published guidelines for augmenting a regular LMS to be better suited

for Computer Science education. Such LMSs are called Computing Augmented Learning

Management Systems (CALMSs). Their main recommendation is to add automated as-

sessment capabilities, specifically for programming exercises. Techniques for automatically

grading programs have been around since the 1960s (Forsythe and Wirth, 1965). The basic

idea has always been to compare outputs produced by student programs to model outputs

provided by the instructor. It is up to the instructor to provide appropriate test cases that

establish the correctness of programs. If a program bug is not covered by a test case, it will

not be detected, resulting in an incorrect program possibly declared correct. There should

also be enough test cases to ensure students can not arrive at a correct output by guessing.

An assessment scheme of this nature will produce binary feedback, meaning that it will

only be able to detect whether a program passes a set of test cases or not. The system will

not be able to suggest corrective actions to students who submit incorrect solutions.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

2.1.3 Massive Online Open Courses

In recent years, organizations such as Coursera and EdX have started o↵ering Massive Online

Open Courses (MOOCs). They use e-learning technology to deliver high-quality education

to anyone with an internet connection. Content, in the form of video lectures, course notes,

and assessment materials, is provided by universities around the world and can be accessed

free of charge. The first MOOCs to be o↵ered in 2012 were Computer Science courses

from Stanford University. MOOCs are delivered via state-of-the-art e-learning systems,

which include all the features of CALMs discusses above. Coursework is usually divided

into modules that students can complete, with the assessment built into the module. Since

the assessment is automatic, EdX and Coursera o↵er truly asynchronous learning. Both

of these platforms have recorded lectures and course notes available online. Participants

can communicate with each other and with the instructors through online forums. They

can cover the material in whatever order they want at a time of their choosing. Their

homework and other assessments are graded automatically as they are submitted. Other

than preparation work and participation in discussion forums during the course, there is no

other work the instructor needs to do. This frees instructors to focus on improving course

materials and interact with students, which are the most important tasks of an instructor.

Repetitive and mundane tasks, such as lecturing, grading exams and calculating grades are

no longer required. This also allows instructors to reach a far greater number of students.

EdX and Coursera have course enrollments in the hundreds of thousands. Many higher

education institutions around the world are embracing the MOOC platform and are making

their courses available on EdX and Coursera.

2.2 Automated Assessment of Programming

Exercises

Automated assessment of computer programming exercises has been studied extensively.

Douce et al. (2005) present a historical account of influential automated assessment systems,

spanning from the earliest systems developed in the 1960s to modern web-based systems

that are in use today. There are numerous benefits associated with automated assessment

systems, such as their ability to maintain objectivity and consistency when grading students’

work. This is di�cult for human graders to achieve (Ala-Mutka, 2005).

Due to their speed and ease-of-use, automated assessment systems o↵er substantial re-

CHAPTER 2. BACKGROUND AND RELATED WORK 13

lief to educators facing highly demanding grading processes. By reducing the time cost of

grading, these systems allow instructors to devote more time to other activities that benefit

students.

Also, there is empirical support for the idea that giving students more practice with

programming exercises assists learning (Woit and Mason, 2003). By leveraging the reduction

in grading overhead provided by automated assessment systems, instructors are able to

assign more programming exercises while ensuring that the students will receive some form

of feedback on each of them.

Automated assessment systems can also provide instructors with valuable information

regarding student performance on programming exercises, potentially identifying the skills

and concepts that students are finding most challenging. Since such student performance

information is available rapidly and continuously, instructors have the opportunity to make

adjustments to their lesson plans in order to respond to common di�culties and misunder-

standings.

Numerous studies have investigated the e↵ects of automated assessment with instant

feedback on student performance. Falkner has suggested that immediate feedback helps stu-

dents build confidence and improves their understanding of programming concepts (Falkner

et al., 2014). Ala-Mutka has reported a similar finding but also warns that the design of the

exercises can play a significant role in the overall e↵ectiveness of an automated assessment

system (Ala-Mutka, 2005).

Researchers have raised concerns with automated grading systems for programming ex-

ercises, including the fact that they may encourage students to engage in dishonest behavior,

such as trying to trick the grader by hard-coding program output to match system test cases.

Another concern is that students may start using the grader as a debugging tool, avoiding

the learning experiences associated with testing their own code (Ala-Mutka, 2005). This also

leads to bricolage: the practice of mindlessly modifying incorrect code in the hopes that the

grader will eventually accept it (Ben-Ari, 1998).

When deciding whether to employ an automated grading system for programming exer-

cises, instructors should carefully consider the advantages and disadvantages listed above.

Most educators believe that the benefits outweigh the disadvantages, which explains why

automated assessment systems are so widely used in undergraduate computer science edu-

cation. Still, some instructors find the quality of feedback unacceptable and are not willing

to use automated assessment systems (Beaubouef and Mason, 2005). Most systems that

evaluate the functionality of programs do so by following a test-based approach. Such ap-

proaches only allow very coarse grained (usually binary) feedback. There is evidence that

CHAPTER 2. BACKGROUND AND RELATED WORK 14

increased feedback granularity leads to better student performance (Falkner et al., 2014) .

Many instructors who use automated grading systems for programming exercises agree that

the quality of the generated feedback is not as good as that generated by human instructors,

but they consider the automated feedback to be better than no feedback, at all.

We have used an automated assessment system, described in the next section, for several

years. We have suspected that many students have been cheating on their exercises by copy-

ing solutions from their peers. This suspicion is supported by a study that found that, when

surveyed, about 80% of students admitted to some form of cheating, and 30% specifically

admitted to submitting someone else’s work as their own (Sheard et al., 2003). The authors

of this previous study also investigated the reasons behind cheating. They found that one of

the most frequent reasons given for cheating involved a belief that the student will fail the

course if they don’t cheat. We suggest that the excessive amounts of negative feedback de-

livered to students by systems using binary instant feedback would reinforce their self-doubt

and increase the likelihood of them cheating.

2.2.1 Our e-Learning Environment

The course which served as the vehicle for this study is an upper-division undergraduate

class called Introduction to Object-Oriented Programming. It has been o↵ered every year

for some time. The programming language used in this course has been C++. Every week,

students were expected to attend a 3-hour laboratory session, during which they were given

a set of programming exercises. Students had one week to complete the set, with each set

typically containing about 8 exercises.

Student solutions to exercises were submitted to our online grading system for evaluation.

The system used a test-based approach to grade students’ programs. Thus, it only gave

feedback on the functionality of the programs. Feedback was binary in nature. If a program

passed all of a set of test cases (which were kept secret from the students), the student

received a “Correct Answer” message. If the program failed one or more test cases, the

author received a “Wrong Answer” message. The submission system stored the source code

of each submission, as well as relevant time stamps and information from the grading module,

such as the results from di↵erent test cases and the number of attempts the student had

made at the time of the given submission. A screenshot of the web interface appears in

Figure 2.2.

By design, this system could generate feedback only for complete and executable pro-

grams, so the feedback it provided does not fully meet the criteria of formative feedback.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

Finding Prime Numbers

Done

Upload

1. Write a program that reads in an integer N and prints out all prime numbers strictly less
than N. The output should be in ascending order, one integer per line.

No Attempt

Choose File no file selected

Sample Input Sample Output

10 2
3
5
7

Figure 2.2: Automated grading system interface

To address this concern, we designed each exercise in a given set to ask students to build on

work completed in previous exercises, leading towards an overall goal. In this way feedback

given for the first exercise in a set can be seen as formative feedback for the overall task.

For example, students were asked to build a 2D graphical application in OpenGL that had

several rectangles drawn on the canvas. They were provided with code that detected the

coordinates of mouse clicks, and they were asked to find the rectangle that was clicked on,

if any, and change its color. This task was broken up into (1) an exercise involving the cre-

ation of a rectangle class with the appropriate instance variables, (2) an exercise that asked

students to implement appropriate accessor and mutator methods, (3) an exercise involving

the creation of an ordered pair object, and (4) an exercise to determine if a given set of

< x, y >-coordinates lies inside a rectangle.

Chapter 3

Adverse E↵ects of Binary Instant

Feedback

3.1 Introduction

Teaching students to write computer programs is a key aspect of undergraduate computer

science education. Supervised programming practice is often provided through laboratory

sessions, during which students are presented with sets of programming problems and are

asked to generate working solutions for them. The large enrollments of introductory com-

puter science courses frequently make it di�cult to provide timely feedback to students on

the programs that they write. In order to address this di�culty, many educators have turned

to the use of automated assessment systems for computer programming exercises.

Automated assessment systems o↵er substantial benefits to both students and instruc-

tors. They provide significant labor savings to members of the teaching team, allowing them

to spend less time grading students’ exercise solutions and more time on other educational

activities. This reduction in grading time makes it possible to increase the number of ex-

ercises assigned during a term, providing students with more practice using programming

skills and, thus, supporting the learning of associated concepts (Woit and Mason, 2003).

Automated assessment systems are often made available through the web, allowing stu-

dents to interact with the system at any time, from anywhere, and receive instant feedback

on their work. As an additional benefit, automated assessment systems are objective and

consistent (Ala-Mutka, 2005), which is di�cult to achieve when using human graders.

There is evidence that instant feedback serves to motivate students by alerting them to

their mistakes at an early point in their e↵orts, providing them with opportunities to correct

16

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 17

their programs and re-submit them for evaluation (Woit and Mason, 2003). While the

feedback provided by automated assessment systems for computer programming exercises is

typically timely, its quality is often questionable. Many automated assessment systems used

in practice generate binary feedback, indicating only that a given submission is “correct” or

“incorrect”. Some computer science educators, however, are strongly opposed to providing

this kind of feedback to their students (Beaubouef and Mason, 2005). They contend that

students who struggle with the material, and consequently produce incorrect solutions to

programming exercises, should receive guidance from an expert instructor.

Educators generally agree that feedback produced by automated grading systems is not

as useful as feedback generated by human instructors. Still, because of its speed, objectiv-

ity, and consistency, automatically generated feedback is considered to be far better than

providing no prompt feedback at all, perhaps relying, instead, on the traditional practice of

simply providing model solutions after submission deadlines have passed.

3.2 Plagiarism and Disengagement Due to Binary

Instant Feedback

Our classroom experience with using binary instant feedback on computer programming

exercises has led us to suspect that the delivery of such feedback has negative e↵ects for

some students, making it unclear that the advantages of binary instant feedback outweigh

its disadvantages. Ala-Mutka has suggested that automated assessment can lead to cheat-

ing (Ala-Mutka and Jarvinen, 2004). We hypothesize that this is especially true when instant

feedback is binary in nature. If a student is struggling with the material and produces an

incorrect solution, it is often insu�cient to indicate that the solution is wrong. The student

may need some detailed guidance in order to understand the flaws in their solution, the

conceptual misunderstandings that led to the exhibited errors, and productive ways to go

about correcting the program.

A variety of educational theories are consistent with our hypothesis. For example, self-

e�cacy theory suggests that students who are not su�ciently confident in their abilities

will be a↵ected negatively by binary instant feedback (Bandura, 1977). Since students in

introductory computer programming classes often exhibit low self-e�cacy with regard to

their programming skills (Ramalingam et al., 2004), and binary instant feedback in typical

situations is more frequently negative than positive, it is reasonable to suspect that the

learning of many students in these classes will be hindered by such automatic feedback. We

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 18

conjecture that the excessive negative feedback students receive in these learning environ-

ments causes some of them to attempt fewer exercises, while others resort to academically

dishonest practices. Clearly, both of these responses to binary instant feedback may lead to

poor performance on formal summative assessments of student understanding.

In this chapter, we investigate the following questions:

1. Does binary instant feedback on computer programming exercises lead students to

cheat more than when no instant feedback is provided?

2. Does binary instant feedback on computer programming exercises lead students to

attempt and/or complete fewer exercises than when no instant feedback is provided?

3.3 Investigative Study

The course which served as the vehicle for this study was an upper-division undergraduate

class called Introduction to Object-Oriented Programming. It is o↵ered every year. Each

week, students were expected to attend a 3-hour laboratory session during which they were

given a set of approximately 8 programming exercises involving writing code in C++. An

example of a programming exercise given early in the semester is: “Write a program that

reads in an integer N and prints out all prime numbers strictly less than N . Sample input: 23,

expected output: 2, 3, 5, 7, 11, 13, 17, 19.” Students had one week to complete each set.

In 2013 and 2014, student solutions to exercises were submitted to our online grading

system for evaluation. The system used a test-based approach to grade students’ programs.

Thus, it gave feedback only on the functionality of the programs. Feedback was binary in

nature. If a program passed all test cases (which were kept secret from the students), the

student received a “Correct Answer” message. If the program failed one or more test cases,

the author received a “Wrong Answer” message and was allowed to try again. Thus, each

student could generate a sequence of submissions for each exercise. The system recorded the

source code of each submission, as well as submission times, the output produced on test

cases, and the number of attempts on the given exercise that the student had made at the

time of submission.

By design, this system could generate feedback only for complete and executable pro-

grams, so the feedback it provided does not fully meet the criteria for formative feedback.

To address this concern, we designed each exercise in a given set to ask students to build

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 19

on work completed in previous exercises, leading towards an overall goal. In this way feed-

back given for early exercises in a set could be seen as providing opportunities for formative

feedback with regard to the overall task.

By the end of 2014, we had collected data from two iterations of this course, with binary

instant feedback provided for every exercise. Students were allowed to resubmit solutions

for each exercise as many times as desired, until a due date one week from the introduction

of the set of exercises. Given concerns over the use of binary instant feedback, the course

was modified during its 2015 o↵ering. In 2015, all exercises were identical to the preceding

years, but the automated grading system delayed the delivery of feedback until after the

weekly deadline had passed. All other aspects of the course remained unchanged. It was

taught by the same instructor, with the help of the same teaching assistant, using the same

set of lecture notes. There were no students present in more than one o↵ering of the course.

For this study, we examined results from exercises assigned during the first four laboratory

sessions of each year.

