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Abstract of the Dissertation

Essays on Pure and Applied Game Theory

by

Jen-Wen Chang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2016

Professor Ichiro Obara, Chair

In my dissertation, I provide two models of joint contribution games that are relevant to the

phenomenon of crowdfunding. I also provide a characterization of Bayes Nash equilibrium.

In the first chapter I build a model of crowdfunding. An entrepreneur finances her project

with common value via crowdfunding. She chooses a funding mechanism (fixed or flexible),

a price, and a funding goal. Under fixed funding money is refunded if the goal is not met;

under flexible funding the entrepreneur keeps the money. Backers observe signals about the

value and decide whether to contribute or postpone purchase to the retail stage. The optimal

crowdfunding campaign is characterized. When the entrepreneur has commitment power,

fixed funding generates more revenue than flexible funding. When the entrepreneur has no

commitment power, fixed funding serves as a commitment device to eliminate moral hazard

In the second chapter I consider a dynamic contribution game under two regimes. The

first regime is that all but the last rounds are cheap talk, the other is that in all rounds

contribution is sunk. With binary contribution levels and a continuum of types we show

that one of the monotone equilibria in the first regime implements the ex-post efficient

and ex-post individually rational allocation when the cheap talk period is long enough. In

contrast, when commitment is required, no equilibria achieves the same allocation. However,

with a continuum of contribution levels, all equilibria of the contribution game with cheap

talk will be the same as a one-shot game with no cheap talk, due to severe free riding. In

this case, dynamic contribution with commitment provides credibility and can significantly
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improve efficiency.

In the third chapter, coauthored with Ichiro Obara, we prove the following character-

ization regarding types and Bayes equilibrium actions they play across games: Given any

two types in any two countable type spaces, if for all finite games, the two types have the

same pure Bayes Nash equilibrium action, then there exists a bijective belief morphism be-

tween them. As an application, our result implies that the universal space for Bayes Nash

equilibrium that retains non-redundancy does not exist.
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CHAPTER 1

The Economics of Crowdfunding

1.1 Introduction

Crowdfunding has become a popular means for small entrepreneurs to finance their projects,

typically through online platforms, where the entrepreneur asks a large number of internet

users to back up her project with money. Despite being a relatively new global phenomenon,

it has been growing exponentially. Its global market size, which tops over 30 billion dollars

in 2015, has surpassed the market size for angel funds and is expected to surpass that of

venture capital in 2016. Moreover, the U.S. government has been deregulating their equity

crowdfunding market, allowing non-accredited investors to join the game. It is thus of great

interest and importance to understand how and why crowdfunding works and to provide a

rationale for deregulation.

This paper proposes a common value model of crowdfunding that explains the success

of crowdfunding despite the lack of regulation and potential moral hazard problems. We

consider an entrepreneur who would like to crowdfund her project with a fixed cost from

a continuum of backers. The project has a common value unknown to the entrepreneur

but the backers are partially informed. We characterize optimal crowdfunding campaign

when the entrepreneur has or has no commitment power, and we show that moral hazard

is eliminated in the optimal campaign in the latter case. In short, the model portraits

crowdfunding as a tool for the entrepreneur to learn the market value of her idea, and third

party crowdfunding platforms provide a commitment device so that the entrepreneur can

condition the funding of her project on the event that the value is high enough. We show

that it is of the entrepreneur’s interest to use such commitment device to its full extent.
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In a crowdfunding campaign, the entrepreneur posts the description of her project to

a third party funding platform, chooses a funding mechanism, sets a funding goal, sets a

price each backer pays, and sets the reward each backer gets.1 The reward is typically a

unit of the good her project is aimed to produce, or it can be a share of the company as

well. Our model admits both interpretations. There are two choices of funding mechanism,

fixed or flexible. Under fixed funding, the money is refunded if the goal of the campaign is

not met, while under flexible funding there is no refund, whatsoever. The dominant reward-

based crowdfunding platform Kickstarter only allows fixed funding, while the campaigns from

its biggest competitor, Indiegogo, are predominantly flexible funding. The backers receive

conditional i.i.d. signals about the value of the project and decide whether to contribute

or postpone their purchase to the retail stage, where the value is revealed and the retail

price equals the value if the project is ever completed.2 In our baseline model we assume

the entrepreneur has commitment power, so the project is built if and only if the campaign

outcome exceeds the funding goal. In an extension to consider moral hazard, we make

the decision to build endogenous on the outcome of the campaign. Figure 1.1 provides an

example of a crowdfunding campaign.34

Our first result (Theorem 1.1) shows that fixed funding generates more profit than flexible

funding under the assumption that the entrepreneur has commitment power. At first, this

may seem obvious: people are more willing to pay more if they are refunded when the

project does not go ahead. But this logic is incorrect: Under private values, the two funding

methods has been shown to raise identical revenue under the optimal price ([Cor96]). For

example, suppose a project has 50% chance of being funded. Then backers are indifferent

between paying $50 under fixed funding and $25 under flexible funding, and the expected

1The entrepreneur usually offers different reward levels for different prices, for example to get an album
one needs to pay $20, to get an autographed album with poster one needs to pay $50. However, more often
than not, the most popular option is the lowest price that can get the backers a unit of the good. We simplify
this aspect so we do not consider price discrimination. For a treatment, see [EH15].

2The assumption that retail price equals to the common value is not necessary for our main results; it
merely simplifies exposition.

3The entrepreneur in this Indiegogo project wants to raise $50, 000 to develop a temperature preserving
mug. Each backer needs to contribute at least $109 in order to receive a mug after it is produced. The
entrepreneur adopts flexible funding, so the entrepreneur will receive all the funds even if the campaign fails
to reach its funding goal.

4Link: https://www.indiegogo.com/projects/ember-temperature-adjustable-mug/
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Figure 1.1: Example of crowdfunding campaign

revenue to the entrepreneur is the same in either case. When backers have common value

but heterogeneous beliefs about the value– which is appropriate when quality is unknown5

– the equivalence breaks down and fixed funding becomes preferable to the entrepreneur.

Intuitively, suppose the marginal buyer thinks the project will be funded with probability

50% so is indifferent between paying $50 under fixed funding and $25 under flexible funding.

A high signal backer thinks that the project will be funded with more than 50% probability, so

he has higher expected payment under fixed funding than flexible funding. This logic is akin

to the linkage principle in [MW82]: under fixed funding, expected payments are positively

correlated with values, squeezing information rents.6 This result is also consistent with the

within comparison of projects in the online platform Indiegogo by [CLS14] and the across

comparisons of Indiegogo versus Kickstarter, which are two of the top three crowdfunding

sites by traffic.7

5The market value of the mug may depend on the price of the complements, say tea and coffee, or the
existence of competing substitutes, like a much cheaper temperature preserving mug. In this sense the crowd
can be more informed than the entrepreneur. Traditionally the entrepreneur will run surveys to focus groups
to extract this information.

6I am grateful to Simon Board who suggests this interpretation.
7Lau, Jonathan. 2013. “Dollar for dollar raised, Kickstarter dominates Indiegogo SIX times over”. , Au-
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Our second result (Theorem 1.2) characterizes optimal campaigns and shows that crowd-

funding complements traditional financing methods, such as borrowing. We show that even

if the entrepreneur can borrow freely from an outside source (rich relatives, competitive cap-

ital market), she will still use crowdfunding and the funding goal will be the difference of

the project cost and her outside source of funding. The reason is that crowdfunding is still

costly because the backers need to be given information rents in a posted price mechanism,

so the entrepreneur will not ask for more than needed if she has other free sources of money.

However, crowdfunding helps her to learn the market value and to condition the building

decision on the true value, so it is still beneficial to use crowdfunding.

We then turn to the setting in which the entrepreneur has no commitment power to

build the project at the crowdfunding stage. After the crowdfunding campaign ends, the en-

trepreneur learns the value of her project, she then chooses to run away with the crowdfunded

money or to invest the fixed cost and complete the project.8 Our third result (Theorem 1.3)

shows that even if the entrepreneur can not commit to build the project, under optimal

pricing there will still be no moral hazard. The logic is the same as our first result. Once

the entrepreneur collects funding, because our assumptions on signal structure imply that

funding is increasing in the underlying value, she is able to deduce the value before investing

the money into the project. She then checks whether her retail stage profit is larger than the

fixed cost of the project. If not, then she will run away with the money from crowdfunding.

The entrepreneur faces a similar situation as in fixed versus flexible funding: she can commit,

via third party crowdfunding platforms, to get funded at a higher value. This makes the

marginal backer more than happy, so she can charge a higher price while keeping the same

marginal backer. This adjustment again extracts more surplus from the high signal backers.

Our result is consistent with [Mol14]’s empirical observation that the default rate can be

gust 28. http://medium.com/p/2a48bc6ffd57. Wang, Dan. 2015. “The Ultimate Guide to Crowdfunding”.
September 30. https://www.shopify.com/guides/crowdfunding/crowdfunding-infographic.

8It is difficult to monitor the entrepreneur’s effort and there is no auditing requirement for reward-based
crowdfunding, so in theory the entrepreneur can default by claiming that she has tried her best but the
project still doesn’t work out and get away with money without being punished or forced to refund. Another
type of default is that she uses the money to set up a new company and to complete the project but she
refuses to deliver the good to her backers. This type of default has not been observed in the real world yet
for various reasons (possible legal consequences), and is not considered in our model.
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below 4%.

In the discussion section we compare reward crowdfunding to funding by a single investor,

and show that crowdfunding can increase social welfare. We also show that the crowd funds

a larger set of projects (when it is efficient to build the project) than a single investor can.

We also briefly mention how our model can be used to study equity-based crowdfunding.

Finally, we propose a situation where flexible funding is preferable.

Related Literature

Crowdfunding can be considered as a model in which a monopolist makes production

decisions together with the financing of it through advance-purchase contracts. The case of

private value models are studied in [Cor96] and more recently by [Str15] and [EH15], where

crowdfunding is casted as an optimal mechanism design problem. [Str15] also takes moral

hazard into account. The major distinction of this paper to those papers is that we study a

common value model in which the backers are uncertain about the value of the project by

the time they make their contributions. We show that fixed funding generates more expected

profit then flexible funding, using a different logic than the above-mentioned models.

[NPR11] studies a monopolist screening consumers with private but noisy values using

pre-order discounts so that agents with high signals purchase in advance and agents with

lower signals postpone the purchase until the value realizes in the retail stage. In his model

the project is already completed so there is no production decision to be made and the

entrepreneur has commitment power as well. In our model, as in a typical crowdfunding

situation, the production decision depends on the funding outcome, and the entrepreneur

may have no commitment power at all.

The idea of fixed funding, where money is refunded if the total amount fails to reach a

threshold, is simply the provision point mechanism. This has been used to study private

provision of public goods ([PR88] and [BL89]). The latter showed that under a complete

information, finite agent model the provision point mechanism fully implements the core

of the economy. We show in our incomplete information, common value model that this

mechanism can implement the efficient allocation. However, it may not be profit-maximizing,

5



so the entrepreneur will not necessarily do so.

This paper also relates to models of information aggregation and allocation of an exclud-

able good with common value, such as common value auction models ([MW82] and [PS00]).

In particular, we demonstrate a kind of linkage principle in the crowdfunding environment.

However, in their papers information aggregation and allocative efficiency have a potential

conflict ([GS80]), but in our model information aggregation is automatically granted, and

the distortion of efficiency comes from the entrepreneur’s self interest.

For an overview of crowdfunding platforms and related economic problems, see [BOP15].

[BLS13] is the first theoretical paper to study when crowdfunding is preferred to borrowing,

where they assume the backers derive altruistic utilities from the act of contribution. [HS14]

considers endogenous information acquisition of backers in crowdfunding.

The chapter is organized as follows: In Section 1.2 we develop the crowdfunding model.

Section 3 characterizes the equilibrium. Section 1.4 gives revenue ranking between fixed

and flexible funding. Section 1.5 characterizes optimal fixed funding campaigns. Section 1.6

extends the model to include moral hazard.Section 1.7 discusses some related issues. Section

1.8 concludes. Longer proofs can be found in the appendix.

1.2 The Model

In this section we give the outline of our model.

Players An entrepreneur (she) tries to fund a project through a crowdfunding campaign.

A continuum of potential backers (he) decide whether to contribute to a project in return

for a unit of the good.

Project A project has a fixed cost k, which is privately known to the entrepreneur, and

it generates common value v to the backers. v is unknown to both sides of the market with

common prior f(·) on [0, 1]. Backers privately receive i.i.d. signals, s, about v according to

the conditional density g(s|v) with cdf G(s|v).

The following assumptions are made throughout the paper.

6



A1 {g(s|v)} satisfies strict monotone likelihood ratio property.

A2 g(s|v) is continuous on [0, 1]× [0, 1] and g(s|v) > 0 for all s ∈ [0, 1], v ∈ [0, 1], f(v) > 0

for all v ∈ [0, 1].

Efficiency Benchmark Since we assume the backers eventually buy the product, only

the building decision affects efficiency. The first best is to build the project whenever v ≥ k,

where the social welfare is ∫ 1

k

(v − k)f(v)dv

Crowdfunding Campaign A crowdfunding campaign is a tuple (F, T, p), where

F ∈ {Fix, F lex}

denotes the funding mechanism, T is the commitment to build the project if and only if the

seller gathers at least T dollars, and p is the pledge price each buyer has to pay if he is to

contribute.

Under fixed funding, the entrepreneur gets money if and only if she raises at least T

dollars. Under flexible funding, the entrepreneur always gets the total amount the backers

contributed, even if she raises less than T . In both mechanisms, the entrepreneur commits

to implement the project if and only if at least T dollars are collected.9

The entrepreneur chooses (T, p) from the set

Ca = {(T, p) : k − a ≤ T ≤ p ≤ 1},

where a ∈ [0, k] is the funding that the entrepreneur could obtain from other sources, or

simply her asset. When a = k, it means the entrepreneur can fund her project without

crowdfunding. A natural constraint is a = 0, which means that the entrepreneur’s only

source of funding is crowdfunding.10

Actions

9Here we assume default is impossible. See Section 6 for the case where default is an option.
10Although crowdfunding platforms do not usually set a lower bound on the funding goal, they often

suggest the entrepreneurs to raise at least what is actually needed, i.e., choose from C0.

7



The entrepreneur chooses a crowdfunding campaign (F, T, p) where (T, p) ∈ Ca. After

observing (F, T, p) and signal s, the backers jointly choose whether to contribute p dollars or

wait to purchase at the retail stage. An action profile for backers is a measurable function

σ : [0, 1] → [0, 1], where σ(s) denotes the probability to contribute for a backer with signal

s.11 We assume that the value of the project is realized at the retail stage and the retail

price equals to the value.12

 

 
Entrepreneur sets (F,T,p) 

Backers observe signal s Backers decide whether 

to contribute p 

Money collected or 

refunded 

Entrepreneur builds the 

project iff at least T is raised. 

Time 

v realizes at 

retail stage. 

Figure 1.2: Timeline of our crowdfunding campaign model

Given a price p and an action profile ,σ, the money that will be contributed at each state

v is then

Xσ
0 (v) =

∫ 1

0

pσ(s)g(s|v)ds.

For each state, the retail stage revenue the entrepreneur gets (if the project is built) is

Xσ
1 (v) =

∫ 1

0

v(1− σ(s))g(s|v)ds.

The project is funded at state v if Xσ
0 (v) ≥ T .

11The actual crowdfunding mechanisms are mostly dynamic, where the backers can observe the current
total contribution. Theoretically, backers can strategically postpone their contribution until they are sure the
project is funded. However, empirical contribution dynamics are usually U-shaped with respect to time, thus
only a subset of backers will strategically postpone. Their behavior, however, is not relevant to determine
whether a project is funded and is thus not captured by our model.

12This assumption is not needed for our results but it simplifies exposition.
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1.2.1 Payoffs and Equilibria in a Fixed Funding Campaign

Backers’ Payoff Given (Fix, T, p) and an action profile σ, let

Bσ = {v : Xσ
0 (v) ≥ T}

be the states such that the project is funded under action profile σ.

Under fixed funding, the utility of a backer to contribute with action profile σ is

UFix(s;σ) =

∫
Bσ

(v − p)β(v|s)dv

where

β(v|s) =
g(s|v)f(v)∫ 1

0
g(s|v)f(v)dv

13

is the backer’s posterior about the project value if he observes signal s.

Equilibrium An action profile , σ, is a Bayes Nash equilibrium under (Fix, T, p) if for

all s ∈ [0, 1],

UFix(s;σ) > 0⇒ σ(s) = 1

UFix(s;σ) < 0⇒ σ(s) = 0

For any campaign, zero contribution is always an equilibrium. That is, σ(s) = 0 for all

s. However, we are interested in equilibria under which the project is fundd with positive

probability. An equilibrium is funded if
∫
Bσ
f(v)dv > 0, i.e. it is funded with positive

probability.

Entrepreneur’s Profit The entrepreneur’s profit under (Fix, T, p) and action profile σ

is the sum of crowdfunded money, retail stage revenue minus the project cost

ΠFix(T, p;σ) =

∫
Bσ

(Xσ
0 (v) +Xσ

1 (v)− k)f(v)dv

13Note that this differs from [FP97] in that the backers do not condition their posteriors on the event that
they are pivotal. This is because, even in a finite agent model, the backers’ utility of contributing or waiting
differs whenever the project is funded (fixed funding). On the other hand, in a voting model an action leads
to a difference in utility only when the voter is pivotal.

9



1.2.2 Payoffs and Equilibria in a Flexible Funding Campaign

Backers’ Payoff Under flexible funding, the utility of a backer is

UFlex(s;σ) =

∫
Bσ
vβ(v|s)dv − p,

Equilibrium An action profile, σ, is a Bayes Nash equilibrium under (Flex, T, p) if for

all s ∈ [0, 1],

UFlex(s;σ) > 0⇒ σ(s) = 1

UFlex(s;σ) < 0⇒ σ(s) = 0

An equilibrium is called funded if
∫
Bσ
f(v)dv > 0.

Entrepreneur’s Profit The entrepreneur’s profit under (Flex, T, p) and action profile

σ is

ΠFix(T, p;σ) =

∫
[0,1]\Bσ

Xσ
0 (v)f(v)dv +

∫
Bσ

(Xσ
0 (v) +Xσ

1 (v)− k)f(v)dv

Remark 1. Because of the common value, full surplus is extracted by a direct incentive

compatible mechanism as in [CM88]: simply ask each backer to announce s, and the good

is produced and allocated with a price v whenever the aggregate distribution s is g(s|v) for

some v ≥ k. We focus on indirect mechanisms that resemble the ones in reality. However,

we still show in Theorem 2 that fixed funding can approximately extract full surplus when

the entrepreneur has sufficient outside sources of funding.

1.3 Equilibrium Characterization

In this section we characterize the funded equilibrium under fixed and flexible funding for a

given funding threshold T and pledge price p. Before that, we present an auxiliary lemma

that will be used throughout this chapter.

Let {g(x|y)} be probability densities satisfying strict monotone likelihood ratio prop-

erty. For a measurable set A ⊂ R, let G(A|y) =
∫ 1

0
1A(x)g(x|y)dx denote the conditional

10



probability of event A under density g(x|y). Let

gA(x|y) =

 g(x|y)/G(A|y) x ∈ A

0 x 6= A

be the conditional density conditioning on A, and denote the conditional distribution by

GA(x|y).

Lemma A 1. Let A ⊂ [0, 1] be measurable and that G(A|y), G(A|y′) > 0. For y < y′ and

a strictly increasing function h(·),∫
A

h(x)gA(x|y)dx <

∫
A

h(x)gA(x|y′)dx.

Proof. MLRP implies for y′ > y, gA(x|y′)/gA(x|y) is increasing w.r.t. x ∈ A and since

gA(x|y), gA(x|y′) are probability densities, there exists some x∗ ∈ A such that for all 0 ≤

x1 ≤ x∗ ≤ x2,
gA(x1|y′)
gA(x1|y)

≤ 1 ≤ gA(x2|y′)
gA(x2|y)

,

with strict inequality when x1 < x∗ < x2. For x ≥ x∗, we then have

1−GA(x|y) =

∫ 1

x

gA(s|y)ds ≤
∫ 1

x

gA(s|y)
gA(s|y′)
gA(s|y)

ds =

∫ 1

x

gA(s|y′)ds = 1−GA(x|y′).

For x ≤ x∗ we have

GA(x|v) =

∫ x

0

gA(s|y)ds ≥
∫ x

0

gA(s|y)
gA(s|y′)
gA(s|y)

ds =

∫ x

0

gA(s|y′)ds = GA(x|y′).

Hence, GA(x|y) satisfies FOSD, which implies that the expected value of an increasing func-

tion under GA(x|y′) dominates that under GA(x|y). Since GA(x|y) 6= GA(x|y′) for y 6= y′

the inequality is strict.

1.3.1 Fixed Funding

Our first observation is that the funded equilibria in fixed funding are characterized by

cutoffs. Recall that contributing to a crowdfunding project is always risky because the

backers can end up getting something with value less than what they paid for. However,

because the signal structure satisfies MLRP and that the payment is made only when the

11



project is funded, the backers’ conditional expected payoff as a function of signal is single

crossing. That is, the higher the signal, the more optimistic the backer is about v − p

being positive conditional on the project getting funded. Consequently, funded equilibrium

is characterized by a cutoff s∗, and a project is funded if the value is above a cutoff v∗.

Formally, we have the following lemma.

Lemma 1.1. Consider a fixed funding campaign with (T, p) ∈ Ca. Suppose σ is a funded

equilibrium, then σ is characterized by a cutoff s∗ ∈ [0, 1) such that

σ(s) = 0, s < s∗

σ(s) = 1, s > s∗.

Under such an equilibrium there is a threshold v∗ < 1 such that the project will be funded

if and only if v ≥ v∗.

Proof. Let σ be any action profile with
∫
Bσ
f(v)dv > 0. Then there exists s < 1 such that

U(s) ≥ 0. Since {g(s|v)} satisfies strict MLRP, the set of posteriors {β(v|s)} also satisfies

strict MLRP. Therefore, by Lemma A.1, if for some s∗ < 1,

U(s∗;σ) =

∫
Bσ

(v − p)β(v|s∗)dv = P(Bσ|s∗)
∫ 1

Bσ
(v − p) β(v|s∗)

P(Bσ|s∗)
dv = 0,

then U(s;σ) > 0 when s > s∗ and U(s;σ) < 0 when s < s∗. Hence σ is characterized by

cutoff s∗ < 1.

Accordingly,

Xσ
0 (v) = p(1−G(s∗|v)),

which is increasing in v by MLRP, so Bσ is of the form [v∗, 1] for some v∗.

