UC Irvine
ICS Technical Reports

Title
Behavioral modeling of DRACO : a peripheral interface ASIC

Permalink
https://escholarship.org/uc/item/0gz176xd

Authors

Gupta, Rajesh
Dutt, Nikil D.

Publication Date
1990-06-19

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0qz176xg
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected Y
by Copyright Law
(Title 17 U.S.C.)

_BEHAVIORAL MODELING OF DRACO:
A PERIPHERAL INTERFACE ASIC

by

Rajesh Gupta
Nikil D. Dutt

Technical Report 90-13

Information and Computer Science
University of California at Irvine
Irvine, CA 92717

Keywords

ASIC Design Modeling, Design Specification, VHDL, Reverse
Engineering from Data Sheets.

Behavioral Modeling of DRACO:
A Peripheral Interface ASIC

by

Rajesh Gupta
Nikil D. Dutt

Abstract

This paper describes the behavioral modeling of DRACO, a peripheral interface Application
Specific Integrated Circuit (ASIC) developed by Rockwell International for numerical con-
trol a,pp]jca.tions‘. The behavioral model was generated from a data sheet of the fabricated
chip, which primarily described the chip’s input-output functionality, physical and opera-
tional characteristics, and a functional block diagram. The data sheet contained very little
abstract behavioral information. This report describes the abstract behavioral model of the
DRACO chip, and uses flowcharts and VHDL to capture the behavior. The behavioral
model was developed through reverse engineering of the data sheet description, supple-
mented by further consultation with designers of the DRACO ‘ASIC at Rockwell Interna-
tional. The report describes typical behavioral test sequences that were applied to the
DRACO VHDL model to verify its correctness. The appendices contain the original

DRACO datasheet and the VHDL code used to capture DRACO’s behavior.

TABLE OF CONTENTS
CHAPTER
1. INTRODUGTION .cuiiiiieieeeiiitrieriieeeeieieeeeeseeesesaneessisesessesssssseassssessssssssssserssnssssssessas 1
2. ROCKWELL DRACO CHIPoovcirirreiiirneireieeiensressnieessesssssesssessesasesssns sesessssnsssanes 3
2.1. Functional Description of DRACOoeiiiiiiiiiiieiieeeecniescrreeeecesreseeeeeessnsnnes 3
2.2. DRACO’s Structural Modelccccceerrmiiiiiiieiniieecreceercniesccreneeessreseer e eessanens 6
3. BEHAVIORAL MODEL OF DRACO ..ouitiiecieiireeecietecreecesreeesesseesaeessteessnsnnnennns 6
4. VHDL DESCRIPTION OF DRACO ..cccovtiiieeiieiinieeecrereeseeeesreeecesennaee seae e e s sssnanns 19
4.1. Treatment of Timing Constraintsccceceereriiiiiieiiinceireirecrece e sesreeene e 19
4.2, Type DeclaTationsccciecicreeeeiiiiieiieiiieeestireeeesesieveeeesenrraeee s nssasees essesssnsseesns 21
4.3. Resolution Functionscccceevvvveerieiieennnneeniennnni ettt et et se e e e e r e sesreaas 21
4.4. Stimulus to the VHDL DeSCTiptionccccceeeeeveeirieiieecieeieceeeeeeseeeeeceeneseseesnneens 22
4.5. Simulator Specifics: Vantage and Zycadcccceovevirecieeiniriieicneiescceeeseneenns 22
5. EXAMPLES .ottt ettt ae e st e st e e e e e e e st e e s e e e seteaeseanernnaeennan 23
oI 5 5411 o) L= OO OO T USES 23
5.2, EXAIMPIE 2 cuveveuieeiieeeieeeeeecteteeeeceetesees et e st stssest st st s sesaeneneesesenaneeaeseaeane 24
ST TR 5 5411 o) LT OO USRS 27
5.4, EXAMPILE 4 ..oeeereeiieiiieeeriiites et et ee e e e s ere s e e e et e se st anteeeaeeneesranseanaeanans 30
5.5, EXAMPIE 5 oeeveeiieiieeiieiiee st e se et e s s be e e ae s sate e e srsatesanes 33
6. AcCKknowledZementscccueeereiriiieiiieieiei et et 40
7. SUININATY cevevevrereeteneesueeeeeeereerseseresiesenssresnnssanssssnsssssessesesseneenssssisssesssssansssnnsssssessnssnaes 40
8. RETEIOICES tiiuiiiiieiiiee ettt ettt esate e e sbaee e s et e ae s snneans 41
APPENDIX A. Rockwell DRACO Data Sheet ..cieiiieivieiecceeereeceeeeeee e eeerneae e 42
APPENDIX B. VHDL Source Code for DRACO ...coiieiieiiieeeieeenerever e e saeenee e 74
June 19, 1990 Modeling DRACO Page i

i
I
I

1. INTRODUCTION

A commercial chip design is typically described using logic schematics and data sheets
which give a structural and functional view of the design from a logic designer’s perspec-
tive. Unfortunately, such a description does not describe the abstract behavior of the
design in a complete fashion. Although some of this behavioral information may be present
in each chip’s data sheets and schematics, the lack of complete, more rigorous behavioral
descriptions of chip designs is a pressing problem faced by many system houses, chip
manufacturers and end users. With technological changes occurring at such a rapid pace,
chip designs can become obsolete quickly, requiring retargetting of the intial design
specification to a new technology or library. Since there is no well documented behavioral
description of the design, retargetting of the design is a tedious process involving the
reverse engineering of the schematics and data sheets to understand the abstract behavior
of the design. This means a longer time to design, and therefore a longer time to a finished

product, in a market where chip designs get obsolete very quickly.

Furthermore, chip complexities are increasing at a tremendous pace; by the year 1994,
we can expect to see a microprocessor-on-a-chip with 6 million transistors on a 750 sq.
mm. die, delivering 200 mips of performance running on a 100 Mhz clock [Sumn89]. To
cope with this explosion of design complexity, there is an urgent need for design tools that
capture designs at higher levels of description, and which automate higher levels of the
design process, so that design alternatives can be explored quickly and accurately. More-
over, several nationally recognized figures have indicated that the competitiveness of the
U.S. semiconductor industry is dependent on our ability to integrate tools that permit rapid

turnaround of chip designs, from concept, all the way to manufacturing [IEEE90].

June 19, 1990 Modeling DRACO Page 1

All of these indicators underscore the need for better design specifications using more
rigorous media such as behavioral hardware description languages. Such specifications can
provide behavioral models for simulation, verification and synthesis of designs. They also

document the design in a systematic, comprehensible fashion, removing the need for reverse

engineering of lower level descriptions.

In this report, we attempt to describe the behavior of a commercial chip design
(DRACO) developed by Rockwell International. Rockwell’s design specification for
DRACO consisted of a data sheet and a set of VHDL netlists (schematics) representing the
final chip design. The functionality in the data sheet only described the block diagram of
the chip and a description of its input-output characteristics. There was no comprehensive
abstract behavioral description of the chip available at Rockwell International. As a result,

there were no behavioral test cases available, nor were there any typical design scenarios for

the chip.

Using this data sheet description, an abstract behavioral model of the chip was
developed using simple flow charts. This required some reverse engineering in order to
avoid references to specific hardware constructs. The flowcharts deliberately use pseudo-
‘code instead of a particular hardware description language. This facilitated easier develop-
ment of the behavioral model. Inconsistencies and clarifications were resolved by communi-
cation with designers at Rockwell International [Lars90] [Pase90]. Once the complete

behavior of the chip had been described, a set of behavioral test scenarios were developed

to test typical operational sequences of the chip.

At this point, a behavioral VHEDL (VHSIC Hardware Description Language) model of

the DRACO chip was developed. This model was subjected to test stimuli corresponding to

June 19, 1990 Modeling DRACO Page 2

the typical operational scenarios developed previously, to verify its operational correctness.

This report begins with the functional description and structural view of the DRACO
chip in sections 2 and 3. Section 4 describes the behavioral model of the DRACO chip
using flowcharts and pseudocode. Section 5 describes how DRACO was modeled in
behavioral VHDL. Section 6 gives five typical operational sequences that were used to test
the behavioral VHDL model. Appendix I contains Rockwell’s data sheet for DRACO!?,

while appendix II lists the actual behavioral VHDL code used to model DRACO.

2. ROCKWELL DRACO CHIP

DRACO is a peripheral interface Application Specific Integrated Circuit (ASIC)
developed by Rockwell International for numerical control applications. This section
reviews the functional and structural characteristics of the DRACO chip as presented in the
Rockwell DRACO data sheet. Appendix I contains the actual data sheet for DRACO,

which has a more detailed description of DRACQ’s functionality.

2.1. Functional Description of DRACO

DRACO’s basic function is to interface 16 I/O ports to a microprocessor’s 8 bit multi-
plexed address/data bus and control signals. DRACO may be connected remotely through
an 18 inch long ribbon cable. Such a configuration may introduce errors in the transmitted
signal due to Electro Magnetic Interference (EMI). To minimize any danger that may be

caused by the receipt of corrupt data, several security features have been built into

! Rockwell International has granted U.C. Irvine permission to duplicate the data sheets for educational pur-
poses.

June 19, 1990 Modeling DRACO Page 3

DRACO. These special features are:

(1)

(2)

(3)

(4)

Hardware Key: DRACO has a key which must be unlocked prior to configuring the
chip. This configuration protocol adds an extra level of security since an incorrect
configuration of the chip could result in considerable operational havoc. Further-
more, configuration registers may be written into only when the configuration is

unlocked and the I/Q ports may be written into only when data is unlocked.

Address Parity Check: DRACO may optionally be configured to perform parity

checks on all received addresses from the host.

Data Parity Check: DRACO may optionally be configured to perform data parity

checks on data received from the host and may generate parity while loading data

onto the address bus.

Checksum: DRACO generates an inverted checksum from the data to be output,

compares it with the the received checksum and updates the I/O ports only if the

checksums are equivalent.

Such extensive error checking measures ensures nearly error-free operation in the pres-

ence of EMI.

DRACO’s input-output configuration is presented in Figure 1. A description of some
g g

of DRACO’s pins follows:

ADD_DATA_BUS: The bus transfers address and data from the host to DRACO and

data from DRACO to the host.

June 19, 1990 Modeling DRACO Page 4

ADD DATA BUS !

PARITY

POWER

CE L DRACO /0 BUS

RESET L
READ_L
WRITE_L
ALE
ERROR_L

N

Figure 1. DRACO's I/O Configuration

HOST-DRACO
INTERFACE

PARITY: Carries address and data parity from the host to DRACO and data parity

from DRACO to the host.
POWER: Indicates power on / power off status.

RESET_L: This input is used to initialize all internal registers and latches; it should

be held low after power is applied.

READ_L: A low on this input causes internal read data to be placed on the address

data bus and the parity to be placed on the parity pin when data is enabled.

WRITE_L: A low to high transition on this input causes external data on the address

data bus and parity pins (when data parity is enabled) to be written into DRACO.

June 19, 1990 Modeling DRACO: Page 5

CE_L: This is a Chip enable input, which must be held low to execute a read or write

cycle.

I0_BUS: These pins carry the output data and the data to be read in from DRACO.

ERROR_L: This is an active low output which is asserted whenever an error occurs in
the data transmission between DRACO and the host microprocessor. This output will be

latched low and must be reset by the user.

2.2. DRACO’s Structural Model

The DRACO?’s structural model is shown in Figure 2. The structure consists of 6 regis-

ters and 4 D Flip Flops which store the data and DRACOQ’s configuration.

3. BEHAVIORAL MODEL OF DRACO

The behavior of DRACO can be naturally modeled using a state transition diagram

consisting of the following 8 primary states:
(1) Reset State

(2) Chip enabled

(3) Address Cycle

(4) Read Cycle

(5) Write Cycle

June 19, 1990 Modeling DRACO Page 6

ADD_LATCH MSB_BUF MSB_CON

REGISTER REGISTER REGISTER
STATUS_CON LSB_BUF LSB_CON

REGISTER REGISTER REGISTER

EKEY | EKEY_ | vauD INT
_POs | MODE |ADDRES VAR

Figure 2. Behavioral Structure For DRACO

(6) Idle
(7) Chip Disabled
(8) Power Off
Figure 3 shows the state transition diagram using these eight states.

A typical initial sequence of operations for DRACO would involve turning the power
on (Power-Up to Reset State), enabling the chip (Reset to Chip Enable State) and then
resetting the chip (Chip Enable to Reset State) so as to configure DRACO using default

settings (data/address parity off, ports set to be bidirectional, etc.). Subsequently, data can

June 19, 1990 Modeling DRACO:! Page 7

CHIP
DISABLED

Figure 3. DRACO State Diagram

Modelling DRACO

Page 8

be written into or read from DRACO.

For a data access from DRACO, the ci)ip passes through Address Cycle and the Read
Cycle. The following sequence of events occurs: Address appears on the address/data bus,
ALE goes low, READ_L goes low and finally data is placed by DRACO on the
address/data bus. When ALE goes low, data from the bus is latched into DRACO if it is

valid. DRACO places data on the bus a specified time after the READ_L signal goes low.

For writing to DRACO, the chip sequences through the Address Cycle and the Write
Cycle. The following sequence of events occurs: Address appears on the address/data bus,
ALE goes low, WRITE_L goes low, data appears on the address/data bus, and WRITE_L

goes high. When ALE goes low, the address, if valid, is latched into DRACO. When

WRITE_L goes high, data is written into DRACO.

DRACO is in the Idle State when power is on and the chip is enabled, but is not exe-
cuting the Read, Write or Address Cycles. During this state ALE, READ_L and

WRITE_L are all high. DRACO enters this state after the Read and Write cycles.

Whenever power is switched on, the chip immediately sequences to the RESET State;

there is no "Power On" State, since this is effectively the Reset State.

Each of the the 4 states Address Cycle, Write Cycle, Read Cycle and Reset Cycle are
described by secondary sequential state diagrams. The flowcharts and pseudo-code for the
Address, Write, Read and Reset Cycles are given in Figures 4, 5, 6 and 7 respectively.

These flowcharts should be fairly self-explanatory.

June 19, 1990 Modeling DRACO Page 9

Power='1',CE_L=Low and ALE goes low

begin

Yes

* Address parity on

s add_data_bus
80H/7FH/OFH/0EH/04H/
03H/02H/01H/00

Count no of '1's in
add/data bus and

parity bit

(for correct parity
sum is odd)

error_1="0"
status_con.3="1'

i

add_latch =
add_data_bus
valid_add ='1'

®1 valid_add=0

Address Cycle

Figure 4. Secondary State Diagram for ADDRESS CYCLE

Modelling DRACO

Page 10

write_L goes low

wait for data to appear on add_data_bus

Y

¢ Power='1",CE_L='0",valld_add=1 and

wait for write_L to go high

]

Data Parity On Is

* Is
status_con.1="1’

add_latch=7F H

Generate
Pariry

status_con.4=0

Is
Add_latch=80H

Is
add_data_bus

Yes Ekey_mode:o'ff' error_| ='0’
status_con'.5.= 0 - status_con.3='1"
valid_add='0 valid_add=0

End
Write Cycle

No

ekey_mode=off and
add_data_bus=AAH

Yes
Int_var="1’
valid_add='0'

| valid_add="0’ J

No

End
Write Cycle

Figure 5(a). Secondary State Diagram of WRITE CYCLE

¢ To Figure 5(b)

Modelling DRACO Page 11

-

| valid_add="0'

Yes

pkey_pos=data_unlocked
status_con.6="1"
status_con.7='0’

valid_add='0'

Is
ekey_mode =on

Is
Int_var ='1’

ekey_mode=on
status_con.5="1’
int_var ='0’
valid_add = '0’

Yes

End
Write Cycle

From Figure 5(a)

Is
Add_latch=7FH

Is
add_data_bus=AAH

ekey_mode=on

ekey_pos=config_unlocked
status_con.6='0'
status_con.7='1"

. |

[validadd=o |

End
Write Cycle

To Figure 5(c) Y

Figure 5(b). Secondary State Diagram of WRITE CYCLE (contd.)