To answer the first research question, we tested all of the submissions for plagiarism. A

submission was marked as being plagiarized if it was identical to another student’s submission

for the same exercise from the same year. This is a very conservative measure of plagiarism,

but it ensures that the likelihood of false positives is very small. All of the programming

exercises required the writing of a su�cient number of lines of code so as to ensure that two

students would not have generated identical files independently. We also attempted to use

more sophisticated plagiarism detection tools, such as MOSS, but we found that the number

of false positives was too large to make the measure reliable. This is likely due to the fact

that each exercise was small enough that many students could have structured their code in

a similar way.

After each submission was classified as plagiarized or plagiarism free, we tallied the

number of exercises that each student had cheated on. We also counted the number of honest

sequences of submissions produced by each student, across exercises. We define an honest

sequence as a sequence of submissions for a given exercise for which all of the submissions

in the sequence are free of plagiarism.

We performed an analysis of variance between students in di↵erent years with respect to

the number of times they had cheated. A similar analysis was performed with respect to the

number of honest sequences produced by each student.

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 20

3.4 Results of Study

We examined data from a total of 33 programming exercises in each year, spread over the

first four laboratory sessions. We looked at the sequences of submissions from each student

for each exercise. Table 3.1 provides summary information about the length of submission

sequences over the three years of this study.

Table 3.1: Submission sequence length statistics

Year Students Mean Length Variance Longest Length=1

2013 62 2.32 6.36 22 56%
2014 62 2.70 11.99 44 53%
2015 90 1.73 1.37 19 58%

Observe that in 2013 and 2014, when binary instant feedback was provided, students

were making extensive use of the resubmission feature of the system. This suggests that

a large number of students could have been iterators, that is, students who search for a

correct solution by submitting numerous programs to the system, with only small, often

poorly thought out modifications between consecutive submissions (Karavirta et al., 2006).

Employing such a strategy is an ine↵ective use of the grading system, and binary instant

feedback seems to encourage it. We considered a submission sequence of length 10 or more

as an iteration sequence. In 2013 and 2014 there were 45 and 71 such sequences, respectively,

while in 2015, when binary instant feedback was not o↵ered, there were only 2 such sequences.

To address our first research question, we looked at the number of exercises for which

a student had submitted at least one plagiarized solution. Typically, plagiarized solutions

appeared at the end of a submission sequence. The average number of plagiarized exercises

per student, for each year, is shown in Figure 3.1.

It is clear from Figure 3.1 that, in the years when binary feedback was provided, students

tended to cheat more. An analysis of variance between 2013 and 2014 showed no significant

di↵erence (t(122) = 0.337, p = 0.736), so the two groups were collapsed into one control

group. We performed an analysis of variance (using a weighted means approach to addressing

unequal sample sizes) between the control group and the test group, which was composed

of the students from 2015. This analysis showed that there was a statistically significant

di↵erence between the test and control groups (t(212) = 3.873, p < 0.001). This strongly

suggests that binary instant feedback had promoted cheating.

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 21

Cheating

Mean SE

2013 3.4194 0.5196

2014 3.1613 0.5615

2015 1.4333 0.2018

N
um

be
r o

f p
la

gi
ar

iz
ed

 s
ub

m
is

si
on

s

0

1

2

3

4

2013 2014 2015

Honest attempts

Mean SE

2013 24.9677 0.9732

2014 23.8548 0.9810

2015 26.4111 0.6559

N
um

be
r o

f h
on

es
t a

tte
m

pt
s

23

24

25

26

27

28

2013 2014 20152013 2014 2015

N
um

be
r o

f e
xe

rc
is

es

Figure 3.1: Mean number of plagiarized exercises per student (with standard errors of the
mean)

Our second question was whether binary instant feedback leads students to reduce the

number of exercises that they attempt. Such a reduction might be taken as a sign of disen-

gagement. We looked at the number of honest sequences per student, shown in Figure 3.2.

Cheating

Mean SE

2013 3.4194 0.5196

2014 3.1613 0.5615

2015 1.4333 0.2018

N
um

be
r o

f p
la

gi
ar

iz
ed

 s
ub

m
is

si
on

s

0

1

2

3

4

2013 2014 2015

Honest attempts

Mean SE

2013 24.9677 0.9732

2014 23.8548 0.9810

2015 26.4111 0.6559

N
um

be
r o

f h
on

es
t a

tte
m

pt
s

23

24

25

26

27

28

2013 2014 2015201520142013

N
um

be
r o

f e
xe

rc
is

es

Figure 3.2: Mean number of honest sequences per student (with standard errors of the mean)

The means for 2013 and 2014 were not significantly di↵erent (t(122) = 0.805, p = 0.422),

so they were collapsed into a control group. The students from 2015 made up the test group.

The analysis of variance between the two groups (using a weighted means solution to the

problem of unequal sample sizes) showed that there is a statistically significant di↵erence

between the two groups (t(212) = 2.032, p = 0.043). This strongly suggests that binary

instant feedback led students to make fewer honest attempts at the exercises.

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 22

In hopes of further understanding the situations in which a student failed to submit a

solution for an exercise (a potential sign of disengagement), we also computed the probability

that a student would not attempt an exercise given that he/she failed the previous one. This

probability was 0.3 in both 2013 and 2014, while, in 2015, it was only 0.1.

The results of our analyses are summarized in Table 3.2.

Table 3.2: Summary of analysis results

Number of plagiarized exercises per student

Group N Mean SD SE t p

control 124 3.161 4.421 0.562 3.873 0.000
test 90 1.433 1.914 0.202

Number of honest sequences per student

Group N Mean SD SE t p

control 124 24.411 7.683 0.690 2.032 0.043
test 90 26.411 6.222 0.656

3.5 Discussion

We found a statistically significant di↵erence in cheating between the group of students

who had access to instant binary feedback and the group of students who did not receive

feedback until after the programming exercises were due. It is important to note that our

conservative measure of plagiarism, involving only perfectly identical submissions, certainly

did not detect all of the cheating cases. It would have been su�cient for a student to rename

an identifier or modify a comment in the code in order to avoid detection, with regard to our

analysis. The fact that we found significant di↵erences despite the conservative nature of this

measure strengthens our findings. Laboratory sessions exist for students to get practice in

programming, allowing them to improve their skills. If they are submitting other students’

work without modification, it is very unlikely that they are obtaining the full educational

benefit of the exercises.

Similarly, our analysis of the number of honest sequences shows significant di↵erences

between conditions when binary instant feedback is present and when it is not. Students

receiving binary instant feedback made honest attempts on roughly 24 of 33 exercises, on av-

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 23

erage, while students “deprived” of such feedback attempted about 26 exercises, on average,

without committing plagiarism.

These results demonstrate that instant binary feedback can introduce educational haz-

ards, suggesting that instructors should not necessarily see this form of feedback as, at worst,

“harmless” with regard to student learning. Our data are not su�cient to determine the

mechanisms through which instant binary feedback might promote cheating and a reduction

in attempted exercises. However, one possible explanation is rooted in self-e�cacy theory.

Self-e�cacy theory holds that people with low self-e�cacy for a given task are likely to

avoid it. Schunk has pointed out that success raises one’s self-e�cacy while failure lowers

it (Schunk, 1991). In our data, the automated grading system sent positive feedback to

students only 30% of the time. On average, students received much more failure feedback

than success feedback, potentially diminishing their confidence in their abilities. For students

who began the course with low self-e�cacy, the negative feedback could have been crushing,

driving them to cheat or leave the laboratory without further attempts at exercises. This

is consistent with the findings of Sheard et al. (2003), where self-doubt is identified as the

second most likely reason for students to cheat.

Self-e�cacy theory also explains why excessive negative feedback should not be expected

to reduce every student’s confidence in their programming abilities. According to the theory,

if a person has already developed a strong sense of self-e�cacy, then failure on a task actually

serves to motivate the person because he/she has confidence in his/her abilities to correct

the problem. This could explain why some students did well on the programming exercises

without cheating. To them, a negative binary signal provided enough motivation to go back

and correct their problem.

3.6 Conclusion

Many computer science instructors make use of automated assessment systems for program-

ming exercises, especially in introductory undergraduate courses. Many of the systems that

are in daily use grade programming exercises by inspecting the output generated by students’

submissions when run on predefined test cases. In many systems, the feedback received by

students is limited to a binary (“correct” or “incorrect”) signal. Despite this fact, many

computer science educators believe that any formative feedback must be better than no

feedback at all.

We investigated the research questions of whether binary instant feedback promotes

CHAPTER 3. ADVERSE EFFECTS OF BINARY INSTANT FEEDBACK 24

cheating and whether it causes students to more easily disengage from the laboratory ex-

ercises. We analyzed data collected from an undergraduate computer science course over a

period of 3 years. In the first two years, students received binary instant feedback (control

group), and, in the final year, students did not receive binary instant feedback (test group).

Our analyses found statistically significant di↵erences between the two groups with respect

to cheating, as well as with regard to tendencies to attempt subsequent exercises.

We have hypothesized that providing instant binary feedback may be harmful to students

because they are novice programmers with low self-e�cacy. Excessive amounts of negative

feedback can be highly demoralizing to them, especially since there is no explanation of what

went wrong or guidance on how to correct it. This may leave students with two options:

give up on the exercise, and by extension the laboratory session, or obtain the solution from

a friend who has got it right.

It is worth noting that we do not see these results as advocating against automated

assessment, in general. We recognize the previously demonstrated benefits of instant feed-

back, but we have demonstrated that there are also potential educational costs when that

feedback is binary. In our future work, we will investigate ways of mitigating these costs by

automatically providing more elaborate feedback to students on their programming exercises.

Many researchers have tried to address the shortcomings of binary feedback. Falkner

showed that increasing granularity of assessment increases the e↵ectiveness of instant feed-

back (Falkner et al., 2014). Some automated assessment systems provide students with the

test cases that their code failed on. While this might help to support student learning, it

also might encourage students to write code that is inappropriately specialized to handle the

test cases used by the feedback system (Ala-Mutka, 2005).

In chapter 4, we explore the idea of using case-based reasoning to improve the quality of

feedback generated by automated grading systems for programming exercises, by addressing

the disadvantages of binary instant feedback demonstrated here.

Acknowledgement

This chapter is largely based on Kyrilov and Noelle (2015a).

Chapter 4

Case-Based Reasoning for Automated

Assessment

4.1 Introduction to Case-Based Reasoning

Case-based reasoning (CBR), first introduced by Schank (1982), is a problem solving frame-

work that uses past experiences to solve problems. Past experiences, referred to as cases, are

stored in a database, known as the case base. A single case consists of a problem description

and a solution. When a new problem, or a query, is encountered, the CBR system retrieves

past cases whose problem descriptions are similar to the new problem, and uses the past

solutions to generate instructions on how to solve the query. If executing the instructions

does not lead to a solution of the problem, then the instructions are revised and evaluated

again. Revisions may take place multiple times, until the solution generated by the system

is accepted. At this point a new case, made up of the query and the accepted solution,

is stored in the case base, making additional knowledge available for future queries. Due

to its ability to create new knowledge in this way, CBR is considered a machine learning

technique. More specifically, CBR is a lazy machine learning technique because training a

CBR system involves merely storing past experiences in a database, and learning only hap-

pens during query time. This approach di↵ers significantly from rule-based machine learning

techniques, which are usually eager, meaning that learning happens during training, which

involves generalizing information into rules.

Case-based reasoning systems are usually designed to be domain-specific, therefore, the

way knowledge is represented, the retrieval methods for similar cases, and the evaluation

procedures for suggested solutions, are all dependent on the system domain. For example,

25

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 26

the technical support department of a printer manufacturer could use a CBR system to help

employees with phone support. When a customer calls for support, the technician generates

a list of symptoms (the query), and searches the database for records of previous support

calls with similar symptoms. The system returns one or more past cases and the employee

uses the information to make suggestions to the customer. If these suggestions lead to a

successful solution of the problem, the call record is stored in the case base. In this system,

a problem description is a list of sentences, each describing a symptom. A solution is also

a list of phrases, each giving an instruction. A typical case for such a system can be seen

in figure 4.1. The retrieval of similar cases amounts to searching through the case base for

past instances containing some or all of the items in the problem description. If a past

case with the exact same problem description is found, it is likely that the past solution

will be applicable to the new problem. If however no such past case exists, the system can

still return the closest matching one, which may prove useful in solving the problem. If the

system fails to find a similar case, the technician will have to use his/her own knowledge to

assist the customer. Upon successful resolution of the problem, a new case will be created,

and all future encounters of the same problem will be dealt with e↵ectively.

Problem description Suggested actions

Green power LED is on, Download and install latest drivers
POST completes, Restart computer
cartridges are installed,
cables are plugged in,
drivers installed,
Not printing

Figure 4.1: A typical case from printer manufacturer help desk

The CBR process explained above can be summarized as the following four stages, illustrated

graphically in figure 4.2:

1. Retrieve: Retrieve past cases that are similar to the query.

2. Reuse: The retrieved cases are used to generate a solution to the query.

3. Revise: The solution generated in the last step is evaluated and modified if necessary.

4. Retain: A new case, made up of the query and the solution are stored in the case

base.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 27

Case Base

Query___ Retrieve
Reuse

Revise
Retain

Figure 4.2: The case-based reasoning methodology

4.1.1 Knowledge Representation

The knowledge base of a CBR system is the case base. In general, a case c = (cd, cs) is a

pair, made up of a problem description cd 2 D and a corresponding solution cs 2 S, where

D is a problem description space and S is a solution space. A query q 2 D, is a problem

problem description, and the goal of a CBR system is to find a solution for q.

4.1.2 Case Retrieval

The process begins by retrieving a set of cases T
q

= {c1, c2, . . . , ck : f(cd
i

, q) < ✓}, from
the case base, where f : D ⇥ D ! R is a distance metric between two problem descriptions

and ✓ is a user-defined threshold. The set T
q

is a set of cases retrieved from memory, whose

problem descriptions are similar to q in the relevant dimensions of D, and the set R
q

is the

set of solutions corresponding to T
q

.

4.1.3 Case Reuse

The case-based reasoner uses T
q

in order to learn a function g : Sk ! S, which transforms

a set of k solutions into a single solution, s0 = g(R
q

), which is then suggested as a solution

to q.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 28

4.1.4 Case Revision

The solution s0 may or may not be an acceptable one. It is therefore evaluated and possibly

modified. The accepted solution is defined as s⇤ = h(s0), where h : S ! S is a function that

modifies a given solution, which is evaluated again, until an acceptable solution is found.

