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Abstract of the Dissertation

Aggregation Equation with Degenerate Diffusion

by

Yao Yao

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Inwon C. Kim, Chair

Recently, there has been a growing interest in the use of nonlocal partial differential equation

(PDE) to model biological and physical phenomena. In this dissertation, we study the

behavior of solutions to several nonlocal PDEs, which have both an aggregation term and a

degenerate diffusion term.

Chapter 1 and Chapter 2 of this dissertation are devoted to the study of the Patlak-Keller-

Segel (PKS) equation and its variations. The PKS equation is a degenerate diffusion equation

with a nonlocal aggregation term, which models the collective motion of cells attracted by

a self-emitted chemical substance. While the global well-posedness and finite-time blow-up

criteria are well known, the asymptotic behaviors of solutions are not completely clear.

In Chapter 1, we investigate qualitative and asymptotic behavior of solutions for the PKS

equation when the solution exists globally in time. The challenge in the analysis consists of

the nonlocal aggregation term as well as the degeneracy of the diffusion term which generates

compactly supported solutions. Using maximum-principle type arguments as well as energy

argument, we prove the finite propagation property of general solutions, and several results

regarding asymptotic behaviors of solutions.

In Chapter 2, we consider the PKS equation with general power-law interaction ker-

nel, and focus on the cases where the solution blows up in finite time. We study radially

symmetric finite time blow-up dynamics from both the numerical and asymptotic aspect,

and show that the solution exhibits three kinds of blow-up behavior: self-similar with no
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mass concentrated at the core, imploding shock solution and near-self-similar blow-up with

a fixed amount of mass concentrated at the core. Computation are performed for a variety of

parameters using an arbitrary Lagrangian Eulerian method with adaptive mesh refinement.

Chapter 3 discusses the study on an aggregation-diffusion equation with smooth inter-

action kernel in the periodic domain. This equation represents the generalization to m > 1

of the McKean–Vlasov equation where here the “diffusive” portion of the dynamics are gov-

erned by Porous medium self–interactions. We focus primarily on m ∈ (1, 2] with particular

emphasis on m = 2. In general, we establish regularity properties and, for small interaction,

exponential decay to the uniform stationary solution. For m = 2, we obtain essentially sharp

results on the rate of decay for the entire regime up to the (sharp) transitional value of the

interaction parameter.

This dissertation has been resulted in the publications [CKY, KY, Y, YB].
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3.2 Hölder continuity of the solution of PME with a drift . . . . . . . . . . . . . 94

3.3 Application to aggregation equation with degenerate diffusion . . . . . . . . 103

vii



3.4 The case m = 2: analysis via normal modes . . . . . . . . . . . . . . . . . . 105

3.4.1 The subcritical case, when m=2 . . . . . . . . . . . . . . . . . . . . . 107

3.4.2 Some remarks on the supercritical case, when m = 2 . . . . . . . . . 113

3.5 Exponential decay for 1 < m < 2 and weak interaction . . . . . . . . . . . . 114

A Additional Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.1 Additional computations for Chapter 1 . . . . . . . . . . . . . . . . . . . . . 120

A.1.1 Proof of existence for ρ as given in Proposition 1.2.1 . . . . . . . . . . 120

A.1.2 Proof of Lemma 1.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1.3 Proof of Proposition 1.6.2 . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1.4 Proof of Proposition 1.6.4 . . . . . . . . . . . . . . . . . . . . . . . . 124

A.1.5 Proof of Lemma 1.7.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Additional Computations for Chapter 4 . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor Prof. Inwon

Kim for introducing me to nonlinear PDE, and for her excellent guidance on every step of my

academic life. Without her help, it would be impossible for me to finish this dissertation. It

has been a very pleasant experience to work with her, and her approach of doing mathematics

has a great influence on me. I also want to thank her for being a caring friend, and always

ready to help me out when I am stuck on a math problem.

I am sincerely grateful to Prof. Lincoln Chayes for his continuous help throughout my

graduate study, and for his insightful comments and constructive criticisms. I would like to

thank him for explaining to me the connection between math and physics, and also for his

tremendous help on my writing. I can never thank him enough for carefully reading and

commenting on countless versions of the manuscript of our joint paper.

I would also like to thank the rest of my committee, Prof. James Ralston and Prof.

Jeffrey Eldredge, for the time and interest required to review my dissertation. Aside from

my committee members, I am deeply indebted to Prof. Andrea Bertozzi for her guidance

on our joint project, and for teaching me how to write a decent paper. I would like to

particularly thank her for the thoughtful advices and cheerful encouragement during some

of my stressful times.

During my study at UCLA I met many awesome people, who had made my experience at

UCLA a very special one. I would like to thank Norbert Požár, Thomas Laurent and Jesús
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CHAPTER 1

Asymptotic Behavior for Patlak-Keller-Segel Equation

with Degenerate Diffusion

1.1 Introduction

In this chapter we study solutions of a nonlocal aggregation equation with degenerate diffu-

sion, given by

ρt = ∆ρm + ∇ · (ρ∇(ρ ∗ V )) in R
d × [0,∞), (1.1.1)

with initial data ρ0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd). Here m > 1, d ≥ 3 and ∗ denotes the

convolution operator. In the absence of the aggregation term (when V = 0), our equation

becomes the well-known Porous medium equation (PME):

ρt − ∆(ρm) = 0. (1.1.2)

Note that, formally, the mass of solutions is preserved over time:

∫

Rd

ρ(·, 0)dx =

∫

Rd

ρ(·, t)dx for all t > 0.

Nonlocal aggregation phenomena have been studied in various biological applications such

as population dynamics [BCM, BCM, GM, TBL] and Patlak-Keller-Segel (PKS) models of

chemotaxis [KS2, LL, P, FLP]. In the context of biological aggregation, ρ represents the

population density which is locally dispersed by the diffusion term, while V is the interaction

kernel that models the long-range attraction. Recently, there has been a growing interest

in models with degenerate diffusion to include anti-overcrowding effects (see for example

[TBL, BCM]). Mathematically, the equation models competition between diffusion and

nonlocal aggregation.
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Throughout this chapter, we will focus on the following two types of potentials:

(A) (PKS-model) V (x) is a Newtonian potential :

V (x) = N := − cd
|x|d−2

, (1.1.3)

where cd :=
1

(d− 2)σd
, with σd: the surface area of the sphere S

d−1 in R
d.

(B) (regularized Newtonian potential)

V (x) = (N ∗ h)(x), (1.1.4)

where ∗ denotes convolution and h(x) is a radial function in L1(Rd : (1 + |x|2)dx) ∩ L∞(Rd)

which is continuous and radially decreasing.

Note that (A)-(B) cover all attractive potentials V whose Laplacian is nonnegative and

radially decreasing. These restrictions on ∆V turn out to be necessary for obtaining the

preservation of radial monotonicity (see Proposition 1.4.3) as well as the mass comparison

principle in Section 1.5.

The global wellposedness and finite time blow-up results for (1.1.1) has been well studied

(see [B, H] for review articles), however the asymptotic and qualitative behaviors of solutions

are not completely known. Below we briefly summarize the global existence/finite time blow-

up criteria for (1.1.1).

When V is the regularized Newtonian potential (B), we have an a priori L∞ bound of

∆(ρ ∗ V ) via the inequality ‖∆(ρ ∗ V )‖L∞(Rd) ≤ ‖ρ‖L1(Rd)‖∆V ‖L∞(Rd). This suggests that

‖ρ(·, t)‖L∞(Rd) can at most grow exponentially in time, hence we should expect the weak

solution to exist globally in time. A rigorous proof of the global existence can be found in

[BRB]. Moreover, for any mass size A, the existence of a stationary solution with mass A is

proven in [L] and [B2], however it is unknown whether the stationary solution with mass A

is unique.

When V = N , the existence/blow-up criteria is more delicate due to the singularity of

N at the origin. To study the well-posedness of (1.1.1), the following free energy functional

2



(1.1.5) plays an important role, where the first term is usually referred to as the entropy and

the latter term is referred to as the interaction energy. When m > 1, the free energy is given

by

F(ρ) =

∫

Rd

(
1

m− 1
ρm +

1

2
ρ(ρ ∗ N )

)

dx, (1.1.5)

while for m = 1 the first term in the integrand is replaced by ρ log ρ. The free energy of

a weak solution to (1.1.1) is non-increasing in time; indeed, it is shown that (1.1.1) is the

gradient flow for F with respect to the 2-Wasserstein metric (see for example [AGS] and

[CMV]).

To link the entropy term and the interaction term together, the key observation in [BCL2]

is the sharp Hardy-Littlewood-Sobolev inequality, which bounds the interaction energy by

the Lmc-norm of ρ:
∣
∣
∣
∣

∫

Rd

ρ(ρ ∗ N )dx

∣
∣
∣
∣
≤ C∗‖ρ‖2/d

L1(Rd)
‖ρ‖mc

Lm
c (Rd)

, (1.1.6)

where C∗ is a constant only depending on the dimension d, and mc := 2 − 2/d. Therefore

one should expect the solution exhibits different behavior for m > mc and 1 < m < mc.

This is indeed the case, and the global existence and finite time blow-up results for different

m are summarized below.

Supercritical regime: For 1 ≤ m < 2− 2/d, the problem is supercritical : the diffusion is

dominant at low concentrations and the aggregation is dominant at high concentration. As a

result supercritical and critical problems with singular kernels may exhibit finite time blow-

up phenomena [DP, HV, S1, BlCM]. On the other hand solutions globally exist with small

mass and relatively regular initial data, and here the diffusion dominates at large length

scale (see [C] and [S2]). Indeed using the entropy dissipation method similar to [CJMTU], it

is shown that the solutions with small L1 and L(2−m)d/2- norms converge to the self-similar

Barenblatt profile [LS1, LS2, B1].

Subcritical regime: On the other hand, in the subcritical regime (m > 2 − 2/d), the

diffusion is dominant at high concentration. For this reason the weak solution exists globally

in time regardless of its mass size [S1, BCL2, BRB]. Since aggregation dominates in low
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concentration, one can show that there are compactly supported stationary solutions for any

mass size (see Proposition 1.2.1)). When V = N , for any given mass size, uniqueness of

radial stationary solution is proved in [LY] for the PKS model. However it was unknown

whether this stationary solution is an attractor.

Critical regime: When m = mc, the right hand side of the inequality (1.1.6) becomes

C∗‖ρ‖2/d

L1(Rd)
‖ρ‖m

Lm(R)d , which is a multiple of the entropy, where the multiplication constant

depends on m, d and the mass of ρ. This suggests that the behavior of the solution depends

on its mass. Making use of the inequality (1.1.6), it is proved in [BCL2] (and generalized by

[BRB] for more general kernels) that there exists a critical mass Mc only depending on d,

which sharply divides the possibility of finite time blow up and global existence.

◦ Critical mass:

When the mass is equal to the critical mass Mc, it is proved in [BCL2] that weak solutions

with bounded initial data exist globally in time. Moreover, they show the global minimizers

of the free energy functional F have zero free energy, and are given by the one-parameter

family

ηR(x) =
1

Rd
η1(

x

R
) (1.1.7)

subject to translations. Here η1 is the unique radial classical solution to

m

m− 1
∆ηm−1

1 + η1 = 0 in B(0, 1), with η1 = 0 on ∂B(0, 1). (1.1.8)

It was unknown that whether this family of stationary solutions attract some solutions.

◦ Subcritical mass:

When 0 < M < Mc, the weak solution exists globally in time, as long as its initial

Lm-norm is finite [BCL2, BRB]. Moreover it has been proved in [BCL2] that there exists

a dissipating self-similar solution, with the same scaling as the porous medium equation.

However it was unknown whether this self-similar solution would attract all solutions in the

intermediate asymptotics.

◦ Supercritical mass: For every M > Mc, it is proved in [BCL2] that there exist some

initial data of mass M such that the Lm-norm of the corresponding solution blows up in
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finite time. Their proof is based on the Virial identity, which only applies to the initial data

whose free energy is negative. Recently, using mass comparison techniques, it is proved in

[BK] that all radial solution with mass M > Mc must blow up in finite time, regardless of

its initial free energy.

Although the well-posedness and blow-up criteria of (1.1.1) are well-known, a lot of

questions concerning the qualitative behavior of solutions remain to be answered, such as

finite speed of propagation and asymptotic behavior of solutions. Here the difficulty lies in

the lack of sufficient control on pointwise behavior of solution as well as the presence of the

free boundary, which calls for new methods.

In this chapter we investigate qualitative and asymptotic behavior of solutions for (1.1.1)

when the solution exists globally in time; for the cases that leads to a finite time blow-up,

the asymptotic behavior for radial solutions will be studied in Chapter 2. The main tools in

our analysis in this chapter are various types of comparison principles, together with energy

argument. While maximum-principle type arguments are natural to parabolic PDEs, the

classical maximum principle does not hold with (1.1.1) due to the nonlocal aggregation term,

and therefore the standard comparison principle and the corresponding viscosity solutions

theory do not apply. Instead we establish order-preserving properties of several associated

quantities: the radial monotonicity (Section 1.4), the mass concentration (Section 1.5), and

the rearranged mass concentration for non-radial solutions (Section 1.6)). Most results in

this chapter come from a joint work with Inwon Kim [KY], while Section 1.7.4–Section 1.7.6

are taken from [Y]. Our main results are summarized below.

1.1.1 Summary of results

Let us begin with stating properties of radial stationary solutions of (1.1.1):

Theorem 1.1.1 (Properties of radial stationary solutions). Let V be given by (A) or (B)

and let m > 2 − 2
d
. Let ρA be a non-negative radial stationary solution of (1.1.1) with

∫
ρA(x)dx = A > 0. Then

5



(a) ρA is radially decreasing, compactly supported and smooth in its support (Proposi-

tion 1.2.1);

(b) ρA is uniquely determined for any given A (Theorem 1.2.2 and Theorem 1.2.4).

When V is given by (A), the uniqueness of radial stationary solution comes from the

well-known results of Lieb and Yau [LY]. Their proof is based on the fact that the mass

function satisfies an ODE with uniqueness properties; this property fails when V is given

by (B). Instead, we look at the dynamic equation (1.1.1), and prove uniqueness out of

asymptotic convergence towards a stationary solution. A more direct proof of uniqueness

and the uniqueness of general (possibly non-radial) stationary solutions are interesting open

questions. We also mention a recent preprint [BDF], which studies another type of diffusion-

aggregation equation: here authors use eigenvalue methods to prove the uniqueness of one-

dimensional stationary solutions.

Next we show several results concerning the qualitative behavior of solutions, which will

be used in the rest of the chapter:

Theorem 1.1.2 (Qualitative properties of solutions). Let V be given by (A) or (B), and

assume m > 1. Let ρ(x, t) be a weak solution to (1.1.1), which is uniformly bounded in

Rd × [0, T ). Then the following holds:

(a) For any δ > 0, ρ is uniformly continuous in Rd × [δ, T ); (Theorem 1.3.1)

(b) [Finite propagation property] {ρ > 0} expands over time period τ with maximal rate of

Cτ−1/2 (Theorem 1.3.1);

(c) If ρ(·, 0) is radial and radially decreasing, then so is ρ(·, t) for any t ∈ [0, T ) (Theorem

1.4.2).

Both properties (b) (the finite propagation property of the general solutions) and (c)

(the preservation of radial monotonicity) are new, to the best of the authors’ knowledge, for

any type of diffusion-aggregation equation. For the first-order aggregation equation ((1.1.1)

6



without the diffusion term), property (c) has been recently shown in [BGL] for the same

class of potentials, via the method of characteristics.

We now turn to the discussion of asymptotic behavior of solutions.

Theorem 1.1.3 (Asymptotic behavior: subcritical regime). Let V be given by (A)

or (B), m > 2 − 2
d
, and let ρ(x, t) be the solution to (1.1.1) with initial data

ρ0(x) ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd) which has mass A > 0. Then

(a) If ρ0 is radially symmetric and compactly supported, then the support of ρ, {ρ(·, t) > 0}
stays inside of a large ball {|x| ≤ R} for all t ≥ 0, where R depends on m, d, V and

the initial data ρ0 (Corollary 1.7.1);

(b) Let ρA be a radial stationary solution with mass A. Then If ρ0 is radially symmetric

and compactly supported, then ρ converges to ρA exponentially fast in p-Wasserstein

distance for all p > 1 (Corollary 1.7.4), and ‖ρ(·, t) − ρA‖L∞(Rd) → 0 as t → ∞
(Corollary 1.7.5).

(c) For every 0 < t < 1 we have

‖ρ(·, t)‖L∞(Rd) ≤ c(m, d,A, V )t−α,

where α := d
d(m−1)+2

. Note that c does not depend on ‖ρ(·, 0)‖∞. (Proposition 1.7.7).

The proof of above theorem is based on the mass comparison, i.e. maximum-principle

type arguments on the mass concentration of solutions (see Proposition 5.3). The mass

comparison property have been previously observed for PKS models ([BKLN]; also see a

recent preprint of [CLW]). However the property has not been fully taken advantage of,

perhaps because of the success of entropy method for the Keller-Segel model.

Our method also provides interesting results for asymptotic behavior of radial and non-

radial solutions in the supercritical regime, when the solution starts from sufficiently less

concentrated initial data in comparison to a re-scaled stationary profile. (For the definition

of “less concentrated than”, see Definition 1.5.2) We point out that in our result the mass

7



does not need to be small as required in previous literature (e.g. see [B1]), and provides an

explicit description of solutions which are “sufficiently scattered” so that it does not blow

up in finite time.

Theorem 1.1.4 (Asymptotic behavior: supercritical regime). Let V (x) be given by (A) or

(B), and suppose 1 < m < 2− 2
d
. Assume ρ0 is radially symmetric, compactly supported and

has mass A. Then there exists a sufficiently small constant δ > 0 depending on d,m,A and

V , such that if

ρ0(λ) ≺ δdµA(δλ),

where “≺” is defined in Definition 1.5.2 and µA(λ) is given in (1.7.22), then the weak solu-

tion ρ with initial data ρ0 exists globally and converges to the Barenblatt profile in rescaled

variables algebraically fast(Corollary 1.7.11).

When V is the Newtonian potential, in the critical regime, by constructing explicit bar-

riers in the mass comparison sense and using energy method, we obtain the following results

for radial solutions of (1.1.1) with critical mass Mc:

Theorem 1.1.5. (Asymptotic behavior: critical regime with critical mass) Suppose V = N
and m = 2−2/d. Let ρ(x, t) be the weak solution to (1.1.1) with initial data ρ0, where ρ0 has

critical mass Mc. Assume that ρ0 is continuous, radially symmetric, compactly supported,

and satisfies ∇ρm
0 ∈ L2(Rd). Then ρ(·, t) → ρR0 in L∞(Rd) as t → ∞ for some R0 > 0,

where ρR0 is a stationary solution defined in (1.1.7). (Theorem 1.7.14)

For radial solutions with subcritical mass, mass comparison again gives convergence to-

wards the dissipating self-similar solution. For general (possibly non-radial) initial data, we

use a maximum-principle type method to prove that when the mass is sufficiently small,

every compactly supported stationary solution must be radially symmetric. This leads to

the following asymptotic convergence result:

Theorem 1.1.6. (Asymptotic behavior: critical regime with subcritical mass) Suppose

V = N and m = 2 − 2/d. Let ρ(x, t) be the weak solution to (1.1.1) with mass A < Mc,

where the initial data ρ0 is continuous and compactly supported. Then we have
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(a) If ρ(·, 0) is radially symmetric, then as t → ∞, ρ(·, t) converges to the dissipating

self-similar solution UA as defined in (1.7.41), where the Wasserstein distance between

ρ(·, t) and UA decays algebraically fast as t→ ∞. (Corollary 1.7.19)

(b) For general (non-radial) solutions, if the mass A < Mc/2 is sufficiently small, then

lim
t→∞

‖ρ(·, t) − UA‖p = 0 for all 1 ≤ p ≤ ∞.

(Corollary 1.7.24)

1.2 Properties of the radially symmetric stationary solutions

In this section we consider non-negative radially symmetric stationary solutions of (1.1.1) in

the subcritical regime (i.e. m > 2 − 2/d). Here the Euler-Lagrange equation is given by

m

m− 1
ρm−1 + ρ ∗ V = C in {ρ > 0}, (1.2.1)

where the constant C may be different in different positive components of ρ. When V is

given by (A) or (B), for any mass A > 0, the existence of a stationary solution ρ with mass

A is proven in [B2], which is an application of [L]. We include the proof in Proposition 1.2.1

for the sake of completeness.

To investigate the qualitative property of the radial stationary solution, it is helpful to

introduce the following mass function:

M(r) :=

∫

B(0,r)

ρ(x)dx.

Since both ρ and V are radially symmetric, we may slightly abuse the notation and write

ρ ∗ V as a function of r. When V = N , due to the divergence theorem and radial symmetry

of ρ and V , we readily obtain

∂

∂r
(ρ ∗ V )(r) =

M(r)

σdrd−1
. (1.2.2)

where σd is the surface area of the sphere Sd−1 in Rd. Similarly, when V is given by (B), for

all radially symmetric function ρ, we have that ρ ∗ V is radially symmetric, and

∂

∂r
(ρ ∗ V )(r) =

M̃(r)

σdrd−1
, (1.2.3)

9



where M̃(r) :=
∫

B(0,r)
ρ ∗ ∆V dx. Note that in both cases, we have ∂r(ρ ∗ V ) ≥ 0.