Modelling DRACO

Page 12

From Figure 5(b)

Is Yes

add_latch=0FH

Is No

Error_L="1"
status_con.3="0"
valid_add="0’

End
Write Cycle

add_latch= 04H

Kk

Configuration Unlocked

Is
status_con.7=1

msb_con=add_data_bus

= = —p=r
error_| =0’
status_con.3 ='1'
* valid_add="'0'
End
Write Cycle
y
No
>

add_latch= 03H

Configuration Unlocked

Is o
status_con.7=1

Isb_con=add_data_bus

error_| =0’
status_con.3 = '1’
valid_add="0"

End
Write Cycle

rTo Figure 5(d)

Figure 5(c). Secondary State Diagram of WRITE CYCLE (contd.)

Modelling DRACO

Page 13

Configuration
Unlocked

*%

Only 3 Isbs are configuration

bits. The others are
status bits (read only).

From Figure 5(c)

Is No

add_latch=02H

No

Is S
status_con.7="1’

status_con.0..2=add_data_bus.0..2

ekey_mode = off -

status con5="0"

Rk ok

Checksum Enabled

Is No
key_pos=data_unlocke

Yes

Is No

error_| = '0'
status_con.3 = "1’
valid_add="0’

End
Write Cycle

error_| ='0'
status_con.3="1"
valid_add='0'

End
Write Cycle

add_latch=01H

Yes

Is No
ek k
status_con.0="1’

Yes

msb_io_bus=add_data_bus
status_con.4="1’
valid_add='0’

msb_buf-add_data_bus
valid_add='0’

End

Write Cycle

rTo Figure 5(e)

Figure 5(d). Secondary State Diagram of WRITE CYCLE (contd.)

Modelling DRACO

Page 14

From Figure 5(d)

Is No

add_latch=00H

Checksum Enabled

Is

X Isb_lo_bus=add_data_bus
status_con.0="1’

status_con.4="1'
valid_add='0'

End

Isb_buf=add_data_bus Write Cycle

valid_add="0'

Error_L="0'
status_con.3='1’
valid_add="0’

Is
status_con.0='1"*

Generate End
inverted checksum Write Cycle
of LSB and MSB
buffers

Error_L='0"
status_con.3='1’
valld_add="0’

generated checksu
=add_data_bus

Isb_io_bus=Isb_buf
msb_io_bus=msb_buf
status_con.4="1"

End
Write Cycle

Figure 5(e). Secondary State Diagram of WRITE CYCLE (contd.)

Modelling DRACO Page 15

Power=ON, CE_L=low,Address is valid
and read_L goes low

Error_L='0'
status_con.3="1’
valld_add="0’

End)
Read Cycle
Generate _
Is Yes Inverted Check- _.add_data_b;:ts_l%. check
add_latch=0EH sum of Isb and -sum after ns
msb bufs L

generate parity bit [—®

Yes
add_latch=04H add_data_bus=msb_buf [g generate parity bit >

after 20 ns

Is Yes ﬂdd_data_bus:lsb_buf - generate parlty bit

add_latch=03H after 20 ns
Is L -
add_latch=02H dd_data_bus=status_cor generate parity bit [—p

To Figure 6(b

F

To Figure 6(b)

Figure 6(a). Secondary State Diagram of READ CYCLE

Modelling DRACO Page 16

add_latch=01H

Is
add_latch=00H

status_con.1="'1"'*

End
Read Cycle

*

Data Parity
On

Figure 6(b). Secondary State Diagram of READ CYCLE (contd.)

From Figure 6(a)

From Figure 6(a) +

generate parity bit

e

add_data_bus=msb_io_bu
after 20 ns

add_data_bus=Isb_io_bus [P

after 20 ns

generate parity bit

parity=generated parity
after 20 ns

Modelling DRACO

Power goes high OR
Reset_L goes low, Power is high and
CE_L is low

status_con = OOH
Isb_con=00H
msb_con=00H

Ekey_mode = off
valid_add = '0'
Int_var = '0’

End
Reset Cycle

Figure 7. Secondary State Diagram of RESET CYCLE

Modelling DRACO Page 18

4. VHDL DESCRIPTION OF DRACO

The behavior of the DRACO chip was described in VHDL using the flowcharts and

pseudo-code as the preliminary design specification. The behavioral VHDL description

used both block and process statements.

Each of DRACO’s eight primary states was modeled using a VHDL block, in which a
resolved signal of type "state" (described later in this section) is assigned the appropriate
state value. The guard at entry to each block specifies the conditions under which a state
is to be entered, while the body of each VHDL block includes a guarded signal assignment
to the resolved signal. The Read, Write, Address and Reset Cycles were described using a

process each for the actions performed in those states.

4.1. Treatment of Timing Constraints

The timing specifications in the DRACO data sheet represent the physical characteris-
tics of the completed chip design. The data sheet did not have any behavioral timing
specifications in it. As a result, the data sheet’s timing specifications will be used as the
timing constraints which must be met by the final design. We will look into how these tim-
ing specifications get transformed into timing constraints for internal structures (register,
adder, etc.) of DRACO in forthcoming reports which will describe synthesis of the DRACO

chip.

Assertions were added to the VHDL description to validate the correct sequence of
critical signals received from the host. Error messages are reported when incorrect
sequences are encountered. For example, an attempt to write to DRACO must be preceded

by an address latch. The description, however, does not care about the minimum and

June 19, 1990 Modeling DRACO Page 19

maximum timing constraints, but only checks and ensures sequentiality. Therefore, for
error-free operation, the host only needs to make sure that it writes data into DRACO after
latching a valid address; there is no minimum (or maximum) time constraint between these

two events (latching of valid address and writing into the chip).

Moreover, the host should ensure that no two out of the four signals: read_I, write_!,
reset_| and ale become active simultaneously (the behavior of the chip cannot be predicted
if any pair of these signals is active simultaneously). However, power failures may occur at
any time. If the power signal becomes active simultaneously with any other signal, the
power signal is selected with priority while the other signal is ignored. Prioritized treat-

ment of the power-off signal is built into the resolution function of the signal representing

the chip’s state.

From DRACO’s state diagram (Figure 3), we can construct the following list which

describes the eight states and the conditions under which they are entered:

(1) RESET STATE: POWER goes high or RESET_L signal falls low and POWER is

high and chip is enabled.
(2) CHIP ENABLE: CE_L falls low and POWER is on.
(3) ADDRESS CYCLE: POWER is high, CE_L is low and ALE goes low.

(4) READ CYCLE: POWER is high, CE_L is low, VALID ADDRESS is true and

READ_L goes low.

(5) WRITE_CYCLE: POWER is high, CE_L is low, VALID ADDRESS is true and

WRITE_L goes low.

June 19, 1990 Modeling DRACO Page 20

(6) IDLE: ALE goes high, power is on and chip is enabled.
(7) CHIP DISABLED: CE_L goes high and chip is enabled.

(8) POWER OFF: POWER goes low.

4.2. Type Declarations

A user defined type state has been defined which can assume the following values:
state = { reset, chip_enabled, chip_disabled, write,

read, address, idle, power_o ff}

The DRACO chip sequences through these states as indicated in Figure 3.

4.3. Resolution Functions

Since the VHDL description has several blocks that make assignments to this signal, a
resolution function is declared to resolve the final value assigned to the state signal. This |

resolution function will give priority to the power_off state as discussed previously.

For status/configuration registers which have more than one source (for example,
status bits of the status/configuration register are updated in all the 4 cycles: read, write,
address and reset), we need to define resolution functions. Also, in some cases we need to
address individual bits of these registers, both separately and in different processes. Thus

each of the configuration registers is declared as an array of resolved bit type. Specifically,

the exact VHDL statements are:

Sfunction bit_res_fun (Input bit_res) return bit;

June 19, 1990 Modeling DRACO Page 21

subtype bitres 18 bit_res_fun bit;
status_con_reg: array (7 downto 0) of bitres Register;

The first statement declares a bit resolution function that returns a signal of type b:t.
The second statement declares a resolved signal subtype called bitres and the last state-

ment declares a register (width 8) of type bitres.

4.4. Stirmmulus to the VHDL Description

In the current VHDL description, input stimuli to the chip are generated without the
use of a stimulus/command file. Instead, the ports which carry signals to DRACO from
the host are commented out from the entity declaration and declared as signals in the
architecture body. These signals are then assigned waveforms in a process body within the
architecture. The process "generate_signals” in the VHDL description performs the func-

tion of generating input stimuli for exercising the VHEDL model.

4.5. Simmlator Specifics: Vantage and Zycad

Simulations of DRACO’s VHDL behavior were attempted on the Vantage [Vant89]

and Zycad [Zyca89] simulators.

The Zycad simulator supported the resolved types described above. However, the
Vantage simulator (version 1.203) could not simulate the description, since that version did
not support bit-slicing. A description to be simulated on Vantage would therefore require

each bit of the register status_con_reg to be separated as shown below:

June 19, 1990 Modeling DRACO Page 22

status_con_reg: bitres: fori =0t 7

With such a description, a probe file (command file) has to assign values to a register

by addressing each bit individually. This is an onerous task when dealing with even a few

registers and buses.

5. EXAMPLES

This section describes five typical operational scenarios for the DRACO chip.
Included with each scenario (labeled "Example”) are the stimulus files and the simulation

results generated by the Zycad simulator.

5.1. Example 1

The first example writes data (FFH) onto the low byte of the I/O ports. In this exam-

ple the following signals are received by DRACO:
Power on at 25 fs;

Chip enabled at 50 fs;

Following the receipt of these two signals, the chip is reset and is set to execute
further commands such as address latch and reset. In the reset state, the address parity,
data parity and checksum are off, the electronic key is off and data and configurations are

locked. To write data into the low byte of the I/O ports, the following states have to exe-

cute four times:

address cycle ----- > write cycle ------ > dle

June 19, 1990 Modeling DRACO Page 23

In the first two cycles, the electronic key is switched on; data is unlocked in the third

cycle, while data is written to the I/O ports in the fourth cycle.
Details of each cycle are given below:
cyclel: write data AAH at address 80H followed by
cycle2: write data 55H at address 7FH.
cycle3: write data 55H at address TFH
cycle4: write data FFH at address 00H

These four cycles execute between 100 fs and 500 fs. Finally the chip is disabled at

1910 fs and the power is turned off at 1920 fs after completion of these four cycles.
The stimulus file for this example is shown in Figure 8.

Tabular results obtained from the simulation are shown in Figure 9.

5.2. Example 2

This example simulates the behavior of DRACO when the parity checks are enabled.
DRACO needs to be configured to activate these checks. As with the previous example, the

following actions are required after the electronic key is switched on:
1) Unlock the DRACO configuration
2) Set the 1st and 2nd bits of the configuration register to enable parities.

The first step requires writing AAH at address 7FH, while the second step requires

writing 06H at address 02H.

June 19, 1990 Modeling DRACO Page 24

STIMULUS FILE FOR EXAMPLE 1
-- 40 LINES
GENERATE_SIGNALS:
process
begin
-- This example unlocks the key, unlocks the data and writes
-- to the Isb I/O bus.

-- POWER SIGNAL
power <="0’,
1’ after 25 fs,
’0’ after 1920 fs;

-- CHIP ENABLE SIGNAL
cel <=1,

’0’ after 50 fs,

’1’ after 1910 fs;

add_data_bus <= X"80" after 105 s,
X"AA" after 140 fs,
X"TF" after 205 fs,
X"55" after 240 fs,
X"7F" after 305 fs,
X"55" after 340 fs,
X"00" after 405 s,
X"FF" after 440 fs;

ale <=""1’,°0° after 110 fs, ’1’ after 170 fs,
’0’ after 210 fs, ’1° after 270 fs,
’0’ after 310 fs, ’1’ after 370 fs,
’0’ after 410 fs, ’1’ after 470 fs;

write_l <= "1’, °0’ after 130 fs, ’1’ after 160 s,
’0’ after 230 s, ’1’ after 260 fs,
’0’ after 330 fs, ’1’ after 360 fs,
’0’ after 430 fs, ’1’ after 460 fs;

read] <= 1}
wait;

end process GENERATE_SIGNALS;

June 19, 1990

Figure 8. Stimulus File for Example 1.

Modeling DRACO

Page 25

SIMULATION RESULTS FROM EXAMPLE 1

SMON9
SMONS8
SMON7
SMONé6
SMONS5
SMON4
SMON3
SMON2
SMON1
SMON
25 FS

SMON3:
SMON:
SMON2:
SMON:
SMON2:

50 F'S

SMON3:

105 FS

SMON1:

110 FS

SMON3:

130 FS

SMONS3:

140 FS

SMON1:

170 FS

SMON3:

205 FS

SMON1:

210 FS

SMONS3:

230 FS

SMON3:

240 FS

SMON1:

260 FS

SMON:

270 FS

SMON3:

305 FS

SMON1:

310 FS

SMON3:

330 FS

SMON3:

340 FS

SMON1:

360 FS

SMON2:

370 FS

SMON3:

405 FS

SMON1:

410 FS

SMON3:

430 FS

SMON3:

440 FS

SMON1:

460 FS

CE ACTIVE /DRACO/ERROR_L

CE ACTIVE /DRACO/MSB_BUF

CE ACTIVE /DRACO/LSB_BUF

CE ACTIVE /DRACO/DATA_BUS

CE ACTIVE /DRACO/MSB_IO_BUS

CE ACTIVE /DRACO/LSB_IO_BUS

CE ACTIVE /DRACO/CYCLE

CE ACTIVE /DRACO/EKEY_POS

CE ACTIVE /DRACO/ADD_DATA_BTUS

CE ACTIVE /DRACO/EKEY_MODE
ACTIVE /DRACO/CYCLE (value = RESET)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/CYCLE (value = CHIP_ENABLED)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"80")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_MODE (value = ONN)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_POS (value = DATA_UNLOCKED)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"00")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"FF")

June 19, 1990 Modeling DRACO

Page 26

SMON4: ACTIVE /DRACO/LSB_IO_BUS (value = X"FF")
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)

470 FS
SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

1910 FS
SMON3: ACTIVE /DRACO/CYCLE (value = CHIP_DISABLE)

1920 FS
SMON3: ACTIVE /DRACO/CYCLE (value = POWER_OFF)

2000 FS
Figure 9. Tabular Results For Example 1.

Except for the last cycle, the parity of data and addresses received by DRACO from

the host are correct. However, the address parity bit received in the last cycle is incorrect.

The tabular results obtained as a result of simulating this example are shown Figure
11. Note that a warning message is generated on receipt of incorrect parity (corrupted

data). The subsequent write cycle is also aborted since there is no valid address to write the

data.

Power is turned on at 25 fs, chip is enabled at 50 fs. In the end the chip is disabled at

1910 fs and power turned off at 1920fs.

The stimulus file for this example is shown in Figure 10.

5.3. Example 3

This example simulates the behavior for a test case which is identical to EXAMPLE 2

except that in the last cycle, the data parity (instead of the address parity) bit is received

in error.

The stimulus file for this example is shown in Figure 12.

June 19, 1990 Modeling DRACO Page 27

STIMULUS FILE FOR EXAMPLE 2
-- 59 LINES ’
GENERATE_SIGNALS:
process
begin
-- THIS PROCESS CONFIGURES DRACO TO ENABLE DATA AND ADDRESS
-- PARITIES. IT THEREAFTER UNLOCKS DATA AND WRITES FF TO THE
-- LSB I/O PORT. SINCE ADDRESS PARITY IS FALSE IN THE
-- LAST WRITE THE OPERATION IS UNSUCCESSFUL.