4.1.5 Case Retainment

Once s⇤ has been accepted as a correct solution to q, the case (q, s⇤) is stored in the case

base. The entire process is illustrated graphically in figure 4.3.

s�

S

Rqs�h

g

Tq

D

q �

Figure 4.3: The CBR process

It is clear that the choice of functions f , g, and h will completely govern a system’s

behavior and abilities. The functions can be as simple or as complicated as necessary,

depending on the domain of the system. In some cases functions may need to be learnt

by the system, which would require additional machine learning techniques. For example,

in the retrieval process, the function f measures the distance between two vectors in the

multi-dimensional space of problem descriptions D. Some dimensions of D may not be as

relevant as others, in the context of the specific problem. A machine learning algorithm

could be used to learn what the relevant dimensions are, thereby allowing the system to

complete the retrieval step more e�ciently. Certain problem domains allow functions to be

very simple. For example, the function g which constructs a solution from a set of previous

solutions could be made to simply return a previous solution unchanged. In addition, human

intervention is allowed to play a part in these functions. For example, the function h, which

revises a proposed solution, could be delegated to a human.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 29

CBR systems have been successfully applied in customer support centers, as shown in

Allen (1994), while Jo et al. (1997) used a CBR approach to predict bankruptcy in Korea.

Begum et al. (2011) surveyed a number of CBR systems used in the health sciences and

found that these systems are being used for a wide variety of tasks, such as diagnosis,

treatment planning, and training of medical personnel. CBR has also been applied to the

educational sector, although it has not received as much attention as it has in other domains.

Jonassen and Hernandez-Serrano (2002) proposed a CBR system to support problem solving

using stories, and Ballera et al. (2013) proposed a CBR system to personalize the e-learning

experience of students by sequencing the topics being presented. Wiratunga et al. (2011)

presented RubricAce, a CBR system designed to assist instructors who use rubrics for grading

students work. RubricAce suggests feedback comments to instructors once they have assigned

grades according to a rubric. Instructors then decide how to use the suggested feedback to

provide summative evaluations to students. The following section describes methods for

using case-based reasoning to improve the automated assessment process.

4.2 Applications to Automated Assessment

Case-based reasoning typically works well in domains where similar problems occur fre-

quently and similar problems have similar solutions (López, 2013). These conditions are

necessary since CBR builds knowledge from past experiences, and the solutions learnt from

these need to be relevant for future occurrences of a particular problem.

To determine whether our laboratory environment satisfies these conditions, we arbitrar-

ily selected 5 exercises, and we manually clustered the incorrect submissions by grouping

together solutions that had the same problems. Section 4.3 provides the details on com-

puting incorrectness similarity, the metric that was used to cluster the submissions. Table

4.1 summarizes the results of this analysis. The first column shows the exercise number,

the second column shows the number of incorrect submissions that have been made for that

particular exercise. The “Number of clusters” column indicates the number of distinct errors

made by students for a particular exercise. The column “Largest cluster” indicates the num-

ber of students who had committed the most frequently occurring mistake, while “Smallest

cluster” shows how many students made the least common mistake for a given exercise.

Of the five exercises examined, the first was less challenging than the others. A total of

111 incorrect programs were submitted, but these contained only 4 distinct errors. The other

exercises exhibited 8-10 distinct errors, which was still substantially lower than the number

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 30

Exercise Incorrect submissions Number of clusters Largest cluster Smallest cluster

1 111 4 54 2
2 82 10 18 1
3 73 11 19 1
4 28 8 15 1
5 26 8 13 1

Table 4.1: Summary of data from manual clustering

of incorrect submissions. Each of these exercises had clusters of size 1, indicating that there

were errors made by only one student. It is clear from these data that a large fraction

of the errors made were shared by a large number of students. This analysis illustrates

the suitability of Case-based reasoning as a framework for providing feedback to incorrect

solutions of programming exercises.

The case-based reasoning framework for automated assessment maintains a database of

cases. A case is defined as an incorrect solution for a particular exercise, together with

instructor generated feedback on how to correct the submission. The case base is said to be

parametrized by exercise, as cases for a given exercise would not be appropriate for other

exercises.

When a newly submitted incorrect solution, call it S 0, for a particular exercise arrives,

the CBR process begins with the retrieval stage. The system finds all the cases for that

exercise, that are similarly incorrect to S 0. The process of computing incorrectness similarity,

described in detail in Section 4.3, involves finding programs that contain the same bugs as

a given piece of code.

Once a case has been retrieved, the feedback stored in it is given to the student who

authored S 0. If this feedback leads the student to submit a correct solution then S 0 together

with the feedback, is stored as a new case in the database, thereby creating new knowledge

in the system. If, however, the student submits another incorrect solution after receiving

the initial feedback, the case is again forwarded to the instructor, who revises the feedback

before it is sent back to the student for another attempt. This process may iterate several

times until the instructor is satisfied with the feedback.

The new knowledge created, after possible refinements, is stored in the database for

future use. If no appropriate cases could be found at the retrieval stage, then S 0 is forwarded

to members of the instructional team, whose job it is to examine the incorrect solution

and generate appropriate feedback for it. This feedback, together with S 0 is stored in the

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 31

database as a case, thereby creating the first piece of knowledge for solving the particular

problem that exists in S 0. The entire process is illustrated in Figure 4.4.

UC Merced Branding

UNIVERSITY SEAL

The official seal of the

University of California is:

OFFICIAL UC MERCED LOGO
FOR PRINTED PUBLICATIONS

RECOMMENDED FORMAT FOR
THE OFFICIAL LOGO WITH NAMES
OF SCHOOLS AND DEPARTMENTS*

*NOTE:
Logos for schools and departments
are available from University
Communications at 559-241-7411.

UC MERCED | GRAPHIC STANDARDS | Spring 2012 7

This seal is used under the authority of the Regents of the University of California. The seal

may not be altered. Use of the seal in communication and marketing materials must be

approved by University Communications. Please contact University Communications at

559-241-7411 for camera-ready or electronic versions of the seal.

www.ucmerced.edu

STUDENT AFFAIRS
Admissions Office

STUDENT AFFAIRS
Admissions Office

SCHOOL OF NATURAL SCIENCES
Environmental Sciences

SCHOOL OF NATURAL SCIENCES
Environmental Sciences

SCHOOL OF ENGINEERING
Bioengineering

SCHOOL OF ENGINEERING
Bioengineering

SCHOOL OF SOCIAL SCIENCES
HUMANITIES AND ARTS
Anthropology

SCHOOL OF SOCIAL SCIENCES
HUMANITIES AND ARTS
Anthropology

Using Case-Based Reasoning to Improve the Quality of Feedback Generated by
Automated Grading Systems for Programming Exercises
Angelo Kyrilov
Electrical Engineering and Computer Science, University of California, Merced

Introduction
 Research goals:

•Develop an e-learning platform for CSE.
•Automatically provide high-quality feedback.
•Feedback designed by expert instructors.
•Use Case-based reasoning (CBR) to train system.
•Utilize previous instructor-student interactions.

Motivation
Shortage of CS Graduates in USA
•Bureau of Labor Statistics predicts a 40% shortage.
•One reason for shortage is high attrition rates.
•Reasons for high attrition, among others [1]:
- Inadequate math and problem solving skills,
- Poorly designed laboratory sessions.

Attempts to Address Situation
 Apply lessons from MOOCs to traditional classrooms:

•Recorded lectures accessible anywhere, anytime.
•Allow students to move at their own pace.
•Have interactive, automatically graded exercises.
•Create blended classroom environments.
•Asynchronous learning and instant feedback.

Problems with Instant Feedback

• Instant feedback is binary (correct/incorrect).
•Positive reinforcement for correct solutions.
•No guidance for incorrect submissions.
•Reinforces self doubts of students.
•Causes students to disengage from material.
•Opposed by many CS educators [1].

System Objectives
•Provide meaningful responses to incorrect solutions:
- Why solution is wrong.
- Deliver pedagogically appropriate guidance.

•Keep labor costs for instructors low.
•Keep instructors in the loop.

Case-Based Reasoning
•Lazy machine learning technique.
•Naturally improves with use.

Figure 1: Generic Case-Based Reasoning Framework

Why Case-Based Reasoning

 CBR is suitable when:
• Similar problems occur frequently.
• Similar problems have similar solutions.

•Common errors arise across students.

CBR System for Programming Exercises

• Problems - incorrect submissions, solutions - feedback.

• Retrieval of past cases:
• Incorrectness similarity metric.

• Reusing solutions from past cases:
•Use the past solutions unchanged.

• Testing suitability of proposed solution:
• Student resubmits, code is tested again.

Incorrectness Similarity
•Similarity metric relevant for retrieval stage.
•High if both programs have similar bugs.
•Low if the two programs have distinct problems.

Example

 int factorial (int n) {
 if (n == 0) return 0;
 else return n * factorial(n-1);
 }

Listing 1: Recursive Factorial Function

 int factorial (int n) {
 int ans = 0;
 for (int i = 1; i <= n; i++) ans *= i;
 return ans;
 }

Listing 2: Iterative Factorial Function

•Dissimilar with respect to approach taken.

•Highly similar with respect to incorrectness:

- Both claim 0! = 0, when in fact 0! = 1.

•The same feedback will be appropriate for both.

• Similarity can often be established based on output.

Proposed system

Figure 2: Flowchart of Proposed CBR System

Preliminary Experiment
•Used a very simple incorrectness similarity metric:
- Exact same incorrect output implies similarity.

•Clustered incorrect submissions from CS course.
•Randomly picked a representative from each cluster.
•Manually assigned feedback to representative.
•Manually verified appropriateness of feedback to other
members of cluster.

•Cases where feedback was inappropriate are called
interventions.

Results

Conclusion
•MOOC principles applied to solve problems in CSE.
•Binary instant feedback is not good enough.
•Proposed CBR system offers high-quality feedback.
•Also provides significant labor savings.
•Addresses concerns related to feedback quality.

Future Work
•Test system in a live classroom environment.
• Improve incorrectness similarity metric:
- Incorporate static analysis of code.

•Evaluate effectiveness on student performance.
• Investigate issues related to:
- Support for members of underrepresented groups.

References
[1] T. Beaubouef et al. Why the high attrition rate for
 computer science students. SIGCSE Bull.,
 37(2):103–106, 2005.

First
Submission

Grading
System

Update
Case Base

CBR
System FeedbackNew

Submission

Updated
Feedback Instructors

 ✓

Is
Intervention

Needed?

Is
Submission
Correct?

yes

no

yes

no

RetrieveRetain

Reuse
Revise

New Problem:

Solution:

Old Problem:

Solution:
✓

Case Base

Old Problem:

Solution:
✓

New Problem:

Solution:
?

New Problem:

Solution:
✓

Solution
Acceptable?

New Problem:

Solution:
×

no

yes

✓ �

Figure 4.4: A case-based reasoning framework for automated feedback generation on pro-
gramming exercises

4.3 Similarity With Respect to Incorrectness

4.3.1 Introduction

In order for the retrieval stage of the case-based framework to be successful, there needs to

be a method for finding programs that are similarly incorrect to other programs. That is

to say, both programs are incorrect solutions to a given exercise, and moreover they both

have the same mistakes. Note that this measure of incorrectness similarity is distinct from a

general measure of similarity appropriate for, say, detecting plagiarism. Two programs can

be similar in overall structure but contain distinctly di↵erent errors. Also, two programs

can be structured di↵erently (e.g., iterative versus recursive solutions) while containing the

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 32

same error (e.g., failure to initialize variables). Figure 4.5 shows an example of two incorrect

implementations of the factorial function, that di↵er in structure but are similar with respect

to incorrectness. Both programs make the assumption that 0! = 0, when in fact 0! = 1, which

is highlighted in the code.

int factorial (int n) {
int result = 0;

for (int i = 1; i <=n; i++) {
result *= i;

}

return result;
}

int factorial (int n) {
if (n == 0) {

return 0;
}
else {

return n * factorial (n - 1);
}

}

Figure 4.5: An example of two similarly incorrect programs.

Formally stated, incorrectness similarity is defined as follows. Given two incorrect so-

lutions to a particular programming exercise, say s1 and s2, if corrective feedback for s1 is

appropriate for s2, then s1 is similarly incorrect to s2, denoted by s1 ⇥⇠ s2.

In general, a prerequisite for computing incorrectness similarity between two programs

is confirming that both programs are incorrect solutions to the same programming exer-

cise. This can be done using traditional automated assessment techniques, described in

Section 2.2. Once the incorrectness part has been established, the full incorrectness similar-

ity measure can be computed by utilizing bug finding techniques and seeing whether both

programs contain the same bugs. There are static and dynamic methods for doing this,

where dynamic methods require the system to compile and run submitted programs, and

static methods do not. Both of these approaches are discussed in detail in the following

sections.

4.3.2 Dynamic Methods

This section describes methods of finding bugs, and consequently incorrectness similarity,

that are based on compiling and running submitted code on a suite of unit tests. The

output from the unit tests of two di↵erent submissions is used to compute their incorrectness

similarity.

The first step in the process is to determine whether a given program, call it s, is correct

or incorrect.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 33

Definition 1. t = (u, v) is a unit test, where u is the input and v is the expected output.

Definition 2. P (s, t) is the output produced by program s when executed against test t.

Definition 3. E(s, t) as the expected output of program s on test t.

Given a suite of tests T = t1, t2, . . . , tn, where t
i

is a unit test, a program s is correct if

and only if 8t 2 T, P (s, t) = E(s, t), which is to say that a program is correct if it passes all

the tests.

Conversely, a program is said to be incorrect if and only if 9t 2 T | P (s, t) 6= E(s, t),

which is to say that there is at least one unit test, for which the program does not produce

the expected output.

Definition 4. F (s) = {t 2 T | P (s, t) 6= E(s, t)} is the set of all tests failed by s.

Consider two programs, s1 and s2, that are both incorrect solutions to a given exercise.

By definition F (s1) 6= ; and F (s2) 6= ;

Definition 5. K(s, F (s)) = {P (s, t) | t 2 F (s)} is the set of outputs for all the failed tests.

Definition 6. Given two incorrect programs, s1 and s2, we say that s1 is similarly incorrect

to s2, denoted by s1 ⇥⇠ s2, if and only if F (s1) = F (s2) and K(s1) = K(s2).