We are now ready to show existence and uniqueness of funded equilibrium

Proposition 1.1. Given (Fix, T, p) with (T, p) ∈ Ca and a < k. Suppose

T < p < 1 (1.1)

then an unique funded equilibrium exists. Conversely, if a funded equilibrium exists then

T ≤ p < 1.
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Proof. By Lemma 1.1 we only need to focus on cutoff strategies.

Let σs be the cutoff strategy with cutoff s. For each s ∈ [0, 1], let

vf (s) = min{v : p(1−G(s|v)) ≥ T}

be the minimum value v above which the project is funded, given that backers use σs. Note

that since p > T , vf (·) is continuous. Also, vf (·) is increasing.

Define Φ : [0, 1]→ [0, 1] as

Φ(s) = min

{
s′ :

∫ 1

vf (s)

(v − p)β(v|s′)dv ≥ 0

}
.

Note that whenever vf (s) < 1, by Lemma A.1 the conditional expected utility
∫ 1

vf (s)
(v −

p)β(v|s′)dv is strictly single-crossing in s′. This implies that funded equilibria is completed

characterized by the fixed points s∗ < 1 of Φ.14

Claim 1 Φ(·) is continuous. Φ(s) = 0 when vf (s) = 1.

Given any s ∈ [0, 1]. Suppose v(s) < 1. Suppose Φ(s) ∈ (0, 1). Then for all ε > 0,∫ 1

vf (s)

(v − p)β(v|Φ(s) + ε)dv > 0

and ∫ 1

vf (s)

(v − p)β(v|Φ(s)− ε)dv < 0,

Then by the continuity of vf (·) and the integral with respect to the lower limit of integration,

there exists a neighborhood of s, Bδ(s) such that when s′ ∈ Bδ(s),

Φ(s′) ∈ Bδ(Φ(s)).

The case Φ(s) ∈ {0, 1} is treated similarly.

Suppose vf (s) = 1. Then by definition of Φ(·), Φ(s) = 1. If there exists ε > 0 such that

vf (s− ε) = 1, then Φ(s′) = 1 for all s′ > s− ε. If vf (s− ε) < 1 for all ε > 0, since p < 1 and

vf (·) is continuous, choose δ such that for all s′ > s − δ, v(s′) > p. Then Φ(s′) = 1 for all

s′ > s− δ. 15

14There may be multiple unfunded equilibria, which are not captured by Φ.
15It is essential that p < 1. If p ≥ 1, Φ(·) will be discontinuous: the backers will not contribute whenever

vf (s) < 1 (Φ(s) = 1), and will contribute (Φ(s) = 0, by definition of Φ) whenever vf (s) = 1.
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Claim 2 Φ(·) is decreasing.

Let s1 < s2. When Φ(s1) = 1 then trivially Φ(s2) ≤ Φ(s1). When Φ(s1) ∈ (0, 1), then by

definition of Φ we have ∫ 1

vf (s1)

(v − p)β(v|Φ(s1))dv = 0

and that vf (s1) < 1. This also implies vf (s1) < p (else Φ(s1) = 0 because the backer is never

going to lose.).

Hence ∫ 1

vf (s2)

(v − p)β(v|Φ(s1)))dv ≥ 0.

So by definition Φ(s2) ≤ Φ(s1).

If Φ(s1) = 0 then, since vf (s2) ≥ vf (s1),
∫ 1

vf (s2)
(v − p)β(v|0) ≥ 0. So Φ(s2) = 0 as well.

Claim 3 Φ(s) = 0 when s is sufficiently high. Since T ≥ k − a > 0, whenever s is

sufficiently high v(s) = 1.

By Claim 1,2,3, Φ(·) has a fixed point s∗ ∈ [0, 1). The funded equilibrium is given by

σs∗ , and the project is funded when v ∈ Bσ = [vf (s∗), 1].

Note that if p = T + ε where ε is small, nearly everyone must contribute to fund the

project with positive probability. Hence if a funded equilibrium does exist (which it does by

Prop. 1.1), s∗ will be very small. However, the existence of funded equilibrium at T = p is

not guaranteed.

Note also that under fixed funding, equilibrium existence is independent of the prior f(v)

or the signal structure {g(s|v)}. Precisely, as long as there is positive probability that the

value of the project is larger than p, the project can be funded with positive probability.

This is because the backers can adopt a higher cutoff s to ensure the project is funded only

when v is high enough, and the refund policy offered by fixed funding will in tern incentivize

them to contribute.
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1.3.2 Flexible Funding

For flexible funding we restrict to the class of equilibria in cutoff strategies. For any cutoff

strategy σ, UFlex(s;σ) is single-crossing because of MLRP.16 Therefore, best response to any

cutoff strategies σ is also characterized by a cutoff s∗ ∈ [0, 1) such that the backers contribute

when s > s∗ and postpone purchase whenever s < s∗. However, existence of equilibrium is

subject to a more restrictive condition than fixed funding.

Proposition 1.2. Given (Flex, T, p) with (T, p) ∈ Ca. A funded equilibrium in cutoff

strategies exists if and only if

T ≤ max
v
p(1−G(s(v)|v)),

where

s(v) = min

{
s :

∫ 1

v

ṽβ(ṽ|s)dṽ − p ≥ 0

}
is the backers’ cutoff if they expect the project to be funded when value is above v.

Proof. Assumptions on {g(s|v)} implies s(·) is continuous when p < 1. Moreover, when

v = 1, s(v) = 0 by definition, so p(1−G(s(1)|1)) = 0. Since T ≤ maxv p(1−G(s(v)|v)), by

continuity of p(1−G(s(v)|v)) with respect to v there exists v∗ < 1 such that

T = p(1−G(s(v∗)|v∗)).

Then by construction σs(v∗) is a funded equilibrium. Conversely, for any funded equilibrium

with cutoff s∗ and v∗, it must be that

T = p(1−G(s(v∗)|v∗))

and that s(v∗) = s∗ < 1, which also implies p < 1.

The condition of Proposition 1.2 implies that there exists v such that the expectation

is correct and backers are responding optimally to the expectation. The solutions to the

16For an arbitrary σ, single-crossing could fail: the other backers can coordinate to contribute only when
s is low. Then a backer who contributes when observing a high signal will end up paying p while getting
nothing in return because the project fails to be funded.
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equation

T = p(1−G(s(v)|v))

will then be equilibrium cutoffs.

A direct implication of Proposition 1.1 and 1.2 is that for any given (T, p) the existence

of funded equilibrium under flexible funding implies existence under fixed funding.

Corollary 1. Compared to the funded equilibrium under (Flex, T, p), the funded equi-

librium under (Fix, T, p) achieves a higher probability of getting funded, attracts a larger

number of contributors, and gets a higher amount of funds in each state than flexible funding.

Proof. Suppose funded equilibrium σs exists for (Flex, T, p). Then a funded eqilibrium σs′

also exists for (Fix, T, p). If s = 0 then σs′ = σs, so the funded equilibrium is identical for

the two mechanisms. Otherwise, ∫ 1

v∗
vβ(v|s∗)dv − p = 0

implies ∫ 1

v∗
(v − p)β(v|s∗)dv > 0

This implies s′ < s so the project is funded when v belongs to a strictly larger subset of [0, 1]

and by more backers, under fixed funding.

This is because given the same (T, p), backers contribute more aggressively under fixed

funding.

This comparison, however, ignores the fact that in fixed funding the entrepreneur needs

to fully refund the backers if the project fails to be funded. What we will show next is

that entrepreneurs who use fixed funding can earn more profit in expectation even with such

trade-off.

1.4 Revenue Ranking

The goal of this section is to show that fixed funding generates higher profit than flexible

funding. Our result is robust to variations in profit functions (see Remark 4.1).
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Given (Fix, T, p), by Lemma 1.1, the profit under the unique funded equilibrium is

ΠFix(T, p) =

∫ 1

v∗
(p(1−G(s∗|v))− k) +G(s∗|v)vdF (v). (1.2)

for some equilibrium cutoff (v∗, s∗). Given (Flex, T, p), by Lemma 3.2, the profit under a

funded equilibrium, σ, is

ΠFlex(T, p;σ) =

∫ 1

0
(p(1−G(s∗|v))− k)dF (v) +

∫ 1

v∗
(p(1−G(s∗|v))− k) +G(s∗|v)vdF (v) (1.3)

for some equilibrium cutoff (v∗, s∗). Note that the equilibrium cutoff v∗ and s∗ under fixed

funding or flexible funding with the same (T, p) need not be the same.

When the entrepreneur switches from flexible funding to fixed funding, she attracts buyers

that would otherwise purchase at the retail stage to contribute at the crowdfunding stage

instead. Thus her retail stage revenue decreases. Moreover, she needs to refund the money

to the backers if the project is not funded. Therefore, it is not readily obvious that fixed

funding has a higher expected profit.

Before stating the main result, we need the following lemmas. First, we will express the

profits (1.2) and (1.3) as the difference between social surplus and consumer surplus. For

each (F, T, p) and each corresponding equilibrium cutoff (v∗, s∗), the social surplus is given

by

SSF =

∫ 1

v∗
((1−G(s∗|v))v +G(s∗|v)v − k)dF (v)

The (ex-ante) consumer surplus under fixed funding and flexible are

CSFix(T, p) =

∫ 1

0

(∫ 1

s∗

(∫ 1

v∗
(ṽ − p)β(ṽ|s)dṽ

)
g(s|v)ds

)
CSFlex(T, p;σ) =

∫ 1

0

(∫ 1

s∗

(∫ 1

v∗
ṽβ(ṽ|s)dṽ − p

)
g(s|v)ds

)
Lemma A 2. For any funded equilibrium, σ, under (F, T, p),

ΠFix(T, p) = SSFix(T, p)− CSFix(T, p) (1.4)

ΠFlex(T, p;σ) = SSFlex(T, p)− CSFlex(T, p;σ) (1.5)

Proof. We give a proof of (1.4), the computation leading to (1.5) is along the same line.

Let σ be a funded equilibrium under (Fix, T, p).
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Note that

SSFix − ΠFix(T, p;σ)

=

∫ 1

v∗
(1−G(s∗|v))vf(v)dv −

∫ 1

0

p(1−G(s∗|v))f(v)dv (1.6)

The consumer surplus can be written as

CSFix =

∫ 1

0

(∫ 1

s∗

(∫ 1

v∗
(ṽ − p)β(ṽ|s)dṽ

)
g(s|v)ds

)
f(v)dv (1.7)

It then suffices to show that (1.6) and (1.7) are equal. To this end, recall the definition of

β, we have ∫ 1

0

(∫ 1

s∗

(∫ 1

v∗
ṽβ(ṽ|s)dṽ

)
g(s|v)ds

)
f(v)dv

=

∫ 1

0

∫ 1

s∗

∫ 1

v∗

1∫ 1

0
g(s|v)f(v)dv

ṽg(s|ṽ)f(ṽ)g(s|v)f(v)dṽdsdv

=

∫ 1

s∗

∫ 1

v∗

ṽg(s|ṽ)f(ṽ)∫ 1

0
g(s|v)f(v)dv

(∫ 1

0

g(s|v)f(v)dv

)
dṽds

=

∫ 1

s∗

∫ 1

v∗
ṽg(s|ṽ)f(ṽ)dṽds

=

∫ 1

v∗
ṽf(ṽ)(1−G(s∗|ṽ))dṽ.

This completes the proof.

We show that the entrepreneur can decrease consumer surplus while keeping the marginal

buyer indifferent by switching to fixed funding.

Lemma A 3. Suppose a project can be funded by (Flex, T, p) with equilibrium cutoff

(s∗, v∗). Suppose v∗ > 0. Then there exists (T ′, p′) with T ′ > T, p′ > p such that the project

can be funded by (Fix, T ′, p′) with the same equilibrium cutoff (s∗, v∗). Suppose instead

v∗ = 0, then for any ε > 0 there exists (T ′, p′) with T ′ > T, p′ > p such that the project is

funded by (Fix, T ′, p′) with cutoff (s∗, ε).

Proof. Let (v∗, s∗) be the equilibrium cutoff under (Flex, T, p).
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For each p̃ ≥ p, define the function s : [p, 1]→ [0, 1] as

s(p̃) = min

{
s :

∫ 1

v∗
(v − p̃)β(v|s)dv ≥ 0

}
,

which is the signal making a buyer indifferent between contributing or wait when they expect

the project is built if v ≥ v∗. Note that s(·) is continuous and increasing.

Suppose first that v∗ > 0. This will imply s∗ > 0.17 Therefore,∫ 1

v∗
(v − p)β(v|s∗)dv >

∫ 1

v∗
vβ(v|s∗)dv − p = 0.

Thus s(p) < s∗. On the other hand, limp→1 s(p) = 1, hence the intermediate value theorem

guarantees the existence of p′ ∈ (p∗, 1) with s(p′) = s∗. Now define T ′ = p′(1 − G(s∗|v∗)),

which ensures the expectation is correct, that is, when the cutoff on signal is s∗ and price

is p′, the project is funded if and only if v ≥ v∗. Then, (s∗, v∗) is the equilibrium cutoff for

fixed funding given (T ′, p′). Finally note that since p′ > p,

T ′ > p(1−G(s∗|v∗)) = T.

So (T ′, p′) ∈ Ca.

Suppose v∗ = 0. Pick an ε ∈ (0, k), let p(ε) be such that∫ 1

ε

(v − p(ε))β(v|s∗)dv = 0

It is straightforward to see that p(ε) > p. Define T (ε) = p(ε)(1−G(s∗|ε)). Then the equilib-

rium cutoff under (Fix, T (ε), p(ε)) is by construction (s∗, ε). Again note that (T (ε), p(ε)) ∈

Ca.

Our main result in this section shows that there is a profitable adjustment after switching

from flexible funding to fixed funding.

Theorem 1.1. For any a ∈ [0, k] and for any funded equilibrium, σ, under (Flex, T, p),

where (T, p) ∈ Ca, there exists (T ′, p′) ∈ Ca such that

ΠFix(T ′, p′) > ΠFlex(T, p;σ).

17If s∗ = 0 then everyone contributes, implying v∗ = 0.
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Proof. Let (s∗, v∗) be the cutoff of a funded equilibrium σ for (Flex, T, p). By Lemma A2,

it suffices to show that SSFix(T ′, p′) = SSFlex(T, p;σ) and CSFix(T ′, p′) < CSFlex(T, p;σ).

Suppose v∗ > 0. By Lemma A3 there exists (T ′, p′) ∈ Ca that supports the same cutoffs

as a funded equilibrium in fixed funding.

First observe that since the cutoffs are the same, the social surplus remain the same.

Second,

CSFix(T ′, p′)− CSFlex(T, p;σ)

=

∫ 1

0

∫ 1

s∗

(
p−

∫ 1

v∗
p′β(ṽ|s)dṽ

)
g(s|v)dsf(v)dv

Since by construction UFix(s∗) = UFlex(s∗), and β(ṽ|s) satisfies MLRP,

p−
∫ 1

v∗
p′β(ṽ|s)dṽ < 0

as s > s∗. So CSFix(T ′, p′) ≤ CSFlex(T, p;σ).

Suppose v∗ = 0. Consider an ε such that∫ 1

ε
(v − k)f(v)dv >

∫ 1

0
(v − k)f(v)dv.

Let (T ′, p′) = (T (ε), p(ε)) be given by Lemma A.3. Then by construction SSFix(T ′, p′) >

SSFlex(T, p;σ) and by the same argument as above CSFix(T ′, p′) < CSFlex(T, p;σ).

The intuition is as follows. Suppose under campaign (Flex, T, p) the marginal backer, s∗,

thinks the project is funded with probability 0.5, and a backer with higher signal s > s∗ thinks

the project will be funded with probability 0.75. Their expected utilities for contributing

are, respectively,

UFlex(s∗) = 0.5E[value|s∗, funded]− p = 0

UFlex(s) = 0.75E[value|s, funded]− p > 0

Suppose the entrepreneur now switches to fixed funding but doubles the price p to 2p, and
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Figure 1.3: Switch to fixed funding
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Figure 1.4: And increase the price

adjusts the corresponding T properly so that v∗ stays unchanged.18 We then have

UFix(s∗) = 0.5E[value|s∗, funded]− 0.5E[2p|s∗, funded] = 0

UFix(s) = 0.75E[value|s, funded]− 0.75E[2p|s, funded] < UFlex(s)

This adjustment makes the marginal backer as happy as before. Moreover, it extracts more

surplus from high signal backers; hence it leads to a higher profit. Figure 1.3, 1.4 summarizes

the argument graphically.

To further explain, backers with different signals have different preference intensities

between fixed funding and flexible funding. A backer with a high signal thinks the project

is very likely to be successful, so he doesn’t prefer fixed funding that much. On the other

hand, a backer with a lower signal worries about funding failures more and thus prefers

fixed funding. Hence, if we simultaneously switch from flexible funding to fixed funding and

18Technically, the entrepreneur sets T ′ = 2p(1−G(s∗|v∗)) = 2T .
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increase the price, the high signal backers will suffer more than backers with lower signal. A

carefully tailored adjustment then allows us to keep the same cutoff v∗ as before switching

while extracting more surplus from high signal backers. This leads to higher profit. The

underlying logic is akin to the the linkage principle. Under fixed funding, each backer’s

expected payment is

P(v ≥ v∗|s)p

which positively correlates with the underlying value because the signal structure satisfies

MLRP, and is also increasing in the backer’s ”type” s. So a higher type has a higher expected

payment, raising expected revenue.

Note also that the adjustment we use keeps the retail stage profits the same across the

two mechanisms, so the increase in expected profit comes entirely from crowdfunding.19

Remark 4.1 [Robustness to Variations of Profit Function] Our method of proof is not

based on the comparison of profits under optimal pricing. Instead, it is based on a feasibility

argument. For fixed funding the entrepreneur can achieve the same allocation (decision to

build v∗ and who contributes s∗) with less consumer surplus and a higher funding goal.

Hence the revenue ranking is robust to many possible modifications of the profit function.20

1.5 Characterization of Optimal Fixed Campaign

Having shown that fixed funding generates more expected profit, we now characterize optimal

pricing. The entrepreneur’s problem is given by

max
(T,p)∈Ca

ΠFix(T, p),

where the profit for any choice of (T, p) ∈ Ca := {(T, p) : k − a ≤ T ≤ p ≤ 1} is defined to

be the one given by the unique funded equilibrium when there exists one, and zero when it

does not exist.

19The result is thus independent of the choice of retail price, as long as the retail price is non-decreasing
in v and that it is higher than p with positive probability. The result is also independent of the existence of
a retail market.

20See the discussion after Theorem 2 for examples of the modifications.
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Theorem 1.2.

(a) Optimal Campaign

For every 0 ≤ a < k, the entrepreneur’s problem has a solution. Moreover, at the

optimum, T = k − a < p < 1.

(b) Approximate Full Surplus Extraction

For a = k, there exists a sequence of {(Tn, pn)} ⊂ Ck such that funded equilibrium

exists for each n and that

lim
n→∞

ΠFix(Tn, pn) =

∫ 1

k

v − kf(v)dv. (1.8)

Moreover, limn→∞ Tn = 0, limn→∞(s∗n, v
∗
n) = (0, k), where s∗, v∗ are corresponding

equilibrium cutoffs.

Proof. Let v∗(T, p), s∗(T, p) denote the cutoff of the funded equilibrium under (T, p) ∈ Ca

whenever the equilibrium exists. We establish the result for a ∈ [0, k) by three claims.

Claim 1 Suppose (T, p) ∈ Ca maximizes ΠFix, then v∗(T, p) ≥ k.

Suppose v∗(T, p) < k. The entrepreneur can pick some p′ > p such that v∗(T, p′) ∈

(v∗(T, p), k) and that s∗(T, p′) > s∗(T, p). Such p′ exists because v∗(T, p) is continuous on

p ∈ (T, 1), by the construction of this fixed point in Proposition 3.1. Also, whenever the

equilibrium v∗ becomes higher due to price increase, corresponding s∗ must rise (Otherwise

v∗ will be lower due to increased price and increased number of contributors).

This process raises social surplus and decreases consumer surplus. To see this, let U ′(s) =∫ 1

v∗(T,p′)
(v − p′)β(v|s)dv and U(s) =

∫ 1

v∗(T,p)
(v − p)β(v|s)dv. Let

h(v) =

 p∗, v > v∗(T, p′)

v, v∗(T, p) ≤ v ≤ v∗(T, p′).

We thus have U ′(s∗(T, p′)) − U(s∗(T, p′)) < 0.21 Moreover, for all s > s∗(T, p′), because

21The first term is zero, the second term is the expected utility for contribution evaluated at a signal
higher than the equilibrium cutoff s∗(T, p).
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h(·) is increasing and β(·|s) satisfies MLRP,

U ′(s)− U(s) =

∫ 1

v∗(T,p′)

(v − p′)β(v|s)dv −
∫ 1

v∗(T,p)

(v − p)β(v|s)dv

= −
∫ 1

v∗(T,p)

(h(v)− p)β(v|s)dv < 0.

Finally note that consumer surplus is

CS(T, p′) =

∫ 1

0

∫ 1

s∗(T,p′)

U ′(s)g(s|v)dsf(v)dv

CS(T, p) =

∫ 1

0

∫ 1

s∗(T,p)

U(s)g(s|v)dsf(v)dv.

Hence CS(T, p)− CS(T, p′) > 0.

This shows Claim 1.

Claim 2 Suppose (T, p) ∈ Ca maximizes ΠFix, then T = k − a.

If s∗ = 0 then v∗ = 0 and (T, p) is not optimal by Claim 1. So assume s∗ > 0.

Suppose T > k − a. Choose T ′ = k − a =< T . For each p̃ ∈ [p, 1), define

s(p̃) = min{s : p̃(1−G(s|v∗(T, p))) = T ′}.

Then s(·) is continuous and s(p) > s∗ because T ′ < T and s∗ > 0. Since T ′ > 0, s(·) < 1.

Define the continuous function J : [p, 1)→ [0, 1] as

J(p̃) =

∫ 1

v∗
(v − p̃)β(v|s(p̃))dv.

Since s(p) > s∗ and s∗ is an equilibrium cutoff, J(p) > 0. Since s(1) < 1, J(1) < 0. Hence

intermediate value theorem implies the existence of some p′ ∈ (p, 1) such that J(p′) = 0.

By construction, funded equilibrium under (T ′, p′) exists, with cutoff (v∗, s(p′)), and

s(p′) > s∗(T, p) because p′ > p and T ′ < T . This implies that the social surplus under

(T ′, p′) is the same as that under (T, p) while the consumer surplus decreases due to a higher

price. Hence T > k − a is non-optimal.

Claim 3 For T = k − a, there exists ε such that if T ≤ p < T + ε, then (k − a, p) is not

optimal.
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To see this, we show the following:

lim sup
p→T

v∗(T, p) < T.

Suppose there exists a sequence {pn} with pn > T and limn→∞ pn = T such that

limn→∞ v
∗(T, pn) ≥ T . Then there exists some N such that pn < v∗(T, pn) for n > N .