-- POWER SIGNAL
power <="0°,
’1’ after 25 fs,
’0’ after 1920 fs;

-- CHIP ENABLE SIGNAL
cel <=1,

’0’ after 50 fs,

’1’ after 1910 fs;

ale <="1’,°0’ after 110 fs, ’1’ after 170 fs,
’0’ after 210 fs, ’1’ after 270 fs,
’0’ after 310 fs, ’1’ after 370 fs,
’0’ after 410 fs, ’1’ after 470 fs,
’0’ after 510 fs, ’1’ after 570 fs,
’0’ after 610 fs, ’1’ after 670 fs;

add_data_bus <= X"80" after 105 fs,
X"AA" after 140 fs,
X"TF" after 205 {s,
X"55" after 240 fs,
X"TF" after 305 fs,
X"AA" after 340 fs,
X"02" after 405 fs,
X"06" after 440 fs,
X"F" after 505 fs,
X"55" after 540 fs,
X"00" after 605 fs,
X"FF" after 640 fs;

write]l <=""1’, °0’ after 130 fs, 1’ after 160 fs,
’0’ after 230 s, ’1’ after 260 fs,
’0’ after 330 fs, °1’ after 360 fs,
’0’ after 430 fs, 1’ after 460 fs,
’0’ after 530 fs, 1’ after 560 fs,
’0’ after 630 fs, ’1’ after 660 fs;

read] <= 1}
-- PARITY SIGNAL
parity <=0’ after 505 fs,
’1’ after 540 fs,
-- incorrect address parity correct data parity
’0’ after 605 fs,

’1’ after 640 fs;
wait;

end process GENERATE_SIGNALS;

Figure 10. Stimulus File for Example 2.

June 19, 1990 Modeling DRACO

Page 28

SIMULATION RESULTS FROM EXAMPLE 2

SMON9
SMON8
SMONT7
SMON6
SMONS5
SMON4
SMON3
SMON2
SMON1
SMON
25 FS

SMON3:

SMON:

SMON2:

SMON:

SMON2:

50 FS

SMON3:

105 FS

SMON1:

110 FS

SMON3:

130 FS

SMON3:

140 FS

SMONT1:

170 FS

SMON3:

205 FS

SMON1:

210 FS

SMONS3:

230 FS

SMON3:

240 FS

SMON1:

260 FS
SMON:
270 FS

SMON3:

305 FS

SMON1:

310 FS

SMON3:

330 FS

SMON3:

340 FS

SMON1:

360 FS

SMON2:

370 FS

SMON3:

405 FS

SMON1:

410 FS

SMONS3:

430 FS

SMONS3:

440 FS

SMON1:

470 FS

CE ACTIVE /DRACO/ERROR_L

CE ACTIVE /DRACO/MSB_BUF

CE ACTIVE /DRACO/LSB_BUF

CE ACTIVE /DRACO/DATA_BUS

CE ACTIVE /DRACO/MSB_IO_BUS

CE ACTIVE /DRACO/LSB_IO_BUS

CE ACTIVE /DRACO/CYCLE

CE ACTIVE /DRACO/EKEY_POS

CE ACTIVE /DRACO/ADD_DATA_BUS
CE ACTIVE /DRACO/EKEY_MODE

ACTIVE /DRACO/CYCLE (value = RESET)

ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/CYCLE (value = CHIP_ENABLED)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"80")
ACTIVE /DRACO/CYCLE (value = ADDRESS)

ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")

ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_MODE (value = ONN)
ACTIVE /DRACO/CYCLE (value = IDLE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")

ACTIVE /DRACO/EKEY_POS (value = CONFIG_UNLOCKED)

ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"02")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"06")

June 19, 1990 Modeling DRACO

Page 29

SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

5021&%N1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
5131&(3)}13: ACTIVE /DRACO/CYCLE (value = ADDRESS)

SngF?)N:i: ACTIVE /DRACO/CYCLE (value = WRITE)

54g§gm: ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
563;;%% ACTIVE /DRACO/EKEY_POS (value = DATA_UNLOCKED)
5721&?)N3: ACTIVE /DRACO/CYCLE (value = IDLE)

:%LEE)M: ACTIVE /DRACO/ADD_DATA_BUS (value = X"00")

SMON3: ACTIVE /DRACO/CYCLE (value = ADDRESS)
Assertion WARNING in BEHAVIOURAL: "ERROR 12"
SMON9: ACTIVE /DRACO/ERROR_L (value = ’0°)

izgezi;sion WARNING in BEHAVIOURAL: "ERROR 8"

6431&%N1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"FF")
6721&%»13; ACTIVE /DRACO/CYCLE (value = IDLE)

lgé%J%SNs: ACTIVE /DRACO/CYCLE (value = CHIP_DISABLE)
;zoggaﬁ):m: ACTIVE /DRACO/CYCLE (value = POWER_OFF)

Figure 11. Tabular Results For Example 2.

The tabular results for this simulation are shown in Figure 13.

5.4. Example 4

In this example both the address and data parity bits are received correctly in the last

cycle.

The stimulus file for this example is shown in Figure 14.

The results are shown in Figure 15.

Note that in this example the data does get written to the I/O bus of the DRACO

chip correctly.

June 19, 1990 Modeling DRACO Page 30

-- 54 LINES

STIMULUS FILE FOR EXAMPLE 3

GENERATE_SIGNALS:

process

-- THIS PROCESS CONFIGURES DRACO TO ENABLE DATA AND ADDRESS
-- PARITIES. IT THEREAFTER UNLOCKS DATA AND WRITES FF TO THE
-- LSB I/O PORT. SINCE DATA PARITY IS FALSE IN THE

-- LAST WRITE THE OPERATION IS UNSUCCESSFUL.

begin

-- THIS PROGRAMS
-- POWER SIGNAL
power <=0,
’1” after 25 fs,
’0’ after 1920 fs;

-- CHIP ENABLE SIGNAL

cel <=1,

’0’ after 50 fs,
’1’ after 1910 fs;

ale <="1’,°0’ after 110 s, ’1’ after 170 fs,
’0’ after 210 fs, ’1’ after 270 fs,
’0’ after 310 fs, 1’ after 370 fs,
’0’ after 410 s, ’1’ after 470 fs,
’0’ after 510 fs, ’1’ after 570 fs,
’0’ after 610 fs, 1’ after 670 fs;

add_data_bus <= X"80" after 105 fs,

write]l <=

read] <=

X"AA" after 140 fs,
X"F" after 205 {s,
X"55" after 240 fs,
X"7F" after 305 fs,
X"AA" after 340 fs,
X"02" after 405 fs,
X"06" after 440 s,
X"F" after 505 fs,
X"55" after 540 fs,
X"00" after 605 fs,
X"FF" after 640 fs;

’1°,°0’ after 130 fs, ’1’ after 160 fs,
’0’ after 230 fs, ’1’° after 260 fs,
’0’ after 330 s, 1’ after 360 fs,
’0’ after 430 fs, 1’ after 460 fs,
’0’ after 530 fs, ’1’ after 560 fs,
’0’ after 630 fs, "1’ after 660 fs;

:1!;

-- PARITY SIGNAL
parity <= "0’ after 505 {s,
’1’ after 540 fs,
-- correct address parity incorrect data parity
’1’ after 605 s,
’0’ after 640 fs;

wait;

end process GENERATE_SIGNALS;

June 19, 1990

Figure 12. Stimulus File for Example 3.

Modeling DRACO

Page 31

SIMULATION RESULTS FROM EXAMPLE 3

SMONS
SMON8
SMON7
SMON6
SMONS5
SMON4
SMON3
SMON2
SMON1
SMON
25 FS

SMON3:
SMON:
SMON2:
SMON:
SMON2:

50 F'S

SMON3:

105 FS

SMON1:

110 FS

SMONa3:

130 FS

SMON3:

140 FS

SMON1:

170 FS

SMON3:

205 FS

SMON1:

210 FS

SMON3:

230 FS

SMON3:

240 FS

SMON1:

260 FS

SMON:

270 FS

SMON3:

305 FS

SMON1:

310 FS

SMON3:

330 FS

SMONa3:

340 FS

SMON1:

360 FS

SMON2:

370 FS

SMON3:

405 FS

SMON1:

410 FS

SMON3:

430 FS

SMON3:

440 FS

SMON1:

470 FS

CE ACTIVE /DRACO/ERROR_L

CE ACTIVE /DRACO/MSB_BUF

CE ACTIVE /DRACO/LSB_BUF

CE ACTIVE /DRACO/DATA_BUS

CE ACTIVE /DRACO/MSB_IO_BUS

CE ACTIVE /DRACO/LSB_IO_BUS

CE ACTIVE /DRACO/CYCLE

CE ACTIVE /DRACO/EKEY_POS

CE ACTIVE /DRACO/ADD_DATA_BUS _

CE ACTIVE /DRACO/EKEY_MODE
ACTIVE /DRACO/CYCLE (value = RESET)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/CYCLE (value = CHIP_ENABLED)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"80")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_MODE (value = ONN)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/EKEY_POS (value = CONFIG_UNLOCKED)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"02")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"06")

June 19, 1990 Modeling DRACO

Page 32

SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

5og§gm: ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
5lgl\§gN3: ACTIVE /DRACO/CYCLE (value = ADDRESS)

5321&%}13; ACTIVE /DRACO/CYCLE (value = WRITE)

543151%1\11: ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
5621&%»12: ACTIVE /DRACO/EKEY_POS (value = DATA_UNLOCKED)
57(S)§?)N3: ACTIVE /DRACO/CYCLE (value = IDLE)

6°§§3mz ACTIVE /DRACO/ADD_DATA_BUS (value = X"00")
GlgMFgst ACTIVE /DRACO/CYCLE (value = ADDRESS)

nglﬁmsz ACTIVE /DRACO/CYCLE (value = WRITE)

:Zghzgmn ACTIVE /DRACO/ADD_DATA_BUS (value = X"FF")

Assertion WARNING in BEHAVIORAL: "ERROR 14"
SMON9: ACTIVE /DRACO/ERROR.L (value = ’0°)
670 FS

SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)
19é(1)w}(“)sN3: ACTIVE /DRACO/CYCLE (value = CHIP_DISABLE)
lgg(l)w%sﬁaz ACTIVE /DRACO/CYCLE (value = POWER_OFF)
2000 FS
Figure 13. Tabular Results For Example 3.
5.5. Example 5

In this example DRACO is configured so as to enable data and address parities as well
as the checksum mode. Power is switched on, the chip is enabled and configured.
Thereafter, the data is unlocked and data is written to the I/O ports. The data gets loaded
into the buffers since checksum is enabled. A checksum byte is written, subsequently. A
checksum of the msb and 1lsb bytes stored in the buffers is internally generated and com;
pared with the checksum obtained from the host. A generated checksum which tallies with
the checksum written by the host causes the data stored in the buffers to be transfferred to

the I/O ports. Finally, the checksum of the low and high bytes of the data stored in the

buffers is read from DRACO.

June 19, 1990 Modeling DRACO Page 33

STIMULUS FILE FOR EXAMPLE 4

-- 58 LINES

GENERATE_SIGNALS:

process

begin
-- THIS PROCESS CONFIGURES DRACO TO ENABLE DATA AND ADDRESS
- PARITIES. IT THEREAFTER UNLOCKS DATA AND WRITES FF TO THE
- LSB I/O PORT.

- POWER SIGNAL
power <=0’
’1’ after 25 s,
’0° after 1920 fs;

- CHIP ENABLE SIGNAL
cel <=7,

’0’ after 50 fs,

’1’ after 1910 fs;

ale <=1, 0’ after 110 fs, ’1’ after 170 fs,
’0’ after 210 fs, ’1’ after 270 s,
’0° after 310 fs, ’1’ after 370 fs,
’0’ after 410 fs, ’1’ after 470 fs,
’0’ after 510 fs, ’1’ after 570 fs,
’0’ after 610 fs, ’1’ after 670 fs;

add_data_bus <= X"80" after 105 fs,
X"AA" after 140 fs,
X"F" after 205 s,
X"55" after 240 fs,
X"7F" after 305 fs,
X"AA" after 340 fs,
X"02" after 405 fs,
X"06" after 440 fs,
X"TF" after 505 fs,
X"55" after 540 fs,
X"00" after 605 fs,
X"FF" after 640 fs;

write_l <= "1°, 0’ after 130 fs, ’1’ after 160 fs,
’0’ after 230 fs, 1’ after 260 fs,
’0’ after 330 fs, ’1’ after 360 fs,
’0° after 430 fs, ’1’ after 460 fs,
0’ after 530 s, ’1’ after 560 fs,
’0’ after 630 fs, ’1’ after 660 fs;

read] <= 1’

-- PARITY SIGNAL
parity <=0’ after 505 fs,
’1’ after 540 fs,
-- correct address parity correct data parity
’1’ after 605 fs,
’1’ after 640 fs;
wait;

end process GENERATE_SIGNALS;

Figure 14. Stimulus File for Example 4.

June 19, 1990 Modeling DRACO

Page 34

SIMULATION RESULTS FROM EXAMPLE 4

SMON9
SMONS8
SMONT7
SMONG6
SMONS5
SMON4
SMON3
SMON?2
SMON1
SMON
25 FS

SMON3:

SMON:

SMON2:

SMON:

SMON2:

50 FS

SMON3:

105 FS

SMONT1:

110 FS

SMON3:

130 FS

SMON3:

140 FS

SMON1:

170 FS

SMON3:

205 FS

SMON1:

210 FS

SMON3:

230 FS

SMON3:

240 FS

SMON1:

260 FS
SMON:
270 FS

SMONS3:

305 FS

SMON1:

310 FS

SMON3:

330 FS

SMON3:

340 FS

SMON1:

360 FS

SMON2:

370 FS

SMON3:

405 FS

SMON1:

410 FS

SMON3:

430 FS

SMON3:

440 FS

SMON1:

470 FS

CE ACTIVE /DRACO/ERROR_L

CE ACTIVE /DRACO/MSB_BUF

CE ACTIVE /DRACO/LSB_BUF

CE ACTIVE /DRACO/DATA_BUS

CE ACTIVE /DRACO/MSB_IO_BUS

CE ACTIVE /DRACO/LSB_IO_BUS

CE ACTIVE /DRACO/CYCLE

CE ACTIVE /DRACO/EKEY_POS

CE ACTIVE /DRACO/ADD_DATA_BUS

CE ACTIVE /DRACO/EKEY_MODE
ACTIVE /DRACO/CYCLE (value = RESET)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/EKEY_MODE (value = OFF)
ACTIVE /DRACO/EKEY_POS (value = LOCKED)
ACTIVE /DRACO/CYCLE (value = CHIP_EN ABLED)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"80")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_MODE (value = ONN)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/EKEY_POS (value = CONFIG_UNLOCKED)
ACTIVE /DRACO/CYCLE (value = IDLE)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"02")
ACTIVE /DRACO/CYCLE (value = ADDRESS)
ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"06")

June 19, 1990 Modeling DRACO

Page 35

SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

SOgMFgNl: ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
SIgMF?)NS: ACTIVE /DRACO/CYCLE (value = ADDRESS)

53g§(sm3: ACTIVE /DRACO/CYCLE (value = WRITE)

5421&?}1{1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
5631\1;%N2: ACTIVE /DRACO/EKEY_POS (value = DATA_UNLOCKED)
57(S]MF§)N3: ACTIVE /DRACO/CYCLE (value = IDLE)

6021&%N1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"00")
Slgn};gm: ACTIVE /DRACO/CYCLE (value = ADDRESS)

nglxg(s)Ns: ACTIVE /DRACO/CYCLE (value = WRITE)

::%BEE)NI: ACTIVE /DRACO/ADD_DATA_BUS (value = X"FF")

SMON4: ACTIVE /DRACO/LSB_IO_BUS (value = X"FF")
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)

670 FS
SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

1910 FS
SMON3: ACTIVE /DRACO/CYCLE (value = CHIP_DISABLE)

1920 FS
SMON3: ACTIVE /DRACO/CYCLE (value = POWER_OFF)

2000 FS
Figure 15. Tabular Results For Example 4.

The stimulus file for this example is shown in Figure 16.

The tabular results obtained as a result of simulation are shown in Figure 17.

SIMULATION RESULTS FROM EXAMPLE 5

SMON9 CE ACTIVE /DRACO/ERROR_L
SMONS CE ACTIVE /DRACO/MSB_BUF
SMON7 CE ACTIVE /DRACO/LSB_BUF
SMONG CE ACTIVE /DRACO/DATA_BUS
SMON5 CE ACTIVE /DRACO/MSB_IO_BUS
SMON4 CE ACTIVE /DRACO/LSB_IO_BUS
SMON3 CE ACTIVE /DRACO/CYCLE
SMON2 CE ACTIVE /DRACO/EKEY_POS
SMON1 CE ACTIVE /DRACO/ADD_DATA_BUS
SMON CE ACTIVE /DRACO/EKEY_MODE
25 F'S

SMON3: ACTIVE /DRACO/CYCLE (value = RESET)
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)
SMON2: ACTIVE /DRACO/EKEY_POS (value = LOCKED)
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)
SMON2: ACTIVE /DRACO/EKEY_POS (value = LOCKED)

June 19, 1990 Modeling DRACO Page 36

STIMULUS FILE FOR EXAMPLE 5
-- 85 LINES '
GENERATE_SIGNALS:
process
begin
-- This example configures DRACO to enable data parity
-- address parity and checksum. The key is in unlock config
-- positions while configuring. Thereafter the data is
-- unlocked and data is written to the lsb and msb I/O
-- ports. Subsequently, checksum is written to and read from
-- DRACO. A successful write of checksum writes data onto
-- the I/O ports.

