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Abstract

On An Extension of the Mean Index to the Lagrangian Grassmannian

by

Matthew I. Grace

For a symplectic vector space (V, ω) recall the identification of Sp(V, ω) with the open and

dense subset Im(Gr) ⊂ Λ2n := LagGr(V ×V,Pr∗1 ω−Pr∗2 ω) of the Lagrangian Grassmannian

where Gr : Sp(V, ω) → Λ2n sends each linear symplectomorphism to its graph. Our central

result is in extending the mean index, using this embedding and a formal construction of the

mean index in terms of a map ρ : Sp(V, ω)→ S1, from continuous paths in Sp(V, ω) ∼= Im(Gr)

to those contained in a subset L2n ⊂ Λ2n with codim(Λ2n\L2n) = 2. Namely, we continuously

extend ρ2 to what we call ρ̂ : L2n → S1 so that by applying the aforementioned construction

to ρ̂, we reduce the existence and continuity of our extended index to the simpler problem of

producing the continuous extension ρ̂. Our secondary results concern the algebraic properties

of the extended index with respect to a set-theoretic composition operation on Λ2n which

extends the usual group structure of Sp(V, ω) to that of a monoid on L2n. To derive these

we define an open and dense subset Preg(L2n) ⊂ C1([0, 1],L2n) equipped with an equivalence

relation∼comp and show that the point-wise composition of any two∼comp equivalent stratum-

regular paths is piece-wise differentiable. We then show that, when restricted to Preg(L2n),

the extended index is homogeneous (for non-negative integers) and satisfies a quasimorphism-

type bound for any ∼comp equivalent pair of paths.
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Mais qu’est-ce que ça veut dire, la peste?

C’est la vie, et voilà tout.

Albert Camus
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Preliminaries
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I.1 Introduction

Throughout this dissertation (V, ω) will be a real symplectic vector space of dimen-

sion 2n and Λ2n := LagGr(V × V,Pr∗1 ω − Pr∗2 ω) will denote1 the Lagrangian Grassmannian

of the twisted symplectic product of (V, ω). Our (Lagrangian) mean index ∆̂ extends the

classical mean index ∆ from the set of continuous paths residing in the symplectic group

γ : [0, 1]→ Sp(V ), to those continuous paths in Λ2n whose images reside in the set of ‘admis-

sible’ Lagrangian subspaces (see definition I.3.4), an open and dense subset L2n ⊂ Λ2n. The

extension of ∆ is achieved through the map Gr: Sp(V ) → Λ2n (see definition I.3.3) which

identifies Sp(V ) in Λ2n with the open and dense embedded submanifold

Im(Gr) = {L ∈ Λ2n | ∃A ∈ Sp(V ), Gr(A) = L} ∼= Sp(V ),

contained within the set of admissible Lagrangians L2n. We denote the complement of the

admissible Lagrangians by H := Λ2n \ L2n and will occasionally refer to the elements within

as ‘exceptional’ Lagrangian subspaces. From first inspection the set of admissible Lagrangians

L2n may appear a fairly insignificant addition to Im(Gr) ∼= Sp(V ), as both Im(Gr) and L2n

are open and dense in Λ2n, yet their difference becomes more apparent when we observe the

complements of each; the complement Λ2n \ Im(Gr) is a hypersurface in Λ2n (see proposi-

tion II.1.6) whereas we show in theorem I.4.1 that codim(H) = 2.

The mean index is commonly seen in one of two contexts: as a real valued map over

all continuous paths2 in Sp(V ) or, as it is found in the bulk of the literature (e.g. [5, 82, 78, 60]),

restricted to those paths γ originating at the identity (i.e. γ(0) = Id, we will often refer to such

paths as ‘identity-based’). Besides the fact that most of the algebraic properties of ∆ only

1Since the entirety of the dissertation is concerning a fixed symplectic vector space we will suppress the
symplectic form, or the vector space altogether, in our notation (as seen in the shorthand, Sp(V ) and Λ2n).

2Continuity of paths will be an assumption implicitly maintained throughout the dissertation save for paths
not known to be continuous, in which case we will specify them as such. Differentiability will also be explicitly
invoked throughout, save for those instances in which doing so would be unnecessarily redundant.
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exists in the context of the latter definition, it is particularly useful due to the isomorphism

between fixed-endpoint homotopy classes of paths originating at some base point in Sp(V )

(the identity in this case) and the universal cover of the symplectic group S̃p(V ); the natural

space in which to model linearizations of a Hamiltonian flow. Since this identification, given

below in lemma I.3.8, is purely topological in nature it is apparent that the preference for

a fixed base-point in the literature (at least that related to symplectic geometry) likely has

more to do with the Lie group structure3 on S̃p(V ), over which the mean index ∆ may be

characterized (as in [5]) axiomatically as the unique quasimorphism on S̃p(V ) which satisfies

certain conditions (see definition I.2.2 and lemma I.3.11). This thesis will adopt the former

notion, motivated in part by the loss of group structure in passing to the extended domain’s

universal cover L̃2n (more discussion on this may be found in remark I.3.13, with the necessary

context beginning at definition I.3.7). Of course since the latter definition is simply the former

restricted to certain paths, this decision does not preclude later restricting ∆̂ for the purposes

of identifying certain algebraic properties of ∆ and adapting them, with some alterations, to

the extension ∆̂.

As mentioned above, one may define ∆ as a real-valued map defined over the ho-

motopy classes of paths as in definition I.3.14 or equivalently4, as a real valued map on the

universal cover S̃p(V ) (given in definition I.3.10). Our interpretation of the mean index may

be established using either approach as the technique used in both cases (generally credited

to Milnor [69]) to construct ∆ involves one of two similar lifting procedures in terms of a

certain continuous map ρ : Sp(V )→ S1, which is defined axiomatically for certain Lie groups

in definition I.3.7 (in this context it is often called a circle map) and given explicitly for the

symplectic group in definition IV.1.1. A consequence of this is that both the existence and

3The group structure of S̃p(V ) is fundamentally related to the mean index, see lemma I.3.9.
4These two definitions remain equivalent when applied to L2n, see lemma I.3.8.
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continuity of ∆ amount to formal consequences of the continuity of ρ. This allows us to avoid

extending the function ∆ (defined over the free path space of Sp(V ) in greatest generality)

and instead deal with the far more straightforward question of extending ρ (in fact we will

need to extend ρ2, see remark I.3.15) to L2n.

The result at the center of the dissertation is theorem I.4.2 (in which we define

the extended mean index and show it to be continuous) which is an immediate corollary of

theorem I.4.3 through an application of the aforementioned lifting procedure. Specifically,

theorem I.4.3 produces a continuous extension ρ̂ : L2n → S1 of ρ2 by identifying Sp(V ) ∼=

Im(Gr) so that by simply repeating Milnor’s procedure on L2n with respect to ρ̂, we obtain

both the existence and continuity of ∆̂ (as in the symplectic case) as formal consequences

of the continuity of ρ̂. We note that the universal cover of L2n (and therefore the space of

homotopy classes of paths originating at the identity) is likely to be much larger5 than that

of Λ2n (discussed further in remark I.3.13). This, along with the loss of group structure when

passing from Sp(V ) to L2n, contributes to our extended index exhibiting some fairly serious

algebraic deficiencies when freshly constructed as compared to ∆ over S̃p(2n). Given that the

Lie group structure and resulting characterization of ∆ as a quasimorphism are used in almost

all of the applications of the mean index (a few examples may be found in [5, 28, 30, 11])

we desire to recover some of these properties, but before discussing this we address certain

similarities between this dissertation and the thesis [33].

Several of the key objectives of this dissertation, including the central concept of

extending the mean index using definition I.3.3 (as well as the role of the exceptional set H

in proving it) were directly motivated by the results given in the dissertation [33], authored

by Yusuf Gören. In particular, our theorem V.1.1 matches theorem 2.2.6 in [33], though are

5This is shown explicitly in example VII.1.2, wherein π1(L2) is computed and an ad hoc solution is shown
in which we identify an intermediate covering space in which lifts of the non-contractible loops with zero mean
index remain non-contractible in the cover.
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proved using distinct methods. Our theorem III.2.6 is a slight refinement (in that it shows

uniqueness) of Gören’s theorem 2.2.1, with proofs that do bear some similarities where they

overlap. The most significant overlap occurs with our main theorem I.4.2, which corresponds

to theorem 2.2.5 in [33].

Given the parallels outlined above, this dissertation necessarily exhibits significant

distinguishing features, the first of which is our choice of definition when constructing ∆̂,

central in the recovery of the algebraic properties found in part VI. We have already mentioned

how we will construct ∆̂ (formally in terms of a continuous extension ρ̂ of the map ρ), whereas

in [33] this is circumvented rather cleverly by choosing a representative γ : I → L2n for

each identity-based fixed-endpoint homotopy class [γ] such that γ may be written as the

concatenation of a pair of paths τ and η. Specifically, the author requires that τ(t) ∈ L2n be

an identity-based path which is the graph of a symplectic map for all t ∈ [0, 1) with τ(1) =

L ∈ L2n \ Im(Gr), while η is some loop based at τ(1) such that [η ∗ τ ] = [γ], thereby reducing

the extension problem to only those paths which leave Im(Gr) at the very last moment. This

means that our continuous extension of ρ2 in theorem I.4.3 should be considered the true ‘main

result’ of this dissertation as it marks a significant departure from Gören’s methods in proving

theorem I.4.2. One immediate benefit of this definition (following that given in [5]) is that

it better suits establishing variants of the algebraic properties enjoyed by the mean index

(over the open and dense subset of ‘stratum-regular’6 paths, see theorem II.4.15), defined

in the natural manner by replacing the group operation with Lagrangian composition (see

definition I.3.2). These begin with the necessary prerequisite that the composite path of any

‘compatible’ pair (see definition VI.1.1) of stratum-regular paths is piece-wise differentiable

and include proofs that the Lagrangian mean index is both homogeneous and satisfies a

6In this case a stratum-regular path is one satisfying a transversality condition (see definition I.4.5) with
respect to a certain stratification of Λ2n as given in [48].
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quasimorphism-type bound for the aforementioned compatible pairs. Despite this, the similar

goals that [33] and this dissertation share ultimately proved invaluable in the writing of this

thesis, evident in the fact that the hypothesis of this work’s central theorem may be credited

to Gören’s dissertation.

A more precise description of the results mentioned above, namely those regarding

properties of the symplectic mean index partially retained in the Lagrangian mean index,

begins with the immediate formal consequence of fixed-endpoint homotopy invariance (due

to the definition). More importantly, we prove for each stratum-regular path γ : I → L2n

that the set-theoretic composition γl is a piece-wise differentiable path in L2n for all l ∈ N

(a consequence of theorem I.4.6 mentioned below) which allows us to show in corollary I.4.7

that the mean index is homogeneous with respect to this composition when l ≥ 0 (we lose

the negative integers here due to complications which arise in defining the notion of an in-

verse within the category of linear canonical relations, see remark II.2.3). We next give an

equivalence relation on the set of stratum-regular paths (see proposition VI.1.3) and see in

theorem I.4.6 that all compatible paths γ, τ sharing an equivalence class have piece-wise dif-

ferentiable composite paths γ ◦ τ, τ ◦ γ. The finale comes in section VI.2 with theorem I.4.8

in showing that any such pair satisfies a quasimorphism-type bound (namely, the inequality

in definition I.2.2) with respect to ∆̂. A word of warning should be said concerning the in-

stability this equivalence relation exhibits under reparameterization; given any non-identity

C1 map β from the unit interval to itself which fixes endpoints, the resulting reparameterized

path γ ◦ β will in general not be a γ-compatible path regardless of how close β is to the iden-

tity (unless one only considers very restricted families of reparameterizations which would

necessarily depend on each equivalence class). Regardless, as unstable as these results may

be under reparameterization, they are evidence that certain algebraic properties of ∆ have at

6



least partial analogues in the Lagrangian case.

We make use of the stratification detailed in section II.1 of the Lagrangian Grass-

mannian of a 4n dimensional symplectic vector space as in [41, 48]. These n + 1 strata,

parameterized by 0 ≤ k ≤ n, each form a fiber bundle over the space of isotropic pairs of

dimension k (see definition II.1.1) and are shown in proposition II.1.6 to have codimension k2

in Λ2n. The purpose of distinguishing the stratum-regular γ in the manner they are is that

such paths induce a finite partition {ti}Mi=1 of the unit interval which mark each departure

from the generic stratum (the image of Sp(2n) under the graph map given in definition I.3.3).

This allows one to write γ as the concatenation of a finite number of (open) paths, each lying

in the image of the graph map (and therefore the symplectic group). This decomposition

(shown in lemma VI.1.5) is purely technical, the utility lies in the fact that each restriction of

γ may be identified with a symplectic path, thereby providing a gateway through which the

algebraic properties (lost in extending ∆ to the Lagrangian Grassmannian) may be recovered.

We obtain the above results by using the index theory summarized below in section I.3 on

each restriction and afterward show that the collection of paths may be continuously stitched

back together with the given property intact.

The structure of this dissertation roughly parallels three central theorems which

each contribute to the proof of theorem I.4.2, contained in parts II,III and V (for the precise

theorem statements we refer the reader to section I.4). Part II introduces isotropic pairs and

the fiber structure of the strata of Λ2n, in addition to elaborating on the set of stratum-regular

paths. In part III we prove theorem I.4.1 which establishes that codim(H) = 2, as well as

prove theorem III.2.6 which gives a standard procedure for decomposing L ∈ L2n. Following

this, part IV consists of mostly formal results regarding the construction of the map ρ and

its relationship with the Conley-Zehnder index (in addition to a brief discussion regarding

7



which properties are retained by ρ̂) while part V involves some of the heavier technical details

needed to prove our central theorem I.4.3, which yields theorem I.4.2 as a formal consequence

(though we show this explicitly in section V.3). The penultimate part VI is reserved for the

proofs of the algebraic results for stratum-regular paths while part VII closes the dissertation

by giving a few examples and speculative remarks.

I.2 Historical Context

In regards to the developments discussed below (and most ideas in general), coming

to a definitive and complete answer as to when certain steps were reached, who did so and

with which references is almost certainly an impossible task. Along similar lines it must also

be made explicit that the following account of symplectic and Lagrangian index theory is

necessarily incomplete and subject to major omissions and misconceptions. This is partially

due to the complexity inherent in any thorough account of a mathematical topic which is

unlikely to be known by any one person in its entirety, nor capable of being thoroughly

expressed in so few pages. Philosophy aside, this deficiency is likely a simple consequence of the

author’s naivetè on the matter so that many vital contributions, and therefore contributors,

to the field are likely to be missing from the following account.

Now that we have completed our disclaimer, before we proceed in outlining some

of the advances in Morse-type index theory (and the particular branch of subtopics grown

out of the Maslov index theory) we will briefly discuss a central concept which has driven

the advances in Morse-type index theory since it began, that of the calculus of variations.

The notion of a variational principle is generally understood to have originated in the works

of Maupertuis and Euler during the mid 18th century [50] and has consistently appeared in

various physical and mathematical contexts through to the modern day. In the first half of
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the 19th century following the work of Lagrange’s reformulation of Newton’s laws of motion,

William Hamilton established what is now known as Hamilton’s principle [39], leading to his

own formulation of classical mechanics which ushered in the field of Hamiltonian dynamics.

Despite this, the intuition behind variational principles has proven surprisingly ancient, with

written examples dating back roughly two millennia. Included among these is Archimedes’

Law of the Lever [85], now a standard introductory example for the concept of virtual work7,

as well as a Hellenic treatise on optics8 [50]. These examples are almost certainly predated

by works lost to time or by ideas that were never written down, evidenced by the appearance

of a variational principle being used to solve an isoperimetric area maximization problem

within a Phoenician myth [50] by making use of the free boundary of the sea shore; an

ancient foreshadowing of the near ubiquitous introductory calculus exercises involving the

construction of rectangular animal pens alongside rivers.

More recently in the first half of the 20th century the establishment of Morse theory

[70] ushered in the field deemed by Morse as variational calculus at large (encompassing topics

such as Lusternik-Schnirelmann theory and later motivating Bott’s periodicity theorems). As

defined by Morse, variational calculus at large is the study of the qualitative behavior of

variational problems and their relationship with global topological properties, demonstrating

that the utility of variational methods extend beyond that of simply identifying local extrema.

As seen in Morse’s work on function spaces [70], early Morse theory was generally confined to

finite dimensional manifolds, though this was often used in combination with various tricks

to extend the theory to infinite dimensional manifolds like loop spaces or spaces of geodesics.

This was later adapted to include well behaved functionals on separable Banach and Hilbert

7The principle of virtual work has seen modern uses in applying symplectic techniques to physics, e.g. the
generalized Hamiltonian dynamics in elastic continuum mechanics as given in [8].

8Heron’s Catoptrica (Theory of Mirrors) argues that the trajectory of light determined by Euclid’s law of
reflection is the shortest (reflected) path possible from the source to the observer.
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spaces [15], albeit with the possibility of infinite Morse (co)indices. Some of the main problems

encountered during this time period were those of strongly indefinite functionals (A strongly

indefinite functional is unbounded in both directions and retains this property modulo any

finite dimensional subspace) and infinite (co)indices (both of which occur when applying

variational techniques to most Hamiltonian systems). This suggests that any Morse-type

results under these conditions (and on Hamiltonian systems in particular) will require more

than purely topological data. One example motivating this is given in [43], in which the fact

that the topology of many infinite dimensional spaces tends to be excessively fine to the effect

that the topological invariance of (co)homology tends to force the (co)homology groups to

be trivial. This obviously should not be considered a commandment given the existence of

work such as Palais’ extension of Lusternik-Schnirelmann theory to Banach manifolds [74],

although admittedly Finsler structures are used to do so. We mention these examples with the

express purpose of exhibiting the difficulties encountered when applying variational techniques

to Hamiltonian systems.

The prospect of using variational methods established before the late 1970s to iden-

tify the periodic orbits of all but the nicest Hamiltonian systems was an intractable one for

several reasons (including but certainly not limited to the few listed above). The 1978 paper

[76] authored by Rabinowitz is occasionally marked as the beginning of a decades-long refine-

ment in using variational techniques to study Hamiltonian systems, a refinement which is far

from complete and which continues to this day. When seeking periodic orbits of a Lagrangian

dynamical system Rabinowitz had the novel realization that, in some cases, one may eschew

classical Lagrangian methods over the phase space in favor of a Lagrangian system defined on

the loop space of the manifold, thereby identifying periodic orbits (modulo parameterization)

by seeking the extrema of the new action functional9. The main obstacle Rabinowitz and his

9This description is a paraphrasing of Helmut Hofer during his 60th birthday conference. In the video he
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contemporaries encountered was that the action functional could take different values for the

various parameterizations of geometrically indistinguishable orbits, e.g. iterates. Two major

breakthroughs (among many others) during the 1980s would help to revolutionize the field of

Hamiltonian dynamics (in addition to countless other topics in symplectic topology) and most

relevant to our discussion, would contribute to certain methods for identifying the distinct

geometrically indistinguishable orbits that Rabinowitz encountered.

The first of these prominent steps would come in 1984 after Conley and Zehnder

authored the paper [14], commonly cited for introducing what is now known as the Conley-

Zehnder index. The authors define a Morse-type index of a (non-degenerate) periodic orbit

for certain linear Hamiltonian systems on (R2n, ωstd) when n ≥ 2, provided a number of

conditions are satisfied (including the non-degeneracy of the trivial orbit and an asymptotic

linearity condition on the Hamiltonian). In other words, when n ≥ 2 the index assigns an

integer to every identity-based path γ : [0, 1]→ Sp(2n) arising from a linearized Hamiltonian

orbit which terminates at a non-degenerate symplectic map. This allowed a prime periodic

orbit to be distinguished from its iterates, thereby solving Rabinowitz’s problem, albeit only

for certain linear Hamiltonian systems (at the time leaving much of the behavior of Hamil-

tonian systems on symplectic manifolds an open question). In the second half of the 1980’s,

Andreas Floer would begin developing several seminal contributions to the field of symplectic

dynamics which would later influence a remarkable series of results spanning nearly every field

of symplectic mathematics (and well beyond). In the interest of brevity, Floer developed sev-

eral novel infinite dimensional Morse theories [23, 24] which built on his earlier results [21, 22]

regarding the symplectic action functional and its associated gradient flow. The ultimate con-

sequence was a novel Morse-type homology, what is now known as Floer homology10. This

is speaking of Rabinowitz’s 1978 paper and it’s influence on his decision to specialize in symplectic/contact
geometry [72].

10The descriptor ‘Floer homology’ is rather vague, even if one ignores analogues developed later. Floer’s work
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work would quickly rise in prominence and ultimately motivate many of the rapid advances in

symplectic mathematics which proceeded it. In particular, Floer’s contributions would result

in the rapid growth of both the generalization and application of Conley and Zehnder’s results

including an early example by Floer [20] and continued on by other authors in the papers

[57, 86, 58], although it should be said that these few citations naturally only account for an

incredibly small portion of the relevant contributions and contributors.

Two decades before the Conley-Zehnder index and Floer’s breakthrough, the Maslov

index for paths of Lagrangian subspaces provided an important motivation for developing an

index theory for Sp(2n). The Maslov index as defined by Arnol’d [2] is a characteristic class

for Lagrangian submanifolds. More concretely, for any Lagrangian subspace L ⊂ (M,ω) the

Maslov index of a (generic) path γ : [0, 1]→ L may be written as a signed intersection count

of the associated path γT : [0, 1] → Λn (induced by the tangent map) with a co-oriented

hypersurface of Λn whose cohomology class coincides with the Poincaré dual of the Maslov

class (e.g. the set of Lagrangian subspaces non-transversal to some fixed Lagrangian, often

called a Maslov cycle)11. After a few years much of the material defined in [2] would become

relatively standard after a chapter authored by Arnol‘d was featured in the textbook [67].

The manner in which the Maslov index was formed would foreshadow the methods later used

in [82] to define the Conley-Zehnder index.

In slightly more detail, both the Maslov and Conley-Zehnder indices may be con-

structed starting from the determinant map on the unitary group U(n) to produce a contin-

uous S1-valued function ρ on the relevant space (Λn and Sp(2n) respectively), each of which

exhibited homology theories associated to Lagrangian intersections [23] as well as non-degenerate symplectic
endomorphisms [21, 24] (and this is entirely omitting his work on three-manifolds).

11The idea of using a signed intersection count and some co-oriented hypersurface in Sp(2n) (as in [82]) to
define an index for linear-symplectic paths was nearly contemporaneous, as can be seen in figure I.1 which
depicts the analogous ‘Maslov cycle’ in Sp(2), consisting of those symplectomorphism with an eigenvalue equal
to 1.
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inducing an isomorphism of the relevant fundamental group12 with π1(S1) ∼= Z (see defini-

tion I.3.7). More precisely, in the Lagrangian case [2] Arnol‘d uses the square of the determi-

nant modulo its kernel, identifying the domain through the diffeomorphism Λn ∼= U(n)/O(n)

to produce the map ρ whereas Salamon and Zehnder’s paper [82] uses a method depending on

the eigenvalues of a symplectic map, which has no analogous method in terms of the Maslov

index on Λn (though they do recognize that ρ corresponds with the square of the determinant

map on U(n) as a subgroup of Sp(2n)).

From a newcomer’s perspective, it’s commonly understood that equivalent definitions

for the Conley-Zehnder index (and in turn, the mean index) which closely follow Arnol‘d’s

methods in obtaining ρ on Λn would only appear many years after Arnol‘d’s publications;

the first in 1984 [14] already briefly mentioned, included a procedure using the squared deter-

minant and the usual polar decomposition to define ρ in terms of the determinant on U(n).

The second definition came in 1989 in the paper [79] in which ρ is given as the normalized

squared determinant of the holomorphic part of a linear symplectomorphism (seen as an ele-

ment of GL(n,C)). We will discuss those in their appropriate temporal context shortly, but

first we must take a step back to trace the roots of the Conley-Zehnder index, as it should be

noted that Conley and Zehnder’s 1984 paper [14] does not mark the first appearance of the

mean and Conley-Zehnder indices. The mean index is foreshadowed as far back as 1885 in

Poincaré’s rotation number [75] later to be associated with Morse theory by Hedlund [41] in

1932, a paper which notably features the two dimensional case of inequality (I.2.3). The more

well known precursor was published by Bott in 1956 [9], in which he defines and computes

analogues of the mean index (via equation (I.2.1) below), the Conley-Zehnder index as well

as a nullity index for iterates of closed geodesics. Along these lines we highlight a textbook

12In our case though, the map ρ̂ will fail in satisfying this as the induced map ρ̂∗ : π1(L2n) → π1(S1) is
highly non-injective, see remark I.3.13).
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and paper (see figure I.1) which appear as citations (the former more often than the latter)

within many of the early developments mentioned below ([17, 16, 82, 58] to name a few) which

shows significant developments in the application of the above index theory to Hamiltonian

systems in the 1980s nearly 30 years beforehand. One particularly surprising example is the

alternate construction for the Conley-Zehnder index in [79] mentioned above, which appears

in Yakubovich and Starzhinskii’s text [91]. Impressively, the crucial step of concatenating a

symplectic path so as to obtain an integer from the lift of ρ had also already been given in

the 1975 textbook, citing a 1955 paper published by Gel’fand and Lidskii [26]. This pair of

documents mark early examples of a significant portion of the fundamentals of Hamiltonian

index theory, including the stability of periodic orbits of Hamiltonian systems, in turn giving

a (very intuitive) description of the dynamics of eigenvalue quadruples belonging to a real

family of symplectic linearizations of a Hamiltonian orbit.

Jumping ahead again to 1983, despite the paper [14] still being a work in progress

(or perhaps a preprint), Conley and Zehnder hastily put their index to use proving Arnol’d’s

conjecture for tori in [13]. The techniques used within would spark a cascade of new research,

soon to become foundational topics in symplectic geometry. One example is Eliashberg’s proof

[18] that the image Symp(M,ω) ↪→ Diff(M) is C0-closed for symplectic (M,ω), thereby estab-

lishing symplectic topology as a topic in its own right. Soon after, Gromov used traditional

techniques from enumerative algebraic geometry to identify symplectic topological invariants

through the analysis of pseudoholomorphic curves [34], marking their origin within symplectic

and contact geometry. The paper also established the first symplectic non-squeezing results

giving the first example (what is known today as the Gromov width) of a symplectic capacity,

a topic which has since contributed to many non-intuitive results in the field of symplectic

embeddings [68, 46, 47, 83].
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Generated using Mathematica 10 c© [90]

Figure I.1: The above is a depiction of Sp(2,R) as a solid (open) torus; the elements Id,− Id
are marked by a red/blue point while the surface of symplectomorphisms with eigenvalue
+1,−1 are drawn in orange/green respectively. The figure is of interest as an analogous figure
(not shown here to avoid violating copyright law) appeared in the 1955 paper [26] published
by Gel’fand and Lidskii, in which the authors exhibit (in the n = 1 case) the co-oriented
(hyper)surface Sp∗(2n,R) consisting of the symplectomorphisms with eigenvalue equal to 1.
This appearance notably precedes the procedure given in [82] for defining the Conley-Zehnder
index in terms of a signed intersection count (à la the Maslov class by Arnol‘d [2]) by several
decades ).

