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Abstract 

The evidence concerning the level at which learned CP 
effects occur is complex.  The goal of this study was to use 
a different approach to this question by manipulating the 
abstractness of the information available for distinguishing 
pairs of items in an XAB task, and the presence or absence 
of a short task-filled delay between X and AB.  Participants 
engaged in XAB trials containing a mixture of trials with 
and without the delay task before and after standard training 
to classify visual texture stimuli into two categories.  
Training improved discrimination of pairs differing on the 
category-relevant dimension whether within- or between-
category, but not on pairs differing only on non-category 
relevant low level features.  In addition, only successful 
learners in the post-training trials avoided decreased 
discrimination accuracy due to the delay task, suggesting 
that they formed more stable representations.  However, this 
effect was not limited to pairs varying in category-relevant 
ways. 

Keywords: Categorization; categorical perception; 
compression; expansion; learning; discrimination; bottom-up; 
top-down; dimensions; interference. 

Introduction 
Learning to place objects into novel categories affects the 
way those objects are judged and how well they can be 
discriminated from one another.  These so-called learned 
categorical perception (CP) effects are well established 
(e.g., Goldstone, 1994; Livingston, Andrews, & Harnad, 
1998), but there are several major unresolved issues 
concerning their fundamental nature.  For example, learned 
CP effects always involve better sensitivity to variations in 
items that are from different categories than variations in 
items that are from the same category. However, there are 
several distinct patterns of learning that result in the relative 
advantage for between-category pairs. The changes in 
sensitivity could be localized to the boundary between 
categories, resulting in heightened sensitivity to variations 
that cross a category boundary or decreased sensitivity to 
variations that do not cross a boundary. Or the changes 
could be at the level of perceptual dimensions, with 
increased sensitivity to any changes along category-relevant 
dimensions and/or decreased sensitivity to changes along 

category-irrelevant dimensions, regardless of whether or not 
the stimuli are in different categories. Some researchers 
apply the term “learned CP” only to the boundary specific 
effects known as compression (reduced sensitivity to 
differences among within-category stimuli) and expansion 
(enhanced sensitivity to differences among between-
category stimuli) (e.g., Folstein, Palmeri, & Gauthier, 2014). 
 Dimensional sensitivity changes that are not restricted to 
the category boundary are often referred to as acquired 
equivalence (reduced sensitivity to a category-irrelevant 
dimension) and acquired distinctiveness (enhanced 
sensitivity to a category-relevant dimension).  In what 
follows, we will take the term “learned CP” to include all of 
these. 

An important issue in learned CP research is the locus of 
the learning effect: is it a perceptual effect – do people 
actually see stimuli in different ways after learning to 
categorize? – or is the effect post-perceptual? There is 
mixed evidence as to whether CP is perceptual. We believe 
the multifaceted nature of learned CP is complicating efforts 
to understand the mechanism(s) underlying the 
phenomenon. Part of the apparent controversy may simply 
be that different studies of CP are isolating different kinds 
of learning, such as boundary effects vs. dimension-wide 
effects, which may differ in the level at which they occur.  

For example, Goldstone and Hendrickson (2009) argue 
that effects occur at multiple levels based on evidence from 
studies using vastly different methodologies.  For example, 
studies of speakers of languages with distinct color terms 
such as “blue” and “green” show faster discrimination of 
boundary-straddling stimuli than speakers of languages that 
lack distinct terms, but the fact that these effects appear to 
be strongest when stimuli are presented to the right visual 
field/left hemisphere and are disrupted by verbal 
interference suggests that the effects are not deeply 
perceptual.  On the other hand, evidence that objects in the 
same category are judged to be more similar not only to 
each other but also to a neutral, non-categorized object 
suggests a representational change that is not label-based 
(Goldstone et al., 2001).  In addition, Notman, Sowden, and 
Özgen (2005) showed that a strong expansion effect 
observed for participants who learned to categorize oriented 
line gratings did not transfer to stimuli of varying 
orientations, suggesting that the learned CP effect occurred 
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relatively early in visual processing.  Yet Roberson, Hanley, 
and Pak (2008) found no evidence of greater sensitivity in 
terms of absolute discrimination thresholds for JNDs at 
color category boundaries for groups demonstrating 
category boundary CP effects. 