-- POWER SIGNAL
power <=0,
’1’ after 25 1s,
'0° after 1920 fs;

-- CHIP ENABLE SIGNAL
celd <=1,

’0’ after 50 fs,

’1’ after 1910 fs;

ale <="1’, ’0’ after 110 fs, ’1’ after 170 s,
’0’ after 210 fs, ’1’ after 270 s,
’0’ after 310 fs, ’1’ after 370 fs,
’0’ after 410 fs, ’1’° after 470 s,
’0’ after 510 fs, ’1’ after 570 s,
’0’ after 610 fs, ’1’ after 670 fs,
’0’ after 710 fs, ’1’ after 770 fs,
’0’ after 810 fs, ’1’ after 870 {s,
’0’ after 910 fs, ’1’ after 970 fs;

add_data_bus <= X"80" after 105 fs,
X"AA" after 140 s,
X"TF" after 205 fs,
X"55" after 240 fs,
X"F" after 305 s,
X"AA" after 340 s,
X"02" after 405 s,
X"07" after 440 fs,
-- unlock data
X"F" after 505 fs,
X "55" after 540 fs,
-- write into the Isb buf
X"00" after 605 s,
X"08" after 640 fs,
-- write into the msb_buf
X"01" after 705 fs,
X"04" after 740 fs,
-- write inverted checksum
X"0E" after 805 fs,
X"F3" after 840 s,

-- read checksum

X"0E" after 905 fs;

write_l <=1 0 after 130 fs, ’1’ after 160 fs,
’0° after 230 fs, ’1° after 260 {s,

June 19, 1990 Modeling DRACO

Page 37

’0’ after 330 fs, ’1’ after 360 fs,

’0’ after 430 fs, ’1’ after 460 1s,

’0’ after 530 fs,”1’ after 560 fs,

’0” after 630 s, 1’ after 660 fs,
’0’ after 730 fs, ’1’ after 760 fs,
’0’ after 830 fs, ’1’ after 860 fs;

read]l <= 1,

’0° after 930 fs;

-- PARITY SIGNAL
parity <=0’ after 505 {s,

wait;

’1’ after 540 fs,
’1’ after 605 {s,
’0’ after 640 fs,
’0’ after 705 fs,
’0’° after 740 fs,
20’ after 805 fs,
’1’ after 840 fs,
’0’ after 905 fs;

end process GENERATE_SIGNALS;

50 FS

SMON3:

105 FS

SMONT1:

110 FS

SMON3:

130 FS

SMON3:

140 FS

SMON1:

170 FS

SMON3:

205 FS

SMON1:

210 FS

SMON3:

230 FS

SMON3:

240 FS

SMONT1:

260 FS

SMON:

270 FS

SMON3:

305 FS

SMONT1:

310 FS

SMON3:

330 FS

SMON3:

340 FS

SMON1:

360 FS

SMON2:

370 FS

SMON3:

405 FS

Figure 16. Stimulus File for Example 5.

ACTIVE /DRACO/CYCLE (value = CHIP_ENABLED)
ACTIVE /DRACO/ADD_DATA_BUS (value = X"80")
ACTIVE /DRACO/CYCLE (value = ADDRESS)

ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/CYCLE (value = IDLE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)

ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ACTIVE /DRACO/EKEY_MODE (value = ONN)

ACTIVE /DRACO/CYCLE (value = IDLE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
ACTIVE /DRACO/CYCLE (value = ADDRESS)

ACTIVE /DRACO/CYCLE (value = WRITE)

ACTIVE /DRACO/ADD_DATA_BUS (value = X"AA")
ACTIVE /DRACO/EKEY_POS (value = CONFIG_UNLOCKED)
ACTIVE /DRACO/CYCLE (value = IDLE)

June 19, 1990 Modeling DRACO

Page 38

SMON1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"02")

4121&9(,)N3: ACTIVE /DRACO/CYCLE (value = ADDRESS)
4331&%N3: ACTIVE /DRACO/CYCLE (value = WRITE)
44g1x};gm: ACTIVE /DRACO/ADD_DATA_BUS (value = X"07")
4731&]/;[‘?)N3: ACTIVE /DRACO/CYCLE (value = IDLE)

sogl\igm: ACTIVE /DRACO/ADD_DATA_BUS (value = X"7F")
SISMF?)N& ACTIVE /DRACO/CYCLE (value = ADDRESS)
5321&%1«3: ACTIVE /DRACO/CYCLE (value = WRITE)
54g§(sm1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"55")
ssgﬁgm: ACTIVE /DRACO/EKEY_POS (value = DATA_UNLOCKED)
573511?)}13: ACTIVE /DRACO/CYCLE (value = IDLE)

songcs)Nl: ACTIVE /DRACO/ADD_DATA_BUS (value = X"00")
Glgﬁ)m: ACTIVE /DRACO/CYCLE (value = ADDRESS)
Gagl\ics)m: ACTIVE /DRACO/CYCLE (value = WRITE)
::%éz)m; ACTIVE /DRACO/ADD_DATA_BUS (value = X"08")

SMON7: ACTIVE /DRACO/LSB_BUF (value = X"08")
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)

67g1\];(s)N3: ACTIVE /DRACO/CYCLE (value = IDLE)
7021&%1\11; ACTIVE /DRACO/ADD_DATA_BUS (value = X"01")
71215;(331%: ACTIVE /DRACO/CYCLE (value = ADDRESS)
”Sﬁgm ACTIVE /DRACO/CYCLE (value = WRITE)
::%LESDNL ACTIVE /DRACO/ADD_DATA_BUS (value = X"04")

SMONS: ACTIVE /DRACO/MSB_BUF (value = X"04")
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)

77%1&?)N3: ACTIVE /DRACO/CYCLE (value = IDLE)

soghb;(s)m: ACTIVE /DRACO/ADD_DATA_BUS (value = X"0E")
SIglvb;(s)st ACTIVE /DRACO/CYCLE (value = ADDRESS)
8331&%}13: ACTIVE /DRACO/CYCLE (value = WRITE)
::%{éz)m: ACTIVE /DRACO/ADD_DATA_BUS (value = X"F3")

SMON5: ACTIVE /DRACO/MSB_IO_BUS (value = X"04")
SMON4: ACTIVE /DRACO/LSB_IO_BUS (value = X"08")
SMON: ACTIVE /DRACO/EKEY_MODE (value = OFF)

870 FS
SMON3: ACTIVE /DRACO/CYCLE (value = IDLE)

905 FS
SMON1: ACTIVE /DRACO/ADD_DATA_BUS (value = X"0E")

June 19, 1990 Modeling DRACO Page 39

910 FS
SMON3: ACTIVE /DRACO/CYCLE (value = ADDRESS)

gsgﬁgm ACTIVE /DRACO/CYCLE (value = READ)
gsgﬁgm: ACTIVE /DRACO/DATA_BUS (value = X"F3")
9731&(531\13: ACTIVE /DRACO/CYCLE (value = IDLE)
lgégq%sm; ACTIVE /DRACO/CYCLE (value = CHIP_DISABLE)
;:%g\agnzm: ACTIVE /DRACO/CYCLE (value = POWER_OFF)

Figure 17. Tabular Results For Example 5.

6. Acknowledgements

Bob Larsen provided useful input and comments on an earlier draft of this paper.
Sanjiv Narayan and Frank Vahid helped to refine an initial behavioral model of DRACO,
and also suggested some stylistic improvements to the VHDL code used to model the
DRACO chip. Dan Gajski and Bob Larsen acted as catalysts in this industry-university

effort. The authors would like to thank all of these people.

7. Sunmmary

This report described the behavioral model of a commercial chip design named
DRACO from Rockwell International, which was initially documented with only a da,ta,'
sheet and associated logic schematics. The behavioral model was developed using
flowcharts and pseudo-code. A set of five typical operational test cases was also developed.
Subsequently, these flowcharts and test scenarios were described using behavioral VHDL
and associated stimulus files. The VHDL code was tested on two commercial simulators
(Vantage and Zycad) to verify the correctness of the behavior with respect to the opera-

tional test cases. The behavioral flowcharts, VHDL behavioral code, the stimulus files and

June 19, 1990 Modeling DRACO Page 40

results of the simulation runs are all included in this report.

Future work will attempt to use this DRACO behavioral description as input to a suite

of behavioral, logic and layout synthesis tools at U.C. Irvine.

8. References

[IEEE90] The IEEE Institute, "Save U.S. semiconductor industry now or lose technical
edge, Bush told," Volume 14, Number 1, January 1990.

[Lars90] Robert P. Larsen, Rockwell International, private communication, April 1990.
[Pase90] Dave Pasela, Rockwell International, private communication, May 1990.

[Sumn89] Larry W. Sumney, "Workstations, Semiconductors, and Competitiveness,”" Key-
note Address at the First IEEE Workstations Symposium,, Baltimore, MD,

Oct. 1989.
[VHDL87] IEEE Standard VHDL Language Reference Manual, IEEE, 1987.
[Vant89] Vantage Analysis Systems, Inc, Fremont, CA 1989.
[Zyca89] Zycad Corporation, Menlo Park, CA 1989.

June 19, 1990 Modeling DRACO Page 41

APPENDIX A.

Rockwell DRACO Data Sheet

PREPARED BY NUMBER
. ’l‘ Rockwell International 11495
Johnny Sitou ~VPE
APPROVALS PO1 Specification

Robert K. PoTkinghorn | A MICONDUCTOR PRODUCTS DIVISION

ROCKWELL INTERNATIONAL CORPORATION DATE

November 20, 1989

FSCM NO. 34576 T LTR

§0000060u0000000000000000000R0NG00000000TVES
PROPRIETARY INFORMATION OF NC

PAGE 1 of 32

SEMICONDUCTOR PRODUCTS DIVISION

NO DISSEMINATION OR USE ALLOWED
WITHOUT PRIOR WRITTEN PERMISSION

TOTAL PAGES 32

TITLE

ENGINEERING REPORT
PRODUCT: Discrete I/0 Backplane ASIC (DRACO)

PART NUMBER 11495

SYNOPSIS: This document describes the custom integrated
circuit that interfaces 1781 single and quad
discrete I/0 modules to Allen Bradley 1781
communication adapters.

June 19, 1990 Modeling DRACO

Page 42

NC

* NUMBER 11495 REV.
ROCKWELL INTERNATIONAL PAGE 2
PROPRIETARY INFORMATION FSCM NO. 34576
1. OVELVIeW . . e e e e e e 1
2. Applicatlons e 2
2.1 1781 Backplanes e 2
2.2 1781 Adapter Interface i 2
2.3 I/0 MOQULES ...ttt e e e 2
3. Functional OVerVIieWttt ittt et et et ieeeea 2
3.1 EMI Precautionsttt e e 3
3.2 User Configurationttt e 3
4. Functional Blocks e e 4
4.1 Address Decoding Block 4
4.1.1 Invalid Address / Address Parity Error Indication 5
4.1.2 ElectronicC KeY ..ttt it e e e e e e e 5
4.1.2.1 On/0ff - Unlock/Lock Encoding 6
4.2 Checksum / Parity / Error Block 6
4.2.1 Configuration Register / Status Register 6
4.2.2 Checksum Generator / Comparator 7
4.2.3 Data Parity Generator / Comparator 8
4.2.4 ETror RegiSterttt ittt e e e 8
4.3 I/0 BlOoCK .ot e e e 9
4.3.1 Updating Outputs ittt e e 9
4.3.2 I/0 Direction Register iuinnenenin.. 9
5. User Interfacesttt e e e e e e 10
5.1 Bus Interfacet e e 10
5.1.1 Embedded AdQresSsSesSttt e 10
5.2 I/0 Module Interface 12
5.2.1 Input Module Interface 12
5.2.2 Output Module Interface % 12
5.3 Pin Descriptiont e e e 13
5.4 Timing DiagramS ...ttt it ittt et e e e e e e e e e 14
5.4.1 Read Cycle with a 12MHz 80C51, 14
5.4.2 Write Cycle with a 12MHz 80CS51cciiene.on... 15
5.4.3 Read and Write Cycles Timing Values 16
5.4.4 Miscellaneous Timing Valuesc.iciuienmnienn... 17
6. General Specifications 17
6.1 PaCKagingttt e e e e 17
6.2 Electrical Specifications, 7
6.2.1 Absolute Maximum Specifications 17
6.2.2 Recommended Operating Conditions 7
7. Quality Assurance Requirementsc..ooiinionn. 18
7.1 Device MarKingst e e 18
7.2 Solvent Resistancet e 18
7.3 Product Handlingt i 18
7.4 Solderability 18
7.5 General Quality Assurance Provisions 18
7.6 Testabllity e 18
SP 131-H-30, REV. 4/89 f 89-691-1

43

SP 131-H-30, REV. 4/89

‘ NUMBER 11495 rev._ NC
3
ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576
8. Future Applications e 19
FIGURE 1 — DRACO BLOCK DIAGRAM et e et ee e 20
89-691-1

44

NC

ROCKWELL INTERNATIONAL PAGE

PROPRIETARY INFORMATION FSCM NO. 34576

1. Overview
This document defines the operation, performance characteristics

and quality assurance requirements for the 1781 discrete I/0
backplane custom integrated circuit (941425-61). The ASIC's
codename is DRACO and will be referenced as so throughout this

document.

In a general sense, DRACO is a general purpose peripheral
interface device. The function of DRACO is to interface 16 I/0
ports to a microprocessor's 8-bit multiplexed address/data bus and
control signals. DRACO has several optional features that assists
data integrity in the presence of EMI. DRACO contains a hardware
key that must be unlocked by the user prior to operation which
adds a level of security to its applications. The versatility of
the interface will allow future 1781 adapters to interface to

DRACO.

In particular, DRACO will interface de facto standard single and
quad point discrete I/0 modules (1781-xx5S and 1781-xx5Q) to
1781-Jxx remote discrete I/0O adapters. Initially DRACO will be
used with the 1781-JAD remote adapter, however, due to the generic
bus interface, DRACO will accommodate future 1781 discrete I/0

adapters.

Features of DRACO:

* 16 bidirectional I/O ports with read/write byte integrity

(16mA sink capacity)

A checksum generator/comparator for output data.

0dd parity generator/comparator for read and write addresses.

0dd parity generator/comparator for write data.

Odd parity generator for read data.

Individual selection of parity error checking on address only

or data only or both. Facilitates data parity generation. in

firmware.

* Checksum or Immediate modes for writing to output modules.
Latched error output to indicate invalid address or parity or
checksum error (reset by user).

* I/0 direction register to set I/0 ports as bidirectional or
input-only.

* Electronic key for security and to prevent inadvertent writes
to configuration and direction registers.

* Status register to read electronic key, error, and
write acknowledge status.

* Standard 8051 8-bit bus interface with optional parity.

* % ok o

SP 131-H-30, REV. 4/89 f

89-691-1

NUMBER REV.

* 11495 NC

ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576

2. Applications

2.1 1781 Backplanes

DRACO will be installed on all Allen Bradley 1781-ADxx discrete
I/0 backplanes. 1781 discrete I/0 modules will coexist with the
ASIC on the backplanes.