By Proposition 3.1, v∗(T, pn) < 1. Hence for n > N ,∫ 1

v∗(T,pn)

(v − pn)β(v|s)dv ≥ 0

for all s, which implies v∗(T, pn) > 0 is not an equilibrium cutoff (since everyone would like

to contribute), a contradiction.

Suppose instead limn→∞ v
∗(T, pn) = T < 1, dominated convergence implies

lim
n→∞

∫ 1

v∗(T,pn)

(v − pn)β(v|s∗(T, pn))dv =

∫ 1

v∗
(v − T )β(v|0)dv > 0

where the last inequality follows from the assumptions on g(s|v). This again implies existence

of some n such that ∫ 1

v∗(T,pn)

(v − pn)β(v|s)dv ≥ 0

for all s, so the cutoff v∗ can not be positive, a contradiction.

By the three claims,

max
(T,p)∈Ca

ΠFix(T, p) = max
p∈[k−a+ε,1]

ΠFix(k − a, p)

Since ΠFix as a function of p is continuous over [k − a+ ε, 1], maximum exists.

This finishes the proof when a ∈ [0, k).

Now we show how to approximately extract full surplus when the entrepreneur has asset

k to fund the project.

Let {sn} be a sequence converging to 1. Define pn to be such that∫ 1

k

(v − pn)β(v|sn)dv = 0,

so {pn} is a bounded sequence. Define Tn = pn(1−G(sn|k)).
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By construction funded equilibrium under (Tn, pn) exists, with cutoffs (v∗, s∗) = (k, sn)

for each n. Moreover, seller’s profit is∫ 1

k

(pn(1−G(sn|v)) +G(sn|v)v − k)f(v)dv.

Since sn → 1 and {pn} is bounded, the profit converges to the maximal social surplus.

When a < k, the entrepreneur chooses T = k − a. This is because asking money from

the crowd incurs information rents, so the entrepreneur will never ask for more than what is

needed. When a = k, (b) says that the entrepreneur will use all of her asset and minimize

the amount of money raised from crowdfunding to zero. However, the entrepreneur will still

use crowdfunding to gauge the market value of her idea. Full surplus extraction when the

entrepreneur has sufficient assets is a feature of the continuum agent model, where even

a small number of agents can provide accurate information. It is not uncommon for the

entrepreneur to first prove that his product is profitable by selling to a smaller audience

and then acquire the larger portion of funding needed for the project by venture capital.

A famous example is Oculus, which is a virtual reality headgear, that raised 2.5 million

through nearly 10, 000 backers on Kickstarter and was acquired by Facebook subsequently

for 2 billion.

Moreover, under some regularity conditions, it can be shown that in optimum, v∗ >

k. That is, the entrepreneur gets less funding relative to the efficiency benchmark, which

requires v∗ = k. To see this, suppose under some crowdfunding campaign (Fix, T, p), v∗ = k.

Then raising p by a little has no first order effect on social surplus since v∗ = k maximizes

social surplus, while it has a negative first order effect on consumer surplus because every

backer that contributes suffer from an increase in price.

There are several ways to prevent full surplus extraction in the model when a = k. For

one thing, we can make it costly to use the outside asset a, by imposing a high interest rate.

For another, the number of backers may have an advertisement effect and thus the number

of retail consumers is increasing in the number of backers. Formally,

ΠFix(T, p) =

∫ 1

v∗
(p(1−G(s∗|v)) +H(1−G(s∗|v))v − k)f(v)dv
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where H(·) is an increasing function that represents the measure of buyers at the retail stage.

One can also assume that the backers have a positive rate of not going to the retail

stage if they choose not to contribute in the crowdfunding stage. Their attention can shift

elsewhere, as there may be substitutes for the product. For the entrepreneur, these customers

are forever lost if they are not attracted to contribute in the first place.

1.6 Moral Hazard

In previous sections we assumed that the entrepreneur has commitment power, so moral

hazard problem is assumed away. This is equivalent to imposing a large enough penalty on

default.

Empirically, [Mol14] shows that in the 381 projects they analyze, which consists of the

Design and Technology category in Kickstarter, only 14 projects failed to deliver, and 3 of

them even offered refunds. The other 11 can be considered frauds,22 and account for 3.6%

of all projects in the sample. In spite of the lack of legal consequences of defaulting, the

default rate is surprising low compared to what many people would initially expect. We

will see in this section that the entrepreneurs can use third party crowdfunding platforms as

commitment devices to avoid moral hazard, and it is of their interest to do so.

We take the moral hazard problem into account by (1). making the entrepreneur’s

decision of whether to invest the funds raised for the project endogenous and (2). explicitly

assuming that there is no penalty to default. Crowdfunding, in general, is conducted on

third-party funding platforms, so the only commitment the entrepreneur can make is the

collection of money when total funding reaches a certain threshold. Under this setting,

a fixed funding campaign is a pair (T, p) where T > 0 means the commitment to collect

money only if the total contribution exceeds T . ”Flexible Funding” is then equivalent to

setting T = 0. The campaign (T, p) is thus silent on when the project will be built, which

is determined by a sequential rationality constraint and a feasibility constraint formulated

22The entrepreneurs took money away but stopped reporting any progress of their projects. In the end
nothing is delivered.
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below.

In this section, we assume that the entrepreneur has no other assets so she needs to

fund at least k to kickstart the project, and that this is common knowledge.23 We will

focus on equilibrium in cutoff strategies. The entrepreneur learns the market value of its

project, v, perfectly after the crowdfunding stage ends whenever the backers use a cutoff in

(0, 1). because MLRP implies Xσ
0 (v) = p(1 − G(s|v)) is increasing in v. The entrepreneur

then faces a choice of running away with the money or investing k to build the project

and getting revenue from selling at the retail stage. In particular, the entrepreneur has an

incentive to build at state v if and only if the retail stage revenue is larger than the cost:

Xσ
1 (v) ≥ k. (RB)

Under a cutoff strategy σ, Xσ
1 (v) = G(s|v)v, which may be decreasing in v when v is large

because G(s|v) is decreasing in v The reason is that the higher the value, the more people

would choose to contribute via crowdfunding so the less buyers there would be at retail. To

prevent this distortion to the entrepreneur’s incentive (which may lead to non-existence of

funded equilibria), we assume that there is a measure µ of buyers showing up only at the

retail stage24 so

Xσ
1 (v) = G(s|v)v + µv.

Moreover, since there is no penalty to default, setting T < k and running the risk of

default because of infeasibility becomes an option for the entrepreneur. It is feasible for the

entrepreneur to build the project at state v if

Xσ
0 (v) ≥ k (FB)

We add two additional assumptions.

A3 There is a measure µ of buyers at the retail stage such that

µ > k & G(s|v)v + µv is increasing in v for all s.

23Making the information of k private to the entrepreneur will introduce a signalling game, which is of
interest to study as well, but is tangent to the intuition we want to illustrate in this section.

24The addition of such µ does not change the results in previous sections.
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A4 ∫ 1

0

vβ(v|0)dv < k

A3 says that when the state is high enough, the entrepreneur always has incentive to

build the project because the sales at the retail stage can cover the cost. In addition, the

retail stage profit of the entrepreneur is increasing in v for all s. This guarantees that the

entrepreneur’s incentive to build is increasing in the value of her project.25 A4 is a technical

assumption that precludes equilibrium in which everyone contributes regardless of the signal.

Denote ΠMH(T, p) to be the profit under the funded equilibrium given (T, p) if such

equilibrium exists. In Proposition 6.1 we show that funded equilibrium is unique when it

exists. The entrepreneur’s problem is then

max
(T,p)∈C

ΠMH(T, p).

where C = {(T, p) : 0 ≤ T ≤ p ≤ 1}.

Our main result is a characterization of optimal campaign.

Theorem 1.3. The entrepreneur’s problem has a solution. Moreover, at the optimum,

k = T < p < 1, and the probability of default is zero.

The intuition behind the result is as follows. Default is like an unfunded project with

flexible funding, both involving the entrepreneur taking money away while doing nothing.

This possibility of default is taken into account when backers make contribution decisions.

Thus a similar logic to Theorem 1 could apply. In particular, the entrepreneur can commit

to fund her project, thus taking money away, only when the value is high enough, by setting

a campaign (T, p) so that the project can be funded only when the value is high. This

ensures that the entrepreneur has the incentive to build the project whenever the project is

funded (Assumption A3). The entrepreneur can then charge a higher price while retaining

the marginal backer.

25Without this assumption of retail stage buyers, imagine a situation where value is high and thus backers
mostly receive high signal and choose to contribute. After receiving the funding the entrepreneur knows that
the size of the retail market is small because most people have already paid at the crowdfunding stage, so
the entrepreneur has incentive to abandon the project. This in turn makes high signal backers less likely to
contribute.
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To formally analyze the case with moral hazard, we proceed as follows. Fix (T, p) and a

cutoff action profile σ with cutoff s. Define

F σ(s) = {v : p(1−G(s|v)) ≥ T}

to be the set of states such that the project is funded. Since σ is a cutoff strategy, F σ(s) is

of the form [vf (s), 1], where vf (s) = min{v : p(1−G(s|v)) ≥ T}. Define

RBσ(s) = {v : vG(s|v) + µv − k ≥ 0},

to be the set of states where the seller has incentive to carry out the project. Assumption

A3 guarantees that RBσ is of the form [vrb(s), 1]. Define

FBσ(s) = {v : p(1−G(s|v)) ≥ k}

to be the set of states where it is feasible to build the project, which is of the form [vfb, 1].26

The set of states the entrepreneur will default under σ is then

[vf ,max{vrb, vfb}].

which is when the value is high enough so that the project is funded but the value is not high

enough so that either there is not enough funding or that the value is too low to incentivize

the entrepreneur to actually invest it.

The backers’ expected utility to contribute, conditional on receiving signal s, under some

(T, p) and a strategy σ with cutoff s′, is

U(s;σ) =

∫ 1

max{vf (s′),vrb(s′),vfb(s′)}
vβ(v|s)dv −

∫
vf (s′)

pβ(v|s)dv.

Using Lemma A.1, we see that the best response to a cutoff strategy is again a cutoff strategy.

Entrepreneur’s profit under an action profile σ with cutoff s∗ > 0 is

ΠMH(T, p;σ) =

∫ 1

vf (s∗)
p(1−G(s∗|v))f(v)dv +

∫
max{vrb(s∗),vfb(s∗),vf (s∗)}

((G(s∗|v) + µ)v − k)f(v)dv.

26A project can be feasible but not funded, or funded but not feasible, at state v.
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That is, the entrepreneur gets the crowdfunded money, p(1−G(s∗|v)), whenever the project

is funded, but gets the retail profit (G(s∗|v) +µ)v− k only when it is positive and when the

crowdfunded money is enough to fund the project.

We consider funded equilibrium in cutoff strategies with a positive cutoff, so that en-

trepreneur can learn the state by observing the outcome of the campaign. We call it funded

equilibrium with learning.

Proposition 1.3. Given (T, p) such that k ≤ T < p < 1, there exists a unique funded

equilibrium with learning.

Proof. Given k ≤ T < p < 1. Since T ≥ k, whenever the project is funded it will be

feasible. That is, vbf ≤ vf .

Suppose backers use strategy σ with cutoff s ∈ (0, 1). For each state v, the entrepreneur’s

gain from building the project is

m(v, s) = (G(s|v) + µ)v − k

The entrepreneur builds the project if and only if m(v, s) ≥ 0. Let

vf(T,p)(s) = vf (s) = min{v : p(1−G(s|v)) ≥ T}

vbr(T,p)(s) = vrb(s) = min{v : m(v, s) ≥ 0}

where vf (s) is the lowest state above which the project is funded, and by Assumption A3

vrb(s) is the lowest state above which the entrepreneur has an incentive to build the project.

Let

φ(s, s′) :=

∫ 1

max{vrb(s),vf (s)}
vβ(v|s′)dv −

∫
vf (s)

pβ(v|s′)dv,

which is the conditional expected utility to contribution for a backer with signal s′ if other

backers use the strategy σ with cutoff s′.

For each s ∈ (0, 1), define Φ : (0, 1)→ [0, 1]

Φ(s) = inf
s′
{s′ : φ(s, s′) ≥ 0} ,
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which is continuous on (0, 1) because g(s|v),m(s, v), and thus vf (s), vbr(s), are continuous.27

Since m(v, s) = (G(s|v) +µ)v−k is increasing in s, vbr(s) is decreasing on (0, 1) Since vbr(s)

is decreasing and vf (s) is increasing in s, φ(s, s′) ≥ 0 implies φ(s + ∆s, s′) ≥ 0 for any

∆s > 0. Moreover, if vf (s) < 1, then φ(s, s′) is strictly single crossing in s′. These imply

that Φ is decreasing and the unique funded equilibrium with learning is characterized by the

fixed point s∗ < 1 of Φ.

Claim 1 There exists 0 < s∗ < 1 such that Φ(s∗) = 0.

Since p > T , for each v > p there exists s such that p(1 − G(s|v)) = T . On the other

hand, for each v > k/µ, m(v, s) > 0 for all s. Pick v∗ > max{p, k/µ}, let s∗ be such that

p(1 − G(s∗|v∗)) = T . Then m(v∗, s∗) > 0 so vrb(s∗) < vf (s∗) = v∗. For any s ∈ [0, 1], the

interim expected utility to contribute when other backers use cutoff s∗ is then

φ(s∗, s) =

∫ 1

v∗
(v − p)β(v|s)dv > 0.

Hence Φ(s∗) = 0.

Claim 2 lims→0 Φ(s) > 0.

Let

s∗ = inf

{
s :

∫ 1

k
µ

vβ(v|s)dv − p ≥ 0

}
,

which is positive by Assumption A4 and that p ≥ k. Then, for each 0 < ε < s∗, there exists

γ such that ∫ 1

k
µ
−x
vβ(v|s∗ − ε)dv − p < 0

for x < γ. Note that vrb(s) is continuous on (0, 1) with

lim
s→0

vb(s) =
k

µ
.

Note also that since p > T , vf (s) = 0 when s is small enough.

Choose γ′ such that when s < γ′,

vrb(s) >
k

µ
− γ and vf (s) = 0,

27The argument repeats that of Claim 1, Proposition 3.1.
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then for all s < γ′,

φ(s, s∗ − ε) =

∫ 1

vrb(s)

vβ(v|s∗ − ε)dv −
∫ 1

vf (s)

pβ(v|s∗ − ε)dv < 0,

hence Φ(s) > s∗ − ε > 0.

Claim 1 and 2 shows that Φ(s) has a fixed point in (0, 1).

The strategy to prove Theorem 1.3 now becomes clear, and it is similar to the revenue

ranking result for fixed funding versus flexible funding. Suppose the equilibrium cutoffs

under some (T, p) are such that vf < max{vfb, vrb}. That is, there exists some states such

that the seller will default. Then the entrepreneur should commit to take money only at a

higher state vf + ε > vf by raising T to T ′. This allows the entrepreneur to raise p to some

p′ while keeping the marginal backer s∗ the same, which makes max{vfb, vrb} the same as

before adjustment. This adjustment extracts more consumer surplus from buyers with high

signal s, thus reducing consumer surplus. Social surplus is determined by when the project

is build, hence it remains the same if ε is small such that vf + ε < max{vfb, vrb}. So the

entrepreneur obtains a higher payoff under (T ′, p′). Formally,

Proof of Theorem 3. We establish Theorem 3 by two claims.

Claim 1: Given (T, p) ∈ C and a funded equilibrium σ with cutoff s∗. If

vf (s∗) < max{vrb(s∗), vfb(s∗)}

then there exists (T ′, p′) with k ≤ T ′ < p < 1 such that

ΠMH(T, p) < ΠMH(T ′, p′).

Let vb(s∗) = max{vrb(s∗), vfb(s∗)}. Similar to Section 5,

ΠMH(T, p) =

∫ 1

vf (s∗)

(1 + µ)v − kf(v)dv

−
∫ 1

0

∫ 1

s∗

(∫ 1

vb(s∗)

vβ(ṽ|s)dṽ −
∫ 1

vf (s∗)

pβ(ṽ|s)dṽ
)
g(s|v)dsf(v)dv
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Denote it as Π(T, p) = SS − CS.

For each 0 < ε < vb − vf and each p ≤ p̃ ≤ pr(1), define H : [p, pr(1)]→ R as

H(p̃; ε) =

∫ 1

vb
(T,p̃)

(s∗)

vβ(v|s∗)dv −
∫ 1

vf+ε

p̃β(v|s∗)dv

Since (s∗, vf (s∗), vb(s∗)) is an equilibrium cutoff, H(p; ε) > 0. When p̃→ 1, H(p̃) < 0. H is

also decreasing in p̃. Hence there exists a unique p(ε) such that H(p(ε); ε) = 0.

Let

T (ε) = p(ε)(1−G(s∗|vf (s∗) + ε)).

Now choose any ε > 0 such that

vf (s∗) + ε < vb

Then by construction, under the campaign (T (ε), p(ε)), σ with cutoff s∗ is still a funded

equilibrium. Under such funded equilibrium, the project is funded at vf(T (ε),p(ε)) = vf (s∗) + ε.

Moreover, the project is feasible to build at vfb(T (ε),p(ε)) < vfb(s∗) because the same number of

backers are contributing at a higher price, but the project is rational (for the entrepreneur) to

build at vrb(T (ε),p(ε)) = vrb(s∗), because vrb is determined only by s∗. Therefore, social surplus

under (T (ε), p(ε)) is the same as that under (T, p).

Again we break the profit into social surplus minus consumer surplus, ΠMH(T (ε), p(ε)) =

SS(ε)−CS(ε). We now show that ΠMH(T (ε), p(ε)) > Π(T, p) by showing that CS(ε) < CS.

Secondly, since under (T (ε), p(ε)) the marginal backer is still the same but all backers

now face with a higher price p(ε) > p,

CS =

∫ 1

0

∫ 1

s∗

(∫ 1

vb(s∗)

vβ(ṽ|s)dṽ −
∫ 1

vf (s∗)

pβ(ṽ|s)dṽ
)
g(s|v)dsf(v)dv

>

∫ 1

0

∫ 1

s∗

(∫ 1

vb(ε)

vβ(ṽ|s)dṽ −
∫ 1

vf (ε)

p(ε)β(ṽ|s)dṽ
)
g(s|v)dsf(v)dv

=CS(ε)

This implies

ΠMH(T (ε), p(ε)) > ΠMH(T, p).
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Claim 2: arg maxC ΠMH(T, p) exists, where in optimum k = T ∗ < p∗. Note that

whenever T < k, in any funded equilibrium there is a positive probability to default. Hence

by Claim 1 we can restrict the set of optimizers to {k ≤ T ≤ p ≤ 1}. The proof steps are

similar to that of Theorem 1.2.

An implication of Theorem 1.3 is that the entrepreneur earns less profit, and her project

is less likely to be completed, when the moral hazard problem is present. This is not sur-

prising, because if the backers take into account the possibility of default, they will be more

conservative in making contributions, resulting in less overall profit. To make a comparison,

note that we can add measure µ of buyers into the model without moral hazard, without

affecting all the results in the previous sections. Let ΠFix(T, p) denote the profit when there

is no moral hazard, and ΠMH(T, p) be the profit when there is moral hazard as defined in

this section.

Corollary 2.

• 1. The presence of moral hazard decreases profit. Formally,

max
C

ΠMH(T, p) ≤ max
C0

ΠFix(T, p) (1.9)

• 2. When there is moral hazard, under optimal campaign, the project is less likely to be

completed than when there is no moral hazard. It is strictly less likely to be completed

if and only if (1.9) is strict.28

Proof. By Theorem 1.3, if (T ∗, p∗) ∈ arg maxC ΠMH(T, p), then

ΠMH(T ∗, p∗) = ΠFix(T ∗, p∗) ≤ max
Ck

ΠFix(T, p).

Let (T ∗, p∗) be the optimal fixed funding without moral hazard with funded equilibrium

cutoff v∗, s∗. Let (T ∗∗, p∗∗) be the optimal fixed funding with moral hazard with funded

28The observation and part of the argument is due to Ichiro Obara.
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equilibrium cutoff v∗∗, s∗∗. We would like to show v∗ ≤ v∗∗ and that it is strict when (1.9) is

strict.

Suppose to the contrary that v∗∗ < v∗. Then this implies s∗∗ < s∗. To see this, note that

if s∗∗ ≥ s∗, it must be p∗∗ > p∗ (since v∗∗ < v∗ and v∗∗ is such that p∗∗(1−G(s∗∗|v∗∗)) = T ∗∗ =

T ∗ = k. ). In the problem without moral hazard, the entrepreneur can then increase the

price p∗ to some p∗∗∗ > p∗∗ such that the corresponding equilibrium cutoff is v∗∗∗ = v∗ and

s∗∗∗ > s∗. But this means the same social welfare but smaller consumer surplus, contradicting

that (T ∗, p∗) is optimal.

Hence if v∗∗ < v∗ then s∗∗ < s∗. By Theorem 1.3,

v∗∗G(s∗∗|v∗∗) + µv∗∗ ≥ k.

This implies that

v∗G(s∗|v∗) + µv∗ ≥ k.

Hence ΠMH(T ∗, p∗) = ΠFix(T ∗, p∗) > ΠMH(T ∗∗, p∗∗), a contradiction. We have thus shown

that v∗ ≤ v∗∗.

Now suppose (1.9) is strict. Suppose to the contrary that v∗∗ = v∗.

Suppose that v∗G(s∗|v∗)+µv∗ ≥ k. Then (1.9) must not be strict because the equilibrium

cutoff v∗, s∗ can be supported by the campaign (T ∗, p∗) either with or without moral hazard.

But this means that the maximum profit under moral hazard is the same as that without

moral hazard, contradicting that (1.9) is strict.

Suppose that v∗G(s∗|v∗) + µv∗ < k. Then v∗ = v∗∗ implies s∗∗ > s∗. This implies

p∗∗ > p∗. But this means that with moral hazard the entrepreneur is able to maintain

the same social surplus while lowering consumer surplus relative to the case without moral

hazard, contradicting (1.9).

When maxC ΠMH = maxC0 ΠFix, then both scenarios have the same equilibrium.

Without clear legal consequences of default, commitment power is mostly granted by ex-

isting reputation. For example, the entrepreneur may already have a past record in business

and is well-known. Corollary 2 then says that an entrepreneur has less existing reputation
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will be more unlikely to fund her project and also enjoys less expected profit than one with

an established reputation.

1.7 Discussion

1.7.1 Why Does the Crowd Matter?

To illustrate the role of the crowd, we compare the feasibility and profitability of funding a

project through a single investor with the same signal structure.

Funding by an Investor An entrepreneur with zero asset chooses to sell a share a ∈

[0, 1] of future monopoly profit v to a potential investor in order to fund the project.29

Since there is only one investor, if the investor chooses not to contribute, the project will

not be built. The entrepreneur asks for a price p ≥ k.