A program s1 is similarly incorrect to a program s2 if they both fail on the same set of

tests, and for each failed test, both programs produce the same outputs. For example, the

two programs in Figure 4.5, are similarly incorrect because for any test suite, both programs

will output 0 for every test.

The e↵ectiveness of this method is dependent upon the quality of the test suite. If there

are specific test cases designed to catch particular common problems, and all or most of these

common misconceptions have a corresponding test case, then the approach works well. If on

the other hand, the test suite does not have adequate coverage of the possible mistakes, the

test cases will fail to di↵erentiate between di↵erent bugs, leading to inaccurate measures of

incorrectness similarity. The system described in Chapter 5 is designed to allow instructors

to add test cases to exercises at any time if it is discovered that the original suite fails to

recognize specific bugs.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 34

4.3.3 Static Methods

This section presents an overview of static analysis techniques that can be used for computing

incorrectness similarity between programs. As with the dynamic method outlined earlier, the

process of computing incorrectness similarity will involve finding common bugs in programs,

but while dynamic methods rely on the outputs produced by running the programs, the

methods described here operate on the source code, or some intermediate representation of

the source code, such as Control Flow Graphs (CFG).

A CFG represents all paths that can be traversed during program execution. A node

in a CFG is a basic block, which is a straight-line sequence of code, without any branching

or jumps. A bug-finding technique, presented by Vujošević-Janičić et al. (2013), compares

the CFGs of student programs to those of instructor generated solutions. The main idea is

that a student-submitted program, call it s, has a similar CFG to a program that is know

to contain a certain bug, then there is a high likelihood that s contains that bug.

A suitable similarity measure for CFGs is the neighbor matching method, introduced in

Nikolić (2012). The notion of graph similarity based on neighbor matching is easily explained

by the example of computing a similarity measure between a person’s left and right hands.

The left hand is similar to the right one because each finger on the left hand can be matched

to a corresponding finger on the right hand. In this way, similarity between nodes on a CFG

can be computed by matching their neighbors. The following is a formal description of the

neighbor matching algorithm.

A directed graph G = (V,E) is set of nodes V , and a set of edges E. If (i, j) 2 E, then

there is an edge between node i and node j. Since G is a directed graph, we define the

in-degree of a node i, denoted as id(i), as the number of edges terminating at i. Similarly,

the out-degree, denoted by od(i) is the number of edges originating at i. Similarity between

two graphs A and B, is denoted by a matrix X = [x
ij

], called a similarity matrix, where

element x
ij

denotes the similarity between nodes i 2 V
A

and j 2 V
B

.

A matching of nodes from graphs A and B is a set of pairs M = {(i, j) | i 2 A, j 2 B},
where no element of A is matched to more than one element of B. For a matching M ,

define enumeration functions f : {1, 2, . . . , k} ! A and g : {1, 2, . . . , k} ! B, such that

M = {(f(l), g(l)) | l = 1, 2, . . . , k}, where k = |M |. Each pair in M is assigned a weight by

a function w(a, b). The weight of the matching M is the sum of the weights of individual

elements. Similarity is computed by finding the matching with maximum weight.

Iterative solutions to finding this matching usually begin with some initial estimate of

similarity and refine it using an update rule of the form [xk+1
ij

] = f([xk

ij

]). The update rule

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 35

proposed by Nikolić (2012) is the following:

xk+1
ij

=
sk+1
in

(i, j) + sk+1
out

(i, j)

2
, where

sk+1
in

(i, j) =
1

m
in

n

inX

l=1

xk

f

in

ij

(l)gin
ij

(l) and sk+1
out

(i, j) =
1

m
out

n

outX

l=1

xk

f

out

ij

(l)gout
ij

(l)

where m
in

= max{id(i), id(j)}, m
out

= max{od(i), od(j)}, n
in

= min{id(i), id(j)}, and
n
out

= min{od(i), od(j)}. The functions f in

ij

, and gin
ij

are the enumeration functions of the op-

timal matching of in-neighbors for nodes i and j, with the weight function w(a, b) = xk

ab

. The

enumeration functions for the optimal matching of out-neighbors are defined analogously.

The proof of convergence appears in Nikolić (2012).

In addition to using control flow graphs as an intermediate representation of programs

for the purpose of static analysis, it is also possible to use an execution trace (Paaßen et al.,

2016). Generally, execution traces involve compiling and running the program, and storing

information related to events of interest that occurred during execution. A possible way of

producing an execution trace of a program is to step through it using a debugger and print

out the values of the relevant variables at each step. Incorrectness similarity between two

programs can then be computed by aligning the results of the execution traces and finding

points where the traces diverge from a model trace of a correct solution. Two programs

whose traces diverge from the model solution at the same point can be treated as similarly

incorrect.

4.3.4 Discussion

It is important to note that each of the methods for computing incorrectness similarity,

described above, will be more e↵ective in detecting certain types of bugs, and not e↵ective

with other types of bugs. In a study conducted to determine the usefulness of binary feedback

provided by automated assessment for programming exercises (Kyrilov and Noelle, 2016), we

investigated the most frequently occurring types of errors, that caused student submissions

to be treated as incorrect. Contrary to other studies, that found missing semicolons to

be the most frequent error, we found that a general failure to follow instructions was the

biggest problem. Many students’ solutions were marked as incorrect simply because they

had not formatted their output as the instructions required. Others had hard-coded the

sample inputs provided in the instructions, unaware that their programs would be tested on

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 36

di↵erent inputs. The failure to address corner cases, such as the fact that 1 is not a prime

number, was also prevalent.

In our setting, students are given programming exercises to complete during their labo-

ratory sessions. A student is free to use any development environment to generate working

code that solves the problem described in the exercise instructions. Students will typically

submit their programs for evaluation once they feel that they have solved the problem cor-

rectly. Since we encourage students to test their code locally before they submit it, it is very

unusual for us to receive a submission containing compile errors.

In general, it was found that the static analysis methods are e↵ective at finding bugs

that cause runtime errors, such as division by zero and bu↵er overflows. Dynamic methods

are not e↵ective at finding these problems because they rely on the output of the program.

If a runtime error occurs, the program produces incomplete output, which is not useful to

the method.

On the other hand, dynamic methods are e↵ective at finding logic errors, provided that

a unit test that triggers the error is present. Static analysis methods struggle here because

there is nothing illegal in the code, and the problem is related to the student’s conceptual

understanding of the problem, and not of the programming language being used to solve it.

We therefore decided to implement a metric for incorrectness similarity based on the

unit-testing dynamic method, since this method is more e↵ective at finding the bugs we

commonly encounter. In order for this to work, it is necessary to ensure that each exercise

has a suite of unit tests that covers all the di↵erent possible logical errors. In general, it would

not be practical to try and predict all the possible ways that a program could go wrong, and

design unit tests for each scenario, but given the size of the exercises that we are assigning

to our students, the number of di↵erent mistakes that are made is fairly small. In a proof-

of-concept study, we looked at several exercises from our labs and manually clustered the

programs based on incorrectness similarity. There were, on average, 5 - 6 clusters, meaning

that the instructor would only have to design less than 5 unit tests for each exercise. This

is because some of the errors happened due to poorly formatted outputs. There is no need

to design unit tests for that problem. Instead, a simple regular expression can be assigned

to each exercise, which describes the format of the expected output. Then, before any unit

tests are executed, the system checks whether the output matches the regular expression. In

cases where it does, the unit-testing can proceed, and if the output does not match the given

regular expression, the system can generate appropriate feedback for the student, informing

them that their code was not tested for validity because the mis-formatted output would

have resulted in the submission failing the unit tests, regardless of algorithmic correctness.

CHAPTER 4. CASE-BASED REASONING FOR AUTOMATED ASSESSMENT 37

The resulting automated assessment system is described in chapter 5 and the study of

its e↵ectiveness on improving student learning is presented in chapter 6.

Chapter 5

The Compass E-Learning System

5.1 Introduction

The main product of this dissertation was to produce an automated assessment system

for programming exercises that is able to generate meaningful feedback to students who

submit incorrect solutions. As described in chapter 3, automated assessment systems that

produce binary feedback can reduce student engagement and promote cheating. A case-

based reasoning framework, described in chapter 4, was designed to address this problem.

The completed system, called Compass, is described in this chapter.

The goal of Compass is to be a modern e-learning system for Computer Science courses,

specifically for administering programming exercises. It is designed to be available online

any time from any location, via the Internet, so students can interact with it whenever it

suits them. There is a user management system, where each user can log into the system

and access materials for courses that he/she is enrolled.

Once a student has logged into a course, he/she is presented with the laboratory assign-

ments for that course. Each laboratory assignment is a collection of programming exercises,

where each exercise consists of a problem description, a sample input-output pair, and a

collection of support files that may be needed for the exercise. Students may read the in-

structions on-screen while implementing the solution for the exercise in a text editor of their

choice. When the student is satisfied with his/her solution, the source code can be uploaded

to Compass for evaluation.

The server-side component of Compass is responsible for compiling and running the code

against instructor provided test cases to determine its correctness. If the submission passes

all tests, then positive feedback is returned to the student. If, however, one or more of the test

38

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 39

fail, the feedback generation module of Compass is invoked. The first step is to determine

if the tests failed because of poorly formatted output. During exercise creation time, the

instructor is asked to provide a description of the expected output formatting as a regular

expression. Compass matches the student-produced output to the regular expression. If the

output does not match, then appropriate feedback is immediately returned to the student,

informing him/her that the output is incorrectly formatted and lets them know how to

correctly format it. If the format of the output is correct, then the case-based reasoning

module tries to find a similarly incorrect prior solution from its knowledge base. If such a

case exists in the knowledge base, the feedback from it is sent to the student. If no matching

case is found, the submission is flagged for instructor intervention and an appropriate message

is sent, informing the student that an instructor is looking at his/her submission and that

feedback will be provided soon. It is important to note that the student is not told that

their solution is wrong at this time, because the system is not able to provide more detailed

feedback. The knowledge that a human instructor is looking at the code should be motivation

enough for the student to wait for that feedback before giving up on the exercise or resorting

to academically dishonest practices.

When the instructor generates feedback and sends it to the student, Compass will monitor

the next submission from the student to determine if the feedback was useful or not. If the

next submission from the same student for the same exercise no longer contains the original

error, then the original submission, together with the newly generated feedback is stored in

the knowledge base as a case. Any future occurrences of the same error, will be handled

automatically by Compass. There could be scenarios where a student does not understand

the feedback message received from Compass, in which case the instructor or a teaching

assistant will be asked to manually examine the submission. Section 7.3 puts forward a

proposal for extending the system capability to maintain multiple cases per error, so that the

system can o↵er alternative explanations to students before getting the instructor involved.

5.2 System Organization

This section describes the various components of the Compass system and how they are

connected together.

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 40

5.2.1 Server-side Components

The server-side components of Compass are responsible for managing users, administering

exercises, storing student submissions, automated assessment of the submissions, generating

feedback for incorrect submissions, maintaining administrative data, such as grades and

deadlines, log data, such as timestamps for each student login and submission attempt, as

well as number of attempts by each student for each exercise, and facilitating communication

between students and instructors via instant messages.

Compass uses a MySQL database engine for storing and managing data. All server-side

modules rely on the database layer for storage. The data stored includes user details, course

information, individual submissions, and log data. In addition the knowledge base of the

feedback generation module is stored in MySQL as well as the messages sent to students by

the instructor.

There is a RESTful API layer that can be used to interact with the backend components.

Any user interface can connect to the API layer and send messages in order to request data

or write to the database. Appropriate user permissions need to be granted to agents reading

or writing data. This design allows the server-side components of Compass to be used by

any frontend interface, even though the Compass system comes bundled with an interface.

The automated assessment module is another server-side component of Compass. It

accepts one or more source code files, and a suite of test cases, and returns a message

indicating whether or not all test cases were successful. Possible messages are: “compile

error”, “runtime error”, “time limit exceeded”, “incorrect answer”, and “correct answer”. In

the case of “compile error”, and “runtime error”, the actual error message is also returned,

if the program is taking more than a specified amount of time, usually set to 5 seconds,

the “time limit exceeded” message is returned. If all test cases pass, the “correct answer”

message is returned, and if any of the test cases fail, then the “wrong answer” message is

returned.

The automated assessment module is responsible for managing the processes that it

spawns, such as killing those that have exceeded their time limit. In addition to this, the

module also provides a sandbox environment for student processes to run, meaning they are

not allowed to execute any system calls, spawn sub-processes, or do anything else outside

the scope of the exercise. Usually student processes are only allowed read and write access

to the temporary folder created for the test, in an e↵ort to ensure that malicious code does

not do damage to the system.

The final server-side component is the case-based reasoning module, responsible for gen-

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 41

erating appropriate feedback for incorrect solutions to exercises. This module is only invoked

if the automated assessment module returns a “wrong answer” result. In this case, the first

step is to verify the output formatting by matching it against an instructor-provided regular

expression. If the format is correct, then the module retrieves a case from the knowledge

base, according to a given similarity metric with respect to incorrectness. This module also

uses the database to store relevant case information. Once feedback has been provided to a

student, this module also monitors future submissions by the same student in order to deter-

mine whether the feedback was useful or instructor intervention is needed. The server-side

components of the system are graphically represented in figure 5.1.

Grading System
Is

Solution
Correct?

First Submission Update Case Baseyes

no

CBR System Feedback

Is
Intervention

Needed?
Resubmission

no

yes InstructorsUpdated Feedback

✓

Figure 5.1: A flowchart of the automated grading component of the proposed system

5.2.2 User Interface

It is important for students to be able to interact with the system in a non-obtrusive way

so as to not hinder the learning process. Early systems that required students to upload

their submission to a server via the UNIX secure copy (scp) utility. Students who lacked

familiarity with the UNIX command line were therefore disadvantaged.

The user interface of Compass was built using modern web standards, including HTML5,

CSS3, and JavaScript, as well as a number of libraries such as SemanticUI for a consistent

look of all the visual components, jQuery for managing and manipulating HTML elements

with code and various others. There are no proprietary components, ensuring that Compass

is compatible with all modern platforms and devices.