DRACO will be installed on the following 1781 Discrete I/0

backplanes:

1781-AD4 4 single point backplane 1 ASIC per backplane
1781-ADS8 8 single point backplane 1 ASIC per backplane
1781-AD16 16 single point backplane 1 ASIC per backplane

1781-aD4Q 4 quad point backplane(lépt) 1 ASIC per backplane
1781-AD8Q 8 quad point backplane(32pt) 2 ASICs per backplane

For additional information on these backplanes, refer to
DS#PC 4235

2.2 1781 Adapter Interface

Initially DRACO will be used in conjunction with the 1781-JAD
Discrete I/0 adapter. The adapter to DRACO interface is a
buffered 80CS51 address/data 8-bit bus plus parity and may be
connected remotely through an 18-inch long ribbon cable.
Previsions will be made within DRACO for the propagation delays
due to the buffer circuitry and ribbon cable.

2.3 I/0 Modules
All Allen Bradley 1781-xx5S and 1781-xx5Q I/0 modules will operate

with DRACO.

Other manufacturers' single/quad modules are electrically
compatible to operate with DRACO, however, the form factor of
competitor's I/0 modules will not allow non—-1781 modules to reside
in 1781-ADxx backplanes

3. Functional Overview

DRACO provides an interface from an 8-bit multiplexed address/data
bus with accompanying parity and control signals to sixteen I/0
ports. Each of the 16 I/O ports can be connected to an Allen
Bradley 1781 input or output module (or equivalent). DRACO will
accommodate a maximum of 16 input OR 16 output points OR a
combination thereof.

DRACO will operate as an I/0 mapped device to the user's
microcontroller. All data communications between DRACO and the
microcontroller is performed with read and write instructions to
embedded address locations within DRACO. DRACO provides an
interrupt signal (ERROR_L) to the host microcontroller to indicate
an unsuccessful read or write instruction. The use of this
interrupt pin is optional.

SP 131-H-30, REV. 4/89 * 89-691-1

NC

* Numeer 11495 REV.
6

ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576

DRACO has two options for writing data to output modules;
immediate and checksum. The immediate option only requires
writing output data to either the high-byte or low-byte I/O
address. Each output data byte immediately transfers to the I/O
ports. The checksum option requires writing a checksum byte in
addition to the output data before the I/0 ports are updated. The
data bytes are first buffered and validated with a checksum before
updating the I/0 ports. This option is controlled by the checksum
enable bit in the configuration register.

Due to the bidirectional I/O module interface, the user has the
ability to write to all and read from all of DRACO's 16 I/0 ports.
To prevent inadvertent writes to an input module, each port may
optionally be configured as an input-only port. An I/O direction
register can be loaded by the user to configure an I/O port as
bidirectional or read-only.

3.1 EMI Precautions

To ensure data integrity over the interconnecting cable to and
from DRACO in the presence of EMI, two forms of error checking are
available; parity and checksum. Odd parity error checking can be
performed on the address and/or data bytes to and from DRACO and
checksum error checking can be performed only on the received
output data from the host microcontrcller. These error checking
options are user selectable and are enabled by loading a
configuration register.

A situation can exist where the address received by DRACO may be
altered due to EMI and is transformed into another of DRACO's
valid address without generating a parity error. This situation
is most damaging when the configuration or direction register is
altered inadvertently. To prevent this situation, an electronic
key must be unlocked prior to any writes to the configuration or
direction register. Once configured, the electronic key will
lockout the configuration locations which will prevent these
registers from being altered in the presence of EMI.

In addition to odd parity, checksum, and an electronic key,
DRACO's embedded addresses were selected to eliminate the adverse
effect of an undetected 2-bit error on the address and thus
provide an additional level of immunity to EMI.

3.2 User Configuration
Four configuration options are user selectable within DRACO. All

configuration options can only be altered if the electronic key 1is
in the "unlock configuration" position. (See section 4.1.2) The
options are as follows:

1) ADDRESS PARITY ENABLE (Default: Disabled)
With the address parity option enabled, all addresses
received by DRACO must include valid parity in order to
execute the cycle. Once enabled, receiving an address that
generates invalid parity within DRACO will latch the ERROR_L
pin low and inhibit the instruction.

SP 131-H-30, REV. 4/89 ‘

89-691-1

47

* NUMBER 11495 rev._ NC
7

ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576

2) DATA PARITY ENABLE (Default: Disabled)
With the data parity option enabled, data for any write cycle
to DRACO must generate valid parity within DRACO in order to
execute the write cycle. Once enabled, receiving data that
generates invalid parity within DRACO will latch the ERROR_L
pin low and inhibit the instruction.

3) CHECKSUM ENABLE for output data (Default: Disabled)
With the checksum option enabled, output data transfers to
DRACO must include a checksum byte that equals the inverted
sum of the OUTPUT([15:8] and OUTPUT[7:0] data. The three byte
data transfer (output byte 1, output byte 2, checksum) adds
an additional level of data integrity to the output data that
is received by DRACO. When the user-supplied checksum equals
the DRACO generated checksum, DRACO will transfer the output
data to the output modules. Receiving or generating an
invalid checksum at DRACO will latch the ERROR_L pin low and
inhibit the outputs from being updated.

4) I/0 PORTS; bidirecticnal or input only (Default: Bidirectional)
DRACO's 16 I/0 ports can be individually configured as
bidirectional or read-only. A user may desire to configure a
port to be read-only to prevent an inadvertent write and
consequently latching the state of an input module.

4. Functional Blocks

Refer to Figure 1 at the end of this document for a block diagram of
DRACO.

DRACO is partitioned into three functional blocks: address decoding,
checksum/parity/error, and I/0 interface.

4.1 Address .Decoding Block
This block includes latching the address byte and its associated

parity bit, generating and comparing parity on the address, decoding
the address to generate control signals, and implementing the

electronic key.

The address byte and its associated parity bit is latched from the
multiplexed addr/data bus with Address Latch Enable signal (ALE).
Control signals are generated by decoding the address locations along
with chip enable, read, and write signals, parity status, and the
electronic key positions. The control signals generated in this block
are used to read from or write to internal locations.

All address decoded control signals are logically ANDED with
CHIP_ENABLE L and READ L or WRITE L and thus gated by either the
READ L or WRITE L signals. If the address parity is enabled and a
parity error develops on the address of a read or write instruction,
the address decoder is disabled and the instruction is inhibited to
prevent erroneous operation. At power-up the address latch will be
set to a default of FFH, an invalid address.

A3

SP 131-H-30, REV. 4/89 f 89-691-1

+ NUMBER 11495 Rev._ NC
8

PAGE

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION FSCM NO. 34576

4.1.1 Invalid Address / Address Parity Error Indication

Attempting to read from an invalid address will provide two
indications; the ERROR L pin will be latched low and an invalid parity
bit will be provided on the PARITY pin while the incorrect data 1is
being read from the data bus. A parity error on the received address
for a read instruction will provide the same results as an invalid
address only if address parity checking is enabled.

NOTE: All that is required for DRACO to output data on its AD7-0 bus

is a true READ L AND CE L signal. When reading an invalid address or a
valid address with a parity error, DRACO will output its internal data
bus. The value of the data is indeterminate and should not be assumed

to be FFH.

Attempting to write to an invalid address will latch the ERROR_L pin
low. A parity error on the received address for a write instruction
will provide the same results as an invalid address only if address
parity checking is enabled. In addition to writing to an invalid
address or receiving an address with a parity error, writing to a
"locked" wvalid address will latch the ERROR_L pin low and deem that

operation as invalid.

4.1.2 Electronic Key
The function of the electronic key is twofold; to prevent unauthorized

applications of DRACO and to ensure the integrity of the configuration
and direction registers in the presence of EMI. The key may be in the
on or off MODE and in a locked or unlocked POSITION. The position of
the key affects address decoding within DRACO and the mode of the key
allows the key's position to be changed. 1i.e. A position may be
unlocked only if the key is first ON.

Following a reset of DRACO, the electronic key is off and in the
locked position. DRACO functions as a read-only device in the locked
position. The key must be unlocked to write any data to DRACO. There
are two unlocked positions; unlock data and unlock configuration.
These two unlocked positions are complements of one another; both
cannot be unlocked simultaneously. The internal locations affected by
the key in the two unlocked positions are summarized below.

CONFIGURATION LOCATIONS DATA LOCATIONS
Configuration register (02H) Low byte output data (0OH)
Low byte I/0 direction register (03H) High byte output data (O1lH)
High byte I/O direction register (04H) Inverted checksum (OEH)

The sequence of "key" events that a user would implement following a
reset of DRACO are summarized below:

1) Turn the key to the ON position
2) Unlock Configuration locations and configure DRACO for optional

address and/or data parity, checksum enable, and I/O direction
selections. (Data locations within DRACO are locked at this time)
3) Unlock Data locations (Configuration locations become locked)

4) Turn key OFF

SP 131-H-30, REV. 4/89 * 89-691-1

49

‘ NUMBER 11495 REV. NC

ROCKWELL INTERNATIONAL PAGE 9
PROPRIETARY INFORMATION ESCM NO. 34576

DRACO is now configured with the configuration locations locked and
data locations unlocked to commence normal operations.

SP 131-H-30, REV. 4/89 f 89-691-1 5 0

NC

‘ Numser ___ 11495 REV.
10

PAGE

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION FSCM NO. 34576

4.1.2.1 On/0ff - Unlock/Lock Encoding
The key is activated by writing proper address/data combinations to

locations within DRACO

To Turn the key ON : (proper sequence is required)
1) Write data value AAH to address 80H
2) Write data value 55H to address 7FH

Once ON, either of the two unlock positions may be chosen.
To unlock Configuration Locations (Locks Data Locations):
1) Write data value AAH to address 7FH

To unlock Data Locations (Locks Configuration Locations):
1) Write data value 55H to address 7FH

To Turn the key OFF:
— Write any data value not equal to AAH to address 80H OR

— Write to either High Byte, Low Byte, or Checksum address
locations. (This features assures that the electronic key is
periodically set to the off mode during normal operation) OR

— Invoke DRACO's reset pin.

4.2 Checksum / Parity / Error Block
This block consists of the following: an 8-bit full adder to generate

an inverted checksum, a checksum comparator to compare internally
generated checksum with the received checksum, an odd parity generator
and comparator for incoming data, an odd parity generator for outgoing
data, an error register to indicate address parity, data parity, or
checksum errors, and a configuration register to select parity and

checksum error-checking options.

4.2.1 Configuration Register / Status Register

A configuration / status register is included in this block to write
and read the error—checking enabling options, and to read-only the
error, write acknowledge, and electronic key status. Locations that
can be writtten to are referred to as CONFIG.x and readable locations
as STATUS.x. Following a reset of DRACO, all bits of this register is

Zzero.

The three configuration locations can be summarized as follows:

CONFIG.?2 Selects odd parity error checking on all addresses
written to DRACO for read or write instructions.

CONFIG.1 Selects odd parity error checking on data that is written
to DRACO.

CONFIG.O Selects inverted checksum error checking on output data.

SP 131-H-30, REV. 4/89 }

89-691-1

51

* NUMBER 11495 REV. NC

11

PAGE

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION FSCM NO. 34576

The status locations can be summarized as follows:

STATUS. 7 Status of electronic key's configuration locations.
STATUS. 6 Status of electronic key's data locations.

STATUS. 5 Status of electronic key's mode.

STATUS. 4 Status of a successful write cycle to output modules.

This bit is set whenever output data is written to the
I/0 ports. This bit is cleared at the beginning of any
write instruction to DRACO.

STATUS. 3 Error status on address, data and checksum. See Section
4.2.4 for a detailed explanation. This bit must be
cleared by the user or by a reset cycle.

STATUS. 2 Address parity enable status.
STATUS.1 Data parity enable status
STATUS.O Checksum enable status

The bit designation for the configuration/status register is as

follows:

Bit # 7 6 5 4
Ekey Config Ekey Data Key Enable Write Ack-
1=Unl,O0=Lock |1=Unl,0O=Lock |l=on,0=off 1=Ack 0O=Nak

Read-only Read-only Read-only Read-only

Bit # 3 2 1 0

Error Status Adr Par En Data Par En |Checksum En
l=error l=enable l=enable l=enable
Read-only Read/Write Read/Write Read/Write

4.2.2 Checksum Generator ,/ Comparator

When the user is writing output data to the I/0O ports and the checksum
enable bit is set (CONFIG.0=1), the checksum generator/comparator
provides additional integrity to the output data written to the output
modules. Data integrity is enhanced by requiring the user to write a
checksum byte in addition to the two output data bytes before output

modules are updated.

52

SP 131-H-30, REV. 4/89 f 89-691-1

11495 REV.

NC

* NUMBER

ROCKWELL INTERNATIONAL PAGE 12
PROPRIETARY INFORMATION FSCM NO. 34576

DRACO's checksum generator is a full adder and provides an inverted
sum of the two bytes of output data that are stored in buffers. This
inverted sum of the two output bytes is readable independent of the
checksum enable bit. The checksum comparator compares the internally
generated inverted sum to a checksum that is written to DRACO by the
host microcontroller. If the checksums are equal, an internal control
signal will transfer the buffered output data to the output ports. If
the checksums do not compare, the ERROR_L line is latched low. The
checksum comparator is only functional when the checksum enable bit is

set in the configuration register.

4.2.3 Data Parity Generator / Comparator

An odd parity bit is generated on all data bytes received during a
write cycle. If data parity error checking option is enabled
(CONF'IG.1=1), the DRACO generated parity bit will be compared with the
user—-supplied parity bit received on the PARITY pin. If a parity
error is detected on any received data, the associated write
instruction will be disabled and the ERROR L signal will be latched

low.

During all read cycles, DRACO's PARITY pin will provide an odd parity
on all read data regardless of the state of CONFIG.1l bit. DRACO will
also generate an invalid (inverted) parity bit, regardless of the
state of CONFIG.1 bit, when an attempt is made to read from an invalid

address within DRACO.

4.2.4 Error Register
The output pin ERROR_L will be latched low and bit 3 of the

status register (STATUS.3) will be set if any of the following
errors occur:

- Parity error on any read address (CONFIG.2=1).

Parity error on any write address (CONFIG.2=1).

- Parity error on any write data (CONFIG.1=1).

— Write or read from an invalid address (CONFIG.x=X).

- Write to an address that is locked by the electronic key.
- Invalid checksum write when checksum mode is enabled.

- Write to the checksum address (OEH) when checksum mode is.

disabled.

With any one of the above errors, the error producing instruction
will not be executed. 1In order to clear the latched ERROR_L
signal, the user must write to DRACO's address location OFH
(Error Reset). The value of the data for this write is

irrelevant.

NOTE: The next instruction to DRACO following the error producing
instruction will be executed without clearing the previous error.
The ERROR_L signal only provides an external error indication for
the user. Consecutive instructions to DRACO are not dependent of

the state of ERROR_L.

SP 131-H-30, REV. 4/89 *

89-691-1

53

REV.

NC

* NUMBER 11495
13

PAGE

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION FSCM NO. 34576

Z.3 1/0 BLOCK
The I/0 interface consists of 16 bidirectional ports, 16 output

D flip flops with their clock inputs serially connected through a
delay element, two 8-bit transparent latches to buffer output
data, two multiplexers to provide two modes of output updates
(checksum and immediate), and a 16-bit I/0 direction register.

Each I/0 port can sink 16mA to drive an output module. Each I/0
port can also read an input or output module with TTL levels.

4.3.1 Updating Outputs

With the checksum enable bit reset (CONFIG.0 =0) DRACO's checksum
error-checking feature is disabled and updating output ports

merely consists of writing a high or low output byte without the
user generating a checksum byte. DRACO implements byte integrity

in updating outputs with this option selected.

With the checksum enable bit set (CONFIG.0O= 1), output data is
first buffered in transparent latches until a checksum byte
validates the integrity of the high and low byte address/data
transfer. The output of the high and low byte latch is provided
to DRACO's internal full adder to generate a checksum. The
sequence of writing the high and low byte prior to writing the
checksum byte is irrelevant. When a valid checksum is written to
DRACO, a Checksum OK signal will be directed through the
multiplexers transferring the buffered output data to the output
modules. DRACO implements word integrity in updating outputs with

the checksum option selected.

NOTE: The checksum referred to in all cases in this document is
the inverted sum of the two output bytes.

When the buffered output data is transferred to the output
drivers, the 16 outputs will not be enabled simultaneously. They
will be asynchronously staggered one output at a time. This
staggering turn-on of outputs will prevent undesirable effects
(ground bounce) within the internal circuitry of DRACO.