The investor chooses to invest whenever

U(s) =

∫ 1

0

avβ(v|s)dv − p ≥ 0,

Lemma 1.2. If the entrepreneur chooses to fund the project through selling to an investor

with share a, at price p, then in optimum p = k and a necessary and sufficient condition

such that the project can be funded with positive probability for some (a, p) is∫ 1

0

vβ(v|1)dv > k. (1.10)

Proof. Suppose the entrepreneur chooses to sell a share a at a price p and that (a, p)

maximizes profit. An investor with signal s has payoff given by

U(s) =

∫ 1

0

av − pβ(v|s)dv,

which is increasing in s. The invest will buy whenever s ≥ s∗ = min{s : U(s) ≥ δp}. Since

29 Another interpretation is to assume that a project generates utility v to a single large partially informed
investor, whose expected payoff is E[v − p|s]. For example, Google Ventures investing in start-ups for the
development of a technology that may benefit Google in the future falls in this category. This amounts to
restricting a = 1.
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the project is funded with positive probability, s∗ < 1 Then the entrepreneur’s profit is

Πs(p, a) =

∫ 1

0

((p− k) + (1− a)v) (1−G(s∗|v))f(v)dv.

Since s∗ < 1, p =
∫ 1

0
avβ(v|s∗)dv.30 Substitute into Πs(p, a) and differentiate with respect

to a to obtain

dΠs

da
= −

∫ 1

0

v(1−G(s∗|v))f(v)dv +

∫ 1

0

(∫ 1

0

vβ(v|s∗)dv
)

(1−G(s∗|v))f(v)dv

= −
∫ 1

0

∫ 1

s∗

(∫ 1

0

vβ(v|s)dv
)
g(s|v)dsf(v)dv

+

∫ 1

0

∫ 1

s∗

(∫ 1

0

vβ(v|s∗)dv
)
g(s|v)dsf(v)dv

< 0

Hence, being optimal, (a, p) must be that

p =

∫ 1

0

avβ(v|s∗)dv = k. (1.11)

If there exists (a, p) such that the project can be funded with positive probability, then

s∗ < 1 and thus (1.10) follows from (1.11). If (1.10) holds, then there exists s∗ < 1 and (a, p)

such that (11) holds.

We show that some projects can be funded with positive probability by the crowd but

not by an investor, but all projects that can be funded by an investor can be funded by the

crowd.

Let

ks = sup{k : The project can be funded by an investor.}

kfix = sup{k : The project can be funded by fixed funding with T ≥ k}

30If s∗ > 0 then this holds by the definition of s∗, if s∗ = 0 and this does not hold then the seller should
increase p to increase profit.
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For each a ∈ [0, 1], let s∗(a) = min{s :
∫ 1

0
av − kβ(v|s)dv ≥ 0} be the cutoff signal for

the investor if he can receive a shares of the profit. Let

SSFix(k) = max
(T,p)∈C0

∫ 1

v∗(T,p)

v − kf(v)dv

SSSI(k) = max
a∈[0,1]

∫ 1

0

(v − k)(1−G(s∗(a)|v))f(v)dv

be the social welfare benchmark under fixed funding and a single investor respectively,.

We have the following theorem regarding the strength of crowdfunding versus a single

large buyer.

Proposition 1.4.

kfix ≥ ks.

The inequality is strict whenever β(·|1) does not put probability one on {v = 1}. For each

k ∈ (0, 1),

SSFix(k) > SSSI(k).

Proof. Proposition 1.1 says kfix = 1.

By Lemma 1.2,

ks =

∫ 1

0

vβ(v|1)dv ≤ kfix = 1

where the inequality is strict when β(·|1) 6= δ1.

To see that SSFix(k) > SSSI(k), note that by Claim 3 of Theorem 1.2, there exists an

k < p < 1 such that v∗(k, p) = k, which achieves the social welfare under full information.

Hence, when the fixed cost is high, crowdfunding is the only way to fund a project, since it

aggregates more information and thus enables a more efficient allocation. Moreover, through

information aggregation, fixed funding can implement the socially efficient benchmark, while

an investor sometimes invest in bad states or fails to invest in good states.
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1.7.2 Equity Crowdfunding

Although our model focuses on reward-based crowdfunding, in which the backers derive

utility directly from a unit of the product, the entrepreneur can potentially use other means

to fund the project as well. For example, the entrepreneur can sell a portion of future

profit to the crowd, such as in equity crowdfunding. We show how to incorporate equity

crowdfunding into our framework.

Definition 1.1. An equity crowdfunding campaign is a tuple (T, p, a) where T is the thresh-

old, p is the price per share, and a is the portion of future profit on sale.

Given an equity funding plan, an action profile, σ, with cutoff s∗, the expected utility to

contribute is

U(s) =

∫ 1

v∗
(av − p)β(v|s)dv

The entrepreneur’s profit is

Π(T, p, a) =

∫ 1

v∗
(p(1−G(s∗|v)) + ((1− a) + aG(s|v))v − k)f(v)dv.

Note that the analysis in previous sections still go through. The scalar a does not affect any

of our arguments before.

Suppose that there is a measure µ of retail stage consumers and that k > 1. Then there

will be no funded equilibrium in reward based funding, while in equity funding the backers

will be able to enjoy the profit brought by the measure µ of retail consumers. Therefore the

project may still be funded by equity funding as the entrepreneur can charge a per capita

price higher than k > 1. Hence equity funding potentially enables more projects to be funded

than reward-based crowdfunding because it can front-load the project’s total value to the

backers, alleviating problems of insufficient market reach.

1.7.3 When Will Flexible Funding Be Preferable?

One may wonder, why is flexible funding still adopted from time to time on some online

platforms?
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We first note that empirical findings in [CLS14] suggest that fixed funding has a higher

rate of success and raises more money for projects about consumer products. The production

function in these projects are often of the threshold type, and the entrepreneur knows that

the cost is a constant k independent of v.31

In other types of projects, the cost may be a function of v as well. For example, consider

an NPO running a campaign to contain an epidemic outbreak in a developing country, where

the number of infections is uncertain and will be realized at a future date.

Formally, assume k(v) = cv for v ∈ [0, 1]. This means that at each state v, the number

of infections is v and the total cost to contain it is cv. Also assume f(v) = 1 and g(s|v) =

2vs + 2(1− v)(1− s) for all s, v ∈ [0, 1]. This implies β(v|s) = g(s|v). The NPO’s problem

is to maximize social surplus using crowdfunding∫ 1

v∗
(v − cv) f(v)dv

subject to an ex-post budget balance constraint

Xσ
0 (v) ≥ cv

on the states where the project is funded.

Backers derive utility from helping out, with utility v − p on the states where money is

taken. That is, the bigger the problem a backer helps to alleviate, the higher his utility.

Hence, a backer with a high signal assumes the problem is more serious and is thus more

likely to contribute.

Consider the campaign (T, p) = (0, 1/2). Then when p = 1/2,
∫ 1

0
(v−p)f(v)dv = 0. Since

β(v|1/2) = f(v), the indifferent backer is s∗ = 1/2. And the money raised in each state will

be

Xσ
0 (v) = p

(
1−G

(
1

2
|v
))

=
v

4
+

1

8
.

31[CLS14] examines data from Indiegogo and finds that entrepreneurs with different types of project or
risk preference will self-select to adopt different funding mechanisms. An entrepreneur with scalable projects
or with risk averse preferences are more likely to adopt flexible funding than fixed funding. While we
assume the entrepreneur is risk-neutral throughout the paper, we do note that by choosing fixed funding the
entrepreneur will get zero with positive probability, and it is possible to construct a risk preference under
which an entrepreneur prefers flexible funding even she has a non-scalable project.
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Therefore, whenever c ≤ 3/8, the flexible campaign (T, p) = (0, 1/2) maximizes social surplus

with ex-post budget balance.

While we do not formally treat general production functions, we stress that it is hardly

optimal to take money away while doing nothing. In any such occasion the entrepreneur can

make the adjustment we proposed in Theorem 1 and receive more fund. Thus, a good flexible

funding campaign often comes with a promise to build. Projects that can benefit from such

a promise are those that are socially efficient to build at any states, which are more likely to

involve charity projects than the development of consumption goods or investment plans.

1.8 Conclusion

This paper models crowdfunding as an entrepreneur posting a price to partially informed

backers. The incentive for the backers to contribute to the campaign is driven by the expec-

tation of paying a lower price than the retail price, when the quality of the good turns out

to be good. Fixed funding reinforces this incentive by refunding the money when the quality

of the good is bad, and thus it is able to achieve a higher probability of getting funded and

also raises a higher amount of funds. In terms of moral hazard, there can be several reasons

to explain an empirically low default rate. Instead of a reputational argument, we show how

the entrepreneur could use third party online platforms as a commitment device to eliminate

the possibility of defaults.

Our model thus explains the success of crowdfunding and in particular the popularity of

fixed funding, both when the entrepreneur can commit or can not commit to developing her

project. In spite of the lack of regulation, to a certain degree crowdfunding is not subject

to serious moral hazard problems. Measures to deregulate the equity crowdfunding market,

such as the JOBS act, thus seems to be a right step.

There are several interesting directions one can further investigate. For instance, one can

extend the model to general production functions where the entrepreneur may need to choose

an investment policy. Another direction is to consider the dynamics of crowdfunding and

study how information is aggregated and how the current backers learn through observing
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previous backers, which relates to a vast learning/herding literature pioneered by [BHW98].

It is also of interest to more extensively study equity funding and see how it compares to

methods such as going through an IPO.32

32On a practical level, crowdfunding is more accessible to IPO to small businesses. Another difference is the
determination of prices. Crowdfunding is through posted price, but the commonly employed book-building
method endogenously determines a market clearing price. IPO also has principal-agent problems.
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CHAPTER 2

Should the Talk be Cheap in Contribution Games?

2.1 Introduction

In static contribution games with incomplete information, free riding and mis-coordination

due to incomplete information often causes inefficiency. A potential solution is to allow cheap

talk before contribution, that the agents are allowed to freely communicate whether they like

to contribute, without cost and commitment. Intuitively, these cheap talks can be used to

coordinate contributors with high private values, so the project will be built when it is worth

it. However, it is subject to credibility problems. People may be just bragging about their

willingness to contribute to induce others to contribute more. Another solution is making the

contribution game sequential, allowing agents to take turns to contribute, with commitment.

Under such setting the signals becomes much more credible and may potentially incentive

people with lower valuation to contribute. It is thus not immediately clear whether a period

or multiple periods of cheap talk will be more socially efficient compared to multiple periods

of committed contribution.

In this paper we identify a factor that determines which setting admits a more efficient

equilibrium: the number of levels of contribution the agents can choose. We consider pro-

duction functions that satisfy increasing differences and that agents are only able to free

ride others’ efforts if they contribute(such as joining a membership). We focus on monotone

equilibria, in which the contribution decision is weakly increasing in history(last period con-

tributions) and type. This is a natural solution concept given the property of the production

function.

With binary contribution choices, one of the monotone equilibria of the contribution game
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with cheap talk implements the ex-post efficient and ex-post individually rational allocation

when the period is long enough. On the other hand no equilibrium of the contribution game

with commitment can implement the same allocation.

However, with a continuum of contribution choices, free riding will be so severe that

cheap talk does not convey any information in equilibrium. So the game with cheap talk has

the same equilibrium as the BNE in an one-shot game. On the other hand, we construct

a PBE in a dynamic contribution game with commitment that significantly increases social

welfare. Hence, costless signalling and costly signalling are both useful, depending on the

underlying environment. Our paper thus provides insight in designing indirect mechanisms

in relevant environments, in which whether signalling is costly depends on the designer’s

choice. One example is crowdfunding, in which people contribute to a project over time.

The popular online platform Kickstarter allows the contributors to withdraw the money

anytime before a funding campaign is closed, essentially making it cheap talk, while another

platform Indiegogo has a more strict policy of refund in most of its campaigns.

The contribution dynamics identified in our paper is also interesting in its own right.

In a contribution game with commitment, high types contribute first and low types wait to

the next round until they observe the high types’ contribution. In contrast, in a game with

cheap talk, the dynamics resembles that of an open ascending bid auction. Every agents

with type above a certain threshold signals that they will contribute. Upon observing the

number of such claims, some begin to drop out. In subsequent rounds more agents drop out,

until a subset of agents such that each one of them is willing to contribute as long as others

in the subset contribute, is reached. In this fashion, even with only a binary message space,

if the length of cheap talk stages is long enough the efficient allocation(with a continuum of

private types) will still be reached.

Our paper seems to be in contrast with the results obtained in cost sharing games, such

as in Agastya et al.[AMS07], where they showed cheap talk improves efficiency in a game

with a continuum of actions. However, in their paper with a cost sharing game, the two

players coordinates to share costs at a pre-determined level that, once the project is decided

to be built, is independent of the reports. Hence, it is essentially binary: either no one
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contributes or everyone contributes a pre-specified quantity. With our production function,

a player always benefits from the other player’s additional contribution. Free riding thus

makes cheap talk non-credible.

Related Literature Cheap talk has been shown in Crawford and Sobel[CS82], among

others, to improve efficiency in incomplete information games where agents interests are

aligned. Palfrey and Rothensal[PR91] compare a game with cheap talk versus a one shot

game. Agastya, et al.[AMS07] show that, in cost sharing games, adding a stage of cheap

talk before the actual contribution improves efficiency. Using a similar production function,

Palfrey et al.[PRR15] demonstrate efficiency gains of cheap talk in experiments.

Making the contribution little my little with commitment also seems to alleviate incom-

plete information problems. In his seminal book, Schelling[Sch60] suggests dividing contri-

bution sequentially to overcome the credibility issue. Duffy et al.[DOV07] show using exper-

iments that making the contribution game dynamic did increase contributions relative to its

static counterpart. However, making the contribution sunk may hinder efficiency because it

can make agents too conservative, as shown in the model by Admati and Perry[AP91].

Following these papers, Barberi[Bar12] simultaneously looks at dynamic contribution and

cheap talk. He shows that in addition to a cheap talk stage, adding an early contribution

stage prior to the cheap talk stage increases the credibility of the cheap talk, thus further

improves efficiency.

Built on these set of papers, we compare the efficiency of equilibria in games with cheap

talk and games with commitment, and make clear the underlying economic forces that makes

cheap talk or commitment better than one another.

The rest of the paper is organized as follows. In Section 2 we set up the underlying

environment. In Section 3, we look at binary contribution levels. We first characterize the

incentive compatible and efficient allocation as a benchmark, and then characterize equilibria

in dynamic models with cheap talk and with commitment, and show that cheap talk has an

edge over dynamic games with commitment. In Section 4 we turn to a model where the level

of contribution is a continuum, and show that the result reverses. Section 5 concludes.
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2.2 The Environment

N agents, i ∈ {1, ..., N}, contribute jointly to a project. The action set for each agent is a

subset M ⊂ R+ with 0 ∈M . The utility of an agent is given by

u(mi,m−i, θi) = g(mi,m−i, θi)−mi,

where θi ∈ Θ = [0, 1] is private value and m−i =
∑

j 6=imj and g : M ×M × Θ. Assume

also that gi(0,m−i, θi) = 0 for all m−i, θi and i. That is, this is a joint contribution to an

excludable good1

Agents’ values are distributed i.i.d with common prior F with full support on Θ. The

central assumption for our production function is

Assumption 1. g(·) is increasing in all variables and satisfies strict increasing differences

in (mi,m−i) and (mi, θi).

To make the problem interesting, assume

Assumption 2. g(1, 0, 1) > 1 and g(1, N − 1, 0)− 1 < 0.

This assumption amounts to the the inclusion of two extreme preferences: people that

want to contribute anyways and people that will never contribute no matter what.

2.3 The Binary Action Model

In this section we assume M = {0, 1}. We will first see what the ex-post efficient allocation

is, and then consider two regimes of dynamic contribution games , one with cheap talk and

one without, to see whether the equilibrium allocation coincide with the efficient one.

2.3.1 Ex-post Efficient and Individually Rational Allocation

As a benchmark, we characterize the F -almost unique ex-post efficient and individually

rational allocation to our environment and compare the outcomes of the models we are

1Co-authoring a paper, membership, etc. are examples of excludable good.
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interested in against this benchmark.

An allocation is a function

m : ΘN → {0, 1}N .

An allocation is dominant strategy incentive compatible(dsIC) if ui(m(θ), θi) ≥ ui(m(θ′i, θ−i), θi)

for all θi, θ
′
i, θ−i and all i. An allocation is ex-post dominated if there exists some other al-

location m′ such that ui(m
′(θ), θi) ≥ ui(m(θ), θi) for all i and all θ and that the inequality

holds strictly for some i and θ. m is ex-post efficient if it is not ex-post dominated. m is

individually rational(IR) if ui(m(θ), θi) ≥ 0 for all i and θ. Intuitively, ex-post efficiency

and individual rationality require us to find, for each profile θ, the maximal subset of agents

such that if they contribute they can all get non-negative utility. We now show formally this

intuition is true. For each n = 0, ..., N − 1, define θ̃(n) such that

g(1, n, θ̃(n))− 1 = 0,

which exists by A2. For each type profile θ = (θ1, ..., θN), let k(n)(θ) = |{i|g(1, n, θi)−1 ≥ 0}|

for each n. So k(n)(θ) is the size of the set of agents who are willing to contribute as long as

there are at least n other people who contribute. Let K(θ) = maxn{k(n)(θ)|k(n)(θ) > n}.

Define an allocation m : ΘN → {0, 1}N as

mi(θ) =

 1 if θi ≥ θ̃(K(θ))

0 otherwise

Proposition 2.1. m is IR, dsIC, and ex-post efficient. Let m′ be another IR and ex-post

efficient allocation, then {θ : m′(θ) 6= m(θ)} is an F -measure zero set.

Proof. Individual rationality of m follows from the definition. Suppose m′ ex-post domi-

nates m. In particular, in state θ there exists i such that ui(m
′(θ), θi) > ui(m(θ), θi). We

separate two cases: K(θ) = 0 and K(θ) > 0. In the former case, m∗(θ) = (0, ..., 0), so ev-

eryone gets zero utility under m. Hence m′i(θ) = 1. It implies there exists some j such that

uj(m
′(θ), θj) < 0, otherwise K(θ) 6= 0. But this again contradicts that m′ ex-post dominates

m. In the latter case, suppose first θi < θ̃(K(θ)). Then ui(m
′(θ), θi) > 0 = ui(m(θ), θi).

Then there must exists some j such that uj(m
′(θ), θj) < 0, otherwise m′ contradicts the
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definition of K(θ). Suppose instead that θi ≥ θ̃(K(θ)), then it must be that the number of

contributors under m′(θ) is more than m(θ). By the definition of K(θ) this again implies

the existence of some agent j with uj(m
′(θ), θj) < 0. Either way contradicts the assumption

that m′ ex-post dominates m.

For the almost uniqueness assertion, since F is assumed to be continuous, it sufficies to

show that for all type profile θ = (θ1, ..., θN) with θi 6= θ̃(n) for all i, n, the efficient and

individually rational allocation is unique.2 To this end, let m(θ) 6= m′(θ) be two ex-post

efficient and IR allocations. Let S = {i : mi(θ) = 1}, S ′ = {i : m′i(θ) = 1}. Let m̃(θ) be

defined as m̃(θ) = 1 iff i ∈ S ∪ S ′. We claim that m̃ ex-post dominates m,m′ and is IR.

Since |S ∪ S ′| ≥ max{|S|, |S ′|}, IR of m(θ),m′(θ) implies

ui(m̃(θ), θi) ≥ max{ui(m(θ), θi), ui(m
′(θ), θi)} ≥ 0

for all i. Since S 6= S ′, without loss of generality assume mi(θ) = 1 for some i. We claim

either i strictly prefers m̃(θ) to m(θ) or there exists some j that strictly prefers m̃(θ) to

m′(θ). This contradicts that both m(θ),m′(θ) are ex-post efficient. Suppose i is indifferent

between θ̃ and m(θ). Then |S ∪ S ′| = |S|, which implies S ′ ⊂ S. If S ′ 6= φ, since S 6= S ′

there exists j 6= i with m′(θj) = 1. But then |S ′| < |S|, so uj(m̃(θ), θj) > uj(m
′(θ), θj).

If S ′ = φ, then the ex-post efficiency of m′ implies ui(m(θ), θi) = ui(m
′(θ), θi) = 0, which

implies θi = θ̃(|S| − 1), violating that θo 6= θ̃(n) for all i, n.

For ex-post IC, suppose type θi reports θ′i. Suppose first that mi(θi, θ−i) = 1. Then either

m(θi, θ−i) = m(θ′i, θ−i) or m(θ′i, θ−i) = 0. In the former case the utlity for θi is unchanged, in

the latter it changes from weakly positive to zero(ui(m(θ), θi) = 0 when θi = θ̃(n) for some

appropriate n). Suppose instead that mi(θi, θ−i) = 0. Then either m(θi, θ−i) = m(θ′i, θ−i) or

m(θ′i, θ−i) = 1. In the former the utility again remains unchanged. In the latter, by definition

of m every j with θj ≥ θ′i will also contribute. But this means ui(m(θ′i, θ−i), θi) < 0, otherwise

we will have mi(θi, θ−i) = 1 in the first place.

Remark 2. The multiplicity of ex-post efficient and IR allocation comes from the existence

of the cutoff types θ̃(n), that is, the types that are indifferent between contribution or not

2Here we abuse the word allocation slightly to mean an element in {0, 1}N instead of a function.
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given for a given number of other contributers. Excluding such cases the ex-post efficient

and IR allocation will be unique.

Remark 3. A mechanism designer may have other goals than obtaining efficiency. For

example, maximizing E[
∑

imi(θ)] subject to IC and IR constraints. Proposition 2.1 already

maximizes the total contribution subject to ex-post IR. However, it is still possible to relax

ex-post IR to interim IR and obtain a higher expected total contribution.

2.3.2 The Dynamic Contribution Game

In what follows we construct indirect mechanisms where the message space is the contribution

levels instead of types, and find conditions where an indirect mechanism implements the

efficient allocation.

The mechanism we consider is a game in which agents make contribution decisions over

T periods. There is no time discount.

In each period, each agent takes an action ati ∈ Ati ⊂ {0, 1}. The available actions may

depend on history.

A history in the beginning of date t + 1 for player i for games in which individual con-

tribution is unobservable is ht = (hti, h
t
−i) = ({asi}ts=1,

∑
j 6=i a

s
j}ts=1), while in the observable

setting it is ht = {as1, ..., asN}ts=1. It turns out that in T = 2 both assumptions are the same.

However, if T > 2 then unobservability creates complications in that a deviation may not be

common knowledge among players. Hence, in this paper the result for T > 2 periods model

will be derived under the assumption that each player’s action is perfectly observable.