Proposition 1.2.1. Let V given by (A) or (B) and suppose m > 2− 2
d
. Then there exists a

radially symmetric, nonnegative solution ρ ∈ L1(Rd) of (1.2.1). Moreover, (a) ρ is smooth

in its positive set; (b) ρ is radially decreasing; and (c) ρ is compactly supported.

Proof. 1. Existence of the stationary solution ρ follows from [L]: the proof is given in Section

A.1.1 of the appendix.

2. To show (a) for V = N , note that the right hand side of (1.2.2) is continuous since

f(r) :=
M(r)

σdrd−1
is continuous for all r > 0, and f(r) → 0 as r → 0. By (1.2.2), ρ ∗ V is

differentiable in the positive set of ρ, which implies that ρm−1 (hence ρ) is also differentiable

in the positive set of ρ. Therefore
M(r)

rd−1
is now twice differentiable, hence we can repeat

this argument and conclude. When V is given by (B), we can apply the same argument on

(1.2.3) and conclude.

3. By differentiating (1.2.1) we have

m

m− 1

∂

∂r
ρm−1 = − ∂

∂r
(ρ ∗ V ) in {ρ > 0}. (1.2.4)

Due to (1.2.2)-(1.2.3) the right hand side of (1.2.4) is negative, and thus we conclude (b).

4. It remains to check (c). Note that (b) yields that ρ has simply connected support.

Hence (1.2.1) yields

ρ(r) = (C − ρ ∗ V (r))
1

m−1 .

When V = N the proof is similar to that of Theorem 5 in [LY]: since ρ ∗ V vanishes at

infinity, we have

ρ ∗ V (r) = −
∫ ∞

r

M(s)

sd−1
ds = − M(r)

(d − 2)rd−2
−
∫ ∞

r

cd
d− 2

ρ(s)sds, (1.2.5)

where cd is the volume of a ball with radius 1 in Rd. Note that

ρ ∗ V (r) ≤ 0 and − ρ ∗ V (r) ∼ 1

rd−2
as r → ∞. (1.2.6)

If C = 0, (1.2.6) implies that

ρ(r) = (−ρ ∗ V (r))
1

m−1 ∼ r−
d−2
m−1 ,
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where the exponent is greater than −d when m > 2 − 2
d
, which contradicts the finite mass

property of ρ. Therefore C must be negative and thus ρ(r) needs to touch zero for some r.

When V = N ∗h, we have ρ∗V = (ρ∗N )∗h. Since h ∈ L1(Rd) and is radially decreasing,

using (1.2.5) we have ρ ∗ V (x) ∼ 1

|x|d−2
as |x| → ∞ as well, hence (c) follows from the same

argument as above.

Next we state the uniqueness of the radial stationary solution when V = N .

Theorem 1.2.2 ([LY]). Let V = N , and suppose m > 2 − 2
d
. Then for all choices of

mass A > 0, the radial stationary solution for (1.1.1) with mass A is unique. Moreover, the

stationary solution is the global minimizer for the free energy functional (1.1.5).

This theorem follows from a minor modification from the proof of Theorem 5 in [LY],

which proves uniqueness of the stationary solution of a slightly different problem. Their

proof consists of two steps: for a given mass, they first show the global minimizer of (1.1.5)

is unique, and secondly they prove every radial stationary solution is a global minimizer for

some mass.

We slightly digress here and state the following corollary, which is an immediate conse-

quence of Theorem 1.2.2 and the homogeneity of N , hence the proof will be omitted.

Corollary 1.2.3. Let V and m be as in Theorem 1.2.2, and let ρM be the radial solution of

(1.2.1) with mass M . Then

ρM(x) = aρ1(a
−m−2

2 x) with a := M
2

d(m−2+2/d)) . (1.2.7)

In particular if A < B then max ρB ≥ max ρA and the following dichotomy of behavior is

observed: (see Figure 1.1)

(a) When m ≥ 2, {ρA > 0} ⊆ {ρB > 0}.

(b) When 2 − 2
d
< m ≤ 2, {ρB > 0} ⊆ {ρA > 0}.

Coming back to the uniqueness of stationary solution, we point out that when V is given

by (B), the uniqueness proof in [LY] cannot be generalized, and here the difficulty lies in

11



ρB

ρA

ρB

ρA

ρB

ρA

m > 2 m = 2 2− 2

d
< m < 2

Figure 1.1: Stationary solutions with different mass for different m, where
∫
ρAdx <

∫
ρBdx.

the second step: In the case where V = N , for any radial stationary solution ρ, its mass

function M(r) :=
∫

|x|≤r
ρ(x)dx solves a second order ODE

( m

m− 1

(M ′(r)

σdrd−1

)m−1
)′

=
M(r)

σdrd−1
,

where M(0) = 0 is prescribed. It follows that M(r) is unique for a given ρ(0) = lim
r→0

M ′(r)

σdrd−1
,

which implies that ρ can be uniquely determined by ρ(0). This property then allows both

the radial stationary solutions and the global minimizers to be parametrized by their values

at the center of mass (see Lemma 12, [LY]).

However, when V is given by (B), M(r) solves a nonlocal ODE, where different stationary

solutions may have the same center density. Thus the above argument in [LY] cannot be

applied to prove the second step, necessitating an alternative approach. Instead of dealing

with the stationary equation (1.2.1) directly, we will consider the dynamic equation (1.1.1)

and prove the uniqueness of the radial stationary solution by their asymptotic convergence.

Indeed the following theorem is one of the main results in this chapter.

Theorem 1.2.4. [Corollary 1.7.6] Let V be given by (B), and suppose m > 2− 2
d
. Then for

any A > 0, the radial stationary solution of (1.1.1) with mass A is unique.

1.3 Regularity of solutions and finite speed of propagation

In this section, several regularity properties will be derived for general weak solutions of

(1.1.1), including the finite propagation property. We point out that the results in this

section hold for general (non-radial) solutions.
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Theorem 1.3.1. Suppose m > 1. Let V be given by (A) or (B), and let ρ be a weak solution

of (1.1) with its initial data ρ0 bounded with compact support. Further suppose ρ is uniformly

bounded in Rd × [0, T ]. Then

(a) For any δ > 0, ρ is uniformly continuous in Rd × (δ, T ].

(b) [Finite propagation property] Suppose {x : ρ(·, t) > 0} ⊂ BR(0). Then

{x : ρ(·, t+ h) > 0} ⊂ BR+Ch1/2(0) for 0 < h < 1,

where the constant C > 0 depends on m, d, ρ0 and ‖∆V ‖1.

Proof. 1. Let us consider the case V = N . This is the most singular case and parallel (and

easier) arguments hold for V given by (B). Let

C0 = sup{ρ(x, t) : (x, t) ∈ R
n × [0, T ]}.

Observe that by treating the convolution term Φ := V ∗ ρ as a priori given, ρ solves

ρt = ∆(ρm) + ∇ · (ρ∇Φ). (1.3.1)

Also, for all t ∈ [0, T ), Φ satisfies

|∇Φ|(·, t) ≤ C0

∫

|y|≤1

|∇N |(y)dy + ‖ρ(·, t)‖1 sup
|y|≥1

|∇N (y)| ≤ C1, (1.3.2)

where C1 depends on C0, the L1 and sup-norm of ρ, and the dimension d. Also

|∆Φ|(·, t) ≤ ‖ρ‖L∞ ≤ C0 for all t ∈ [0, T ). (1.3.3)

The bounds (1.3.2)-(1.3.3) and Theorem 6.1 of [D] yields the uniform continuity of ρ in

Rd × [δ, T ).

2. Next we prove (b). First of all let us point out that the standard comparison principle

holds between weak sub- and supersolutions of (1.3.1). For the case of time-independent

potential Φ(x, t) ≡ Φ(x), Proposition 3.4 of [BH] asserts that the comparison principle be-

tween weak sub- and supersolution of (1.3.1) holds if the potential function Φ is independent

of the time variable and |∇Φ|, |∆Φ| ≤ C. The proof in [BH] is based on an approximation
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of the original problem (1.3.1) by a sequence of regularized problems which satisfy the com-

parison principle (see sections 4, 7, 8 of [BH]). This argument straightforwardly extends to

our (time-dependent potential) case, and one can verify that comparison principle between

weak sub- and supersolution of (1.3.1) holds.

We will now construct a supersolution of (1.3.1) to compare with ρ over a small time

period to prove the finite propagation property. First observe that the pressure function

defined by u := m
m−1

ρm−1 formally satisfies the PDE

ut = (m− 1)u∆u+ |∇u|2 + ∇u · ∇Φ + (m− 1)u∇Φ. (1.3.4)

Based on this observation, we will first construct a supersolution of (1.3.4), and use the

pressure-density transformation to construct the corresponding supersolution of (1.3.1). Let

us define

Ũ(x, t) := A inf
|x−y|≤C−Ct

e−Ct(|y|+ ωt− B)+,

where ω = (1 + (m− 1)(d− 1))A, and the constants B and C will be chosen later.

Let Σ := {|x| ≤ 2B} × [0, ω−1B]. Due to Proposition 2.13 in [KL], Ũ is a viscosity

(or weak) supersolution of (1.3.4) if C is chosen to be larger than max(C0, C1) given in

(1.3.2)-(1.3.3). In other words, Ũ satisfies

Ũt ≥ (m− 1)Ũ∆Ũ + |∇Ũ |2 + C|∇Ũ | + CŨ in {Ũ > 0} ∩ Σ,

and the outward normal velocity Vx,t of the set {Ũ > 0} at (x, t) ∈ ∂{Ũ > 0} satisfies

Vx,t = ω + C ≥ A+ C ≥ |∇Ũ | + C.

Hence ρ̃ := (m−1
m
Ũ)1/(m−1) satisfies

ρ̃t ≥ ∆(ρ̃m) + C|∇ρ̃| + C

m− 1
ρ̃

in the domain Σ, in the viscosity sense (see [KL] for the definition of viscosity solutions of

(1.3.1)).

Moreover, observe that ρ̃m−1 ∼ Ũ is Lipschitz continuous in space, and continuous in

space and time. Using this regularity of ρ̃ as well as the above estimates on the derivatives
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of Φ, it follows that ρ̃ is a weak supersolution of (1.1.1) in Σ, if we choose C greater than

(m − 1)C1. More precisely the following is true: for all times 0 < t ≤ ω−1B and for any

smooth, nonnegative function

ψ(x, t) : R
n × (0,∞) → R with {ψ(·, t) > 0} ⊂ {|x| ≤ 2B} for 0 ≤ t ≤ ω−1B, we have

∫

ρ̃(·, t)ψ(·, t)dx ≥
∫

ρ̃(·, 0)ψ(·, 0)dx+

∫ ∫

(ρ̃m∆ψ + ρ̃ψt − ρ̃∇Φ · ∇ψ)dxdt.

Now suppose {ρ(·, t0) > 0} ⊂ BR(0) for some t0 ∈ [0, T ]. Let us compare ρ with ρ̃ in

Σ := {|x| ≤ 2B} × [t0, t0 + h], with B = R + h1/2 and A = 2C0h
−1/2.

Since {ρ(·, t0) > 0} ⊂ BR(0) and ρ ≤ C0, we have ρ ≤ ρ̃ at t = t0. Therefore comparison

principle asserts that ρ ≤ ρ̃ at t = t0 + h. In particular

{ρ(·, t0 + h) > 0} ⊂ {ρ̃(·, t0 + h) > 0} = BR+Mh1/2(0),

where M = h1/2 + hω and ω = (1 + (m− 1)(d− 1))A. This proves (b).

Remark 1.3.2. Due to [BRB], when m > 2 − 2
d
, there exists a global weak solution ρ of

(1.1) with initial data ρ0. Moreover, ρ is uniformly bounded in Rd × (0,∞) due to Theorem

10 in [BRB], so in that case we may let T = ∞.

We finish this section with an approximation lemma which links case (A) and (B). Let

hǫ := ǫ−dh(
x

ǫ
)

with h being the standard mollifier in R
d with unit mass, and let ρǫ be the corresponding

solution of (1.1.1) with V = N ∗hǫ and with initial data ρ0. Then Lemma 8 in [BRB] yields

that {ρǫ}ǫ>0 are uniformly bounded for t ∈ [0, T ] for some T . This bound as well as Theorem

6.1 of [D] yields that the family of solutions {ρǫ} are equi-continuous in space and time. This

immediately yields the following result:

Proposition 1.3.3. Let ρ0 be as given in Theorem 1.3.1. Let V = N ∗ hǫ and let ρǫ be the

corresponding weak solution of (1.1.1) with initial data ρ0. Let ρ be the unique solution to

(1.1.1) with V = N and initial data ρ0, and assume ρ exists for t ∈ [0, T ), where T > 0 may

be infinite. Then the solutions ρǫ locally uniformly converge to ρ in Rd × [0, T ).
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1.4 Monotonicity-preserving property for radial solutions

In this section, we show that when V is given by (A) or (B), solutions with radially de-

creasing initial data remains radially decreasing for all future times. (Here we say a function

u : Rd → R is radially decreasing if u(x) is radially symmetric and is a decreasing function

of |x|.) The main step in the proof is the maximum-principle type argument applied to the

double-variable function

Ψ(x, y; t) := ρ(x, t) − ρ(y, t) in {|x| ≥ |y|} × [0,∞)

to ensure that Ψ cannot achieve a positive maximum at a positive time.

We begin with an observation on the convolution term; the proof is in Section A.1.2 of

the appendix.

Lemma 1.4.1. Let V (x) be given by (B). Let u(x) be a bounded non-negative radially sym-

metric function in Rd with compact support. Further suppose u(x) is not radially decreasing,

i.e. there exists a1 = (α, 0, ..., 0) and b1 = (β, 0, ..., 0) with α, β > 0 such that

u(b1) − u(a1) = sup
|a|<|b|

u(b) − u(a) > 0. (1.4.1)

Then we have

(u ∗ ∆V )(b1) − (u ∗ ∆V )(a1) ≤ ‖∆V ‖L1(Rd)(u(b1) − u(a1)).

Theorem 1.4.2. Let V (x) be given by (A) or (B). Suppose that the initial data

ρ(x, 0) ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd) is radially decreasing. We assume a weak solution

ρ exists for t ∈ [0, T ), where T may be infinite. Then ρ(x, t) is radially decreasing for all

t ∈ [0, T ).

Proof. 1. Without loss of generality we assume that V is given by (B), and ρ(x, 0) is positive

and smooth. Then a classical solution ρ(·, t) exists for all t ≥ 0, and we want to show ρ(·, t)
is radially decreasing for all t ≥ 0. When V = N , we can use mollified Newtonian kernel

to approximate N ; and for general radially decreasing initial data, we can use positive and

smooth functions to approximate ρ(x, 0). Then the result follows via Proposition 1.3.3.
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2. Radial symmetry of ρ for all t > 0 directly follows from the uniqueness of weak

solution. To prove that ρ is radially decreasing for all time, let us define

w(t) := sup
|a|≤|b|

ρ(b, t) − ρ(a, t).

Note that ρ(x, 0) being radially decreasing is equivalent with w(0) = 0. We will use a

maximum-principle type argument to show that w(t) = 0 for all t ≥ 0, which proves the

theorem. We point out that w(t) is continuous in t, and uniformly bounded for t ∈ [0,∞),

since ρ is uniformly bounded and uniformly continuous in R
d × [0,∞).

Suppose w 6≡ 0 in R
d × [0,∞). Then for any λ > 0 the function w(t)e−λt has a positive

maximum at t = t1 for some t1 > 0. We will show that this cannot happen when we choose

λ > 2‖ρ‖L∞‖∆V ‖L1.

At t = t1, due to our assumption on w(t), there exists a1 = (α, 0, ..., 0) and

b1 = (β, 0, ..., 0) such that α < β and

ρ(b1, t1) − ρ(a1, t1) = w(t1) > 0. (See Figure 1.2) (1.4.2)

r

ρ(r, t1)

a1 b1

Figure 1.2: Graph of ρ at time t1

Moreover by definition ρ(b1, t) − ρ(a1, t) ≤ w(t), and thus

d

dt
((ρ(b1, t) − ρ(a1, t))e

−λt) = 0 at t = t1,

which means

ρt(b1, t1) − ρt(a1, t1) = λ(ρ(b1, t1) − ρ(a1, t1)). (1.4.3)

Further observe that ρ(·, t1) has a local minimum (in space only) at a1 and a local maximum

at b1. This yields

∇ρ(a1, t1) = 0 and ∇ρ(b1, t1) = 0,
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as well as

∆ρm(a1, t1) ≥ 0 and ∆ρm(b1, t1) ≤ 0.

To get a contradiction, recall that ρ is a classical solution of (1.1.1), which yields

ρt(b1, t1) − ρt(a1, t1) = ∆ρm(b1, t1) + ∇ · (ρ∇(ρ ∗ V ))(b1, t1)

−∆ρm(a1, t1) −∇ · (ρ∇(ρ ∗ V ))(a1, t1)

≤ ρ(b1, t1)(ρ ∗ ∆V )(b1, t1) − ρ(a1, t1)(ρ ∗ ∆V )(a1, t1)

= ρ(b1, t1)[(ρ ∗ ∆V )(b1, t1) − (ρ ∗ ∆V )(a1, t1)] (1.4.4)

+(ρ(b1, t1) − ρ(a1, t1))(ρ ∗ ∆V )(a1, t1).

In order to bound the first term in (1.4.4), we apply Lemma 1.4.1,which gives

(ρ ∗ ∆V )(b1, t1) − (ρ ∗ ∆V )(a1, t1) ≤ ‖∆V ‖L1(Rd)(ρ(b1, t1) − ρ(a1, t1)), (1.4.5)

and for the second term we use

(ρ ∗ ∆V )(a1, t1) ≤ ‖ρ‖L∞(Rd)‖∆V ‖L1(Rd). (1.4.6)

Due to the estimates (1.4.5)-(1.4.6), (1.4.4) yields that

ρt(b1, t1) − ρt(a1, t1) ≤ 2‖ρ‖L∞(Rd)‖∆V ‖L1(Rd)

(
ρ(b1, t1) − ρ(a1, t1)

)
,

which contradicts (1.4.3) since we chose λ to be strictly greater than 2‖ρ‖L∞‖∆V ‖L1 .

The following proposition states that in the previous theorem, the condition that ∆V is

radially decreasing is indeed necessary.

Proposition 1.4.3. Let V (x) be radially symmetric, ∆V ≥ 0, with ∆V continuous, but

not radially decreasing. Then there exists a radially decreasing initial data ρ0 such that the

solution ρ(x, t) of (1.1) starting with initial data ρ0 does not preserve the radial monotonicity

over time.
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Proof. Since ∆V is not radially decreasing, we can find x1, x2 ∈ Rd, such that 0 < |x1| < |x2|,
and ∆V (x1) < ∆V (x2).

For a small ǫ > 0, let ρ0(x) be given as below:

ρ0(x) = ǫχB(0,x2+1) ∗ φ(x) +
1

ǫd
φ(
x

ǫ
),

where χE is the characteristic function of E and φ is a radially symmetric mollifier with

unit mass and supported in B(0, r0), where r0 < min{1, |x1|/2}. Note that in a small

space-time neighborhood of x1 and x2, ρ solves a uniformly parabolic equation, and thus is

smooth.

Since ∆ρm(xi, 0) = ∇ρ(xi, 0) = 0 for i = 1, 2, we have

ρt(xi, 0) = ρ0(xi)(ρ0 ∗ ∆V )(xi), i = 1, 2.

Since ρ0(x1) = ρ0(x2), to show ρt(x1, 0) < ρt(x2, 0), it suffices to prove

(ρ0 ∗ ∆V )(x1) < (ρ0 ∗ ∆V )(x2). (1.4.7)

Note that ρ0 ∗∆V locally uniformly converges to ∆V (x) as ǫ→ 0. Since ∆V (x1) < ∆V (x2),

if we let ǫ be sufficiently small, we would have (1.4.7). In particular ρ(x1, t) < ρ(x2, t) for

small t > 0, which means ρ(x, t) stops being radially monotone as soon as t > 0.

1.5 Mass Comparison for radial solutions

In this section our goal is to prove that mass comparison property holds for radial solutions of

(1.1.1), which is a order preserving property for the mass concentration, and will be defined

momentarily. Indeed we will prove this property for (1.5.1), which is slightly more general

than (1.1.1) since it could have an extra drift term. This extra term will be useful later in

Section 1.7.6 since performing continuous rescaling for (1.1.1) usually introduces an extra

drift term.

Let us consider the following PDE

ρt = ∆ρm + ∇ · (ρ∇(ρ ∗ V + Φ)), (1.5.1)
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Throughout this section we assume m > 1, V is given by (A) or (B), and Φ ∈ C2(Rd) is

radially symmetric.

For a radially symmetric function ρ(x, t), we define its mass function M(r, t; ρ) by

M(r, t; ρ) :=

∫

B(0,r)

ρ(x, t)dt, (1.5.2)

and we may write it as M(r, t) if the dependence on the function ρ is clear. The following

lemma describes the PDE formally satisfied by the mass function.

Lemma 1.5.1 (Evolution of Mass Function). Let ρ(x, t) be a non-negative smooth radially

symmetric solution to (1.5.1). Let M(r, t) = M(r, t; ρ) be as defined in (1.5.2). Then M(r, t)

satisfies
∂M

∂t
= σdr

d−1∂r

( ∂rM

σdrd−1

)m
+ ∂rM

M̃

σdrd−1
+ ∂rM∂rΦ, (1.5.3)

where

M̃(r, t; ρ) :=

∫

B(0,r)

ρ ∗ ∆V dx (1.5.4)

if V is given by (B). When V = N , M̃(r, t; ρ) is set to coincide with M .