Two papers of note which utilized Morse theory for Hamiltonian systems (pre-Floer

homology) were published by Ekeland [17], and Ekeland and Hofer [16], in 1984 and 1987

respectively. The former paper is of particular interest for our purposes since it marks an

early appearance of the mean index for Hamiltonian systems, defined as in equation (I.2.1),

for which inequality (I.2.3) is shown. Additionally the {1, 2, . . . , 2n}-valued nullity index is

defined, foreshadowing the role it would play in the paper [58] in extending the Conley-Zehnder

index to degenerate maps. Both of the papers naturally assumed fairly restrictive conditions

on the Hamiltonian yet they mark the first signs of the following decade’s flood of results, of

which Floer’s contributions at the end of the 1980’s could be marked as when the flood passed a

critical threshold (of the contribution made by Floer, the series of papers [19, 20, 21, 22, 23, 24,

25] represents only a portion of the relevant papers). We note that Floer was likely motivated
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in part by the introduction of Conley and Zehnder’s index theory (as evidenced by [20])

and undoubtedly by Gromov’s introduction of pseudoholomorphic curves (see the paper [19]

published in vol. 25 of Travaux en Cours, or Works in Progress). Floer’s contributions have

since proven to have been very effective kindling for the following years’ advances in symplectic

topology, as fueled by this development much progress was made in refining the relationship

between Conley-Zehnder index theory and the various symplectic homology theories. In

particular, Hamiltonian Floer Homology yielded many novel results in Hamiltonian dynamics

[80, 10], being just one of many fields during this time which experienced rapid growth through

the application of various Floer-type homology theories established in the early 90’s.

Returning again to the various constructions of the Conley-Zehnder index (and in

most cases, the mean index as well), we recall that in [14] the map ρ (and in turn the Conley-

Zehnder index) is defined for certain linear Hamiltonian systems on R2n with n ≥ 2 using a

continuous map given by some polar projection sending the non-degenerate linear symplectic

maps to U(n), followed by the application of the squared determinant. In 1990 a pair of pa-

pers [61, 57] were published each of which were (co)authored by Yiming Long, following four

years of his work in analyzing the peculiar dynamics of certain forced Hamiltonian systems

(see [55, 56]). In the first, published with Zehnder, they defined the index for non-degenerate

linear Hamiltonian systems in two dimensions [61] filling in the gap left in [14], while the

second paper finally extended the index to degenerate fundamental solutions of linear Hamil-

tonian systems (provided they have symmetric and continuous coefficients) [57]. Remarkably,

a nearly identical result in [86] was published that same year by Viterbo. In 1992, Salamon

and Zehnder published their hallmark paper [82] which moved the theory beyond linear sys-

tem, extending the Conley-Zehnder index to periodic orbits of non-degenerate Hamiltonian

systems on any compact symplectic manifold of dimension 2n. They also established an ax-
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iomatic formulation13 of the Conley-Zehnder index under which the index is unique, which

coincidentally was also shown the same year by Barge and Ghys in [5].

A paper [78] authored by Robbin and Salamon in 1993 used the Maslov index and the

graph map in definition I.3.3 to construct a novel index for linear symplectic paths (generally

called the Robbin-Salamon index today), in addition to giving a pair of alternate definitions

for the Conley-Zehnder index. These included writing the index as a signed intersection

count with a co-oriented hypersurface (as in Maslov’s initial work) in addition to embedding

Sp(2n) into GLn(C) (a technique mentioned above for appearing nearly two decades earlier

in the text [91]). Much of the material covered until this point (and much more) would

later be compiled and published in 1999 as notes [81] from a lecture delivered by Salamon

in 1997, in a sense standardizing much of the aforementioned topics. The field was growing

quickly though as in just two years those notes showed their age, as 1997 also marks when

Long extended the Conley-Zehnder index [58] to every path in Sp(2n) (which had only been

shown in dimension two by Long and Zehnder until that point). The two papers [82, 58] and

their offspring consequently opened the door to a new avenue of research regarding degenerate

periodic Hamiltonian orbits, or in many cases simply the non-degenerate orbits of a degenerate

Hamiltonian system on a compact symplectic manifold. Since then many advances have been

made in answering the early conjectures of the field; Floer established Arnol‘d’s conjecture

for closed symplectically aspherical manifolds in [25] followed two decades later by the Conley

conjecture (under identical assumption), which was shown to hold in [29, 31] (in addition to

several alternate hypotheses).

Given the amount of time spent addressing the Conley-Zehnder index, it is appropri-

ate to describe how the mean and Conley-Zehnder indices are related beyond their method of

13An analogous list of axioms for the mean index was also published by Barge and Ghys in the same paper
[5], although our index unfortunately does not satisfy these axioms (see remark I.3.13).
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construction, with perhaps the most obvious example being that the former can be expressed

as a ‘weighted average’ of the latter (see equation (I.2.1) below). As mentioned above, both

indices have corresponding axiomatic definitions in terms of the group structure on S̃p(2n)

(see [5, 6] for the former and [82, 5] for the latter) but in our case the desired extension’s

domain L̃2n (the universal cover of the admissible Lagrangians L2n) is only a monoid, which

limits us to a definition which does not presume the existence of a group structure. Fortu-

nately such definitions exist, like that used in [82, 5] (among many others), wherein the mean

index is defined using the same map ρ : Sp(2n) → S1 used to construct the Conley-Zehnder

index. There is another definition of the mean index in terms of the Conley-Zehnder index,

albeit it too will be of little use to us precisely because of its dependence on the Conley-

Zehnder index. Regardless this should not preclude the mention of it, particularly since it

exhibits the fundamental relationship between the two indices described at the beginning of

the paragraph14. In this definition the mean index is given as the continuous real valued map

∆ defined over identity-based fixed-endpoint homotopy classes of paths γ : [0, 1] → Sp(2n)

which satisfies the following equation for all such γ,

∆(γ) = lim
k→∞

µcz(γ
k)

k
. (I.2.1)

Remark I.2.1. Here µcz denotes the Conley-Zehnder index. We refer the reader to lem-

mas I.3.8, I.3.9 for an explicit definition of the iterate γk of an identity based path (not

necessarily a loop) γ, and more generally how the composition of any two identity based

paths in Sp(2n) is defined.

Fortunately the two indices’ relationship extends beyond the above definition (or

equation), namely the two are governed by the following inequality which holds for both

14In fact, the etymology of the term ‘mean’ index is a reference to this ‘weighted average’, expressed in
equation (I.2.1).
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degenerate and non-degenerate paths in Sp(2n) originating at the identity

|∆(γ)− µcz(γ)| ≤ n, (I.2.2)

a generalization of an earlier development for non-degenerate γ

|∆(γ)− µcz(γ)| < n, (I.2.3)

which may be found in [17, 16, 82] holding for whichever ‘admissible’ paths γ each paper is

considering. In 1997, Yiming Long established inequality (I.2.2) for all paths [58], constructing

a C\{0} family of Maslov-type indices, (µω, ηω) ∈ Z×{0, 1, . . . , 2n}, defined for all (including

ω-degenerate) paths in Sp(2n) such that each ω-index has a corresponding ‘ω-mean index’. In

particular when ω = 1 this Morse-type index coincides with the classic µcz thereby forming a

‘generalized’ Conley-Zehnder index in that all paths γ with non-degenerate endpoints satisfy

(µω=1(γ), ηω=1(γ)) = (µcz(γ), 0). It is also shown by Long that equation (I.2.2) holds for

all paths with equality only if the path is degenerate. That same year, a stronger inequality

(centered about µcz with asymmetric upper/lower bounds) was given and shown to be optimal,

varying with the nullity index of a given iterate [54].

In addition to satisfying inequality (I.2.2), the mean index possesses other algebraic

properties, including homogeneity and the following quasimorphism property.

Definition I.2.2. Given a group G, a map ∆ : G → R is called a quasimorphism if there

exists some c ∈ R for which all φ, θ ∈ G satisfy the following inequality,

|∆(φθ)−∆(φ)−∆(θ)| ≤ c. (I.2.4)

As mentioned above, it was the 1992 paper [5] which established the crucial fact

that ∆ may be characterized axiomatically as the unique continuous quasimorphism ∆ :
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S̃p(2n)→ R which is both homogeneous and continuous; see the 2008 paper [6] by Ben Simon

and Salamon for more details. We observe here that ∆ may be expressed (using some more

advanced machinery) as the continuous and homogeneous quasimorphism with [∂1∆] 6= 0 as

a cochain in the (continuous) bounded Lie group cohomology H2
bc(S̃p(2n),R) (as defined in

[73]). With some of the rich structure enjoyed by the mean and Conley-Zehnder indices now

introduced, we remind the reader that a hefty price must be paid in extending the mean index

from the symplectic group to L2n, which is perhaps most plainly demonstrated by the lack of

a group structure over the linear canonical relations of a fixed symplectic vector space when

equipped with set-theoretic composition (definition I.3.2) so that in particular, the universal

cover is no longer a group and consequently, does not admit quasimorphisms (at least in the

sense of the above definition). We will discuss this in more detail in the following section I.3.

In regards to the utility of ∆, it is shown in [11] using equation (I.2.1) that the mean

index and its associated spectrum might be use to extract information, even when about a

degenerate periodic point, regarding the grading shift isomorphisms relating the various local

Floer homologies of the iterates of a given Hamiltonian, which the author then shows can be

used to give a novel proof for the symplectically aspherical Conley conjecture. One may also

find an example of inequality (I.2.2) above being applied within Hamiltonian dynamics in [28]

wherein the authors prove a local variant of the Conley conjecture about an isolated periodic

point of a Hamiltonian on a closed and symplectically aspherical manifold, utilizing the mean

index by defining a filtration on the local Floer homology to supplement the usual action

filtration. More than just helping to validate the Conley conjecture, the exceptional cases

wherein only finitely many periodic points exist present interesting applications for the mean

index in their own right. In particular, the paper [30] establishes various conditions (some

regarding the mean indices of the periodic points) that a Hamiltonian ‘pseudo-rotation’15

15We adopt for the above paragraph the nomenclature that any Hamiltonian with finitely many periodic
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of complex projective space must satisfy. The results reached in [12], this time regarding

any symplectic manifold admitting a pseudo-rotation, again utilize the mean indices of the

periodic points to extract symplectic topological information. It is shown for any manifold

admitting a pseudo-rotation (along with some additional conditions which vary with each of

the following) that there exists an upper bound on the minimal Chern number, a lower bound

on the quantum cohomology cup length, and the existence of some non-zero Gromov-Witten

invariants. In particular the cup length lower bound is determined by the mean indices in a

manner resembling certain ‘non-resonance’ conditions for stability as found in KAM theory

[1, 71, 51]. The underlying index theory common to all of these references may be found in

[32, 60] where the former focuses on Lusternik-Schnirelmann theoretical aspects and the later

is a comprehensive text consisting of a detailed exposition on Maslov-type index theory.

I.3 Definitions and Conventions

We will be working over a real symplectic vector space (V 2n, ω) and adopt the

following shorthand notation to denote V ’s twisted symplectic product,

V × V := (V × V, ω̃ = π∗1ω − π∗2ω).

We will distinguish set theoretic from linear subspace inclusion by using ‘≤’ for the latter. A

Lagrangian subspace L ≤ V ×V , also referred to as a linear canonical relation, will be said to

have source and target V and V respectively16 and we introduce the following notation, used

in [84] for linear relations with the exception being the colorful notation halo(L) (introduced

in [63] yet lately supplanted by the more conventional indet(L) as in [53]).

Definition I.3.1. Recall for a symplectic vector space (V 2n, ω) that the Lagrangian Grass-

points is called a pseudo-rotation
16Many authors define the target and source in the opposite manner to better complement composition.
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mannian LagGr(V, ω) is defined as follows (where Lω denotes the symplectic orthogonal),

LagGr(V, ω) := {L ≤ V |Lω = L} ⊂ Grn(V ),

where Grn(V ) is the standard Grassmannian manifold of n-planes in the vector space V .

Given a linear canonical relation L ∈ Λ2n := LagGr(V × V, ω̃), we denote the

following distinguished subspaces of V (where as above, π1, π2 are the projections from V ×V

to the first and second coordinate),

• dom(L) := {v ∈ V | ∃w ∈ V , (v, w) ∈ L} = π1(L)

• ran(L) := {v ∈ V | ∃w ∈ V , (w, v) ∈ L} = π2(L)

• ker(L) := {v ∈ V | (v, 0) ∈ L} = dom(L)ω

• halo(L) := {v ∈ V | (0, v) ∈ L} = ran(L)ω.

It is true for any linear canonical relation L ⊆ V × V (being a consequence of the

choice of symplectic form) that both subspaces dom(L) and ran(L) are coisotropic (equiva-

lently, ker(L),halo(L) are isotropic) and that dim(dom(L)) = dim(ran(L)).

Definition I.3.2. Given L,L′ ∈ Λ2n, the set theoretic composition for linear canonical

relations is defined as follows,

L ◦K = {(v, z) ∈ V × V | ∃w ∈ V s.t. (v, w) ∈ K, (w, z) ∈ L} .

We also denote

Ll = L ◦ L ◦ · · · ◦ L︸ ︷︷ ︸
l times

(I.3.1)

for any l ≥ 0.

We let L0 := {(v, v) ∈ V × V | v ∈ V } denote the diagonal 4V which is the identity

in the monoid of linear Lagrangian relations [88]; for any L ∈ Λ2n, 4V ◦ L = L = L ◦ 4V .
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Definition I.3.3. Define the following smooth map sending each A ∈ Sp(V ) to its graph, a

Lagrangian subspace of V × V ,

Sp(V ) ↪→
Gr

Λ2n

A 7→
{

(v,Av) ∈ V × V | v ∈ V
}
.

As shown in [41], the above map has an open and dense image in Λ2n (in fact, this

embedding is analytic), so that in particular Λ2n is a compactification of Sp(2n). We partition

Λ2n into n+ 1 pair-wise disjoint sets defined for each 0 ≤ k ≤ n (note that Λ0
2n = Im(Gr) ∼=

Sp(V )),

Λk2n := {L ∈ Λ2n | dim(ker(L)) = dim(halo(L)) = k} .

As shown in [48], these n+ 1 sets are in fact smooth submanifolds that form a stratification17

of Λ2n,

Λn2n ⊂ Λ≥n−1
2n ⊂ · · · ⊂ Λ≥1

2n ⊂ Λ≥0
2n = Λ2n,

where Λ≥r2n :=
⋃n
k=r Λk2n. Note that since Λ≥1

2n = Λ2n \ Im(Gr) is the complement of an open

set, we see that Λ≥1
2n is a closed stratified space. We show in theorem I.4.1 that each smooth

submanifold Λk2n is of codimension k2 in Λ2n for 0 ≤ k ≤ n, and will use this stratification to

define our stratum-regular paths in section II.4.

Definition I.3.4. For all n ≥ 1 we define the set of exceptional Lagrangian subspaces,

H := {L ∈ Λ2n | ker(L) ∩ ran(L) 6= {0}} ,

and let L2n := Λ2n \H.

Remark I.3.5. We explore the possibility of choosing a smaller exceptional set Ĥ in sec-

tion VII.3, taking advantage of a tuple of invariants (II.3.1), shown in Lorand’s paper [62] to

17The author gives their apologies for breaking with the traditional indexing of a stratification, which is
reversed in our notation, i.e. the lowest index denotes the highest (dimension) stratum.
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completely characterize the conjugacy classes of (co)isotropic pairs (see definition II.1.1 for

more details on isotropic pairs).

As first determined in [45] following [66], within the context of microlocal analysis

(which tends to be the field in which one finds early examples of Lagrangian relations), given

three symplectic vector spaces18 X,Y and Z and a pair of linear canonical relations L ≤ X×Y

and L′ ≤ Y ×Z, the set-theoretic composition L′ ◦L presents some serious issues, even in the

linear case, unless one at least imposes the transversality condition dom(L′)⊕ ran(L) = Y or

equivalently, (L′ × L) ∩ ({0X} ×4Y × {0Z}) = {0}.

Remark I.3.6. Note that our transversality condition L /∈ H is stronger than that intro-

duced above. By taking the symplectic orthogonal of Hörmander’s transversality condition

we get ker(L′)∩halo(L) = {0} whereas we require (under a more restrictive assumption) that

ker(L′) ∩ ran(L) = {0}, which implies the former.

The manner in which composition is defective when L,L′ fail to satisfy the above

transversality condition is easiest to observe if we consider the composition operation as a

function; ∗ ◦ ∗ : LagGr(X × Y )× LagGr(Y × Z)→ LagGr(X × Z). This function, while well

defined, fails to be continuous unless one restricts the domain to those pairs (L,L′) satisfying

Hörmander’s transversality condition (see example II.2.1 for a classic case of this failure of

continuity). Several techniques have been established to circumnavigate this issue, and as one

might expect, even more significant issues arise when translating this operation to non-linear

objects (e.g. smooth canonical relations). One early solution (again, in the field of microlocal

analysis) may be found in [35] in which the authors augment their Lagrangian relations with

half densities. We will postpone a brief discussion to section VII.2 regarding some of the many

issues that one might encounter in adapting our extended mean index to smooth objects, in

18The category whose objects are symplectic vector spaces and morphisms are linear canonical relations is
often denoted SLREL, and (to the best of the author’s knowledge) was first formally constructed in [7]
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which we also speculate on what the most promising categorical ‘extension’ of linear canonical

relations might be for our purposes (a technique first developed in [87] and later refined in

[53]). That said, our extension faces some more immediate issues.

The following definitions and lemmas are only applicable to Lie groups and as we

have warned, they will be of no real use to us going forward. Regardless, they are important

inclusions; in stating them we elucidate the algebraic properties instrumental in applying the

mean index as described above [28, 11, 30, 12] so as to fully grasp what our extended index is

missing. We express them in general terms with this aim in mind and begin with the algebraic

characterization of the map ρ.

Definition I.3.7. [77] For a connected Lie group G with π1(G) ∼= Z we call any smooth

ρ : G → S1 for which ρ∗ : π1(G)
'→ Z is an isomorphism a circle map. Additionally, if the

following two properties hold, we call it a normalized circle map;

1. ρ(φ−1) = ρ(φ)−1

2. ρ(Id) = 1.

As shown in [77] our map ρ is a normalized circle map on Sp(2n).

Lemma I.3.8. [40] Given a pointed topological space (X,x0) for which a universal cover X̃

exists then the set of fixed-endpoint homotopy classes of paths in X which originate at the

point x0 may be identified with the universal cover X̃.

As is becoming clear, the vast majority of applications for the mean index rely on

the fact that π1(Sp(2n)) ∼= Z ∼= π1(S1) and that ρ is a circle map. We proceed with a

characterization from Rawlins (based on Milnor’s [69]) of the universal cover for such Lie

groups.
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Lemma I.3.9. [77] Given any connected Lie group G with π1(G) ∼= Z equipped with a

normalized circle map ρ, the universal cover of G may be written as

G̃ =
{

(g, c) ∈ G× R | ρ(g) = eic
}
.

Where the group action for G̃ is given by,

(g1, c1) · (g2, c2) = (g1g2, c1 + c2).

The similarity between the 2nd real coordinate in the above lemma and the mean

index is no coincidence as the following definition exhibits.

Definition I.3.10. [69] If we let ρ̃ : G̃ → S1 denote the composition of the universal cover

projection j : G̃ → G with ρ we may write an alternative definition of the mean index

∆ : G̃→ R as the lift of ρ̃;

G̃ R

S1

ρ̃

∆

eit

Figure I.2: The above diagram commutes.

We leave the explicit reconciliation of definition I.3.10 and definition I.3.14 below to

[77], but it’s not a stretch to see from lemma I.3.9 that any path γ : I → G with γ(0) = Id,

when lifted: γ̃ : I → G̃, terminates at some point (γ(1), c) so that ∆((g, c)) = c.

Now we take a deeper look into the role the quasimorphism property plays in this

algebraic context.

Lemma I.3.11. [77] Given any connected Lie group G of dimension n with π1(G) ∼= Z

equipped with a normalized circle map then there exists a unique map η : G × G → R for
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which η(Id, Id) = 0 and

ρ(g1g2) = ρ(g1)ρ(g2)eiη(g1,g2).

Where η(g1, g2) := ∆(g̃1g̃2) − ∆(g̃1) − ∆(g̃2) is independent of the choice of lifts g̃1 and g̃2

and |η(g1, g2)| < nπ
2 .

Additionally η satisfies the cocycle condition,

η(g1, g2) + η(g1g2, g3) = η(g1, g2g3) + η(g2, g3).

Remark I.3.12. Since our definition normalizes multiples of 2π to the integers the above

inequality |η(g1, g2)| < nπ
2 is scaled incorrectly with respect to definition I.3.14.

As warned, the constructions for ∆ and η above are heavily dependent on the group

structure of G so it should come as no surprise that proceeding with a monoid is not a feasible

strategy, in particular since the fundamental group is not likely to be isomorphic to Z.

Remark I.3.13. Since the non-singular portions of H are codimension two, it is a reasonable

supposition that π1(L2n) will not be isomorphic to Z. If so, and even if one ignores the lack of

group structure and simply proceeds with definition I.3.10 in lifting ρ̃ : L̃2n → S1 one will end

up grappling with, among other issues, a pre-image ∆−1(0) (paths up to homotopy) which

is far too large, an effect of the induced map ρ∗ : π1(L2n) → Z no longer being injective. In

example VII.1.2 we see this is indeed the case when n = 1; there exist many distinct and non-

contractible (homotopy classes of) loops in L2 which have zero mean index. We also exhibit

a rather ad-hoc strategy of replacing the universal cover with an intermediate covering space

over which ∆̂ is injective on homotopy classes of paths.

We conclude the section by giving a second definition for the mean index which we

will follow in our own construction of ∆̂ (although using definition I.3.10 would work just as

well for identity-based paths).
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Definition I.3.14. Given any path γ : [0, 1]1→ Sp(V ) there exists a unique, continuous lift

θ : [0, 1] → R such that (ρ ◦ γ)(t) = eiθ(t) and θ(0) ∈ [−π, π). Then the mean index for the

path γ is defined as

∆(γ) :=
θ(1)− θ(0)

2π
.

Remark I.3.15. The above definition must be slightly altered before attempting to extend

ρ as shown below in example VII.3.4. Specifically, we will be continuously extending ρ2 and

because of this the Lagrangian mean index ∆̂ will differ from ∆ by a factor of two for paths

γ : [0, 1]→ Im(Gr) ∼= Sp(V ).

I.4 Dissertation Outline

I.4.1 Outline of Results

Theorem I.4.1. The set H given above in definition I.3.4 has codimension two in Λ2n.

Recall that H is the exceptional set on which the circle map ρ2 may not be con-

tinuously extended. It manifests in the two dimensional case as a circle bridging the two

connected components of the parabolic transformations at a projective ‘line at infinity’ out-

side the image Gr(Sp(2)) ⊂ Λ2 (see figure VII.1). We show later in example VII.3.2 that in

higher dimensions (namely n ≥ 3) there exist L ∈ H to which ρ2 may be continuously ex-

tended. For more details as to how these conditions might be relaxed see proposition VII.3.1

for partial results which depend on the invariants associated with isotropic pair conjugacy

classes as defined in section II.3 below.

Theorem I.4.2. There exists a unique real valued continuous function ∆̂ defined on fixed

endpoint homotopy classes of paths in L2n such that for any path γ ∈ Sp(2n) we have

∆̂(Gr(γ)) = 2∆(γ).
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This claim requires a more intricate proof than the others, although that privilege

rightly belongs to theorem I.4.3 wherein we produce the continuous extension ρ̂ of ρ2. Indeed,

provided a continuous extension ρ̂ exists we may apply definition I.3.14 and see that any

path γ : I → L2n, when composed with ρ̂, lifts to a unique continuous θ̂ : I → R such that

(ρ̂ ◦ γ)(t) = eiθ̂(t) and θ̂(0) ∈ [−π, π). Then the extended mean index for the path γ may be

defined just as in definition I.3.14 as ∆̂(γ) := θ̂(1)−θ̂(0)
2π .

Similarly we may precompose ρ̂ with the universal covering map j : L̃2n → L2n and

lift this to obtain ∆̂ : L̃2n → R which agrees with the above definition by letting a homotopy

class of paths be mapped to the lifted paths’ shared terminal point via lemma I.3.8.

Now we state the theorem at the core of the proof for theorem I.4.2.

Theorem I.4.3. There exists a unique continuous map ρ̂ : L2n → S1 such that for all φ ∈

Sp(V ) we have ρ̂(Gr(φ)) = ρ2(φ).

Already in dimension two the purpose of squaring ρ is clear; there exist sequences

A±i for which Tr(A±i ) > 2 for all i ∈ N (equivalent to hyperbolicity) and Gr(A±i ) → L /∈ H

yet ρ(A±i ) = ±1 for all i ∈ N, exhibiting that even in the nicest case there will still be two

distinct limiting values for ρ approaching Λ2n \ Im(Gr), meaning no continuous extension of

ρ exists (see example VII.3.4 for an example applicable to symplectic vector spaces of all

dimensions).

Remark I.4.4. When approaching H via the elliptic transformations significant discontinu-

ities arise even in low dimensions, in [33] an example is given for some fixed L ∈ H in which

an S1 \ {±1} family of sequences of symplectic maps
{
Aθi
}∞
i=1
∈ Sp(2) are constructed such

that each has limi→∞Gr(Aθi ) = L yet ρ(Aθi ) = θ for all i ∈ N.

The following lemma is a partial result towards theorem I.4.6.
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Lemma IV.2.1. The extended circle map ρ̂ is homogeneous on L2n; given any L ∈ L2n then

ρ̂(Ll) = 2l · ρ̂(L) ∈ R/Z for all l ∈ N.

The remaining results are regarding the algebraic properties retained in the extended

mean index, each of which relies on the technical lemma VI.1.5. Before stating these results,

we must give a definition.