Let H t denotes the set of date t histories, with H0 = {1}. A strategy for player i,

si = {mt
i}, is a sequence of functions {mt

i}Tt=1 with mt
i : Θ×H t−1 → {0, 1}.

For a given pure strategy profile ({mt
i}Tt=1)Ni=1, let m(T ) ∈ {0, 1}N be the induced terminal

node. Then the utility is given by

ui(m(T ), θi) = g(mi(T ),m−i(T ), θi)−mi(T ).

The contribution game has commitment if for each t and each i, Ati = {1} for player i

50



whenever asi = 1 for some s < t. That is, whenever agent i chooses to contribute, he becomes

inactive and must choose mT
i = 1 in the end.

The contribution game has cheap talk if Ati = {0, 1} for all history.

Thus, a game with no cheap talk is a T -period contribution game where one decides the

period one puts in the effort/money. A game with cheap talk comes with T − 1 periods of

cheap talk and 1 last period of real contribution.

Call a strategy {m1
i (θ),m

t
i(θ, h

t−1)} history-monotone ifmt
i(θ, h

t−1
i , ht−1

−i ) ≥ mt
i(θ, h

t−1
i , h′t−1

−i )

when ht−1
−i > h′t−1

−i . Call a strategy {m1
i (θ),m

t
i(θ, h

t−1)} monotone if for every t, mt
i(θ, h

t) is

nondecreasing in each and every of the arguments θ, hti, h
t
−i.

2.3.3 Two Period Contribution Game With Commitment

In this section we characterize the class of monotone symmetric perfect Bayesian equilib-

ria(PBE) of the contribution game with commitment when T = 2. We will show that all

PBEs that are history-monotone are also monotone.

Given a strategy profile, fix an agent. Let α(n1) be the probability(belief of that agent)

that there are n1 contributors out of N − 1 agents in the first period, β(k, n1, 0) be the

probability that there are k other contributors in the second period out of N − 1−n1 agents

conditional on that there are n1 other contributors in the first period and the agent itself

did not contribute in the first period. Similarly, β(k, n1, 1) is the conditional belief on the

number of second period other contributors if the agent contributes in the first period.

For two discrete probability density f(t), g(t), we say f(t) first order stochastically domi-

nates g(t)(henthforth FOSD) if
∑∞

q f(t) ≥
∑∞

q g(t) for all q. We say f(t) strictly FOSD g(t)

if the inequality holds strict for some q. A standard result regarding FOSD that will be used

later is that for any non-decreasing function u(t), if f strictly FOSD g then Ef [u] > Eg[u].

Lemma 2.1. Assume A1,A2. Given any symmetric PBE that is history-monotone

• 1.β(k, n1, 1) FOSD β(k, n1, 0) for all n1.

• 2.β(k,N − 2, 1) strictly FOSD β(k,N − 2, 0).
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Proof. We need to show that for q = 0, 1, ..., N − n1 − 1,

N−n1−1∑
k=q

β(k, n1, 1) ≥
N−n1−1∑
k=q

β(k, n1, 0).

Fix any PBE and any n1. Let S = m−1
1 (1) , T = {θ : m2(θ, 0, n1) = 1}. Let p = P(T |Sc).

Then

β(k, n1, 0) =

(
N − 1− n1

k

)
pk(1− p)N−1−n1−k.

Let T ′ = {θ : m2(θ, 0, n1 + 1) = 1} p′ = P(T ′|Sc). Then

β(k, n1, 1) =

(
N − 1− n1

k

)
p′
k
(1− p′)N−1−n1−k.

Since the strategies are monotone in h−i, T ⊂ T ′, which implies p′ ≥ p, establishing item 1.

Let n1 = N − 2. Then in equilibrium the sets T , T ′ are given by

T :=

{
θ :

1∑
k=0

(
1

k

)
pk(1− p)N−1−n1g(1, N − 2 + k, θ)− 1 > 0

}
T ′ := {θ : g(1, N − 1, θ)− 1 > 0}

Since A1 and continuity of g w.r.t. θ implies p = P(T |Sc) < 1 in equilibrium3, I := T ′\T

will be an interval with positive length. Suppose P(T ′|Sc) = P(T |Sc), then P(I|Sc) = 0,

so types in I all contribute in the first period. Consider the type inf I, that is, the type

such that g(1, N − 1, inf I) = 1. Since p < 1, he strictly prefers to contribute in the second

period than contribute in the first period. By continuity of expected utility with respect to

θ some types in I also strictly prefers to delay contribution, contradicting that the proposed

strategy profile is a PBE. Hence P(T ′|Sc) > P(T |Sc), establishing item 2.

In the next Lemma we show that all history-monotone PBEs are monotone(i.e. in all

arguments). This follows from increasing differences and the fact that early contribution

induces late contributions (Lemma 2.1).

Lemma 2.2. Assume A1,A2. For any symmetric PBE that is monotone in history, m1(θ)

is monotone in θ, m2(θ, ·, n1) is monotone in θ given n1.

3There is some θ∗ > 0 s.t. g(1, N − 1, θ) − 1 < 0 for all θ ∈ [0, θ∗]. In equilibrium these types will not
contribute in the first or second period no matter what.
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Proof. First we show thatm1 is monotone in θ. The expected payoffs for type θ to contribute

in the first period and delay contribution are

EU1(θ) =
N=1∑
n1=0

N−1−n1∑
k=0

α(n1)β(k, n1, 1)g(1, n1 + k, θ)− 1

EUd(θ) =
N=1∑
n1=0

α(n1) max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, n1 + k, θ)− 1

}

Suppose m1(θ) > m1(θ′), then being an equilibrium implies

EU1(θ) ≥ EUd(θ) (2.1)

EUd(θ
′) ≥ EU1(θ′) (2.2)

Adding (2.1),(2.2) and rearrange to obtain

N=1∑
n1=0

N−1−n1∑
k=0

α(n1)β(k, n1, 1)[g(1, n1 + k, θ)− g(1, n1 + k, θ′)]

≥
N−1∑
n1=0

α(n1)

(
max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, n1 + k, θ)− 1

}
(2.3)

− max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, n1 + k, θ′)− 1

})

Suppose θ ≤ θ′. Then increasing difference of g implies g(1, n1 + k, θ)− g(1, n1 + k, θ′) is

decreasing in k. Applying Lemma 1 to the LHS of (2.3) yields

N−1∑
n1=0

N−1−n1∑
k=0

α(n1)β(k, n1, 0)[g(1, n1 + k, θ)− g(1, n1 + k, θ′)]

>
N−1∑
n1=0

α(n1)

(
max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, n1 + k, θ)− 1

}
(2.4)

− max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, n1 + k, θ′)− 1

})

Now observe that for every 0 ≤ n1 ≤ N − 1, each term in the LHS of (2.4) must be less

than or equal to the corresponding terms in the RHS. This contradicts (2.4). Hence θ > θ′.

This shows that m1 is monotone in θ.
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Given m2(θ, ·, n1) > m2(θ′, ·, n1). Then m1(θ′) = m2(θ′, ·, n1) = 0. If m1(θ) > 0 then by

monotonicity, θ > θ′. If m1(θ) = 0, both type θ, θ′ postpone the contribution decision to

second period. m2(θ, ·, n1) > m2(θ′, ·, n1) then implies

N−n1−1∑
k=0

β(k, n1, 0)(g(1, k + n1, θ)− g(1, k + n1, θ
′)) > 0.

Since g is monotone in θ, this implies θ > θ′. Hence m2(θ, ·, n1) is monotone in θ.

It follows from Lemma 2.2 that in any history-monotone PBE the high types contribute

first, and the middle types decides whether to contribute based on the number of first period

contributors. This pattern of contribution is the same as the one found in Gradstein[Gra92],

however, in his paper agents contribute first in order to enjoy it first(like early members to

some club), while in our model early contributors simply want to induce follow-ups.

To show equilibrium exists it thus suffices to show the existence of the cutoff types.

That is, the type θ1 which is indifferent between contributing in the first period and delay,

and the type θ2(n1) which is indifferent between contributing and not contributing if there

are n1 contributers in the first period. The assumption of monotonicity in h1
−i requires

θ2(n) ≤ θ2(m) whenever n > m.

Theorem 2.1. Assume A1,A2. Symmetric monotone PBEs of the contribution game with

commitment exist and are characterized by cutoffs {θ1, {θ2(n1)}N−1
n1=0}:

mnr
1 (θ) =

 1 if θ > θ1

0 else

mnr
2 (θ, h1

i , h
1
−i) =

 1 if h1
i = 1 or θ > θ2(h1

−i)

0 else

Proof. We will use a fixed point argument to show existence of cutoff points. Define

S = {(s1, s2
0, ..., s

2
N−1) ∈ [0, 1]N+1 : s2

0 ≥ s2
1 ≥ ... ≥ s2

N−1}.
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Observe that S is a compact and convex set. Define a correspondence (T 1, T 2) : S → S as

follows: T 2
n1

(s) is defined to be the solution to the following equation:

N−n1−1∑
k=0

(
N − n1 − 1

k

)
P (θ > s2

n1
|θ < s1)kP (θ < s2

n1
|θ ≤ s1)N−n1−1−kg(1, n1 + k, s)− 1 = 0.

(2.5)

It is well defined since (2.5) is continuous and increasing in s, and by A1 when (2.5) evaluated

at θ = 0 it is negative, when evaluated at θ = 1 it is positive. Furthermore, since (2.5) is

continuous in all variables, T 2 is upper-hemicontinuous. To verify that T 2 satisfies T 2
n(s) ≥

T 2
m(s) whenever n < m, let θ = T in(s) be the solution to (2.5) with n1 = n. Then since

s2
m ≤ s2

n,

N−m−1∑
k=0

(
N −m− 1

k

)
P (θ > s2

m|θ < s1)kP (θ < s2
m|θ ≤ s1)N−m−1−kg(1,m+ k, T in(s))− 1

>
N−n−1∑
k=0

(
N − n− 1

k

)
P (θ > s2

n|θ < s1)kP (θ < s2
n|θ ≤ s1)N−n−1−kg(1, n+ k, T in(s))− 1

=0.

Hence T in(s) > T im(s) whenever m > n.

Finally, define T 1(s) for s ∈ S to be the solution to

N=1∑
n1=0

N−1−n1∑
k=0

α(n1)β(k, n1, 1)g(1, n1 + k, θ)−
N−1∑
n1=0

α(n1) max

{
0,

N−1−n1∑
k=0

β(k, n1, 0)g(1, k + n1, θ)− 1

}
= 1,

(2.6)

where α(n1) =
(
N−1
n1

)
(1 − F (s1))n1F (s1)N−1−n1 and β(k, n1, j) is given by lemma 1, with

p′ = P (θ > s2
n1+1|θ ≤ s1). Since s ∈ S, β(k,N − 2, 1) FOSDs(but not necessarily strict

FOSD) β(k,N − 2, 0).

By A1 and Lemma 1, (2.6) when evaluated at θ = 0 is negative, when evaluated at θ = 1

is positive. Furthermore, the derivative of (6) with respect to θ is

N−1∑
n1=0

N−1−n1∑
k=0

α(n1)β(k, n1, 1)
∂g(1, n1 + k, θ)

∂θ
−

N−1∑
n1≥K(θ)

α(n1)

N−1−n1∑
k=0

β(k, n1, 0)
∂g(1, n1 + k, θ)

∂θ
≥ 0

where K(θ) is the smallest integer n1 such that
∑N−1−n1

k=0 β(k, n1, 0)g(1, k + n1, θ) − 1 > 0.

Hence the solution to (2.6) exists and is an interval. Accordingly, (T 1, T 2) : S → S is a
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upper-hemicontinuous convex-valued correspondence on the compact and convex set S. The

Kakutani fixed point theorem implies T has a fixed point. By Lemma 2, the fixed points of

T are exactly the set of monotone symmetric PBEs.

Remark 4. Note that if e ∈ T (e) then T (e) must be a singleton, because for any monotone

PBE, by Lemma 1 β(k,N − 2, 1) strictly FOSDs β(k,N − 2, 0), which implies the derivative

of (2.6) w.r.t. θ is strictly positive, so the solution to (2.6) is unique.

Corollary 3. In any monotone PBE, θ2(N − 1) < θ1, θ2(0) > θ1.

Proof. The first claim is implied by Lemma 1. For the second, note that if θ2(0) ≤ θ1,

then for every n, β(k, n, 1) strictly FOSD β(k, n, 0)(Theorem 1 shows θ2(n) < θ2(m) for

n < m. Hence when (2.6) is evaluated at θ1 the value will be positive instead of zero, a

contradiction.

2.3.4 Two Period Contribution with Cheap Talk

In this section we characterize the set of monotone PBEs of the contribution game with

cheap talk. Again let α(n1) be the probability such that the number of other contributers in

the first period is n1 and let β(k; 0, n1), β(k; 1, n1) be the conditional probabilities of second

period contributions on the number of first period contributors.

The key lemma here we want to show, for the class of monotone PBEs is still that

β(k; 1, n1) strictly FOSDs β(k; 0, n1), which is the main driving force of early contribution:

that it induces middle types to contribute later. Intuitively, we may argue as follows: since

θ ≤ θ1
r will never contribute, observing a contribution in period 1 means θi > θ1

r , hence i

is more likely to contribute in the second period. So the incentive to contribute becomes

strictly higher if the observed first period contribution is higher. However, since period 1

contribution is simply a cheap talk, it can also be that the agents use 1 to signal low type and

0 high type. To focus on equilibria which are more informative(if there is one), in addition

to assume monotonicity of m2(θ, ·, n) on n, we also need to assume m1(θ) is monotonically

increasing on θ. In particular, we assume there exists θ1 ∈ (0, 1) such that m1(θ) = 0 for
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θ < θ1 and m1(θ) = 1 for θ > θ1. So we are again characterizing the set of monotone

equilibria, except that monotonicity is not implied by weaker conditions as in the no cheap

talk case.

Lemma 2.3. Assume A1,A2. In the game with cheap talk, in any monotone PBE, β(k; 1, n1)

FOSDs β(k; 0, n1). sFOSD holds for n1 = 1, ..., N − 2.

Remark 5. The proof strategy is as follows: First we show if an agent contributes in the

first period, then the posterior probability that he is going to contribute in the second period

is higher than that if he does not contribute in the first period. Then we show that given

any first period action of an agent, he is more likely to contribute in the second period if he

sees more contributors in the first period. Finally we show that by contributing in the first

period, one induces the other agents to contribute in the second period.

Proof. Fix a PBE {m1
i (θ),m

2
i (θ, h

t
i, h

t
−i)}. Let θ1 be such that {θ : m1(θ) = 1} = [θ1, 1].

Monotonicity of m2 with respect to θ implies {θ : m2(θ, 1, n) = 1} and {θ : m2(θ, 0, n) = 1}

are two connected intervals with right endpoint 1. Denote them by [a(n), 1] and [b(n), 1]

respectively, where a(n) ≤ b(n).(What the marginal type a, b do are not essential, they

could as well be half open intervals.) Let p(1, n) = P(m2(θ, 1, n) = 1|m1(θ) = 1), p(0, n) =

P(m2(θ, 0, n) = 1|m1(θ) = 0).

We then show that first period contribution indicates a higher chance to contribution in

the second period:

Claim 1 p(1, n) > p(0, n)

By the definition of conditional probability, this writes as

1−max{a(n), θ1}
1− θ1

>
θ1 −min{b(n), θ1}

θ1
, (2.7)

which is verified by observing that when a(n) > θ1 the right hand side is zero, and when

a(n) ≤ θ1 the left hand side is one, and by assumption A1, a(n) 6= 1 and b(n) 6= 0 for all n.

Claim 2 a(n+ 1) < a(n), b(n+ 1) < b(n).
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To see this, fix a type θ. Consider his continuation payoff for contributing in t = 2 under

history h1 = (0, n+ 1) and under h1 = (0, n) respectively:

E[u(1,m2, θ)|h1 = (0, n+ 1)] = E[g(1, X1 + Y1, θ)]− 1, (2.8)

E[u(1,m2, θ)|h1 = (0, n)] = E[g(1, X2 + Y2, θ)]− 1, (2.9)

where X1 ∼ Bin(n+1, p(1, n)), Y1 ∼ Bin(N−2−n, p(0, n+1)), and X2 ∼ Bin(n, p(1, n−1)),

Y2 ∼ Bin(N − n − 1, p(0, n)). It then follows from Claim 1 that X1 + Y1 strictly FOSDs

X2 + Y2. Since {θ : m2(θ, 0, n + 1) = 1} = [b(n + 1), 1] is the set of θ on which (2.8) is

positive, and {θ,m2(θ, ·, n) = 1} = [b(n), 1] is the set of θ on which (2.9) is positive, one part

of claim is established. The same argument applies to the other part.

A direct implication by the expression in (2.7) is that

p(1, n) ≥ p(1, n− 1) and p(0, n+ 1) ≥ p(0, n). (2.10)

Now observe that β(k, n, 1) is the probability of X1 + Y1 = k, where X1 ∼ Bin(n, p(1, n)),

Y1 ∼ Bin(N − n − 1, p(0, n + 1)), and β(k|h1 = (0, n)) is the probability of X2 + Y2 = k,

where X2 ∼ Bin(n, p(1, n − 1)), Y2 ∼ Bin(N − n − 1, p(0, n)). Hence (2.10) shows FOSD

for all n. To show sFOSD for n = 1, ...N − 2, it sufficies to show that either one of the

inequalities in (11) holds strictly. To this end, note that if a(n) ≥ θ1, then by Claim 2 we

have p(1, n) > p(1, n − 1). If a(n) < θ1, then by Claim 1, 1 = p(1, n) > p(0, n). This will

imply b(n) > 0, and Claim 2 will thus imply p(0, n+ 1) > p(0, n).

The argument does not apply to the case n = N − 1 as Y1, Y2 will be zero.

Lemma 2.4. Assume A1,A2. Given a profile of symmetric monotone equilibrium. Suppose

β(k, 1, N − 1)sFOSDsβ(k, 0, N − 1)

then a type θ who contribute with positive probability on the equilibrium path contribute

in the first period. Suppose sFOSD fails for n1 = N − 1, then any type above θ̃(N − 2)

contribute in the first period. In this case, a(N − 1) = θ̃(N − 1), a(N − 2) = θ1 < θ̃(N − 2).
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Proof. Suppose sFOSD holds for all n1. For any type θ, the expected payoffs for contributing

in the first period(EU1) and delay contribution(EU2) are

EU1(θ) =
N−1∑
n1=0

α(n1) max

{
0,

N−1∑
k=0

β(k, 1, n1)g(1, k, θ)− 1

}

EU2(θ) =
N−1∑
n1=0

α(n1) max

{
0,

N−1∑
k=0

β(k, 0, n1)g(1, k, θ)− 1

}

That type θ contribute with positive probability implies there exists some n1 such that

N−1∑
k=0

β(k, n1, 1)g(1, k, θ)− 1 > 0.

Since sFOSD holds for n1, EU1(θ) > EU2(θ) and EU1(θ) > 0. Hence it is optimal for the

type θ to contribute in the first period.

Suppose sFOSD fails for n1 = N − 1. The expression in (2.7) then implies p(1, N − 1) =

p(1, N − 2) = 1, which implies a(N − 1) < a(N − 2) ≤ θ1. If a(N − 2) < θ1, then

any type θ ∈ (a(N − 2), θ1) will be better off contributing in period 1 since sFOSD holds

for N − 2 and
∑

k β(k, 1, N − 2)g(1, k, θ) − 1 > 0. Hence we must have a(N − 2) = θ1.

Furthermore, p(1, N − 1) = 1 implies a(N − 1) = θ̃(N − 1) < θ1. Since p(1, N − 2) = 1 and

p(0, N − 1) = P (θ̃(N − 1) < θ|θ < θ1) > 0, in a history h = (1, N − 2) there will be at least

N−2 final contributors, and N−1 with a positive probability, hence a(N−2) < θ̃(N−2).

The converse of Lemma 2.4 does not hold: It is not necessarily true that in any monotone

PBE where sFOSD hold for all n, all agents who contribute in the first period will contribute

with positive probability.4 Lemma 2.3 and 2.4 imply the monotone PBEs of the cheap talk

game fall into three categories

• a. θ1 = a(N − 1) < a(N − 2) < ... < a(0)

• b. θ1 < a(N − 1) < a(N − 2) < ... < a(0)

• c. a(N − 1) < a(N − 2) = θ1 < ... < a(0)

4Because contribution is cheap talk, low type agents contributing in period 1 can be supported as an
equilibrium even though their utility is zero with probability one.
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Category a,b are cases where strict FOSD holds for all n. In category a, θ1 = a(N − 1)

implies p(N − 1, 1) = 1, which implies all θ > θ̃(N − 1) will contribute in the second period,

so θ1 = θ̃(N − 1). In category b, some players who contribute in the first period will never

contribute in the second period. In category c, all types a(N − 1) < a(N − 2) are indifferent

between contributing in the first period or not, because they will contribute in the second

period only if n1 = N − 1, and sFOSD does not hold in this case.

In order to characterize the monotone PBE of the cheap talk game, by lemma 2.3 and

2.4 what is left is to show existence the PBE that belongs to the above three categories.

Similar to the game with commitment, it suffices to show the existence of cutoff types who

are indifferent between contribution or not in period 1 and the types θ2(n1) who contributes

in period 1 and is indifferent between keeping the contribution or withdrawing it in period

2.

Theorem 2.2. Assume A1,A2. The set of monotone symmetric PBEs of the contribution

game with cheap talk is non-empty and is characterized by cutoffs (θ1, {a(n1), b(n1)}N−1
n1=0).

mr
1(θ) =

 1 if θ > θ1

0 else

mr
2(θ, h1

i , h
1
−i) =


1 if h1

i = 1, θi > a(h1
−i)

or h1
i = 0, θi > b(h1

−i)

0 else

For each category (a),(b),(c) mentioned above, there exist cutoffs that satisfy that category,

Proof. • (Category a,b) The first period cutoff is θ̃. We only need to show the existence

of cutoff types a(n1) ∈ (θ1, 1) for n1 = 0, ..., N − 1. Given that there are n1 other

contributers in the first period, θ2(n1) solves

n1∑
k=0

(
n1

k

)(
1− F (θ)

1− F (θ1)

)k (
F (θ)− F (θ1)

1− F (θ1)

)n1−k

g(1, k, θ)− 1 = 0. (2.11)

When (11) is evaluated at θ = 1 we get g(1, 0, 1) − 1 > 0, when evaluated at θ = θ1

we get g(1, n1, θ
1) − 1 ≤ 0 for n1 < N − 1 by the definition of θ1. Hence there exists
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at least one solution to (2.11) in the interval [θ1, 1). In particular, when n1 = N − 1,

a solution a(N − 1) ∈ [θ1, 1) exists.