The address and data parity error-checking features (CONFIG.1l &
CONFIG.2) as previously described in this document operate
independently on the address and data with either the checksum or

immediate options.

4.3.2 I/0 Direction Register
The user has the option to load a 16-bit direction register

within DRACO to configure a port as read-only or bidirectional.
At power—-up all bits in the register will be set to "0" which
allows the state of the data bit to enable the output driver
(bidirectional). A "1" in the direction register will disable
the tristate output driver for that corresponding port providing
read-only operations from that module. The electronic key must
be in the "unlock configuration" position in order to write to

this register.

SP 131-H-30, REV. 4/89 *

89-691-1

54

11495 NC

‘ NUMBER REV.
14
ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576
5. User Interfaces
5.1 Bus Interface
The bus interface includes 8 bidirectional ADDRESS/DATA pins and
1 bidirectional PARITY pin, 5 control TTL Schmitt inputs: READ L,
WRITE L, RESET L, CHIP ENABLE L, and ALE, and 1 output: ERROR L.
All inputs respond to TTL levels. All bus interface drivers are
4mA.
5.1.1 Embedded Addresses
The following address listing refers to the memory locations
within DRACO.
Addr Location Actions Invoked
80H Electronic Key Write - Write AAH data to turn KEY ON
(1lst Key & - Write < >AAH data to turn KEY OFF
Key-Off Address) Unaffected by Ekey.
Read - Not available. Reading from 80H is

considered an invalid address and will
latch ERROR_L pin low.

7FH Electronic Key Write - Write 55H data to turn KEY ON

(2nd Key Address — Write AAH to unlock Configuration
& Data/Config — Write 55H to unlock Data
Unlock Address) Unaffected by Ekey.
Read - Not available. Reading from 0O7F is

considered an invalid address and will
latch ERROR_L pin low.

OFH Error Reset Write - A write to this location will clear
the latched interrupt. (data value is
irrelevant).

Unaffected by Ekey.

Read - Not available. Reading from OFH is
considered an invalid address and will

latch ERROR_L pin low.

SP 131-H-30, REV. 4/89 89-691-1

55

11495 NC

* NUMBER REV.
ROCKWELL INTERNATIONAL PAGE 15
PROPRIETARY INFORMATION ESCM NO. 34576
0OEH Inverted Write - Compares host generated inverted
Checksum Byte checksum to internal inverted checksum

and if equal, IO15-0 is updated with
buffered data. CONFIG.1l must be set to
activate this location. Unequal values
will latch ERROR L pin low. If
CONFIG.1 = 0 and a write takes place
to OEH, the ERROR_L pin will also
latch low.

Ekey must be in the "Unlock Data"
position for a valid write.

Read - Read the inverted sum of high and low
bytes of output buffers.

SP 131-H-30, REV. 4/89 f 89-691-1

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION

‘ NUMBER 11495 REV

PAGE 16

NC

FSCM NO. 34576

04H HB Direction
I015-8

O03H LB Direction
I07-0

02H Configuration
Register

Ol1H High Byte I015-8

O0OH Low Byte.I07-0

Write

Write

Read

- Configures I/0 ports 15-8 as either
bidirectional (default) or input only
Ekey must be in the "Unlock
Configuration" position for a valid
write.

- Read HB. I/0 direction register

— Configures I/0 ports 7-0 as either
bidirectional (default) or input only
Ekey must be in the "Unlock
Configuration" position for a valid
write.

- Read LB I/0 direction register

- Write to Configuration register to
select checksum and parity options.
Ekey must be in the "Unlock
Configuration" position for a valid
write.

- Read Status register

— Writes data to high byte buffer only
if CONFIG.1=1. (checksum enabled)

— Writes data to I/0 Ports 15-8
immediately if CONFIG.1=0 (checksum
disabled)

Ekey must be in the "Unlock Data"
position for a valid write.

- Read I015-8

- Writes data to low byte buffer only
(CONFIG.1=1)
- Writes data to I/0 Ports 7-0

(CONFIG.1=0)
Ekey must be in the "Unlock Data"
position for a valid write.

- Read IO7-0

SP 131-H-30, REV. 4/89

89-691-1

51

* NUmBeR __ 11495 Rrev._ NC

ROCKWELL INTERNATIONAL PAGE

PROPRIETARY INFORMATION ESCM NO. 34576

NOTE: An attempt to read/write from/to an unused address location
will latch ERROR L pin low regardless of any CONFIG.x setting.

SP 131-H-30, REV. 4/89 f 89-691-1

5%

NC

‘ NUMBER REV
ROCKWELL INTERNATIONAL PAGE 18
PROPRIETARY INFORMATION FSCM NO. 34576
5.2 I/0 Module Interface
The circuit of an I/O module interfacing to DRACO is shown below.
5.2.1 Input Module Interface
The interface to an input module is an open collector transistor
with a pull-up resistor. The Vcc range is 4.75 to 5.25VDC.
m— e — — — — - ' ——————— _'
! | | \/C(INVPUT l
' l MoDULE |
’ | I 3k INTERFACE
| | b |
|
! L
| o — |
AT ¢ ! |
— {
| T/o PIN l H 3
==
! P
U | e e
5.2.2 Output Module Interface
The interface to an output module is an opto-coupler in series
with a LED and resistor. The 3.2K resistor is used for input
modules but does add a 1.7mA current requirement to the output
pad. A 16mA pulldown output driver will be used. The Vcc range
is 4.75 to 5.25 VDC. . Ve o T T T '_"-T
ouTrPUT
- MODULE |
r‘D e
| Tk L INTSRELACE |
_— = — - =] ' 5_9\40 l
I ASTC l |
| — |
| ———<] I —P ,
| ‘ ! | | i
| | . - = —-
I
o .
89-691-1

SP 131-H-30, REV. 4/89 i

5

+ NUMBeER ___ 11495 rev._ NC

PAGE 19

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION FSCM NO. 34576

Pin Description

INPUT PINS (All inputs require TTL levels unless otherwise specified)

RESET L (3) This input is used to initialize all internal registers
and latches. It should be held low after power is
applied to ensure the internal circuitry is initialized
for proper operation. This is a schmitt trigger input.

ALE (39) This input latches the state of AD[7:0] and PARITY to
internally latches. The address is latched on a high-
to-low transition. This is a schmitt trigger input.

READ L (2) A low on this input causes internal read data to be
placed on AD[7:0] and PARITY pins. CE_L must be low
simultaneously. This is a schmitt trigger input.

WRITE L. (38) A low-to—high transition on this input causes external
data on the AD[7:0] and PARITY pins to be written into
DRACO. CE L must be low simultaneously. This is a

schmitt trigger input.

CE L (36) This is a Chip Enable input.' This pin must be low do
execute a read or write cycle. This is a schmitt

trigger input.

OUTPUT PINS ,

ERROR L. (37) This active—-low output will be invoked whenever an
error occurs in the data transmission between DRACO and
the host microprocesser. This output will latch low
and must be reset by the user. This output is a low

current open-drain output.

BIDIRECTIONAL PINS

PARITY (4) This pin receives or generates an odd parity bit for
the AD([7:0] bus. It is an active-high and active-lcw
output pin when CE L and READ L are low, otherwise 1is

functions as an input.

AD[7-0] These pins make up the 8-bit address/data bus. They
(35,5,34,6, are active—high and active—low ouput pins when CE L and
33,7,32,8) READ L are low. Otherwise, they function as inputs.
I0[15-0] These pins are high current active-low outputs that

(19,22,18,23, sink current from output modules connected to DRACO.
17,24,16,25, These pins are always bidirectional and are not
15,26,14,27, activated by READ L or WRITE L or CE_L pins. These
13,28,12,29) pins have open-drain outputs.

SP 131-H-30, REV. 4/89 f 89-691-1

A

‘ Numser __ 11495 Rev._ NC
ROCKWELL INTERNATIONAL PAGE 20
PROPRIETARY INFORMATION FSCM NO. 34576
Power Pins
VDD (1,9) These are the +5 Volt supply pins. Both must

connected.

VSS (10,11,20, These are the ground pins. All must be connected.
21,30,31,40)

SP 131-H-30, REV. 4/89 j

89-691-1

2

11495 NC

* NUMBER REV.
ROCKWELL INTERNATIONAL PAGE 21
PROPRIETARY INFORMATION FSCM NO. 34576

WoDl |, = | 40 o vss|
READL =— 2 - , 39 = ALE
RESET_L =— 3 . 238 —= MRITE_L
PARITY =— 4 37 — ERROR_L
ADE e 5~ «38 2 CELL - -r Zome
D4 B Lornes” 7 £ 35 (o AD?

A2 — 7Y) ~ 34— ADS

AD2 8 . 33 — AD3
v/o\\og s g DRACO ;3 L /APL
V850 . =10 3l (—= VSSO
V850 - a—|] 30 —= VSS0
0.1 o—{i2« V29 — 10_8
0.3 o—{I3¢ 28 — 102
0.5 14 27 t— 104
0.7 o—I5" e 280 108
0.9 0B Corner 25 — 10_8
0_t1 {17~ "24 — 1D_10
10.13 I8 23 — 10_12
10_15 18 22 |— 1014
@ =— 20 21 == VS50

SP 131-H-30, REV. 4/89

89-691-1

Customer Part Numbei:

Tt T e 2" e caour i owotes couwes
1| Voog

| Reap.t |F st)

s |PEsere | F 56

| Pagy lE/0OD] T | T [IX|I00 !
| aoe lgolodl T [T |2x|i00 i
| apy lzooD+ | T |2x]se0 [
»| AD2 I5/6|COD| T | T |IX |00 [
o | Apg B/O|ODIT | T |ax|ro !
s. | Uppo

w| Vacn

n| t/ccn

n| Tol Elojed| T |T 18x|%X

sl To3 lz/plod| TIT |sx|as|”

w| T0S lr/olop| T | T 18x |25

sl 2092 lz/olopl T | T |8X 126

6| 09 lolopl T | T 18x |05

vl roll lrspolopl T | T {€x {2

uwl 2043 lzsplopl T | T [8x {25 2
vl £015 lrplop|l T 17T |8xi2s

nl Yesn

ul Lo lsrolop| T | T |8x|os

sl 2013 gplep| T | T |25

w| Tos0 rolopl T | [8x 175

| Fog |zwlop| T | T [8x1725

‘ numeer | 11495 rev. NC
ROCKWELL INTERNATIONAL PAGE 22
PROPRIETARY INFORMATION FSCM NO. 34576
PIN LISV (PINS) 23
Levice Name _QR_R QO - Page 2 of _-_-?’_--
Device N //"/9:.“.._,_..__ Date | .{D ':‘)L 19_7__
V41425 -6/ Design Engineer: Dave Pese /e

SP 131-H-30, REV. 4/89

89-691-1

62

* NUMBER 11495 REV. NC
ROCKWELL INTERNATIONAL PAGE 23
PROPRIETARY INFORMATION FSCM NO. 34576
PIN LIST (PINS 26 - S8)

Dewvice Name. ...QL:Q(_-O R Page 3 of .)_’_

Device Number: byt Date: ... Q. 732-@F

Customer Part Number. __LY[4DS b/ Design Engmeer: v Gse /s

... R -

NO. PN NAMSE TYPE CHMAR LEVELS LEVELS TYPL CAP DELAY GeOur 1°(t) Wopd aoses COMMENTS

uw| Tog |F/oloo] 7 |1 [3x |25

ol 204 |gmlop! T |1 18 |25

w] £02 lrplod| T [17 |8y |75

»| Fog (g/lod] T 11T {8x |25

0. U&:o

3. 1/5_;0

al A |g/0leD | T | T [2x|s0 /

sl AD? lzplon| T |1 |2x] /00 I

w| ADS |zpolop|r | T [k I

’s. Ab? gRloDIT (T |2X| /00 |

wl| LEL z Ma)

| ERRoRy | O |OD T [2x1/00

slwere, | F 0

w| ALE T SE6)

w| Vag;

41,

42,

43,

.. ’

“. I

|

48,

49,

Q.

SP 131-H-30, REV. 4/89

89-691-1

* NUMBER 11495 REV. NC

ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576

5.4 Timing Diagrams

5.4.1 Read Cycle with a 12MHz 80C51

'
READ CYCLE TIMING FOR R 12MHZ 80C51
Y
- N
TELRL
CE L \‘ /—
—> TRHLH
we [%
TALRL |
-
(‘RD_L ‘\ [
TAVLL | TLLAX] |TRLDV TRHDX
—» —b
gadtdares“. Addr A7~Ao Data Out D7-DO
TPVRH | TRHPX

. | TPVLL | TUPX | ‘«
—bje-
Parity Parity In \ (Parltyﬂo:i——-

P 131-H-
SP 131-H-30, REV. 4/89 ‘ 89-691-1

* NumeeR __ 11495 Rev._ NC
25

ROCKWELL INTERNATIONAL PAGE
PROPRIETARY INFORMATION FSCM NO. 34576

5.4.2 Write Cycle with a 12MHz 80C51

e
“

WRITE CYCLE TIMING FOR A 12MH2 80C51

TEHLWH

TELWL —%

- [

I o

3 WR_LV - 1]

TAVLL | TLLAX TWLD TDVWH TWHDX -

CE_L

—>re —p < »>
Address/ ,
Data Addr A7-A0 Data In D7{Do .
TPVLL TWHPX
B - :l t* .
Parity —-(_!’arlty In Parlty In

SP 131-H-30, REV. 4/89 * 89-691-1

NC

REV.

11495
26

NUMBER
PAGE

FSCM NO. 34576

5.4.3 Read and Write Cycles Timing Values

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION

c;\\\% Y = mww&g rppy =1 h) _

N \\-\ Olmﬁ V_‘Al. o . v)\ oeL /

e 7,

Al.t l
~ Q%W “ dmm:g

|
SEWA /T AT AT o faes

s = R mvA ALTavd \,W._...V_»EE

e i e e

oh _
RSP A (XA B

T:ll.!

L§ - wmz,ai\

_ Omu .omy

_

89-691-1

SP 131-H-30, REV. 4/89

‘ NUMBER 11495 rev._NC
ROCKWELL INTERNATIONAL PAGE 27
PROPRIETARY INFORMATION FSCM NO. 34576
‘/’ -
READCYAQE
6 Min Max Units
TALRL ALE low to Read_L low 200 300 ~ns
TAVLL Address[7:0] valid to ALE low 8 ' ns
TELLL CE_L low to ALE low -4 ns
TELRH CE_L low to Read_L high 571 ns
TELRL CE_L low to Read_L low 171 ns
TLLAX Address[7:0] valid after ALE low 41 ns
TRHDX Data [7:0] valid after Read_L high 0 ns
TRHLH ALE high after Read_L high 43 ns
TRLDV Read_L low to Data[7:0] valid 227 =Bs
TPVRH Parity Out valid to Read_L high 28 ns
TRHPX Parity Out valid after Read L high 0 ns
TPVLL Parity In valid to ALE low 4 ns
TLLPX Parity In valid after ALE low 45 ns
.f WRITECYCLE
Min Max Units
TALWL ALE low to Write_L low 200 300 nus
TAVLL Address[7:0] valid to ALE low 8 ns
TELLL CE_L low to ALE low -4 ns
: TELWH CE_L low to Write_L high 571 ns
g TELWL CE_L low to Write_L low 171 os
3 TLLAX Address[7:0] valid after ALE low 41 ns
‘ TWHDX Data [7:0] valid after Write_L high 26 ns
TWHLH ALE high after Write_L high 43 123 ans
TDVWH Data{7:0] valid to Write_L high 403 ns
g TPVLL Parity In valid to ALE low 4 ns
TPVWH Parity In valid to Write_L high 399 ns
= TLLPX Parity In valid after ALE low 45 ns
! TWHPX Parity In valid after Write_L high 31 ns
89-691-1

SP 131-H-30, REV. 4/89

&%

1

1495 NC

* NUMBER REV.
ROCKWELL INTERNATIONAL PAGE 28
PROPRIETARY INFORMATION FSCM NO. 34576
5.4.4 Miscellaneous Timing Values
Min Max Units
RESET L pulse width (80C51 requirements) 2 usec
I/0 15 to I/0_0 Enable (staggered turn-on) 500 nsec

6. General Specifications

6.1 Packaging
The package will be a 40-pin plastic DIP.

6.2 Electrical Specifications

6.2.1 Absolute Maximum Specifications

Supply Voltage (VAd)...........c ... -0.6 to +7.0 VDC (1)

Input Voltage (Vss—-0.6) to (Vvdd +0.6) VDC
Output current (with no latch-up)................... 100 mA
Static Protection........... 2000 V (2)
Operating free—air temperature range............. 0 to 850C

Storage temperature range................... -650 to 150 OC

All voltages measured with respect to device Vss pin
(1) Input voltage may be as low as —-1.2V for not more than 30ns
(2) Peak voltage of the standard ESD pulse waveform.