Definition I.4.5 (Stratum-Regular Paths). We denote the set of stratum-regular paths as

Preg(L2n) ⊂ C1([0, 1],L2n), defined as the set of all paths γ ∈ C1([0, 1],L2n) which are

transversal (in the sense of definition II.4.5) to the stratified space (Lk2n)nk=1.

we show in theorem II.4.15 that Preg(L2n) is open and dense in C1([0, 1],L2n). We

postpone the complete definition of the equivalence relation ∼comp on Preg(L2n) to defini-

tion VI.1.1, as the fact that it is an equivalence relation will be sufficient to state the following

theorem.

Theorem I.4.6. Given any γ ∈ Preg(L2n) and τ ∈ [γ] (the set of all stratum-regular paths

compatible with γ, see proposition VI.1.3 for details on this equivalence relation) then both

γ ◦ τ and τ ◦ γ are well defined, piece-wise differentiable paths in L2n which are smooth on

their intersection with the symplectic group. In particular γl is defined for all l ≥ 0.

The first property we regain from the original mean index is homogeneity as a

corollary of lemmas IV.2.1, VI.1.5.

Corollary I.4.7. For any l ≥ 0,

∆̂(γl) = l · ∆̂(γ).

i.e. The mean index ∆̂ is homogeneous over stratum-regular paths.
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Theorem I.4.8. For any γ ∈ Preg(L2n) and τ ∈ [γ] the Lagrangian mean index ∆̂ satisfies

the quasimorphism-type bound,

|∆̂(γ ◦ τ)− ∆̂(τ)− ∆̂(γ)| < C,

where C ∈ R and the bound is uniform over all pairs of paths residing in [γ].

Remark I.4.9. One might extend the aforementioned results to those paths γ satisfying the

less restrictive condition that |π0(γ−1(Lk2n))| <∞ for each 0 ≤ k ≤ n, thereby allowing paths

which intersect arbitrary strata (as well as even non-transverse intersections). The added

technical details in showing such a result are not trivial and include the process of collating

each fiber component φγ(t) ∈ Sp(dom(γ(t)) ∩ ran(γ(t))) (see theorem III.2.6 below) into a

single path of symplectomorphisms when encountering non-transverse stratum intersections

with higher strata. The added complexity in proving analogous results over this alternate

definition is disproportionate when compared to the generality gained. Because of this we

will content ourselves in defining stratum-regularity as given in definition I.4.5 above.

I.4.2 Outline of Proofs

We first note that part VI contains the proofs regarding the stratum-regular paths

including corollary I.4.7 as well as the quasimorphism-type bound stated in theorem I.4.8. In

addition to these, the part concludes with proofs for both the technical lemma VI.1.5 and

theorem I.4.6, together being critical in proving the preceding results. In regards to the proof

of our central theorem I.4.3 (that is, continuously extending ρ2 as described above) it will

come as a fairly straightforward consequence of the following three theorems.

Theorem III.2.6. For a given L ∈ L2n there exists a unique symplectic decomposition of
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V = Vs ⊕ Vg and φ ∈ Sp(Vg) such that

L = (ker(L)× {0})⊕ ({0} × halo(L))⊕Gr(φ) ≤ (Vs × V s)⊕ (Vg × V g) (I.4.1)

where ker(L),halo(L) ∈ LagGr(Vs) are transverse.

Theorem V.1.1. Given any sequence {Ai}∞i=1 ⊂ Sp(V ) for which each Ai has distinct

eigenvalues such that

Gr(Ai)→ Ldom × {0} ⊕ {0} × Lran ∈ L2n,

(i.e. Ldom, Lran ∈ Λn are transversal), then the Ai will eventually have no eigenvalues λ ∈

S1 \ {±1}. In particular this shows that ρ2(Ai) = 1 for sufficiently large i.

Theorem V.2.1. Consider any sequence {Ai}∞i=1 ⊂ Sp(V ) where each Ai has distinct eigen-

values and for which

Gr(Ai) →
i→∞

L ∈ L2n,

where the graph part19 of L, φL ∈ Sp(Vg) has semisimple eigenvalues.

Then this sequence eventually induces an associated sequence of unique, Ai invariant

symplectic decompositions V = Eis ⊕ Eig so that may write Ai = αi ⊕ βi ∈ Sp(Eis)× Sp(Eig)

such that Gr(αi)→ ker(L)× {0} ⊕ {0} ⊕ halo(L).

Additionally there exists an N ∈ N for which there is a sequence of symplectic

isomorphisms {
Ii : (Eig, ω|Eig×Eig )

∼=→ (Vg, ω|Vg×Vg )
}∞
i=N

uniquely determined by L such that each βi : E
i
g → Eig is conjugate via Ii to some φi ∈ Sp(Vg)

for all i ≥ N with φi → φ. We also show that the βi preserve the data used in computing ρ,

namely the eigenvalues and the conjugacy classes of the Ai restricted to elliptic eigenspaces.

19See remark III.2.3.
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Remark I.4.10. Refer to [36] for a detailed exposition showing how ρ may be defined on

the semisimple elements A ∈ Sp(V ) and then extended to all of Sp(V ). It’s purpose here is

to guarantee the Eig and Eis do not become singular in the limit.

With these three ingredients and the fact that ρ is multiplicative with respect to

direct sums we conclude the proof of theorem I.4.3 in section V.3 setting ρ̂(L) := ρ2(φL),

followed by a brief revisit to the final arguments already covered above (namely applying

definition I.3.14 to ρ̂) and culminating in the proof of theorem I.4.2.
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Part II

Linear Canonical Relations and

Isotropic Pairs
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II.1 Strata of the Lagrangian Grassmannian

As before, we work over a real symplectic vector space (V 2n, ω) and denote our set

of admissible Lagrangian subspaces as L2n := Λ2n \H (see definition I.3.4 above for details).

Definition II.1.1. Define the set Ik(V ) for all 0 ≤ k ≤ n to be the Grassmannian of

dimension k isotropic subspaces of V ,

Ik(V ) = {B ≤ V |B ≤ Bω, dim(B) = k} .

We set I0(V ) := {0} and call any (B1, B2) ∈ Ik(V )× Ik(V ) an isotropic pair.

Definition II.1.2. Define the isotropic pair projection map,

PrI : Λ2n → tnk=0Ik(V )× Ik(V )

L 7→ (ker(L),halo(L)).

Remark II.1.3. Despite the significant discontinuities in the above map that are a conse-

quence of the disjoint union, we define it as above for notational convenience since each usage

of PrI below (unless specified otherwise) is over a fixed stratum.

Lemma II.1.4. [41] Each Λk2n is a fiber bundle over Ik(V )× Ik(V ) with fiber diffeomorphic

to Sp(2n− 2k) and definition II.1.2 as the base projection, see the figure below.

Sp(2n− 2k) ∼= Λ0
2n−2k Λk2n

Ik

PrI

Figure II.1: For each 0 ≤ k ≤ n, the stratum Λk2n forms a fiber bundle.
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Remark II.1.5. We have implicitly used the notational conventions Sp(0) ∼= Λ0
n := {0}

in the above fiber bundle so that in both cases the strata remain well defined fiber bundles

(albeit trivial in one manner or another).

When k = n the projection map PrI is a diffeomorphism,

{0} ↪→ Λn2n
PrI
� Λn × Λn,

as each fiber is trivial. One may verify that Λn2n
∼= Λn × Λn is the space of Lagrangian pairs

in V and is the only closed smooth stratum in Λ2n.

On the other hand when k = 0 we have a bundle with trivial base where defini-

tion I.3.3 maps Sp(V ) onto the lone fiber,

Sp(V )
Gr
↪→ Λ0

2n

PrI
� I0(V ) = {0} .

This yields the Lie group isomorphism Gr : (Sp(V ), ·)
∼=→ (Λ0

2n, ◦), where (∗ ◦ ∗) is the La-

grangian composition operation given in equation (I.3.1) above.

We define each admissible strata Lk2n := Λk2n \H and let

Ik := {(B1, B2) ∈ Ik(V )× Ik(V ) |B1 t B
ω
2 } = PrI(Lk2n)

denote the space of admissible isotropic pairs of dimension k. We see that Lk2n → Ik remains

a Sp(2n−2k) fiber bundle for each 0 ≤ k ≤ n (e.g. one might realize it as the pullback bundle

under the inclusion map Ik ↪→ Ik(V )× Ik(V )). In the extreme cases we see that L0
2n = Λ0

2n

and Ln2n = Λn × Λn \ Σ̂n where,

Σ̂n := H ∩ Λn2n = {(B1, B2) ∈ Λn × Λn |B1 6t Bω2 ⇔ B1 6t B2}

is the space of Lagrangian pairs which fail to be transverse.
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One may observe that lemma II.1.4 implies that the set
(
L≥k2n

)n
k=0

is also a strat-

ification of L2n as the latter is an open and dense subset of Λ2n and therefore a stratified

manifold (though not a stratified subset of Λ2n in the sense of definition II.4.2 below).

Proposition II.1.6. The codimension of each Lk2n in L2n is k2.

Proof. It is true that the Grassmannian of isotropic k-planes in (R2n, ωstd) has

dim(Ik(V )) =
k

2
(4n− 3k + 1) ,

so that the above fibration and the following routine computation confirm the claim,

codim(Lk2n) = dim(L2n)− dim(Ik)− dim(Sp(2n− 2k))

= 2n2 + n− k(4n− 3k + 1)− (n− k)(2n− 2k + 1)

= k(4n− 2k + 1)− k (4n− 3k + 1)

= k2.

II.2 Iterating Linear Canonical Relations

As mentioned in the introduction, the composition map is not continuous every-

where, which motivates the following classic example demonstrating the need for transversal-

ity.

Example II.2.1. Let Ki = Gr(Ai) and K ′i = Gr(A−1
i ) for {Ai}∞i=1 ⊂ Sp(2n) such that

Ki → K = Ldom×{0}⊕{0}×Lran ∈ Λ2n where both Ldom, Lran ∈ Λn for i = 1, 2. Then the

set-theoretic composition K ′i◦Ki = Ki◦K ′i = 4V for all i ∈ N so that limi→∞(K ′i◦Ki) = 4V .
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Yet, since K ′i → K ′ = Lran × {0} ⊕ {0} × Ldom as i → ∞ we may form the

compositions of the limits,

K ′ ◦K = Ldom × {0} ⊕ {0} × Ldom

K ◦K ′ = Lran × {0} ⊕ {0} × Lran

so that we indeed have a failure of continuity,

limi→∞K
′
i ◦ limi→∞Ki = Ldom × {0} ⊕ {0} × Ldom 6= 4V = limi→∞(K ′i ◦Ki).

Note here that ran(K) = dom(K ′) so the pair are in some sense maximally non-transversal.

Regarding L ∈ L2n, as mentioned above our condition that dom(L) ⊕ halo(L) = V

is stronger than that needed to prevent discontinuities like the above; dom(L)⊕ ran(L) = V .

Lemma II.2.2. If L ∈ L2n then Ll ∈ L2n for all l ≥ 0. Additionally each L ∈ L2n

satisfies ker(Ll) = ker(L) and halo(Ll) = halo(L) for all l ≥ 1 making each iteration map

(∗)l : Lk2n → Lk2n a bundle map for all 0 ≤ k ≤ n. In particular this implies that Ll = L for

any L ∈ Ln2n and l ≥ 1.

Proof. To show this we first observe that ker(L) ≤ dom(Li) for any i ≥ 1 since (0, 0)

is contained in every canonical relation. Then, if dim(ker(L)) = k we may write a ba-

sis (d1, . . . , d2n−2k) such that 〈dj〉2n−2k
j=1 ⊕ ker(L) = dom(L) and thus each dj is associ-

ated (non-uniquely) via L to some rj ∈ ran(L). The rj are also linearly independent as

if r1 =
∑2n−2k
j=2 cjrj then d1 −

∑2n−2k
j=2 cjdj ∈ ker(L) which violates 〈dj〉2n−2k

j=1 t ker(L).

Again, since L 6∈ H, we observe that 〈rj〉2n−2k
j=1 ⊕ halo(L) = ran(L) and we see that

dom(L) ∩ ran(L) = dom(L) ∩ 〈rj〉2n−2k
j=1 . Since dim(dom(L) ∩ ran(L)) ≥ 2n − 2k we see for

dimensional reasons that 〈rj〉2n−2k
j=1 ≤ dom(L) and therefore

dom(L2) = (〈rj〉2n−2k
j=1 )⊕ ker(L) = dom(L).
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An identical argument shows that ran(L2) = ran(L) as well. To conclude for i ∈ N

we use this as the base case of a simple inductive argument regarding the domain and range

of Li ◦ L and L ◦ Li which suffices to prove the claim for i ≥ 2.

We prove in lemma IV.2.1 that this iteration map is continuous and homogeneous

for each i ∈ N, and that it sends differentiable paths to piece-wise differentiable paths in

theorem I.4.6. The potential of extending homogeneity of the extended mean index over paths

to negative numbers becomes a bit more interesting as the natural inverse in the category

of linear relations would reverse the isotropic pair of L and thus no longer descends to the

identity on the base of each stratum. We address some of the routes which may be taken in

the following remark.

Remark II.2.3. The notion of an inverse in the category of linear relations is a fuzzy one

(which is why we assume the powers to be non-negative in corollary I.4.7 and the statements

which build up to it including definition I.3.2 and lemma IV.2.1) but by far the most natural

choice would be the ‘reverse’ of a linear relation L,

L := {(v, w) ∈ V × V | (w, v) ∈ L} .

Then by letting L−l := Ll for l ≥ 1 one may define iteration for all integers, albeit with

the undesirable property that ker(Ll) = halo(L) and halo(Ll) = ker(L) for all l ≤ −1. In

particular this implies negative iteration (using the reverse of L) is not a bundle map.

It seems far more useful in our case to consider a fiber-adapted composition which

fixes any (v, 0), (0, v) ∈ L for some v ∈ V while continuing to invert the rest of the Lagrangian

relation. This composition, when restricted to each fiber, is Lie group isomorphic to a sym-

plectic group, (Lk2n)(B1,B2)
∼= Sp(Bω1 ∩Bω2 ) (as detailed in remark III.2.2), and these subgroups

Sp(Bω1 ∩ Bω2 ) ⊂ Sp(V ) vary smoothly with respect to the isotropic pair (B1, B2) ∈ Ik. In
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particular any (B1, B2) ∈ Ik and φ, τ ∈ Sp(Bω1 ∩ Bω2 ) would satisfy Gr(φτ) = Gr(φ) ◦ Gr(τ)

and Gr(φi) ∈ (Lk2n)(B1,B2) for every i ∈ Z \ {0}.

II.3 Conjugacy Classes of Isotropic Pairs

As above we denote the Grassmannian of isotropic subspaces of dimension k in (V, ω)

as Ik(V ) and will call any ordered pair (B1, B2) ∈ Ik(V )×Ik(V ) an isotropic pair and consider

the following notion of equivalence.

Definition II.3.1. (B1, B2) ∼ (B′1, B
′
2) if and only if there exists A ∈ Sp(V ) for which

(A(B1), A(B2)) = (B′1, B
′
2). The equivalence classes coincide with the orbits of the group

action Sp(V ) � Ik where A · (B1, B2) = (A(B1), A(B2)).

For our purposes we have assumed the isotropic pairs have the same dimension; our

goal in introducing them is to examine L ∈ Λ2n via the associated isotropic pair (B1, B2) =

(ker(L),halo(L)), recalling that dim(ker(L)) = dim(halo(L)), we see that only considering

those pairs of equal dimension is justified.

Theorem II.3.2. [63] The four integers (r, κ, k, n) form a complete set of invariants for

isotropic pairs subject to the relations 0 ≤ r ≤ κ ≤ k ≤ n and 0 ≤ κ− r ≤ n− k where,

(κ, r, k, n) =

(
dim(Bω1 ∩B2),dim(B1 ∩B2),dim(B1),

1

2
dim(V )

)
. (II.3.1)

Now denoting Λk2n := {L ∈ Λ2n | dim(ker(L)) = k} for any 0 ≤ k ≤ n and noting

H = {L ∈ Λ2n |κ(L) ≥ 1} we see that the above equivalence relation on Ik(V )×Ik(V ) induces

an equivalence relation on Λk2n for each k ≤ n (and therefore on all of Λ2n) where L ∼ L′ if

and only if (ker(L),halo(L)) ∼ (ker(L′),halo(L′)). A detail to note is that on Λ0
2n
∼= Sp(V ) all

maps belong to a single equivalence class under this equivalence relation (hence, this notion
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of equivalence is missing the usual classification of symplectic transformations). We may

compare this equivalence relation induced by the Sp(2n) action on isotropic pairs to a finer

relation on Λ2n induced by an essentially identical Sp(2n) action now acting on Λ2n.

Definition II.3.3. L ∼Gr L
′ if and only if (v, w) ∈ L ⇔ (Av,Aw) ∈ L′. The equivalence

classes coincide with the orbits of the group action Sp(V ) � Λ2n where A · ((x, y) ∈ L) 7→

(Ax,Ay) ∈ A · L.

This equivalence relation in particular splits the single ∼ equivalence class of Λ0
2n

into the usual conjugacy classes of Sp(V ) while conversely, ∼ and ∼Gr are identical on Λn2n.

The classification and production of normal forms for L ∈ Λ2n with respect to this finer

equivalence relation is, to the author’s knowledge, incomplete with only partial results (namely

the equivalence relation ∼) in [62].

II.4 Stratum-Regular Paths

Remark II.4.1. We should note that the material below is elementary, and that any proofs

explicitly shown are present only for the sake of completeness. One particular reason for

this (beyond the obvious fact that just about any textbook addressing transversality and

stratifications of manifolds is likely to cover and generalize every claim herein) is that our

domain is assumed to be the unit interval, thus simplifying the proceeding arguments in two

ways. The first is a consequence of our domain’s dimension; it is the minimal dimensional

domain one might consider when inspecting non-trivial Cr spaces,20 and as a consequence

many of the subtleties encountered when proving analogous transversality arguments fail to

manifest. The second is compactness of the domain, which make the usually vital question of

20By trivial we refer to the differentiable function spaces Cr(K,N) where N is a smooth manifold (of
dimension greater than zero) and K is some subset of N. In particular, these ‘function spaces’ are little more
that the set of countable sequences in a manifold N equipped with a certain topology.

41



which topology the space Cr(M,N) is equipped with unnecessary as the two most commonly

used (these being the compact-open/weak topology and Whitney/strong topology) become

equivalent when the domain M is compact [3].

We may now proceed in giving the particular definition of a stratified space we will

be using throughout.

Definition II.4.2. Given a smooth manifold N , we call any closed subset C ⊂ N a stratified

space if there exists a finite sequence of disjoint and locally closed smooth submanifolds (Ci)
n
i=1

for which C =
⋃n
i=1 Ci. We also require that the following three statements be equivalent

(often called ‘frontier conditions’);

• Ci ∩ Cj 6= ∅

• Ci ⊆ Cj

• i ≤ j,

for all 1 ≤ i, j ≤ n. We will signify C as a stratified space by listing the strata (Ci)
n
i=1.

Remark II.4.3. We note that the above definition is far from canonical, as there exist a

veritable zoo21 of definitions for stratified spaces in the literature (see [89] for a thorough

account from the perspective of algebraic K-theory and cobordisms).

In our case we will be considering a fairly well-behaved stratification (Λk2n)nk=0 where

for each 0 ≤ k ≤ n, the stratum Λk2n is locally closed relative to the open set Λ≤k2n , and the

closure of each stratum is the union of every stratum below it (in dimension) or above it (in

index); Λk2n = Λ≥k2n .

21More general definitions may specify the indexing set to be an infinite partial order provided the collection
of strata is locally finite, or even define the stratification in terms of a continuous map from the given space
to a topologized partial order, as in appendix A.5 of Lurie’s Higher Algebra [64] (cited in [4] as the earliest
example of such a definition known to the authors).
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Remark II.4.4. In light of the above remark, we note here that our notion of a stratified space

generally corresponds to that of a topological stratification. In particular we do not require any

regularity conditions be satisfied for the stratum tangent bundles near their closure, although

our stratification (Λk2n)nk=1 likely satisfies a richer definition. One might also consider using

all of the invariants (r, κ, k) for isotropic pairs in (II.3.1) which completely characterize each

orbit of Ik(V ) × Ik(V ) under the obvious symplectic group action [62]. Then, provided our

indexing set {(r, κ, k)}0≤r≤κ≤k≤n may be equipped with some partial order such that the

intended stratum Λr,κ,k2n satisfy the appropriate conditions, this would yield a much finer

stratification of Λ2n than that given here.

We will consider these invariants again in the context of proving that the codimension

of H is two, see remark III.1.2.

Definition II.4.5. [3] For any smooth manifolds22 M,N and smooth submanifold C ⊆ N ,

we call a C1 map f : M → N transversal to C (notated f t C) if for all p ∈ f−1(C),

Im(Dfp) + Tf(p)C = Tf(p)N.

More generally, given a stratified space (Ci)
n
i=1 ⊂ N , we say that f : M → N is transverse to

the stratified space (Ci)
n
i=1 when it is transverse to Ci for each 1 ≤ i ≤ n.

Remark II.4.6. Given f ∈ C1(M,N) and a smooth submanifold C ⊆ N , observe that f t C

implies that Im(f) t C as submanifolds, whereas the converse does not hold. In particular

when codim(C) > dim(M) the set of all f ∈ C1(M,N) which are transverse to C is identical

to the set of all f ∈ C1(M,N) with Im(f)∩C = ∅, i.e. only the case of vacuous transversality

is possible. When codim(C) ≤ dim(M) the latter is generally a proper subset of the former.

22We maintain the convention throughout that a smooth manifold is both Hausdorff and second countable.
As both are true for all of the relevant manifolds considered herein, this convention will not be necessary
outside of the following general propositions.
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Proposition II.4.7. [3] Given a smooth manifold M and a pair of transversely intersecting

smooth submanifolds A,B ⊆ M , then A ∩ B is a submanifold of M with codim(A ∩ B) =

codim(A) + codim(B).

Proposition II.4.8. Given a smooth manifold M and C,D ⊂ M a pair of transverse sub-

manifolds with dim(C) + dim(D) = dim(M), then the intersection C ∩D is both countable

and discrete.

Proof. We begin by applying proposition II.4.7 to see that C∩D is a submanifold of dimension

zero. Indeed, since the dimensions of C and D are complementary in M we may write the

equivalent statement: codim(C) + codim(D) = dim(M) to see that codim(C ∩D) = dim(M)

or equivalently, dim(C ∩D) = 0. Since smooth manifolds are second countable (that is, the

topology induced by the smooth structure admits a countable basis) we may fix some countable

base U = {Ui}∞i=1 for the subspace topology on the submanifold C ∩D. Then, as there exists

some open neighborhood Ui ∈ U about each p ∈ C ∩D and C ∩D is Hausdorff (in particular,

T0) every point is topologically distinguishable from which it follows that |C ∩D| ≤ |U| ≤ ℵ0.

To show discreteness, we again observe that C ∩D is a countable zero-dimensional

submanifold of M . It follows from M being Hausdorff that there exists a countable collection

of disjoint open neighborhoods {Up}p∈C∩D ⊂M covering C∩D and separating each p ∈ C∩D

so that C ∩D is indeed a discrete subset.

One might observe that under the conditions of the above proposition, C ∩D must

also be discrete as a subset of C and D as well.

Lemma II.4.9. [3] Let M be a compact smooth manifold, N a smooth manifold and C a

closed submanifold of N , then the set

{
f ∈ C1(M,N) | f t C

}
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is an open and dense subset of C1(M,N).

Proposition II.4.10. The set L2n ⊂ Λ2n is open and dense.

As proposition II.4.10 implies that H is closed, it is also a stratified space in Λ2n

with strata (Hk)nk=1 := (H ∩ Λk2n)nk=1;

• Each stratum Hk is closed in Λ≤k2n for 1 ≤ k ≤ n (and therefore locally closed in Λ2n).

• Each is a submanifold exhibited by the smooth fibration Λ0
2n−2k ↪→ Hk → Ĥk where

Ĥk = PrI(Hk) ⊂ Ik × Ik.

• Each satisfies the frontier conditions (in a well behaved manner inherited from (Λk2n)nk=0)

exhibited by the identity Hk = H≥k.

On the other hand, since L2n is open in Λ2n we cannot consider it as a stratified

space in Λ2n (using our choice of definition at least). Regardless, as L2n is an open subset of

Λ2n we may consider L2n simply as a smooth manifold after which the stratification of Λ2n

induces a stratification on L2n with strata Lk2n = Λk2n \ H. Indeed, the subspace topology

ensures that each Lk2n remains disjoint from the other strata, locally closed and also preserves

each stratum’s closure; i.e. Lk2n = L≥k2n .

Proposition II.4.11. Let M and N be smooth manifolds where M is closed and U ⊆ N

is some open and dense subset with complement K := N \ U . Then provided codim(K) >

dim(M), the set C1(M,U) is open and dense in C1(M,N).

Proof. We observe that the set
{
f ∈ C1(M,N) | f t K

}
is open and dense in C1(M,N) by

lemma II.4.9, as K is closed. Without the codimension bound on K we have the (generally

proper) inclusion;

C1(M,U) =
{
f ∈ C1(M,N) | Im(f) ∩K = ∅

}
⊆
{
f ∈ C1(M,N) | f t K

}
,
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but as mentioned in remark II.4.6, we see when codim(K) > dim(M) that each f ∈ C1(M,N)

and p ∈ f−1(K) yields

dim
(
dfp(TpM) + Tf(p)K

)
< dim

(
Tf(p)N

)
,

so that f 6t K. Consequently, if codim(K) > dim(M) we see that f t K if and only if

f−1(K) = ∅ so that vacuous transversality is the only possible kind of transversal intersection

and thus the above inclusion is no longer proper;

{
f ∈ C1(M,N) | Im(f) ∩K = ∅

}
=
{
f ∈ C1(M,N) | f t K

}
.

It follows that C1(M,U) =
{
f ∈ C1(M,N) | Im(f) ∩K = ∅

}
is open and dense in C1(M,N)

when codim(K) > dim(M).

Corollary II.4.12. Consider the following two consequences of proposition II.4.11:

– C1([0, 1],L2n) is open and dense in C1([0, 1],Λ2n).

– C1([0, 1],L≤k2n ) is open and dense in C1([0, 1],L2n) for every 1 ≤ k ≤ n.

Proof. • As L2n is open and dense by proposition II.4.10, we see that its complementH is a

closed stratified space with strata Hk = Λk2n\Lk2n for 1 ≤ k ≤ n. Then since codim(H) =

codim(H1) = 2 (as shown in theorem I.4.1), an application of proposition II.4.11 yields

the results.