To constitute a monotone equilibrium, we need {θ2(n1)} to be decreasing in n1. For

any n1 > 0, let a(n1) be a solution to (2.11). Then (2.11) evaluated at a(n1) when

n1 − 1 is in place of n1 is negative.

n1−1∑
k=0

(
n1 − 1

k

)(
1− F (a(n1))

1− F (θ1)

)k (
F (a(n1))− F (θ1)

1− F (θ1)

)n1−1−k

g(1, k, a(n1))− 1 < 0

Hence a solution a(n1−1) ∈ (a(n1), 1) exists to the above equation. Finally, θ̃(N−1) is

a solution to (2.11) when n1 = N−1 and θ1 = θ̃(N−1). This deals with the strategies

on the equilibrium path. The cutoffs {b(n1)}’s are found in a similar manner.

To check incentives to stay on the equilibrium path, note that since θ1 < θ̃(N−1), type

θi < θ1 agents have no incentive to deviate since they will not contribute anyways. For

type θ > θ1, they have no incentive to deviate at period 1 either since sFOSD holds

and they can always switch to mi = 0 in the second period. In the second period, the

way we select {a(n1)} already guarantees that the second period action is optimal.

• (Category c) By Lemma 2.4, in this case a(N − 1) = θ̃(N − 1) < a(N − 2) = θ1 <

θ̃(N−2). Hence a solution to (11) in (θ1, 1) when n1 = N−2 exists. The arguments for

finding other cutoffs are the same as before. As for the incentives whether to deviate,

type θ ≤ θ̃(N − 1) surely won’t. Types θ ∈ (a(N − 1), θ1) will not either. This is

because they will contribute in period 2 only if n1 = N − 1, and since p(1, N − 2) = 1,

whether this agent contribute will not affect the final decision of the N − 1 first period

contributors. The second period actions are optimal by the definition of a(n1)’s.

Example 1. Consider N = 2. The cutoff given by {θ1, θ2(1), θ2(0)} = {θ̃(1), θ̃(1), θ̃(0)}

determines an equilibrium of the game with cheap talk that is ex-post efficient and ex-post

individually rational. This amounts to that, in the first period, every agent who is willing

to contribute as along as the other contributes say Yes. In the second period, both agents
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contribute if both says Yes, and one withdraws if one is the only one saying so and his type

is unwilling to contribute along.

The cutoff θ1 of the game with commitment is determined by

(1−F (θ2(1)))g(1, 1, θ)+F (θ2(1))g(1, 0, θ)−1 = (1−F (θ)) max{0, g(1, 1, θ)−1}+F (θ) max{0, g(1, 0, θ)−1}

The equation when evaluated at θ ≤ θ2(1) is negative, when evaluated at θ ≥ θ2(0) is

positive, hence θ ∈ (θ2(1), θ2(0)). Moreover, the derivative with respect to θ is

(1−F (θ2(1)))
∂g(1, 1, θ))

∂θ
+F (θ2(1))

∂g(1, 0, θ)

∂θ
+f(θ)(g(1, 1, θ)−1)−(1−F (θ))

∂g(1, 1, θ)

∂θ
> 0,

hence the solution is unique. The equilibrium outcomes is neither ex-post efficient nor ex-

post individually rational. For example, if both θi ∈ (θ2(1), θ1) then no one will contribute

in the end, and if θ1 < θ2(1) while θ2 ∈ (θ1, θ2(0)) then in the end only agent 2 contributes

but he will get negative utility.

The game with cheap talk can approximately achieve efficiency when the number of

agents goes to infinity more easily than the game with commitment.

Theorem 2.3. If limN→∞NF (θ̃(N − 1)) = 0, then the equilibrium with θ2
r(N − 1) =

θ̃(N − 1)(type a) is asymptotically ex-post efficient, in the sense that

lim
N→∞

P({θ : m(θ) is efficient at θ}) = 1

Proof. Note that for any such equilibrium, m(θ) is efficient whenever θi > θ̃(N − 1) for

all i. The probability that there exists at least one agent with θi ≤ θ̃(N − 1) is given by

1 − (1 − F (θ̃(N − 1)))N , which is approximately NF (θ̃(N − 1))5 and converges to zero as

N →∞.

Such condition does not guarantee efficiency for games with commitment by Corollary 3.

Our result differs from Gradstein’s[Gra92] in that in our mode, players’ incentives to

contribute are purely driven by the ability to induce follow-ups rather than to enjoy the

product earlier. Also, in our model the inefficiency could come from both kinds of mis-

coordination: either too few people contribute or too many people contribute.

5This follows from limx→0 log(1− x)/x = 1 and F (θ̃(N − 1)) converges to 0.
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2.3.5 Multiple Period Cheap Talk

Instead of completely characterizing the equilibrium outcomes like we did to T = 2 models,

we show that the PBEs of the game with commitment are inefficient and construct an efficient

equilibrium for the game with cheap talk.

The equilibrium we construct for the cheap talk game implements the efficient allocation

in Proposition 2.1. We simply make everyone who can possibly contribute for some realiza-

tion of θ(in the ex-post sense) signal a1 = 1. And then we gradually let agents drop out,

until a maximal set of agents who are willing to contribute remains.

Theorem 2.4. Assume A1,A2. Assume individual players’ contributions are observable.

1 For any T , all PBEs outcome of the game with commitment are not ex-post efficient.

2 For T ≥ N , there exists a monotone PBE of the game with cheap talk whose outcome

is ex-post efficient.

Proof. Let σ = {mt
i} be an equilibrium strategy profile of the game with commitment.

Consider a profile θ ∈ ΘN such that θi ∈ (θ̃(N − 1), θ̃(N − 2)) for all i. Then ex-post

efficiency requires under σ everyone in this interval contributes. However, let i be the

earliest contributor on the equilibrium path of σ. Say mt
i(θi, h

t−1) = 1. In this period,

his continuation expected payoff is positive only if he believes in the future everyone is going

to contribute with probability one. But this is impossible since by definition the history

ht−1 is that no one ever contributes before, and the posterior probability that there are some

agents whose type is below θ̃(N − 1) given this history is thus still positive. Hence player i’s

action at t given by σ is not sequentially rational, contradicting that σ is an equilibrium.

Now we proceed to prove the claim about game with cheap talk. A history up to date t

is ht = (ht1, ..., h
t
N), where hti = (a1

i , ..., a
t
i). h

t
i is called consistent if ati ≥ at

′
i whenever t > t′.

Hence, the beliefs in any consistent history is the same as that on the equilibrium path, and

the beliefs in any inconsistent history can be defined in an arbitrary way. We are going to

construct a strategy and a belief such that the strategy is to contribute and refund in the

most conservative way, while the belief is such that any deviator is assumed to be the low
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types who will never contribute in the end. To define it formally, fix a history ht and a player

i, let

nt =
∑

j 6=i,htj is consistent

atj.

The dependence of nt on i will be omitted in the following to keep notations cleaner, since

we are describing a symmetric strategy profile. Note that nt is decreasing in t. The strategy

for player i(and hence all other players) is defined as

m1(θ) =

 1 if θ ≥ θ̃(N − 1)

0 else

mt(θ, ht−1) =

 1 if θ ≥ θ̃(nt−1)

0 else

for each t = 2, ..., T , where nt−1 is the number of other agents who has not deviated from

the induced path before and who contributes in period t− 1.

The posterior probability density for θj held by player i at each history ht is defined, on

the regions where the density is non-negative, as

p(θj|ht) =


f(θj)

1−F (θ̃(nt−1)
if at−1

j = 1, htj is consistent

f(θj)

F (θ̃(nk−1)−F (θ̃(nk−2)))
if akj = 1, ak+1

j = 0 for some k ≤ t− 2, htj is consistent

f(θ)

F (θ̃(N−1))
if htj is inconsistent.

Now we verify that the strategy belief pair {mt, p(·|ht)} defined above forms a monotone

PBE in the game where T ≥ N whose equilibrium outcome equals the allocation defined in

Section 2.

First note that, on the equilibrium path, if nt = nt+1 for some t then the equality will

continue to hold until t = T . Since nt is monotonely decreasing and T ≥ N , the equilibrium

outcome is indeed m(θ) except for profiles with some agent whose type equal the cutoff types

θ̃(n).

Second, we check there is no incentive to deviate for any given history. Suppose ht is

a history where player i hasn’t deviated before. There are two kinds of deviations, one is
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to deviate in a way that the player himself’s history is consistent. This kind of deviation

is not profitable because m(θ) is dominant strategy incentive compatible. Another kind of

deviation is to deviate in a way such that hti is inconsistent-jumping from 0 to 1 at some

period. In player i’s belief, for players who haven’t deviated yet, this drives down their

contribution since they now treat i the same as the lowest type. For players who have

deviated, player i already believes them be the lowest type. Hence overall the continuation

expected payoff also decreases. Suppose ht is a history where player i has deviated before.

Suppose hti is consistent. Then player i has either delayed refund or refunded earlier than

the prescribed strategy. In the first case since nt is not larger than his cutoff number, he

should follow the prescribed strategy and quite in the next period. In the second case, the

remaining players already believed that he will not contribute, he should again follow the

prescribed strategy. Suppose hti is inconsistent, then again his future actions will not affect

others’ actions, and he should again follow the prescribed strategy, that is, to contribute

whenever θi > θ̃(nt) as if there are nt players who’s going to contribute.

Remark 6. To show the PBE just constructed is sequential, consider the sequence of com-

pletely mixed strategies indexed by ε > 0:

mt(θ, ht−1) =


1 with prob 1− ε, θ ≥ θ̃(nt−1)

1 with prob ε2, θ̃(N − 1) ≤ θ < θ̃(nt−1)

1 with prob ε, θ < θ̃(N − 1)

2.4 The Continuum Choice Model

In binary models, cheap talk is useful as it avoids mis-coordination and the free riding

problem is assumed away, because when one contributes 0 one gets nothing.

With multiple contribution levels, free riding problem kicks in and this turns out to

undermine the usefulness of cheap talk entirely.

Intuitively, if the strict FOSD lemma holds, agents have an incentive to induce others

to contribute more by making a high contribution in the first period, and switching back

to a lower level m1 while free riding others’ high contributions. This argument is vividly
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illustrated in a two period binary type model.

2.4.1 The Environment

We illustrate the phenomena within a simplified setting. 2 agents contribute jointly to a

project over 2 periods. Contribution decision is continuous for each agent: mi ∈M = [0,m]

for some m <∞. The utility function and production function are the same as before.

The set of uncertainty is θi ∈ {θL, θH} for i = 1, 2 with prior f(θL) = p. Since there are

two types, we modify A2 to

Assumption 3. For each θ ∈ {θH , θL} and each m−i > 0, there exists mi > 0 such that

g(mi,m−i, θ)−mi > 0

In addition, we also assume strict concavity of g with respect to mi:

Assumption 4. g(mi,m−i, θ) is strictly concave in mi for all m−i > 0 and all θ.

2.4.2 Contribution Game With Cheap Talk

We now show that free riding completely eliminates the advantage of cheap talk. Consider

a two stage model with cheap talk in which Ai = [0,m]6. It is equivalent to adopt a binary

message space, since there are only two types.

Lemma 2.5. Assume A1,A3,A4. In any symmetric PBE wherem2
i (hi, h−i, θH) > m2

i (hi, h−i, θL)

for all history h on the equilibrium path, then for all i, the posterior µi(θj|m1
j) must be the

same as the prior.

Proof. Suppose to the contrary that there exists such a symmetric PBE in which m1
i (H) 6=

m1
i (L). Suppose player i is of type L and m1

i (θL) < m1
i (θH). Then conditional on m1

i =

m1
i (θL) player j in the beginning of the second period believes player i is of low type with

6It is completely fine to use a binary set for cheap talk since there are only two types. The currently
presentation is more consistent with the comparison to games with commitment.
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probability one. Then in equilibrium m2
j(mi, θj) satisfies

m2
j(m

1
i (θL), θj) ∈ arg max

mj
g(mj,m

2
i (m

1
j(θj), θL), θj)−mj.

Let mj(H) = m2
j(m

1
i (θL), θH), mj(L) = m2

j(m
1
i (θL), θL). Then player i’s expected utility

given by the proposed equilibrium is

pmax
mi

(g(mi,mj(H), θL)−mi) + (1− p) max
mi

(g(mi,mj(L), θL)−mi). (2.12)

Consider a deviation of type θL player i to m1
i (θH). Then j’s belief in the beginning of

period 2 will be that player i is of high type with probability one. Thus m2
j(mi, θj) satisfies

m2
j(m

1
i (θH), θj) ∈ arg max

mj
g(mj,m

2
i (m

1
j(θj), θH), θj)−mj.

Let mj(H)′ = m2
j(m

1
i (θH), θH), m2

j(L)′ = m2
j(m

1
i (θH), θL). Since by assumption second

period action is monotone in type, m2
i (mj, θH) > m2

i (mj, θL). Since player i are now expected

to take a higher action after his deviation to mi(H), it follows from A1, A3 and A4 that

mj(H)′ > mj(H) and mj(L)′ > mj(L).

But then player i’s expected payoff in the beginning of period 1 is

pmax
mi

(gi(mi,mj(H)′, θL)−mi) + (1− p) max
mi

(gi(mi,mj(L)′, θL)−mi), (2.13)

By A3, (2.13) is larger than (2.12).

This shows that the low type deviating to m1
i (H) is profitable, contradicting that the

proposed strategy profile is an equilibrium.

The intuition behind this lemma is that the player always have incentive to pretend to

be the high type, so that he can free ride other player’s increased effort even if he is of low

type.

Theorem 2.5. Suppose A1,A3 A4. Then all symmetric PBEs of the cheap talk game have

the same equilibrium allocation as some BNE of the static contribution game.

Proof. By Lemma 2.5 every PBE {m1,m2} in which the on path period 2 contribution

is different is optimal when the belief is the prior, hence (m2
i (m

1, θH),m2
i (m

1, θL))i∈{1,2}

constitutes a BNE.
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Suppose there exists a PBE such that both types contribute the same amount m in period

2 on the equilibrium path. If m ∈ (0,m), then since g satisfies strict increasing difference in

(mi, θ), together with A4 it implies m can not be a best response to θL, θH simultaneously,

a contradiction. Hence it is only possible that m ∈ {0,m}. But then

g(m,m, θ)−m ≥ g(m′,m, θ)−m′

for all m′ ∈ [0,m], implying that (mH ,mL) = (m,m) for i = 1, 2 also constitutes a BNE for

the static game.

2.4.3 Contribution Game With Commitment

Previous section shows that cheap talk does not convey any information when the action

set is a continuum. On the other hand, if signalling is costly, high type can then credibly

signal that he is high type by commit to contribute, and this induces low type to contribute

in corresponding periods. We now give such an example in which efficiency improves over

the equilibrium in the cheap talk game, which is the BNE in the one shot game without

communication.

Take M = [0, 9], Θ = {0.5, 8} and g(m1,m2, θ) = θm0.5
1 m0.5

2 . Probability of low type is

p = 0.5. One can verify that the setting satisfies Theorem 2.5.

The BNEs of the static game includes (mL,mH) = (0, 0), and another equilibrium with

positive contribution:

mL =

(
pθL
2

+
1− p

2
(θLθH)1/2

)2

mH =

(
p

2
(θLθH)1/2 +

(1− p)θH
2

)2

Figure 1 gives the non-zero PBE allocation and its social welfare of the game with cheap

talk , which is simply that of the static game by Theorem 2.5. The ex-ante social surplus is

roughly

SW = 1/4(−25/64 + 425/64 + 425/64 + 350/4) ∼ 25

In what follows we construct a PBE in the contribution game without cheap talk that
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θL θH

θL (5/8)2, (5/8)2 (5/8)2, (5/2)2

θH (5/2)2, (5/8)2 (5/2)2, (5/2)2

BNE

θL θH

θL −25/64 425/64

θH 425/64 350/4

Social Welfare

Figure 2.1: Cheap Talk

ex-ante dominates the BNE of the one-shot game. Before we start, note that since the action

set is a continuum, unlike the binary case where the agent becomes inactive once he decides

to contribute, an agent may split his contribution over two periods. To have a parallel

comparison to Section 2.3.2 we assume once a player chooses to contribute m1
i > 0 in the

first period he becomes inactive. We can allow players to splic contributions over multiple

periods and obtain a similar construction, with the sacrifice of becoming more notationally

involved.

Consider the following strategy profile.

m1
i (θL) = 0

m2
i (θL,m

1
i ,m

1
−i) =


θ2L
4
m−i m1

i = 0

0 m1
i > 0

m1
i (θH) = 9

m2
i (θH ,m

1
i ,m

1
−i) =

 0 if m1
i > 0 or m1

−i = 0

max{9, θ
2
H

4
m−i} else

The belief is given by the the posterior p such that

p(θL;m1
−i 6= 9) = 1.

That is, whenever a player does not commit to contribute 9 initially, he is believed to be the

low type. The belief does not matter since a player who already contributes is inactive by

the assumption of the model.

This is a profile in which the high type commits to contribute in advance. Low type

follows to contribute whenever he observes a commitment to contribute.
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To check it is PBE, first note that the low type’s equilibrium payoff is

U(θL) = 0.5× 0 + 0.5(0.5× 3× 3

4
− 9

16
) =

9

32
.

If the low type deviates to mi > 0, he gets

U(mi; θL) = 0.5(0.5m
1/2
i ×

m
1/2
i

4
) + 0.5(0.5×m1/2

i × 3)−mi

Solving FOC, we see the optimal deviation is m∗i = (2/5)2 which yields a payoff of

U(m∗i , θL) = 0.15 < U(θL).

Hence low type will not deviate in the first stage. The second stage actions are already best

responses for the given history so he will not deviate either.

Secondly, note that the high type’s equilibrium payoff is

U(θH) = 0.5× 8× 3× 1

4
+ 0.5× 8× 3× 3− 9 = 30

If he deviates to mi, he gets

U(mi; θH) = 0.5(8×m1/2 × m1/2

4
) + 0.5(8×m1/2 × 3)−m = 12m1/2,

hence choosing m = 9 is best response.

The allocation on the equilibrium path and social welfare is then The ex-ante social

θL θH

θL 0, 0 9/16, 9

θH 9, 16/9 9, 9

BNE

θL θH

θL 0 18

θH 18 126

Social Welfare

Figure 2.2: No Cheap Talk

surplus is roughly

SW = 1/4(0 + 18 + 18 + 126) = 40.5

There is a significant increase in social welfare if the signalling is costly.
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2.5 Conclusion

This paper shows that for production functions with increasing differences, when contribution

choices are binary it may be more efficient to have multiple stages of cheap talk rather than

commited contribution. However, if contribution choices are not binary, incentives to free

ride can become so severe that equilibria in games with cheap talk do not convey information.

In this situation, multiple rounds of committed contribution helps to improve efficiency.

A large amount of dynamic contribution games we encounter in daily life are in the form

of crowdfunding projects, and many of which allow people to withdraw or change contribu-

tion levels over time. On a normative side, allowing contributors to withdraw is argued as

necessary for consumer protection, but our paper identifies situations that, in a social welfare

perspective, such regulation may not be optimal. However, different projects have different

production functions and different value structure(private, common, interdependent), it is

of interest to further explore the differences of the two regimes and its welfare implications

in those environments.
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CHAPTER 3

Belief-Preserving Morphism and Bayes Nash

Equilibrium

1

3.1 Introduction

Ever since Harsanyi’s type space model become the foundation of incomplete information

games, it has been asked what kind of type space is rich enough to capture certain solution

concepts. For correlated rationalizable actions, it has been shown in Dekel,Fudenberg, and

Morris[DFM06, DFM07](DFM 2006,2007) that two types have the same θ-hierarchy if and

only if they have the same interim correlated rationalizable actions across all games, so the

Mertens-Zamir universal type space is the universal space for correlated rationalizability. For

independent rationalizable actions, it has been shown in Ely and Peski[EP06](EP2006) that

two types have the same ∆-hierarchy if and only if they have the same interim independent

rationalizable actions across all games, so the universal space over conditional beliefs is the

universal space for independent rationalizability, which is larger than the space of infinite

hierarchy of beliefs.

Our paper provides a characterization to the above type of questions when the solution

concept is Bayes Nash equilibrium. Sadzik[Sad11] provided such a characterization for Polish

type spaces, which states that two types have the same BNE across all games if and only

if they have the same X-hierarchies. Our characterization, for countable type spaces, is in

terms of a well-known concept: a type ti in some type space T has the same equilibrium

1This chapter is co-authored with Ichiro Obara.
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actions as some other type t′i in some other type space T ′ across all games if and only

if T and T ′ are identical. More precisely, there exists an injective belief preserving map

from some subset of T containing ti, to T ′ that maps ti to t′i. This condition has a direct

game theoretical appeal: same BNE behavior for any two types from different type spaces

is guaranteed if and only the type spaces containing the two types are identical, not just

that they have the same θ hierarchy or ∆-hierarchy. So for Bayes Nash equilibrium, the

interpretation is that all the information carried by a type in a type space is indispensable,

in the sense that once the type space is mapped into a smaller one there will exists a game

such that the equilibrium prediction is different.

We provide a direct proof using scoring rules and relatively elementary mathematical

tools. It is a full characterization, which includes the case 1.the set of BNE actions of one

type is contained in that of another(which is covered in Sadzik’s paper), and the case 2.when

the two types have exactly the same set of BNE actions across all games. Finally, we apply

our characterization to show the non existence of universal type spaces for BNE, we then

weaken the conditions for universality and construct a universal space for BNE under these

weaker requirements(compared to parallel requirements for rationalizability).

Related Literature Type space characterization of other solution concepts than BNE is

treated in DFM(2006,2007)[DFM06, DFM07], EP2006[EP06]. A characterization for BNE is

in Sadzik[Sad11]. Bergemann and Morris[BM15] uses scoring rule to demonstrate a similar

result to ours for correlated BNE. What they achieved is a ranking of finite information

structures, according to when the set of correlated BNE of one information structure is

contained in that of another, for all finite games. This constitutes one direction of our

Theorem 3.1. Our result holds for countable spaces and provides a more complete ordering:

when two type spaces have the same BNE across all finite games, they are identical.

3.2 Example

In this section we represent type spaces graphically in terms of Aumann style information

structures, and illustrate the implications of these ”different” type spaces to solution con-

73



cepts of interest. In sum, we construct four type spaces, in which types have the same

θ-hierarchy, and types from three out of the four spaces have the same ∆-hierarchy, which is

the hierarchies on conditional beliefs(conditioning on knowing the opponent’s type) about Θ.

These type spaces are shown to be ”different” in the sense that for any two type spaces there

always exists some game such that the BNE on the two type spaces are different. However,

it is also shown that the set of BNE actions of one of the type space is a superset of another

type space for all games. The structural dissimilarity or similarity that makes the examples

so is a consequence of Theorem 1.