Proof. Due to divergence theorem and radial symmetry of ρ, direct computation yields

∂M

∂t
= σdr

d−1
[
∂rρ

m + ρ
(
∂r(ρ ∗ V ) + ∂rΦ

)]
. (1.5.5)

Note that radial symmetry of ρ also gives

ρ(r) =
∂rM

σdrd−1
, (1.5.6)

from which we obtain the first term of (1.5.3).

It remains to write ∂r(ρ ∗ V ) in terms of M . When V is given by (A), i.e. V = N ,

divergence theorem yields

∂r(ρ ∗ N ) =

∫

B(0,r)

(∆ρ ∗ N )dx

σdrd−1
=
M(r, t)

σdrd−1
. (1.5.7)

When V is given by (B), we can similarly obtain

∂r(u ∗ V ) =

∫

B(0,r)

(u ∗ ∆V )dx

σdrd−1
=
M̃(r, t)

σdrd−1
, (1.5.8)
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where M̃(r, t; u) is as defined in (1.5.4). Plug (1.5.6), (1.5.7) and (1.5.8) into equation (1.5.5),

and then we can obtain (1.5.3).

Definition 1.5.2. Let ρ1 and ρ2 be two non-negative radially symmetric functions in L1(Rd).

We say ρ1 is less concentrated than ρ2, or ρ1 ≺ ρ2, if

∫

B(0,r)

ρ1(x)dx ≤
∫

B(0,r)

ρ2(x)dx for all r ≥ 0.

Definition 1.5.3. Let ρ1(x, t) be a non-negative, radially symmetric function in

L1(Rd) ∩ L∞(Rd), which is C1 in its positive set. We say ρ1 is a supersolution of (1.5.1)

in the mass comparison sense if M1(r, t) := M(r, t; ρ1) is a supersolution of (1.5.3), i.e.

M1(r, t) and M̃1(r, t) := M̃(r, t; ρ1) satisfy

∂M1

∂t
≥ σdr

d−1∂r

( ∂rM1

σdrd−1

)m
+ ∂rM1

M̃1

σdrd−1
+ ∂rM1∂rΦ, (1.5.9)

in the positive set of ρ1.

Similarly we can define a subsolution of (1.5.1) in the mass comparison sense.

Proposition 1.5.4 (mass comparison). Suppose m > 1, V is given by (A) or (B), and

Φ ∈ C2(Rd) is radially symmetric. Let ρ1(x, t) be a supersolution and ρ2(x, t) be a subso-

lution of (1.5.1) in the mass comparison sense for t ∈ [0, T ]. Further assume that both ρi

are bounded, and ρi’s preserve their mass over time, i.e.,
∫
ρ1(·, t)dx and

∫
ρ2(·, t)dx stay

constant for all 0 ≤ t ≤ T. Then their mass functions are ordered for all times: i.e., if

ρ1(x, 0) ≻ ρ2(x, 0), then we have ρ1(x, t) ≻ ρ2(x, t) for all t ∈ [0, T ].

Proof. Let Mi(r, t) be the mass function for ρi, where i = 1, 2. We claim that

M1(r, t) ≥M2(r, t) for all r ≥ 0 and t ∈ [0, T ], which proves the proposition.

For the boundary conditions of Mi, note that







M1(0, t) = M2(0, t) = 0 for all t ∈ [0, T ],

lim
r→∞

(
M1(r, t) −M2(r, t)

)
=

∫

Rd

(
ρ1(x, 0) − ρ2(x, 0)

)
dx ≥ 0 for all t ∈ [0, T ].
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As for initial data, we have M1(r, 0) ≥M2(r, 0) for all r ≥ 0.

For given λ > 0, we define

w(r, t) :=
(
M2(r, t) −M1(r, t)

)
e−λt,

where λ is a large constant to be determined later. Suppose the claim is false, then w attains

a positive maximum at some point (r1, t1) in the domain (0,∞)× (0, T ]. Moreover, since the

mass of both ρ1 and ρ2 are preserved over time and thus are ordered, we know that (r1, t1)

must lie inside the positive set for both ρ1 and ρ2, where Mi’s are C2,1
x,t .

Since w attains a maximum at (r1, t1), the following inequalities hold at (r1, t1):

wt ≥ 0 =⇒ ∂t(M2 −M1) ≥ λ(M2 −M1) (1.5.10)

wr = 0 =⇒ ∂rM1 = ∂rM2 > 0 (1.5.11)

wrr ≤ 0 =⇒ ∂rrM1 ≥ ∂rrM2 (1.5.12)

Now we will analyze the terms on the right hand side of (1.5.9) one by one. For the first

term, (1.5.11) and (1.5.12) imply that

∂r

( ∂rM2

σdrd−1

)m − ∂r

( ∂rM1

σdrd−1

)m ≤ 0 at (r1, t1). (1.5.13)

If V is given by the Newtonian potential, we have

∂rM1
(M̃2 − M̃1)

σdrd−1
= ρ1(r1, t1)(M2 −M1) ≤ ρmax(M2 −M1), (1.5.14)

where ρmax := max{ sup
Rd×[0,T ]

ρ1, sup
Rd×[0,T ]

ρ2} is finite by assumption on ρ1 and ρ2.

Alternatively, if V is given by (B), we claim the following inequality holds:

∂rM1
(M̃2 − M̃1)(r1, t1)

σdrd−1
≤ ρmax‖∆V ‖L1(Rd)(M2 −M1)(r1, t1). (1.5.15)

To prove the claim, note that M̃2 − M̃1 can be rewritten as

M̃2(r1, t1) − M̃1(r1, t1) =

∫

Rd

(
(ρ2 − ρ1) ∗ ∆V

)
χB(0,r1)dx

=

∫

Rd

(ρ2 − ρ1) (χB(0,r1) ∗ ∆V )dx. (1.5.16)
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Note that ∆V ≥ 0 is radially decreasing due to assumption (B), thus χB(0,r1) ∗ ∆V is non-

negative, radially decreasing and has maximum less than or equal to ‖∆V ‖L1. Therefore we

can use a sum of bump functions to approximate χB(0,r1) ∗∆V , where the sum of the heights

is less than ‖∆V ‖L1 . Hence

M̃2(r1, t1) − M̃1(r1, t1) ≤ ‖∆V ‖L1(Rd) sup
x∈Rd

(M2 −M1)(x, t1) = ‖∆V ‖L1(Rd)(M2 −M1)(r1, t1),

which proves the claim (1.5.15). Finally, for the last term in (1.5.9), equation (1.5.11)

immediately yields that

∂rM2 ∂Φ − ∂rM1 ∂Φ = 0 at (r1, t1). (1.5.17)

Now we subtract (1.5.9) with the corresponding equation for the subsolution. Due to the

inequalities (1.5.13), (1.5.15) and (1.5.17), we obtain the following inequality when V is given

by (B):

∂t(M2 −M1) ≤ ρmax‖∆V ‖1(M2 −M1),

where ‖∆V ‖1 is replaced by 1 when V is Newtonian.

Hence if we choose λ > ρmax‖∆V ‖1 in the beginning of the proof, the inequality above

will contradict (1.5.10).

Next we prove a simple corollary of Proposition 1.5.4, which we will use later in proving

the asymptotic behavior of radial solutions in the subcritical regime. In the absence of the

extra drift term, observe that (1.1.1) can be written as a transport equation

ρt + ∇ · (ρ~v) = 0,

where the velocity field ~v is defined by

~v(x, t; ρ) := − m

m− 1
∇(ρm−1) −∇(ρ ∗ V ). (1.5.18)

Then the mass function for a radial solution of (1.1.1) satisfies

∂

∂t
M(r, t) = −ρ(r, t)

∫

∂B(0,r)

(~v · ~n)ds. (1.5.19)

The above observation along with Proposition 1.5.4 immediately yields the following corol-

lary:
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Corollary 1.5.5. Suppose m > 1. Let V be given by (A) or (B). Let ρ0(x) be a continuous

radially symmetric function, which is differentiable in its positive set. We assume that the

velocity field of ρ0 is pointing inside everywhere, i.e., for ~v as defined in (1.5.18),

~v(x; ρ0) ·
(

− x

|x|
)

≥ 0 in {ρ0 > 0}. (1.5.20)

Let ρ be the weak solution of (1.1.1) with initial data ρ0 ≺ ρ(·, 0). Then ρ0 ≺ ρ(·, t) for all

t ≥ 0.

Proof. Let us define

ρ1(x, t) := ρ0(x) for (x, t) ∈ R
d × [0,∞).

Then (1.5.19) and (1.5.20) yield that ρ1 is a subsolution of (1.5.3). Therefore, Proposi-

tion 1.5.4 applies to ρ and ρ1 and so we are done.

1.6 A comparison principle for general solutions

In Section 1.5, we showed that the mass comparison holds between radial solutions of (1.1.1).

Although mass comparison does not hold directly for non-radial solutions, in this subsection

we will use symmetrization techniques to show that it is possible to control the Lp-norms of

non-radial solutions in terms of the Lp-norms of radial ones.

Let us recall that, for any nonnegative measurable function f that vanishes at infinity,

the symmetric decreasing rearrangement f ∗ is given by

f ∗(x) :=

∫ ∞

0

χ{f>t}∗(x)dt, (1.6.1)

where Ω∗ denotes the symmetric rearrangement of a measurable set Ω of finite volume in Rd.

In this subsection we consider general (non-radial) solutions of (1.1.1). Our goal is to

prove the following result:

Theorem 1.6.1. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak

solution to (1.1.1) with initial data ρ(x, 0) = ρ0(x). Let ρ̄ be the weak solution to (1.1.1) with

initial data ρ̄(x, 0) = ρ∗0(x). Assume ρ̄ exists for t ∈ [0, T ), where T may be infinite. Then

ρ∗(·, t) ≺ ρ̄(·, t) for all t ∈ [0, T ).
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As an application of Theorem 1.6.1, we will show that solutions of (1.1.1) with initial

data in L1 immediately regularize in L∞ (see Proposition 1.7.7.)

The proof of Theorem 1.6.1, which we divide into several subsections follows that of the

corresponding theorem for solutions of (1.1.2) (see Chapter 10 of [V]). The theorem in [V]

is proved by taking the semi-group approach and applying the Crandall-Liggett Theorem.

The challenge lies in the fact that our operator in (1.1.1) is not a contraction, in either L1

or L∞. For this reason the proof requires an additional approximation of our equation with

one with fixed drift: see (1.6.5).

1.6.1 Implicit time discretization for PME with a drift

Consider the following equation

ρt = ∆ρm + ∇ · (ρ∇Φ), (1.6.2)

where Φ is a function given a priori such that Φ(x, t) ∈ C(Rd× [0,∞)), and Φ(·, t) ∈ C2(Rd)

for all t.

Following the proof in the case of (1.1.2) in [V], we approximate (1.6.2) via an implicit

discrete-time scheme. For a small constant h > 0, Ui is recursively defined as the solution of

the following equation:

Ui − Ui−1

h
= ∆Um

i + ∇ · (Ui∇Φi), i = 1, 2, . . . (1.6.3)

where U0 = ρ(·, 0),Φi = Φ(·, ih). Now define

ρh(·, t) := Ui(·) for (i− 1)h < t ≤ ih, i = 1, 2, . . . (1.6.4)

The following result states that our approximation scheme is valid: the proof is in Section

A.1.3 of the appendix.

Proposition 1.6.2. Let ρ0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd), and let ρh be defined by

(1.6.4).Then there exists a function ρ ∈ L∞([0,∞);L1(Rd)) such that

sup
0≤t≤T

‖ρ(·, t) − ρh(·, t)‖L1(Rd) → 0

for any T > 0. Moreover, ρ coincides with the unique weak solution for (1.6.2).
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1.6.2 Rearrangement comparison

For a given function ρ(x) : Rd → R, let us define ρ∗ as given in (1.6.1).

Consider the following equation, where f(x, t) ∈ C([0,∞);L1(Rd)) is a given function:

ρt = ∆ρm + ∇ · (ρ∇(f ∗ V )). (1.6.5)

Theorem 1.6.3. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak solution

to (1.6.5) with initial data ρ(x, 0) = ρ0(x). Let ρ̄ be the weak solution to the symmetrized

problem

ρt = ∆ρm + ∇ · (ρ∇(f ∗ ∗ V )), (1.6.6)

with initial data ρ̄(x, 0) = ρ∗0(x). Then ρ̄ is radially decreasing, and

ρ∗(·, t) ≺ ρ̄(·, t) for all t > 0.

Due to Proposition 1.6.2, to prove Theorem 1.6.3 it suffices to show the following Propo-

sition; see Section A.1.4 in the appendix for the proof.

Proposition 1.6.4. Suppose V is given by (B) and m > 1. Let u ∈ D (the domain D is

defined in (A.1.7)) be the weak solution of

−h∆um − h∇ · (u∇(f ∗ V )) + u = g, (1.6.7)

where f, g ∈ L1(Rd) are nonnegative. Also, let ū ∈ D be the solution to the symmetrized

problem, i.e. ū solves (1.6.7) with f, g replaced by f̄ and ḡ respectively, where f̄ and ḡ are

radially decreasing, have the same mass as f and g respectively, and satisfy f ∗ ≺ f̄ and

g∗ ≺ ḡ. Then u∗ ≺ ū.

Proof of Theorem 1.6.3:

The radial monotonicity of ρ̄ can be shown via a similar argument as in Theorem 1.4.2:

in fact the argument is easier here since f ∗ ∗ ∆V is a radially decreasing function.

Next we prove ρ∗ ≺ ρ̄ for all t ≥ 0. Let Ui be the discrete solution for the original problem,

and let Vi be the discrete solution for the symmetrized problem. Due to Proposition 1.6.2 it
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suffices to prove that U∗
i ≺ Vi for all i ∈ N. Here Ui solves

Ui − Ui−1

h
= ∆Um

i + ∇ · (Ui∇(fi ∗ V )), (1.6.8)

where U0 = u(·, 0), fi = f(·, ih), and Vi solves

Vi − Vi−1

h
= ∆V m

i + ∇ · (Vi∇(f ∗
i ∗ V )), (1.6.9)

where V0 = u∗(·, 0). Since U∗
0 ≺ V0, by applying Proposition 1.6.4 inductively we can

conclude. Lastly when V = N , we can use a mollified Newtonian kernel to approximate N ,

and the result follows via Proposition 1.3.3. 2

Now we are ready to prove our main result:

Proof for Theorem 1.6.1: Let us first prove the theorem when V is given by (B),

where we have global existence of solutions. Let ρ1(·, t) := ρ∗(·, t) for all t ≥ 0, where ρ(x, t)

is the weak solution of (1.1.1) with initial data ρ(x, 0) = ρ0(x). For i > 1, we let ρi be the

weak solution to the following equation:

(ρi)t = ∆(ρi)
m + ∇ · (ρi · ∇(ρi−1 ∗ V )), (1.6.10)

with initial data ρi(x, 0) = ρ∗(x, 0). Observe that ρi(·, t) is radially decreasing for all

i ∈ N+, t ≥ 0.

By Theorem 1.6.3, we have ρi ≺ ρi+1 for all i ∈ N. Hence we have

ρ∗(·, t) = ρ1(·, t) ≺ ρ2(·, t) ≺ ρ3(·, t) ≺ . . . , for all t. (1.6.11)

Due to Theorem 1.3.1, {ρi} is locally uniformly continuous in space and time. Hence by the

Arzela-Ascoli Theorem any subsequence of {ρi} locally uniformly converges to a function ρ̄

along a subsequence. On the other hand ρ̄ is the unique weak solution for (1.1.1) with initial

data ρ̄(x, 0) = ρ∗0(x). This means that the whole sequence {ρi} locally uniformly converges

to ρ̄. Now we can conclude due to (1.6.11).

When V = N , we can use a mollified Newtonian kernel to approximate N , and the result

follows via Proposition 1.3.3. 2
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Corollary 1.6.5. Suppose m > 1. Let V be given by (A) or (B), and let ρ be the weak

solution of (1.1.1) with initial data ρ0(x). Let ρ̄ be the solution to the symmetrized problem,

i.e. ρ̄ is the weak solution to (1.1.1) with initial data ρ∗0(x). Assume ρ̄ exists for t ∈ [0, T ),

where T may be infinite. Then for any p ∈ (1,∞] we have

‖ρ(·, t)‖Lp(Rd) ≤ ‖ρ̄(·, t)‖Lp(Rd), for all t ∈ [0, T ).

1.7 Asymptotic behavior for solutions existing global-in-time

In this section, we investigate the asymptotic behaviors for solutions which exist globally

in time. These results are applications of the mass comparison in Section 1.5 and the

comparison principles for general solutions in Section 1.6. Most of our results in this section

are concerned with radial solutions, except Section 1.7.2 and Section 1.7.6.

1.7.1 Subcritical regime: exponential convergence towards stationary solution

for radial solutions

In the subcritical regime (m ≥ 2−2/d), the weak solution is known to exist globally in time,

however the asymptotic behavior of the solutions are unknown. When V is given by (A)

or (B), our goal is to use the mass comparison property established in Section 1.5 to prove

the asymptotic convergence of radial solutions towards the stationary solution. First let us

prove a confinement result, which is an application of Corollary 1.5.5. It says that when the

initial data is radially symmetric and compactly supported, the support of the solution will

stay in some fixed large ball for all times.

Proposition 1.7.1 (Compact radial solutions stay compact). Let V be given by (A) or (B),

and let m > 2 − 2
d
. Let ρ solve (1.1.1) with a continuous, radially symmetric and compactly

supported initial data ρ(x, 0). Then there exists R > 0 depending on m, d, ‖∆V ‖1 and ρ(·, 0),

such that

{ρ(·, t) > 0} ⊂ {|x| ≤ R} for all t > 0.

Proof. 1. We will first assume that ρ(0, 0) > 0. Let A :=
∫

Rd ρ(x, 0)dx, and let ρA(x)
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be a radial stationary solution with mass A. For any continuous radial initial data with

ρ(0, 0) > 0, we can choose a > 0 sufficiently small, such that

ρ1(x, t) := adρA(ax) ≺ ρ(x, 0).

Our aim is to show that the velocity field of ρ1(x, t) is pointing towards the inside all the

time, i.e.,

v(r, t; ρ1) := ~v(r, t; ρ1) ·
−x
|x| =

∂

∂r
ρm−1

1 (r) +
∂

∂r
(ρ1 ∗ V ) ≥ 0. (1.7.1)

Let us assume that V is given by (B); the argument for V given by (A) is parallel and

easier. Recall that the stationary solution ρA(x, t) satisfies the following equation in its

positive set:
m

m− 1

∂ρm−1
A

∂r
+
M̃(r; ρA)

σdrd−1
= 0. (1.7.2)

Therefore it follows that

m

m− 1

∂

∂r
ρm−1

1 (r) = a(m−1)d+1 m

m− 1

∂ρm−1
A

∂r
(ar) = −a(m−1)d+1 M̃(ar; ρA)

σd(ar)d−1
.

Secondly observe that M̃(r, t; ρ1) satisfies

M̃(r, t; ρ1) =

∫

B(0,r)

∫

Rd

adρA(ay)∆V (y − x)dydx

=

∫

B(0,ar)

∫

Rd

ρA(y)a−d∆V (a−1(y − x))dydx

≥
∫

B(0,ar)

ρA ∗ ∆V dx (since a−d∆V (a−1x) ≻ ∆V when 0 < a < 1)

= M̃(ar; ρA).

(Note that when V is given by (A), direct computation yields M(r, t; ρ1) = M(ar; ρA).)

Due to (1.2.3) and the above inequalities, it follows that

v(r, t; ρ1) =
∂

∂r
ρm−1

1 (r) +
∂

∂r
(ρ1 ∗ V )

≥ ∂

∂r
ρm−1

1 (r) +
M̃(r; ρ1)

σdrd−1
(1.7.3)

≥ (1 − ad(m−2+2/d))ad−1 M̃(ar; ρA)

σd(ar)d−1
. (1.7.4)
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Since m > 2 − 2/d, the above inequality yields that the inward velocity field v(r, ρ1) ≥ 0

when a < 1. Therefore Corollary 1.5.5 implies that ρ(·, t) ≻ ρ1 for all t ≥ 0. Since ρ and ρ1

have the same mass A, it follows that

{ρ(·, t) > 0} ⊂ {ρ1(·, t) > 0} for all t > 0,

and we can conclude.

2. The assumption ρ(0, 0) > 0 can indeed be removed, since ρ(0, t) would still become

positive in finite time even if ρ(0, 0) = 0. This is because, for the porous medium equation

(1.1.2), it is a well-known fact that the solution will have a positive center density after

finite time: this can be verified, for example, by maximum-principle type arguments using

translations of Barenblatt solutions [V].

Note that a radial solution of (1.1.2) is a subsolution for (1.1.1) in the mass comparison

sense. Hence one can compare ρ with a solution ψ of (1.1.2) with initial data ρ0 and apply

Proposition 1.5.4 to conclude that ψ ≺ ρ. Now our assertion follows due to the continuity

of ψ and ρ at the origin.

Theorem 1.7.2 (Exponential convergence of radial solutions with the Newtonian potential).

Let m > 2 − 2
d

and let V be given by (A) or (B). For given ρ0 ≥ 0: a continuous, radially

symmetric function with compact support, let ρ(x, t) be the solution to (1.1.1) with initial

data ρ0. Next let ρA(x) be a radial stationary solution with mass A :=
∫
ρ0(x)dx. Then

M(r, t) := M(r, t; ρ) satisfies

|M(r, t) −M(r; ρA)| ≤ C1e
−λt,

where C1 depends on ρ0, A,m, d, V , and the rate λ only depends on A,m, d, V .