• Since codim(Lk2n) = k2 (see proposition II.1.6) we see that L0
2n is an open submanifold

with a codimension one complement L≥1
2n so proposition II.4.11 does not apply and

C1([0, 1],L0
2n) is evidently not open (see remark II.4.14 for an example of an interior

point in the complement). Though, as L0
2n ⊂ L

≤k
2n for all 1 ≤ k ≤ n, we see that each

L≤k2n must be dense as well so for each 1 ≤ k ≤ n we have,

codim(L≤k2n ) = dim(L≥k+1
2n ) = (k + 1)2 > 1.
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Then proposition II.4.11 means each C1([0, 1],L≤k2n ) is open and dense in C1([0, 1],L2n)

for 1 ≤ k ≤ n.

Remark II.4.13. The inclusion chains implied by the two statements of corollary II.4.12

above show that C1([0, 1],L≤k2n ) are dense and open subsets of C1([0, 1],Λ2n) for all 1 ≤ k ≤ n.

Remark II.4.14. Very simple counter-examples exist to C1([0, 1],L0
2n) being open in the set

C1([0, 1],L≤1
2n ); consider the paths

γ±(t) = Diag2×2

(
±(log(1− t))−1, log(1− t)

)
⊕ Id2n−2 : [0, 1)→ Sp(R2n) ∼= L0

2n

with respect to a Darboux basis (ai, bi)
n
i=1. Next define the following paths of canonical re-

lations: γ̂± : [0, 1] → L2n for which γ̂±(t) = Gr(γ±(t)) and γ̂±(1) = L = 〈(a1, 0), (0, b1)〉 ⊕

Gr(Id2n−2(Vg)) where Vg = 〈(ai, 0), (0, bi)〉ni=2. Then β = γ− ∗ γ+ : I → L≤1
2n with γ+(0) ∈

Sp+(V ) and γ−(0) ∈ Sp−(V ). This exhibits a path in the interior of C1([0, 1],L≤1
2n ) \

C1([0, 1],L0
2n).

Theorem II.4.15. The subset Preg(L2n) ⊂ C1([0, 1],L2n) is open and dense.

Proof. To show that Preg(L2n) is open and dense in C1([0, 1],L2n) consider the sets Dk :={
f ∈ C1([0, 1],L≤k2n ) | f t Lk2n

}
of C1 paths in L≤k2n which are transverse to the kth stratum

Lk2n. Since Lk2n is closed in L≤k2n we see that Dk ⊂ C1([0, 1],L≤k2n ) ⊂ C1([0, 1],L2n) is an inclu-

sions of open and dense sets for all 1 ≤ k ≤ n by lemma II.4.9 (alternatively proposition II.4.11

would work as well).

Letting D =
⋂n
k=2Dk be the set of paths transverse to each Lk2n for 2 ≤ k ≤ n, we

note it is open and dense as well. Indeed, one may see that it is a finite intersection of open

and dense sets or alternatively make the identification D = C1([0, 1],L≤1
2n ) to reach the same

conclusion via corollary II.4.12. While we could have considered the total intersection over
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all 1 ≤ k ≤ n and arrived at the desired result by now, we note that the k = 1 case is the

only one in which

Dk =
{
γ ∈ C1(I,L≤k) | γ t Lk2n

}
6=
{
γ ∈ C1(I,L2n) | Im(γ) ∩ Lk2n = ∅

}
,

so that to ensure sufficient exposition we have decided on treating it separately from the cases

2 ≤ k ≤ n. We first observe that Preg(L2n) = D ∩D1 so that in particular, if γ ∈ Preg(L2n)

then γ ∈ D and therefore must have image wholly contained within L≤1
2n . Observing from the

above identification we see D1 ⊂ D so that D ∩D1 = D1 we have,

Preg(L2n) = D1 =
{
γ ∈ C1([0, 1],L≤1

2n ) | γ t L1
2n

}
.

Then since L1
2n is closed in L≤1

2n , lemma II.4.9 implies (as in the above cases) that D1 =

Preg(L2n) is open and dense in D = C1([0, 1],L≤1
2n ) and thus in C1([0, 1],L2n) with an ap-

plication of corollary II.4.12. As mentioned above in remark II.4.13, this follows from the

heredity of both properties with respect to the subspace topology.

Now all that remains is a brief lemma intended to expedite the proof of our final

claim that the intersection set of any stratum-regular path with a higher stratum is finite.

Lemma II.4.16. Given M a smooth manifold, A,B ⊂M submanifolds for which dim(A) +

dim(B) = dim(M) and A compact, if A ∩ (B \B) = ∅ then it must be that |A ∩B| <∞.

Proof. We suppose that |A ∩B| =∞, so there exists a sequence of distinct points {pi}∞i=1 ⊂

A ∩ B so that as A is compact this sequence admits a convergent subsequence
{
pij
}∞
j=1

for

which pij → p as j → ∞ for some p ∈ A ∩B ⊆ A ∩ B . We consider two cases; p ∈ A ∩ B

and p ∈ A ∩ (B \ B), the latter of the two reaching an immediate contradiction due to the

hypothesis as p ∈ B \B = ∅ necessarily doesn’t exist.

Now suppose p ∈ A∩B and consider any open neighborhood U about p in B. Then

since pij → p ∈ B, we see for every open neighborhood U of p that there is some NU ∈ N for
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which
{
pij
}∞
j=NU

⊂ U , yet this clearly violates the fact that the intersection set is discrete as

shown in proposition II.4.8.

Remark II.4.17. Observe that a subset B ⊂M is closed if and only if B \B = ∅. Also note

that B \B is in general a proper subset of the boundary ∂B = B \B◦, failing to include those

boundary points already contained in B. Regardless, even if p ∈ ∂B in the above proof, since

pi ∈ B for all i ∈ N we would still have a descending chain of open (in B) neighborhoods of

p needed to complete the proof.

Proposition II.4.18. For any stratum-regular path γ , the intersection Im(γ)∩(Λ2n\Im(Gr))

is a finite set in L1
2n.

Proof. As we have established, any γ ∈ Preg(L2n) has γ ∈ D1 = C1([0, 1],L≤1
2n ), so that the

second statement is true and we need only consider γ : I → L≤1
2n . In this case, observe that

the pair A := Im(γ) is compact and B := Λ1
2n is closed in M := Λ≤1

2n with complementary

dimensions. Thus lemma II.4.16 implies that | Im(γ) ∩ Λ1
2n| < ∞ for any γ ∈ D1, and thus

any γ ∈ Preg(L2n).
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Part III

The Set H of Exceptional

Lagrangians
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III.1 The Codimension of H

Before proceeding, we restate some central concepts first covered in section II.1,

including lemma II.1.4 in which it was shown that each of the strata Λk2n may be identified

with a smooth fiber bundle over Ik(V )× Ik(V ) with fiber diffeomorphic to Sp(2n− 2k) and

projection map given in definition II.1.2. Additionally recall proposition II.4.10 wherein the

above stratification was shown to induce a stratification of the closed set H =
⋃n
k=1Hk, where

each Hk ⊆ Λk2n comes equipped with the projection map PrI : Hk → Ik(V )× Ik(V ) inherited

from Λk2n. As it turns out, the map PrI is the key to proving the following theorem while

avoiding technical issues that the set H may present23

Theorem I.4.1. The codimension of H in Λ2n is two.

Proof. Recalling that codim(Λk2n) = k2 (shown in proposition II.1.6) we see from H ∩Λ0
2n = ∅

that the trivial bound of 1 ≤ codim(H) holds. To expedite the procedure we consider only

the highest dimensional stratum H1 ⊂ Λ1
2n and furthermore consider the elements up to

equivalence under the relation ∼ given in definition II.3.1, which we denote [L] ∈ Λ1
2n/ ∼. As

[L] is induced entirely by the associated isotropic pair class [PrI(L)] = [(ker(L),halo(L))] ∈

(I1(V ) × I1(V ))/ ∼, we may recall equation (II.3.1) to list the three equivalence classes

contained in I1(V ) × I1(V ) (and therefore three in Λ1
2n); (r, κ, k) = (0, 0, 1), (0, 1, 1) and

(1, 1, 1). We see the definition of H precludes any non-empty intersection with the class

(κ, r, k) = (0, 0, 1) (observe that L ∈ H if and only if κL = 0, so the class associated to the

invariant tuple (0, 0, k) will correspond to Lk2n for all 1 ≤ k ≤ n) so it follows that H intersects

the two classes remaining with κ = k = 1; both dim(ker(L) ∩ halo(L)) = r = 0 and r = 1.

In the above discussion, we have made the implicit assumption that n ≥ 2, as certain

23As H is a not a manifold but a closed stratified set we proceed, as in [89], by letting codim(H) :=
min1≤i≤n codim(Hk).
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issues arise24 when n = 1 as a consequence of the bound κ−r ≤ n−k given by Lorand in [62].

We verify that for n ≥ 2, both tuples (r, κ, k) = (0, 1, 1), (1, 1, 1) are admissible (i.e. they satisfy

the inequalities above). When n = 2 we see that the invariant inequality κ − r ≤ n − k = 1

allows both r = κ = 1 and r = 0, κ = 1 so that the equivalence classes below are indeed

non-empty, and it is obvious this remains true for all n ≥ 2. For a lengthier discussion on the

combinatorics that are involved in these invariants, see remark III.1.2 following the proof.

Case I: r=0

When L ∈ [L]0 :=
{
L ∈ Λ1

2n | r(L) = 0, κ(L) = 1
}

we see that

[(ker(L),halo(L))] = {(B1, B2) |B1 6= B2, and B2 ≤ Bω1 }

where the first condition is due to r(L) = 0 and the second from κ(L) = 1. As before there

are 2n− 1 dimensions in freely choosing B1 = 〈v〉, after which the two conditions imply that

B2 = 〈w〉 6= B1 (since r = 0) is restricted to the ‘line-punctured’ subspace Bω1 \ B1 (this

set is not a quotient, it is the linear subspace Bω1 missing the one dimensional subspace B1).

This subset descends under the quotient map R2n → RP2n−1 to a punctured (in the usual

sense now) projective hyperplane [Bω1 ] \ {[B1]} ⊂ RP2n−1 so that there are 2n− 2 dimensions

available when choosing B2. This yields dim([(ker(L),halo(L))]) = 4n− 3 and thus,

dim([L]0) = dim(Sp(2n− 2)) + 4n− 3 = 2n2 + n− 2 = dim(Λ2n)− 2.

We see that the codimension at any L belonging to the above equivalence class is

indeed two, although we still need verify that the remaining invariant class (r, κ, k) = (1, 1, 1)

has codimension at least two (this is admittedly redundant when n 6= 1, as the punctured

point in the aforementioned projective hyperplane corresponded to this class, and therefore

it cannot exceed the dimension found above in the r = 0 case).

24Fortunately it is just the proof as written that runs into issues when n = 1; the theorem’s claim remains
true, see remark III.1.1 below for a description of the proof when n = 1.
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Case II: r=1

Let L ∈ [L]1 =
{
L ∈ Λ1

2n |κ(L) = r(L) = 1
}

, the last equivalence class in Λ1
2n by

theorem II.3.2. We first consider the associated class [(ker(L),halo(L))] and write dom(L) =

halo(L) = 〈v〉 for any v ∈ V . Then since v is arbitrary and all one dimensional subspaces are

isotropic we see that [(〈v〉, 〈v〉)] = 4I1(V ) ⊂ I1(V )× I1(V ) ∼= RP2n−1×RP2n−1 implying that

dim([(〈v〉, 〈v〉)]) = 2n− 1. Consequently we see that,

dim([L]1) = dim(Sp(2n− 2)) + dim([(〈v〉, 〈v〉)])

= 2n2 − 3n+ 1 + (2n− 1)

= 2n2 − n = dim(Λ2n)− 2n,

so that codim([L]1) = 2n in Λ2n.

Since these are the only two equivalence classes in the stratum of minimal codimen-

sion which intersect H, we see that codim(H) = min(2, 2n) = 2 for all n ≥ 1.

Remark III.1.1. As a quick proof of the veracity of the concluding statement above for

n = 1, we observe that codim([L]0) is undefined as [L]0 = ∅. As described above, this is due

to the fact that the only non-zero stratum Λ1
2 belongs to the class (r, κ, k) = (1, 1, 1) since

κ− r ≤ (n− k) = 0 implies that the three classes above reduce to the two cases (0, 0, 1) and

(1, 1, 1); the first corresponding to the set L1
2 while the second is equal to H1 = H. these

pathologies are easily avoid though, as in the n = 1 case we need only accept that [L]0 is

empty, skip that step and see from the above computations that the remaining class [L]1 has

codim([L1]) = 2n = 2, thereby formally extending the proof to the n = 1 case.

Remark III.1.2. This seemingly singular behavior at n = 1 is actually a shadow of the

combinatorial complexity in the collection of all tuples (r, κ, k, n) which satisfy (a): 0 ≤ r ≤
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κ ≤ k ≤ n and (b): 0 ≤ κ− r ≤ n− k. Even a process as straightforward as computing the

number of equivalence classes for a given Λ2n turns out to be a rather nuanced procedure.

For example, when k ≤ n
2 it is inequality (a) that entirely governs the range of r and κ;

observe that in that case we know that k ≤ n − k so that since inequality (a) implies that

0 ≤ κ − r ≤ k, we see inequality (b) has no effect on the choice of admissible pairs (r, κ).

Consequently, counting the admissible tuples for k ≤ n
2 amounts to the familiar counting

procedure for ordered tuples with equality;

|(r, κ, k)|0≤r≤κ≤k≤bn2 c =

bn2 c∑
k=0

k∑
κ=0

κ∑
r=0

.

Yet when k passes above n
2 , the freedom of r to vary independently in {0, 1, . . . , κ} is no longer

growing with k but begins shrinking; κ − r ≤ n − k < k. To bring the n = 1 case into the

current context, we see for all Λ2n that when k = n, inequality (b) becomes κ− r = 0 and so

(i, i, n)ni=0 exhausts all equivalence classes belonging to the given stratum Λn2n. In the n = 1

case, it just happens that this top stratum is the only stratum (other than Λ0
2
∼= Sp(2)).

III.2 Admissible Linear Canonical Relations

Even though the following proposition has already been taken as an implicit fact

(being readily available in the literature, e.g. [41],[48]), we prove it here for completeness.

Proposition III.2.1. The fiber over any (B1, B2) ∈ Ik×Ik is diffeomorphic to the symplectic

group,

(Λk2n)(B1,B2)
∼= Λ0

2n−2k(Bω1 /B1 ×Bω2 /B2) ∼= Sp(2n− 2k).

Proof. The first diffeomorphism was shown in [7] while the second follows after taking the

4(n− k) dimension symplectic quotient,

(Bω1 ×Bω2 , ω̃)
q→
(
Bω1 /B1 ×Bω2 /B2, ωred := π∗1 ω1|Bω1 − π

∗
2 ω2|Bω2

)
,
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and using the identification Λ0
2n−2k

∼= Sp(2n− 2k) with respect to the associated Lagrangian

Grassmannian. See theorem III.2.6 below for more details.

Remark III.2.2. In general the right-most diffeomorphism,

(Λk2n)(B1,B2)
∼= Sp(Bω1 /B1, B

ω
2 /B2) ∼= Sp(2n− 2k),

is far from unique, depending on the identification Bω1 /B1
∼= Bω2 /B2. On the contrary we see

in theorem III.2.6 that for any L 6∈ H the two quotient sets are particularly well behaved, each

possessing a canonical identification with the subspace Bω1 ∩Bω2 via their co-isotropic reduction

maps. In particular this allows us to give a unique diffeomorphism (Λk2n)(ker(L),halo(L))
∼=

Sp(dom(L)∩ran(L)) for any (ker(L),halo(L)) /∈ PrI(H), equipping each fiber with a standard

diffeomorphism (Λk2n)(ker(L),halo(L))
∼= Sp(dom(L) ∩ ran(L)). One natural consequence of this

fact is that we may use these maps to equip each fiber with a group operation compatible

with Lagrangian composition (restricted to the given fiber) which would induce the inverse

defined in remark II.2.3 above.

Remark III.2.3. When L ∈ L2n we will call both the symplectic map φL and the Lagrangian

subspace Gr(φL) ≤ L the ‘graph’ portion of L when the context is unambiguous. We al-

low this abuse of notation as the aforementioned fiber diffeomorphism (Λk2n)(ker(L),halo(L))
∼=

Sp(dom(L)∩ran(L)) is uniquely determined by the base point (ker(L),halo(L)), which allows

us to bypass the quotient construction as seen in proposition III.2.1.

Remark III.2.4. There always exists a pair of symplectic subspaces Vi ≤ Li which are

mapped bijectively under the projection maps πi : Li → Lωi , for which Vi ∼= Li/L
ω
i and

φ : V1 → V2 is symplectic, yet the φ obtained depends not only on L but which pair of Vi

are chosen as well. This leaves us with the bare-bones structure25 of Sp(V,W ), where V,W

25In [84], a set of complete invariants for (arbitrary) linear relations Grk(V ×W ) for V,W distinct vector
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are two symplectic vector spaces of the same dimension. When Sp(V,W ) is compared to the

usual group of symplectic automorphisms Sp(V ) (which exhibits a variety of normal forms

and decompositions), the sparsity of the structure (up to linear symplectomorphism) on the

former group becomes evident. In particular, any discussion of eigenvalues and eigenvectors

(ergo any prospect of defining a circle map ρ) are dependent on some arbitrary isomorphism

V →W fixed as an ‘identity’. Of course this is little better than not having the aforementioned

structure theorems and canonical forms at all, as each eigenvalue/eigenvector/normal form

will vary with the choice of ‘identity’.

Now we intend to show that the problem described in remark III.2.4 is avoided

provided L 6∈ H, as such an L is shown to induce via PrI(L) = (ker(L),halo(L)), a unique

ω-orthogonal decomposition of V which splits L into the direct sum of its ‘singular’ (kernel

and halo) and ‘graph’ components. The end result will be that any L ∈ L2n may be identified

with a symplectic map φL ∈ Sp(dom(L)∩ ran(L)) in a symplectic group uniquely determined

by PrI(L).

Remark III.2.5. In both the following proof of theorem III.2.6 in addition to certain portions

of part V, we will use the shorthand L1 := dom(L) and L2 := ran(L) for any L ∈ Λ2n when

the notation becomes overly cumbersome. We restate here for clarity that L ∈ L2n if and

only if L1 ∩ Lω2 = {0}.

Theorem III.2.6. Given L ∈ L2n there exists a unique26 symplectic decomposition V =

Vs ⊕ Vg where Vs = ker(L)⊕ halo(L) and Vg = dom(L)∩ ran(L). Consequently each L yields

spaces of identical dimension is shown to amount to just three integers, corresponding to the dimension of
the kernel, domain and halo. On the other hand, when the two vector spaces are identified the isomorphism
classes in Grk(V × V ) amount to direct sums of four types of normal form relations which uniquely represent
the class up to a permutation (much like the Jordan normal form).

26Unique with respect to the base of the fiber in which L lies; i.e. the decomposition is uniquely determined
by PrI(L) = (ker(L),halo(L)).
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a unique symplectic map φ ∈ Sp(Vg) for which,

L = (ker(L)× {0} ⊕ {0} × halo(L))⊕Gr(φ) ≤ (Vs × Vs)⊕ (Vg × Vg),

where the Lωi are transverse Lagrangian subspaces of Vs.

Proof. We begin by giving an explicit construction (largely overlapping the results of proposi-

tion III.2.1 above) for the unique symplectic map φL ∈ Sp(dom(L)/ ker(L)×ran(L)/halo(L))

associated to each L ∈ Λ2n.

Proposition III.2.6.1. If L ∈ Λ2n and φ̃ denotes the induced linear map,

φ̃ : L1 → L2/L
ω
2

v 7→ [w],

defined such that v 7→ [w] if and only if there is some w ∈ L2 for which (v, w) ∈ L. Given the

above, we claim the following three statements are true.

1. This map is well defined.

2. The kernel of φ̃ is Lω1 .

3. The map φ : (L1/L
ω
1 , ω

1
red)→ (L2/L

ω
2 , ω

2
red) is a symplectic isomorphism.

Proofs (1)-(3):

1. Given (v, w), (v, w′) ∈ L we see that [w] = [w′]⇔ w − w′ ∈ Lω2 .

2. Since φ̃(v) = [w] = 0 ⇔ (v, w) ∈ L, w ∈ Lω2 ⇔ (0, w) ∈ L. Then by linearity

we see (v, 0) ∈ L which by definition means v ∈ Lω1 . Conversely if v ∈ Lω1 then

(v, 0) ∈ L ⇒ φ̃(v) = [0] so indeed ker(φ̃) = Lω1 . Since the Li are co-isotropic the map
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φ : L1/L
ω
1 → L2/L

ω
2 is an isomorphism between symplectic vector spaces and for both

i = 1, 2 we have,

dim(Li/L
ω
i ) = dim(Li)− dim(Lωi ) = (2n− k)− k = 2n− 2k.

In fact since the Li/L
ω
i are reduced co-isotropic subspaces they each possess a canonical

symplectic form (which φ preserves): ωired([v], [v′]) := ω(v, v′) for all v, v′ ∈ Li which is

independent of the choice of representatives v, v′ ∈ Li for i = 1, 2.

3. Given any pair (v, w), (v′, w′) ∈ L they must satisfy

ω̃((v, w), (v′, w′)) = 0⇔ ω(v, v′) = ω(w,w′).

It follows for any [v], [v′] ∈ L1/L
ω
1 and [w], [w′] ∈ L2/L

ω
2 such that (v, w), (v′, w′) ∈ L

that ωred([v], [v′]) = ωred([w], [w′]) = ωred(φ[v], φ[v′]) so that φ is indeed a symplectic

map between the two reduced spaces.

Note that proposition III.2.6.1 holds regardless of whether L is exceptional or not

much like proposition III.2.1 above. Regardless, as detailed in remark III.2.2 we will need

to assume that L ∈ L2n (as we do in the following proposition) to complete the proof of

theorem III.2.6.

Proposition III.2.6.2. Given L ∈ L2n, then the isotropic pair PrI(L) = (Lω1 , L
ω
2 ) deter-

mines the symplectic subspace Vg := (L1 ∩ L2, ω) of V . Additionally, there exists a standard

isomorphism (Vg, ω) ∼= (Li/L
ω
i , ω

i
red) for i = 1, 2 whereby we will prove the explicit diffeomor-

phism given in proposition III.2.1 above and justify remark III.2.3 in speaking of ‘the’ graph

part of some L ∈ L2n.
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Proof. Denoting the co-isotropic reduction map of the domain and range as πi : Li → Li/L
ω
i

for i = 1, 2 we make the following claim.

Claim. Given L as above, the three statements below are true.

1. dim(L1 ∩ L2) = 2n− 2k.

2. Vg is a symplectic subspace of V .

3. ker(πi) = Lωi has trivial intersection with Vg for i = 1, 2.

Proofs (1)-(3):

1. Recalling that κ(L) = dim(L1 ∩ Lω2 ) = 0, we know that r(L) = dim(Lω1 ∩ Lω2 ) = 0 as

well. Then since dim(Li) = 2n− k for some k ≤ n, we have dim(Lωi ) = k and therefore,

dim(Lω1 ∩ Lω2 ) = 0⇔ dim(Lω1 ⊕ Lω2 ) = 2k.

It follows that dim(L1 ∩ L2) = 2n− dim(Lω1 ⊕ Lω2 ) = 2n− 2k.

2. We note κ(L) = dim(L1 ∩ Lω2 ) = dim(Lω1 ∩ L2) = 0 implies via inclusion that

• L1 ∩ Lω2 = {0} ⇒ (L1 ∩ L2) ∩ Lω2 = {0}

• L2 ∩ Lω1 = {0} ⇒ (L1 ∩ L2) ∩ Lω1 = {0}

so that since 2n− 2k + 2k = 2n we have the following decomposition;

V = Vs ⊕ Vg := (Lω1 ⊕ Lω2 )⊕ (L1 ∩ L2).

Indeed, as V ωg = Vs are complementary symplectic subspaces, then together they span

V and hence comprise a symplectic-orthogonal splitting; V = Vg
ω
⊕ Vs.

3. We see that Vg ∩ Lωi = {0} for i = 1, 2 is an immediate consequence of the above two

intersections.
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With a bit of detail filled in, we’ll see the above three results will be sufficient

to prove proposition III.2.6.2. We wrap things up by letting Vg := L1 ∩ L2 and see that

(π∗i ωred)|Vg×Vg = ω|Vg×Vg for i = 1, 2 and the above isomorphisms dom(L)/ ker(L) ∼= Vg ∼=

ran(L)/ halo(L) together imply that for each L ∈ L2n with graph part φL : dom(L)/ ker(L)→

ran(L)/ halo(L), there is precisely one φ ∈ Sp(Vg) for which Gr(φ) ≤ L or equivalently, for

which π2 ◦ φ = φL ◦ π1|Vg : Vg → ran(L)/halo(L). Conversely, for any non-exceptional (i.e.

B1 t Bω2 ) isotropic pair (B1, B2) ∈ Ik and symplectic map φ ∈ Sp(Bω1 ∩ Bω2 ), there is a

unique Lφ ∈ (Lk2n)(B1,B2) whose graph part27 φL satisfies π2 ◦ φ = φL ◦ π1, or equivalently

that Gr(φ) ≤ L. This formally establishes the diffeomorphism between each non-exceptional

fiber (Lk2n)(B1,B2) and the associated symplectic group Sp(Bω1 ∩Bω2 ).

As to the final claim of theorem III.2.6 (that the Lωi are transverse Lagrangian

subspaces of the symplectic vector space Vs) we observe that Lω1 ∩ Lω2 = {0} (as L 6∈ H)

and that both Lωi are isotropic subspaces of dimension k in V . It follows from dim(Vs) = 2k

that the Lωi are maximal non-intersecting isotropic subspaces in Vs, and therefore transversal

Lagrangians in Vs.

Remark III.2.7. Note that the bundle structure of each stratum Λk2n are each derived from

the underlying fixed symplectic vector space, in particular the fibers are smoothly dependent

on the base point; given any (B1, B2) ∈ Ik the following product of quotient symplectic vector

spaces is determined uniquely,

(Bω1 /B1 ×Bω2 /B2, ω̃red = pr∗1ω1,red − pr∗2ω2,red) .