Consider players 1 and 2. Fix the set of payoff uncertainty to be Θ = {−1, 1} throughout.

Player 1’s partitions are drawn using solid lines and Player 2’s are drawn with dashed lines.

Θ={-1,1}      
Player 1   
Player 2 

1   -1
1     -1

-1      1

1      -1
-1                 1

1      -1 

1     -1
-1                    1

1                   -1
-1      1

𝑇1 𝑇2 𝑇3 𝑇4

𝑡1
1 𝑡1

2 𝑡2
1

𝑡2
1

𝑡2
2

𝑡1
3

𝑡2
2 𝑡2

3

𝑡1
1 𝑡1

2

𝑡1
1

𝑡2
1

𝑡1
1 𝑡1

2

𝑡2
1

𝑡1
3𝑡1

4

𝑡2
2

𝑡2
3

𝑡2
4

Figure 3.1: Type Spaces

Each of the information partition, when equipped with uniform prior, represents a type

space. Each cell is a type. For example, T 1 is the following type space:

Ti = {t1i }, hi(ti)(1, t−i) = hi(ti)(−1, t−i) =
1

2
,
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and T 2 is the following type space:

Ti = {t1i , t2i },

hi(t
1
i )(1, t

1
−i) = hi(t

1
i )(−1, t2−i) =

1

2

hi(t
2
i )(1, t

2
−i) = hi(t

2
i )(−1, t1−i) =

1

2
.

T 1, T 2 are simply the example discussed in the literature, while T 3, T 4 are extensions.

All types in the four type spaces have the same θ-hierarchy: all types believe that prob-

ability that θ = 1 is 0.5, believe that the opponent believe the probability that θ = 1 is

0.5, and so forth. Furthermore, the types in T 2 through T 4 induces the same ∆-hierarchy

as defined in Ely and Peski(2006). However, all of the type spaces differ in the sense that

no two of them have the same Nash equilibrium prediction across all games. Consider the

following two player game of incomplete information, denoted by G1.

a2 b2 c2

a1 1, 1 −10,−10 −10, 0

b1 −10,−10 1, 1 −10, 0

c1 0,−10 0,−10 0, 0

θ = 1

a2 b2 c2

a1 −10,−10 1, 1 −10, 0

b1 1, 1 −10,−10 −10, 0

c1 0,−10 0,−10 0, 0

θ = −1

Figure 3.2: G1

3.2.1 Equilibrium Analysis

• The game (G1, T
1)

The only Nash equilibrium strategy profile is (c1, c2).

To see this, note that when player 2 chooses a2 with probability q, the maximum

expected utility over q for player 1 to choose a1 or b1 is less than zero. So (c1, c2) is

the only mutual best response.

• The game (G1, T
2)
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While the θ-hierarchy implied by T 2 over Θ is the same as that of T 1, the set of Bayes

Nash equilibria actions now includes ai, bi in addition to ci.

To see this, consider the strategy that t11 plays a1, t21 plays b1 , and that t12 plays a2,

t22 plays b2. The expected utility for t11 to play a1 is given by 0.5(1) + 0.5(1) = 1 > 0.

This is because t11 believes with probability 1/2 that θ = 1 and player 2 is type t12(thus

is going to play a2), with probability 1/2 that θ = −1 and player 2 is type t22(thus

is going to play b2). Similarly the expected utility for t21 to play b1 is 1. Hence the

strategy defines a mutual best response for each type.

• The game (G1, T
3)

While ai, bi remain independently rationalizable as in (G1, T
2), the only Nash equilib-

rium strategy profile is (c1, c2).

To see this, suppose there exists a Nash equilibrium in which t11 plays a1 with positive

probability. Then the expected utility a1 yields must be higher than that of c1, which

is zero. Let t12 play a2 with probability q1, and t22 play b2 with probability q2. For a1

to be a best response for t11 requires

0.5(q1 − 10(1− q1)) + 0.5(q2 − 10(1− q2)) ≥ 0,

which implies q1 + q2 ≥ 20/11, hence q1 > 0 and q2 > 0.

Let t11 plays a1 with probability p1, t21 plays b1 with probability p2, t31 plays b1 with

probability p3. Reason as above, for a2 to be a best response for t12, we need p1 + p2 ≥

20/11. For b2 to be a best response for t22, we need p1 + p3 ≥ 20/11.

However, this implies that t32 will strictly prefer to play c2, since with 1/2 probability

he will get at least −90/11 if he plays either a2 or b2. This contradicts q1 > 0. This

will result to that only (c1, c2) is played in equilibrium.

• The game (G1, T
4)

The set of Bayes Nash equilibria actions now again includes ai, bi in addition to ci. To

see this, simply replicate what each players do in T 2 in their opposing partitions.
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The argument used for (G1, T
4) applies to arbitrary games. That is, across games, T 4

possesses all the equilibrium actions that T 2 possesses. Does this mean that T 2 and T 4 are

identical in the sense that they yield the same prediction in Nash equilibrium across different

games? The answer is negative. Consider the game G2 in Figure 3.3.

a2 b2 c2 d2 e2

a1 −10,−10 1, 1 −10,−10 −10,−10 −10, 0

b1 −10,−10 −10,−10 1, 1 −10,−10 −10, 0

c1 −10,−10 −10,−10 −10,−10 1, 1 −10, 0

d1 1, 1 −10,−10 −10,−10 −10,−10 −10, 0

e1 0,−10 0,−10 0,−10 0,−10 0, 0

θ = 1

a2 b2 c2 d2 e2

a1 1, 1 −10,−10 −10,−10 −10,−10 −10, 0

b1 −10,−10 1, 1 −10,−10 −10,−10 −10, 0

c1 −10,−10 −10,−10 1, 1 −10,−10 −10, 0

d1 −10,−10 −10,−10 −10,−10 1, 1 −10, 0

e1 0,−10 0,−10 0,−10 0,−10 0, 0

θ = −1

Figure 3.3: G2

• The game (G2, T4)

Every can be supported as Nash equilibrium.

To see this, note that the strategy that player 2 plays b2, c2, d2, a2 for types t12, t
4
2, t

3
2, t

2
2

respectively and player 1 plays a1, b1, c1, d1 for types t11, t
2
1, t

3
1, t

4
1 is a NE in T 4.

• The game (G2, T2)

The only Nash equilibrium action of G2 in T 2 is (e1, e2).
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G1 G2

Type Space RG
T BNEG

T RG
T BNEG

T

T 1 c c - -

T 2 a,b,c a,b,c a,b,c,d,e e

T 3 a,b,c c - -

T 4 a,b,c a,b,c a,b,c,d,e a,b,c,d,e

Table 3.1: Summary of example

To see this, suppose that type t11 plays a1 with probability p1 > 0. Suppose t12 plays b2

with probability q1 and t22 plays a2 with probability q2. That a1 is a best response for

t11 implies q1 + q2 ≥ 20/11, so q1, q2 > 0. Suppose t21 plays b1 with probability p2 and

a1 with probability p3. For b2, a2 to be best responses for t12, t
2
2 respectively, we need

p1+p2 ≥ 20/11 and p1+p3 ≥ 20/11, which leads to p2+p3 > 1, an impossibility. Hence

there exists no Bayes Nash equilibrium in which t11 plays a1 with positive probability.

Other cases are argued symmetrically.

The above discussions are summarized in Table 3.1. The notation RG
T denotes the set of

rationalizable actions in a given type space in the game G, BNEG
T similarly defined. The

player index to the actions are omitted for notational simplicity.

3.3 The Model

A type space over a finite set Θ is a tuple (T1, T2, h1, h2) where each Ti is measurable, hi

a Borel measurable function from Ti to ∆(Θ × T−i), where ∆(A) denotes the set of Borel

measures on the set A. A type space is Polish if T is also a Polish space. We often simply

denote by T the type space and leave the associating hi’s implicit.

Given a type space T , say Si ⊂ Ti, i = 1, 2, is a belief closed subspace of Ti if for all i, Si

is Borel measurable and si ∈ Si,

hi(si)(Θ× S−i) = 1.
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Given two type spaces T, T ′ and a measurable map φ = (φ1, φ2) : T1 × T2 → T ′1 × T ′2. φ

is belief-preserving from T to T ′ if

h′i(φ(ti)) = hi(ti) ◦ φ̂−1
−i (3.1)

on all Borel sets A ⊂ ∆(Θ× T ′−i), for i ∈ {1, 2}, where φ̂i = (idΘ, φi) : Θ× Ti → Θ× T ′i .

Let ti ∈ Ti, denote by T̂ ti the smallest belief closed subspace of T that contains ti.

A game form is a tuple G = (A1, A2, u1(a1, a2, θ), u2(a1, a2, θ)) with ui : A1×A2×Θ→ R.

G is called finite if each Ai is finite.

A tuple (G, T ) is called a game with incomplete information. A pure strategy is a

measurable function si : Ti → Ai. Given T ∈ T (Θ), a pure strategy profile (s1, s2) is a Nash

equilibrium if for all i, all ti, all ai ∈ Ai,∫
ui(si(ti), s−i(t−i), θ)dh(ti) ≥

∫
ui(ai, s−i(ti), θ)dh(ti).

Let

BNEG
T (ti) = {ai ∈ Ai : there exists a pure NE {si(ti)} with ai = si(ti)}

3.4 Characterization of Bayes Nash Equilibrium In Terms of Type

Space Structure

In this section we prove the characterization result for Bayes Nash Equilibrium.2

First we summarize some of the useful properties of type spaces that follow from the

definition.

Lemma 3.1. Given two type spaces T, T ′. Suppose that φ : T → T ′ is a bimeasurable and

injective belief preserving map, and that φi(ti) = t′i for some i, ti, t
′
i. Then φ(T ) is a belief

closed subspace of T ′ that contains t′i, and φ−1 is a belief-preserving map from φ(T ) to T .

2If we include mixed strategies in the definition of BNEG
T (t), our results hold with the additional as-

sumption that in each type space (T, h), h is injective. See Remark 1.
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Proof. First we show that {φ(T )} constitutes a belief closed subspace of T ′ containing t′i.

For player j ∈ {1, 2}, Let t′j ∈ φj(Tj). Let tj ∈ Tj be such that φj(tj) = t′j. Since φ is

bimeasurable, φ−j(T−j) is Borel measurable. Then

h′j(t
′
j)(Θ× φ−i(T−j)) = h′j(φj(tj))(Θ× φ−i(T−j))

= hj(tj)(Θ× φ−1
−j(φ−j(T−j))

≥ hj(tj)(Θ× T−j) = 1

The second equality follows from that φ is belief preserving. Hence φj(T̂
ti
j ) is belief-closed.

Also note that t′i ∈ φi(Ti).

To show φ−1 constitutes a belief preserving map from φ(T ) to T , note that for all t′j ∈

φ(Tj) with φ−1
j (t′j) = tj,

h′j(t
′
j) ◦ φ̂j = h′j(φ(tj)) ◦ φ̂j

= hj(tj) ◦ φ̂−1
j ◦ φ̂j

= hj(tj) = hj(φ
−1
j (t′j)),

where the second equality follows by φ is belief preserving, and the third follows by injectivity

of φ, which implies that φ̂−1
j ◦ φ̂j = id.

We summarize our first main result in the following theorem.

Theorem 3.1. Given two countable type spaces T, T ′. Let t ∈ T t ⊂ T, t′ ∈ T ′t′ ⊂ T ′, where

T t is the smallest belief closed subspace of T containing t and similar for T ′t
′
. Then

BNEG
T (t) = BNEG

T ′(t
′) ∀ finite G

if and only if

there exists a bijective belief-preserving map φ : T t → T ′t
′

with φ(t) = t′.

We break down the proof into several statements, from Lemma 3.2 to Lemma 3.4. The

if part of Theorem 3.1 is given in Lemma 3.2, which is proved via a standard and straight-

forward argument and is stronger than what Theorem 3.1 states.
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Lemma 3.2 (Sufficiency). Given two type spaces T, T ′ and ti ∈ Ti, t′i ∈ T ′i . Suppose that

there exists a belief preserving map φ from T to T ′ with φ(ti) = t′i, then

BNEG
T ′(t

′
i) ⊂ BNEG

T (ti). (3.2)

for all G. Furthermore, suppose φ is bimeasurable and injective, then

BNEG
φ(T )(t

′
i) = BNEG

T (ti) (3.3)

for all game G.

Proof. The implication (3.2) is Friedenberg and Meier[Ama12]’s Proposition 4.1.3

To show (3.3), observe that

BNEG
φ(T )(t

′
i) ⊂ BNEG

T (ti) ⊂ BNEG
φ(T )(t

′
i)

where the first inclusion follows from (3.2), the second from applying (3.2) to φ(T ) and T ,

since by injectivity of φ Lemma 1 implies φ−1 is a belief preserving map from φ(T ) to T with

φ−1(t′i) = ti.

Intuitively, if there exists a belief preserving map φ from type space T to T ′, then a type

t̃ ∈ T can mimic the equilibrium behavior of type in T ′ by ”pretending” that their types

are φ(t̃) ∈ T ′. It might be that the space T is richer than T ′, in the sense that for some

games types in T captures more equilibrium actions than types in T ′, just like IS2 and IS4

in the example shows, but the existence of belief preserving morphism means types in T can

always discard some information to make itself look like T ′.

The universal type space over Θ, U , has the property that for every Θ-based type space

T , there exists a belief preserving mapping from T to U . According to Theorem 3.1, types in

T can capture the equilibrium actions played by their corresponding types in U , but types

in T may have more equilibrium action for some game G. The usage of universal type space

as the type space for incomplete information game to predict the equilibrium action of some

type from some type space therefore implies possibly strictly less predictions.

3The central question investigated in Friedenberg and Meier[Ama12] is the characterization of the condi-
tions under which (3.3) will hold. (3.3) also follows from Lemma 1 and their Corollary 6.1.
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Lemma 3.3 (Necessity,Part 1). Suppose T, T ′ ∈ T (Θ) are countable. Let ti ∈ Ti and

t′i ∈ T ′i . Suppose

BNEG
T ′(t

′
i) ⊂ BNEG

T (ti) (3.4)

for all finite game form G, then there exists a belief preserving map φ : T ti → T ′ with

φi(ti) = t′i.

Proof. Without loss of generality, assume T = T ti .

First we define a sequence of collections of finite subsets of Θ, T ′j , j = i,−i as follows.

• For each n = 1, 2, 3, ..., define T̂ ′,kj (n) ⊂ T ′j , k = 1, ..., n, j = i,−i that satisfy the

following properties.

– T̂ ′,1i (n) = {t′i}.

– For any k = 1, ..., n, (1) h′i(t
′
i)
(
T̂ ′,k−i

)
> n−1

n
for every t′i ∈ T̂

′,k
i (n) and (2) for any

t′−i ∈ T̂
′,k
−i , there exists t′i ∈ T̂

′,k
i (n) such that h′i(t

′
i)
(
t′−i
)
> 0.

– For any k = 2, ..., n, (1) h′−i(t
′
−i)
(
T̂ ′,ki

)
> n−1

n
for every t′−i ∈ T̂

′,k−1
−i (n) and (2)

for any t′i ∈ T̂
′,k
i , there exists t′−i ∈ T̂

′,k−1
−i (n) such that h′−i(t

′
−i) (t′i) > 0.

– T̂ ′,kj (n) ⊂ T̂ ′,kj (n+ 1) for any n ≥ k for any j = i,−i and k.

• Θ̂(n) ⊂ Θ̂(n+ 1) for any n ≥ 1 and
⋃
n Θ̂(n) = Θ.

Intuitively
{
T̂ ′,kj (n), k = 1, ..., n, j = i,−i

}
is a finite approximation of the set of types

that are relevant to type t′i’s 2n − 1th order beliefs. We note that, if t′i is in T̂ ′,ki (n) and

h′i(t
′
i)(t
′
−i) ≥ 1

n
, then t′−i must be in T̂ ′,k−i (n) (a similar condition holds for player −i). Let

T̂ ′j(n) :=
⋃n
k=1 T̂

′,k
j (n) for j = i,−i, which is still a finite set.

For each n, define a function σn on T ′ as follows.

• σnj
(
t′j
)

= t′j for t′j ∈ T̂ ′j(n), j = i,−i.

• σnj
(
t′j
)

= ej for any t′j ∈ T ′j/T̂ ′j(n), j = i,−i.
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Similarly define a function γn on Θ as follows.

• γn (θ) = θ for θ ∈ Θ̂(n)

• γn (θ) = e for any θ ∈ Θ/Θ̂(n).

For each n, let T ′j(n) := T̂ ′j(n)∪{ej} for j = i,−i and Θ(n) := Θ̂(n)∪{e}. For each t′j ∈ T̂ ′j
let ĥnj (t′j) := h′j(t

′
j)◦
(
γn, σn−j

)−1
, which is type t′j’s belief on finite set

(
Θ(n)× T ′−j(n)

)
, which

is generated from
(
h′j, γ

n, σn−j
)
.

Now consider the following finite game G(n, ε) for each n and ε > 0.

• Actions: Aj(n, ε) = T ′j(n)×Bj(n, ε) for j = i,−i, where Bj(n, ε) ∈ 4
(
Θ(n)× T ′−j(n)

)
is a large finite set of beliefs such that (1) it includes ĥnj

(
t′j
)

for every t′j ∈ T̂ ′j(n) and

(2) it is an ε net of 4
(
Θ(n)× T ′−j(n)

)
for some ε > 0. Thus player j announces his

type (or ej) and his belief on Θ(n)×T ′−j(n). Player j’s pure strategy is φj : Tj → Aj(n)

for j = i,−i.

• Payoffs:

– If player j announces t′j ∈ T̂ ′j(n), but did not announce ĥnj
(
t′j
)
, then his payoff is

−∞.

– If player j either announces t′j ∈ T̂j and ĥnj
(
t′j
)

or ej and any pj ∈ Bj(n, ε),

then player j’s payoff is computed according to a strictly proper scoring rule

vj
(
pj, (θ, t

′
−j)
)
, where pj ∈ 4

(
Θ(n)× T ′−j(n)

)
is the belief announced by j and

θ is a realized state and t′−j is a type announced by player −j.4

Note also that without loss, we assume the expected utility Eb[vj(pj, (θ, t′−j))],

where h is the probability with respect to which the expected value is computed,

is constructed to be continuous in (b, pj). This can be achieved by the quadratic

scoring rule following Definition 1.

4Note that a type t̃′j with belief ĥn(t′j) for some t′j
(
6= t̃′j

)
∈ T̂′j(n) is indifferent between (t′j , ĥ

n(t′j)) and

(ej , ĥ
n(t′j)). So we can extract correct types in some equilibrium even if they share the same belief.
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The argument will proceed by showing the following : For each n, ε > 0,

Claim 1 There exists a pure strategy BNE s′ in the incomplete information game (G(n, ε), T ′)

in which s′j(t
′
j) = (t′j, ĥ

n(t′j)) whenever t′j ∈ T̂j(n), and s′j(t
′
j) = (ej, pj) for some pj ∈ B(n, ε)

if t′j /∈ T̂j(n).

Proof : Consider any player j and any type t′j. Suppose the other −j adopts the above

given strategy that ”truthfully” reports their types. Suppose t′j ∈ T̂ ′j(n). Then the equilib-

rium belief t′j has on the distribution of strategies played by his opponent and the realization

of θ then satisfies

h′j(t
′
j) ◦

(
γn, σn−j

)−1
= ĥj(t

′
j) (3.5)

Since vj is a strictly proper scoring rule, reporting (t′j, ĥj(t
′
j)) is the (unique)best response

of tj. Suppose t′j ∈ T ′j\T̂ ′j(n). His equilibrium belief is again given by (7). Then his best

response is (ej, pj) where

pj ∈ arg max
p∈B(n,ε)

Eb[vj(p, (θ, t′−j))].

Claim 2 There exists a pure strategy BNE φ(n, ε) of the incomplete information game

(G(n, ε), T ) such that φi(n, ε)(ti) = (t′i, ĥ
n(t′i)).

Proof : This follows from Claim 1 and the assumption that BNEG
T ′(t

′
i) ⊂ BNEG

T (ti) for

any finite game G.

Claim 3 Let φ1(n, ε) : T → T ′(n) be the first component of φ(n, ε). For any εk → 0,

{φ1(n, εk)} has a point-wise convergent subsequence, with limit denoted by φ1∗(n). Further-

more, for every tj ∈ Tj such that φ1∗(n)(tj) ∈ T̂j(n),

ĥnj (φ1∗(n)(tj)) = hj(tj) ◦
(
γn, φ∗1−j(n)

)−1
.

Proof : Since T ′(n) is finite and T is countable, a diagonal argument shows the ex-

istence of point-wise convergent subsequence. Without loss of generality let φ1∗(n) =

limk→∞ φ
1(n, εk).
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Let δ > 0 be given and that φ1∗(n)(tj) = t′j ∈ T̂j(n). Since T ′j(n) is finite, there exists K1

such that for all k > K1, φ1(n, εk)(tj) = t′j. By the construction of payoffs and that φ(n, εk)

is best response φ(n, εk)(tj) = (t′j, ĥ
n(t′j)) for all k > K1.

Suppose there exists a subsequence εkm such that

d(ĥn(t′j), h(tj) ◦
(
γn, φ1(n, εkm)

)−1
) > δ,

where d(·, ·) is an appropriate metric on the space of probability measures over some count-

able set. Since εkm → 0 and B(n, εkm) is an εkm-net, for each m there exists pm ∈ B(n, εkm)

such that

lim
m→∞

d(pm, h(tj) ◦
(
γn, φ1(n, εkm)

)−1
) = 0.

Let v∗(m) be the expected utility of tj when he reports (ej, p
m), let v(m) be the expected

utility of tj when he reports (t′j, ĥ
n(t′j)). Since the expected utility Eb[vj(pj, (θ, t

′
−j))] is

continuous in (b, pj), and vj is a strictly proper scoring rule, there exists δ′ > 0 and some

M > 0 such that for all m > M , v∗(m)− δ′ > v(m). This contradicts that the equilibrium

action is φ(n, εk)(tj) = (t′j, ĥ
n(t′j)) for all k > K1. Hence there exists K > K1 such that

whenever k > K,

d(ĥn(t′j), h(tj) ◦
(
γn, φ1(n, εk)

)−1
) < δ.

Since δ is arbitrary,

ĥn(t′j) = h(tj) ◦
(
γn, φ1∗(n)

)−1
.

Claim 4 There exists a convergent subsequence of {φ∗1(n)} with limit φ∗1 : T → T ′t
′
i .

Proof : Take any tj ∈ T tij . Then there exists n′ and a sequence ti, t
2
−i, t

3
i , . . . , t

n′
j such

that hi(ti)(t
2
−i) > 0, h−i(t

2
−i)(t

3
i ) > 0, . . . , h−j(t

n′−1
−j )(tn

′
j ) > 0. Let η > 0 be the smallest

probability along this sequence. Pick N such that 1
N
< η. For every n ≥ N , we have

ĥni (t′i)(φ
∗1
−i(n)(t2−i)) = hi(ti)

((
φ∗1−i(n)

)−1 (
φ∗1−i(n)(t2−i)

))
≥hi(ti)(t2−i) >

1

N
.