Proof. 1. We will only prove the case when V satisfies (B); the case for (A) can be proven

with a parallel (and easier) argument. Note that we may assume ρ0(0) > 0 since otherwise

ρ(0, t) will become positive in finite time as explained in step 3 of the proof of Corollary 1.7.1.

2. Let ρA be a stationary solution with the same mass as ρ0, given as in the proof of

Corollary 1.7.1. Since ρ0 is compactly supported, continuous and with ρ0(0) > 0, we can
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find a sufficiently small constant a > 0 such that

adρA(ax) ≺ ρ0 and a−dρA(a−1x) ≻ ρ0.

3. With the above choice of a, we next construct a self-similar subsolution φ(x, t) of (1.5.3)

with initial data φ(x, 0) = adρA(ax) such that Mφ(·, t) := M(·, t;φ) converges exponentially

to M(·; ρA) as t→ ∞.

Here is the strategy of construction of φ(x, t). Due to (1.7.4), for all 0 < a < 1, the

inward velocity field v(r) := v(r; adρA(ax)) given by (1.7.1) satisfies

v(r) ≥ (1 − ad(m−2+2/d))adr
M̃(ar; ρA)

σd(ar)d
≥ 0.

Observe that
dM̃(ar; ρA)

σd(ar)d
equals the average of ρA ∗∆V in the ball {|x| ≤ ar}. By Proposi-

tion 1.2.1, ρA (hence ρA ∗ ∆V ) is radially decreasing, and thus we have

C1 ≤
M̃(ar; ρA)

σd(ar)d
≤ C2 in {ρA > 0}, (1.7.5)

where C1, C2 only depend on A, d,m, V . This gives a lower bound for the inward velocity

field v

v(r) ≥ C1a
d(1 − ad(m−2+2/d))r. (1.7.6)

We will use the above estimate to construct a subsolution φ(r, t) of (1.5.3). Let us define

φ(r, t) = kd(t) ρA

(
k(t)r

)
, (1.7.7)

where the scaling factor k(t) solves the following ODE with initial data k(0) = a:

k′(t) = C1(k(t))
d+1(1 − (k(t))d(m−2+2/d)). (1.7.8)

Since m > 2−2/d, k′(t) > 0 when 0 < k < 1, and since k = 1 is the only non-zero stationary

point for the ODE (1.7.8), for 0 < k(0) < 1 we have limt→∞ k(t) = 1. Since

C1k
d(1 − kd(m−2+2/d)) = −C1d(m− 2 + 2/d)(1 − k) + o(1 − k),

it follows that

0 ≤ 1 − k(t) . e−C1d(m−2+2/d)t, (1.7.9)
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which implies

0 ≤M(r; ρA) −Mφ(r, t) . e−C1d(m−2+2/d)t. (1.7.10)

Next we claim that φ is a subsolution of (1.5.3), i.e.,

∂Mφ

∂t
≤ σdr

d−1 ∂

∂r

(

(
∂Mφ

∂r

1

σdrd−1
)m
)

+
(∂Mφ

∂r

1

σdrd−1

)

M̃φ in {φ > 0}. (1.7.11)

To prove the claim, first note that by definition of φ(r, t) we have Mφ(r, t) = M(k(t)r; ρA).

Hence, due to (1.7.8) and definition of φ, the left hand side of (1.7.11) can be written as

∂Mφ

∂t
(r, t) = ∂rM(k(t)r; ρA) k′(t)r

= σdr
dρA(k(t)r)kd−1(t)k′(t) (1.7.12)

= σdr
dφ(r, t)C1k

d(1 − kd(m−2+2/d)). (1.7.13)

On the other hand, we can proceed in the same way as (1.7.6), replacing a by k, to obtain

m

m− 1

∂

∂r
φm−1 +

M̃φ

σdrd−1
≥ C1k

d(1 − kd(m−2+2/d))r.

Therefore

RHS of (1.7.11) = σdr
d−1 ∂

∂r
φm + φM̃φ

= σdr
d−1φ

( m

m− 1

∂

∂r
φm−1 +

M̃φ

σdrd−1

)

≥ σdr
dφC1k

d(1 − kd(m−2+2/d)),

thus Mφ indeed satisfies (1.7.11), and the claim is proved.

4. Similarly one can construct a supersolution of (1.5.3). Let us define

η(r, t) := kd(t) ρA

(
k(t)r

)
,

where k(t) solves the following ODE with initial data k(0) = 1
a
:

k′(t) = C2k
d+1(1 − kd(m−2+2/d)),

where C2 is defined in (1.7.5). Arguing parallel to those in as in step 3 yields that η is a

supersolution of (1.5.3) and

0 ≤Mη(r, t) −M(r; ρA) . e−C2d(m−2+2/d)t, for all r > 0. (1.7.14)
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5. Lastly we compare φ, η with the weak solution ρ of (1.1.1). Since

φ(·, 0) ≺ ρ(·, 0) ≺ η(·, 0) (see Figure 1.3),

η(x, 0)

ρ(x, 0)

φ(x, 0)

Figure 1.3: Initial data for φ, ρ and η

Proposition 1.5.4 yields that

Mφ(·, t) ≤M(·, t) ≤Mη(·, t). (1.7.15)

By (1.7.10) and (1.7.14), we obtain

|M(r, t) −M(r; ρA)| . e−C1d(m−2+2/d)t for r ≥ 0.

Using the explicit subsolution and supersolution constructed in the proof of Theorem

1.7.2, we get exponential convergence of ρ/A towards ρA/A in the p-Wasserstein metric,

which is defined below. Note that the Wasserstein metric is natural for this problem, since

as pointed out in [AGS] and [CMV], the equation (1.1.1) is a gradient flow of the energy

(1.1.5) with respect to the 2-Wasserstein metric.

Definition 1.7.3. Let µ1 and µ2 be two (Borel) probability measure on Rd with finite p-th

moment. Then the p-Wasserstein distance between µ1 and µ2 is defined as

Wp(µ1, µ2) :=
(

inf
π∈P(µ1,µ2)

{∫

Rd×Rd

|x− y|pπ(dxdy)
}) 1

p
,

where P(µ1, µ2) is the set of all probability measures on Rd × Rd with first marginal µ1 and

second marginal µ2.
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Corollary 1.7.4. Let ρ, ρA, A, C1, λ be as given in Theorem 1.7.2. Then for all p > 1, we

have

Wp

(ρ(·, t)
A

,
ρA

A

)

≤ C1e
−λt.

Proof. Before proving the corollary, we state some properties for Wasserstein distance, which

can be found in [Vi]. For two probability densities f0, f1 on Rd, the p-Wasserstein distance

between them coincides with the solution of Monge’s optimal mass transportation problem.

Namely,

Wp(f1, f0) =
(

inf
T#f0=f1

∫

Rd

f0(x)|x− T (x)|pdx
) 1

p
, (1.7.16)

where T is a map from Rd to Rd, and T#f0 = f1 stands for “the map T transports f0 onto

f1”, in the sense that for all bounded continuous function h on Rd,

∫

Rd

h(x)f1(x)dx =

∫

Rd

h(T (x))f0(x)dx.

Let φ be the subsolution constructed in the proof of Theorem 1.7.2, where we proved the

radius of supp φ converges to the radius of supp ρA exponentially in time. Note that φ(·, t)
is a rescaling of ρA, hence the convergence of support implies that there is a map Tφ(·, t)
transporting φ(·, t) onto ρA with supx∈{ρ(·,t)>0} |x − Tφ(x)| decaying exponentially in time.

Once we find such Tφ, we can use (1.7.16) to show that Wp(φ(·, t), ρA) decays exponentially.

Without loss of generality, we assume the mass A = 1 for the rest of the proof to avoid

dividing ρ and ρA by A every time. The transport map Tφ can be explicitly constructed as

Tφ(x, t) =
x

|x|M
−1
φ

(
M(|x|; ρA), t

)
.

Recall that φ is a rescaling of ρA, defined as φ(x, t) = (k(t))dρA(k(t)x), where k(t) < 1

for all t, and k(t) converges exponentially to 1. In this case the Tφ defined above can be

greatly simplified as Tφ(x, t) = x/k(t). That gives us the following upper bound bound for

Wp(φ(·, t), ρA):

Wp(φ(·, t), ρA) ≤
(∫

Rd

ρA|x−
x

k(t)
|pdx

) 1
p ≤ R(1 − 1

k(t)
),
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where R is the radius of support of ρA. Due to the estimate of k(t) in (1.7.9), we obtain the

exponential decay

Wp(φ(·, t), ρA) ≤ C1e
−λt.

We can apply the same argument to the supersolution η(·, t) as well.

To show that Wp(ρ(·, t), ρA) decays with the same rate, it is natural to consider the

following map T (·, t) which transports ρA onto ρ(·, t):

T (x, t) =
x

|x|M
−1(M(|x|; ρA), t).

Then we have |T (x, t)−x| = |M−1(M(r; ρA), t)− r|, where r = |x|. Due to (1.7.15), we have

M−1
φ ≥M−1 ≥M−1

η ,

which gives

|T (x, t) − x| ≤ max{|Tφ(x, t) − x|, |Tη(x, t) − x|}.

Hence we conclude that

Wp(ρ(·, t), ρA) ≤Wp(φ(·, t), ρA) +Wp(η(·, t), ρA) ≤ C1e
−λt.

In fact one can also obtain the uniform convergence of ρ(·, t) to ρA in sup-norm, however

the convergence rate would depend on the modulus of continuity of ρ. Theorem 1.7.2 and

the uniform continuity of ρ and ρA, as well as the fact that ρA is compactly supported, yield

the following:

Corollary 1.7.5. Let ρ,ρA, C1 and λ be as given in Theorem 1.7.2. Then we have

lim
t→∞

‖ρ(x, t) − ρA(x)‖L∞(Rd) = 0.

Note that uniqueness of ρA is not required in the proof of Theorem 1.7.2. Indeed, unique-

ness of ρA follows from the asymptotic convergence of ρ: if there are two radial stationary

solutions ρ1
A and ρ2

A with the same mass, Corollary 1.7.5 implies ρ(·, t) → ρi
A in L∞ norm for

i = 1, 2 when ρ is given as in Theorem 1.7.2. This immediately establishes the uniqueness

of the radial stationary solution.
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Corollary 1.7.6. Let V be given by (A) or (B), and let m > 2− 2
d
. Then for all A > 0, the

radial stationary solution ρA for (1.1.1) with
∫
ρA(x)dx = A is unique.

1.7.2 Subcritical regime: instant regularization in L∞ for general solutions

We present the following regularization result as a corollary of the mass comparison result

(Theorem 1.5.4) and the rearrangement comparison for general solutions (Theorem 1.6.1).

It says that for initial data ρ0 ∈ L1(Rd; (1 + |x|2)dx)∩L∞(Rd), no matter how large the L∞

norm of ρ0 is, ‖ρ(·, t)‖∞ will always be bounded by t−α for some short time.

Proposition 1.7.7. Let V be given by (A) or (B), and let m > 2 − 2/d. Let ρ(x, t) be the

weak solution for (1.1.1), with initial data ρ0 ∈ L1(Rd; (1+ |x|2)dx)∩L∞(Rd). Let us denote

A = ‖ρ0‖1 and α := d
d(m−1)+2

. Then there exists c = c(m, d,A, V ) and t0 = (2c)1/α > 0 such

that we have ρ(·, t) ∈ L∞(Rd) with

‖ρ(·, t)‖L∞(Rd) ≤ c(m, d,A, V )t−α for all 0 < t < t0.

Proof. By Corollary 1.6.5, it suffices to prove the inequality when ρ0 is radially symmet-

ric. Also, in this proof we denote c(m, d,A, V ) to be all constants which only depend on

m, d,A, V .

Let ρA be the radial stationary solution of (1.1.1) with mass A. Note that ρA is radially

decreasing, and thus ρA(0) > 0. Since u0 is a radial function in L∞, we can scale ρA to make

it more concentrated than u0, i.e. we choose 0 < a < 1 to be sufficiently small such that

u0 ≺ a−dρA(a−1x).

As in the proof of Theorem 1.7.2, let us define

η(r, t) := kd(t) ρA

(
k(t)r

)
,

where k(t) solves the following ODE with initial data k(0) = a−1:

k′(t) = c(m, d,A, V )kd+1(1 − kd(m−2+2/d)).
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Here c(m, d,A, V ) corresponds to C2 in the proof for Theorem 1.7.2. It was shown in the

proof that

ρ(·, t) ≺ η(·, t) for all t ≥ 0,

which in particular yields that

‖η(·, t)‖L∞(Rd) ≥ ‖ρ(·, t)‖L∞(Rd) for all t ≥ 0.

Observe that, by definition,

h(t) := ‖η(·, t)‖L∞(Rd) = kd(t)ρA(0) = c(m, d,A, V )kd(t).

Therefore to prove our proposition it is enough to show

h(t) ≤ f(t) := c(m, d,A, V )t−α for all h(0) > 0 and t ∈ [0, t0],

where t0 is chosen such that f(t) ≥ 2. Note that h(t) solves

h′(t) = c(m, d,A, V )kd−1k′

= c(m, d,A, V )h2
(
1 − hm−2+2/d

)
.

In particular when h(t) ≥ 2, h satisfies the following inequality

h′(t) ≤ −c(m, d,A, V )hm+2/d.

Since f(t) solves the above ODE with equality, we obtain h(t) ≤ f(t) for 0 ≤ t ≤ t0. Now

we are done.

1.7.3 Supercritical regime: algebraic convergence towards Barenblatt profile

for radial solutions

In this subsection, we consider the asymptotic behavior of radial solutions in the supercritical

regime, i.e. for 1 < m < 2 − 2
d
. In this case the diffusion overrides the aggregation and thus

the solution is expected to behave similar to that of Porous Medium Equation (PME) in the

long run. In fact recently it was shown in [B1] (and also in [S1]), by making use of entropy
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method as well as functional inequalities, that the solution of (1.1) with a general class of

V and with small mass and small L(2−m)d/2 norm converges to the self-similar Barenblatt

solution U(x, t) with algebraic rate,

U(x, t) = t−βd(C − (m− 1)β

2m
|x|2t−2β)

1
m−1

+ , (1.7.17)

where C is some constant such that ‖ U(·, 0)‖1 = ‖ρ(·, 0)‖1.

Here we will give a complementary result to [B1] and [S1] in the case of radial solutions,

by using mass comparison (Proposition 1.5.4). We point out that in our result the mass

does not need to be small, and we provide an explicit description of solutions which are

“sufficiently scattered” so that they do not blow up in finite time. Of course the method

presented in [B1] is much more delicate and yields optimal convergence results for general

solutions with small mass in the supercritical regime.

Let ρ be the weak solution to (1.1.1). Following [V], we re-scale ρ as follows:

µ(λ, τ) = (t+ 1)αρ(x, t+ 1); λ = x(t+ 1)−β; τ = ln(t+ 1), (1.7.18)

where

α =
d

d(m− 1) + 2
, β = α/d.

Then µ(λ, 0) = ρ(x, 0), and µ(λ, τ) is a weak solution of

µτ = ∆µm + β∇ · (µ∇|λ|2
2

) + e(1−α)τ∇ · (µ∇(µ ∗ (N ∗ h̃(λ, τ))), (1.7.19)

where

h̃(λ, τ) := edβτ∆V (λeβτ ). (1.7.20)

(When V = N one should replace the last term by e(1−α)τ∇ · (µ∇(µ ∗ N ).)

In the absense of the last term, equation (1.7.19) is a Fokker-Plank equation

µτ = ∆µm + β∇ · (µ∇|λ|2
2

), (1.7.21)

which is known to converge to the stationary solution µA exponentially, where µA has the

mass A := ‖µ(·, 0)‖1 and satisfies

m

m− 1
µm−1

A = (C − β
|λ|2
2

)+ for some C > 0. (1.7.22)
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In Therorem 1.7.10, we will prove for m < 2 − 2/d, if the initial data is sufficiently

less concentrated than µA, then µ(·, τ) also converges to the same limit µA exponentially as

τ → ∞. We begin by defining the following mass functions:

Mµ(r, τ) := M(r, τ ;µ) and M̃(r, τ ; f) :=

∫

B(0,r)

f ∗ h̃(·, τ)dλ,

where M is as given in (1.5.2), h̃ is as given in (1.7.20), and f is an arbitrary function. Note

that for V = N , h̃(·, τ) is the delta function for all τ , hence M̃ ≡M .

Then Mµ satisfies the following PDE in the positive set of µ:

Mµ
τ = σdr

d−1(
∂Mµ

∂r

1

σdrd−1
)
[ m

m− 1

∂

∂r
((
∂Mµ

∂r

1

σdrd−1
)m−1)+βr+e(1−α)τ M̃(r, τ ;µ)

σdrd−1

]

(1.7.23)

We first check that the mass comparison holds for re-scaled equations:

Proposition 1.7.8. Let V (x) be given by (A) or (B), and let m < 2 − 2
d
. Assume µ1(λ, τ)

is a subsolution and µ2(λ, τ) is a supersolution of (1.7.23). Further assume that
∫
µ1(·, τ)dλ

and
∫
µ2(·, τ)dλ stay constant for all t ≥ 0. Then the mass is ordered for all times, i.e.,

if µ1(λ, 0) ≺ µ2(λ, 0), then we have µ1(λ, τ) ≺ µ2(λ, τ) for all τ > 0.

Proof. Let ρi(x, t) be the corresponding re-scaled versions of µi. Then ρ1 and ρ2 are respec-

tively a subsolution and a supersolution of (1.5.3). The proof then follows from Proposi-

tion 1.5.4 and from the fact that

M(r, τ ;µi) = e(α−β)τM(reβτ , eτ ; ρi).

Next we state a technical lemma which is used later in the proof of the convergence

theorem. The proof is in Section A.1.5 of the appendix.

Lemma 1.7.9. Let k(t) solve the ODE

k′(t) = C1k(1 − kα) + C2k
d+1e−βt, (1.7.24)
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where C1, C2, α, β are positive constants. Then there exists a constant δ > 0 such that if

0 < k(0) < δ, then k(t) → 1 exponentially as t→ ∞.

Now we are ready to prove the main theorem. We will first prove it for radially decreasing

solutions.

Theorem 1.7.10. Let V (x) be given by (A) or (B), let 1 < m < 2 − 2
d

and let µA be as

given in (1.7.22). Suppose µ0(λ) is radially decreasing, compactly supported and has mass

A. Then there exists a constant δ > 0 depending on d,m, µ0 and V , such that if

µ0(λ) ≺ δdµA(δλ),

then the weak solution µ(λ, τ) of (1.7.19) with initial data µ0 exists for all τ > 0. Fur-

thermore, M(r, τ ;µ) defined in (1.5.2) converges to M(r, τ ;µA) exponentially as t→ ∞ and

uniformly in r.

Proof. The proof of theorem is analogous to that of Theorem 1.7.2: we will construct a

self-similar subsolution φ(λ, τ) and supersolution η(λ, τ) to (1.7.19), both of which converge

to µA exponentially.

Observe that (1.7.19) can be written as a transport equation

µt + ∇ · (µ~v) = 0,

where the velocity field ~v is given by

~v :=
m

m− 1
∇(µm−1) + βλ+ e(1−α)τ∇(µ ∗ (N ∗ h̃(y, τ)).

Hence the inward velocity field v(r, τ ;µ) := −~v · x
|x| for the rescaled PDE (1.7.19) is

v(r, τ ;µ) =
m

m− 1

∂

∂r
(µm−1) + βr + e(1−α)τ M̃(r, τ ;µ)

σdrd−1
.

We first construct a subsolution φ(λ, τ) with the scaling factor k(τ) to be determined later:

φ(λ, τ) := kd(τ)µA

(
k(τ)λ

)
.
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Since µA satisfies (1.7.22), the inward velocity field of φ is then given by

v(r, τ ;φ) = (1 − kd(m−1)+2)βr + e(1−α)τ M̃(r, τ ;φ)

σdrd−1
.

Note that the last term of v(r, τ ;φ) is always non-negative, and thus

v(r, τ ;φ) ≥ (1 − kd(m−1)+2)βr. That motivates us to choose k(τ) to be the solution

of the following equation

k′(τ) = βk(1 − kd(m−1)+2), (1.7.25)

with initial data k(0) sufficiently small such that φ(·, 0) ≺ µA and φ(·, 0) ≺ µ(·, 0). One can

proceed as in the proof of Theorem 1.7.2 to verify φ is indeed a subsolution. Moreover, it

can be easily checked that k(τ) → 1 exponentially as τ → ∞, hence M(r, τ ;φ) converges to

M(r;µA) exponentially as τ → ∞ and uniformly in r.

Next we turn to the construction of a supersolution of the form

η(λ, τ) := kd(τ)µA

(
k(τ)λ

)
.

Here the main difficulty comes from the aggregation term, which might cause finite time

blow-up of the solution. To find an upper bound of the inward velocity field, we first need

to control M̃(r, τ, kdµA(kλ)):

M̃(r, τ ; kdµA(kλ)) =

∫

B(0,r)

kdµA(k·) ∗ edβτ∆V (eβτ ·)(λ)dλ

≤ ‖∆V ‖1

∫

B(0,r)

kdµA(kλ)dλ

= ‖∆V ‖1

∫

B(0,kr)

µA(λ)dλ ≤ C(kr)d/σd,

where the first inequality is due to Riesz’s rearrangement inequality and the fact that µA is

radially decreasing, and C is some constant that does not depend on k, r, τ .