This issue has been framed in a variety of ways:  auditory 
vs. phonetic (category-based) processing in speech CP (e.g., 
Gerrits & Schouten, 2004), visual vs. verbal/categorical 
codes in color CP (e.g., Hu, Hanley, Zhang, Liu, & 
Roberson, 2014), strategic judgment bias vs. altered object 
description (Goldstone, Lippa, & Shiffrin, 2001), bottom-up 
vs. top-down effects of category knowledge, and so on.  As 
suggested above, a great deal of empirical evidence can be 
found to support both sides of this opposition, but it is rarely 
definitive for a number of different reasons.  For example, if 
top-down effects are extremely rapid, they may be very 
difficult to distinguish behaviorally at least from bottom-up 
effects, and if both types of process are occurring 
simultaneously, they may be difficult to disentangle. 
 Effects found with known categories may not occur in the 
process of learning new ones. 

It seems likely that one variable of importance in 
producing learned CP at different levels is the type of 
stimulus variation that occurs.  This study represents a 
preliminary attempt to clarify the role of different types of 
information in learned CP by distinguishing among different 
levels of variation within the stimuli themselves and 
measuring how sensitivity to these kinds of variations 
changes as a result of category learning.  At least three 
levels can be identified:  low-level (essentially random) 
details completely unrelated to category membership; 
abstracted perceptual dimensions that may or may not be 
related to category membership; and category membership 
itself.  These form a hierarchy of abstractness, with each 
level incorporating the one(s) below it; for example, items 
differing in category membership will also differ both 
dimensionally and in their randomly varying low-level 
details.   The low-level details depend most heavily on 
bottom-up processing and category labels are most clearly a 
top-down information source, while abstracted perceptual 
dimensions fall somewhere in between.  Changes at the 

levels of perceptual dimensions and category membership 
could produce learned CP, but the underlying mechanism of 
learning might look different in each case. Learning based 
solely on category membership might produce category-
boundary-specific effects, while changes in the salience of a 
perceptual dimension would result in an acquired 
distinctiveness effect. Our stimulus set allows both kinds of 
learning to take place. Whether both kinds of learning 
actually happen is an empirical question. 

To further bolster the ability of the experiment to 
distinguish between different components of learned CP, we 
sometimes use a task-filled delay during the discrimination 
task used to test for effects of category learning.  The 
rationale for this is that the delay manipulation should 
interfere most with remembering bottom-up information and 
least with remembering category-level variation.  If learned 
CP is the result of acquiring strictly category-level 
information, then the delay should not affect trials where 
category-level information varies, but should affect other 
trials. If learned CP involves changes in perceptual 
representations of the stimuli, performance after training on 
trials with category-relevant feature variation should be less 
sensitive to the delay. An early demonstration of this sort 
was provided by Pisoni (1973), who showed that within-
category vowel discrimination accuracy was inversely 
related to the length of a delay of up to 2 seconds, while 
between-category accuracy was unaffected, because the 
former relied on auditory short-term memory while the 
latter relied on phonetic categories.  More recently, Pilling, 
Wiggett, Özgen, and Davies (2003) tested color CP effects 
using a 5 second delay during discrimination trials that 
contained no task, a visual interference task, or a verbal 
interference task and found that only verbal interference 
ever disrupted CP for between-category comparisons, and 
then only if different delay conditions were blocked.  Pilling 
et al. took their results to support the view that 
linguistic/categorical codes caused the observed CP effects. 

 
 

 
Figure 1: Example stimuli. The proportion of each microfeature is shown below the stimulus. The relative proportion of 
microfeature 3 to microfeature 4 (the category relevant dimension) increases from left to right. The two leftmost stimuli were 
categorized as being created by Jennifer, while the rightmost stimuli were created by Nancy. 
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Method 
Participants 
We recruited 59 undergraduate students to participate in the 
experiment in exchange for course credit. 
 