6.2.2 Recommended Operating Conditions
Min Max UNIT

vad Supply voltage 4.5 5.5 V
Ta Operating free—-air temperature 0 85 C
Iocl(h) Low-level output current 16 mA
Ioh(h) High-level output current TBD mA
Iol(l) Low-level output current 4 mA
Ioh(1l) High-level output current TBD mA
Vih High-level input voltage (TTL compatible) 2.0 \
Vil Low—-level input voltage (TTL compatible) 0.8 V
Vih(S) High-level input voltage (Schmitt) 2.4 v
Vil(S) Low-level input voltage (Schmitt) TBD V
Voh High-level output voltage (at Ioh=max) 2.4 '
Vol Low-level output voltage (at Iol=max) 0.4 V

Remaining specifications will be included as they become available
from the manufacturer.

Capacitive Loading
Cio ports
Cdata_bus (18-inch 50-cond ribbon cable)

75 pfd
100 pfd

SP 131-H-30, REV. 4/89 *

69

11495 REV. NC

* NUMBER
31

PAGE

ROCKWELL INTERNATIONAL
PROPRIETARY INFORMATION ESCM NO 34576

FIGURE 1 - DRACO BLOCK DIAGRAM

/ FIGURE 1 - DRACO BLOCK DIAGRAM

RESET L O === , ' '
L Of>— b LU= X
t READ
WRITEL O-E>— ADORESS 1 :
READLL O DECODER| & o | S T HLe
KEY ! . P w :
B 22 ﬁ] :}jf-\'-ow‘n
. [} | emm————
ME OF> ; ADORESS T _] : ; :D‘ : .
! LATCH %ﬁ‘m i e : s \
- L HIGH : .
AD? oﬁ%r\:r—_{? il Bt . 1o,
s O e *{_|- . _ADDRESS DECOOER _ _, || [} BUFFER —7
AL O - DUTI7:3) : LATCH — :IIO,v‘
AD4 O e _ADINE2:8) !
ol SEADEN |] :
e O . i R P, JH 19 '
ADI O e X - dl IRECTION :
T - ,msm cc,mt:_1 X REGISTER 100IRC7:81 1
ADD 1_\: s COMPARATOR X : :
(K . U] semisien X
' RSD = Fub | . !
I | BUFOUTL7:8)
' t !csm ADCER 1 B :
)) ! ' 13
PARITY : : - G 170 X
-1 l:m ! '
i)
] 1
: —t /0.7
i)
([
| t
: t
]

ZB
.-—

I

1700

1/0 INTERFACE |

SP 131-H-30, REV. 4/89 ? 89-691-1

11495

DOC NUMBER
CODE IDENT. NO. 34576 REVISION PAGE PAGE__ 2
TOR# |REV REASON FOR CHANGE DATE APPVD
NC| Initial release. 11-20-89

-
%
L

Jun 14 23:26 1990 draco.vhdl Page 1 Jun 14 23:26 1990 draco.vhdl Page 2
use work.res_funcs.all; return 'l';
use work.binary ops.all; end if;
end;
entity DRACO is .
port (—power: in bit; begin
~—CE_L: in bit;
— RESET L,
—_— ALE, — PLACE STIMULUS FILE HERE
— WRITE_L, -— 85 LINES
— READ L : in bit; GENERATE_SIGNALS:
ERROR_L: out bitres ; process
— PARITY: inout bit; begin
— ADD DATA BUS: inout Bit_vector (7 downto 0); — This example configures DRACO to enable data parity
MSB_IO_BUS : inout Bit_vector (15 downto 8); -— address parity and checksum. The key is in unlock config
LSB_IO_BUS : inout Bit_vector (7 downto 0)); —— positions while configuring. Thereafter the data is
end DRACO; — unlocked and data is written to the 1lsb and msb I/0

— ports. Subsequently, checksum is written to and read from
—— DRACO. A successful write of checksum writes data onto

architecture BEHAVIOURAL of DRACO is — the 1/0 ports.

— signals from the entity — POWER SIGNAL

signal ALE, Reset 1, write 1,read 1: bit; power <= '0',

signal parity, power,ce l: bit; '1' after 25 fs,
signal out parity: bit; '0' after 1920 fs;

signal add data bus, data_bus : bit_vector (7 downto 0);
—— CHIP ENABLE SIGNAL

signal cycle: stateres register := idle; ce l <~ '1',
signal status_con_reg: bit _res reg (7 downto 0) register; '0' after 50 fs,
signal add_latch: Bit _vector (7 downto 0); ‘1! after 1910 fs;

signal msb_con reg: Bit_res_reg (15 downto 8) register;
signal 1sb _con_reg: Bit res reqg (7 downto 0) register;

signal msb_buf: Bit_vector (15 downto 8); ale <= '1', '0' after 110 fs, '1' after 170 fs,
signal 1sb buf: Bit vector (7 downto 0); '0' after 210 fs, '1l' after 270 fs,
signal ekey _mode : switchres register := off; '0' after 310 fs, 'l’' after 370 fs,
signal ekey pos : posres register := locked; '0' after 410 fs, 'l' after 470 fs,
signal int var: switch := off; ‘0! after 510 fs, 'l' after 570 fs,
signal p_on : boolres register := false; '0' after 610 fs, 'l after 670 f{s,
signal chip_en : boolres register := false; '0' after 710 fs, '1' after 770 fs,
signal valid_address: boolean; ‘0’ after 810 fs, '1' after 870 f{s,

'0' after 910 fs, '1' after 970 fs;
function ODD PARITY_ fct { vl :bit_vector) return bit is
variable parity : bit;

begin
if ((SUM(v1l) mod 2) = 1) then add_data_bus <= X"80" after 105 fs,
return ‘0’'; X"AA" after 140 fs,
else . X"7F" after 205 fs,
return ‘'1'; X"55" after 240 fs,
end if; X"7P" after 305 fs,
end; X"AA" after 340 fs,
X"02" after 405 fs,
function ODD_PARITY 2 { vl : bit res_reg) return bit is X"07" after 440 fs,
variable parity : bit; . — unlock data
begin X"7p¢" after 505 fs,
if ((SUM_2(vl) mod 2) = 1) then X"55" after 540 fs,
return '0'; — write into the 1sb buf

else X"00" after 605 fs,

Jun 14 23:26 1990 draco.vhdl Page 3

X"08" after 640 fs,

— write into the msb buf
X"01" after 705 fs,

X"04" after 740 fs,

— write inverted checksum
X"0E" after 805 fs,

X"P3" after 840 fs,

— read checksum

X"OE" after 905 fs;

write 1 <= 'l1', '0' after 130 fs, 'l' after
'0' after 230 fs, 'l' after
‘0' after 330 fs, 'l* after
'0' after 430 fs, 'l' after
‘0' after 530 fs, ‘1' after
‘0' after 630 fs, 'l' after
'0' after 730 fs, '1' after
'‘0' after 830 fs, *‘1' after

read 1 <= '1°%,
‘0! after 930 fs;

— PARITY SIGNAL

parity <= '0' after 505 fs,
'1l' after 540 fs,
'1' after 605 fs,
'0' after 640 fs,
'0' after 705 fs,
‘0' after 740 fs,
'0' after 805 fs,
'1' after 840 f£s,
'0' after 905 fs;

wait;
end process GENERATE_SIGNALS;

rising_power_signal:
block (power = 'l' and not power'stable)
begin
cycle <{= guarded reset;
p_on {= guarded true;
end block rising power signal;

falling power_ signal:
block (power = '0'and not power'stable)
begin
cycle {= guarded power_off;
on <= guarded false;
end block falling_power_signal;

falling_chip_enable:
block (ce 1 = '0' and not ce_l'stable and p_on)

begin
cycle <~ guarded chip enabled;

. »

160
260
360
460
560
660
760
860

fs,
fs,
fs,
fs,
fs,
fs,
fs,
fs;

Jun 14 23:26 1990 draco.vhdl Page 4

chip en <= guarded true;
end block falling chip_enable;

rising_chip enable:
block (ce 1='1' and not ce_l'stable and chip en)
begin
cycle <= guarded chip disable;
chip_en <~ guarded false;
end block rising chip enable;

falling_reset_signal:
block (reset_1 = '0' and not reset_l'stable and p on and chip en)
begin
cycle <= guarded reset;
end block falling_reset signal;

falling ale sigmal:
block (ale = '0' and not ale'stable and p on and chip_en)
begin
cycle <= guarded address;
end block falling ale_signal;

rising_ale:
block (ale = 'l' and ale'active and p_on and chip_en)

begin
cycle <= guarded idle;
end block rising_ale;

falling write:

block(write_1='0'and(not write 1'stable) and p_on and chip _en and valid_address)

begin
cycle {= guarded write;
end block falling write;

falling read_signal:

block(read 1 ='0' and (not read 1'stable) and p on and chip en and valid_address

begin
cycle <= guarded read;
end block falling_read_sigmal;

— assertions when CE_L goes low
assert not(ce_1='0' and not ce l'stable and not p on)
report "ERROR 1"
severity warning;

—-assertions when RESET L. goes low
— check to see that power is on
assert not(reset 1 = '0' and not reset l'stable and not p_on)
report "ERROR 2"
severity warning;
— check to see that chip is enabled
assert not(reset_1='0' and not reset_l'stable and not chip en)
report "ERROR 3"
severity warning;

— assertions when ALE goes low

Jun 14 23:26 1990 draco.vhdl Page 5

— check if power is off

assert not(ale = '0' and not ale'stable and not p_on)
report "ERROR 4"

severity warning;

— check if chip is enabled

assert not(ale = '0' and not ale’stable and not chip_en)
report“ERROR 5"

severity warning;

—— assertions when WRITE_L goes low
— check if power is off
assert not(write 1 = '0' and not write 1l'stable and not p on)
report "ERROR 6"
severity warning;
— check if chip is enabled
assert not(write 1 = '0' and not write_l'stable and not chip_en)
report "ERROR 7"
severity waming;
— check if valid address is available
assert not(write 1='0' and not write_l'stable and not valid address)
report "ERROR 8%
severity warning;

l

—— assertions when READ L goes low
— check if power is off
assert not(read 1 = '0' and not read_l'stable and not p _on)
report "ERROR 9"
severity warning;
— check if chip is enabled
assert not(read 1 = '0' and not read 1'stable and not chip_en)
report"ERROR 10 "
severity warning;
—— check if valid address is available
assert not(read_l='0' and not read_ l'stable and not valid_address)
report "ERROR 11"
severity warning;

—— ADDRESS, WRITE, RESET AND READ CYCLES FOLLOW

ADDRESS_LATCH:
block
signal a: boolean := true;
— the address is read from the address data bus and is stored
— in a latch. It is necessary to store the address in a latch so
— that the write cycle can access it even after it is no longer
— available at the address data bus. The process is sensitive to
—— the ALE signal
begin
process
variable count: integer;
variable valid add : boolean;
begin
wait until (not cycle'stable and cycle = address);

Jun 14 23:26 1990 draco.vhdl Page 6

a <= not a;
valid address <= true;
valid_add:= true;
—— check if address parity is on
— if parity is on check for address parity
— if parity is incorrect latch error 1 low
— and make valid address false
if (status_con_reg(2) = 'l') then
if (odd _yarity fct(add_data_bus)/= parity) then
error 1 <= '0';
status_con_reg(3) <= '1"';
valid address <= false;
valid add := false;
assert false
report "ERROR 12"
severity warning;
end if;
end if;

if (valid_add = true) then
— is address one of the 9 valid addresses
if (pot(VALID ADDRESS FUN(add data_bus))) then
error_1 <= '0';
status con_reg(3) <= 'l';
valid_address <= false;
valid add := false;
assert false
report "ERROR 13"
severity warning;
end if;

— the valid address is latched onto the add_latch signal
if (valid_add = true) then
add_latch <= add data bus;
end if;
end if;

wait on a;
status_con_reg <= null;

end process;
end block ADDRESS_LATCH;

WRITE_CYCLE:
block
signal a: boolean := true;
begin
process
variable count: integer;
variable valid checksum,valid data: boolean;
variable checksum: bit_vector (7 downto 0);

begin
wait until (cycle = write and not add_data_bus'stable);

Jun 14 23:26 1990 draco.vhdl Page 7

wait until (write 1 ='l' and not write_ l'stable);
a <= not a;
valid_data := true;

— check if data parity is on
if (status con_reg(l) = 'l') then
if (add_latch /= X"OF") then
— do a parity check on the data
if (odd parity fct(add data bus)/=parity) then
— error in data received
assert false
report “ERROR 14“
severity warning;
error_1 <= '0';
status_con _reg(3)<= 'l';
valid _data := false;
end if;
end if;
end if;

status con_reg(4) <= '0°;
if (valid_data = true) then

case add_latch is
— is address 80H
when X"80" =>
if (add data_bus /= X"AA") then
— turn the key off
ekey mode <= OFF;
status con_reg(S5) <= '0';
elsif (ekey mode = OFF and add data_bus = X"AA") then
int_var <= ONN;
elsif (ekey mode = Onn and add_data bus =X"AA") then
assert false
report "ERROR 15"
severity warning;
end if;

— is address 7FH
when X"7F" =)
if (add_data_bus = X"55") then
if (int _var = ONN) then
ekey_mode <= onn;
status_con_reg(5) <= '1';
int_var <= off;

else
if (ekey_mode = onn) then
ekey pos <= data_unlocked;
status_con_reg(6) <= ‘1t
status_con_reg(7) <= '0';
end if;
end if;

elsif (add data bus = X"AA") then
if (ekey_mode = onn) then
ekey pos <= config_unlocked;

Jun 14 23:26 1990 draco.vhdl Page 8

status_con reg(6) <= ‘0t
status_con_reg(7) <= 'l1';
end if;
end if;

— is address OFH (error reset)
when X"OF" =>

error 1 <= '1‘;

status con_reg(3) <= ‘0’';

— is address 04H (address of MSB IO ports configuration
when X"04" =>
— config should be unlocked to configure io ports
if (status_con reg(7) = ‘l') then
loop2:
for I in 8 to 15 loop
msb_con_reg(I)<= add_data_bus(I-8);
end loop loop2;
else assert false
report "ERROR 16"
severity warning;
error_1 <= '0‘;
status_con_reg(3) <= '1';
end if;

— is address 03H (address of LSB IO port config register)
when X"03" =>
— change the config only if config is unlocked .
if (status_con reg(7) = 'l') then
loop3:
for I in 0 to 7 loop
1sb_con reg (I)<= add_data bus(I);
end loop loop3;
else assert false
report "ERROR 17"
severity warning;
error_1 <= '0';
status_con_reg(3) <= '1';
end if;

—— is address 02H (address of configuration register)
when X"02" =>
— config should be unlocked to change draco config
if (status_con_reg(7) = '1') then
status con_reg(0) <= add_data bus(0);
status con_reg(l) <= add data_bus(l);
status con_reg(2) <= add_data_bus(2);
else assert false
report "ERROR 18"
severity warning;
error_1 <= '0';
status_con_reg(3) <= '1';
end if;

— for addresses OEH, 0l1H, OOH check to see if the data is onn
when others =>

Jun 14 23:26 1990 draco.vhdl Page 9

ekey mode <= off;
status_con reg(5) <= '0';
if (ekey pos = data unlocked) then
— is address 0lH (address of msbyte io ports)
case add_latch is
when X"01" =>
—— if checksum is on then
if (status_con reg(0)='l') then
— store data in msb buffer
for I in 8 to 15 loop
msb_buf(I) <= add data bus(I-8);
end loop;
else — update the msb io ports
loop7:
for I in 8 to 15 loop
msb_io bus(I) <= add_data_bus (1-8);
end loop loop7;
status_con_reg(4) <= 'l1';
end if;