It is this symplectic vector space over which the fiber is defined: Λ0
2n−2k(Bω1 /B1×Bω2 /B2) ∼=

27See remark III.2.3.
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Sp(2n − 2k). Consequently when B1 t Bω2 and we have the above canonical identifications

Bω1 /B1
∼= Bω1 ∩ Bω2 ∼= Bω2 /B2 this too must depend smoothly on the isotropic pair (B1, B2)

as an element in the 2n− 2k dimensional symplectic Grassmannian SG2n−2k(V ).
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Part IV

The Conley-Zehnder Index and

the Circle Map ρ
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IV.1 Construction of the Conley-Zehnder Index

In addition to the mean index, the circle function ρ (as defined in definition I.3.7) is

more often seen when constructing the Conley-Zehnder index, e.g. [5, 78, 82, 80].

Definition IV.1.1. [82] We define ρ : Sp(2n) → S1 as follows. Given A ∈ Sp(2n) let

E = Spec(A)∩ (S1 ∪R) be the collection (with repetition) of the real and elliptic eigenvalues

of A. For elliptic eigenvalues λ ∈ E ∩ (S1 \ {±1}), define m+(λ) to be the number of

positive eigenvalues of the symmetric non-degenerate two form Q defined on each generalized

eigenspace Eλ where,

Qλ : Eλ × Eλ → R

(z, z′) 7→ im
(
ω(z, z′)

)
.

Letting m− denote the sum of the algebraic multiplicities for the real negative eigen-

values we let

ρ(A) := (−1)
1
2m

− ∏
λ∈S1\{±1}

λ
1
2m

+(λ).

For our purposes we will be assuming our eigenvalues are unique28 so that the cor-

responding symmetric forms Qλ will all have two positive eigenvalues or zero, as there is no

possibility of overlapping elliptic eigenvalue pairs (each of potentially varying Krein type). In

particular we may choose a collection (λi)
l
i=1 ⊂ S1 \ {±1} for which each λi 6= λj for any

i, j ≤ l and each Qλi has two positive eigenvalues. Additionally we require that every elliptic

eigenvalue of A is either (a) contained in the list, or (b) the conjugate of some λi in the

list (i.e. the ordered tuple (λi)
l
i=1 is a certain collection of representatives from each elliptic

eigenvalue pair). Additionally, since we will be working with ρ2 we may ignore the factor

28In theorem V.2.1, we have a sequence {Ai}∞i=1 ⊆ Sp(V ) of semi-simple symplectic maps, i.e. the minimal
polynomial M(Ai) ∈ R (x) has distinct irreducible factors over R and in turn, unique eigenvalues over C.
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counting negative eigenvalue multiplicity and write the following simplified formula in terms

of the above choice of elliptic eigenvalues;

ρ2(A) =
∏

1≤i≤l

λ2
i .

Proposition IV.1.2. [82] The map ρ : Sp(2n)→ S1 has the following properties:

1. (determinant) For A ∈ U(n) ⊂ Sp(2n) we have ρ(A) = DetC(A).

2. (invariance) ρ is invariant under conjugation,

ρ(B−1AB) = ρ(A), ∀B ∈ Sp(2n).

3. (normalization) ρ(A) = ±1 if A has no elliptic eigenvalues.

4. (multiplicativity) If

A = B ⊕ C ∈ Sp(2n)× Sp(2m) ⊂ Sp(2(n+m)),

then ρ(A⊕B) = ρ(A)ρ(B).

5. (homogeneity) If A ∈ Sp(2n) we have that ρ(Al) = l · ρ(A) ∈ R/Z for any l ∈ Z.

All of the above properties are inherited by ρ̂ when L ∈ Λ0
2n (with the expected

power of two factored in) but for Lagrangian subspaces contained in L≥1
2n , most properties

no longer have an analog. In particular, example VII.1.2 exhibits that ρ̂ is not a circle map

over L2 (see definition I.3.7). Of course, this statement is trivial as each L2n is not a Lie

group, but even if we ignore the Lie group assumption and simply require ρ̂ to satisfy the

remaining condition (that ρ̂∗ is an isomorphism of fundamental groups) it still fails to satisfy

this. Namely, on L2 we show that ρ̂ induces a non-injective homomorphism of fundamental

groups ρ̂∗ : π1(L2) → π1(S1), as there exists a non-contractible loop γ : I → L2 for which

∆̂(γ) = 0.
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IV.2 Properties of the Circle Map Extension ρ̂

As described in the previous section, ρ̂ does inherit some of the above properties

with the caveat that they are generally defined only for L ∈ Λ0
2n and in turn are essentially

trivial restatements of proposition IV.1.2. Two non-trivial properties may be found in the

following lemma.

Lemma IV.2.1.

1. The operation (∗)l (equation (I.3.1)) is a continuous map for any l ≥ 0.

2. (Homogeneity) Assuming theorem I.4.3 is true, that is ρ̂ is continuous and ρ̂(L) = ρ2(φ),

then given any L ∈ L2n with graph part Gr(φ) we claim ρ̂(Ll) = 2l · ρ̂(L) for all l ≥ 0.

Proof 1. When l > 0, continuity follows on each Lk2n after referring to lemma II.1.4, which

gives the fibration Sp(2n−2k) ↪→ Lk2n � Ik for each 1 ≤ k ≤ n−1. Since lemma II.2.2 shows

that L and Ll share the same domain and range for all l ∈ N≥1, then each (∗)l preserves

fibers on Lk2n for all 0 ≤ k ≤ n (which is a trivial statement in the k = 0 case being that the

entire stratum is the fiber). Since the fibers vary smoothly over the base we see that (∗)l is

continuous as it inherits continuity on each fiber from the group operation on Sp(2n − 2k)

via the diffeomorphism Sp(Bω1 ∩ Bω2 ) ∼= (Lk2n)(B1,B2) shown in theorem III.2.6. When k = 0

this operation corresponds to the group operation in Sp(2n) and when k = n it is the identity

map so that (∗)l is continuous on L2n for l > 0.

When l = 0 and 0 ≤ k ≤ n, the map (∗)0 is no longer a bundle map as it carries

every L ∈ Λk2n to L0 = Gr(IdV ). Regardless, since the image of each stratum of (∗)0 is the

single point Gr(IdV ) = 4V , we see that (∗)0 is trivially continuous.

Proof 2. When l > 0, as shown in lemma II.2.2, the iterated composition operation restricted

to L2n is a well defined map. We compute L2 in coordinates using the decomposition shown

65



in theorem III.2.6 in which we write L ∈ L2n as,

L = (ker(L)× {0} ⊕ {0} × halo(L))⊕Gr(φ),

so that we may verify the claim via a Darboux basis adapted to V = ker(L) ⊕ halo(L) ⊕

(dom(L) ∩ ran(L)).

Let 〈vi〉ki=1 = ker(L) and 〈wi〉ki=1 = halo(L). Then since (vi, 0), (0, wj) ∈ L for all

i, j ≤ k it follows that (vi, wj) ∈ L◦L for all i, j ≤ k. Namely, ker(L)×{0}⊕{0}×halo(L) ≤ L◦

L. Next we consider any (v, w) ∈ Gr(φ), so that as Im(φ) = Vg, we must have w = φ(v) ∈ Vg.

Then since φ is non-singular there must be some unique z ∈ Vg for which (w, z) ∈ Gr(φ). It

follows from definition I.3.2 that (v, z) ∈ L ◦ L so that we might observe from w = φ(v) and

z = φ(w) that a coordinate free29 representation Gr(φ) ◦ Gr(φ) = Gr(φ2) may be written.

The remaining basis elements not considered are those of the halo(L) composed with ker(L),

yet given any (0, wi) ∈ halo(L) in the first L and (vi, 0) ∈ ker(L) belonging to the second, the

only resulting vector derived from these is (0, 0) ∈ L ◦ L regardless of whether L ∈ H or not

(more precisely regardless of whether r > 0 or not). Consequently we may write,

Ll = (ker(L)× {0} ⊕ {0} × halo(L))⊕Gr(φl),

for any l ≥ 1 so that ρ̂(Ll) = ρ2(φl) = 2l · ρ2(φ) = 2l · ρ̂(L), inheriting homogeneity (scaled

by a factor of two) from ρ on Sp(Vg). When l = 0 we have ρ̂(L0) = ρ̂(Gr(Id)) = 0 ∈ R/Z, so

homogeneity holds in this case too.

In the following proposition we enumerate some of the inherited properties of ρ̂, of

which 1 − 3 are entirely trivial (as they only hold over L0
2n
∼= Sp(V )) whereas 4 − 5 are

essentially trivial, being immediate consequences of the definition.

29Free from some fixed Darboux coordinates. To write the above though we must still be working over the
fixed decomposition V = Vs ⊕ Vg .
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Proposition IV.2.2. The map ρ̂ : L2n → S1 inherits the following properties:

1. (determinant): For A ∈ U(n) ⊂ Sp(2n) we have that ρ̂(Gr(A)) = (detC(A))2.

2. (invariance): ρ̂ is invariant under conjugation on Λ0
2n,

ρ̂(Gr(B−1) ◦Gr(A) ◦Gr(B)) = ρ̂(Gr(A)) ∀B ∈ Sp(2n).

3. (normalization I): ρ̂(Gr(A)) = 1 if A has no elliptic eigenvalues.

4. (normalization II): ρ̂(L) = 1 for all L ∈ Ln2n.

5. (multiplicativity): If L = K1 ⊕ K2 ∈ L2n × L2m ⊂ L2(n+m) then ρ̂(K1 ⊕ K2) =

ρ̂(K1)ρ̂(K2).

Proof: (1-4). These follow from the defining equation ρ̂(Gr(A)) = ρ2(A);

1. ρ̂(Gr(A)) = ρ2(A) = detC(A)2.

2. Recalling that Lagrangian composition is identical to multiplication on Sp(V ) (i.e.

Gr(A) ◦Gr(B) = Gr(AB)) we see from proposition IV.1.2 that,

ρ̂(Gr(B−1AB)) = ρ2(B−1AB) = ρ2(A) = ρ̂(Gr(A)).

3. ρ̂(Gr(A)) = ρ2(A) = (±1)2 = 1.

4. Assuming theorem V.1.1 to be true, then this is an immediate corollary.

Proof: (5). We begin by observing when L = K1 ⊕K2 ∈ L2n × L2m that there exists a pair

of symplectic bases, (xi, yi)
n
i=1 and (ui, vi)

m
i=1 which together form subspaces which form a
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decomposition isomorphic to the induced one: R2n⊕R2m = R2(n+m). With this decomposition

we may write

L = (ker(K1)× {0} ⊕ {0} × halo(K1)⊕Gr(φK1))

⊕

(ker(K2)× {0} ⊕ {0} × halo(K2)⊕Gr(φK2
)).

Then as dom(K1), ran(K1) ≤ 〈xi, yi〉ni=1 and dom(K2), ran(K2) ≤ 〈ui, vi〉mi=1 then

theorem III.2.6 implies the two subspaces V js and V jg , j = 1, 2 determined by K1 and K2 have

pair-wise trivial intersection thereby refining the decomposition;

R2(n+m) = (V 1
s ⊕ V 1

g )⊕ (V 2
s ⊕ V 2

g ) = R2n ⊕ R2m.

This implies ker(L) = ker(K1) ⊕ ker(K2), halo(L) = halo(K1) ⊕ halo(K2) and

Gr(φL) = Gr(φK1
) ⊕ Gr(φK2

). It follows that we may write φL = φK1
⊕ φK2

∈ Sp(2n) ×

Sp(2m) ⊂ Sp(2(n + m)). To conclude the proof we assume theorem I.4.3 is true, in which

case ρ̂ is indeed multiplicative;

ρ̂(L) = ρ2(φL) = ρ2(φK1)ρ2(φK2) = ρ̂(K1)ρ̂(K2).
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Part V

Unbounded Sequences in the

Symplectic Group
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V.1 A Sufficient Condition for Asymptotic Hyperbolic-

ity

The following theorem states that any A ∈ Sp(2n) with Gr(A) sufficiently near

L = L1 × {0} ⊕ {0} × L2 with L1 t L2 has no elliptic eigenvalues.

Theorem V.1.1. Suppose {Ai}∞i=1 ⊂ Sp(2n) is a sequence of semi-simple linear symplec-

tomorphisms for which Gr(Ai) −→
i→∞

L1 × {0} ⊕ {0} × L2 ∈ L2n where L1, L2 ∈ Λn and

L1 ∩ L2 = {0}. Then there exists K ∈ N such that

Spec(Ai) ∩ (S1 \ {±1}) = ∅, (V.1.1)

for all i ≥ K.

Proof. 30 Suppose there exists some λi ∈ Spec(Ai) for which λi ∈ S1 \{±1} for all i ≥ K ∈ N.

Then as there are no multiple roots (each Ai is semi-simple) such a λi belongs to a unique

symplectic eigenvalue pair
{
λi, λi

}
, |λi| = 1. For more details on how to go about ‘ordering’

the eigenvalues of a sequence of maps so that individual sequences of eigenvalues may be

coherently formed (as done above implicitly) refer to section V.2.

Remark V.1.2. As our eigenvalue pair is unique and elliptic for all i ∈ N, the eigenvalues

are stable in the sense that the limit point λ of the λi (under some subsequence) is restricted

to λ ∈ S1. Namely, any unique pair of elliptic eigenvalues remain elliptic away from the

exceptional points ±1, being the only values at which a (unique) elliptic eigenvalue pair may

become hyperbolic, or in general meet another pair to form a quadruple upon passing to the

limit (this is certainly not true without uniqueness, e.g. a quadruple converging to an elliptic

pair already inhabited by another pair of eigenvalues). In other words we know that our

30We will proceed in four steps, see lemmas V.1.3, V.1.4, V.1.5, V.1.6 below.
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unique pair of elliptic eigenvalues (which persist for all but finitely many i ∈ N) guarantees

that their limit is confined to S1.

This pair of eigenvalues has eigenvectors xi±iyi ∈ C2n with a convergent subsequence

of corresponding real eigenspaces Ei = 〈xi, yi〉 with some subsequence yielding Ei → E as

i→∞ (due to the compactness of the symplectic Grassmannian SG2(V )) such that each Ai

restricted to Ei are conjugate to a rotation for all i ∈ N. Then we fix a pair of normalized

vectors x := limi→∞
xi
|xi| and y = limi→∞

yi
|yi| for which 〈x, y〉 = E.

As the Ei are symplectic and the Ai semi-simple, there exists a decomposition V =

Ei ⊕ Fi where the Fi ∈ SG2n−2(V ) form a sequence of some symplectic complements to each

Ei and Ai = ψi ⊕ φi : Ei ⊕ Fi → Ei ⊕ Fi where ψi and φi are symplectic for each i ∈ N.

Lemma V.1.3. Let {Ai}∞i=1 ⊂ Sp(2n) denote a sequence of symplectic maps and consider

the following;

1. For {Ai}∞i=1 such that Gr(Ai) → L ∈ Λ≥1
2n then v ∈ ker(L) ⇔ Aiv → 0 and v ∈

halo(L)⇔ A−1
i v → 0 as i→∞.

2. For {Ai}∞i=1 with graph limit Gr(Ai) → L = L1 × {0} ⊕ {0} × L2 it is true that

L1 ∩A−1
i L2 = {0} for sufficiently large i.

Note that both claims of lemma V.1.3 hold regardless of whether L ∈ H or not.

Proof 1: We prove the first part of the lemma, after which the second will follow via contra-

diction, so suppose {Ai}∞i=1 such that Gr(Ai)→ L ∈ Λ≥1
2n .

1. v ∈ ker(L)⇔ Aiv → 0.

We observe v ∈ ker(L) if and only if (v, 0) ∈ L so that since Gr(Ai) → L then we see

that (v, 0) ∈ L if and only if (v,Aiv)→ (v, 0) as i→∞.
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2. v ∈ halo(L)⇔ A−1
i v → 0.

Again v ∈ halo(L) if and only if (0, v) ∈ L. Yet (A−1
i v, v) ∈ Gr(Ai) so as above we see

that v ∈ halo(L)⇔ A−1
i v → 0.

Proof 2: We now prove the second claim of the lemma: given some sequence {Ai}∞i=1 ⊂ Sp(2n)

for which Gr(Ai) → L ∈ Λn2n and suppose there exists a sequence {vi}∞i=1 ⊂ V and some

N ∈ N for which vi → v 6= 0 and vi ∈ L1 ∩A−1
i L2 for all i ≥ N .

Then for any i ≥ N we have vi ∈ L1 implies |Aivi| → 0 and vi ∈ A−1
i L2 implies

that wi := Aivi
|Aivi| ∈ L2 (note that limi→∞ wi exists as each wi is normalized). We see that

|A−1
i wi| → 0 so that,

|A−1
i wi| =

|vi|
|Aivi|

→ 0,

so that since |vi| → |v| 6= 0 we have the contradiction |Aivi| → ∞.

We now know for large i that the Ai induce a sequence L1⊕A−1
i L2 = V of Lagrangian

splittings (regardless of where the limit winds up in Λ2n). In that case there exists a unique

decomposition for any sequence ui = vi + wi ∈ Ei with vi ∈ L1 and wi ∈ A−1
i L2 such that

|Aivi| → 0 and |Aiwi| → ∞. Denote ψi := Ai|Ei so that |ψivi| → 0 and |ψiwi| → ∞ and

consider the following lemma.

Lemma V.1.4. Given a sequence of elliptic eigenspaces Ei → E and symplectic maps

{ψi : Ei → Ei}∞i=1 as above then E ∩ L1 6= {0}.

Proof. Convergence of the Ei is a consequence of the fact that dim(Ei) is constant for all i

and therefore converges to E along some subsequence. Suppose E ∩ L1 = {0}, that is every

sequence ui = vi + wi ∈ Ei has wi 6→ 0. We would have for every ui = vi + wi ∈ Ei that
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|ψiui| = |ψivi +ψiwi| = |ψiwi− (−ψivi)| ≥ ||ψiwi| − |ψivi|| → ∞ and since |ψivi| → 0 we see

it must be that |ψiui| → ∞ for any sequence ui ∈ Ei with wi 6→ 0.

Now dim(Ei) = 2 so that ωi := ω|Ei×Ei is an area form on Ei for each i ∈ N so we

may choose some sequence of balanced neighborhoods31 Ui ⊂ Ei about zero on which

∫
Ui

ωi = 1.

Then for any M > 1 there exists a K for which any normalized sequence ui ∈ Ei,

ui → u 6= 0 has |ψiui| > M when i ≥ K. This implies in particular that for each M > 1 there

exists a K ∈ N for which MUi ⊂ ψiUi for every i ≥ K. It follows then that

1 =

∫
Ui

ωi <

∫
MUi

ωi ≤
∫
ψiUi

ωi,

for every i ≥ K. As each ψi is a symplectomorphism we may reach a contradiction by choosing

any M > 1, in which case some K exists for which

1 =

∫
UK

ωK =

∫
ψKUK

ωK ≥
∫
MUK

ωK > 1. (V.1.2)

This lemma leads us to the next lemma needed to prove theorem V.1.1.

Lemma V.1.5. Given the eigenspaces Ei → E and {ψi}∞i=1 as above then E ∩ L2 6= {0}.

Proof. We have already established there exists a sequence vi → v 6= 0 of vi ∈ Ei for which

Aivi → 0. We consider any ui = vi + wi ∈ Ei where vi ∈ L1 and wi ∈ A−1
i L2 and suppose

wi → w 6= 0 (such a decomposition exists for sufficient large i by lemma V.1.3). Then

Aiui = Aivi + Aiwi so that each Ei is Ai invariant and each Aiwi ∈ L2 ∩ Ei. Then since

|Aivi| → 0 as i→∞ we see limi→∞
Aiui
|Aiwi| = limi→∞

Aiwi
|Aiwi| → w ∈ L2 ∩ E.

31These Ui may grow without bound but it is of no consequence since we will not pass to the limit.
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The above lemma and corollary show there exists a sequence of bases 〈vi, wi〉 ∈ Ei

on each real elliptic eigenspace such that vi → v ∈ L1 and wi → w ∈ L2.

Lemma V.1.6. Let Ei be a two dimensional real eigenspace for a complex eigenvalue λ ∈

S1 \{±1} which exists for sufficiently large i ∈ N. Then given any sequence {vi}∞i=1 with each

vi ∈ Ei and vi
|vi| → v 6= 0 we claim,

v ∈ ker(L)⇔ v ∈ halo(L).

Proof. Consider σi ∈ Sp(Ei) such that ψi = σ−1
i ◦R(θi) ◦σi where R(θi) denotes the rotation

of the (x′i, y
′
i) = (σixi, σiyi) plane32 Ei by λi = eiθi so that we may compute for any sequence

{vi}∞i=1,

|ψ−1
i vi| = |(σ−1

i ◦R(θi) ◦ σi)−1(vi)| = |(σ−1
i ◦R(θi)

−1 ◦ σi)(vi)|

= |(σ−1
i ◦R(−θi) ◦ σi)(vi)|.

We observe that ψ−1
i is simply the opposite rotation of ψi conjugated by the same matrix

σi ∈ Sp(Ei). Recalling the sequence vi ∈ Ei, there exists ai, bi ∈ R such that vi = aixi + biyi

so if we let v′i = σi(vi) then v′i := σivi = aix
′
i + biy

′
i and thus,

ψivi = (σ−1
i ◦R(θi) ◦ σi)(vi)

= (σ−1
i ◦R(θi))(v

′
i)

= (σ−1
i ◦R(θi))(aix

′
i + biy

′
i)

= σ−1
i (ai cos(θi)x

′
i + ai sin(θi)y

′
i) + σ−1

i (bi cos(θi)y
′
i − bi sin(θi)x

′
i)

= (ai cos(θi)− bi sin(θi))xi + (ai sin(θi) + bi cos(θi)) yi.

32We assume the (xi, yi) and (x′i, y
′
i) to be normalized for all i ∈ N.
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With squared norm,

|ψivi|2 =
(
a2
i cos2(θi)− 2aibi sin(θi) cos(θi) + b2i sin2(θi)

)
+
(
b2i cos2(θi) + 2aibi sin(θi) cos(θi) + a2

i sin2(θi)
)

= a2
i + b2i → 0⇔ lim

i→∞

vi
|vi|
∈ ker(L).

On the other hand,

ψ−1
i vi = (σ−1

i ◦R(θi)
−1)(v′i)

= (σ−1
i ◦R(−θi))(aix′i + biy

′
i)

= σ−1
i (ai cos(θi)x

′
i − ai sin(θi)y

′
i) + σ−1

i (bi cos(θi)y
′
i + bi sin(θi)x

′
i)

= (ai cos(θi) + bi sin(θi))xi + (bi cos(θi)− ai sin(θi)) yi,

so that

|ψ−1
i vi|2 = a2

i + b2i → 0⇔ lim
i→∞

vi
|vi|
∈ halo(L).

It’s evident that |ψivi|2 = |ψ−1
i vi|2. Since the last conclusions above follow from lemma V.1.3

we see when Ei is a sequence of two dimensional elliptic eigenspace which persists for arbi-

trarily large i then any sequence vi ∈ Ei where v = limi→∞
vi
|vi| we see that v ∈ ker(L)⇔ v ∈

halo(L).

Since our hypothesis guarantees that such a sequence of elliptic Ei eigenspaces exist

for all but finitely many i ∈ N, we see that any sequence {Ai}∞i=1 ⊂ Sp(2n) for which

Gr(Ai)→ L ∈ Ln2n has only real pairs or the usual symplectic quadruples away from the unit

circle for sufficiently large i.

Remark V.1.7. Note that the above proof is independent of where the convergent subse-

quence of the λi might converge to, so that in particular it holds even for those elliptic λi

which converge along a subsequence to some λ = ±1.
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V.2 A Decomposition for Certain Unbounded Sequences

of Symplectic Maps

Theorem V.2.1. Consider any sequence {Ai}∞i=1 of semi-simple symplectic maps for which

Gr(Ai) →
i→∞

L = ker(L)× {0} ⊕ {0} × halo(L)⊕Gr(φ) ∈ Lk2n,

where the graph part (see remark III.2.3) φ of L is semisimple.

Then for sufficiently large i ∈ N there exists a subsequence of unique, Ai invariant

symplectic decompositions V = Eis ⊕ Eig with which we may write Ai = αi ⊕ βi ∈ Sp(Eis) ×

Sp(Eig) and for which Gr(αi)→ ker(L)× {0} ⊕ {0} ⊕ halo(L).

Additionally there exists an N ∈ N for which there is a sequence of symplectic

isomorphisms {
Ii : (Eig, ω|Eig×Eig )

∼=→ (Vg, ω|Vg×Vg )
}∞
i=N

,

uniquely determined by L such that each βi : E
i
g → Eig is conjugate via Ii to some φi ∈ Sp(Vg)

for all i ≥ N where φi → φ. We also show that the βi preserve the data used in computing ρ,

namely the eigenvalues and the conjugacy classes of the Ai restricted to elliptic eigenspaces.

Outline. We have broken the proof into the five following lemmas which together give the

desired result. Recall from theorem III.2.6 that L induces the symplectic splitting Vs
ω
⊕Vg = V

for which L|Vs×Vs = ker(L)× {0} ⊕ {0} × halo(L) and L|Vg×Vg = Gr(φ). We will be working

over a subsequence of the Ai but for brevity’s sake will notate this subsequence as Ai as we

have been doing throughout the thesis.

Lemma V.2.2. For some N ∈ N there exists a subsequence of splittings
{
Eis, E

i
g

}∞
i=N

of V

by symplectic Ai-invariant subspaces Eis, E
i
g where dim(Eis) = dim(Vs) = 2k and dim(Eig) =
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dim(Vg) = 2n− 2k for all i ≥ N . Additionally each subsequence converges;

Eis →
i→∞

Es and Eig →
i→∞

Eg,

such that Es = ker(L)⊕ halo(L).

Using the sequence above, we observe that for i ≥ N , the maps have the following

symplectic decomposition Ai = αi ⊕ βi : Eis × Eig → Eis × Eig.

Lemma V.2.3. Given the above decomposition, we claim that Gr(αi)→ ker(L)×{0}⊕{0}×

halo(L) and Gr(βi) → Gr(β) for some β ∈ Sp(Eg) in the appropriate dimension isotropic

Grassmannian, namely I4k(V × V ) and I4n−4k(V × V ) respectively.

Lemma V.2.4. There exists an N ∈ N such that for all i ≥ N the subsequence of graph

portion domains
{
Eig
}∞
i=N

has:

• ker(L) ∩ Eig = {0}

• Projhalo(L)(E
i
g) = {0}.

In addition, both properties persist in the limit; ker(L)∩Eg = {0} and Projhalo(L)(Eg) = {0}.