Materials 
Stimulus materials were modeled on those used by Pevtzow 
and Harnad (1997).  Each stimulus consisted of 1600 
microfeatures arranged in a 40 x 40 grid. The total size is 
320 x 320 pixels.  Each microfeature is an 8 x 8 image, with 
30 pixels (out of 64) colored black. Each colored pixel is 
adjacent to at least one other colored pixel.  A total of four 
different microfeatures were used (see Figure 1).  For each 
stimulus, half of the microfeatures consisted of equal 
numbers of microfeatures 1 and 2 (so 400 of each, or 25% 
and 25% of the total).  Two categories of stimuli were 
created by varying the proportions of microfeatures 3 and 4 
in each stimulus as follows:  for category 1 (art by Jennifer), 
 10%/40% or  20%/30%; for category 2 (art by Nancy), 
30%/20% or 40%/10%.  Thus category 1 stimuli contained 
fewer instances of microfeature 3 and more of microfeature 
4 than category 2 stimuli.  See Figure 1 for sample items 
from each category. 

The location of the microfeatures varied from 
presentation to presentation and was random except for the 
top 3 and bottom 3 rows, which were kept identical in all 
stimuli to discourage fixation strategies. Each feature was 
equally represented in these 6 rows and the particular 
pattern of the six rows was randomly generated for each 
individual subject but consistent within a particular subject. 

Due to the nature of the stimulus features in relation to the 
categories, items can differ from one another in up to three 
different ways:  (1) low level only (“L”), i.e., specific 
location of all microfeatures, which is not relevant to the 
category distinction in any way; (2) value on the category-
relevant dimension (“L+D”), which is the relative 
proportions of microfeatures 3 and 4, and (3) category 
membership (“L+D+M”).  Note that all items differ on the 
irrelevant variation (hence the “L” in all the pair type 
names) and only between-category pairs differ on all three 
types of variation. 

Procedure 
The experiment was created using the jsPsych platform (de 
Leeuw, 2015). Subjects completed the experiment using the 
Chrome web browser in a laboratory setting. The browser 
was displayed in full-screen mode so that only experiment-
relevant material was on the display. 
   The task used to assess learned CP effects consisted of 
displaying one stimulus (X) for 1500 ms followed by a pair 
of stimuli (AB) side by side, one of which was identical to 
X.  The position of the stimulus that was identical to X 
varied randomly.  AB was shown until the participant 
responded. 

Participants were told that they would be viewing and 
judging pieces of digital art.  A pre-training, training, post-

training design was used, with pre- and post-training 
consisting of XAB trials, half of which were standard (i.e., 
exactly as described above) and half of which contained a 6 
s delay between X and AB.  During the delay the participant 
was asked to track the location of a dot in a 5 x 5 grid and 
click on the last square in which it appeared.  

Pre-training consisted of 3 blocks of 24 XAB trials, where 
each block contained equal numbers of three pair types 
defined according to the types of variation described above: 
 pairs differing only on irrelevant variation (L), pairs 
differing also on the category relevant dimension (L+D), 
and between-category pairs (L+D+M).  For each of those 
pair types, there were equal numbers of trials with and 
without a task-filled delay, presented intermixed in a 
random order. 

To facilitate learning the categories, participants were 
initially shown 5 different pairs of stimuli described as 
artwork by two different artists, Nancy and Jennifer, to 
familiarize them with the category-relevant and irrelevant 
variation among the stimuli.  This was followed by 200 
training trials, divided into 10 blocks of 20 trials each, with 
each of the 4 values of the category-relevant dimension 
(10%/40%, 20%/30%, 30%/20%, 40%/10%) represented 5 
times and the 20 items presented in a random order.  On 
each trial, a stimulus was presented until the participant 
responded by pressing one of two keys on a computer 
keyboard to indicate if the artist was Nancy or Jennifer. 
 Feedback was provided on each trial and at the end of each 
block. 

At the conclusion of training, the post-test was conducted 
with a procedure identical to that of the pre-test and using 
the exact same item pairs randomly reshuffled. 