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 42

There is an interface for logging in, changing or resetting a password, and selecting a

course to log into. The main portion of the interface is devoted displaying the lab assignments

and exercises. The side panel is for selecting an exercise from a particular lab assignment,

while the main portion of the screen is used to display the exercise instructions, sample

input-output pairs, an interface for uploading source code, and feedback messages for each

submission. A screenshot of the interface appears in Figure 5.2.

Figure 5.2: The student interface of Compass

All visual elements are updated via XML HTTP requests (AJAX), so that no page

reloading is necessary when new information needs to be displayed. When a student submits

a solution, the feedback message appears on the interface within seconds, which informs the

student on what they should do next.

In addition to providing an interface for students to complete programming exercises, the

Compass system also provides useful utilities for instructors. There are standard exercise

creation and assignment tools, but the most important instructor tool is the interface for

the refinement process of the case-based reasoning framework. Recall that when a student

receives feedback for an incorrect submission, the system checks to see if the student ends up

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 43

submitting a correct solution. If that is not the case, the submission is flagged and added to

the refinement interface, where the instructor sees the code, the unit tests and the previous

feedback given to the student. The instructor has the opportunity to update the feedback

in order to clarify concepts that may have originally been vague. The instructor interface

appears in Figure 5.3.

Figure 5.3: The instructor interface of Compass

5.3 User Experience

This section illustrates a typical interaction a student may have with the system, starting

with an incorrect solution to an exercise, receiving feedback by the system, and correcting

the original solution.

The exercise in this example asks students to read in an integer N and print out all prime

numbers strictly less than N . The following sample input-output pair was provided to the

students.

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 44

Input

10

Expected Output

2

3

5

7

A typical student solution would involve creating a function that tests primality of integers,

and a loop in the main function that iterates from 2 to N and tests each number for primality,

printing out the ones that pass. An example implementation in the C++ language appears

in Figure 5.4.

#include <iostream>
#include <math.h>

using namespace std;

bool isPrime(int n){
 if (n == 1) return false;
 for (int i = 2; i <= sqrt(n); i++){
 if (n%i == 0) return false;
 }

 return true;
}

int main(int argc, char *argv[]) {
 int limit;

 cin >> limit;

 for (int i=2; i <= limit; i++){
 if (isPrime(i)){
 cout << i << endl;
 }
 }
}

Figure 5.4: An incorrect C++ solution

If a student submits this solution to a typical binary feedback system, he/she will simply

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 45

be told that the solution is incorrect. This could cast doubt in the mind of the student

about the correctness of the isPrime function, which in this case is correct, and lead the

student down a wrong path, which would frustrate the student when he/she finds out that the

mistake is altogether di↵erent. Submitting this solution to Compass would yield a completely

di↵erent result. This is shown in Figure 5.5.

Figure 5.5: The feedback provided by Compass

The student is informed that his/her code is producing the prime numbers up to and

including N , and not strictly less than N , so all the student would need to do is change the

terminating condition of the for-loop in the main function. With a message of this kind, the

student is much more likely to succeed on the next attempt, whereas without this feedback

the student would have found it more di�cult to debug because the problem only reveals

itself on prime inputs. In addition to leading the student to succeed more quickly, this

CHAPTER 5. THE COMPASS E-LEARNING SYSTEM 46

feedback message may also make the student realize the importance of testing code with

di↵erent test cases, and think about corner cases, which is a good programming practice.

5.4 Conclusion

In summary, the Compass system is a complete, asynchronous e-learning system for Com-

puter Science, referred to as a Computing Augmented Learning Management System (CALMS).

It can be used as a standalone educational platform or as a supplement to classroom instruc-

tion. The feature that makes this system di↵erent from existing systems is its ability to

provide appropriate feedback to programming exercises, which is made possible by using

case-based reasoning techniques. Binary feedback provided by existing automated grading

system is a serious flaw in the formative assessment process. Binary feedback a↵ects students

negatively because it only serves to reinforce negative perceptions students have of their own

abilities. This can be highly demotivating for students, causing them to disengage from the

material and perform poorly in the course.

By addressing the binary feedback problem, the Compass system allows instructors to

focus on important activities such as teaching concepts, discussing ideas and helping students

learn. Current e-learning systems do not allow instructors to do that, even if automated

grading with binary feedback is in place. Instructors are most likely debugging programs of

students who are struggling, leaving no time for the more useful activities discussed above.

Chapter 6

System Evaluation

6.1 Introduction

The goal of this work was to create an automated assessment system for programming exer-

cises, capable of providing meaningful feedback to students who submit incorrect solutions.

While there are many automated assessment systems for programming exercises, most of

them are limited to providing binary feedback to students. This is a serious flaw and causes

disengagement and cheating on the part of the students, described in detail in chapter 3.

The case-based reasoning framework, described in chapter 4, was developed to address the

issue of binary feedback and the negative e↵ects it has on students. The resulting system,

named Compass is described in chapter 5. This chapter focuses on evaluating whether the

detailed feedback provided to students by the Compass system has been helpful to their

learning of programming.

As is the case with other environments where automated assessment is used for program-

ming exercises, almost all students end up with correct solutions for all the exercises they

attempt. This is because there is usually no limit on the amount of times a student can

resubmit a solution to a given exercise. Therefore, looking at student scores on their lab

exercises is not a good measure to determine the e↵ectiveness of the system. Instead, this

study focuses on whether the problems of binary feedback have been adequately addressed

by the Compass system and whether students are finding the feedback helpful.

Since Compass is a system for formative evaluation, students are supposed to attempt

exercises, perhaps make mistakes along the way but ultimately learn from those mistakes.

This can not happen if students are not attempting the exercises, or are submitting the work

of others as their own.

47

CHAPTER 6. SYSTEM EVALUATION 48

The following are the three research questions we aim to answer in this chapter:

1. Do students find the feedback generated by Compass to be useful for their programming

exercises?

2. Does Compass adequately address the problem of plagiarism caused by binary feed-

back?

3. Does Compass adequately address the problem of disengagement caused by binary

feedback?

The following section describes the methods that were employed to answer these ques-

tions. The results from our analyses appear in section 6.3. The chapter ends with a discus-

sion, explaining the results that were obtained.

6.2 Methods

To test the research questions presented in the last section we collected data from two

instantiations of the Introduction to Object-Oriented Programming course at the University

of California, Merced. In the first instance, which took place in Spring 2016, the students

were assigned weekly programming exercises, but the Compass system was programmed

to provide binary instant feedback only. The following year, Spring 2017, the students

were assigned the same programming exercises, and the case-based reasoning component of

Compass was turned on. The knowledge base of Compass was initially empty, meaning that

the first incorrect submission of each exercise was handled by a human instructor, which was

the first step of creating knowledge in the system. There were 90 students enrolled in 2016

and 120 in 2017. We examined student submission data from 31 programming exercises,

spanning 5 laboratory sessions.

The exercises ranged in di�culty level, from very basic at the beginning to intermediate

towards the end. Interesting examples include an exercise where the students were asked to

read a text file and count the number of times a given word occurs. This was an interesting

exercise because of the wider variety of errors that could have occurred. Common mistakes

made by students were producing superfluous output. This was usually done by creating

prompts for entering input, such as “Please enter the word you wish to count:”. Students

did not realize at first that such prompts are treated as part of the output of the program, so

their code would have necessarily been marked as incorrect, if not for the Compass feature

CHAPTER 6. SYSTEM EVALUATION 49

of verifying output format. Solutions with this mistake were easily detected by Compass,

and the students who authored them were given detailed explanations of how to correctly

format their output. An example of such feedback was: “Your program produces unexpected

outputs. The string “Please enter the word you wish to count:” should not be part of

your output”. This output was generated by Compass automatically, without using case-

based reasoning, because the output produced by the program does not match the regular

expression provided by the instructor at exercise creation time. Furthermore, Compass

extracts the part that does not match and advises the student that it should not be part of

the output.

The second interesting error made by students in this exercise was hardcoding of inputs

and outputs. The exercise instructions included a sample run of the program, with a text file

called “words.txt” and “many” as the input to the program. Some students hardcoded the

file name and/or the input word, so their programs always produced the incorrect outputs

because the test cases in the assessment module used di↵erent inputs. Delivering negative

feedback to students who have made this mistake can be particularly damaging since their

algorithm for counting the number of occurrences of a substring within a string may have been

correct, and the negative feedback could shed doubt in their confidence, prompting them to

start fixing something that is not broken. The case-based reasoning module of Compass was

particularly e↵ective in catching this kind of mistake, and students who had committed it

were immediately alerted to this fact, which prevented entire episodes of unfortunate events.

The final type of mistake students commonly made in this exercise was ignoring corner

cases. These include case insensitivity, that is failing to recognize di↵erent capitalizations

of the same word as matches, and punctuation, where some students treated punctuation

symbols read from the text file as part of the word that was being considered. It is a very

straightforward process to design test cases that detect the presence of these errors, and the

Compass system was able to e↵ectively let students know what they were doing wrong.

For the first research question, we consider the number of attempts students needed in

order to arrive at a correct solution. The intuition behind this approach is that if a student

submits an incorrect solution to an exercise and receives useful feedback, then the student

will arrive at a correct solution faster, namely in fewer attempts compared to a situation

where the student did not find the feedback useful.

In order to mitigate the possibility of students arriving at a correct solution quickly by

committing plagiarism, we consider honest sequences, defined as the number of plagiarism-

free attempts by a student to get to a correct solution. We also exclude students who

submitted a correct solution on their first attempt, as these students could not have benefited

CHAPTER 6. SYSTEM EVALUATION 50

from the detailed feedback generated by Compass.

Once we had computed the honest sequences for each student for each one of the exercises

of interest, we performed analysis of variance in order to determine whether there was a

statistically significant di↵erence between the two groups.

To answer the second research question we computed the number of dishonest submissions

made by students for each exercise. As it was defined in chapter 3, a dishonest submission is a

submission that is identical to a submission from another student. This is an underestimation

of the actual number of academically dishonest submissions but we are highly confident that

there are no false positives, that is to say, there are no submissions marked as dishonest

that are actually plagiarism-free. The idea behind this analysis is that if a student receives

detailed feedback on what exactly is wrong with the submission, the student is less likely

to cheat. We performed analysis of variance between the 2016 and 2017 groups in order to

determine whether the rate of cheating has decreased because of the introduction of non-

binary feedback, and whether the reduction is statistically significant.

For the third research question, we considered the number of exercises students did not

attempt. The intuition here is that success on earlier exercises in a given lab, will result

in higher likelihood of the student attempting later exercises, thereby increasing the overall

number of exercises attempted. Once again, we performed analysis of variance between

2016 and 2017 to determine if the increase in number of exercises attempted is statistically

significant.

6.3 Results

To answer the first research question, we computed the length of honest sequences for each

student, averaged over the 31 exercises of interest. That is, for each student, we computed the

number of plagiarism-free submissions the student makes in order to arrive at a successful

solution for an exercise. Table 6.1 shows the number of students in each year, with the

average honest sequence length, including standard deviation and standard error. For the

full data set, refer to appendix B.

It is interesting to note that in both years almost every student needed more than one

attempt for at least one of the exercises. It is also clear that the average number of attempts

made by students for an exercise has gone down from 4.7789 in 2016 to 3.6253 in 2017. We

performed analysis of variance (ANOVA) and found F (1, 201) = 21.578, and p < 0, 0001⇤⇤⇤,
which is a strong indication that the feedback generated by Compass was useful to students,

CHAPTER 6. SYSTEM EVALUATION 51

year N MEAN SD SE

2016 87 4.7789 2.2290 0.2390
2017 116 3.6253 1.2822 0.1191

Table 6.1: Honest Sequence Length Statistics

as they were able to solve problems significantly faster than students who did not have access

to the detailed feedback generated by Compass.

For the second research question we looked at plagiarism rates. More specifically, for each

exercise, we counted the number of plagiarized submissions. The full data set is available in

appendix B. Table 6.2 shows the average number of dishonest submissions per exercise for

both 2016 and 2017. Standard deviation and standard error values are included.

year N MEAN SD SE

2016 31 14.3548 12.3977 2.2267
2017 31 5.9677 7.6441 1.3729

Table 6.2: Average number of plagiarized submissions per exercise

It is immediately clear from the table that the number of dishonest submissions per exer-

cise has decreased dramatically in 2017, when students were provided with detailed feedback.

We performed ANOVA and found F (1, 30) = 32.205, and p < 0.0001⇤⇤⇤, indicating a strong

statistical significance, which allows us to answer the second research question positively.

The third research question has to do with how engaged students are with the exercise

material. We computed, for each exercise, the number of students that did not attempt the

exercise. This gives a measure of disengagement of students from the material. We expect

that detailed feedback generated by Compass will encourage students to stay in the lab and

attempt more exercises. Table 6.3 shows the average percentage of students that do not

attempt an exercise. The full data set is available in B.

It is obvious that the number of disengaged students is reduced from 11.7919 in 2016

to 8.1994 in 2017. ANOVA revealed that the reduction is statistically significant, with

F (1, 30) = 64.603, and p < 0.0001 ⇤ ⇤⇤. This is strong evidence that detailed feedback,

provided by Compass, encourages students to attempt more exercises than those students

who had no access to the Compass system.

CHAPTER 6. SYSTEM EVALUATION 52

year N MEAN SD SE

2016 31 11.7919 7.2847 1.3084
2017 31 8.1994 8.1792 1.4690

Table 6.3: The average number of students who do not attempt an exercise, expressed as a
percentage of the class

6.4 Discussion

The statistical analysis performed in the preceding section provides solid evidence that

all three research questions can be answered positively. The first experiment investigated

whether or not the feedback provided by Compass helps students solve problems faster (in

fewer attempts), thereby increasing their rate of learning. We make the assumption that

if a student goes from having an incorrect solution, to a plagiarism-free correct one, then

learning has taken place, and Compass makes the process more e�cient. It is not a surpris-

ing result, since with negative binary feedback a student will have to spend time finding the

problem on their own, and they may not be successful at finding it right away, attempting

to rectify an issue which does not exist. We have seen a lot of empirical evidence of this

from earlier courses, where binary instant feedback was the only form of feedback students

received on their programming exercises. The detailed feedback provided by Compass was

able to point students in the right direction, as evidenced by the statistical analysis, which

led to increased learning rates.