Observe that the second claim of lemma V.2.4 implies Eig, Eg ≤ ker(L) ⊕ Vg =

dom(L) for all i ≥ N .

Lemma V.2.5. For all i ≥ N there exists a unique sequence of symplectic isomorphisms

Ii : E
i
g → Vg such that Ii = π1|Eig and Ii →

i→∞
I : Eg → Vg where the function π1 : dom(L)→

dom(L)/ ker(L) ∼= Vg is the coisotropic projection map with image the set dom(L)/ ker(L)

uniquely identified by theorem III.2.6 with Vg.

Lemma V.2.6. Defining φi := Ii ◦ βi ◦ I−1
i ∈ Sp(Vg), then φi → φ : Vg → Vg where Gr(φ) is

the graph part of L. Then for sufficiently large i the pair φi and βi share the same eigenvalues

and each pair of elliptic eigenvalues quadruples have matching Krein type.
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V.2.1 Preparation for the Proof of Theorem V.2.1

We first recall that each A ∈ Sp(2n) yields a direct sum of V via symplectic gener-

alized eigenspaces, that is

V =
⊕

λ∈Spec(A)∩D+
2

E[λ] where D+
2 = {z ∈ C | 0 < |z| ≤ 1, im(z) ≥ 0}

where E[λ] is the real eigenspace associated to the quadruple (λ, λ−1, λ, λ−1) satisfying EC
[λ] =

Eλ⊕Eλ−1⊕Eλ⊕Eλ−1 ≤ V C and Eλ denotes the (generalized33) complex eigenspace associated

to λ. Note that our requirement that λ ∈ D+
2 , the upper half unit disk, is simply a convenient

method for picking a candidate from each quadruple, as well as providing a unique limit point

for any eigenvalues quadruples which diverge (in which case the representative chosen from

that quadruple always tends to 0).

When A has distinct eigenvalues this further restricts the possibilities for the above

eigenspaces; We have already seen that the E[λ] for λ ∈ (S1 ∪ R) \ {0,±1} are real two

dimensional symplectic subspaces on which A|E[λ]
is either conjugate to a rotation by λ ∈ S1

or to a hyperbolic transformation for λ ∈ R \ {0,±1}. The eigenvalue quadruples with

|λ| 6= 1 and im(λ) 6= 0 manifest as a pair of A invariant real eigenspaces associated to the

conjugate pairs (λ, λ) and ( 1
λ ,

1
λ

). A symplectic normal form for A ∈ Sp(2n) restricted to this

4 dimensional real vector space after picking some λ = reiθ from a quadruple is given by the

following with (x, x′, y, y′) a Darboux basis of E[λ] ⊕ E[ 1
λ ];

33For arbitrary symplectic Ai this is a necessary specification, but as our eigenvalues are unique this is
present only for completeness.
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A|E[λ]⊕E[ 1
λ ]

=

R(re−iθ)−1 0

0 R(re−iθ)t

 =

 1
rR(eiθ) 0

0 rR(eiθ)

 ,

where

R(reiθ) = r

cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

It has been shown that each Ai (having unique eigenvalues) is the direct sum of a combination

of the above symplectic eigenspaces [38] although in general the normal form problem is

complicated quite a bit by the presence of repeat eigenvalues (particularly those equal to ±1).

We proceed by considering the eigenvalues of each Ai for all i ∈ N as a sequence

of tuples (λi) := (λi1, . . . , λ
i
2n) ∈ C2n treated as an unordered list. The space of unordered

C tuples of length 2n may be identified with the orbit space C2n/S2n where S2n is the

permutation group on 2n elements and the group action on C2n is given by σ · (λ1, . . . , λ2n) =

(λσ(1), . . . , λσ(2n)) for any permutation σ ∈ S2n. Following [49] the topology induced on the

space of unordered C tuples of length 2n as constructed above is identical to the one generated

by the following metric,

d((λ), (τ)) = minσ∈S2nmaxi≤2n|λσ(i) − τi|, (V.2.1)

with the helpful property that C2n/S2n is homeomorphic to C2n.

For convenience if we impose some ordering of the A1 eigenvalues we may use a

recursive process to yield an essentially unique representative for every subsequent element

(since distinct permutations may both yield a minimum in the above metric). Given any

order for (λ1) we choose the order of the ith eigenvalue list (λi) = (λi1, . . . , λ
i
2n) for any i ≥ 2

by choosing a permutation which minimizes the above metric with respect to the previous

element, i.e. (λiτ(j)) = (λi−1
j ) where τ is the minimizing permutation chosen by the above
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metric (V.2.1). This allows us to treat the tuple as ordered given the order of the first.

With this notion we let
{
λij
}l
j=1

denote the l representatives from each eigenvalue

quadruple of Ai which lies in the closed upper half disc so that V =
⊕l

j=1E[λij ]
for all i ∈ N.

As mentioned above, each sequence E[λij ]
eventually has constant dimension for large i and by

compactness each possesses a limit Ej for all j ≤ l, potentially with lower dimension if distinct

eigenvectors converge to each other in the limit. In our case distinct eigenvalues/eigenspaces

(which do not converge to 0 or diverge) will not converge to a single value/subspace (as φ too

is semi-simple) so that the dimension of each eigenspace on which ||Ai|E
[λi
j
]

is bounded will

be preserved due to the requirement that φ remains semi-simple, precluding this possibility

[49]. That said, the details of this argument will need to wait until we have split each Ai into

its divergent and convergent parts, αi and βi respectively. Now that we have established the

prerequisite notions, we are ready to begin the proofs.

V.2.2 Proof of Theorem V.2.1

Lemma V.2.2. For some N ∈ N there exists a subsequence of splittings
{
Eis, E

i
g

}∞
i=N

of V

by symplectic Ai-invariant subspaces Eis, E
i
g where dim(Eis) = dim(Vs) = 2k and dim(Eig) =

dim(Vg) = 2n− 2k for all i ≥ N . Additionally each subsequence converges;

Eis →
i→∞

Es = ker(L)⊕ halo(L) = Vs and Eig →
i→∞

Eg.

Proof. We proceed by distinguishing two possibilities for the behavior of the sequence of

Ai when restricted to each E[λij ]
, either ||A||E

[λi
j
]

= supv∈E
[λi
j
]

|Aiv|
|v| → ∞ or ||A||E

[λi
j
]

=

supv∈E
[λi
j
]

|Aiv|
|v| → cj ∈ R. In the first case this implies the existence of a sequence {vi}∞i=1

where vi ∈ E[λij ]
for each i such that vi → v 6= 0 yet |Aivi||vi| → ∞ so that |Aivi| → ∞. Then
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by setting v′i = vi
|Aivi| then v′i → 0 and we see

|Aiv′i|
|v′i|

=
|Aivi|
|vi|

→ ∞, (V.2.2)

and since (v′i, Aiv
′
i) ∈ Gr(Ai|E

[λi
j
]
) for each i we see upon passing to the limit that

(v′i, Aiv
′
i) = (v′i,

Aivi
|Aivi| ) → (0, w) ∈ L where limi→∞

Aivi
|Aivi| = w ∈ halo(L) (since the Aivi

|Aivi|

belong to a compact set). Recall the above metric and ordering scheme which allows us,

given some fixed j, to identify a unique element λij for each i ≥ 2 so that we may form a

single sequence for each of the l eigenvalue quadruple representatives;
{
λij
}∞
i=1

→
i→∞

λj and the

associated quadruple eigenspaces
{
E[λij ]

}∞
i=1

(note that in the limit the eigenvalue is allowed

to vanish). We define

S =

{
j ≤ l | ||Ai|||E

[λi
j
]
→
i→∞

∞
}
⊂ {1, 2, . . . , l} ,

which certainly satisfies {1, 2, . . . , l} = S∪Sc so that we may define the symplectic Ai invariant

subspaces based on this condition,

Eis :=
⊕
j∈S

E[λij ]
, Eig :=

⊕
j 6∈S

E[λij ]
.

We know that V = Eis
ω
⊕Eig for each i and so Ai = αi⊕βi ∈ Sp(Eis)×Sp(Eig). Both

subspaces must have constant dimension since the condition defining the two sets is binary

and defined using asymptotically stable behavior of the Ai (namely, divergence of norm on

eigenspaces of constant dimension). Since they reside in a compact space and there are no

eigenvectors converging to some single vector in the limit.

Now we state the aforementioned proposition required for lemma V.2.2.

Proposition V.2.2.1. Equations (V.1.2), (V.2.2) together imply ker(L)⊕ halo(L) = Es.

Proof. We may construct a sequence of isotropic subspaces 〈wij〉kj=1 ≤ Eis assuming each of
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the wij converge such that

lim
i→∞
〈wij〉kj=1 = 〈wj〉kj=1 = halo(L),

since each w ∈ halo(L) necessarily is in the limit of the Eis, otherwise A|Eig would not be

bounded. Then since each Eis is symplectic there exists a sequence (w̃ij) ≤ Eis such that

ω(wij , w̃
i
j) = 1 for all j ≤ k and all i ∈ N. Then we consider for each j ≤ k the sequence of

two dimensional symplectomorphisms Ai|〈wij ,w̃ij〉 on which |A−1
i wij | → 0. Using the argument

found in lemma V.1.4 as well as (V.1.2) and (V.2.2), the sequence vij :=
A−1
i wij

|A−1
i wij |

satisfies

|Aivij | → ∞. Additionally since ω|〈wij ,w̃ij〉×〈wij ,w̃ij〉 is an area form preserved by Ai|〈wij ,w̃ij〉 for

each i we must have for each j ≤ k some sequence
{
zij
}∞
i=1

where each zij ∈ Eis and zij → zj 6= 0

such that |Aizij | → 0 for all j ≤ k. Thus 〈zj〉kj=1 = ker(L) implies that ker(L) ≤ Es so that

since ker(L) ∩ halo(L) = ∅ we see that ker(L) ⊕ halo(L) ≤ Es. Furthermore, since Ai|Eig

converges we see for dimensional reasons that Es = ker(L)⊕ halo(L).

By proposition V.2.2.1, there exists a subsequence for which both Eis and Eig converge

to symplectic subspaces Es, Eg ≤ V (this, as above, is a consequence of identifying Eis ∈

SG2k(V ) and Eig ∈ SG2n−2k(V ) as each is a compact space). For v ∈ Es it’s true that

limi→∞ |Aiv| → 0,∞ whereas for v ∈ Eg we have limi→∞ |Aiv| → d ∈ (0,∞) so that certainly

Es∩Eg = {0}. Since these exhaust the set of eigenspaces (which span V as each Ai has unique

eigenvalues) we must have V = Es ⊕Eg. We also see that since dim(Es) = 2k we must have

dim(Eg) = 2n− 2k and the first lemma of the proof is finished.

Lemma V.2.3. Given the above decomposition, we have Gr(αi) → ker(L) × {0} ⊕ {0} ×

halo(L) and Gr(βi) → Gr(β) for some β ∈ Sp(Eg) as elements in the appropriate dimension

isotropic Grassmannian of V × V .

Proof. Beginning by showing that Gr(β) = limi→∞Ai|Eig we recall the subsequence for which
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Eig → Eg so that since Gr(αi)⊕Gr(βi) = Gr(Ai)→ L we see that Gr(βi)→ Kg ≤ Eg × Eg.

If Kg 6= Gr(β) for any β ∈ Sp(Eg) then ker(Kg) 6= {0} which violates the known dimension

of ker(L). Indeed since v ∈ ker(Kg) implies v ∈ ker(L) when Kg ≤ L, this shows that

Kg = Gr(β) for some β ∈ Sp(Eg).

As for Gr(αi) =
{

(v,Aiv) | v ∈ Eis
}

we may write a convergent sequence of 2k tuples

(vij , w
i
j)
k
j=1 ⊂ Eis for all i such that 〈vij〉kj=1 → ker(L) and 〈wij〉kj=1 → halo(L). Then we see

that (vij , Aiv
i
j)→ (vj , 0) ∈ ker(L)× {0} and (A−1

i wij , w
i
j)→ (0, wj) ∈ {0} × halo(L) for each

1 ≤ j ≤ k so that Gr(αi)→ Ks = ker(L)× {0} ⊕ {0} × halo(L) as desired.

Lemma V.2.4. There exists an N ∈ N such that for all i ≥ N the subsequence of graph

portion domains
{
Eig
}∞
i=N

has:

• ker(L) ∩ Eig = {0}

• Projhalo(L)(E
i
g) = {0}.

In addition, both properties persist in the limit; ker(L)∩Eg = {0} and Projhalo(L)(Eg) = {0}.

Proof. We begin by proving the following proposition for lemma V.2.4,

Proposition V.2.4.1. Given Ai as before with dom(L) t halo(L) and j ≤ l fixed. Then

we claim || Ai|E
[λi
j
]
|| is bounded as i → ∞ if and only if there exists an N ∈ N for which

Projhalo(L)(E[λij ]
) = {0} for all i ≥ N .

Proof. First we clarify that Projhalo(L) : V → halo(L) with ker(Projhalo(L)) = dom(L). Now

suppose Fi := Projhalo(L)(E[λij ]
) is a sequence of subspaces such that Fi 6= {0} for all but

finitely many i ∈ N. Then there exists a sequence {wi}∞i=1 ∈ E[λij ]
with wi → w 6= 0 so that

since V = halo(L)⊕ dom(L) we may write wi = fi + gi → f + g = w where each fi ∈ halo(L)
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and gi ∈ dom(L). Then since |A−1
i fi| → 0 we may define

vi :=
A−1
i (fi + gi)

|A−1
i fi|

= A−1
i

(
fi + gi

|A−1
i fi|

)
∈ E[λij ]

and see that |Aivi| = |fi+gi|
|A−1
i fi|

. Since gi → g with |g| <∞, we suppose that the same holds for

fi, in which case it must be |Aivi| → ∞ and || Ai|E
[λi
j
]
|| is unbounded.

Alternatively if for some N ∈ N for which Projhalo(L)(E[λij ]
) = {0} for all i ≥ N

we know E[λij ]
≤ dom(L) and therefore any converging sequence vi ∈ E[λij ]

may be uniquely

written as vi = ki + gi ∈ ker(L)⊕ Vg = dom(L), so that any i ≥ N has ki + gi → k + g = v.

Then since |Aiki| → 0 and Aigi → φ(g) ∈ Vg by definition, we see that the operator norm of

Ai over E[λij ]
is bounded.

Now since ||Ai|||Eig is bounded by construction then proposition V.2.4.1 shows for

sufficiently large i that Eig ≤ ker(L) ⊕ Vg. We conclude this proof with a corresponding

proposition regarding the second claim of lemma V.2.4.

Proposition V.2.4.2. If ||Ai||E
[λi
j
]

is bounded as i → ∞ there exists an N ∈ N for which

E[λij ]
∩ ker(L) = {0} for all i ≥ N .

Proof. Assume ||Ai||E
[λi
j
]
→ c ∈ R. Then as Gr(Ai) → L this implies that the following

sequence converges,

Gr(Ai|E
[λi
j
]
)→ K ≤ E[λj ] × E[λj ],

where K ≤ L is some isotropic subspace in V × V . As established with respect to Eig in

lemma V.2.3, since the norm remains bounded the limit is the graph of a symplectic map;

Gr(Ai|E
[λi
j
]
) → Gr(f) ≤ E[λj ] × E[λj ] for some f ∈ Sp(E[λj ]). Since symplectic maps are

non-singular we have ker(L) ∩ E[λj ] = {0} so that since ker(L) ≤ Es and Eis ⊕ Eig = V we

see for some Nj ∈ N that ker(L) ∩ E[λij ]
= {0} for all i ≥ Nj (and all E[λij ]

≤ Eig) as a

consequence.
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It’s clear that proposition V.2.4.2 concludes the proof of lemma V.2.4, as each Eig is

by definition just the direct sum of the aforementioned eigenspaces, so as each of the above

eigenspaces have trivial image under projection onto halo(L) for sufficiently large i, and each

is a summand of each Eig, we see the same holds on Eig for i ≥ N (taking N to be the

maximum of the Nj above).

Lemma V.2.5. For all i ≥ N there exists a unique sequence of symplectic isomorphisms

Ii : E
i
g → Vg such that Ii = π1|Eig and Ii →

i→∞
I : Eg → Vg, where the function π1 : dom(L)→

dom(L)/ ker(L) ∼= Vg is the coisotropic reduced space of dom(L) uniquely identified by theo-

rem III.2.6 with Vg.

Proof. Since Eig is a 2n − 2k dimensional subspace of dom(L) with ker(L) ∩ Eig = {0},

for sufficiently large i there exists a unique symplectic map dom(L)/ ker(L) ∼= Eig (refer to

theorem III.2.6) for each i. We denote the above isomorphisms (The co-isotropic reduction of

dom(L) restricted to Eig) by Ii : E
i
g → dom(L)/ ker(L) and thus Vg ∼= dom(L)/ ker(L) ∼= Eig

uniquely via this restriction of the co-isotropic reduction map to Eig for large i. The continuity

of the coisotropic reduction with respect to a converging subspace of dimension 2n − 2k for

sufficiently large i (which by lemma V.2.4 eventually has trivial intersection with ker(L) and is

contained in dom(L), the latter implied by Projhalo(L)(E
i
g) = {0}), implies that the sequence

of isomorphisms converge; Ii → I : Eg → Vg.

Lemma V.2.6. Defining φi := Ii ◦ βi ◦ I−1
i ∈ Sp(Vg) then φi → φ : Vg → Vg where Gr(φ) is

the graph part of L. Then for sufficiently large i the pair φi and βi share the same eigenvalues

and each pair of elliptic eigenvalues quadruples have matching Krein type.

Proof. By using the above identification from theorem III.2.6 between Vg and the reduced

domain dom(L)/ ker(L) we may define φi := Ii ◦ βi ◦ I−1
i ∈ Sp(Vg) so that the φi and βi are
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conjugate. Then since Gr(Ai) = Gr(αi)⊕Gr(βi)→ L and βi → β as i→∞ we see from the

continuity of the projection and inclusion maps that

lim
i→∞

Ii ◦ βi ◦ I−1
i = I ◦ β ◦ I−1 = φ ∈ Sp(V )

and indeed φ and β are conjugate by I as well as φi and βi via Ii for sufficiently large i. A subtle

yet critical note here is that this notion of conjugacy occurs between distinct domains so we

must verify manually that ρ2(φi) = ρ2(βi) for i ≥ N . First if λi ∈ Spec(βi) with eigenvector

viλ we let wiλ = Ii(v
i
λ) ∈ Vg so that (Ii ◦ βi ◦ I−1

i )(wiλ) = (Ii ◦ βi)(viλ) = Ii(λiv
i
λ) = λiw

i
λ, and

the two indeed share the same eigenvalues with Ii mapping eigenvectors of βi to eigenvectors

of φi.

The remaining concern is regarding the preservation of the conjugacy class of the

elliptic eigenvalues since they are precisely the eigenvalues which have any effect on ρ2. We

must verify that the symmetric bilinear form written below maintains the same number of

positive eigenvalues under each Ii, that is if Eλ ≤ V C is an elliptic eigenspace for βi we let

Qi : Eλi × Eλi → R

(z, z′) 7→ im
(
ω(z, z′)

)
.

So as the corresponding bilinear form for φi will be given by Qi ◦ (I−1
i × I−1

i ) we may write

it defined over the eigenspace Fλi = Ii(Eλi),

Qi ◦ (I−1
i × I

−1
i ) : Fλi × Fλi → R

(z, z′) 7→ im
(
ω(I−1

i (z), I−1
i (z′))

)
.

We have implicitly extended I−1
i to a complex symplectic map in the natural way (I−1

i (iv) :=

iI−1
i (v)) so that I−1

i (z) = I−1
i (z) meaning

im
(
ω(I−1

i (z), I−1
i (z′))

)
= im

(
ω(I−1

i (z), I−1
i (z′))

)
.
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Then since each Ii is simply the co-isotropic reduction of dom(L) restricted to Ei we see

that ω(I−1
i z, I−1

i z′) = ω(z, z′) for any z, z′ ∈ F iλ and the two bilinear forms coincide via Ii

and therefore share the same number of positive eigenvalues for a given elliptic eigenvalue

pair [λi] given sufficiently large i. It follows that ρ2(βi) = ρ2(φi) for any i ≥ N and thus

limi→∞ ρ2(βi) = ρ2(φ).

V.3 Extending ρ2 Continuously to L2n

Theorem I.4.3. Define the map ρ̂ : L2n → S1 by ρ̂(L) := ρ2(φ) for any L ∈ L2n possessing

the unique decomposition,

L = ker(L)× {0} ⊕ {0} × halo(L)⊕Gr(φ) ≤ (Vs × Vs)⊕ (Vg × Vg).

Then the map ρ̂ is continuous and ρ̂(Gr(A)) = ρ2(A) for all A ∈ Sp(V ).

L2n

Sp(2n) S1

ρ̂
Gr

ρ2

Figure V.1: The diagram above commutes.

Proof. We first refer above to our implicit use of theorem III.2.6 decomposing L since dom(L)∩

halo(L) = {0}. For every L = Gr(A) ∈ L0
2n
∼= Sp(2n) we know φ = A : V 	 so that

ρ̂(L) = ρ2(A) and the above diagram indeed commutes and ρ̂ extends ρ2 via the graph map,

it remains to show continuity.

Note that for any L ∈ Ln2n that ρ(L) = ±1 for sufficiently large i (see theorem V.1.1)

so that ρ̂(L) = limi→∞ ρ2(Ai) = 1 for any sequence Ai such that Gr(Ai) → L ∈ Ln2n and ρ2

may be (rather trivially) continuously extended to Ln2n. For L ∈ Lk2n with 1 ≤ k ≤ n−1 from
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theorem V.2.1 we see there exists some N ∈ N for which Ai = αi ⊕ βi ∈ Sp(Eis)× Sp(Eig)
∼=

Sp(Vs)× Sp(Vg) (the first coordinate of this isomorphism is arbitrary but since αi diverges it

is of no concern, the second coordinate isomorphism is unique for large i via lemma V.2.6)

such that

Gr(Ai) = Gr(αi)⊕Gr(βi)→ ker(L)× {0} ⊕ {0} × halo(L)⊕Gr(β).

For any (v, w) ∈ Gr(β) we may decompose v = vk + vg ∈ ker(L) ⊕ Vg so that since

(vk, 0) ∈ ker(L) × {0} we have that (vg, w) ∈ L. Then since we know Projhalo(L)(E
i
g) =

{0} for i ≥ N then w = wh + wg ∈ halo(L) ⊕ Vg with wh = 0. Consequently we see

(vg, wg) ∈ Gr(β) ≤ L since vg ∈ Vg implies that wg = φ(vg), i.e. the two graphs are seen

to coincide after removing ker(L) components from the domain in Gr(β). This is simply an

excessive confirmation that the normal form given in theorem III.2.6 is identical to the limit

of Gr(αi)⊕Gr(βi) after what amounts to some column operations on Gr(β), harmless in that

they only remove vectors contained in the kernel from Gr(β), which have no effect on the

image.

Now since Gr(αi)→ ker(L)×{0}⊕{0}×halo(L) with ker(L)∩halo(L) = {0}, then

theorem V.1.1 shows that ρ2(αi) = 1 for i ≥ N and thus ρ2(Ai) = ρ2(αi)ρ
2(βi) = ρ2(βi) for

all i ≥ N . Then since ρ is continuous on Sp(Vg) we see that the right-most equality below

holds;

lim
i→∞

ρ2(Ai) = lim
i→∞

ρ2(βi) = lim
i→∞

ρ2(φi) = ρ2(φ)

and ρ̂(L) := ρ2(φ) is indeed continuous.

Theorem I.4.2. There exists a unique, real valued continuous function ∆̂ constant on fixed

endpoint homotopy classes of paths in L2n such that for any path γ : I → Sp(2n) we have

that ∆̂(Gr(γ)) = 2∆(γ).
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Proof. We begin by restating the construction of the extended mean index for arbitrary

paths γ : I → L2n using the unique continuous map θ̂ : I → R satisfying θ̂(0) ∈ [−π, π) and

(ρ̂ ◦ γ)(t) = eiθ̂(t) for all t ∈ I. Then if we let ∆̂(γ) = θ̂(1)−θ̂(0)
2π it is both continuous and

well defined modulo fixed endpoint homotopy classes by construction and since ρ̂ = ρ2 on

Λ0
2n
∼= Sp(2n) its clear that any γ ⊂ Sp(2n) has θ̂(t) = 2θ(t) and thus,

∆̂(Gr(γ)) =
2θ(1)− 2θ(0)

2π
= 2∆(γ).
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Part VI

Properties of ∆̂ over

Stratum-Regular Paths
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VI.1 Continuity of Compatible Path Compositions

We proceed in continuing the work we began in section II.4, first by defining com-

patibility among the stratum-regular paths (shown in proposition II.4.10 to be an open and

dense subset of C1([0, 1],L2n)). Recalling definition II.1.2 we note that PrI : L2n →
⊔n
k=0 Ik

is the map sending each L ∈ Lk2n to the associated isotropic pair (ker(L),halo(L)) ∈ Ik when

1 ≤ k = dim(ker(L)) ≤ n. When k = 0 we recall that PrI is identically zero on the open

and dense subset Im(Gr) = L0
2n ⊂ L2n, where zero in this case refers to the trivial isotropic

pair I0 := {0} as in remark II.1.5. In other words, since L ∈ Λ0
2n if and only if there exists

A ∈ Sp(V ) for which L = Gr(A), then for all A ∈ Sp(V ) we have PrI(Gr(A)) = {0} =: I0.

Definition VI.1.1. Given any γ ∈ Preg(L2n) we define

[γ] := {τ ∈ Preg(L2n) | PrI(τ(t)) = PrI(γ(t)), ∀t ∈ [0, 1]}

and call this the set of γ-compatible paths.

Remark VI.1.2. One may observe that this definition is trivially satisfied for all but finitely

many t ∈ [0, 1] when restricted to the stratum-regular γ, as such paths reside in Λ0
2n for all

but finitely many t ∈ [0, 1] by proposition II.4.18. In this manner we might ‘trim down’ our

definition to a finitary one by giving an equivalent definition in terms of the finite partitions

induced by each γ ∈ Preg(L2n) given in definition VI.1.4 below. The above definition is a

vestigial feature better suited to the larger class of paths as described in remark I.4.9.

We now show that γ-compatibility is an equivalence relation on the set of stratum-

regular paths.

Proposition VI.1.3. Given any stratum-regular γ, τ ∈ [γ] we have that γ ∈ [γ] and [γ] = [τ ].