— is address 00H (address of 1sb io ports)
when X"00" =>
— 1if checksum is on then
if (status con reg(0) =‘1l') then
— store data in the 1sb buf
loop4:
for I in 0 to 7 loop
1sb buf(I) <= add_data bus(I);
end loop loop4;
else — update the lsbyte of the io ports
loop5:
for I in 0 to 7 loop
1sb io bus(I) <= add_data bus(I);
end loop loop5;
status_con_reg(4) <= '1';
end if;

—— is address OEH (address of the checksum)
when others =>
— check to see that the checksum option is enabled
if (status_con_reg(0) /= 'l') then
assert false
report “ERROR 19"
severity warning;
error_1 <= '0‘;
status con _reg(3) <= ‘'l1';
else — generate the checksum
— compare it with the data on the address data
-— bus. if they tally then update the ports of
— draco with the contents of the buffer

— generate the sum
checksum := “+"(1lsb_buf,msb buf);

~— invert the generated sum
checksum := ones_camp(checksum) ;

Jun 14 23:26 1990

draco.vhdl Page 10

— compare the inverted checksum
valid_checksum := compare(checksum,add_data_bus);

if (not valid checksum) then
assert false
report "ERROR 20"
severity warning;
error_1 <= '0';
status_con_reg(3) <= ‘1';

else — update the io ports with the contents of the buffers

loop4e:
forI:LnOto7loop
if (1sb_con reg(I)='0')then— port is bidirectional
1sb_io bus(I) <= 1sb buf(I);
end if;
if (msb_con_reg(1+8) ='0') then
msb_io bus(I+8) <= msb buf(I+8);
end if;
end loop loopde;
status_con_reg(4) <= '1';
end if;
end if;

end case;
else assert false

report

" ERROR 21"

severity warning;
error_1 <= '0';

status_¢

end if;
end case;

end if;

wait on a;

con_reg(3) <= '1';

status_con_reg <= null;

1sb_con_reg
msb_con_reg
ekey_pos (=

<= pull;
<= null;
null;

ekey mode <= null;

end process;

end block WRITE_CYCLE;

RESET_CYCLE:
block

signal a: boolean := true;

begin
process
begin

wait until (not cycle'stable and cycle = reset);

a¢= not a;

- disable checksum

Jun 14 23:26 1990 draco.vhdl Page 9

ekey mode <= off;
status_con_reg(5) <= '0';
if (ekey pos = data_unlocked) then
— is address 0lH (address of msbyte io ports)
case add_latch is
when X"01" =>
— 1if checksum is on then
if (status_con reg(0)='l') then
— store data in msb buffer
for I in 8 to 15 loop
msb buf(I) <= add_data_bus(I-8);
end loop;
else — update the msb io ports
loop7:
for I in 8 to 15 loop
msb_io bus(I) <= add_data_bus (I-8);
end loop loop7;
status _con_reg(4) <~ 'l';
end if;

— is address 00H (address of 1sb io ports)
when X"00" =>
— if checksum is on then
if (status con reg{0) ='1‘) then
— store data in the 1lsb buf
loop4:
for I in 0 to 7 loop
1sb buf(I) <= add _data_bus(I);
end loop loop4;
else — update the lsbyte of the io ports
loop5:
for I in 0 to 7 loop
1sb io bus(I) <= add_data bus(I);
end loop loop5;
status_con_reg(4) <= '1';
end if;

—— is address OEH (address of the checksum) '
when others =>

— check to see that the checksum option is enabled

if (status_con_reg(0) /= 'l') then
assert false
report "ERROR 19"
severity warning;
error_1 <= '0';
status_con_reg(3) <= '1';
else — generate the checksum

— compare it with the data on the address data
— bus. if they tally then update the ports of
—— draco with the contents of the buffer

— generate the sum
checksum := "+"(1lsb buf,msb buf);

— invert the generated sum
checksum := ones_camp(checksum) ;

Jun 14 23:26 1990

draco.vhdl Page 10

— compare the inverted checksum
valid_checksum := compare(checksum,add data bus);

if (not valid_checksum) then
assert false
report “ERROR 20"
severity warning;
error_1 <= '0';
status_con _reg(3) <= ‘'l1°;

else — update the io ports with the contents of the buffers

loop4e:
for I in 0 to 7 loop
if (1lsb_con_reg(I)='0')then— port is bidirectional
1sb_io bus(I) <= lsb buf(I);
end if;
if (msb_con reg(1+8) ='0') then
msb_io bus(I+8) <= msb buf(I+8);
end if;
end loop loopde;
status_con reg(4) <= '1';
end if;
end if;

end case;
else assert false

report

“ ERROR 21"

severity warning;
error_1l <= '0';
status_con_reg(3) <= 'l';

end if;
end case;

end if;

wait on a;

status_con_reg <= null;

1sb con_reg
msb_con_reg
ekey_pos <=

<= pull;
<= null;
null;

ekey _mode <~ null;

end process;

end block WRITE_CYCLE;

RESET_CYCLE:
block

signal a: boolean := true;

begin
process
begin

wait until (not cycle'stable and cycle = reset);

a<= not a;

— disable checksum

Jun 14 23:26 1990 draco.vhdl Page 11

status_con_reg(0) <= '0';
— disable data parity
status_con_reg(l) <='0';
— disable address parity
status _con_reg(2) <= '0';
— error reset state
status_con reg(3) <= '0';
— write acknowledge
status con_reg(4)<= '0';
— ekey is off

ekey mode <= off;
status_con_reg(5) <= '0';
— ekey mode is locked
ekey_pos <= locked;

status con_reg(6) <= '0';
status_con_reg(7) <= '0';
— ports are configured as bidirectional
msb_con_reg <= X"00";
1sb_con_reg <= X"00";

wait on a;

status_con_reg <= null;
ekey mode <= null;
ekey pos <= null;

1sb _con_reg <= null;
msb_con_reg <= null;

end process;
end block RESET CYCLE;

READ CYCLE:
block
signal a: boolean := true;
begin
process
variable count : integer;
variable checksum: bit_vector (7 downto 0);
begin
wait until (cycle = read and not cycle'stable);

a <= not a;

if (add latch=X"80" or add_latch=X"7F" or add_latch=X"OF")
then error_1 <= '0';

status_con_reg(3) <= '1';

assert false

report "ERROR 22"

severity warning;

elsif (add_latch = X"OE") then
— generate the sum
checksum := "+"(1lsb buf,msb buf);
— invert the generated sum
checksum := ones_camp(checksum) ;
data bus <= checksum after 20 fs;

Jun 14 23:26 1990 draco.vhdl Page 12

if (status con_reg(l)='1l') then
out_parity <= odd_parity fct(checksum) after 20 fs;

end if;
else
case add_latch is
when X"04" =>
for I in 0 to 7 loop
data _bus(I) <= msb_buf(I+8) after 20 fs;
end loop;
if (status_con reg(l) = 'l') then
out_parity <= odd parity fct(msb_buf) after 20 fs;
end if;
when X"03" =>
data bus <= lsb buf after 20 fs;
if (status_con reg(l) = 'l') then
out_parity <= odd_parity fct(lsb_buf) after 20 fs;
end if; .
when X"02" =>
for I in 0 to 7 loop -
data_bus(I) <= status con reg(I) after 20 fs;
end loop;
if(status_con_reg(l) = '1') then
out_parity <= odd_parity 2(status_con _reg) after 20 fs;
end if;
when X"01" =>
for I in 0 to 7 loop
data_bus (I) <= msb_io bus(I+8) after 20 fs;
end loop;
if (status_con reg(l) = 'l') then
out_parity<= odd_parity_ fct(msb_io bus) after 20 fs;
end if;
when X"00" =>
data_bus <= lsb_io_bus after 20 fs;
if (status_con reg(l) = '1l') then
out_parity<= odd_parity fct(lsb_io bus) after 20 fs;
end if;
when others =>
count := 0 ;
end case;
end if;

wait on a;
status con_reg(3)<= null;
end process;
end block READ _CYCLE;

end;

configuration behavioural con of draco is

for behavioural
end for;

Jun 14 23:26 1990 draco.vhdl Page 13 Jun 13 00:35 1990 pkge.vhdl Page 1

end behavioural con; package res_funcs is

type bit res is array (Natural Range <>) of bit;

type state is(write, read, address,reset,idle,chip_disable,power off,chip_enable
type state res is array (natural range <) of state;

type switch is (off,onn);

type switch_res is array (natural range <>) of switch;

type bool_res is array (natural range <>) of boolean;

type pos is (data_unlocked, config unlocked, locked);

type pos_res is array (natural range <>) of pos;

function Bit_res fun (input : bit_res) return bit;
function state res fun (input: state res) return state;
function switch res_fun(input: switch res) return switch;
function bool_res_fun (input : bool res) return boolean;
function pos_res_fun (input : pos_res) return pos;

subtype bitres is bit res fun bit ;

subtype stateres is state res_fun state ;
subtype switchres is switch_res_fun switch ;
subtype boolres is bool_ res_fun boolean;
subtype posres is pos_res_fun pos;

type bit_res reg is array (integer range <>) of bitres;
end res_funcs;

package body res_funcs is

function state res_fun (input: state res) return state is
variable a: boolean := false;
begin
a:= false;
loop3:
for I in Input'range loop
if (input(I)= power_off) then
return Input(I);
a:=true;
end if;
end loop loop3;
if (a=false) then
return Input(0);
end if;
end state res_fun;

function Bit_res_fun (input : bit_res) return bit is
begin)

return input(0);
end bit_res_ fun;

function switch res_fun (input: switch_res) return switch is
begin

return input(0);
end switch _res fun;

function bool_res_fun (input : bool_res) return boolean is

Jun 13 00:35 1990 pkge.vhdl Page 2

begin
return input(0);
end bool_res_fun;

function pos_res_fun (input :

begin
return input(0);
end pos_res_fun;

end res funcs;

pos_res) return pos is

Jun 12 22:36 1990 pack.vhd Page 1

use work.res_funcs.all;
package binary ops is

function ONES_COMP (v2: BIT VECTOR) return BIT_VECTOR;
function “+" (x1, x2: BIT VECTOR) return BIT_ VECTOR;
function COMPARE (x1,x2 : BIT VECTOR) return boolean;
function EVEN PARITY (x1: BIT_VECTOR) return bit;
function VALID ADDRESS FUN(x1: BIT VECTOR) return boolean;
function SUM(v2 : BIT VECTOR) return integer;

function SUM 2(v2 :bit_res_reg) return integer;

end binary_ops;
package body binary ops is

kA AR AR A AR KRR R AR AR R R TR R AR AN AR AR AR AR AR N AR RAAARNANRENRAR RN R RRARNRRARER
function ones_comp (v2: BIT VECTOR) return BIT VECTOR is

variable vl : BIT VECTOR(v2'high downto v2'low);
variable temp: BIT VECTOR(vl'range);
variable I: INTEGER;

begin
vl := v2;
for I in vl'range loop
if vi(I) = '0' then
temp(i) := '1';
else
temp(i) :~ '0';
end if;
end loop;

return temp;

end ones_comp;
et 2 2 2 22222 23222222222 R 2222222222222 3822322222223 3233 22222222t ss]

KRR TR R R ER AR R R R R R R R R AR AR R R R R A AN AR AR R AR AR R A AR R AR RN AARRKARARRAS
function "+"(x1, x2 :BIT VECTOR) return BIT VECTOR is

variable vl : BIT VECTOR(x1'high downto x1'low);
variable v2 : BIT VECTOR(x2'high downto x2'low);
variable CARRY: BIT := '0';

variable S: BIT VECTOR(1 to 3);

variable NUM: INTEGER range 0 to 3 := 0;

" variable SUM: BIT VECTOR(vl'range);

variable I,K,L: INTEGER;

begin
vl := x1;
v2 = X2;

assert vl'length = v2'length
report "BIT VECTOR +: operands of unequal lengths"
severity FAILURE;

for I in vl'low to vl'high loop

Jun 12 22:36 1990 pack.vhd Page 2

L:= 1 + v2'low;
S:= v1(I) & v2(L) & CARRY;
NUM := 0;

for K in 1 to 3 loop
if S(K) = '1' then
NUM := NUM + 1;
end if;
end loop;

case NUM is

when 0 => SUM(I) := '0'; CARRY := '0';
when 1 =) SUM(I) := 'l'; CARRY := '0';
when 2 => SUM(I) := '0‘; CARRY := ‘1';
when 3 => SUM(I) := '1'; CARRY := '1';
end case;
end loop;

return SUM;
Hggn
end "+";
e AR AR R AR A R AR AR R R AN R R AR AR R AR R AR R AR AR R R R AR AR R AR AR AR RRRR AR KRR AR AR RN Kk

——*t*tt***ti****t****tt*tt*t*tt***ti**tt*i****t****t**t**ﬁ*t*iﬂit***ti
function OOMPARE (x1, x2: BIT VECTOR) return boolean is

variable vl : Bit VECTOR(x1l‘high downto x1'low);
variable v2 : BIT VECTOR(x2'high downto x2'low);
variable temp : boolean;

begin
temp := true;
vl := x1;
v2 = X2;

assert vl'length = v2'length
report "BIT VECTOR COMPARE: operands of unequal 1engths
severity FAILURE;

for I in vl'low to vl'high loop
if (((V1({I))xor(v2(I)))='1') then
temp := false;
end if;
end loop;

return temp;

end COMPARE;

bt 2 222 28 222222222222 s iRt i st 22 ssss s it ss]

et A2 2332322322223 2222222222332 3332222233232 2333 23432222230 2222431]
function SUM(v2 : BIT VECTOR) return integer is

variable vl : BIT VECTOR(v2'high downto v2‘low);
variable count : integer := O;

begin

Jun 12 22:36 1990 pack.vhd Page 3

vl := v2;
for I in v1'high downto v1'low loop
if (v1(I) = '1') then
count := count + 1;
end if;
end loop;

return count;
end SUM;
— AR R AR R R R AR AR R RN R AR R AR R AR AR R AR R AR AR AR KRR R R R AR AN KRR AR R AR AR AR RRARN

A AR A KRR AR R AR R R R R AR KRR AN AR AR AR R R AR AR AR AR KRR AR AR R AR AR R AR ARAARRANARNRS

function SUM 2(v2 : bit res reg) return integer is

variable vl : BIT RES REG(v2'high downto v2'low);
variable count : integer := 0;

begin
vl = v3;
for I in vl'high downto v1'low loop
if (vl(I) = '1') then
count := count + 1;
end if;
end loop;

B e L E T ST III

et i 22 32 222223222222 2222222223322 23322222323 2228 2282233223223 223233223
function EVEN_PARITY (x1: BIT VECTOR) return bit is

variable vl : BIT_VECTOR(x1l'high downto x1'low);
variable temp: bit;

begin
temp := '0';
vl:=x1;

for I in vl'high to vl'low loop
if vl(I) = '1l' then temp:= not(temp);
end if;

end loop;

return temp;

end EVEN_PARITY;
it At I L e I e T e

R AR R R R AR AR R AR R R R AR A A R RN A R R AN AR R R AR R AR AR R R AR R R AR NARN R KRR AR AR AR RARR
function VALID ADDRESS_FUN (x1l: BIT VECTOR) return boolean is

variable temp: boolean;
variable vl: BIT VECTOR (x1'high downto x1'low);

begin

I

Jun 12 22:36 1990 pack.vhd Page 4

vl:= x1;

temp := v1=X"00" or vl=x"O1"
or vl=X"02" or vl1=X"03"
or v1=X"04" or v1=X"OE"
or v1=X"OF" or v1=X"7F"
or v1=Xx"80";

8LL9 Z88ﬁ0 0/6l €

return temp;

end VALID_ADDRESS_FUN;
K KKK KKK KRR KRR KK KRR KRR K KA KKK KKK AR KRR KRR KK R RR AR AR KRR KKK KR AR R ARKK KK

KA KA KR KKK AR A KKK AR A AR A AR AR AR KRR KK AR AR KR ARN KR AR AR AR KN AR AR R RN A KA RRAAARK KK

end binary ops;