The above inequality gives the following upper bound for the inward velocity field of η:

v(r, τ ; η) ≤ (1 − kd(m−1)+2)βr + Ckde(1−α)τ r.

Therefore if we let k(t) solve the following ODE

k′(τ) = βk(1 − kd(m−1)+2) + Ckd+1e(1−α)τ , (1.7.26)
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and choose the initial data k(0) such that µ(·, 0) ≺ η(·, 0) = kd(0)µA

(
k(0)λ

)
, then η would

be a supersolution to (1.7.19).

Let us choose k(0) = δ, where δ is given in the assumption of this theorem. Due to

Lemma 1.7.9, k(τ) → 1 exponentially as τ → ∞ when δ is sufficiently small, hence it follows

that M(r, τ ; η) converges to M(r;µA) exponentially.

Since the supersolution η exists globally, we claim that the weak solution µ exists globally

as well. Suppose not: then due to Theorem 4 of [BRB], µ has a maximal time interval of

existence T ∗, and limτրT ∗ ‖µ(·, τ)‖∞ = ∞. On the other hand, Proposition 1.7.8 yields that

µ(·, τ) ≺ η(·, τ) for all τ < T ∗. (1.7.27)

Note that Proposition 1.4.2 implies that µ is radially decreasing for all τ < T ∗, which gives

‖µ(·, τ)‖∞ ≤ ‖η(·, τ)‖∞ for all τ < T ∗. (1.7.28)

The above inequality implies that limτրT ∗ ‖η(·, τ)‖∞ = ∞, which contradicts the fact that

‖η(·, τ)‖∞ is uniformly bounded for all τ .

Once we have the global existence of µ, Proposition 1.7.8 yields that

φ(·, τ) ≺ µ(·, τ) ≺ η(·, τ) for all τ ≥ 0.

Since both φ and η converge exponentially towards µA as τ → ∞, we can conclude.

Making use of the rearrangement comparison introduced in Section 1.6, we obtain the

following generalization of Theorem 1.7.10, where the first part applies to nonradial solutions,

and the second part applies to radial solutions which do not need to be radially decreasing.

Corollary 1.7.11. Let V (x) be given by (A) or (B), and 1 < m < 2− 2
d
. For a nonnegative

function µ0 in L1(Rd), define A :=
∫
µ0(λ)dλ, and let µA(λ) be as given in (1.7.22). Then

the following holds:

(a) there exists a small constant δ > 0 depending on d,m, µ0 and V , such that if

µ∗
0(λ) ≺ δdµA(δλ),

then the weak solution µ(λ, τ) of (1.7.19) with initial data µ0 exists for all τ > 0.
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(b) Let µ0 is as given in (a) and also is radially symmetric and compactly supported, then

M(r, τ ;µ) defined in (1.5.2) converges to M(r, τ ;µA) exponentially as τ → ∞ and

uniformly in r.

Proof. Let µ̄(λ, τ) be the weak solution to (1.7.19) with initial data µ∗
0(λ). Then µ̄(·, 0)

meets the assumptions for Theorem 1.7.10, which implies the global existence of µ̄. Due to

Corollary 1.6.5, ‖µ(·, τ)‖∞ ≤ ‖µ̄(·, τ)‖∞ for all τ during the existence of µ; hence the uniform

boundedness of µ̄ yields that µ cannot blow up and thus must exist globally in time. This

proves (a).

Now suppose µ0 is radially symmetric and compactly supported, and µ0 satisfies the

assumption in (a) such that the corresponding solution µ exists globally in time. In this case

we can construct subsolution and supersolution as in the proof for Theorem 1.7.10 to prove

(b).

If we rescale back to the original space and time variables, Corollary 1.7.11(b) immedi-

ately yields the algebraic convergence of mass function for the solution to (1.1.1).

Corollary 1.7.12. Let V,m, µ and µ0 be as given in Corollary 1.7.11, and let ρ be given by

(1.7.18). Let U(x, t) be the self-similar Barenblatt solution as given in (1.7.17). Then ρ is a

weak solution to (1.1.1), and ρ vanishes to zero as t→ ∞ with algebraic decay. In particular

if ρ0 is radially symmetric then

(a) |M(r, t) −M(r, t;U)| ≤ Ct−γ, for all r ≥ 0, for some C, γ depending on ρ0, m, d and

V .

(b) for all p > 1 we have

Wp(
ρ(·, t)
A

,
U(·, t)
A

) ≤ Ct−γ ,

where C, γ depend on ρ(x, 0), m, d and V .

Proof. From the proof of Theorem 1.7.10, we haveWp(
µ(·,τ)

A
, µA

A
) . e−γτ for some γ depending

on ρ(x, 0), m, d and V , and the proof is analogous with the proof of Corollary 1.7.4. Now
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we scale back, and the above inequality becomes

Wp(
ρ(, τ)

A
,
ρA

A
) . (t+ 1)−γ.

1.7.4 Critical regime with critical mass: convergence towards stationary solu-

tion for radial solutions

In this subsection, we consider the equation (1.1.1) with V = N and m = mc := 2−2/d, and

prove that every radial solution with critical mass Mc and continuous, compactly supported

initial data will be eventually attracted to some stationary solution within the family (1.1.7).

If the initial data is bounded above and has the critical mass Mc, then it is proved in

[BCL2] that the weak solution to (1.1.1) exists globally in time. In the next lemma we

prove the solution indeed has a global (in time) L∞ bound. In addition, if the initial data

is radially symmetric and compactly supported, then the support of the solution would stay

uniformly bounded in time.

Lemma 1.7.13. Suppose V = N , d ≥ 3 and m = 2 − 2/d. Consider the problem (1.1.1)

with initial data ρ0 ∈ L1
+(Rd; (1+ |x|2)dx)∩L∞(Rd), where ρ0 is continuous and has critical

mass Mc. Then the L∞ norm of the weak solution ρ(x, t) is globally bounded, i.e. there exists

K > 0 depending on ‖ρ0‖L∞(Rd) and d, such that ‖ρ(·, t)‖L∞(Rd) ≤ K1 for all t ≥ 0.

If ρ0 is radially symmetric and compactly supported in addition to the assumptions above,

then there exists some R2 > 0, such that {ρ(·, t) > 0} ⊆ B(0, R2) for all t ≥ 0, where R2

depend on d and ρ0.

Proof. In order to bound the L∞ norm of ρ(·, t), we first consider equation (1.1.1) with

symmtetrized initial data, which is described below. Let ρ̄(·, t) be the solution to (1.1.1)

with initial data ρ∗0, where ρ∗0(·) is the radial decreasing rearrangement of ρ0, as defined in

(1.6.1).

Since ρ̄ has a radially symmetric initial data and has mass Mc, due to [BCL2], we readily

obtain that ρ̄ exists globally in time, and ρ̄ is radially symmetric for all t ≥ 0. We first prove
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that there is a global L∞ bound for ρ̄.

Since ‖ρ̄(·, 0)‖∞ = ‖ρ0‖∞ < ∞, we can choose R1 > 0 depending on ‖ρ0‖∞, where R1

is sufficiently small such that ρ∗0 ≺ ηR1 , where ηR1 is as defined in (1.1.7). Then the mass

comparison result in Proposition 1.5.4 yields that

ρ̄(·, t) ≺ ηR1 for all t ≥ 0. (1.7.29)

Now we go back to the original solution ρ, and compare ρ with ρ̄. Theorem 1.6.3 yields that

ρ∗(·, t) ≺ ρ̄(·, t) for all t ≥ 0.

Combining the above two inequalities together, we readily obtain that

ρ∗(·, t) ≺ ηR1 for all t ≥ 0,

which implies that ρ∗(0, t) ≤ ηR1(0) for t ≥ 0. Note that ρ∗(·, t) is radially decreasing for all

t ≥ 0 by definition, and ηR1 is radially decreasing due to [BCL2]. Hence the above inequality

implies that

‖ρ(·, t)‖∞ = ‖ρ∗(·, t)‖∞ ≤ ‖ηR1‖∞ = R−d
1 η1(0) for t ≥ 0, (1.7.30)

thus ρ has a global L∞ bound R−d
1 η1(0), where η1 is as defined in (1.1.7).

Next we hope to show that if ρ0 is radially symmetric and compactly supported in

addition to the conditions above, the support of ρ(·, t) will stay in some compact set for all

time. We first prove it for the case where ρ0(0) > 0. Due to the continuity of ρ0, we have ρ0

is uniformly positive in a neighborhood of 0. This enables us to choose R2 > 0 sufficiently

large such that ρ0 ≻ ηR2 , where ηR2 is as defined in (1.1.7). Proposition 1.5.4 again gives us

ρ(·, t) ≻ ηR2 for all t ≥ 0, which implies that

supp ρ(·, t) ⊆ supp ηR2 = B(0, R2) for all t ≥ 0.

If ρ0(0) = 0, we claim that after some finite time t1, ρ(0, t1) becomes positive, and ρ(·, t1)
has a compact support, where t1 depends on d and ρ0. Then we can take t1 as the starting

time and argue as in the case ρ0(0) > 0. The proof of the claim is the same as in step 2 in

the proof of Proposition 1.7.1 and will thus be omitted.
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Next we prove that under the conditions in Lemma 1.7.13, every radial solution converges

to some stationary solution in the family (1.1.7) as t → ∞. To do this we investigate the

free energy functional (1.1.5), and make use of the following result proved in [BCL2] and

[BRB]: Let u be a weak solution to (1.1.1), then it satisfies the following energy dissipation

inequality for almost every t during its existence:

F(ρ(t)) +

∫ t

0

∫

Rd

ρ

∣
∣
∣
∣

m

m− 1
∇ρm−1 + ∇N ∗ ρ

∣
∣
∣
∣

2

dxdt ≤ F(ρ0). (1.7.31)

Theorem 1.7.14. Suppose V = N , d ≥ 3 and m = 2− 2/d. Let ρ(x, t) be the weak solution

to (1.1.1) with critical mass Mc and nonnegative initial data ρ0, where ρ0 is continuous,

radially symmetric and compactly supported, and satisfies ∇ρm
0 ∈ L2(Rd). Then there exists

R0 > 0 depending on ρ0 and d, such that ρ(·, t) → ηR0 in L∞(Rd) as t → ∞, where ηR0 is

as defined in (1.1.7).

Proof. Due to Lemma 1.7.13, we obtain the existence of a weak solution globally in time,

which has a global L∞ bound. In addition, by treating ρ∗N as an a priori potential in (1.1.1)

and applying the continuity result in [D], we obtain that ρ(x, t) is uniformly continuous in

space and time in [τ,∞) for all τ > 0.

Our preliminary goal is to find a time sequence {tn} which increases to infinity, such that

ρ(tn) uniformly converges to some stationary solution as n → ∞. Note that F(ρ(·, t)) is

non-increasing for almost every t due to (1.7.31), and is bounded below as t → ∞. This

enables us to find a time sequence {tn} which increases to infinity, such that

lim
n→∞

∫

Rd

ρ(tn)

∣
∣
∣
∣

m

m− 1
∇ρ(tn)m−1 + ∇N ∗ ρ(tn)

∣
∣
∣
∣

2

dx = 0. (1.7.32)

We will slightly abuse the notation and denote ρ(tn) by ρn. Note that {ρn} is uniformly

bounded and equicontinuous, hence Arzelà-Ascoli theorem enables us to find a subsequence

of {ρn}, such that

ρn → ρ∞ uniformly in n, (1.7.33)

where ρ∞ is some radially symmetric and continuous function. Moreover, Lemma 1.7.13

implies that the support of {ρn} all stays in some fixed compact set, hence we have ρ∞
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is compactly supported as well, and it has mass Mc. We will prove that ρ∞ is indeed a

stationary solution later.

We next claim that {∇ρm
n } are uniformly bounded in L2(Rd). To prove the claim, note

that

∫

Rd

|∇ρm
n + ρn∇N ∗ ρn|2dx ≤ ‖ρn‖∞

∫

Rd

ρn

∣
∣
∣
∣

m

m− 1
∇ρm−1

n + ∇N ∗ ρn

∣
∣
∣
∣

2

dx,

where the right hand side is uniformly bounded for all n. In addition, since {ρn} are uni-

formly bounded and are all supported in some B(0, R), we know
∫

Rd ρn|∇N ∗ ρn|2dx is also

uniformly bounded for all n. Therefore triangle inequality yields the uniform boundedness

of
∫

Rd |∇ρm
n |2dx, which proves the claim.

The uniform boundedness of {∇ρm
n } in L2(Rd) implies that {∇ρm

∞} is in L2(Rd) as well.

Moreover, we can find a subsequence of {ρn} (which we again denote by {ρn} for the sim-

plicity of notation), such that

∇ρm
n ⇀ ∇ρm

∞ as n→ ∞ weakly in L1(Rd
L : R

d). (1.7.34)

Using (1.7.32) and the two convergence properties (1.7.33) and (1.7.34), we can proceed in

the same way as Lemma 10 in [CJMTU] and prove that ρ∞ satisfies

∫

Rd

ρ∞

∣
∣
∣
∣

m

m− 1
∇um−1

∞ + ∇N ∗ ρ∞
∣
∣
∣
∣

2

dx = 0, (1.7.35)

which implies that ρ∞ is a radial stationary solution to (1.1.1), hence is indeed in the family

(1.1.7).

Next we will prove that ρ(·, t) → ρ∞ uniformly in L∞(Rd) as t → ∞. In order to prove

this, we make use of the monotonicity of the second moment of ρ(·, t) in time. By combining

the following Virial identity

d

dt

∫

Rd

|x|2ρ(x, t)dx = 2(d− 2)F [ρ(t)] for all t (1.7.36)

with the fact that the minimizer of F has free energy 0, it is shown in [BCL2] that

M2[ρ(·, t)] :=

∫

Rd

|x|2ρ(x, t)dt is non-decrasing in t. (1.7.37)
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This implies that any subsequence of ρ(·, t) can converge to only one limit: if not, then we can

find some another sequence {t′n} increasing to infinity, such that ρ(t′n) converges to another

stationary solution ρ′∞ uniformly as n→ ∞, where ρ′∞ is also in the family (1.1.7). Since ρ(t′n)

are uniformly bounded and uniformly compactly supported, we have M2[ρ(t
′
n)] → M2[ρ

′
∞].

On the other hand for the time sequence {tn} we have M2[ρ(tn)] → M2[ρ∞], hence (1.7.37)

implies that ρ∞ and ρ′∞ must have the same second moment. Since both ρ∞ and ρ′∞ are

within the family (1.1.7), they can have the same second moment only if they are the same

stationary solution.

Remark 1.7.15. Since the proof is done by extracting a subsequence of time, we are unable

to obtain the rate of the convergence. We also point out that the above proof is for radial

solution only; for general initial data the difficulty lies in the fact that we are unable to

bound the solution in some compact set uniform in time.

1.7.5 Critical regime with subcritical mass: convergence towards self-similar

solution for radial solutions

In this subsection, we assume V = N and m = 2− 2/d. We prove that every radial solution

with subcritical mass and compactly supported initial data would converge to some self-

similar solution which is dissipating with the same scaling as the solution of the porous

medium equation.

Let ρ be the weak solution to (1.1.1), with mass A ∈ (0,Mc). Following [V] and [BCL2],

let µ be as defined in (1.7.18), which is a a continuous rescaling of ρ according to the scaling

for the porous medium equation. Then µ(λ, 0) = ρ(x, 0), and µ(λ, τ) solves the following

rescaled equation in the weak sense:

µτ = ∆µm + ∇ · (µ∇|λ|2
2d

) + ∇ · (µ∇(µ ∗ N )). (1.7.38)

It is pointed out in Theorem 5.2 of [BCL2] that the free energy associated to the rescaled

problem (1.7.19) is

G(µ(·, t)) :=

∫

Rd

(
m

m− 1
µm +

1

2
µ(N ∗ µ) +

|λ|2µ
2d

)

dλ, (1.7.39)
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and for any mass A ∈ (0,Mc), there is a unique minimizer µA of G in ZA subject to transla-

tion, where ZA := {h ∈ L1(Rd)∩Lm(Rd) : ‖h‖1 = M and
∫

Rd |x|2h(x)dx ≤ ∞}. In addition,

µA is continuous, radially decreasing and has a compact support, and µA satisfies

m

m− 1

∂

∂r
µm−1

A +
r

d
+
M(r;µA)

σdrd−1
= 0 (1.7.40)

in its positive set, where the mass function M is as defined in (1.5.2).

Since µA is a stationary solution of (1.7.19), if we go back to the original scaling, µA gives

a self-similar solution of (1.1.1):

UA(x, t) = (t+ 1)−1µA(
x

(t+ 1)1/d
), (1.7.41)

It is then asked in [BCL2] and [B2] that whether this self-similar solution attracts all global

solutions.

We will first prove that all radial solutions to the rescaled equation (1.7.19) converge

to µA. The following lemma construct a family of explicit solutions to (1.7.19), which all

converge to µA exponentially fast as τ → ∞.

Lemma 1.7.16 (A family of explicit solutions). Suppose V = N , d ≥ 3 and m = 2−2/d.

For 0 < A < Mc, we denote by µA the stationary solution of (1.7.19). Let µ̄ be defined as

µ̄(λ, τ) :=
1

Rd(τ)
µA(

λ

R(τ)
), (1.7.42)

where R(τ) solves the ODE 





Ṙ(τ) =
1

d
(

1

Rd
− 1)R

R(0) = R0,

(1.7.43)

where R0 > 0 is a constant. Then for any R0 > 0, µ̄(λ, τ) is a weak solution to (1.7.19).

Proof. Since µ̄ is a self-similar function, it can be easily verified that µ̄ solves the following

transport equation

µ̄τ + ∇ · (µ̄ Ṙ(τ)

R(τ)
λ) = 0.

On the other hand, note that (1.7.19) can also be written as a transport equation

µτ = ∇ · (µ~v),
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where

~v =
m

m− 1
∇µm−1 +

λ

d
+
M(|λ|, τ ;µ)

σd|λ|d−1

λ

|λ| .

Therefore, to prove that µ̄ solves (1.7.19), it suffices to verify that

−Ṙ(τ)

R(τ)
r =

m

m− 1

∂

∂r
µ̄m−1

︸ ︷︷ ︸
T1

+
r

d
+
M(r, τ ; µ̄)

σdrd−1

︸ ︷︷ ︸
T2

for 0 ≤ r ≤ R(τ). (1.7.44)

Since µ̄ is a rescaling of µA,

T1 =
1

R(m−1)d+1

(
∂

∂r
µm−1

A

)

(
r

R(τ)
) =

1

Rd−1

(
∂

∂r
µm−1

A

)

(
r

R(τ)
),

where in the last inequality we used the fact that m is the critical power, i.e. m = 2 − 2/d.

For T2 in (1.7.44), the definition of µ̄ gives

T2 =
1

R(τ)d−1

M( r
R(τ)

;µA)

σd(
r

R(τ)
)d−1

for 0 ≤ r ≤ R(τ).

Now recall that µA satisfies (1.7.40) in its positive set, which implies

RHS of (1.7.44) =
1

R(τ)d−1

(

m

m− 1

∂

∂r
µm−1

A (
r

R(τ)
) +

r

dR(τ)
+
M( r

R(τ)
;µA)

σd(
r

R(τ)
)d−1

)

+
1

d
(1 − 1

Rd(τ)
)r

=
1

d
(1 − 1

Rd(τ)
)r

= −Ṙ(τ)

R(τ)
r,

where the last equality comes from the definition of R in (1.7.43). This verifies that (1.7.44)

is indeed true, which completes the proof.

Next we use the family of explicit solution constructed above as barriers, and perform

mass comparison between the real solution and the barriers.

Proposition 1.7.17. Suppose V = N , d ≥ 3 and m = 2 − 2/d. Let µ(λ, τ) be a radially

symmetric weak solution to (1.7.19) with mass 0 < A < Mc, where the initial data µ(·, 0) is

nonnegative, continuous and compactly supported. Then as τ → ∞, the mass function of µ

converges to the mass function of µA exponentially, i.e.

sup
r

|M(r, τ ;µ) −M(r, τ ;µA)| ≤ Ce−τ ,

where µA is as defined in (1.7.40), and C depends on d, A and µ(·, 0).
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Proof. Without loss of generality we assume that µ(0, 0) > 0. (When µ(0, 0) = 0, from the

same discussion in 1.7.13, µ(0, τ) will become positive after some finite time.) Then we can

find R01 sufficiently small and R02 sufficiently large, such that

1

Rd
02

µA(
·
R02

) ≺ µ(·, 0) ≺ 1

Rd
01

µA(
·
R01

),

where in the first inequality we used that µ(0, 0) > 0, and in the second inequality we used

‖µ(·, 0)‖∞ <∞.

Let µ1(λ, τ) and µ2(λ, τ) be defined as in (1.7.42), with R(0) equal to R01 and R02

respectively. Then Lemma 1.7.16 says that both µ1 and µ2 are solutions to (1.7.19). Note

that (1.7.19) is a special case of (1.5.1), hence the mass comparison result in Proposition

1.5.4 holds here as well, which gives

µ2(·, τ) ≺ µ(·, τ) ≺ µ1(·, τ) for all τ ≥ 0,

or in other words,

M(·, τ ;µ2) ≤M(·, τ ;µ) ≤M(·, τ ;µ1) for all τ ≥ 0.

It remains to show that

sup
r

|M(r, τ ;µi) −M(r;µA)| ≤ Ce−τ for i = 1, 2.