Additionally, since every γ ∈ Preg(L2n) is contained within [γ], we see that the collection of
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subsets,

{[γ] | γ ∈ Preg(L2n)}

is a disjoint covering of Preg(L2n).

It follows that γ-regularity is an equivalence relation on Preg(L2n), see proof VI.3

for more details.

We note that proposition VI.1.3 implies that any statement regarding a pair of

elements τ, ξ ∈ [γ] (e.g. the quasimorphism bound) is independent of whatever γ is chosen to

represent the compatibility class. This implies we may safely set ξ = γ in such cases without

loss of generality.

Definition VI.1.4. Each compatibility class [τ ] induces the following two objects.

1. A finite partition (ti)
M
i=1 of the unit interval:

0 ≤ t1 < t2 < · · · < tM ≤ 1,

where each time ti is such that for every representative γ ∈ [τ ], at least one of the index

images γK([ti, ti + ε)), γK((ti − ε, ti]) is non-constant for all ε > 0.

2. The collection {Ui}Mi=0 of open subsets of [0, 1] given by,

Ui =



[0, t1) i = 0

(ti, ti+1) 1 ≤ i ≤M − 1

(tM , 1] i = M if tM < 1

(tM−1, 1) i = M if tM = 1

are defined such that any γ ∈ [τ ] is constant on each.
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The pair {Ui}Mi=0 , {ti}
M
i=1 of subset collections together form a disjoint cover of [0, 1],

M⋃
i=0

Ui ∪
M⋃
i=1

{ti} = [0, 1].

over which Im(γ) is partitioned into M+1 open paths in Λ0
2n
∼= Sp(V ) and M singletons

{ti} when γ(ti) ∈ L1
2n.

In other words, letting γK = dim(ker(γ))(t), this partition marks each time ti at

which γK has a discontinuity (each of which are isolated jump discontinuities from the 0th

to the 1st stratum), which happen finitely often due to our regularity condition (see proposi-

tion II.4.18). More precisely, we have,

γ−1
K (1) = {ti}Mi=1 and γK(t) = 0 for t ∈ [0, 1] \ {ti}Mi=1 =

M⋃
i=0

Ui.

The following lemma VI.1.5 is a technical step necessary in both stating and proving

corollary I.4.7 and theorems I.4.6, I.4.8. This lemma’s proof has been relegated to section VI.3

in addition to proof VI.3 for proposition VI.1.3 (that compatibility of stratum-regular paths

is an equivalence relation) as they each constitute necessary, albeit technical steps.

Lemma VI.1.5. Consider any compatibility class [γ] ⊂ Preg(L2n) and representative γ ∈ [γ]

and recall the associated partition {ti}Mi=1 of the unit interval. If we let φi := γ|Ui : Ui →

Sp(V ) then there exists a sequence of bounded paths φ̃i : [ti, ti+1] → Sp(V ) (so that ∆(φ̃i)

is well defined) for which ∆(φ̃i) = ∆̂(φi)
34 for each 0 ≤ i ≤ M . Consequently ∆̂ may be

decomposed via concatenation with respect to the partition,

∆̂(γ) =

M∑
i=1

∆̂(φi) =

M∑
i=1

∆(φ̃i).

34This equality is slightly incorrect in that the scaling factor of 2 that is an artifact of squaring ρ is absent.
We have decided to omit it as it’s entirely inconsequential for the proof, as the scaling is uniform over all φi
and over all intervals.
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Theorem I.4.6. Given any γ, τ ∈ [γ] ⊂ Preg(L2n) both γ ◦ τ and τ ◦ γ are well defined

piece-wise differentiable paths in L2n. In particular both γ ◦ τ and τ ◦ γ are stratum-regular

and γ-compatible for all τ ∈ [γ] as is γi ∈ [γ] for any i ≥ 1.

Proof. We proceed given any stratum-regular γ and any γ-compatible τ by invoking defini-

tion VI.1.4 on [γ] to obtain the partition {ti}Mi=1 and decomposition {Ui}Mi=0. Then from the

definition of γ-regularity we first note that PrI(γ(t)) = PrI(τ(t)) for all t ∈ [0, 1] which is

trivially satisfied on the Ui where PrI(γ(t)) = PrI(τ(t)) = {0}. More importantly we have

PrI(γ(ti)) = PrI(τ(ti)) = (ker(γ(ti)),halo(γ(ti))) ∈ I1
∼= RP2n−1 × RP2n−1 \ Ĥ1. We will

proceed referring to these isotropic pairs in terms of the representative γ.

Then recalling theorem III.2.6, we see any L,L′ ∈ L1
2n for which PrI(L) = PrI(L

′)

yield a pair of unique decompositions,

L = B1 × {0} ⊕ {0} ×B2 ⊕Gr(φ)

L′ = B1 × {0} ⊕ {0} ×B2 ⊕Gr(φ′),

where φ, φ′ ∈ Sp(Bω1 ∩Bω2 ) ∼= Sp(2n− 2). Then, with respect to this decomposition we have,

L ◦ L′ = B1 × {0} ⊕ {0} ×B2 ⊕Gr(φφ′)

L′ ◦ L = B1 × {0} ⊕ {0} ×B2 ⊕Gr(φ′φ),

where the products φφ′, φ′φ are the usual group operation on

Sp
(
Bω1 ∩Bω2 , ω̃|Bω1 ∩Bω2

)
.

Now in terms of the 0th stratum intersections, lemma VI.1.5 produces a collection of symplectic

paths φi, ηi : Ui → Sp(V ) for each 0 ≤ i ≤ M such that each φi := γ|Ui and ηi := τ |Ui . It

follows from the group isomorphism L0
2n
∼= Sp(V, ω) that the differentiability of τ and γ
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implies that their composites τ ◦ γ and γ ◦ τ are each differentiable on Ui for all 0 ≤ i ≤ M

(since Lagrangian composition and group multiplication coincide on the 0th stratum).

All that remains to be shown is that the composite path τ ◦ γ is continuous at

each ti. Without loss of generality we will continue only proving the result for τ ◦ γ as the

corresponding proof for γ ◦ τ is identical. Similarly we will also only consider the question of

continuity from one side of ti, i.e. t → t−i for t ∈ Ui, as the two-sided limit is a consequence

of the aforementioned claim after reversing the time of the path in a neighborhood about ti

and applying the above again to (τ ◦ γ)|Ui as t→ t−i , effectively proving the desired result for

t→ t+i .

So considering any ti−1 for i ≤ M at which γK is discontinuous, we may consider

some sequence {al}∞l=1 (without loss of generality) for which ti−1 < al for all l ∈ N and al → t−i

as l→∞. Recall that γ(ti) and τ(ti) share the symplectic splitting V = Vs(ti)
ω
⊕Vg(ti) where

Vg(ti) := dom(γ(ti))∩ ran(γ(ti)) is the 2n−2 dimensional symplectic vector space over which

the graph parts φ(ti), η(ti) of γ(ti), τ(ti) are defined while Vs = V ωg is the 2 dimensional

symplectic subspace on which φl := φi(al), ηl := ηi(al) diverge as l→∞.

Then since

lim
l→∞

Gr(ηl|Vg ) = τ(ti)|Vg×Vg and lim
l→∞

Gr(φl|Vg ) = γ(ti)|Vg×Vg ,

and Lagrangian composition coincides with the symplectic group operation via the graph map

on L0
2n we see that,

lim
l→∞

Gr(ηlφl)|Vg×Vg = lim
l→∞

(τ(al) ◦ γ(al))|Vg×Vg = τ(ti) ◦ γ(ti)|Vg×Vg .

Since (γ ◦ τ)(al) = φi(al)ηi(al) for all l ∈ N the product does indeed converge to the correct

Lagrangian subspace of Vg × Vg (the graph portion) and all that remains to be shown is that

the vanishing (diverging) subspaces of the product η(al)φ(al) converge to γker(ti) and γhalo(ti)
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respectively as l→∞. In particular we desire,

lim
l→∞

Gr(ηlφl))|Vs×Vs = τ(ti) ◦ γ(ti)|Vs×Vs .

That is to say, since Vs ⊕ Vg = V and,

τ(ti) ◦ γ(ti) = τ(ti) ◦ γ(ti)|Vs×Vs ⊕ τ(ti) ◦ γ(ti)|Vg×Vg , (VI.1.1)

we see that Gr(ηiφi) converges to τ(ti) ◦ γ(ti) on Ui provided proposition VI.1.7 below holds.

To proceed in proving proposition VI.1.7 we must be certain that the limit of our

symplectic product graphs Gr(ηlφl) does not end up in H as l→∞.

Proposition VI.1.6. The limit K := liml→∞Gr(ηlφl) /∈ H.

Proof. We suppose K ∈ H, then there exists a sequence of normalized vectors vl → v 6= 0 in

V such that v ∈ ker(K)∩ ran(K). It follows from the kernel membership that |(ηlφl)(vl)| → 0

as l → ∞ and from the range that |φ−1
l η−1

l (vl)| < ∞. If we let wl = φl(vl)
|φl(vl)| we see from

membership in the kernel that one of two possibilities exist:(a) |ηl(wl)| → 0 or (b) |φl(vl)| → 0

and |ηl(wl)| <∞. In both cases |ηlφl(vl)| <∞ which ensures that liml→∞ vl = v /∈ halo(K)

(Recall that the vl are normalized).

It follows that [v]ran 6= 0 for [v]ran ∈ ran(K)/ halo(K) yet we have shown that

[v]dom = 0 in dom(K)/ ker(K) which yields our contradiction. Namely the map

KGr : dom(K)/ ker(K)→ ran(K)/ halo(K),

is guaranteed to be symplectic and in particular, a well defined function so that KGr([0]dom) 6=

[0]ran provides a (rather significant) contradiction (see proposition III.2.1 for more details on

the aforementioned map KGr).

To finish the proof we prove the aforementioned proposition.
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Proposition VI.1.7.

lim
l→∞

Gr(ηlφl))|Vs×Vs = τ(ti) ◦ γ(ti)|Vs×Vs .

Proof. Since K := liml→∞Gr(ηlγl) /∈ H we may invoke theorem V.2.1 to obtain a sequence

of symplectic splittings ElS
ω
⊕ Elg = V for which Els converges to some Ṽs. Additionally

equation (VI.1.1) shows that Elg → Vg as l → ∞. Then since Vg = V ωs by theorem III.2.6

(which we are able to use thanks to proposition VI.1.6) we see that it must be that Ṽs = Vs

so that Ṽs = ker(K) ⊕ halo(K) = Vs and we need only show that the elements of vs vanish

(diverge) appropriately. That is to say ker(K) = ker((τ ◦ γ)(ti)) and halo(K) = halo((τ ◦

γ)(ti)).

Since these are one dimensional subspaces we may do this via computation. Begin-

ning by letting 〈v〉 = ker(γ(ti)) we see that |(ηlφl)(v)| 6→ 0 if and only if v ∈ halo(τ(ti)) since

|φl(v)| → 0. Then since ker(γ(ti))∩ halo(γ(ti)) = {0} and halo(γ(ti)) = halo(τ(ti)) this can’t

be possible and the only alternative is that |(ηlφl)(v)| → 0 and ker((τ ◦ γ)(ti)) = ker(K).

Similarly for 〈w〉 = halo(γ(ti)) we see that |(ηlφl)−1(w)| 6→ 0 if and only if w ∈

ker(η(ti)) which as above, can’t be true as it implies non-transversality of the kernel and halo

so we obtain the corresponding result halo((τ ◦ γ)(ti)) = halo(K) as a consequence.

As detailed above, the theorem follows from equation (VI.1.1) as proposition VI.1.7

is true. That is, (τ ◦ γ)(ti) = K = ker(γ)×{0}⊕ {0}× halo(γ)⊕Gr(φiηi) and the path τ ◦ γ

converges to the appropriate K = (τ ◦ γ)(ti) ∈ L1
2n and therefore is continuous at each of the

ti, ergo continuous on [0, 1]. Since φi ◦ ηi ∈ C1(Ui,Sp(V )) for all 0 ≤ i ≤M we see that γ ◦ τ

is piece-wise differentiable on [0, 1], with the only possible discontinuities in the derivative

occurring at the ti.
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VI.2 The Quasimorphism Bound

We begin by stating an immediate corollary of the previous section and lemma VI.1.5,

namely that of homogeneity.

Corollary I.4.7. The extended mean index ∆̂ is homogeneous over any stratum-regular γ,

∆̂(γl) = l · ∆̂(γ).

Recall that theorem I.4.6 implies γl is the piece-wise differentiable path given by point-wise

composition as written in definition I.3.2.

Proof. This proof will be pleasantly brief compared to the previous one. We begin with

lemma VI.1.5 to see for any l ∈ N and γ ∈ Preg(L2n) that

∆̂(γl) =

M∑
i=0

∆̂(φli) =

M∑
i=0

∆(φ̃li) =

M∑
i=0

l ·∆(φ̃i) = l · ∆̂(γ).

Now we recover the quasimorphism bound on the compatibility classes.

Theorem I.4.8. For any γ ∈ Preg(L2n) and τ ∈ [γ] the Lagrangian mean index ∆̂ satisfies

|∆̂(γ ◦ τ)− ∆̂(τ)− ∆̂(γ)| < C

where C depends only on [γ], i.e. the above bound is uniform on each compatibility class35.

Proof. Consider two compatible paths a, b : [0, 1]→ L2n. Then by definition they share a unit

interval partition, 0 ≤ t1 < · · · < tN ≤ 1 and thus also share intervening intervals Ui ⊆ [0, 1]

over which we will denote the restrictions αi, βi : Ui → Sp(V ) where a|Ui = Gr(αi) and

35Whether there exists a bound which is uniform over all compatibility classes is unlikely to be shown via this
method, as arbitrary numbers of intersections with higher strata are possible meaning any attempt in taking
the supremum over all compatibility classes without somehow normalizing with respect to this intersection
count would lead to C →∞ (as C is a linear function of M = | Im(γ) ∩ L12n|.)
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b|Ui = Gr(βi) for all i ≤M . These two maps, being unbounded paths in the symplectic group

with Gr(αi(t)) → L ∈ L2n possess ‘bounded approximations’ α̃i, β̃i : Ki → Sp(V ) where

Ki = cl(Ui). As the construction of these bounded paths is purely technical, we postpone the

details until the proof of lemma VI.1.5 below and simply define them here.

Definition VI.2.1. Given a path φ : (0, 1)→ Sp(V ) for which ||φ(t)|| → ∞ and Gr(φ(t))→

L0, L1 ∈ L2n as t → 0, 1, we define the bounded approximation φ̃ : [0, 1] → Sp(V ) of φ as

a path for which there exists some sufficiently small ε > 0 such that φ̃|[ε,1−ε] = φ|[ε,1−ε] and

∆̂(Gr(φ)) = ∆(φ̃). Here ∆̂(Gr(φ)) is defined over the closure of the path Gr(φ) : [0, 1]→ L2n

where Gr(φ(t)) = L0, L1 for t = 0, 1 respectively. For details regarding the existence and

construction of φ̃ see proof VI.3 below.

Now recalling lemma VI.1.5, we have

∆̂(a) =

M∑
i=1

∆(α̃i)

∆̂(b) =

M∑
i=1

∆(β̃i)

∆̂(a ◦ b) =

M∑
i=1

∆(α̃iβ̃i),

where the product α̃iβ̃i is the usual group operation on Sp(V ) identified with L0
2n via the

graph map. We now reconcile the fact that these paths are highly unlikely to originate at the

same point, let alone the origin. We construct a trio of paths pα̃i , pβ̃i , pα̃iβ̃i : I → Sp(V ) for

each i ≤M which originate at the identity and which terminate at the initial points of α̃i, β̃i

and α̃iβ̃i respectively.

We recall lemma I.3.9 as given in the introduction wherein the universal cover of

Sp(2n) may be written as

S̃p(2n) =
{

(g, c) ∈ G× R | ρ(g) = eic
}
,
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with group action given by,

(g1, c1) · (g2, c2) = (g1g2, c1 + c2).

We consider the homotopy classes of paths originating at the identity and terminat-

ing at α̃i(0) denoted P̃Id,α̃i(0)(Sp(2n)), on which we wish to choose pα̃i such that |∆(pα̃i)|

is minimized. If we suppose ∆([pα̃i ]) is not minimal in P̃Id,α̃i(0)(Sp(2n)) then the group ac-

tion of π1(Sp(2n)) on the universal cover along with lemma I.3.9 implies there exists a deck

transformation (identified with concatenation) induced by some nonzero [l] ∈ π1(Sp(2n))

so that for some [p′α̃i ] ∈ P̃Id,α̃i(0)(Sp(2n)) we may write [pα̃i ] = [p′α̃i ] ∗ [l]. It follows that

∆([pα̃i ]) = ∆([p′α̃i ] ∗ [l]) so that |∆([pα̃i ])| = |∆([p′α̃i ]) + ∆([l])| > |∆([p′α̃i ])| since the mean

index of a non-trivial loop is non-zero. Repeat this procedure on any [pα̃i ] enough times and

we will reach the point where the homotopy class [pα̃i ] has minimal (absolute value) mean

index. We repeat the same procedure for both [pβ̃i ] and [pα̃iβ̃i ] and assume they too have

minimal (absolute value) mean index.

Explicitly the definition of ρ implies that the worst case scenario would be a path

with identical S1 eigenvalues each oriented such that the quadratic form im(ω(z, z′)) over the

generalized eigenspace of said eigenvalue has 2n positive real eigenvalues. In either case for

any path α̃i that has undergone the above minimization procedure we see ρ(pα̃i) = (θt)n so

that |∆(pα̃i(t))| = nθ. It follows that the maximal rotation of θ = 2π yields |∆(pα̃i)| ≤ n.

Indeed, by the previous argument if |∆(pα̃i)| > n this would imply the existence of some

identity based loop q and path from Id to ãi(0) for which pα̃i = p′α̃i ∗ q which violates our

minimality assumption. The same holds for β̃i and α̃i ◦ β̃i as well so that we may choose each

connecting path such that,

|∆(pα̃i)|, |∆(pβ̃i)|, |∆(pα̃iβ̃i)| ≤ n.
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It follows that we have three concatenated paths, lα̃i := α̃i ∗ pα̃i , lβ̃i := β̃i ∗ pβ̃i and lα̃iβ̃i :=

(α̃iβ̃i) ∗ pα̃iβ̃i with concatenated domain Ji being the union of the Ki = Cl(Ui) with the

domain of the identity-based connecting paths.

Then since ∆ is additive under concatenation we see,

|∆(α̃i)−∆(lα̃i)| ≤ n

|∆(β̃i)−∆(lβ̃i)| ≤ n

|∆(α̃iβ̃i)−∆(lα̃iβ̃i)| ≤ n,

and since lemma VI.1.5 shows that ∆̂(αi) = ∆(α̃i), ∆̂(βi) = ∆(β̃i) and ∆̂(αi ◦ βi) = ∆(α̃iβ̃i),

it follows that the above estimates allow us to write,

∣∣∣∆̂(a ◦ b)− ∆̂(a)− ∆̂(b)
∣∣∣

≤
M∑
i=1

∣∣∣∆̂(αi ◦ βi)− ∆̂(αi)− ∆̂(βi)
∣∣∣

=

M∑
i=1

∣∣∣∆(α̃iβ̃i)−∆(α̃i)−∆(β̃i)
∣∣∣

≤
M∑
i=1

3n+ |∆(lα̃i◦β̃i)−∆(lα̃i)−∆(lβ̃i)|

= 3Mn+

M∑
i=1

|∆(lα̃i◦β̃i)−∆(lα̃i)−∆(lβ̃i)|

< M(3n+ c) <∞.

Thus for every compatibility class [γ], and pair of compatible paths γ, τ ∈ [γ] the quasimor-

phism property holds for C = M(3n+ c).

Remark VI.2.2. The size of the bound is almost certainly a gross overestimate and an arti-

fact of the partitioning procedure into some arbitrary number of symplectic paths. Regardless

the uniform bound c we have over each Sp(V ) indeed translates over in this special case. The

sensitivity to parameterization is now becoming so prominent it would be fair to characterize
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it as ‘distressing’; every τ ∈ [γ] is likely to immediately leave the set of γ-compatible paths

upon any perturbation of the time scale. Similarly any perturbation of τ as an element in

Preg(L2n) will have the same result, a loss of compatibility with γ. It follows that arbitrary

perturbations of τ in the space of differentiable paths C1([0, 1],L2n) do not preserve compat-

ibility class. If we restrict ourselves to those perturbations τ ε which preserve each base path,

PrI(τ(t)) = PrI(τ
ε(t)) (or in our case the sequence {PrI(τ((ti))}Mi=1) then τ ε will remain both

stratum-regular and γ compatible, which may be the best sort of stability we could hope for.

VI.3 Proof of Proposition VI.1.3 and Lemma VI.1.5

We begin with the promised proof of proposition VI.1.3.

Proof: Proposition VI.1.3. We consider the two paths as before and observe that any stratum-

regular ξ is γ-compatible if and only if it is τ -compatible;

ξ ∈ [γ]⇔ ξ ∈ [τ ],

so the two sets must be identical.

In regards to the covering of the stratum-regular paths by compatibility classes, we

note that every stratum-regular path is contained within its own compatibility class implying

that the above collection indeed covers Preg(L2n)36. Now consider any pair γ, τ of stratum-

regular paths for which [γ] 6= [τ ] and suppose there exists ξ ∈ [γ]∩ [τ ] 6= ∅. Since γ and τ are

not compatible (yet ξ is compatible with both) there exists some t0 for which PrI(ξ(t0)) =

PrI(τ(t0)) 6= PrI(γ(t0)) = PrI(ξ(t0)). No such ξ exists and we have,

[γ] 6= [τ ]⇒ [γ] ∩ [τ ] = ∅.
36Note that theorem II.4.15 shows this is in fact an equivalence relation on an open and dense subset of

C1([0, 1],L2n).
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Then letting γ, τ, ξ be stratum-regular, we see that the binary relation of γ-compatibility is

indeed an equivalence relation;

– Reflexive: γ ∈ [γ],

– Symmetric: γ ∈ [τ ]⇔ τ ∈ [γ],

– Transitive: γ ∈ [τ ], τ ∈ [ξ] ⇒ γ ∈ [ξ].

Remark VI.3.1. Denoting γ ∈ [τ ] as γ ∼comp τ , we see that the set of equivalence classes is

well defined and isomorphic to a certain collection of finite sequences with strictly increasing

real part,

Preg(L2n)/ ∼comp∼= C1([0, 1],L0
2n) ∪

∞⋃
M=1

{
(ti, Li)

M
i=1 ∈ [0, 1]× I1 | ti < tj ⇔ i < j

}
.

If we had used the definition as discussed in the remark I.4.9 above (that |π0(γ−1(Lk2n)| <

∞ for all 0 ≤ k ≤ n) this set would be far more complicated due to the non-transverse

intersections.

Now we finally come to proving our key technical lemma VI.1.5. It is essentially a

continuous analogue of theorem V.2.1, and while the hypothesis may be easily generalized to

2 ≤ k ≤ n we only prove the lowest case k = 1 below in an attempt at efficiency.

Lemma VI.1.5. Consider any compatibility class [γ] ⊂ Preg(L2n) and representative γ ∈ [γ]

and recall the associated partition {ti}Mi=1 of the unit interval. If we let φi := γ|Ui : Ui →

Sp(V ) then there exists a sequence of bounded paths φ̃i : [ti, ti+1]→ Sp(V ) (so that ∆(φ̃i) is

well defined) for which ∆(φ̃i) = ∆̂(φi) for each 0 ≤ i ≤M .

Consequently ∆̂ may be decomposed via concatenation with respect to the partition,

∆̂(γ) =

M∑
i=1

∆̂(φi) =
M∑
i=1

∆(φ̃i).
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Proof. We denote the graph portions of the (transverse) intersections of Im(γ) and L1
2n at

each ti (recall definition VI.1.4) by Φi = PrSp(γ(ti)) ∈ Sp(Vg(ti)) ∼= Sp(2n − 2) for each

0 ≤ i ≤M recalling that

Vg(ti) := (ker(γ(ti))⊕ halo(γ(ti)))
ω ∈ SG2n−2(V ),

where SG2k(V ) = {W ∈ Gr2k(V ) |ω|W is nondegenerate} is the Grassmannian of 2k dimen-

sional symplectic subspaces of V for 1 ≤ k ≤ n. Assuming for some ε > 0 that both

Φi and φi(t) (the graph part of γ|Ui(t) = Gr(φi(t))) have semi-simple eigenvalues for all

0 ≤ i ≤ M and t ∈ (ti, ti + ε] ∪ [ti+1 − ε, ti+1), then we see from [49] that the eigenvalues of

each φi(t) (with repetition) form a continuous path37 approaching ti, ti+1 in the space of un-

ordered C-tuples (as in the proof of theorem V.2.1), (λ)−i : (ti, ti + ε]→ C̃2n := C2n/S2n and

(λ)+
i : [ti+1− ε, ti+1)→ C̃2n. As opposed to the proof for theorem V.2.1, we will be assuming

each (λ)i(t) is an unordered list of all eigenvalues (obviously with repetition if necessary) and

not concerning ourselves with the extra symplectic structure associating certain quadruples

and pairs.

Without loss of generality we will be working with the connected component (ti, ti+ε]

and in doing so will use (λ) (omitting the i-index altogether) to refer to the path (λ)−i as

defined above. We let (λ̂) ∈ C̃2n−2 denote the eigenvalues of Φi (the reduced dimension is

a consequence of Φi ∈ Sp(2n − 2)) and recall that the topology induced on the space C̃2n is

homeomorphic to C2n and is generated by the metric defined in equation (V.2.1);

d((λ), (τ)) = minσ∈S2nmaxi≤2n|λσ(i) − τi|.

Then since maxj≤2n|λj | ≤ |(λ)| = |σ(λ)| for all (λ) ∈ C̃2n (where the maximum

runs over each eigenvalue λj ∈ (λ) and |(λ)| denotes the usual norm on C2n applied to the

37Note that these are only continuous on (ti, ti + ε], as by design a pair of these eigenvalues will diverge as
t→ ti+.
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unordered tuple), we see that | ∗ | : C̃2n → R is a well defined continuous function. This

implies that the unordered tuple (λ) is bounded (with respect to the above minimax metric)

as t→ t+i if and only if |(λj)2n
j=1| <∞ for any ordering (λj)

2n
j=1 of (λ).