A similar argument can be made for the experiments related to plagiarism and disen-

gagement rates. If a student receives binary negative feedback, there is no information there

to guide the student to correcting the solution. This is particularly detrimental to novice

programmers, whose self-e�cacy is low. Bombarding them with negative feedback only di-

minishes their already low level of self-confidence. At that point, many of them see no

alternative other than disengaging from the material, or resorting to academically dishonest

practices. Both of these are counter productive to learning and should be avoided. The de-

tailed feedback provided by Compass, opens up a third avenue to explore, namely follow the

advice given in the feedback. Depending on the exercise and the instructor who generated

it, this feedback could point out the error in the code or at least give the student a hint on

how to find it. This is when learning happens.

The Compass system also protects students from the possibility of lowering their self-

e�cacy. Since binary feedback o↵ers no explanations as to why a submitted solution is

CHAPTER 6. SYSTEM EVALUATION 53

incorrect, students with low self-e�cacy will naturally assume that it is because they are not

good programmers, a belief which is only reinforced by binary feedback. Compass has the

ability to point out the actual source of the problem, making it clear to students that it is

not their programming skills, but rather the fact that they are not following the instructions

of the exercise. This is the most common reason for a submission to be marked as incorrect,

and Compass is very e↵ective in pointing out these errors to students.

In addition to the statistical analysis described above, we ran a pilot study with a pro-

totype version of the Compass system, with the feedback generation module working. We

collected survey responses from 10 participants, who generally had positive comments for the

Compass system. For example, students described it as “more interactive”,“more detailed”,

and “friendlier” than standard lab submission practices. They also noted that they received

more timely feedback: “It was much better to get feedback on grading immediately rather

than having to wait”. Further, some students noted that it influenced their interactions with

the TA, stating: “I was able to ask my TA more specific questions [as] to what was wrong

with my code”, and “It helped me find the problem and think of questions to ask the TA”.

Finally, several students said that using the system influenced their confidence in the exer-

cise, with one student noting, “It made me feel confident that the code was actually correct

and functional”. Another simply noted, “It made me feel more confident”. This is simply

more evidence that students find detailed feedback generated by Compass to be useful. The

small sample size in this survey did not allow for the results to be published on their own.

It is also worth examining the amount of additional work instructors had to do in order to

populate the knowledge base of Compass. On average, instructors were required to generate

4 knowledge cases per exercise. The e↵ort involved in that was to examine the source code

of a student submission, and write a constructive feedback comment, which was then stored

as a case in the case-based reasoning framework. All subsequent submissions that were

recognized to have the same errors, were handled automatically by Compass. The overall

e↵ort per exercise is equivalent to composing 4 email messages to students explaining why

their code is not correct. Also note that this e↵ort is only required in the first year. If the

same exercises are used in future instantiations of the course, then they will already have

a populated knowledge base and it will not be necessary for instructors to do any manual

grading, unless a submission arrives with an error that has never been encountered before

by the system.

The Compass system was specifically designed to be agnostic to the actual content of the

feedback messages, relying on the instructor to provide high quality feedback, and the system

is only responsible reproducing it to di↵erent students when appropriate. This means that if

CHAPTER 6. SYSTEM EVALUATION 54

the feedback generated by the instructor is of low-quality, there is no way for the system to

improve the quality, so the overall e↵ect on student learning can be negative, if the instructors

populate the knowledge base with low-quality samples. Assuming, however, that instructors

will be able to provide good, or at least moderately high-quality feedback, using Compass is

expected to lead to benefits for student learning.

We also posit that the system is highly scalable in the number of students it can support,

without significant increases in instructor workload. This is because the number of cases

instructors have to generate by hand is a function of the problem, not the number of students.

The exercise we typically assign to our students have around 5 distinct errors that need to

be recognized by the system. This number will stay the same even as the number of students

dramatically increases. It will simply be the case that more students are making the same

mistakes that the system has already encountered, allowing it to handle them automatically,

without instructor intervention. The only time instructors will be required to put in e↵ort

is in the knowledge refinement stage of the case-based reasoning framework, which involves

making existing knowledge more clear and more understandable to students.

Chapter 7

Conclusion

7.1 Dissertation Summary

As the number of students enrolled in introductory Computer Science courses continues to

increase, there is an ever-present need for instructors in these classes to adopt automated

assessment systems for programming exercises. This is because of the widely accepted prin-

ciple that students learn to program by doing programming exercises. Therefore providing

more practice to them is beneficial for their learning but the labor costs of manually grading

the exercises quickly becomes unmanageable.

Automated assessment systems for programming exercises have existed for as long as

people have taught programming. Early systems lacked many of the features of today’s sys-

tems and required students to have knowledge of the UNIX command line in order for them

to submit their exercises. Modern automated assessment systems for programming exercises

are always part of a Learning Management System (LMS), which provides user account man-

agement, course material repositories, remote communication tools and gradebooks. LMSs

are available online any time from any location, accessible on any device connected to the

internet.

The automated assessment component of the systems usually works by compiling and

running student solutions to programming exercises on a suite of unit tests, which were

provided by the instructor at the time of exercise creation. If the student solution passed all

the unit tests, then it is considered to be correct and the student is given the appropriate

positive feedback. If, however, the submitted program fails one or more of the tests, then

the student is given a message saying that something is wrong with their code and that they

should rectify the problem and re-submit their solution.

55

CHAPTER 7. CONCLUSION 56

While many educators will acknowledge that this kind of binary feedback is not as good as

feedback provided by an expert human programmer, they feel that it is better than providing

no feedback at all. We decided to test this hypothesis by looking at data collected by our

automated assessment system. The experiment we set up was to compare behaviors of two

groups of students enrolled in the same course, in di↵erent semesters. The programming

exercises assigned were the same for both groups, but one group received binary instant

feedback, generated by our automated assessment system and the other group received no

feedback at all. Their solutions were graded after the exercise deadline had passed and their

grades were published on the LMS.

Through statistical analysis, we found that the group receiving binary instant feedback

was more likely to commit plagiarism or give up on the exercises completely. We found

statistical significance when we analyzed the variance between the two groups in terms of

the number of plagiarized submissions for each exercise, and the number of exercises students

were leaving unattempted. A possible explanation for these results comes from self-e�cacy

theory, which states that students with low self-e�cacy, that is to say students who do

not believe in their own abilities, are likely to get demotivated by negative feedback. The

opposite is true for students with high self-e�cacy. Negative feedback encourages them to

work harder because they want to maintain their belief that they have the skills required to

solve the problem.

Since the students enrolled in introductory courses are novice programmers, they have

low self-e�cacy and the negative feedback is really detrimental to them. Since the binary

negative feedback o↵ers no explanation of what the problem is, or how to fix it, students

with low self-e�cacy are unable to find it on their own, leaving them only three options.

Ask someone for assistance, be it the instructor or a fellow student, get a working solution

from a friend and submit it as their own, or simply leave the lab without attempting any

more exercises.

We have reason to believe that members of underrepresented groups are less likely to

ask for help on a programming exercise because they are already uncomfortable enough just

being in this environment without having to do things that would potentially cause them

embarrassment, as they may be under the impression that the concept they are struggling

with is very basic and they should be expected to have mastered it, so they do not want to

reveal this perceived weakness. We are currently involved in a project to study these e↵ects

at the University of California, Merced, whose student population includes a large number

of underrepresented population groups and first-generation college students.

To address the serious problems with binary feedback that we uncovered, we set out to

CHAPTER 7. CONCLUSION 57

design an automated assessment system capable of providing detailed feedback to incorrect

programs, which is comparable to feedback generated by expert human programmers. We

built a case-based reasoning framework for reusing knowledge from past interactions between

students and instructors. Our new automated assessment system, called Compass, stores

these interactions in a database and links them to the incorrect source code submitted by

the students. When a di↵erent student submits a program that is similarly incorrect to the

one stored in the database, that is to say both programs contain the same bugs, the system

has human-generated knowledge that it can provide to the student as feedback.

The key to making the system work is the ability to compute incorrectness similarity.

We investigated multiple approaches to accomplishing this goal, including both dynamic and

static analysis methods. Static methods we considered included analyzing abstract syntax

trees, control flow graphs, execution traces, and other kinds of intermediate source code rep-

resentation. We found that these methods are more suited to uncovering the bugs that cause

run-time errors, such as bu↵er overflows and division by zero. Dynamic methods, which rely

on the outputs from test cases, are more suited to finding logical errors, where students did

not do anything illegal, but were simply not following the instructions or lacked understand-

ing of the problem. Designing unit tests is the best way to discover these problems.

We investigated the kinds of problems students most often experience when submitting

solutions to our automated assessment system, and we found that the vast majority of

them are caused by students not following the instructions correctly and formatting their

outputs wrong. These are most easily caught by dynamic methods for program similarity so

the Compass system computes incorrectness similarity based on dynamic analysis methods.

Future work will involve incorporating the static analysis methods into Compass for the

fewer cases where students submit code that causes runtime errors.

We deployed Compass in an undergraduate course at the University of California, Merced

in Spring 2017. The previous instantiation of the course was in Spring 2016, and a binary

feedback assessment system was in use then. We kept the same exercises as in 2016 but

administered them through Compass, which is capable of providing detailed feedback to in-

correct submissions. We performed a study to determine whether the problems we identified

with binary instant feedback are adequately addressed by Compass.

We found that the average number of attempts students make on a single exercise had

gone down significantly with the introduction of Compass. Students were now able to arrive

at a correct solution faster, and in fewer attempts than students who had binary instant

feedback. This is likely because the detailed feedback generated by Compass provides enough

guidance for students to be able to correct the problem quickly, and there is no need for them

CHAPTER 7. CONCLUSION 58

to resort to trial and error tactics that we have seen with binary feedback. This is where a

student does not know the reason why their code is failing the unit tests, so the student makes

small random changes hoping to stumble on the correct solution. This is counterproductive

to their learning so it is a very positive result to see this practice diminish.

The other undesirable e↵ects of binary instant feedback, which are increased levels of

plagiarism and disengagement from the course material, were also successfully addressed by

Compass. We saw substantial and significant decreases in both of these practices with the

introduction of Compass. Once again, giving the students reasons as to why their code is

wrong, or at least some guidance on how to find the problem, means that they now have an

alternative option to cheating and giving up. If they follow the suggestions in the feedback

messages they are likely to succeed, eliminating the need for plagiarism and disengagement.

It is exactly when students make mistakes, and they understand the reasons why what they

did is wrong, and they know a way to correct the problem, that learning is actually taking

place.

7.2 Discussion

The dissertation presents several new discoveries and introduces new approaches to auto-

mated assessment, that have not been considered before. Specifically, we show that binary

instant feedback is detrimental to student learning and performance, as it can demotivate

students and increase their propensity to cheat or disengage from the material. This is

an important discovery as it debunks a widely held belief in the Computer Science Educa-

tion community that automated assessment systems limited to binary feedback are “good

enough” and there is no pressing need to improve the quality of feedback. A possible reason

for this incorrect perception is that studies of automated assessment systems have focused on

success rate of students on the exercises administered by these systems. Due to the infinite

resubmission policy, where students are allowed to resubmit solutions for an exercise until

they get it right, almost all students receive the maximum number of points for the exer-

cises, which leads to high success rates among students. This, however, does not mean that

learning has taken place, because if students use dishonest methods of obtaining the correct

solution, they learn nothing. If students make random changes to their code, a practice

that has been observed in undergraduate Computer Science labs, the students learn little, or

nothing. If a teaching assistant corrects the code of a student, again, there is little learning

on the student’s part. All these factors are significant motivation for pursuing the design

CHAPTER 7. CONCLUSION 59

and development of improved automated assessment methods.

Case-based reasoning, which is a machine learning technique successfully employed in

various domains, was selected as a framework for reusing previous student-instructor inter-

actions to generate feedback for students who submit incorrect solutions to programming

exercises. It was the first time that case-based reasoning has been used in the domain

of automated assessment of programming exercises. We saw it as promising because of the

repetitive nature of problems with programming exercises, which is necessary for a successful

implementation of a case-based reasoning system.

We also coined the term “incorrectness similarity” of programs. Unlike traditional mea-

sures of software similarity, incorrectness similarity ignores the structure of programs and

instead focuses on bugs. Two programs are considered similarly incorrect, when they both

have the same bugs. This concept, which can lead to an entire research discipline in its own

right, has not been explored before. It is a crucial component of the case-based reasoning

framework as it is necessary for the system to recognize when two programs have similar

problems, so that it can provide similar feedback to both of them. Beyond case-based rea-

soning, incorrectness similarity can be useful in a number of other applications, such as

informing the instructor, in real time, of the kinds of mistakes students are making, allowing

the instructor to modify lecture materials on the fly in order to address the mistakes early.

All the e↵ort in this dissertation ultimately culminated in the Compass e-learning system.

It is a system specifically designed to provide feedback comparable to the feedback generated

by expert human programmers. Compass is implemented as a web application, based on

modern standards, which make it compatible with all platforms and devices. It can be

installed at any institution and used by instructors who are not familiar with its inner

workings. There are web interfaces for students to view exercise instructions and upload

solutions. There are instructor interfaces for populating the knowledge base of the feedback

generation system and to communicate with individual students. These communications

are also used as prior knowledge in the feedback system. The system is an illustration that

the case-based reasoning technique works well for this application and student learning is

improved as a result.

As the system is used by more instructors over time, and the knowledge base matures, the

workload of instructors will be reduced further as there will be less need for them to intervene.

This could be a game-changer in MOOCs, which currently su↵er from low completion rates.

A significant reason for this could be that the instructional team does not have the time to

address the problem of every student individually. Compass will allow them to address the

problem only once (the first time it occurs), and let the system handle all future cases. This

CHAPTER 7. CONCLUSION 60

will result in more students getting the help they need, in a timely manner, thereby reducing

the probability of the student dropping out.

7.3 Limitations and Future Work

We have designed and implemented an automated assessment system for computer pro-

gramming exercises that provides feedback to incorrect submissions, which is comparable to

human-generated feedback. It has been shown to address the serious flaws of binary instant

feedback, that we uncovered. Even though it successfully addresses the problems of cheating

and disengagement, and it seems to accelerate the rate at which students learn, there is still

room for improvement.