By construction of T̂ (n), ĥni (t′i)(t
′
−i) >

1
N

implies t′−i ∈ T̂
′,1
−i (n) for n > N . Hence φ∗1−i(n)(t2−i)

must be included in T̂ ′,1−i (N) for any n ≥ N . Similarly, by induction, we can show that

φ∗1i (n)(t3i ) ∈ T̂
′,2
i (N), . . ., and φ∗1j (n)(tj) ∈ T̂ ′,kj (n) for some k for every n ≥ N . Since T̂ ′j(N)
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is a finite set, there exists a convergent subsequence of φ∗1j (n)(tj) that converges to some

point in T̂ ′j(N). This implies that, since T ti is countable, the standard diagonal argument

guarantees a convergent subsequence of φ∗1(n) with some well-defined limit φ∗1 : T ti → T ′t
′
i .

Claim 5 φ∗1 : T → T ′t
′
i is a belief-preserving morphism between (T, h) and (T ′t

′
i , h′) that

maps ti to t′i. That is, for all tj ∈ Tj,

h′j(φ
∗1
j (tj)) = hj(tj) ◦

(
id, φ∗1−j

)−1
. (3.6)

Proof : By Claim 4, with out of loss, let φ∗1 = limn→ φ
∗1(n). Let tj ∈ T tij . By construc-

tion of Θ(n) and γn, limn→ γ
n = id, where id : Θ→ Θ is the identity mapping. Hence

lim
n→∞

d(hj(tj) ◦
(
γn, φ∗1−j(n))−1, hj(tj)(id, φ

∗
−j
)−1

) = 05

Fix any tj ∈ Tj. By the proof of Claim 4, there exists N such for all n > N , φ1∗(n)(tj) ∈

T̂ ′j(n), so that the condition in Claim 3 is satisfied. By Claim 3, it then suffices to show that

lim
n→∞

d(ĥnj (φ∗1j (n)(tj)), h
′
j(φ
∗1
j (tj)) = 0. (3.7)

By definition of ĥnj , for n > N ,

ĥnj (φ∗1j (n)(tj)) = h′j(φ
∗1
j (n)(tj)) ◦

(
γn, σn−j

)−1

Since γn tends to id and σn−j tends to idT
′
: T ′ → T ′ by construction of T̂ ′(n), (9) thus holds.

Since tj is arbitrary, (8) is proved, as well this lemma.

The idea is to construct a game using strict scoring rules(defined in the Appendix) as the

utility. The scoring rule asks each player to report a type in T ′i and a belief over ∆(Θ×T ′−i).

When this game is played with respect to the type space T ′ truthful reporting is a Bayes

Nash equilibrium. By assumption there exists an equilibrium of the same game played with

respect to the type space T such that t also reports truthfully. A contagious argument shows

that the reason why t reports truthfully is that he thinks correctly that the −i types within

his belief’s support will also report truthfully, and so on. Truncating the strategy we get a

5The metric d is on the space ∆(Θ× (T ′ ∪ {e})).
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map from T to T ′. We show that this map is the desired belief-preserving map. The general

proof of Theorem 2 is built on this idea and an approximation argument because we only

use finite games.

Note that the existence of belief preserving map from T to T ′ is not guaranteed. For

example T may be a union of two belief closed spaces T 1 ∪ T 2, with ti ∈ T 1, and T 2

totally different from T ′(so no belief preserving maps from T 2 to T ′ exists). Since the notion

BNEG
T (ti) is local, what this T 2 looks like does not affect equilibrium actions of types outside

it.

Remark 7. The restriction to pure strategies is essential. Consider the following example:

Define two type spaces (T, ht), (S, hs) where

T1 = {t11, t21}, T2 = {t12}, ht(t12)(t11) = 1/3

S1 = {s1
1, s

2
1}, S2 = {s1

2}, hs(s1
2)(s1

1) = 1/2.

First observe that there does not exist a belief preserving morphism φ : S → T such

that φ(s1
2) = t12. Consider any game G with action sets A1, A2 and any Nash equilbrium

((f1, f2), g) with respect to the type space T , where f1, f2 ∈ ∆(A1) are strategies used by

t11, t
2
1 respectively, and g ∈ ∆(A2) is the strategy used by t12.(f1, f2, g can be either pure or

mixed.) Consider the following strategy profile used by (s1
1, s

2
1) and s1

2

((
2

3
f1 +

1

3
f2, f2), g)

Since type t21 and t11 has the same preference on A1 given a fixed g, 2/3f1 + 1/3f2 is still a

best response to g. On the other hand, the distribution of actions type s1
2 faces is

1

2
(
2

3
f1 +

1

3
f2) +

1

2
f2 =

1

3
f1 +

2

3
f2,

which is the same as the distribution of actions faced by t12 in type space T . Hence g is a best

response for s1
2 when type s1

2 uses the possibly mixed strategy 2/3f1 + 1/3f2. This shows

that BNEG
T (t12) ⊂ BNEG

S (s1
2) if we allow a strategy profile to contain mixed strategies in

the definition of BNEG
T (t).
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What’s so special about the above simple counter example is that the type mapping

h1 : T1 → ∆(Θ × T2) is not injective. Assuming the type mappings of S, T are injective,

then Theorem 2 again holds when the definition of BNEG
T accommodates mixed strategy

profiles. This assumption guarantees that when the utility function is a strictly proper

scoring rule, since the maximizer is unique, a type t will not be indifferent to some t′1 6= t′2

since h′(t′1) 6= h′(t′2) hence we can guarantee the equilibrium strategy with si(ti) = (t′i, hi(t
′
i))

is pure, so that s : T → T ′ will be a BPM.

Our next step is to show that the converse of Lemma 2 holds: for countable space, there

exists an injective belief preserving map between the two types, which means that the type

spaces surrounding the two types looks exactly the same.

Lemma 3.4 (Necessity Part 2). Suppose T is countable and BNEG
T (ti) = BNEG

T ′(t
′
i) for

every finite game G, then there exists a bijective belief-preserving morphism between T ti

and T ′t
′
i .

Proof. By Lemma 3, there exists belief preserving morphism φ : T ti → T ′ and ψ : T ′t
′
i → T .

We will show that φ is bijective. Lemma 1 together with onto-ness implies T ′t
′
i = φ(T ti).

The proof is broken down to two steps.

Step 1 For each j ∈ {i,−i} and k ≥ 1, φ is one-to-one on T kj and φ(T kj ) = T ′kj .

We will use induction to show that this holds. First consider k = 1. When j = i, T 1
i = {ti}

is a singleton so it’s trivial. For j = −i, suppose not. Say

∃t̃1−i ∈ T ′1−i such that φ−1(t̃1−i) = {t1−i, ..., tn−i} ⊂ T 1
−i, n ≥ 2. (3.8)

Since φ is belief preserving, this implies

h′i(t
′
i)(t̃

1
−i) = hi(ti)({t1−i, ..., tn−i}) > max

k
{hi(ti)(tk−i)} (3.9)

The inequality is strict because n ≥ 2, tk−i ∈ T 1
−i and elements in the support of a discrete

measure has positive probability.
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Claim 1. There does not exist a composition map of arbitrary length γ = ψ ◦ φ ◦ ... ◦ψ such

that γ(t̃1−i) ∈ {t1−i, ..., tn−i}.

Proof When γ = ψ, having ψ(t̃1−i) = tk−i for some k would imply, since ψ is belief-

preserving, that

hi(ti)(γ(t̃1−i)) = h′i(t
′
i) ◦ ψ−1(tk−i) ≥ h′i(t

′
i)(t̃

1
−i), (3.10)

contradicting (11). Suppose γ = ψ ◦ φ ◦ ψ(t̃1−i) = tk−i for some k = 1, ..., n, then

hi(ti)(t
k
−i) ≥ h′i(t

′
i)(φ ◦ ψ(t̃1−i)) = hi(ti) ◦ φ−1(φ ◦ ψ(t̃1−i)) = hi(ti)(ψ(t̃)1

−i) ≥ h′i(t
′
i)(t̃
−1
−i ),

(3.11)

again contradicting (11), where we alternatingly use the fact that φ, ψ are belief preserving

maps. This argument can be seen to apply to γ of arbitrary length, proving Claim 1.

According to Claim 1, ψ(t̃1−i) = tn+1
−i ∈ T 1

−i and tn+1
−i 6= tk−i for k = 1, ..., n. Moreover,

(10) implies φ(tn+1
−i ) = t̃2−i 6= t̃1−i. Claim 1 implies ψ(t̃2−i) = tn+2

−i 6= tk−i for k = 1, ..., n + 1.6

Continue this process, we obtain an infinite sequence of distinct elements {tk−i} ⊂ T 1
−i.

Moreover, for each tm−i with m > n, by construction there exists m − n ψ’s such that

tk−i = ψ ◦ φ ◦ ... ◦ ψ(t̃1−i). Thus the same argument of (3) leads to

hi(ti)(t
m
−i) ≥ h′i(t

′
i)(t̃

1
−i) > max

k
{hi(ti)(tk−i)}.

But then hi(ti)(T
1
−i) ≥ hi(ti)({tk−i}∞k=1) = ∞, a contradiction. Hence φ is injective when

restricted to T 1
−i.

This shows that φ : T 1
−i → T ′1−i is one-to-one. To show onto, pick any ˜t−i ∈ T ′1−i. Belief-

preserving implies

hi(ti)(φ
−1( ˜t−i)) = h′i(t

′
i)( ˜t−i) > 0,

So φ−1( ˜t−i) ∩ T 1
−i 6= φ.

To prove the general case, first the type mapping hi : Ti → ∆(Θ × T−i) is generalized

and then an inductive argument can be applied. For k even, define

hki : Ti → ∆(Π
k/2
m=1(Θ× T−i ×Θ× Ti)m)

6Claim is true from both side of the type spaces T, T ′. When tn+2
−i = tn+1

−i , use Claim 1 when γ = φ to

get a contradiction, when tn+2
−i = tk−i, k = 1, ..., n, use the claim wiht γ = ψ ◦ φ ◦ ψ to get a contradiction.
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as follows:

hki (ti)(θ1, t
1
−i, ..., θk/2, t

k/2
i ) = hi(ti)(θ1, t−i1)× h−i(t1−i)(θ2, t

2
i )× ...× h−i(t

k/2
−i )(θk, t

k/2
i )

For k odd, define hki : Ti → ∆(Θ × T−i × Π
(k−1)/2
m=1 (Θ × Ti × Θ × T−i)

m) similarly. Also,

for k even, define φ̂k = (φ̂−i, φ̂i)
k7, for k odd define φ̂k = (φ̂−i, (φ̂i, φ̂−i)

k−1/2). The above

definitions also apply to the space T ′i and ψ. Observe that the support of hki (ti) is a subset

of Θ× T 1
−i × ...×Θ× T k/2+1

i for k even and T 1
−i × ...×Θ× T (k+1)/2

−i for k odd.

Assume as the inductive hypothesis that φ is bijective when restricted to T 1
i , T

1
−i, ..., T

n
−i.

We aim to show φ is bijective when restricted to T n+1
i

The first task is to show that for these generalized type mappings, the belief preserving

property holds. Then an argument similar to proving injectivity on T 1
−i can be applied.

Claim 2. h′2ni (t′i) = h2n
i (ti) ◦ (φ̂2n)−1. h2n

i (ti) = h′2ni (t′i) ◦ (ψ̂2n)−1.

Proof : Take any (θ1, ˜t−i
1
, ...., ˜t−i

n
, θ2n, t̃i

n+1
) ∈ supph′2ni (t′i). By inductive hypothesis,

let tkj = φ−1(t̃j
k
, j ∈ {i,−i}, k = 2, ..., n be the unique element in T kj such that φ(tkj ) = t̃j

k
.

Then

h′2ni (φ(ti))(θ1, ˜t−i
1
, ...., θk, t̃i

n+1
)

=h′i(φ(ti))(θ1, ˜t−i
1
)× h′−i( ˜t−i

1
)(θ2, t̃i

1
)× ...× h′−i( ˜t−i

n
)(θ2n, t̃i

n+1
)

=hi(ti)(θ1, t
1
−i)× h−i(t1−i)(θ2, φ

−1(θ, t2i )...× h−i(tn−i)(θ2n, t
n+1
i )

=h2n
i (ti) ◦ (φ̂k)−1(θ1, ˜t−i

1
, ...., θk, t̃i

k/2
).

The first and third equality is definition, the second one follows from φ is belief preserving.

A symmetric argument shows this applies to T ′ as well. This proves Claim 2.

With a slight abuse of notation, let h2n
i (ti) denote the marginal measure on T n+1

i . Note

that supph2n
i (ti) = T n+1

i . Suppose φ is not one-to-one when restricted to T n+1
i . Then there

exists t̃i ∈ T ′n+1
i such that φ−1(t̃i) = {t1i , ..., tki }. Now the same argument in the first section

7Let f : X → Y be a function, then fk : Xk → Y k is defined to be (x1, ..., xk) 7→ (f(x1), ..., f(xk)), where
(x1, ..., xk) ∈ Πk

i=1X := Xk.
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of the proof applies and will produce a contradiction. Onto-ness is also proved in the same

way.8

Step 2 φ : ∪∞k=1T
k → ∪∞k=1T

′k is one-to-one and onto.

Ontoness follows from Step 1.

Suppose φ is not injective on T ti . Say there exists some t̃i ∈ T ′t
′
i and m 6= n such

that φ−1(t̃i
l
) = {tmi , tni }, where tmi ∈ Tmi , t

n
i ∈ T ni and tmi 6= tni . Since φ(T ki ) = T ′ki for

k = m,n, we have t̃i ∈ T ′m ∩ T ′n. Hence h
′2(m−1)
i (t′i)(t̃i) > 0, h

′2(n−1)
i (t′i)(t̃i) > 0. Note

that tmi /∈ T ni and tni /∈ Tmi otherwise we will immediately reach a contradiction that φ is

one-to-one when restricted to T ni and Tmi . Hence h
2(m−1)
i (ti)(t

n
i ) = 0 and h

2(n−1)
i (ti)(t

m
i ) = 0.

Suppose ψ(t̃i) = tmi , then

0 = h
2(n−1)
i (ti)(t

m
i ) = h

′2(n−1)
i (t′i)(ψ

−1(tmi )) ≥ h
2(n−1)
i (t′i)(t̃) > 0,

which is a contradiction. Similarly, if ψ(t̃i) = tni there will also be a contradiction. Hence

there exists tk1i /∈ {tmi , tni } such that ψ(t̃i) = tk1i . Since ψ(T ′mi ) = Tmi and ψ(T ′ni ) = T ni ,

tk1i ∈ Tmi ∩ T ni . Continue this process and argue as before, we obtain an infinite sequence of

distinct elements {tkli } ⊂ Tmi ∩ T ni .

Now h
2(m−1)
i (ti)(t

k1
i ) = h

′2(m−1)
i (t′i) ◦ ψ−1(tk1i ) ≥ h

′2(m−1)
i (t′i)(t̃) > 0, and the same argu-

ment shows that h
2(m−1)
i (ti)(t

kl
i ) ≥ h

′2(m−1)
i (t′i)(t̃) > 0. But then h

2(m−1)
i (ti)(T

m
i ) = ∞, a

contradiction.

Since T ti = ∪∞k=1T
k and T ′t

′
i = ∪∞k=1T

′k, this concludes the proof.

If we assume T is finite, the lemma follows from a straightforward argument:

By Theorem 2, there exists belief preserving maps φ : T ti → T ′ and ψ : T ′t
′
i → T . First

we claim that φ(T ti) = T ′t
′
i .

By Lemma 1, φ(T ti) is belief closed, hence, being the smallest belief closed space, T ′t
′
i ⊂

φ(T ti). For the other side of inclusion, pick t̃′ ∈ φT ti . To show t̃′ is in T ′t
′
i , we need to exhibit

a sequence of types t̃n ∈ T ′ such that t̃1 = t′i, t̃
n = t̃′, t̃k, t̃k+1 belongs to different players,

8We can as well start induction on T 1
−i and postpone the argument to the general case, but presenting

the main idea earlier improves clarity.
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and that h(t̃k)(Θ× {t̃k+1}) > 0, since this is how we construct the smallest belief closed set

containing t′i.

Let φ(t) = t̃′ where t ∈ T ti . Then there exists a sequence of types tn ∈ T ti with the

properties described above. Define t̃k = φ(tk). Since φ is belief-preserving, the sequence

{φ(tk)} satisfies the required property, hence t̃′ ∈ T ′t′ .

The same argument applies to ψ, hence ψ(T ′t
′
i) = T ti .

Since both φ and ψ are surjective, T t and T ′t
′

has the same cardinality. Theorem 3 now

follows from the fact that surjective functions between finite sets with the same cardinality

must be injective.

Lemma 4 says that two types have the same Nash equilibria actions across all games if

and only if smallest type spaces containing them are isomorphic, which means the informa-

tion contained in the implicit representation hi : Ti → ∆(Θ× T−i) can not be collapsed, say

into θ-hierarchies(for correlated rationalizability) or ∆-hierarchies(for independent rational-

izability). In a sense, there is no redundant types with respect to Nash equilibrium.

3.4.1 Example Revisited

The reason that for any game G, if µi ∈ Ai is played in some BNE in the type space T 2 then

the same strategy is also played in T 4 by some BNE, follows from Theorem 1. The type

space for T 4 is given by Si = {s1
i , s

1′
i , s

2
i , s

2′
i }, where

hi(s
1
i )(1, s

2′

−i) = hi(s
1
i )(−1, s1

−i) =
1

2

hi(s
1′

i )(1, s2
−i) = hi(s

1′

i )(−1, s1′

−i) =
1

2

hi(s
2
i )(1, s

1
−i) = hi(s

2
i )(−1, s2

−i) =
1

2

hi(s
2′

i )(1, s1′

−i) = hi(s
2′

i )(−1, s2′

−i) =
1

2

The map such that φi(s
1
i ) = φi(s

1′
i ) = t1i and φi(s

2
i ) = φi(s

2′
i ) = t2i can be shown to be a

belief-preserving map from T 4 to T 2. However, it is not injective. And indeed we find the

game G2 such that a ∈ BNEG2

T 4 (si) but a /∈ BNEG2

T 2 (ti) for all si ∈ Si and ti ∈ Ti.
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Let Q3
i = {q1

i , q
2
i , q

3
i } be the type space T 3, with the h′i defined in the obvious way as we

did for T 2 and T 4. By Theorem 2 we shall also observe that there exists no belief-preserving

map from T 2 to T 3 or from T 3 to T 2. The non-existence can be proved directly: Suppose a

belief-preserving map φ from T 2 to T 3 exists. Since T 3 is already the smallest belief closed

subspace containing any of its types, by the first part of Lemma 1 φ must be onto, which is

impossible since they are both finite and T 3 is strictly bigger. On the other hand, suppose

a belief-preserving map φ from T 3 to T 2 exists, the same reason concludes φ is onto. Hence

we can without loss assume φ−1
2 (t12) = q1

2. Belief-preservation implies

h′1(q1)(θ, q1
2) = h1(t1)(θ, t12)

where t1 = φ1(q1). Observe that for all t1 ∈ T1, there exists θ such that the RHS is 1/2.

However, there exists q1 ∈ Q1 such that the LHS is zero for all θ. This is a contradiction.

Lastly, note that the type mappings in all the type spaces considered in Figure 1 is

injective, hence Theorem 1 continues to hold even if mixed strategies are allowed(See Remark

1). Indeed, in the analysis in Section 2, we considered all Nash equilibrium actions, pure or

mixed.

3.5 Universal Type Space for Bayes Nash Equilibrium

A universal space U for a solution concept S with respect to a class of type spaces T satisfies

the following properties:

(1). U ∈ T

(2). For all T ∈ T , there exists a belief preserving map ρ : T → U such that ρ(t) and t has

the same S-strategy across all games.

(3). For u, u′ ∈ U , if u 6= u′ then there exists a game such that u, u′ have different S-

strategies.

For example, if S is correlated interim rationalizability(DFM2007), then the universal

space U with respect to the class of measurable type space is a space of hierarchy of beliefs
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on θ. It satisfies (1), by construction. It satisfies (2), by mapping each type to its induced

belief hierarchy. It satisfies (3), by results in DFM(2006). When S is independent interim

rationalizability[EP06], a similar space U can be constructed. However, when S is Bayes

Nash equilibria, so far no such space is constructed yet.

However, when S = BNE, there is a trade-off between (2) and (3). In particular, if T

is large enough, then even a relaxed version of (3) will fail. Specifically, when T contains

all countable type spaces, then every countable space must be injectively embedded into U .

(3) will then lose its bite because for each type t in any countable type space T , there will

be infinitely many u ∈ U that has the same BNE as t. This is because we can take unions

of disjoint copies of identical type spaces and maps it injectively into U . This observation is

proved with an application of Theorem 1 and is documented below, where proof is relegated

to the appendix.

Proposition 3.1. Let T be the class of all countable type spaces. Suppose there exists a

type space U that satisfies (2) for BNE with respect to T , then every countable type space

can be injectively embedded into U .

Proof. Let (T, h) be an arbitrary countable type space. Define a countable type space

(T ′, h′) such that T ′i = Ti∪{t′i}, and define h′i : T ′i → ∆(Θ×T ′−i) such that h′i(ti) = hi(ti) for

all ti ∈ Ti, and that h′i(t
′
i)(Θ× t−i) > 0 for all t−i ∈ T−i. By (2), there exists ρ : T ′ → U that

preserves BNE. Let ρ(t′i) = u′i. Note that ρ(T ′) is a type space, moreover, since T ′ is the

smallest belief-closed space containing t′i, ρ(T ′) ⊂ U will also be the smallest belief closed

space containing u′i. By Theorem 1, ρ is injective. Restricting ρ to T , we obtain an injective

belief-preserving map from T to U .

This proposition shows that there will always be an infinite number of types in a ”uni-

versal type space” having the same set of BNE actions across all games. For example, we

can take the union of arbitrarily many disjoint copies of T2 and map it to the universal space

injectively.
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3.6 Conclusion

In this paper, we show that Bayes Nash equilibrium actions are determined by the type

space structure in its entirety. This is in contrast to rationalizability where one can collapse

the information carried by a type to a hierarchy of beliefs. Thus, the goal to find the most

parsimonious universal space for Nash equilibrium is not attainable.

One future direction of research is to explicitly characterize the trade-offs of non-redundancy

and the number of type spaces with respect to which a space is universal. For example, if

we restrict to only a subclass of countable type spaces, non-redundancy may be salvaged.
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