 
Figure 2: Classification accuracy of learners and non-
learners over the course of training. 
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Results 
Category Learning 
There was substantial variability in performance on the 
category-learning task. Some subjects learned the correct 
categorization almost immediately, presumably from the 
examples shown immediately before the first block of 
training. Some subjects never learned to categorize the items 
correctly, and remained at chance levels of performance 
throughout the entire training session. Some subjects 
showed low initial performance, but improved throughout 
the training and were competent categorizers by the end of 
training. 

Because the presence of CP effects depends on successful 
category learning, we divided the subjects into a learning 
group and a non-learning group. The criterion for being in 
the learning group was an overall accuracy of 80% or above 
on the last two blocks of the categorization training.  There 
were 24 subjects in the learning group (mean accuracy = 
85.4%, SD = 4.5%), and 33 subjects in the non-learning 
group (mean accuracy = 60.2%, SD = 11.4%); see Figure 2. 

 
Delay Task 
Accuracy on the intermediate delay task was quite high 
overall (M = 92.7%, SD = 11.7%). Two subjects had an 
accuracy level below 80% (65.3% and 18.1%). These 
subjects were removed from the subsequent analysis. 
 
CP Effects and Effects of Delay 
Using the dependent variable of proportion correct on XAB 
trials, a  2 (learner/non-learner) X 3 (pair type: 
L/L+D/L+D+M) X 2 (pre/post) X 2 (delay task/no delay 
task) ANOVA was conducted:, with repeated measures on 
all but the first factor.  This yielded main effects of learning, 
F(1, 55) = 8.966, p = .004, ηp

2 = .140, with learners being 
more accurate (M = .671, SD = .098) than non-learners (M = 
.593, SD = .098); pair type, F(2, 110) = 3.855, p = .024, ηp

2 
= .065, with L+D+M pairs more accurate (M = .651, SD = 
.121) than L+D pairs which were more accurate (M = .633, 
SD = .113) than L pairs (M = .612, SD = .113); and delay, 
F(1, 55) = 17.107, p < .001, ηp

2 = .237), with delay causing 
lower accuracy (M = .608, SD = .098) than no delay (M = 
.656, SD = .121). 

Of greater interest were two interactions that were 
obtained:  Pair type interacted with pre/post, F(2, 110) = 
3.746, p = .027, ηp

2 = .064).  As shown in Figure 3, 
discrimination performance after category training was 
higher on L+D+M and L+D pairs but not L pairs, a pattern 
consistent with expansion and/or acquired distinctiveness 
learned CP effects. 

In addition, there was a significant three-way interaction 
between learning, pre/post, and delay, F(1, 55) = 4.283, p = 
.043, ηp

2 = .072).  As shown in Figure 4, relative to no 
delay, the delay lowered discrimination accuracy for non-
learners both before and after category training, but only 
lowered discrimination accuracy for learners before 

category training.  However, this was true regardless of pair 
type as the four-way interaction was not significant. 

Discussion 
This study was designed to provide evidence on two 
questions:  First, how does category training change 
people’s sensitivity to different kinds of features, i.e., 
features at different levels of abstraction and category-
relatedness? And second, are people better at remembering 
different kinds of features after category training 
(suggesting that they formed more stable strategies for 
encoding these aspects of the stimuli)?  The three kinds of 
features examined here were hierarchically nested and 
consisted of low-level details (L), the category-relevant 
dimension (L+D), and category membership (L+D+M). 

On the first question, category training led to improved 
discrimination performance on L+D and L+D+M pairs but 
not L pairs, suggesting greater reliance on higher level than 
purely bottom up information in the stimuli.  This isn’t 
surprising since the low level information wasn’t relevant to 
the categories, but does show that experience with that low 
level information, which is relevant to the XAB task, does 
not lead to improvement based on its use alone.  In addition, 
this effect was obtained irrespective of category learning 
success.  Also, the fact that both L+D and L+D+M pairs 
showed improvement to about the same extent may mean 
that sensitization to the category-relevant dimension, rather 
than the use of category-level information per se such as the 
label, was driving the improved performance because the 
additional feature of category membership did not improve 

 
 
Figure 3: Discrimination accuracy as a function of pair type 
both pre and post category training. 
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learning more than just the variation along the category 
relevant dimension. 