Recall that both µi’s are scalings of µA with scaling coefficient Ri(τ), hence

|M(r, τ ;µi) −M(r;µA)| = |M(
r

Ri(τ)
;µA) −M(r;µA)|. (1.7.45)

Since µA is bounded and compactly supported, it suffices to show that Ri(τ) → 1 exponen-

tially as r → ∞. Recall that Ṙi = 1
d
( 1

Rd
i
− 1)Ri with initial data R0i for i = 1, 2, a simple

calculation reveals that |Ri(τ)−1| ≤ Cie
−τ , where Ci depends on R0i. This implies that the

right hand side of (1.7.45) decays like e−τ , which completes the proof.

Making use of the explicit barriers µ1 and µ2 constructed in the proof of Proposition

1.7.17, we get exponential convergence of µ/A towards the µA/A in the p-Wasserstein metric

as defined in Definition 1.7.3. The proof is parallel to the proof of Corollary 1.7.4 and will

be omitted here.
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Corollary 1.7.18. Let V = N , d ≥ 3, and m = 2 − 2
d
. Let µ(λ, τ) and µA be as given in

Proposition 1.7.17. Then for all p > 1, we have

Wp(
µ(·, τ)
A

,
µA

A
) ≤ Ce−τ ,

where C depends on d and µ(·, 0).

Rescaling back to the original space and time variables, we have

ρ(x, t) =
1

t+ 1
µ

(
x

(t+ 1)1/d
, ln(t+ 1)

)

.

Thus Corollary 1.7.4 immediately yields the algebraic convergence towards the dissipating

self-similar solution (1.7.41):

Corollary 1.7.19. Let ρ(x, t) be a radial solution to (1.1.1) with mass 0 < A < Mc, where

the initial data ρ(·, 0) ∈ L1
+(Rd; (1+|x|2)dx)∩L∞(Rd) is continuous and compactly supported.

Let UA be the dissipating self-similar solution with mass A defined in (1.7.41). Then ρ/A

converges to UA/A in Wasserstein distance algebraically fast as t→ ∞. More precisely,

Wp(
ρ(·, t)
A

,
UA

A
) ≤ Ct−(d−1)/d,

where C depends on d, A and ρ(·, 0).

1.7.6 Critical regime with subcritical mass: convergence towards self-similar

solution for non-radial solutions with small mass

In this subsection, we consider the rescaled equation (1.7.19) with general (possibly non-

radial) initial data. The key result here is that when the mass A < Mc is sufficiently small,

the radially symmetric stationary solution µA as defined in (1.7.40) is the unique compactly

supported stationary solution (in rescaled variables). Then a similar argument as in Theorem

1.7.14 shows that every solution to (1.7.19) with small mass and compactly supported initial

data converges to µA. After scaling back to the original variables, we immediately obtain

the convergence towards the self-similar solution if the mass is small.

We first prove a L∞-regularization result, saying that if the initial mass is small, then

the L∞ norm of solution to (1.7.19) will become small after unit time, regardless of the L∞
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norm of the initial data. We point out that a similar L∞-regularization result is proved in

[SS2] for the 2D case with linear diffusion, using a De Giorgi type method.

Lemma 1.7.20. Suppose V = N , d ≥ 3 and m = 2− 2/d. Let µ(λ, τ) be a weak solution to

(1.7.19) with mass 0 < A < Mc/2, where the initial data µ0 ∈ L1
+(Rd; (1+ |x|2)dx)∩L∞(Rd)

is continuous. Then we have

‖µ(·, τ)‖∞ ≤ KA := CA2/d for all τ ≥ 1, (1.7.46)

where C is some constant depending only on d.

Proof. Similar argument as the proof of Lemma 1.7.13 yields that

µ∗(·, τ) ≺ µ̄(·, τ) for all τ ≥ 0, (1.7.47)

where µ̄(·, τ) is the solution to (1.7.19) with initial data µ∗
0. Since µ∗

0 is radially symmetric

and bounded above, we can find R0 sufficiently small, such that µ∗
0 ≺ 1

Rd
0
µA( ·

R0
), where µA

is as defined in (1.7.40). It then follows from Proposition 1.5.4 and Lemma 1.7.16 that

µ̄(·, τ) ≺ 1

R(τ)d
µA(

·
R(τ)

) for all τ ≥ 0, (1.7.48)

where R(τ) satisfies the ODE (1.7.43) with initial data R(0) = R0. Combining (1.7.47) and

(1.7.48), we obtain that

‖µ(·, τ)‖∞ = ‖µ∗(·, τ)‖∞ ≤ 1

R(τ)d
‖µA‖∞ for all τ ≥ 0.

In order to bound the right hand side of the above inequality, we first find an upper bound

for 1/R(τ)d. It can be readily verified that R̃(τ) = min{1
2
τ

1
d+1 , 1

2
} is a subsolution to (1.7.43)

for any R0 > 0, which implies that R(τ) ≥ R̃(τ) ≥ 1
2

for all τ ≥ 1, thus 1
R(τ)d ≤ 2d for all

τ ≥ 1.

Next we will estimate ‖µA‖∞. Note that µA is radially decreasing for any 0 < A < Mc,

moreover ‖µA‖∞ = µA(0) is increasing with respect to A. Therefore we readily obtain a

rough bound ‖µA‖∞ ≤ C1 for all 0 < A < Mc/2, where C1 = µMc/2(0) only depends on d.
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Note that this rough bound of ‖µA‖∞ gives us an upper bound for the velocity field given

by the interaction term, namely

∂r(µA ∗ N ) =
M(r;µA)

σdrd−1
≤ C1r

d
. (1.7.49)

To refine the bound for ‖µA‖∞, we compare µA with µ̃A, where µ̃A is the radial stationary

solution to the following equation

µτ = ∆µm + ∇ ·
(
µ∇(1 + C1)|λ|2

2d

)
. (1.7.50)

Making use of (1.7.49), mass comparison yields that µA ≺ µ̃A, which implies µA(0) ≤ µ̃A(0).

On the other hand note that (1.7.50) is a Fokker-Planck equation, whose stationary solution

is given by

µ̃A =
(

CA − (1 + C1)(m− 1)

2dm
|λ|2
)1/(m−1)

+
,

where CA > 0 is the unique constant such that ‖µ̃A‖1 = A. A simple algebraic manipulation

shows that µ̃A(0) ≤ CA2/d, where C > 0 depends only on d, therefore we can conclude.

The next lemma shows that if the mass is small, any solution with compactly supported

initial data will eventually be confined in some small disk.

Lemma 1.7.21. Suppose V = N , d ≥ 3 and m = 2 − 2/d. Then for any R0 > 0, there

exists some sufficiently small A0 > 0, such that all weak solutions to (1.7.19) with continuous

and compactly supported initial data and mass 0 < A < A0 will be eventually confined in

B(0, R0).

Proof. Let µ(λ, τ) be a weak solution to (1.7.19) with continuous and compactly supported

initial data and mass 0 < A < A0, where A0 is a small constant depending on R0 and d to

be determined later.

In the proof of this lemma we take τ = 1 to be the starting time, in order to take

advantage of the estimate (1.7.46). Our goal is to show that if the support of µ(·, 1) is

contained in some disk B(0, R) where R > R0 −KA and KA is as defined in (1.7.46), then

there exists some time T > 1 to be determined later, such that

supp µ(·, τ) ⊂ B(0, R +KA) for all τ ∈ [1, T ], (1.7.51)
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moreover at time T the support can be fit into some disk smaller than B(0, R), namely

supp µ(·, T ) ⊂ B(0, R−KA/2). (1.7.52)

By taking T as the starting time and repeating this procedure, we know that eventually the

support will be confined in B(0, R0).

In order to deal with non-radial solution, we shall construct barriers in the density sense

instead of in mass sense. Although comparison principle in density sense does not directly

hold for (1.7.19) due to the nonlocal term, if we treat V (λ, τ) := µ ∗ N as a fixed a priori

potential, then (1.7.19) becomes

µτ = ∆µm + ∇ ·
(

µ∇
( |λ|2

2d
+ V (λ, τ)

)
)

, (1.7.53)

which is a porous medium equation with a drift, and the weak solutions to it enjoy the

comparison principle due to [BH]. It follows from (1.7.46) that the following estimates of V

holds:

∆V (λ, τ) ≤ sup
λ,τ

µ ≤ KA for λ ∈ R
d, τ ≥ 1,

and

|∇V (λ, τ)| ≤ sup
µ,λ

(µ ∗ 1

σd|λ|d−1
) ≤ C(d)A

3
d
− 2

d2 for λ ∈ R
d, τ ≥ 1.

Note that in both estimates above, the right hand side will go to zero as A → 0. We also

point out that if R ≫ A
3
d
− 2

d2 , then ∇V will be dominated by ∇ |λ|2
2d

around r = R.

Next we will construct some explicit supersolution µ̃ to (1.7.53). More precisely, we hope

to find a continuous radially decreasing function µ̃ defined in {r > R−KA}× [1, T ] for some

T , such that µ̃ satisfies the following inequality

µ̃τ ≥ ∂rrµ̃
m + (∂r +

d− 1

r
)(
µ̃r

d
) + µ̃KA + |∂rµ̃|C(d)A

3
d
− 2

d2 for all r > R−KA, τ ∈ [1, T ],

(1.7.54)

while µ̃ also satisfies the initial condition

µ̃(r, 0) ≥ KA for all R−KA ≤ r ≤ R, (1.7.55)

and the boundary condition

µ̃(r, τ) ≥ KA at r = R−KA for all τ ∈ [1, T ]. (1.7.56)
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The inequalities (1.7.54)–(1.7.57) guarantees that µ̃ is a supersolution to (1.7.53). If A is

small enough such that R > CA
3
d
− 2

d2 for some large constant C depending on d, one can

check that

µ̃(λ, τ) =
[
2KA − τ(r − (R−KA))

]1/m

+

satisfies the inequalities (1.7.54)–(1.7.56) for 1 ≤ τ ≤ 4, hence comparison principle yields

that µ ≤ µ̃ in {r > R−KA} for all τ ∈ [1, 4].

The reason we choose µ̃ as above is that its support will shrink after some time: note

that its support stays in B(0, R + KA) for τ ∈ [1, 4], and most importantly, at τ = 4, the

support of µ̃ can be fit into a disk smaller than B(0, R), namely

supp µ̃(·, 4) ⊂ B(0, R−KA/2). (1.7.57)

Since comparison property gives that supp µ(·, τ) ⊂ supp µ̃(·, τ) for all τ ∈ [1, 4], we imme-

diately obtain (1.7.51) and (1.7.52), which complete the proof.

Making use of the above two lemmas, in the next theorem we show that when the mass

is sufficiently small, there cannot be any non-radial stationary stationary solutions.

Theorem 1.7.22. Suppose V = N , d ≥ 3 and m = 2 − 2/d. Then when 0 < A < Mc/2 is

sufficiently small, the compactly supported stationary solution to (1.7.19) is unique.

Proof. Due to Corollary 1.7.4, we know that for any 0 < A < Mc, there does not exist any

compactly supported radial stationary solution other than µA. Hence it suffices to prove

that when A is sufficiently small, every compactly supported stationary solution is radially

symmetric.

Suppose νA(λ) is a compactly supported stationary solution to (1.7.19), which is not

radially symmetric. Since νA is stationary, it satisfies

m

m− 1
νm−1

A + νA ∗ N +
|λ|2
d

= C in {νA > 0}, (1.7.58)

where different positive components of νA may have different C’s. Heuristically, the idea is

to argue that the term νA ∗ N must be more “roundish” than m
m−1

νm−1
A if νA is non-radial,

thus get a contradiction.
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We point out that (1.7.58) implies that νA is continuous in Rd and smooth inside its

positive set. This enables us to find two points a, b ∈ Rd in the same connected component

of {νA > 0}, satisfying |a| = |b| and

νA(a) − νA(b) = sup
|x|=|y|

(νA(x) − νA(y)) > 0. (1.7.59)

We claim that when A is sufficiently small, the following inequality holds

m

m− 1

∣
∣νm−1

A (a) − νm−1
A (b)

∣
∣ > |(νA ∗ N )(a) − (νA ∗ N )(b)|, (1.7.60)

then (1.7.60) would contradict (1.7.58).

We start with the left hand side of (1.7.60): Lemma 1.7.20 implies that both νA(a) and

νA(b) are much smaller than 1 when A is small. Since 0 < m− 1 < 1, it follows that

m

m− 1

∣
∣νm−1

A (a) − νm−1
A (b)

∣
∣ > |νA(a) − νA(b)|.

if A is sufficiently small. In order to prove (1.7.60), it suffices to show that

|(νA ∗ N )(a) − (νA ∗ N )(b)| < |νA(a) − νA(b)|. (1.7.61)

We introduce a linear transformation T : R
d → R

d which is a rotation that maps a to b.

Then radial symmetry of N yields that (νA ∗ N )(b) = ((νA ◦ T ) ∗ N )(a).

In addition, T being a rotation implies that |T (x)| = |x| for any x = Rd, hence from the

way we choose a and b, we have |νA(T (x)) − νA(x)| ≤ νA(a) − νA(b) for any x ∈ Rd. Thus

|(νA ∗ N )(a) − (νA ∗ N )(b)| =
∣
∣(νA ∗ N )(a) − ((νA ◦ T ) ∗ N )(a)

∣
∣

≤
∫

Rd

∣
∣νA(y) − νA(T (y))

∣
∣|N (a− y)|dy

≤ (νA(a) − νA(b))

∫

B(0,R)

|N (y)|dy,

where B(0, R) is the smallest disk that contains the support of νA. Now we make use of

Lemma 1.7.21, which shows that we can fit the support of νA into an arbitrarily small disk by

letting A be sufficiently small. Therefore we can choose R such that
∫

B(0,R)
|N (y)|dy < 1/2,

then let A be sufficiently small such that supp νA ⊂ B(0, R). This gives us (1.7.61), which

leads to a contradiction and hence completes the proof.
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Remark 1.7.23. For general 0 < A < Mc, we are unable to prove the uniqueness of the

compactly supported stationary solution. The difficulty lies in the fact that for larger mass

we are only able to show the support lies in a disk with radius O(1). Hence instead of

(1.7.61), we can only obtain |(νA ∗ N )(a)− (νA ∗ N )(b)| < C|νA(a)− νA(b)|, where C might

be a large constant, which stops us from getting a contradiction.

Once we obtain the uniqueness of compactly supported stationary solution for small mass,

the following corollary shows that all solution with compactly supported initial data must

converge to this unique stationary solution as τ → ∞.

Corollary 1.7.24. Suppose V = N , d ≥ 3 and m = 2 − 2/d. Let µ(λ, τ) be a weak solution

to (1.7.19) with mass 0 < A < Mc/2 being sufficiently small, where the initial data µ(·, 0) is

nonnegative, continuous and compactly supported. Then as τ → ∞, we have

‖µ(·, τ) − µA(·)‖∞ → 0, (1.7.62)

where µA is as defined in (1.7.40).

Proof. The proof is similar as the proof of Theorem 1.7.14, and actually it is simpler here

since there is a unique stationary solution, instead of a family of stationary solution in the

case of Theorem 1.7.14.

When the initial data µ(·, 0) is bounded and compactly supported, Lemma 1.7.20 and

Lemma 1.7.21 shows that µ(·, τ) would be uniformly bounded and stay in some fixed compact

set for all τ ≥ 1. In addition, the continuity result in [D] indicates that µ(λ, τ) is uniformly

continuous in space and time in Rd × [1,∞).

As a result, for any time sequence τn that increases to infinity, using the same argument

as in the proof of Theorem 1.7.14, we can extract a subsequence τnk
such that µ(·, τnk

)

uniformly converges to some continuous function µ∞, where µ∞ is a compactly supported

stationary solution. Theorem 1.7.22 ensures that µ∞ must coincide with µA when A is

sufficiently small, yielding that µ(·, τ) indeed converges to µA uniformly as τ → ∞.

Remark 1.7.25. Since µ(·, 0) is confined in some compact set for all time, (1.7.62) implies

that ‖µ(·, τ) − µA(·)‖p → 0 as τ → ∞ for all p ≥ 1. Now if we scale back to the original
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variables, it immediately follows that ‖ρ(·, t)−UA(·)‖p → 0 as t→ ∞ for all p ≥ 1, where UA

is the dissipating self-similar solution as defined in (1.7.41). However the rate of convergence

here is unknown, since the proof is done by extracting a subsequence of time.
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CHAPTER 2

Blow-up Dynamics for Patlak-Keller-Segel Equation

with Degenerate Diffusion

2.1 Introduction

2.1.1 Background

In this chapter, which is a joint work with Andrea Bertozzi [YB], we continue studying

the aggregation-diffusion equation as in Chapter 1, however from a different perspective.

Note that in Chapter 1, we discussed the qualitative behavior and asymptotic behavior of

solutions to (1.1.1) when the solutions exist globally in time. In this chapter we focus on

the finite-time blow-up case, and our goal is to numerically and asymptotically study the

blow-up dynamics of (2.1.1) when the solution blows up in finite time. Moreover, in this

chapter we consider more general kernels with power-law form, other than the Newtonian

potential; and our spatial domain is bounded instead of the whole Rd. The equation we

consider in this chapter is

ut = ∆um −∇ · (u∇(K ∗ u)) in [0, T ) × Ω, (2.1.1)

with Neumann boundary condition, where m ≥ 1, Ω = B(0, R) ⊂ R
d, and K is a radially

symmetric potential with power-law form, i.e.

K(x) =
1

|x|γ ,

where K is either equal to or less singular than the Newtonian kernel at the origin, i.e.

γ ≤ d− 2.
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As we have summarized in Chapter 1, the solution of (2.1.1) exhibits different behavior for

different powers of m [DP, HV, S1, BlCM]: the problem is supercritical for 1 ≤ m < 2−2/d,

where the solution may exhibit finite time blow-up phenomena; while for m > 2 − 2/d the

problem is subcritical and the solution is globally bounded for all time. Recently the notion

of criticality is generalized to general power-law kernels K =
1

|x|γ in [BRB]. For d ≥ 3

and γ ≤ d − 2, they prove that the critical power m is given by
d+ γ

d
. When m >

d+ γ

d

the solution stays uniformly bounded for all time, while when m <
d+ γ

d
there may be a

finite-time blow-up. Moreover, at the critical power, they prove that there exists a critical

mass Mc which sharply divides the possibility of finite time blow up and global existence.

In this chapter we only discuss the case d ≥ 3, and the reason to omit dimension d = 2

is as follows. When d = 2, if K is equal to the Newtonian potential 1
2π

ln |x|, the critical

exponent is given by m = 1, and (2.1.1) becomes the original Patlak-Keller-Segel equation,

which has been well studied both asymptotically and numerically [BCKSV, HV, CS, L]; if

K is less singular than the Newtonian potential, then for any m ≥ 1, the problem is in the

subcritical regime, where all solutions have a global L∞ bound and do not blow-up.

Once the existence/blow-up results are proven for (2.1.1), it is natural and interesting

to examine the asymptotic behavior of the blow-up profile. Existing results only cover the

following two special cases: one is the case without the diffusion term, and the other case

is where K is the Newtonian potential. We review these cases in detail in the following

discussion. The main goal of this chapter is to study the behavior of the blow-up solution

for general power-law kernel and power-law degenerate diffusion.

In the absence of the diffusion term ∆um, (2.1.1) becomes the aggregation equation, which

arises in biological swarming models and aggregation in material science. It is rigorously

proved in [BCL1] that the local vs. global well-posedness is distinguished by an Osgood

condition on the kernel K. In particular, when the kernel K is given by |x|γ, the solution

has a finite time blow-up for 0 < γ < 2, and has an infinite time blow-up for γ ≥ 2. For

this power-law kernel, some asymptotic results for radial blow-up solutions are obtained in

[HB1, HB2]: when γ < 2, they show the radial solution blows up in finite time and exhibits
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a second type self-similarity, while for γ > 2 the aggregation happens in infinite time and

exhibits a concentration of mass along a collapsing δ-ring. We point out a difference of

the self-similar blow-up between (2.1.1) and the aggregation equation: although (2.1.1) and

the aggregation equation both exhibit self-similar blow-up behavior, the self-similarity for

aggregation equation is of second type, while the self-similarity for (2.1.1) is indeed of first

type. This is because in (2.1.1) the three terms ut, ∆um and ∇ · (u∇(K ∗ u)) should be

of the same order, which gives one more equation than the aggregation equation and thus

uniquely fixed the scaling.

With the presence of a linear diffusion term ∆u, when K is the Newtonian potential, the

problem is supercritical when d > 2, and critical when d = 2. For 2 < d < 10, the asymptotic

blow-up behaviors are carefully studied in [BCKSV]. They showed that there are two stable

blow-up modality, one is self-similar and the other one is non-self-similar and Burger-like.

When d = 2 the blow-up behavior is more subtle. For critical mass M = Mc, it is shown

in [KS] that the L∞ norm of solution grows to infinity as t → ∞, where umax ∼ e2
√

2t. For

supercritical mass M > Mc, according to asymptotic expansions computed in [CS, L] (and

[HV] for a similar model), as t → T , the solution is “near-self-similar” and blows up in the

form

u(r, t) ∼ R(t)2ū(rR(t)) + 1{r>R(t)}f(r), (2.1.2)

where R(t) ∼ (T − t)−1/2g(T − t), where g(T − t) is some logarithmic correction term; and

f(|x|) is some locally integrable function in R2 which has a singularity at the origin.

When the equation (2.1.1) has a nonlinear diffusion term ∆um and Newtonian potential

K, the problem is critical when m = 2 − 2/d, where d ≥ 3. For solutions with supercritical

mass M > Mc, some results regarding the asymptotic behavior of blow-up solution are

obtained in [BL]: they prove that there exists a self-similar blow-up solution when the mass

ranges in some bounded interval (Mc,M2] for some threshold M2, however the stability of

those self-similar blow-up solutions remains unclear. When the mass is above M2, they prove

that there is no exact self-similar blow-up solution, and the blow-up scaling is still open.