A possible shortcoming of the current system is that it always provides the same feedback

to all students who have made a particular mistake because it stores a single case per error.

The system could be modified to store multiple cases, each of which will have a di↵erent level

of detail in its explanation of how to correct the problem. Di↵erent students may respond

better or worse to varying levels of abstraction in the explanations. This mechanism will

allow the system to o↵er alternative explanations for a given mistake, before bringing the

instructor into the loop. There can also be a mechanism for determining which one of the

multiple cases is most appropriate for a particular student, given past submission history

for the exercise, timestamp data, and other information known about the student. This

will further increase the utility of the system and decrease instructor involvement. It will

prove necessary if the system scales to thousands of users or higher, since that will increase

the likelihood of a student not understanding a particular feedback message and needing an

alternative explanation.

The current version of Compass only considers correctness of programs, established by

running test cases. Issues such as e�ciency, and coding style are ignored. It is inherently

more di�cult to design test cases for these issues and approaches such as static code analysis

and execution traces will prove more useful for this. Static analysis can be used for check-

ing coding style and ensuring students adhere to software engineering best practices, while

execution traces can help to determine the algorithm that is used for a particular problem,

which is an indication of e�ciency. Test cases focusing on e�ciency can also be designed, but

this approach is less desirable as such test cases would essentially try to force the program to

run out of time, or memory. Having to do that for all submission would place unnecessary

burden on the system, which could result in delays in getting feedback to the students.

CHAPTER 7. CONCLUSION 61

Another area of future research is to implement a mechanism for providing feedback at

earlier stages of solution development. Currently, Compass requires students to submit code

that compiles and runs, in order for it to be e↵ective. There are students who struggle with

that aspect, and could benefit greatly from some feedback in cases where they do not know

how to start coding the solution. The static analysis techniques that we investigated could

prove really useful for this.

Overall, this dissertation achieved its desired goals of improving student learning of pro-

gramming, while maintaining instructor workloads at a minimum. The system we designed

is highly scalable due to the recognition of the fact that the number of di↵erent mistakes

posible in an exercise is a function of the exercise and not the number of students. Through-

out the development of the Compass system, which has been thoroughly tested and proven

e↵ective, we uncovered many promising avenues for future research. Pursuing those will

result in more success in broadening participation in Computer Science as well as improving

retention rates, which are cornerstones of Computer Science Education research.

Bibliography

Ala-Mutka, K. and Jarvinen, H.-M. (2004). Assessment process for programming assign-

ments. In Proceedings of the IEEE International Conference on Advanced Learning Tech-

nologies, ICALT ’04, pages 181–185, Washington, DC, USA. IEEE Computer Society.

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming

assignments. Computer science education, 15(2):83–102.

Allen, B. P. (1994). Case-based reasoning: Business applications. Communications of the

ACM, 37(3):40–42.

Ballera, M., Lukandu, I. A., and Radwan, A. (2013). Personalizing and improving e-learning

system using roulette wheel selection algorithm, reinforcement learning and case-based

reasoning approach. In The Fourth International Conference on e-Learning (ICEL2013),

pages 184–193.

Bandura, A. (1977). Self-e�cacy: toward a unifying theory of behavioral change. Psycho-

logical review, 84(2):191.

Beaubouef, T. and Mason, J. (2005). Why the high attrition rate for computer science

students: Some thoughts and observations. SIGCSE Bull., 37(2):103–106.

Begum, S., Ahmed, M. U., Funk, P., Xiong, N., and Folke, M. (2011). Case-based reasoning

systems in the health sciences: A survey of recent trends and developments. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(4):421–434.

Ben-Ari, M. (1998). Constructivism in computer science education. SIGCSE Bull.,

30(1):257–261.

Brown, N. C. and Altadmri, A. (2014). Investigating novice programming mistakes: Edu-

cator beliefs vs. student data. In Proceedings of the Tenth Annual Conference on Inter-

62

BIBLIOGRAPHY 63

national Computing Education Research, ICER ’14, pages 43–50, New York, NY, USA.

ACM.

Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assessment of

programming: A review. J. Educ. Resour. Comput., 5(3).

Falkner, N., Vivian, R., Piper, D., and Falkner, K. (2014). Increasing the e↵ectiveness of

automated assessment by increasing marking granularity and feedback units. In Proceed-

ings of the 45th ACM Technical Symposium on Computer Science Education, SIGCSE ’14,

pages 9–14, New York, NY, USA. ACM.

Felder, R. M. and Silverman, L. K. (1988). Learning and teaching styles in engineering

education. Engineering education, 78(7):674–681.

Forsythe, G. E. and Wirth, N. (1965). Automatic grading programs. Communications of

the ACM, 8(5):275–278.

Jo, H., Han, I., and Lee, H. (1997). Bankruptcy prediction using case-based reasoning, neural

networks, and discriminant analysis. Expert Systems with Applications, 13(2):97–108.

Jonassen, D. H. and Hernandez-Serrano, J. (2002). Case-based reasoning and instructional

design: Using stories to support problem solving. Educational Technology Research and

Development, 50(2):65–77.

Karavirta, V., Korhonen, A., and Malmi, L. (2006). On the use of resubmissions in automatic

assessment systems. Computer science education, 16(3):229–240.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and devel-

opment.

Kyrilov, A. and Noelle, D. C. (2014). Using case-based reasoning to improve the quality

of feedback provided by automated grading systems. In Proceedings of the International

Conference on E-Learning, pages 384–388.

Kyrilov, A. and Noelle, D. C. (2015a). Binary instant feedback on programming exercises

can reduce student engagement and promote cheating. In Proceedings of the 15th Koli

Calling Conference on Computing Education Research, Koli Calling ’15, pages 122–126,

New York, NY, USA. ACM.

BIBLIOGRAPHY 64

Kyrilov, A. and Noelle, D. C. (2015b). Using automated theorem provers to teach knowledge

representation in first-order logic. In Proceedings of the Fourth International Conference

on Tools for Teaching Logic, TTL 2015.

Kyrilov, A. and Noelle, D. C. (2016). Do students need detailed feedback on programming

exercises and can automated assessment systems provide it? J. Comput. Sci. Coll.,

31(4):115–121.

López, B. (2013). Case-based reasoning: a concise introduction. Synthesis lectures on arti-

ficial intelligence and machine learning, 7(1):1–103.

Nikolić, M. (2012). Measuring similarity of graph nodes by neighbor matching. Intelligent

Data Analysis, 16(6):865–878.

Paaßen, B., Jensen, J., and Hammer, B. (2016). Execution traces as a powerful data rep-

resentation for intelligent tutoring systems for programming. In Proceedings of the 9th

International Conference on Educational Data Mining.

Ramalingam, V., LaBelle, D., and Wiedenbeck, S. (2004). Self-e�cacy and mental models

in learning to program. SIGCSE Bulletin, 36(3):171–175.

Ridgway, J., McCusker, S., and Pead, D. (2007). Literature review of e-assessment. Technical

report, University of Durham.

Rosenberg, M. J. (2001). E-Learning: Strategies for delivering knowledge in the digital age.

McGraw-Hill.

Rössling, G., Joy, M., Moreno, A., Radenski, A., Malmi, L., Kerren, A., Naps, T., Ross,

R. J., Clancy, M., Korhonen, A., Oechsle, R., and Iturbide, J. A. V. (2008). Enhancing

learning management systems to better support computer science education. SIGCSE

Bull., 40(4):142–166.

Schank, R. (1982). Dynamic Memory: A Theory of Reminding and Learning in Computers

and People. Cambridge University Press, New York, NY, USA.

Schunk, D. H. (1991). Self-e�cacy and academic motivation. Educational psychologist,

26(3-4):207–231.

Sheard, J., Carbone, A., and Dick, M. (2003). Determination of factors which impact on

it students’ propensity to cheat. In Proceedings of the Fifth Australasian Conference on

BIBLIOGRAPHY 65

Computing Education - Volume 20, ACE ’03, pages 119–126, Darlinghurst, Australia,

Australia. Australian Computer Society, Inc.

Vujošević-Janičić, M., Nikolić, M., Tosić, D., and Kuncak, V. (2013). Software verification

and graph similarity for automated evaluation of students assignments. Information and

Software Technology, 55(6):1004 – 1016.

Walker, G. N. (2004). Experimentation in the computer programming lab. Inroads, 36(4):69–

72.

Wiratunga, N., Adeyanju, I., Coghill, P., and Pera, C. (2011). RubricAce: A Case-based

Feedback Recommender for Coursework Assessment. In Proceedings of the Sixteenth UK

Workshop on Case-Based Reasoning (UKCBR 2011).

Woit, D. and Mason, D. (2003). E↵ectiveness of online assessment. SIGCSE Bull., 35(1):137–

141.

Appendix A

Automated Assessment in First-Order

Logic

A.1 Introduction

Undergraduate computer science curricula often provide students with opportunities to study

artificial intelligence (AI). Courses on AI frequently cover the development of intelligent

systems by constructing knowledge bases composed of logical sentences and performing au-

tomated reasoning over those sentences. Computer science students regularly have little

background in formal logics before attending an AI course, and this makes the learning of

logic-based knowledge representation schemes particularly challenging.

In the Computer Science and Engineering program at the University of California, Merced,

the “Introduction to Artificial Intelligence” class provides a broad survey of AI methods and

topics, including the construction of automated reasoning systems using first-order logic to

represent knowledge. This is an upper-division semester-long undergraduate course which

is taught annually. Historically, students enrolled in this class have found knowledge rep-

resentation to be a particularly di�cult topic. When asked to translate English sentences

into first-order logic, using a specified ontology, as part of a written final examination, their

performance has been extremely poor. Students only score about 30% of the maximum

possible credit, on average, when presented with exam questions of this kind.

These low scores are likely the result of a lack of adequate practice with first-order logic.

The broad array of material covered in this survey course limits the amount of lecture time

available to illustrate the construction of logical formulae, and high enrollments limit the

amount of guidance and feedback each student can expect to receive from the teaching team.

66

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 67

While student understanding would certainly benefit from extensive practice on knowledge

representation exercises, the grading of such exercises is demanding, as there are often many

equally correct ways to express a proposition in first-order logic. Thus, given that students

require feedback on practice exercises for them to be useful, the number of exercises that

could be assigned has been highly restricted by limited human resources.

In order to address this problem, we built an online repository of exercises involving the

translation of English sentences into first-order logic, and we designed and implemented an

online software tool to automatically assess student solutions to these exercises. By using

this tool, students received instant feedback in the form of “Correct/Incorrect” judgments,

and students who submitted incorrect solutions were allowed to revise and resubmit their

answers. There was no limit on the number of resubmissions permitted.

This online educational system was used in our “Introduction to Artificial Intelligence”

course during the 2012, 2013, and 2014 o↵erings. We analyzed student performance on final

examination knowledge representation questions, and we compared it to the performance of

students from previous years, who had no access to our system. We found that students who

used our system exhibited significantly improved scores on the first-order logic knowledge

representation questions.

A.2 System Description

Our goal was to give students much more practice on knowledge representation exercises.

We generated a repository of questions in which students were given an English sentence

and were asked to translate it into first-order logic. Each question supplied an explicit list

of predicates, functions, and constant symbols that students were allowed to use in their

answers. A typical example would be:

Translate the sentence “All surgeons are doctors”, using the follow-

ing constants: Doctor, Surgeon, and predicates: Occupation(x, y).

A correct solution to this exercise is the formula:

8x Occupation(x, Surgeon)) Occupation(x,Doctor)

It is important to note that there are usually multiple correct solutions to exercises of this

kind. For example, another correct answer to the question, above, is:

¬(9x Occupation(x, Surgeon) ^ ¬Occupation(x,Doctor))

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 68

Thus, student submissions could not be assessed by performing a simple string comparison,

or the like, with a correct solution provided by the instructor.

Our system does require the instructor to provide a model answer for each exercise, but

it does not necessarily label submissions that deviate from this model answer as incorrect.

Instead, any submitted formula that is found to be logically equivalent to the model answer

is recognized as a correct solution to the exercise. We use the Prover9 automated theorem

prover to check for logical equivalence. If A is the model answer and B is the student

solution, the solution is labeled as correct if and only if the formula A , B is found to

be valid. Prover9 is a resolution based automated theorem prover for first-order logic with

equality. Prover9 was selected because it is very easy to use and the syntax of its interface

is very similar to what students see in lectures.

Web Interface Server Backend

A , BA = Student Answer B = Instructor Solution

valid? Prover9Correct Answer
yes

noWrong Answer Database

Server Back-End

Figure A.1: Components of the Automated Grading System

Figure A.1 illustrates the automated grading system components, including the web interface

and the back-end. When a student submits a solution to an exercise, the model answer is

retrieved from the exercise database. Prover9 is used to determine whether the student’s

solution is logically equivalent to the model answer, and appropriate feedback is immediately

sent to the student.

There is a restriction on the amount of time the server is allowed to spend on checking

a student’s submission. By default, this is set to 5 seconds but it can be adjusted on a per

exercise basis. If the time limit is exceeded, an appropriate message is sent to the student

informing them that the time limit has been exceeded. While this does not necessarily indi-

cate that the student’s answer is incorrect, students are encouraged to revise their solution

or talk to an instructor. This takes care of the fact that the prover may run forever due to

the undecidability of first-order logic.

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 69

Figure A.2 shows the user-interface of the system, which appears in a web browser win-

dow. In addition to the question listing, which is what students would see, there is also an

administrative interface, allowing instructors to create and assign exercises.

Figure A.2: The student user-interface of the automated grading system

A.3 System Evaluation

The final examination for the “Introduction to Artificial Intelligence” course is a three hour

comprehensive written test that covers the full range of AI topics presented during the

semester long class. Students complete the exam without access to any textbooks, notes, or

other study materials. The final examination contains three questions involving the trans-

lation of English sentences into first-order logic, as well as a question asking students to

produce a successor-state axiom for a given time-varying predicate. If the extensive practice

a↵orded by our automated grading system is a benefit to student learning, then we would

expect to see higher scores on these particular final examination questions when students

made use of our system.

In order to evaluate our system, we collected scores on these four questions over multiple

o↵erings of the “Introduction to Artificial Intelligence” course. Scores collected for o↵erings

in 2007, 2008, 2010, and 2011 were produced by students who had no access to our system,

as it had not yet been created. The students from these o↵erings acted as a control group.