This bornological structure allows us to distinguish two distinct subsets of eigenval-

ues based on their asymptotic behavior; the following map is well defined for all t ∈ (ti, ti + ε]

given sufficiently small ε,

is,g(t) : Cn/Sn → C2/S2 × C2n−2/S2n−2

λ(t) 7→ (λs(t), λg(t)),

where the λs(t) is defined as the subset {λj}2j=1 ⊂ (λ) for which given any δ > 0 there

exists s ∈ (ti, ti + ε] such that either |λj(t)| < δ or |λj(t)| > δ−1 for each j = 1, 2 and for

all s ∈ (ti, t). In other words λs consists of those eigenvalues quadruples/pairs which are

unbounded38 (alternatively vanishing) as t → t+i ; i.e. |λs(t)| → ∞ as t → t+i . On the other

hand λg(t) consists of those eigenvalues which remain bounded and non-zero as t → t+i and

therefore λg(t) converges to a unique set of (unordered) eigenvalues λg(ti) := limt→t+i
λg(t)

which must be identical to (λ̂) = Spec(Φ(ti)) ∈ C2n−2/S2n−2 due to continuity.

Now consider a continuous bounded map r : [ti, ti + ε] → [1,∞) for which λg(t) ⊂

D2
r(t) for each t ∈ [ti, ti + ε] (where D2

r is the open disk of radius r). The boundedness as-

sumption is possible precisely since |λg(t)| is bounded as t→ t+i . We note from the symmetry

of symplectic eigenvalue quadruples that r(t) is also large enough such that λg(t) is contained

in the open annulus Ar(t) for all t ∈ [ti, ti + ε] (thereby implying that λs(t) is contained

in the complement) where Ar =
{
z ∈ C̃2n | r−1 < z < r,

}
for any r > 1. Then since the

eigenvalue path λg(t) consists of distinct eigenvalues which don’t vanish and are bounded as

t → t+i then as shown in [49] for sufficiently small ε there exists a continuous path of sym-

38This could also suffice as a definition by letting λs be the smallest subset of eigenvalues in (λ) for which
every |λs| diverges or vanishes.

105



plectic eigenspaces Eg : (ti, ti + ε]→ SG2n−2(V ) corresponding to the λg (symplectic as each

eigenspace of φi(t) is symplectic) which converge as t→ t+i . Setting Eg(ti) := limt→t+i
Eg(t)

we assume now that the domain of the Eg is the closed interval [ti, ti+1]. Then continuity

implies Eg(ti) ≤ dom(Φi) as an application of lemma V.2.4 guarantees that the image of the

co-isotropic projection Eg(t) → halo(γ(ti)) is eventually zero on a sequence approaching ti

from the right, and a simple proof by contradiction shows this holds in the continuous case

on [ti, ti + ε]. We note these are the image of a contour integral of the continuous resolvent,

Pg : [ti, ti+ε]×V → Eg(t). for which Eg(ti) ∼= Vg(ti) by restricting the co-isotropic projection

dom(γ(ti))→ dom(γ(ti))/ ker(γ(ti)) ∼= Vg(ti) to Eg(ti) as in lemma V.2.5.

Remark VI.3.2. We note an analogous total eigenspace Es(t) for λs(t) does not necessarily

exist since that set contains eigenvalues which merge at the exceptional point λ = 0.

We may write a more explicit version of the above argument using the graph resol-

vent, denoting the circle of radius r as S1
r , we may give each Pg(t) : V → Eg(t) as,

Pg(t, v) =
1

2πi

∫
∂At

(φi(t)(v)− z Id)−1dz,

where ∂At = S1
r(t) ∪ S1

r(t)−1 is the boundary of the annulus At as defined above with outer

radius r(t) and inner radius r−1(t) (where the bar indicates a reversed orientation).

If we let j : V → Vg(ti) denote the projection along Vs(ti) onto Vg(ti) (where Vs(ti) =

ker(γ(ti)) ⊕ halo(γ(ti)) ∼= V ωg ) then the subset of W ∈ SG2n−2(V ) for which (j|W , ω|W )

is a symplectic isomorphism is open and dense in SG2n−2(V ); j|W is an isomorphism if

and only if W t Vs(ti). It follows that for sufficiently small ε that the path of symplectic

isomorphisms j|Eg(t) =: Ii(t) : Eg(t)→ Vg(ti) induces a unique continuous path of symplectic

maps βi : [ti, ti+ε]→ Sp(Vg(ti)) such that I(ti) = Id ∈ Sp(Vg(ti)) (implying that βi(ti) = Φi).

Additionally we see that the following holds for all t ∈ [ti, ti + ε],
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– I(t) ◦ φi(t)|Eg(t) ◦ Ii(t)−1 = βi(t),

– (ρ ◦ φi|Eg(t))(t) = (ρ ◦ βi)(t).

If the above is satisfied then the following diagram commutes where both the top

and bottom sequences, Vs(ti)→ Eg(t)
I(ti)
� Vg(ti) and Vs(ti) ↪→ V

I(ti)
� Vg(ti) are exact.

Eg(t)

Vs(ti) Vg(ti)

V

I(ti)|Eg(t)

I(ti)

Figure VI.1: All injective maps are inclusions and the symplectic form is preserved throughout.

We are about ready to construct our bounded approximation φ̃i but first we must

set up the necessary notation for the other side of Ui, namely the boundary neighborhood

[ti+1 − ε, ti+1). We let Fg : [ti+1 − ε, ti+1] → SG2n−2k(V ) denote the continuous path of

eigenspaces, Îi(t) : Fg(t) → Vg(ti+1) the family of isomorphisms and β̂i : [ti+1 − ε, ti+1] →

Sp(Vg(ti+1)) the associated symplectic path. It follows that βi|Eg(t) and β̂i|Fg(t) converge to

Φi ∈ Sp(Vg(ti)) and Φi+1 ∈ Sp(Vg(ti+1)) as t→ t+i , t
−
i+1 respectively.

Recalling the symplectic decomposition V = Els ⊕ Elg, φl = αl ⊕ βl as shown in

theorem V.2.1 for all but finitely many l, we may choose a pair of sequences {ai}∞i=1 , {bi}
∞
i=1

for which ai, bi ∈ Ui for all i ∈ N and that ai → t+i and bi → t−i+1 as i → ∞. Then for all

ε > 0 there exists some N ∈ N large enough such that

• ρ2(α(ai)) = ρ2(α̂(bi)) = 1 for all i > N .

• aN ∈ (ti, ti + ε] and bN ∈ [ti+1 − ε, ti+1).

Now we may fix the pair of elements αN ∈ Sp(ENs ) and α̂N ∈ Sp(FNs ) from the divergent

sequence of symplectic maps so that ENs t Eg(t) and FNs t Fg(t) for all t ∈ [ti, ti + ε] and
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[ti+1− ε, ti+1] respectively. With these we may now ‘pause’ either sides’ divergent term αl, α
′
l

at l = N ∈ N large enough such that ρ(αN ) = ρ(α̂N ) = 1 with the plan of effectively stopping

the divergent terms in their tracks (although not before they’re safely hyperbolic as shown in

theorem V.1.1) near ti, ti+1 while letting their graph portions continue on as usual (so as to

preserve the mean index).

Below we define the ‘bounded approximations’ on each Ui,

φ̃i(t) :=



αN ⊕ φi|Eg(t) ti ≤ t ≤ aN

φi(t) aN < t < bN

α̂N ⊕ φi|Fg(t) bN ≤ t ≤ ti+1 .

Since ρ2(αN ) = ρ2(α̂N ) = 1 we see that for all t ∈ [ti.ti+1] that

ρ2(φ̃i(t)) = ρ̂(γ(t)),

so that in particular, ρ2(φ̃i(t)) = ρ2(φi(t)) for each t ∈ Ui.

Then any pair of lifts, θ̂ of ρ̂ ◦ γ : [ti, ti+1] → R (lifting the path in L2n) and θ̃ of

ρ ◦ φ̃i : [ti, ti+1]→ R (lifting the bounded approximation in Sp(V )) for which

θ̂

(
ti + ti+1

2

)
= θ̃

(
ti + ti+1

2

)
∈ (−π, π]

must be identical everywhere from the above identity; ρ2(φ̃i(t)) = ρ̂(γ(t)). It follows from

θ̂ (t) = θ̃ (t) for all t ∈ [ti, ti+1] that we have

θ̂ (ti+1)− θ̂ (ti)

2π
=
θ̃ (ti+1)− θ̃ (ti)

2π
,

and thus ∆̂(φi) = ∆(φ̃i) for each i ≤ M , which concludes the lemma after noting ∆̂’s

additivity with respect to concatenation.
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Part VII

Concluding Remarks
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VII.1 The Extended Mean Index on L2

As mentioned above, when ∆ is restricted to paths in Sp(2n) originating at the

identity then lemma I.3.8 may be applied to write ∆ : S̃p(2n) → R. This is defined via the

association of any γ where γ(0) = Id with some g ∈ S̃p(2n) by setting g := γ̃(1) (where γ̃ is

the lifted path). This map is clearly onto as S̃p(2n) is path connected and is one-to-one on

fixed end-point homotopy classes of paths.

Remark VII.1.1. The subgroup of π1(L2) given in the example below lies in the kernel of ∆̂

so that the corresponding covering space E has the property that any [γ] ∈ π1(L2) which lifts

to a non-trivial loop [γl] ∈ π1(E) has ∆̂(γ) = 0. In other words, when defined on E the mean

index is zero on a loop in L2 only if that loop, when lifted to E, is non-trivial. It remains

unclear whether these non-trivial loops arising from the removal of H should be tossed out

or if they carry important information which should not simply be ignored.

Example VII.1.2. For Sp(2,R) ↪→ L2 we have the nice geometric interpretation; Sp(2,R) ∼=

D2 × S1 so that we may write

Λ2 = S2 × S1/ ∼1
∼= D2 × S1/ ∼2,

where ∼1 identifies (x, t) ∼1 (−x,−t) for all (x, t) ∈ S2 × S1. On the other hand ∼2 has one

element equivalence classes for all interior points (r, θ, t) ∈ [0, 1) × S1 × S1 with non-trivial

identifications occurring only in the boundary on which antipodal points are identified with

respect to the second S1 term while the boundary of D2 is left fixed; (1, θ, t) ∼ (1, θ, t + π).

The two models may be reconciled by seeing each D2×{t} as the identified pair of the upper

hemisphere of S2×{t} and the lower hemisphere of S2×{t+ π}, explaining why the quotient

maps are so different. We write p ∈ S2 × S1 using cylindrical coordinates on the S2 term;

110



p = (z, θ, t) ∈ [1, 1]× S1 × S1 and see that

L2
∼= (S2 × S1/ ∼) \ {(0, θ, π/2) ∼ (0, θ + π, 3π/2)} ,

i.e. we have removed the (now identified) equators from the spheres at t = π/2, 3π/2. We

observe that L2 may be identified as a subset of the latter quotient in a nearly identical

manner.

Generated using Mathematica 10 c© [90]

Figure VII.1: The interior of the solid torus corresponds to Λ0
2
∼= Sp(2) while the rest of

Λ2, namely Λ1
2, is the quotient of the boundary torus using the aforementioned identification,

depicted here by two pair of like colored ellipses (note the lack of rotation in the minor radius).
The exceptional set H is depicted in red (drawn at both identified components for clarity),
connecting the co-oriented surface of parabolic transformations in blue at a shared ‘circle at
infinity’.

We now consider the fundamental group as promised in remark I.3.13. It’s an easy

observation that π1(L2) = Z[η] ∗ Z[τ ] where [η] is the push-forward of the generator for

π1(Sp(2)) and τ corresponds to a loop about the missing circle, i.e. the fundamental group of

L2 is the free group on two generators;

Consider the minimal covering space Pr : E → L2 satisfying the following condition;

that any non-trivial loop in L2 with zero mean index has a lift homotopic to some non-trivial
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[η] [τ ]•

Figure VII.2: The simplest model space X = S1 ∨ S1 for which π1(L2n) ∼= π1(X).

element in π1(E). In terms of group theory we seek the minimal cover E for which the

induced subgroup Pr∗(π1(E)) of Z[η] ∗Z[τ ] consists of those fully reduced homotopy words of

the type ηlτη−l, which we may characterize formally as the following subgroup of infinitely

many generators;

Pr∗(π1(E)) =
〈
ηlτη−l | ∀l ∈ Z

〉
.

This particular covering space is depicted below in figure VII.3 in terms of the analogous

cover over S1 ∨ S1.

• • • •[η]

[τ ]

[η]

[τ ]

[η]

[τ ]

[η]

[τ ]

[η]

Figure VII.3: A covering space for S1 ∨ S1 analogous to the covering space E, note the
similarities with figure VII.4 below. Such an identification is possible after establishing some
isomorphism π1(S1 ∨ S1) ∼= π1(L2) ∼= Z ∗ Z.

Remark VII.1.3. We first note that Pr∗(π1(E)) = 〈gi〉i∈N is isomorphic to the infinite

rank free group where ei := ηiτη−i. Despite this we note that the above graph depicted in

figure VII.3 is maximally symmetric39 which is equivalent (see [40]) to Pr∗(π1(E)) being a

normal subgroup of π1(L2) where the symmetries referenced above correspond to the quotient

group π1(L2)/Pr∗(π1(E)) ∼= Z of deck transformations on E (namely, arbitrary left and

right shifts). We also observe that for each L ∈ L2, the group of deck transformations acts

39In the sense that any vertex may be mapped to any other vertex in a manner preserving the edge labels
(such a cover is often referred to as normal, regular or Galois).
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transitively on the fiber Pr−1(L) and E → L2 has the structure of a principal Z bundle.

Generated using Mathematica 10 c© [90]

Figure VII.4: The covering space E is depicted here as two attached copies of D2 × R, the
blue and orange helical cylinders (see below for an explicit construction) while the red rings
represent the connected components of Pr−1(H). Note that each adjacent pair is in fact just
one circle (as above in figure VII.1), their single point of contact is due to the boundary
identifications only being shown along a single line. A significant alteration was required
in that the orange helical cylinder is involuted about the minor axis so as to ensure the
identifications which fix the minor radius are possible to depict in three dimensions (see the
boundary identifications on the upper left). More importantly, the orange copy has been
rotated about its major axis by π (recall t 7→ t+π), signaled in the figure by the red and blue
dots, the first of which lies in Pr−1(Id) and the latter in Pr−1(− Id).

We may alternatively construct E in a geometric fashion (see figure VII.4 above);

let K = ∂D2 × (π2 + πZ) = Pr−1(H) and φ : ∂D2 × R → ∂D2 × R be a map identifying the

boundary of a solid cylinder with another via (θ, t) ∼φ (θ, t+ π) for all t ∈ R. Then it follows

we may realize E as a pair of infinite solid cylinders (helical cylinders above) identified along

their boundaries via φ,

E = (D2 × R) t (D2 × R)/ ∼φ \K.

Remark VII.1.4. One might recall our alternate definition I.3.10 in which the extended
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mean index is characterized as the lift ∆̂ : L̃2n → R of the map j∗ρ̂ : L̃2n → S1 where

j : L̃2n → L2n is the covering map. This lift is well behaved in the classic case of Sp(V ) in

part because of the isomorphic fundamental groups π1(Λ2n) ∼= S1 whereas in our case some

redundancy is likely to exist in L̃2n for many n ≥ 2 (like it does when n = 1 as seen in

example VII.1.2 above). An analogous procedure for larger n may exist40 which could use

the correspondence between inclusion in the subgroup lattice of π1(L2n) and the presence of

non-trivial coverings generating a lattice of covering spaces (up to isomorphism) to identify

an analogous covering space E for n ≥ 2.

VII.2 Smooth Canonical Relations

Our extended mean index encounters significant issues even with linear canonical

relations and in particular, to apply our Lagrangian mean index to the tangent projections of

paths along Lagrangian submanifolds will impose significant constraints on said submanifold,

two of which follow below would be necessary to define the mean index of a path on a

Lagrangian submanifold.

1. First we require (M,ω) be a symplectic manifold with dim(M) = 4l for some l ∈ N and

let L be a Lagrangian submanifold. Then there must be a smooth bundle decomposition

TM = B⊕C whereB →M and C →M are 2l dimensional real vector bundles modeling

the source and target equipped with some unique bundle isomorphism B ∼= C without

which critical concepts such as ker(TxL) would be meaningless. It is common to consider

smooth relations M ×M for symplectic manifolds M for which this property holds by

construction.

40This is assuming that the codimension of H leads to some form of regularity in the fundamental group
sequence (πi(L2n))i∈N in the sense that they’re are all (or mostly all) large free groups, in which case the rich

theory for free groups of countable rank [52] may prove useful.
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2. Next we would need that TxL /∈ LagGr(TxM) \ Hx for all x ∈ L (or at least for

all x ∈ γ(I), that is the path we are linearizing must stay away from such points)

where Hx = {L ∈ LagGr(TxM) |πBx(L) ∩ (L ∩ ({0}x × Cx)) 6= {0}x} as well as some

further transversality conditions as detailed in [88] (provided we intend on composing

our canonical relations). This leads to the question of whether there exists any global

obstructions to a Lagrangian submanifold satisfying these conditions, as well as the

possibility that such Lagrangian submanifolds may be rare or non-existent for large

classes of manifolds satisfying the first property.

3. Many of the proofs referenced in the introduction rely on ∆ being a quasimorphism, and

although we have partially recovered a mimicry of the property, the associated group

theoretic implications are still lost and perhaps are only recoverable in a more general

algebraic setting (e.g. free path groupoids).

The question of which smooth canonical relation framework to work in is also an

immediate question. Perhaps the most promising is the Wehrheim-Woodward method applied

to Lagrangian relations found in [87] and [53]. The highly selective category WW(SLREL)

(far too intricate to describe here) may be described in part by the techniques used in the lin-

ear case. Namely, the authors replace the usual Lagrangian Grassmannian with the ‘indexed

Lagrangian Grassmannian’ LagGr•(V ). As a set LagGr•(V ) = Λ2n ×N albeit equipped with

a topology quite different from the product topology (which they call the Sabot topology).

They use a discrete metric d(L,L′) = codim(L ∩ L′) (codimension relative to L or L′) to

define a partial order (L, k) � (L′, k′) ⇔ d(L,L′) ≤ k′ − k used to produce a basis for the

topological space (Λ2n×N, T ) under which the above function becomes continuous, albeit at

the very heavy price of losing the T1 separation axiom (though fortunately it does remain T0).

Additionally, the properties established regarding composable tuples of Lagrangian relations
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(L1, L2, . . . , Ln) may in particular yield information in the context of time-dependent flows

where the iterated return maps (relations) may be distinct. Another benefit of the potential

application of the mean index in WW(SLREL) is the ability to coherently form a composi-

tion of distinct L,L′ ∈ L2n (in a manner avoiding the rather ad hoc procedures found in the

results of part VI) so that bounds of the type |∆̂(L ◦ L′)− ∆̂(L)− ∆̂(L′)| may be defined in

a more natural way.

Alternatively one might use the extended mean index to define the mean index of

unbounded paths of symplectomorphisms in graph to L ∈ L2n, perhaps near unbounded

punctures of pseudoholomorphic curves or along Hamiltonian flows on open manifolds.

VII.3 Refining the Notion of an Exceptional Lagrangian

Proposition VII.3.1. Such a Vg as described in proposition III.2.6.2 with an associated

unique φ ∈ Sp(Vg) exists if dim((Lω1 ⊕Lω2 )∩ (L1 ∩L2)) ≤ r = dim(Lω1 ∩Lω2 ) where dim(L1 ∩

L2) = 2n − 2k + r for some 0 ≤ r ≤ k. In particular this shows that the hypothesis of

theorem III.2.6 is not a necessary one for some L ∈ Λ2n to possess a uniquely determined graph

portion. See equation (II.3.1) for the isotropic pair invariants used above and example VII.3.2

below for such a Lagrangian in R2n.

Proof. We first claim that such a Vg exists when

dim((L1 ∩ L2)/(Lω1 + Lω2 ) ∩ (L1 ∩ L2)) ≥ 2n− 2k.

It is important to note that L1 ∩ L2 is no longer necessarily symplectic. The above

certainly implies the existence of a Vg ≤ L1 ∩ L2 such that dim(Vg) = 2n − 2k as well as

condition (3) of the proof for theorem III.2.6, that is Vg ∩ Lωi = {0} since Vg ⊂ L1 ∩ L2.

Whether Vg as constructed is still a viable method for producing this isomorphism remains to
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be shown. Since (L1 ∩L2)/((Lω1 +Lω2 )∩ (L1 ∩L2)) carries a unique reduced symplectic form

ωred([v], [w]) = ω(v, w) we may choose symplectic V̂g ≤ (L1∩L2)/((Lω1 +Lω2 )∩(L1∩L2)) with

dimension 2n − 2k and choose Vg ≤ L1 ∩ L2 such that Vg ∼=
π1,2

V̂g. Then since π∗1,2ωred = ω

on L1 ∩L2 ≤ V it follows that Vg will be a symplectic subspace of V . Thus the above bound

guarantees the existence of Vg such that φ ∈ Sp(Vg). We observe that

dim((L1 ∩ L2)/(Lω1 + Lω2 ) ∩ (L1 ∩ L2)) ≥ 2n− 2k ⇔

(2n− 2k + r)− dim((Lω1 + Lω2 ) ∩ (L1 ∩ L2)) ≥ 2n− 2k ⇔

dim((Lω1 + Lω2 ) ∩ (L1 ∩ L2)) ≤ r = dim(Lω1 ∩ Lω2 ).

In the context of Lorand’s classification equation (II.3.1) we see that κ = 0 (i.e. L ∈

H) implies r = 0 and indeed dim((Lω1⊕Lω2 )∩(L1∩L2)) = dim((ker(L)⊕halo(L))∩Vg) = 0.

Despite the continuity transversality requirement (namely ker(L) ∩ halo(L) = ∅)

being equivalent to r = 0, we see that here a larger r seems to add room for potential

domains analogous to our Vg to fit inside L1∩L2 and survive the quotienting process, thereby

retaining a dimension of 2n − 2k. As r ≤ κ and κ − r ≤ n − k, it appears that a small

κ − r (perhaps even κ = r) is ideal in this context (expressing the symplectic quotient map

in the fiber as an explicit symplectic map on some subspace of V ). This is fairly surprising

when compared to the traditional transversality requirement required to ensure continuity of

composition that r = 0, particularly considering there’s often little concern with a non-zero κ

in such applications. It suggests that these two situations are disjoint in the sense that, even

if they each might work for a large number of the possible invariants (r, κ, k) individually,

they’re likely to only work simultaneously in the nicest of situations (e.g. our assumption that

κ = r = 0).

Example VII.3.2. An explicit example of the existence of Lagrangian L where κ(L) 6= 0,
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yet φ is uniquely determined follows below. Due to the nature of the bounds imposed on

the invariants found in equation (II.3.1) such an L exists only when n ≥ 3, indeed since any

L ∈ Λ1
4 has either r = 0 or r = 1 then either L /∈ H or dom(L) = ran(L) respectively. Let

L = 〈(e1, 0), (e2, 0), (e3, f3), (f3, e3), (0, e1), (0, f2)〉 ≤ R6 × R6

where (ei, fi)
3
i=1 is a Darboux basis and L is Lagrangian.

We observe that L1 = 〈e1, e2, e3, f3〉, L2 = 〈e1, e3, f2, f3〉, Lω1 = 〈e1, e2〉 and Lω2 =

〈e1, f2〉. Thus dim(L1 ∩ Lω2 ) = 1 yet Vg = 〈e3, f3〉 ≤ L1 ∩ L2 satisfies Vg ∩ Lωi = {0} for

i = 1, 2. Additionally we see that

φ =

0 1

1 0

 ,

with respect to the basis (e3, f3). Verifying with the above lemma we see that indeed

dim((Lω1 + Lω2 ) ∩ (L1 ∩ L2)) = 1 ≤ r since r = dim(Lω1 ∩ Lω2 ) = 1.

Conjecture VII.3.3. For each L ∈ Λ2n consider the tuple of isotropic pair invariants

(kL, rL, κL) = (dim(ker(L)),dim(ker(L) ∩ ran(L)),dim(dom(L) ∩ ran(L))),

associated to (ker(L),halo(L)) ∈ IkL as shown in [62]. Letting Ĥ := {L ∈ Λ2n | 0 < rL < κL},

then ρ̂ may be continuously extended to L̂2n := Λ2n \ Ĥ.

We see that since rL ≤ κL by definition and in this notation H = {L ∈ Λ2n | 0 < rL}

so that Ĥ ⊂ H and L2n ⊂ L̂2n. It is unlikely codim(Ĥ) > 2 although the added elements in

L̂2n may have another benefit in enlarging L2n to satisfy certain groupoid axioms like those

found in [65].

We conclude the thesis with the very essence of anti-climax; a mundane example

justifying the extension of the square of ρ as referenced in remark I.3.15. Namely, we exhibit
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the failure of continuity for ρ when extending to L2n even for those symplectic maps with all

real eigenvalues.

Example VII.3.4. Given a Darboux basis (ei, fi)
n
i=1 for a symplectic vector space V consider

the two following sequences of symplectic matrices,

Ak := Diag(1/k, . . . , 1/k︸ ︷︷ ︸
n times

, k, . . . , k)

Bk := Diag(−1/k, . . . , 1/k,−k, . . . , k).

We observe for each k that ρ(Ak) =
∏n
i=1 1 = 1 and ρ(Bk) = −

∏n
i=2 1 = −1, i.e.

each Ak is positive hyperbolic and each Bk negative hyperbolic. Then writing limk→∞Ak = A

and limk→∞Bk = B we see as k →∞ we may write the following with respect to the above

Darboux coordinates,

Gr(Ak) =
〈(
e1,

e1

k

)
, . . . ,

(
en,

en
k

)
, (f1, kf1) , . . . , (fn, kfn)

〉
→ 〈(e1, 0), . . . , (en, 0), (0, f1), . . . , (0, fn)〉 ,

Gr(Bk) =

〈(
e1,
−e1

k

)
, . . . ,

(
en,

en
k

)
, (f1,−kf1), . . . , (fn, kfn)

〉
→ 〈(e1, 0), . . . , (en, 0), (0,−f1), . . . , (0, fn)〉 .

Thus both Gr(Ak) → L ← Gr(Bk) yet ρ(Ak) = 1 6= −1 = ρ(Bk) while ρ2(Ak) = 1 = ρ2(Bk)

for all k ∈ N.
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Structure of the Regions of Stability of Linear Canonical Systems of Differential
Equations with Periodic Coefficients], Uspekhi Mat. Nauk 10 (1955), no. 1(63), 3–
40, (Russian edition). Amer. Math. Soc. Transl. 2 (1958), no. 8, 143–181, (English
edition).
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