In this chapter we use refined numerics compared with asymptotic analysis to understand
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blowup behavior in a radially symmetric setting. Thus for completeness we review related

numerical results, many of which do not discuss the blow up problem. There are a number of

approaches to solving (2.1.1) for the special case m = 1 and K being a Newtonian potential.

These methods include the finite-element or discontinuous Galerkin methods presented in

[E, EI, EK, F2, M, Sa, SS], the moving mesh method described in [BCR], a mass-transport

steepest descent scheme in [BCC], a stochastic particle approximation method in [HS], and a

composite particle-grid numerical method in [F]. However, among those approaches, few of

them compute the blow-up profile: since (2.1.1) can blow-up in finite time in a diminishing

length scale, it is a challenging numerical problem to capture the solution behavior precisely.

There are two papers [BCKSV] and [BCR] directly addressing the blow-up profile, and both

of their numerical methods rely on K being Newtonian: [BCKSV] directly solves for the

mass function M(r, t) :=
∫ r

0
u(r)rd−1dr, which satisfies a local PDE when K is Newtonian;

[BCR] deals with the parabolic-parabolic Keller-Segel problem, where the drift potential can

be directly solved from a parabolic PDE. Their methods no longer work when K is a general

power-law kernel |x|−γ, and some efficient way to compute the convolution K ∗ u is needed.

2.1.2 Summary of results

As we mention above, there are few results addressing the dynamic behavior of the blow-

up solutions to (2.1.1), and that motivates our study. Sections 2-4 investigate the possible

asymptotic behavior of blow-up solutions to (2.1.1), and formally show that there are three

different ways of blow-up. These asymptotic results are accompanied by numerical simula-

tions, and in Section 5 we outline our numerical method, which is an arbitrary Lagrangian

Eulerian method with adaptive mesh refinement. Our results are summarized below.

Asymptotics for blow-up solutions with supercritical power m (i.e.

1 ≤ m < d+γ
d

)

For supercritical m, we show that there are two kinds of possible blow-up behaviors. One

of them is self-similar, where the scaling of the blow-up is

u(x, t) ∼ (T − t)−βw(
x

(T − t)α
) as t→ T, (2.1.3)
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where the power α, β > 0 are computed in Section 2.2 (see (2.2.2)). We point out that as t

approaches the blow-up time T , the mass of the peak area goes to zero, indicating that no

mass is concentrating at the origin.

Another possible blow-up behavior is an imploding smoothed out shock wave which

collapses into a Dirac mass at the origin at the blow-up time. More specifically, u

forms a delta concentration on an imploding spherical surface, thus the mass function

M(r, t) :=
∫ r

0
u(y, t)yd−1dy is forming an imploding shock. In Section 2.3 we show that

the scaling associated to this kind of blow-up is

u(r, t) ∼ Q(t) ϕ

(
r − R(t)

δ(t)

)

(2.1.4)

where lim
t→T

Q(t) = ∞, lim
t→T

R(t) = 0, and δ(t) ≪ R(t) as t → T . We compute the scaling for

Q(t), R(t) and δ(t) in Section 2.3.1 (see (2.3.6) and (2.3.9)), and derive the equation satisfied

by ϕ in Section 2.3.3. We point out that while the same blow-up behavior is discovered in

[BCKSV] for m = 1 and Newtonian K, this is the first work to find out the blow-up profile

ϕ. Note that in this case a finite amount of mass is driven to the origin at the blow-up time,

indicating that this type of blow-up is intrinsically different from the self-similar blow-up.

Another difference between the two type of blow-up is as follows. As long as 1 < m < γ+d
γ

is in the supercritical regime, the self-similar blow-up can happen for any m, d, γ with a suit-

able initial data. However the non-self-similar blow-up requires an extra condition: in Section

2.3.2, we formally derive that the non-self-similar blow-up can only happen when the extra

condition γ > d − 3 is satisfied, in addition to m being supercritical. Numerical evidence

suggests that this extra condition is indeed required. Note that when both conditions are

satisfied, the blow-up behavior depends on the initial data: the solutions with radially de-

creasing initial data may tend to blow-up self-similarly, while solutions with ring-shaped

initial data may tend to blow-up like a Burger shock.

Asymptotics for blow-up solutions with critical power m (i.e. m = d+γ
d

)

When m is critical, numerical evidence suggests that u is self-similar in the peak re-

gion. However the maximum density here does not grow like (T − t)−β as in (2.1.3), and is

(T − t)−βg(T − t) instead, where g(T − t) is some logarithm correction. We assume that as
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t→ T , u is of the form

u(r, t) =
1

R(t)d
ū(

r

R(t)
) + 1{r>R(t)}f(r), (2.1.5)

where R(t) ≪ (T − t)α as t → T , here α is as in (2.2.2). We then obtain some preliminary

results, indicating that ū is the stationary solution to (2.1.1) with mass Mc. This implies

that the mass in the peak area converges to Mc as t → T , which is verified by numerical

simulations. It is an interesting open problem to find the exact scaling for R(t). We point out

that this type of near-self-similar blow-up behavior is not new, and it is previously observed

in the semilinear heat equation [GK] and Patlak-Keller-Segel problem in 2D [HV, CS, L].

Numerical method

In order to numerically compute the blow-up profile of (2.1.1), we use an arbitrary

Lagrangian Eulerian method with adaptive mesh refinement. The main idea is to split

equation (2.1.1) into two steps, one contains the aggregation part and the other contains

the diffusion part. For the aggregation part, we adopt the method described in [HB1] and

let the mesh move with the particles. The Lagrangian method is important for advection

to avoid numerical diffusion [HB1]. Then we perform an adaptive mesh refinement and use

an implicit finite volume scheme to solve the degenerate diffusion equation on a fixed mesh,

due to its stability and easiness to implement. The advantage of our method is that we can

compute the solution until the time is very close to the blow-up time, where the maximum

density can be as large as 1080 and the characteristic spatial scale of the solution is 10−27,

while maintaining sufficient resolution to capture the detailed asymptotics of the blow-up

profile.

2.2 Self-similar blow-up for supercritical power m

In this section we focus on the self-similar blow-up that happens for supercritical m, i.e.

m > d+γ
d

. Figure 2.1 gives a typical example of a self-similar blow-up, where no mass is

concentrating at the origin as the time approaches the blow-up time. We determine the

scaling for the blow-up, and formally derive the equation satisfied by the blow-up profile.
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Figure 2.1: Time evolution of a self-similar blow-up solution with radially symmetric initial

data, with Newtonian potential, d = 3 and m = 1.2 (supercritical). Figure (a) shows a

log-log plot of the solution, which blows up at the origin at a finite-time T . Figure (b) shows

the mass function M(r, t) at different time, suggesting that no mass is concentrating at the

origin as t → T . Here M(r, t) denotes the mass inside the ball B(0, r) at time t. Figure (c)

shows the rescaled solution, (here the scaling is determined in (2.2.2)), which converges to

some blow-up profile. Figure (d) shows the evolution of (T − t)u(0, t) as a function of T − t,

which suggests that u(0, t) ∼ (T − t)−1 as t→ T .
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2.2.1 Computing the exponents

We assume that as t→ T , u blows up at the origin self-similarly with the following form

u(x, t) ∼ (T − t)−βw(
x

(T − t)α
) as t→ T. (2.2.1)

In this subsection, our goal is to compute the exponents α and β.

We first compute the order for the two term ut and ∆um as t→ T :

ut ∼ (T − t)−(β+1),

∆um ∼ (T − t)−2α−βm.

For the term ∇ · (u∇(u ∗K)), we begin with estimating the order for u ∗K:

(u ∗K)(x, t) =

∫

Rd

(T − t)−βw(
y

(T − t)α
)

1

|x− y|γ dy

= (T − t)−β+αd

∫

Rd

w(z)
1

|x− z(T − t)α|γ dz (let z =
y

(T − t)α
)

= (T − t)−β+αd−γα(w ∗ 1

|x|γ )(x(T − t)−α),

which implies that

∇ · (u∇(u ∗K)) ∼ (T − t)−2α−2β+αd−γα.

Since we are looking for a self-similar blow-up profile, we want ut, ∆um and ∇·(u∇(u∗K))

to have the same order, which gives the following equations

−(β + 1) = −2α− βm = −2α− 2β + αd− γα.

Since there are two equations and two unknowns, we can explicitly solve for α, β in terms of

γ,m and d:






α =
2 −m

(m− 1)(d− γ) − 2(m− 2)
,

β =
d− γ

(m− 1)(d− γ) − 2(m− 2)
.

(2.2.2)

If the solution blows up, then α and β are both positive, which implies that the blow-up

can only happen when m < 2. Also note that the mass in the ball B(0, (T − t)α) is of the

order (T − t)−β+dα, which cannot go to infinity as t → T since we start with a finite mass.
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This gives a necessary condition for the solution to blow-up, which is −β + dα ≥ 0, or in

other words,

m ≤ d+ γ

d
. (2.2.3)

Note that d+γ
d

is exactly the critical exponent for (2.1.1) given by [BRB].

2.2.2 Self-similar blow-up profile

Assuming (2.2.1), we want to find the equation w satisfies. Plug w into (2.1.1), and let

y = x(T − t)−α, we have that as t→ T ,

ut ≈ (T − t)−β−1[βw(y) + αy · ∇w(y)],

∆um ≈ (T − t)−2α−βm∆w(y),

∇ · (u∇(u ∗ 1

|x|γ )) ≈ (T − t)−2α−2β+αd−γα∇ · (w∇(w ∗ 1

|x|γ ))(y).

(2.2.4)

Therefore formally speaking, w should satisfies the following equation:

βw + αy · ∇w = ∆wm −∇ · (w∇(w ∗ 1

|x|γ )). (2.2.5)

Figure 2.2 shows the blow-up profile and scaling for different powers m, and Figure 2.3

illustrates that the blow-up profile indeed satisfies (2.2.5) for both Newtonian and non-

Newtonian kernel K. It would be interesting to study the full behavior of (2.2.5), although

it is outside the scope of our study. The case for m = 1 and Newtonian potential V is

covered in [BCKSV].

2.2.3 Limit function outside the blow-up region

From the numerical simulation in Figure 2.1(a), we can see that for every r > 0, u(r, t)

converges to some limit ψ(r) as t → T . Now we will formally compute the outer solution

ψ(r).

Since ψ(r) is stationary as t→ T , we have that ψ satisfies the following equation, where
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Figure 2.2: Behavior of solutions with different power m, with Newtonian potential in d = 3.

(a) Blow-up profile for different m. (b) log-log plot of the height u(0, t) and the width L(t)

for different m, where L(t) is defined as the radius at half the height of u(0, t). The slopes

of the lines are in good agreement with the theoretically predicted values of −0.5, −0.45,

−0.4, −0.35 and −1/3.
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Figure 2.3: Verification of (2.2.5) for the blow-up profile. The solid line is the plot of the

left hand side of (2.2.5), and the stars represent the right hand side of (2.2.5). (a) Here

the parameters are m = 1.2, d = 3 and γ = 1 (Newtonian). (b) Here the parameters are

m = 1.1, d = 3 and γ = 0.5, where the kernel is less singular than the Newtonian kernel.

we slightly abuse the notation and write ψ as a radially symmetric function on R
d:

∇(ψm−1 + ψ ∗ 1

|x|γ ) = 0. (2.2.6)

Since ψ(r) appears to be a straight line on the log-log graph in Figure 2.1(a), we assume

it takes the form ψ(r) ∼ r−a, where a > 0. Plug it into (2.2.6) and solve for a, we obtain

a = d−γ
2−m

, which implies the tail should satisfy

ψ(r) ∼ r
− d−γ

2−m .

2.3 Non-self-similar blow-up for supercritical power m

When the initial data is not radially decreasing, it is possible for the solution to blow-up in

finite time in a non-self-similar way. More precisely, the solution consists of an imploding

smoothed out shock wave in the mass variable, which collapses into a delta function at the

origin in finite time. Figure 2.4 gives an typical example of a non-self-similar blow-up.

70



10
−6

10
−4

10
−2

10
0

10
0

10
5

10
10

10
15

10
20

r

u(
r,

t)

 

 

T−t = 2e−4
T−t = 6e−8
T−t = 2e−11
T−t = 8e−15
T−t = 3e−18

10
−6

10
−4

10
−2

10
0

0

50

100

150

200

r

M
(r

,t)

 

 

T−t = 2e−4
T−t = 6e−8
T−t = 2e−11
T−t = 8e−15
T−t = 3e−18

(a) (b)

Figure 2.4: Time evolution of a non-self-similar blow-up solution with radially symmetric

initial data, with Newtonian potential, d = 3 and m = 1.2(supercritical). Figure (a) shows

a log-log plot of the solution, which blows up at the origin at a finite-time T . Figure (b)

shows the mass function M(r, t) at different time, indicating that there is a fixed amount of

mass concentrating at the origin as t → T . Here M(r, t) denotes the mass inside the ball

B(0, r) at time t.
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We assume u(r, t) have the following blow-up profile

u(r, t) ∼ Q(t) ϕ

(
r −R(t)

δ(t)

)

, (2.3.1)

where lim
t→T

Q(t) = ∞, lim
t→T

R(t) = 0, and δ(t) ≪ R(t) as t → T . Figure 2.5 shows the

re-centered and rescaled solution indeed converge to some function ϕ.
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Figure 2.5: Simulation of a non-self-similar blow-up with radially symmetric initial data

in three dimensions, with Newtonian potential and m = 1.2. The figure shows the re–

centered and rescaled solution indeed converge to some function ϕ. The x-axis represents

(r − rmax)/δ(t), and the y-axis is the normalized density. Here δ(t) is computed according

to (2.3.6).

2.3.1 Scaling for non-self-similar blow-up

We first figure out the relation between Q, δ and R. Since we only consider a radially

symmetric solution, (2.1.1) can be written as

ut = ∂2
ru

m

︸ ︷︷ ︸

T1

+
d− 1

r
∂ru

m

︸ ︷︷ ︸
T2

− ∂ru ∂r(
1

|x|γ ∗ u)
︸ ︷︷ ︸

T3

−u(∆
1

|x|γ ∗ u)
︸ ︷︷ ︸

T4

. (2.3.2)

Note that in the neighborhood of the peak, we have 1
r
∂ru

m ∼ Qm/(Rδ) and ∂2
ru

m ∼ Qm/δ2,

which gives T2 ≪ T1, due to our assumption that δ(t) ≪ R(t) as t goes to the blow-up time

T . Thus T2 becomes asymptotically irrelevant and can be ignored. We will require T1, T3,
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T4 to be of the same size in the neighborhood of the peak. For T1, the previous discussion

gives

T1 ∼
Qm

δ2
. (2.3.3)

We next estimate the order of T4. When γ < d− 2, (i.e. the kernel is less singular than the

Newtonian kernel), a direct computation gives

∆
1

|x|γ = γ(γ + 2 − d)
1

|x|γ+2
,

hence to obtain the order of T4, it suffices to look at (
1

|x|γ+2
∗u)(x) when |x|−R(t) = O(δ(t)).

For C large, we have

(
1

|x|γ+2
∗ u)(x) ∼

∫

B(0,Cδ)

1

|y|γ+2
Qdy ∼ Qδd−2−γ . (2.3.4)

hence when |x| −R(t) = O(δ(t)), the computation above implies

T4 ∼ u (
1

|x|γ+2
∗ u) ∼ Q2δd−2−γ . (2.3.5)

Note that (2.3.5) holds for Newtonian kernel as well, since when γ = d− 2, ∆|x|−γ becomes

a multiple of the delta function.

Finally, due to divergence theorem, we can evaluate the order of T3 as follows

T3 ∼
Q

δ

1

Rd−1

∫

B(0,|x|)
∆

1

|x|γ ∗ udx.

Note that the integrand quickly vanishes to 0 as |x|−R ≫ δ. And when |x|−R = O(δ), the

computation for T4 yields that ∆|x|−γ ∗u ∼ δd−2−γu, hence

∫

B(0,|x|)
∆|x|−γ ∗udx ∼ δd−2−γM ,

where M is the mass of u around the peak. Recall that we assume that M is of order unity,

which implies

T3 ∼ QR1−dδd−3−γ .

Since we assume T1, T3, T4 are of the same order, we finally obtain that Q(t), R(t) and δ(t)

should satisfy the following relation

R(t) ∼ Q(t)
− d−γ+m−2

(d−γ)(d−1) , δ(t) ∼ Q(t)
m−2
d−γ . (2.3.6)
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Now we compute the order of Q(t) in terms of T − t, where T is the blow-up time. From

the previous computation, when |x| −R = O(δ),

RHS of (2.2) ∼ Q
m−2(m−2)

d−γ , (2.3.7)

and the order of the left hand side is

LHS of (2.2) ∼ Q̇+Q
d

dt
(
r − R(t)

δ(t)
) ∼ Q̇Q

d+γ−md
(d−γ)(d−1) . (2.3.8)

Combining (2.3.7) and (2.3.8), we obtain

Q̇Q
d+γ−md

(d−γ)(d−1) ∼ Q
m−2(m−2)

d−γ ,

which implies

Q(t) ∼ (T − t)
− (d−γ)(d−1)

(d−γ)(md−m−d+2)−(d−2)(m−2) . (2.3.9)

In the special case of the Newtonian potential, d − γ = 2, and Q(t) simplifies to

Q(t) ∼ (T − t)−
2(d−1)

md , which is in agreement with the result in [BCKSV] for the special

case m = 1, and our work generalize their result to general m, d amd γ.

Figure 2.6(a) shows that when the solution blows up self-similarly, the maximum density

Q(t) indeed has the same scaling as (2.3.9). However, Figure 2.6(b) suggests that there is a

difference between the Newtonian kernel and kernels less singular than Newtonian: for the

Newtonian kernel (i.e. γ = d − 2), numerical simulation suggests that Q(t)(T − t)2(d−1)/md

converges to a constant as t goes to the blow-up time T , while for less singular kernel (i.e.

γ < d− 2) we have Q(t)(T − t)−p goes to 0 slowly as t→ T , where p is the power in (2.3.9).

2.3.2 Requirements for the parameters

In this subsection, we derive some requirements for the parameters d,m and γ in or-

der for the non-self-similar blow-up to happen. Recall that in (2.3.1), we assumed that

Q → ∞, δ ≪ R → 0 as t → T . Here δ ≪ R → 0 as t → T implies that the following

conditions on m, d and γ are required

m ≤ d+ γ

d
and γ < d− 2 +m. (2.3.10)
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Figure 2.6: (a) Log-log plot of the maximum density Q(t) versus (T − t), where T is the

blow-up time. The slopes of the lines are in good agreement with the theoretically predicted

values in (2.3.9). (b) Plot of Q(t)(T − t)−p versus (T − t), where p is the exponent as given

in (2.3.9).

Note that the first requirement coincides with the criteria for supercritical m, hence is au-

tomatically satisfied in the supercritical regime. We point out that the second requirement

can indeed be removed since we assume K is no more singular than the Newtonian potential

at the origin, i.e. γ ≤ d − 2. Once the above conditions are met, Q → ∞ as t → T will be

automatically satisfied since m ≥ 1.

Next we argue that an extra requirement is needed besides (2.3.10). Recall that in

equation (2.3.4), we assumed that for |x| = R + O(δ), (|x|−(γ+2) ∗ u)(x) is approximately

equal to
∫

B(0,Cδ)
|y|−(γ+2)u(x− y)dy when C is of order unity and sufficiently large, which is

comparable to δ−(γ+2)Qδd. This requires that the tail of the kernel K be small such that the

contribution from the term
∫

Rd\B(0,Cδ)
|y|−(γ+2)u(x − y)dy can be negligible, which implies

that

δ−(γ+2)Qδd ≫ R−(γ+2)QRd−1δ,

which simplifies to the following extra requirement

γ > d− 3. (2.3.11)
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Figure 2.7: Behavior of solutions with d = 5, γ = 1 and m = 1.1, where the condition

(2.3.10) is satisfied but (2.3.11) is not. Even with a very singular ring-shaped initial data,

it does not blow-up as an imploding shock. Figure (a) shows a log-log plot of the solution,

which blows up at the origin at a finite-time T in a self-similar way with the scaling as in

section 2. Figure (b) shows the rescaled solution, which eventually converges to some radially

decreasing blow-up profile.

Figure 2.7 provides numerical evidence that this extra requirement (2.3.11) is indeed

valid. When all the conditions in (2.3.10) are met but not (2.3.11), even we start with a

very singular ring-shaped initial data, the solution still behaves according to the scale for

self-similar solution in Section 2, and eventually converges to a self-similar profile that is

radially decreasing.

When both conditions (2.3.10) and (2.3.11) are met, the solution may blow-up in either

a self-similar way or non-self-similar way, depending on its initial data. The examples shown

in Figure 2.1 and 2.4 indeed have the same m, d and γ, and the only difference is that we

start with a radially decreasing initial data in Figure 2.1 and a ring-shaped initial data in

Figure 2.4. In Figure 2.8, we carefully choose the initial data that is close to the separatrix

between the self-similar one and non-self-similar one. The blow-up turns out to be self-

similar with the scaling as in Section 2, where the blow-up profile is not radially decreasing.
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We point out that this blow-up profile is unstable, and eventually the solution will be either

attracted to a radially decreasing blow-up profile, or an imploding shock wave. This result

is in agreement with [BCKSV] where m = 1 and K is Newtonian, where they conjectured

that this separatrix has connection with the unstable blow-up modality that has exactly one

linearly unstable mode.
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Figure 2.8: Blow-up profile in d = 3, γ = 1 and m = 1.2 (supercritical), with the initial

condition chosen to be very close to the separatrix between the self-similar blow-up and

non-self-similar blow-up. This blow-up profile is unstable and will be eventually attracted

to either the non-self-similar blow-up or the self-similar blow-up with a radially decreasing

profile. Figure (a) shows a log-log plot of the solution, and Figure (b) is the rescaled solution.