The automated grading system was used during o↵erings in 2012, 2013, and 2014, making

the students enrolled during these years members of a test group. There were 113 students in

the control group and 169 in the test group. The mean performance of students, as measured

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 70

by the sum of scores received on all four of the relevant questions (24 points possible), is

displayed in Figure A.3.

Po
in

ts
[6

]

0

1

2

3

4

Typical Uniqueness Definition Axiom

Control Group Test Group

Typical Uniqueness Definition Axiom

Control Group 3.17699115044248 1.87610619469027 1.65486725663717 1.25221238938053

Test Group 3.65680473372781 1.94082840236686 2.10059171597633 1.45562130177515

Control STDEV 2.13068604183009 1.86189584334869 1.70487699338662 1.95041650062661

Test STDEV 1.98820132064286 1.67155524249494 1.80490393628489 1.95833408272019

Control STDER 0.200438082352321 0.175152427459479 0.160381336570588 0.183479750417916

Test STDER 0.187034247287657 0.157246689927099 0.169791079829089 0.184224573888173

Overall

Control Group 7.96017699115044

Test Group 9.15384615384615

Control STDEV 5.67109745966033

Test STDEV 5.07143905096167

Control STDER 0.533491972693968

Test STDER 0.477080854797515

Po
in

ts
 [2

4]

0

1

2

3

4

5

6

7

8

9

10

9.157.96

Control Group Test Group

*

**

*

Po
in

ts
 [o

ut
 o

f 2
4]

Figure A.3: Mean over students of the sum of scores on all of the relevant questions. A
maximum of 24 points could be earned. Error bars display one standard error of the mean.
The asterisk (⇤) indicates that the di↵erence in mean scores is statistically significant at the
↵ = 0.10 level.

We performed a standard analysis of variance (ANOVA) of these data, using group and

question as factors. This analysis revealed a marginally significant e↵ect of group member-

ship, with the group making use of our automated grading system receiving higher aggregate

scores (F (1, 280) = 96.5; p = 0.066). We also conducted planned two-tailed t-tests for each of

the four relevant final examination questions, assessing the impact of our automated grading

system on student performance on each question type.

The first question involved a simple translation of an English sentence into first-order

logic. For example, students might be asked to translate the sentence: “A block can never

be on top of another block that is smaller than it.” For this final examination question, we

found a marginally significant benefit of use of our system (t(280) = 1.929; p = 0.055).

The second question addressed the representation of uniqueness. An example sentence

would be: “There is exactly one block that is smaller than all of the others.” Use of our

system did not reliably influence performance on this question (t(280) = 0.304; p = 0.761).

The third question asked students to provide a definition for a predicate. Often, the

question demanded the formulation of a recursive definition. For example, students might

be asked to provide a definition for a simple blocks-world predicate like Above(x, y) when

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 71

given a predicate like On(x, y). A sample solution would be:

8x8y Above(x, y) , On(x, y) _ (9z On(x, z) ^ Above(z, y))

Use of our automated grading system produced a reliable increase in scores for this question

(t(280) = 2.077; p = 0.039).
Po

in
ts

[6
]

0

1

2

3

4

Typical Uniqueness Definition Axiom

1.462.101.943.66 1.251.651.883.18

Control Group Test Group

Typical Uniqueness Definition Axiom

Control Group 3.17699115044248 1.87610619469027 1.65486725663717 1.25221238938053

Test Group 3.65680473372781 1.94082840236686 2.10059171597633 1.45562130177515

Control STDEV 2.13068604183009 1.86189584334869 1.70487699338662 1.95041650062661

Test STDEV 1.98820132064286 1.67155524249494 1.80490393628489 1.95833408272019

Control STDER 0.200438082352321 0.175152427459479 0.160381336570588 0.183479750417916

Test STDER 0.187034247287657 0.157246689927099 0.169791079829089 0.184224573888173

Overall

Control Group 7.96017699115044

Test Group 9.15384615384615

Control STDEV 5.67109745966033

Test STDEV 5.07143905096167

Control STDER 0.533491972693968

Test STDER 0.477080854797515

Po
in

ts
 [2

4]

0

1

2

3

4

5

6

7

8

9

10

Control Group Test Group

*

**

*

Po
in

ts
 [o

ut
 o

f 6
]

Simple

Figure A.4: Mean scores for each question type. The maximum possible score for each
question was 6 points. Error bars display one standard error of the mean. An asterisk (⇤)
indicates that the di↵erence in mean scores is statistically significant at the ↵ = 0.10 level,
and a double asterisk (⇤⇤) marks significance at the ↵ = 0.05 level.

Finally, the fourth question required students to write a successor-state axiom for a given

fluent using the situation calculus. Completing practice exercises using our system had no

detectable impact on scores for this question (t(280) = 0.856; p = 0.393). The mean scores

for each question are shown in Figure A.4.

It is worth noting that most of the exercises presented by our online system were similar

to the first examination question, described above. A small number of exercises dealt with

uniqueness, and there were no definition or successor-state axiom questions in the system.

(Examples of definition sentences and successor-state axioms were discussed during class

lectures, but the automated grading system o↵ered no additional practice on these kinds

of questions.) This observation suggests that practice on the first kind of question actually

transferred to definition questions.

APPENDIX A. AUTOMATED ASSESSMENT IN FIRST-ORDER LOGIC 72

A.4 Conclusion

Undergraduate students of artificial intelligence regularly experience di�culties with knowl-

edge representation exercises. This is evident in the low mean scores on relevant final ex-

amination questions that we have reported for our AI class. Reasons for this di�culty may

include the limited amount of lecture hours devoted to first-order logic knowledge represen-

tation examples and students’ relative inexperience with the subject matter.

We have developed an automated assessment system for exercises in which students are

asked to translate English sentences into first-order logic. Our objective was to give students

more practice with knowledge representation, which would lead to improved performance

on final examination questions. We deployed the system in our AI class, and it has been

in use over the last three instantiations of the course. An analysis of examination scores

shows a statistically significant improvement in the performance of students who have used

our system.

Acknowledgement

This chapter is largely based on Kyrilov and Noelle (2015b).

Appendix B

Data Sets

B.1 Honest Sequence Lengths

B.1.1 Data

Student Year Length

5 2016 4.2500

6 2016 3.1429

7 2016 6.2273

8 2016 18.0000

9 2016 4.3000

10 2016 3.6000

11 2016 3.5833

12 2016 7.4211

13 2016 4.5000

14 2016 3.0000

15 2016 3.0000

16 2016 3.6667

17 2016 7.8000

18 2016 3.7000

19 2016 2.8571

20 2016 5.6000

Student Year Length

21 2016 5.2000

22 2016 3.4000

23 2016 2.4286

24 2016 6.5263

25 2016 7.0769

27 2016 6.0000

28 2016 3.2308

29 2016 5.0833

30 2016 4.1429

31 2016 3.7500

32 2016 4.8000

33 2016 4.2000

34 2016 2.5714

35 2016 5.5000

36 2016 2.5000

37 2016 3.5714

Student Year Length

38 2016 3.0909

39 2016 4.0000

40 2016 6.7778

41 2016 5.3333

42 2016 4.6000

43 2016 3.6250

44 2016 3.8333

45 2016 4.3333

46 2016 3.0000

47 2016 4.0000

48 2016 4.5000

49 2016 9.2174

50 2016 4.2857

51 2016 7.3077

52 2016 4.2500

53 2016 5.2353

73

APPENDIX B. DATA SETS 74

Student Year Length

54 2016 3.2222

55 2016 4.5714

56 2016 2.9375

57 2016 5.3750

58 2016 7.3333

59 2016 3.3684

60 2016 5.8571

61 2016 6.3684

62 2016 6.4375

63 2016 5.2778

64 2016 3.3333

65 2016 2.7857

66 2016 4.5000

67 2016 3.5000

68 2016 5.9286

69 2016 11.7619

70 2016 6.8571

71 2016 5.0000

72 2016 3.2000

73 2016 3.5556

74 2016 2.2500

75 2016 4.3333

76 2016 3.6667

78 2016 2.4545

79 2016 4.6667

81 2016 4.5000

82 2016 4.3750

83 2016 7.0000

84 2016 9.0000

85 2016 3.0000

86 2016 4.0000

Student Year Length

87 2016 3.9167

88 2016 6.3000

89 2016 4.1250

90 2016 4.4375

91 2016 4.5500

92 2016 3.6667

93 2016 2.0000

94 2016 4.3333

1005 2017 5.0909

1006 2017 3.0769

1007 2017 3.7143

1008 2017 2.9000

1009 2017 2.2857

1010 2017 9.0000

1011 2017 3.2222

1012 2017 3.3636

1013 2017 4.7857

1014 2017 5.3636

1015 2017 2.1250

1016 2017 3.0000

1017 2017 4.6923

1018 2017 2.6000

1019 2017 3.1429

1020 2017 5.3158

1021 2017 3.0000

1022 2017 2.8182

1023 2017 4.4286

1024 2017 3.5833

1025 2017 2.4000

1026 2017 3.5000

1027 2017 3.2000

Student Year Length

1028 2017 3.9000

1029 2017 2.8667

1030 2017 4.9286

1031 2017 2.6250

1032 2017 3.3333

1034 2017 3.0000

1035 2017 3.5385

1036 2017 2.4444

1037 2017 3.0000

1038 2017 3.8750

1039 2017 3.8333

1040 2017 4.3889

1041 2017 5.0714

1042 2017 4.2500

1043 2017 2.5000

1044 2017 2.7500

1045 2017 2.1818

1046 2017 2.0000

1047 2017 4.3750

1048 2017 3.2778

1049 2017 3.5882

1050 2017 3.4286

1051 2017 3.2778

1052 2017 3.0000

1053 2017 3.0000

1054 2017 2.9444

1055 2017 3.8125

1056 2017 3.9048

1057 2017 4.0000

1059 2017 3.2000

1060 2017 5.8500

APPENDIX B. DATA SETS 75

Student Year Length

1061 2017 3.7500

1062 2017 3.0000

1063 2017 2.0000

1064 2017 8.8824

1065 2017 2.2000

1066 2017 2.7692

1067 2017 2.2500

1068 2017 2.6667

1069 2017 3.2727

1070 2017 2.6154

1071 2017 4.0000

1072 2017 3.3333

1073 2017 2.9000

1074 2017 3.3333

1075 2017 2.8571

1076 2017 3.7143

1077 2017 4.6154

1078 2017 2.8000

1079 2017 4.2222

1080 2017 2.5455

1081 2017 3.4545

1082 2017 3.2500

1083 2017 4.0000

1084 2017 3.2941

1085 2017 2.9375

1086 2017 2.8000

1087 2017 3.5714

1088 2017 2.6000

1089 2017 5.5833

1090 2017 2.3125

1091 2017 2.3750

Student Year Length

1092 2017 3.8667

1093 2017 4.0000

1094 2017 4.1053

1096 2017 4.4737

1097 2017 3.0714

1098 2017 2.7778

1099 2017 3.7222

1100 2017 2.6154

1101 2017 3.8750

1102 2017 2.7143

1103 2017 3.6429

1104 2017 3.0000

1105 2017 3.5833

1106 2017 4.2857

1107 2017 3.7500

1108 2017 6.2609

1109 2017 4.5000

1110 2017 2.3750

1111 2017 10.3182

1112 2017 3.5385

1113 2017 5.3077

1114 2017 3.0833

1115 2017 3.4000

1116 2017 3.5625

1117 2017 4.5600

1119 2017 3.3125

1120 2017 3.2222

1121 2017 4.1250

1122 2017 3.0000

1123 2017 3.3750

1124 2017 4.4444

APPENDIX B. DATA SETS 76

B.1.2 ANOVA Results

SOURCE: grand mean

year N MEAN SD SE

203 4.1197 1.8382 0.1290

SOURCE: year

year N MEAN SD SE

2016 87 4.7789 2.2290 0.2390

2017 116 3.6253 1.2822 0.1191

FACTOR : student_id year length

LEVELS : 203 2 203

TYPE : RANDOM BETWEEN DATA

SOURCE SS df MS F p

===

mean 3445.2726 1 3445.2726 1123.534 0.000 ***

s/y 616.3588 201 3.0665

year 66.1666 1 66.1666 21.578 0.000 ***

s/y 616.3588 201 3.0665

APPENDIX B. DATA SETS 77

B.2 Rates of Plagiarism

B.2.1 Data

Year Exercise Cheated

2016 1 15

2016 2 0

2016 3 0

2016 4 2

2016 5 3

2016 6 3

2016 7 0

2016 8 2

2016 9 0

2016 10 7

2016 11 7

2016 12 11

2016 13 7

2016 14 5

2016 15 10

2016 16 13

2016 17 13

2016 18 5

2016 19 16

2016 20 28

2016 21 46

2016 22 34

2016 23 18

2016 24 31

2016 25 17

2016 26 19

2016 27 20

Year Exercise Cheated

2016 28 20

2016 29 26

2016 30 37

2016 31 30

2017 1 2

2017 2 0

2017 3 0

2017 4 0

2017 5 0

2017 6 2

2017 7 2

2017 8 0

2017 9 2

2017 10 2

2017 11 6

2017 12 8

2017 13 2

2017 14 4

2017 15 2

2017 16 4

2017 17 2

2017 18 2

2017 19 0

2017 20 2

2017 21 26

2017 22 28

2017 23 6

Year Exercise Cheated

2017 24 10

2017 25 8

2017 26 16

2017 27 5

2017 28 8

2017 29 14

2017 30 22

2017 31 0

APPENDIX B. DATA SETS 78

B.2.2 ANOVA Results

SOURCE: grand mean

year N MEAN SD SE

62 10.1613 11.0545 1.4039

SOURCE: year

year N MEAN SD SE

2016 31 14.3548 12.3977 2.2267

2017 31 5.9677 7.6441 1.3729

FACTOR : exercise year total

LEVELS : 31 2 62

TYPE : RANDOM WITHIN DATA

SOURCE SS df MS F p

===

mean 6401.6129 1 6401.6129 35.908 0.000 ***

e/ 5348.3871 30 178.2796

year 1090.3226 1 1090.3226 32.205 0.000 ***

ye/ 1015.6774 30 33.8559