On the second question, the data suggested that learners 
formed more stable representations than non-learners, 
resulting in no effect of the delay task on XAB performance 
in the post-category training test for learners.  Yet this effect 
did not differ according to pair type, occurring equally for 
L, L+D, and L+D+M pairs. We originally expected that the 
delay would interfere most directly with the discrimination 
of L pairs given the previous findings that a delay interfered 
most with lower-level information (Pisoni, 1973). 
 However, it’s possible that successful category learning 
also enhanced sensitivity to the low-level irrelevant 
variations, perhaps because they overlap with the category-
relevant dimension, in such a way as to allow for a more 
effective means of remembering the stimuli during the XAB 
task. One hypothesis along these lines is that learners may 
have learned to selectively attend to the microfeatures that 
define the category relevant dimension, making it easier to 
encode the low-level variation of the stimulus by reducing 
the number of microfeatures that were encoded. This would 
suggest that learners did not simply encode the abstract 
category-relevant dimension, but rather encoded perceptual 
features of the stimulus that were directly relevant to the 
category-relevant dimension. This hypothesis could be 
tested by creating additional pairs for the XAB task that 
varied only in the location of the microfeatures that are not 

part of the category-relevant dimension. This new condition 
would allow us to distinguish between the learning of 
different low-level features depending on whether or not 
those features are related to the category-relevant variation.  

The main puzzle posed by the results is that category 
training seems to result in an overall boost in the 
discriminability of pairs that vary along the category-
relevant dimension but not pairs that vary in only category-
irrelevant ways, yet learners show an overall increase across 
all pair types in discriminability with the delay task. One 
explanation is that the distinction between learners and non-
learners is inexact; any arbitrary cutoff between learners and 
non-learners will be noisy. It’s likely that there are a non-
trivial number of people who learned some aspect of the 
category structure in the non-learning group. This, coupled 
with the fact that the effect sizes for changes related to 
specific kinds of variation were relatively small, could 
partially explain why there was no interaction between 
successful learning and improvement on each of the types of 
variation.  

While we found evidence that successful category 
learning altered the way that individual stimuli are 
remembered, the mechanism for this change remains 
unclear in light of the non-interaction between the delay task 
and the type of variation of the XAB pairs (L vs. L+D vs. 
L+D+M). In addition to the idea of introducing another kind 
of pair type variation, two other aspects of our methodology 
could be easily modified to further probe this pattern of 
results: the task during the delay and the sequence of XAB 
trials. 

The task used in this study during the delay was a visual 
task; the role of labeling in category-trained performance on 
the XAB task could be addressed by using a verbal task 
during the delay.  Pilling et al. (2003) showed that verbal 
but not visual interference during discrimination trials 
removed the between-category advantage.  However, they 
also showed that this was only true if the different types of 
interference were blocked; when they were intermixed, the 
learned CP effect remained. This suggests that people are 
strategic in their use of category information. When they 
have expectations that category labels will be challenging to 
remember, they opt for using the non-verbal aspects of the 
stimulus to do the discrimination task. As Pilling et al. note, 
however, non-verbal does not necessarily mean low level, a 
point that receives support from studies showing that 
categories can be learned, and CP effects produced, in the 
absence of verbal labels (e.g., Andrews, Livingston, Sturm, 
Bliss, & Hawthorne, 2011; Wolff & Holmes, 2012.) 

We can manipulate potential strategic uses in our study by 
altering the sequence of XAB trials. In our design, trials 
with the visual task were intermixed with trials having no 
delay, and this may have influenced the strategies 
participants used.  If trials were blocked, participants might 
develop strategies specifically suited to immediate versus 
delayed discrimination. If participants know that they will 
have to remember the stimulus during a delay task, they 
may choose to focus more on easily compressible aspects of 

 
Figure 4: Discrimination accuracy as a function of presence 
or absence of a delay task for learners and non-learners both 
pre and post category training. 
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the stimulus, such as higher-level category features. 
Conversely, if they expect to be able to make their judgment 
immediately, they may focus on more concrete perceptual 
details (especially since category-level information is more 
inferential and easier to get wrong). 
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