2.3.3 Similarity profile for Newtonian kernel

When K is the Newtonian potential, when the solution blows up non-self-similarly according

to (2.3.1), numerical evidence in Figure 2.5 suggests that the rescaled and re-centered solution

converges to some blow-up profile ϕ. In this subsection, our goal is to find the equation that

ϕ satisfies. We point out that this result is new even for Newtonian kernel: although the

scaling of Q,R and δ has been studied in [BCKSV] for m = 1 and the Newtonian potential

K, this is the first work to investigate the blow-up profile ϕ and find the equation it satisfies.
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Let e1 be the unit vector (1, 0, . . . , 0), and we investigate the behavior of solution to

(2.1.1) near the point ((R(t) + yδ(t))e1, t), which corresponds to ϕ(y). As t→ T , we have

ut((R + yδ)e1, t) ≈ Q̇Q
−2+md−2d

2(d−1) ϕ′(y), (2.3.12)

and

∆um((R + yδ)e1, t) ≈
Qm

δ2
(ϕm(y))′′. (2.3.13)

The estimation of the last term ∇ · (u∇(u ∗ K)) is as follows. Note that when K is the

Newtonian potential 1
|x|d−2 , ∆K is (2 − d)ωd−1δ(x) in the distribution sense, where δ(x) is

the delta function and ωd−1 is the surface area of the sphere Sd−1 in Rd. Hence

∂

∂r
(u ∗ 1

|x|γ )(R + yδ, t) =

∫

B(0,R+yδ)

∆u ∗ 1

|x|γ dx

|∂B(0, R + yδ)|

=

(2 − d)

∫

B(0,R+yδ)

udx

Rd−1

≈ (2 − d)ωd−1Qδ

∫ y

−∞
ϕ(z)dz,

where in the last line we used the fact that u(r, t) is very small when |r −R| ≫ δ. and as a

result,

∇ · (u∇(u ∗K))((R + yδ)e1, t) ≈ (2 − d)ωd−1

(
Q2ϕ′(y)

∫ y

−∞
ϕ(z)dz +Q2ϕ2(y)

)
. (2.3.14)

Combining (2.3.12), (2.3.13) and (2.3.14) together, we obtain that ϕ satisfies the following

equation

−1

d
ϕ′(y) = (ϕm(y))′′ − (2 − d)wd−1

(
ϕ′(y)

∫ y

−∞
ϕ(z)dz + ϕ2(y)

)
. (2.3.15)

Figure 2.9 provides numerical evidence that the rescaled and re-centered blow-up profile

indeed satisfies (2.3.15).

2.4 Near-self-similar blow-up for critical power m

When m = d+γ
d

, it is proved in [BRB] that there exists a critical mass Mc depending on γ

and d, such that the solution to (2.1.1) exists globally in time for M < Mc, while for any
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Figure 2.9: Verification of Eq.(2.3.15) for the blow-up profile of a non-self-similar blow-up,

where m = 1.2, d = 3 and γ = 1. The solid line is the left hand side of Eq.(2.3.15), and the

stars represent the right hand side of Eq.(2.3.15).

M > Mc there exists a solution with mass M that blows up in finite time. In addition, for

Newtonian potential, by using a comparison principle on the mass concentration, it is proved

in [BK] that every radial solution with mass M > Mc must blow up in finite time. We point

out that their method can be generalized to the general power-law kernel K = |x|−γ as well.

In this section we let m = d+γ
d

be the critical power, and we study the blow-up behavior

for solution with supercritical mass M > Mc. Let u be the weak solution to (2.1.1) with

supercritical mass, which blows up at some finite time T . Figure 2.10 is a typical result of

the simulation. While Figure 2.10(c) suggests that the blow-up is self-similar in its peak

region, it is no longer of the form (2.2.1): suppose that u blows up with the form (2.2.1)

as t → T , then the same argument as in Section 2 would imply that the α and β given in

(2.2.2) are the only possible exponents, and hence (T − t)βu(0, t) should converge to some

finite number w(0) as t → T . However, numerical simulation of (T − t)βu(0, t) in Figure

2.10(d) suggests that this is not true, since (T − t)βu(0, t) is slowly increasing to infinity as

t→ T , instead of converging to a constant.

Because of the self-similarity of u in the peak region, we assume that as t → T , u is of
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the form

u(r, t) =
1

R(t)d
ū(

r

R(t)
) + 1{r>R(t)}f(r), (2.4.1)

where R(t) ≪ (T − t)α as t→ T , here α = 2−m
(m−1)(d−γ)−2(m−2)

is as in (2.2.2).

It remains to determine R(t), ū and f(r). If T is the blow-up time, we first introduce

the following similarity variables

y = x(T − t)−α, τ = − ln(T − t),

and U(y, τ) := (T − t)βu(x, t), where α, β are given by (2.2.2). Then a quick computation

reveals that U(y, τ) satisfies the following equation

Uτ = ∆Um −∇ · (U∇(U ∗ 1

|y|γ )) − α∇U · y − βU. (2.4.2)

Since we assume that R(t) ≪ (T − t)α as t → T , we would expect that there is an inner

layer of size ǫ(γ) in (2.4.2), where ǫ(τ) → 0 as τ → ∞, however ǫ(τ) should be bigger than

any decaying power-law function as τ → ∞. Moreover, we expect that U is self-similar in

this inner-layer and contains a fixed amount of mass in the inner-layer. Hence we introduce

another scaling

ξ =
y

ǫ(τ)
,

and

Ũ(ξ, τ) := ǫ(τ)dU(y, τ).

Then Ũ(ξ, τ) satisfies

Ũτ = ǫ−d(m−1)−2
(
∆Ũm −∇· (Ũ∇(Ũ ∗ 1

|ξ|γ )
)
+
(
α∇Ũ · ξ+βŨ

)
+ ǫ̇ǫ−1

(
∇Ũ · ξ+ dŨ

)
. (2.4.3)

After performing this rescaling, we expect Ũ to converge to some stationary blow-up profile

Ū(ξ), hence we assume that Ũτ → 0 as t → ∞. As τ goes to infinity, note that the terms

on the right hand side of (2.4.3) are not of the same order, due to the assumption that ǫ(τ)

slowly decays to 0 as τ → ∞. Recall that we only consider the case m ≥ 1, which implies

that ǫ−d(m−1)−2 ≫ ǫ̇ǫ−1 ≫ 1. Hence Ū satisfies the equation

∆Ūm −∇ · (Ū∇(Ū ∗ 1

|ξ|γ )) = 0. (2.4.4)
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Figure 2.10: Time evolution of a near-self-similar blow-up solution with radially symmetric

initial data, with Newtonian potential, d = 3 and m = 4/3 (critical). Figure (a) shows a

log-log plot of the solution, which blows up at the origin at a finite-time T . Figure (b) shows

the mass function M(r, t) at different time, indicating that there is a fixed amount of mass

contained in the peak area as t → T . Here M(r, t) denotes the mass inside the ball B(0, r)

at time t. Figure (c) is a rescaling of the peak area, which indicates that the peak area is

self-similar and it converges to some profile. Figure (d) shows the evolution of (T − t)u(0, t)

as a function of T − t, which suggests that u(0, t) ∼ (T − t)−1f(T − t) as t→ T , where f is

some logarithmic correction term.
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For Newtonian potential, it is proved in [BCL2] that the only radially symmetric solution

to (2.4.4) has mass Mc, where Mc is the critical mass. That suggests that Ū is the unique

stationary solution for (2.1.1) with critical massMc. Hence as t→ T , the peak should contain

exactly the critical mass Mc, which fits our observation in Figure 2.10 (b). Moreover, Figure

2.11 suggests that the rescaled blow-up profile indeed coincides with the stationary solution.

It is an interesting question to solve for the logarithmic corrector ǫ(τ); this has been done

for m = 1 and the Newtonian kernel K in [HV, L, CS], however it is an open problem for

general m and K.
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Figure 2.11: Comparison between the rescaled blow-up profile and the stationary solution

with critical mass. The solid line is the rescaled blow-up profile of a a near-self-similar

blow-up solution with radially symmetric initial data, with Newtonian potential, d = 3 and

m = 4/3 (critical). The star symbol is the (rescaled) stationary solution with critical mass

Mc.

2.5 Numerical method

The numerical method we use is a combination of a Lagrangian method and an Eulerian

method. The main idea is to split the equation (2.1.1) into two steps, one with the ag-

gregation part only and the next with the diffusion part only, and we run those two steps
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alternatively. More precisely, in every time step [t, t + dt], we first use the method of char-

acteristic to solve the aggregation equation

vt = −∇ · (v∇(K ∗ v)) for t ∈ [t, t+ dt], (2.5.1)

where the time step is chosen to be small enough such that the characteristics do not intersect.

After reconstructing the density from the particle locations and performing an adaptive mesh

refinement, we then use an implicit finite-difference scheme to solve the following diffusion

equation for another time step,

wt = ∆wm for t ∈ [t, t+ dt], (2.5.2)

where the initial data of w is taken from the result of the aggregation step, namely

w(x, t) = v(x, t + dt). Then we set v(x, t + dt) = w(x, t + dt) and start the next time

step.

2.5.1 Advection Step

For the advection step, due to the underlying transport structure of (2.5.1), it can be solved

by method of characteristics. To do this we follow the method in [HB1], which we present

here for the sake of completeness.

Assume the radial domain is partitioned into the intervals 0 = r0 < r1 < . . . < rN = R,

where the mass of u is mi in the ring B(0, ri+1)\B(0, ri) for i = 0, . . . , N − 1. We then

approximate u by a system ofN delta rings located at radius r0, . . . , rN with massm1, . . . , mN

respectively. Note that (2.5.1) is a transport equation, where the outward velocity field at

radius r is given by

v(r) = − ∂

∂r
(u ∗K).

Hence the ith ring is moving inwards with velocity

d

dt
ri(t) =

N∑

j=1

mjvrj
(ri), (2.5.3)

where vrj
(ri) is the outward velocity at ri caused by a delta ring with unit mass located at
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radius rj . vR(r) is given by the following integral

vR(r) = −
∫ π

0

K ′(
√
R2 + r2 − 2rR cos θ)

R cos θ − r√
R2 + r2 − 2rR cos θ

(R sin θ)d−2ωd−1dθ/(ωdR
d−1)

= −γwd−1

wd

∫ π

0

R cos θ − r

R(R2 + r2 − 2rR cos θ)γ/2+1
(sin θ)d−2dθ,

Due to the homogeneity of the kernel K, we can define ρ =
min{r, R}
max{r, R} , then v(r) becomes

vR(r) =







−γwd−1

wd

R− γ
2
−1I1(ρ), if r ≤ R

−γwd−1

wd

r−
γ
2
−1I2(ρ), if r > R,

where the two auxiliary functions I1(ρ), I2(ρ) are defined by

I1(ρ) =

∫ π

0

cos θ − ρ

(1 + ρ2 − 2ρ cos θ)
(sin θ)d−2dθ,

I2(ρ) =

∫ π

0

ρ cos θ − 1

(ρ2 + 1 − 2ρ cos θ)
(sin θ)d−2dθ,

and we only need to perform numerical integration for I1(ρ) and I2(ρ) once, for 0 ≤ ρ ≤ 1,

which reduce the complexity to O(N2) to evaluate the right hand side of (2.5.3). Once we

have the velocity of each delta ring in (2.5.3), we use the classical forth order Runge-Kutta

method to evaluate the position at the next time step.

2.5.2 Regridding and interpolation

2.5.2.1 Reconstruct density from particle locations

After the aggregation step, we have new locations of the δ−rings. Assume the i-th δ−ring

is now located at radius ri. We can reconstruct the density u from the particle location as

following. We denote by ūi the the average density in the ring [ri, ri+1], then ūi is given by

mi

|B(0,ri+1)\B(0,ri)| , where mi is the mass of the i-th δ-ring.

2.5.2.2 Adaptive mesh refinement

Since we are interested in the blow-up profile, we perform an adaptive mesh refinement that

efficiently captures the scaling of the blow-up without losing resolution.
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Figure 2.12 shows that for both self-similar blow-up and non-self-similar blow-up, the

density changes slowly outside of the singularity area, due to the fact that the blow-up is

localized. Thus we dedicate a fixed portion of the grid to the singularity area and a fixed

portion outside of that area.
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Figure 2.12: Behavior of solutions away from the blow-up point, where d = 3, γ = 1 and

m = 1.2. Figure (a) shows the tail of solution in the case of self-similar blow-up, and Figure

(b) is for non-self-similar blow-up.

More precisely, we first find the peak location rmax, then we locate the peak area [r1, r2]

to be the part where u(r) ≥ u(rmax)/1000. This interval would contain the singularity

area in the case for the self-similar blow-up, but to make it also work for the non-self-

similar blow-up, we enlarge the interval to [rL, rR], where rL = max{0, rmax − 2(rmax − r1)},
rR = rmax + 2(r2 − rmax)).

We start with an initial grid of N = N0 points, in the example here N0 = 500. After

locating the interval [rL, rR] using the method above, we partition [rL, rR] into N/2 equal-

length grids, and partition the remaining set [0, a]\[rL, rR] into another N/2 equal-length

grids. Note that the length of [rL, rR] will go to zero as the time approaches the blow-up

time, so the grid size inside the interval [rL, rR] will be much smaller than outside, which

might introduce some numerical error. To ensure that the size of two neighboring grids are

comparable, we refine the grid using the strategy similar to [B]: when the size of an outer
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grid is two times more than the size of its neighboring inner grid, we divide the k inner-most

outer grids in half. We perform this procedure iteratively until all neighboring intervals have

ratio between 1/2 and 2. We point out that the grid size depends logarithmly on ρmax: In

the computation we choose k = 8, and the size of the grid grows from 500 to around 900 as

the maximum density reaches 1050.

2.5.2.3 Interpolation

Regridding is followed by interpolation. Given the old cell average ūi, we will interpolate

u(r) for 0 ≤ r ≤ a, then we could use u(r) to compute the cell average u′i on the new grid.

One way to perform the interpolation is to simply let u( ri+ri+1

2
) = ūi and apply a cubic

spline interpolation. However, this interpolation does not preserve the mass, nor does it

preserve positivity. On the other hand, the simplest mass and positivity preserving inter-

polation is to make u(r) a piecewise function with value ūi in the i-th ring. However this

method is only first-order accurate, and we hope to find some more accurate interpolation

method that is volume-preserving. More precisely, given the old cell average ūi, our goal is

to find u(r), such that

minimize

∫

B(0,r)

|∇u|2dx (2.5.4)

subject to u(r) ≥ 0 for 0 ≤ r ≤ a

and

∫

B(ri+1)\B(ri)

u(x)dx = ūi|B(ri+1)\B(ri)|

We realize that this kind of interpolation is a 1D and simpler version of the pycnophylactic

interpolation performed in [T], which we will briefly describe here.

To find the solution to the minimization problem (2.5.4), we use a finite volume scheme

to solve the heat equation ut = ∆u on the refined mesh, where the initial data are taken to

be the piecewise constant function with value ūi on each old grid. After each time step, we

adjust u such that both the positivity and the volume-preserving restrictions are met. More

precisely, we add a different constant to the value in each old cell, to ensure the density is

non-negative and the mass in every old cell remain unchanged. Then we repeat the above
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steps again until the u(r) does not change.

2.5.3 Degenerate diffusion step

To solve the porous medium equation (2.5.2) on a fixed grid, we apply a fully implicit finite-

volume scheme, and use Newton’s method for solving the nonlinear equation. While these are

standard procedures for dealing with degenerate diffusion equation (see [KA] for example),

we briefly sketch the details here for the sake of completeness.

Assume the radial domain is partitioned into the intervals 0 = r0 < r1 < . . . < rN = R.

We denote by Ui(t) the average of u(x, t) in the ring B(0, ri+1)\B(0, ri) at time t, and denote

by ~U(t) the vector (U0(t), · · · , Un−1(t)). Our goal is to find ~U(t + ∆t), such that it solves

the following nonlinear equation

~U(t+ ∆t) − ~U(t)

∆t
= A[~Um(t+ ∆t)], (2.5.5)

here A is a finite-volume discretization of the Laplace operator in radial coordinates, and

the m-th power in ~Um is understood in a component-wise sense.

We first explicitly write down the linear operator A. For any radially symmetric function

v(x), note that the radial derivative at ri can be approximated by

∂rv(ri) ≈
Vi − Vi−1

(ri+1 − ri−1)/2
for 1 ≤ i ≤ N − 1,

where Vi is the average of v(x) in the ring B(0, ri+1)\B(0, ri). For the radial derivative at

the boundaries, we have ∂rv(x0) = ∂rv(xN) = 0. Note that divergence theorem gives

∫

B(0,ri+1)\B(0,ri)

∆vdx = ∂rv(ri+1)|∂B(0, ri+1)| − ∂rv(ri)|∂B(0, ri)|.

Hence

(AV )i =

(
vi+1 − vi

(ri+2 − ri)/2

)

rd−1
i+1 −

(
vi − vi−1

(ri+1 − ri−1)/2

)

rd−1
i

(rd
i+1 − rd

i )/d
for 1 ≤ i ≤ N − 2,

and for the two boundaries we have

(AV )0 =
(v1 − v0)2d

r1r2
,
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(AV )N−1 = −
(
vN−1 − vN−2

(rN − rN−2)/2

)
rd−1
N−1

(rd
N − rd

N−1)/d
.

Next we use Newton’s method to solve for ~U(t + ∆t), where the iteration is performed

as follows. For the initial step, we take ~U (0) as ~U(t). Assuming ~U (k) is known, by linearizing

~Um(t+ ∆t) around ~U (k), we obtain

~Um(t+ ∆t) ≈ m(~U (k))m−1~U(t+ ∆t) − (m− 1)(~U (k))m,

hence ~U (k+1) is given by

~U (k+1) =
(

1 −m∆tA(~U (k))m−1
)−1(

~U(t) − (m− 1)∆tA(~U (k))m
)

. (2.5.6)

We point out that it only takes O(N) steps to invert the N ×N matrix 1−m∆tA(~U (k))m−1,

due to its tridiagonal nature. Making use of (2.5.6), we solve for ~U (k+1) iteratively for

k = 0, 1, . . ., until some ~U (k+1) approximately solves (2.5.5) with error below some predeter-

mined threshold. Then we stop the iteration and simply let ~U(t+ ∆t) = ~U (k+1). Typically

the iteration would stop in less than 10 iterations, since the Newton’s method has quadratic

convergence.

2.5.4 Adaptive time step

Finally, when the computation in one time step is finished, we update ∆t to control the

growth rate of the maximum density. In the computation we would multiply ∆t by 1.1 if

the maximum density increases less than 0.02% in one time step, and divide ∆t by 1.1 if the

maximum density increases more than 0.1%. We point out that this simple criteria is indeed

sufficient for our problem, due to the self-similarity of solutions in the peak area. Figure

2.13 shows an example of a log-log plot of the time step versus the maximum density.

2.6 Conclusions and remarks

We have studied the blowup behavior of radial solutions to the aggregation-diffusion equation

ut = ∆um − ∇ · (u∇K ∗ u) in dimension d ≥ 3 for the kernel K(x) = |x|−γ, where K is
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Figure 2.13: Log-log plot of the time step versus the maximum density, where d = 3, γ = 1

and m = 4/3. In the asymptotic regime, the best fit has slopes of value −1.003, which is in

good agreement with the theoretically predicted value −1.

either equal to or less singular than the Newtonian kernel, i.e. γ ≤ d − 2. Note that the

dimension d = 2 is omitted in this chapter, since when d = 2 and K satisfies the above

condition, (2.1.1) is either the well-studied Patlak-Keller-Segel model, or in the subcritical

regime where solutions do not blow-up. For d ≥ 3, formal asymptotic results and numerical

observations both show that for supercritical m (i.e. 1 < m < d+γ
d

), the solution may

blow-up either self-similarly or like a Burger shock; while for critical m (i.e. m = d+γ
d

) and

supercritical mass, the solution exhibits a near-self-similar blow-up behavior.

A number of problems regarding the blow-up behavior of solutions remain unsolved.

First, for supercritical m, numerical observation suggests that when m, d and γ are fixed,

there is a stable self-similar blow-up profile, and at least one unstable self-similar blow-up

profile (see Figure 2.8). It would be interesting to know whether there exists a stable blow-up

profile that attracts all self-similar blow-up solutions. For the case m = 1 with Newtonian

potential, the stability of blow-up profile is studied in [BCKSV]. They proved that there

exist a countable family of self-similar blow-up modalities {Hn} for n = 0, 1, 2, ..., where H0

gives a stable blow-up profile, and all the other Hn are unstable. However their eigenvalue

method does not directly generalize to our equation, due to the nonlinear diffusion term.
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For critical m with supercritical mass, numerical observation suggests that the solution

may blow-up in a near-self-similar way, however the exact scaling for the blow-up remains

open. Although the scaling is derived for m = 1, d = 2 and Newtonian potential K in

[HV, L, CS], their arguments does not generalize to (2.1.1) for m > 1. Here the difficulty

lies in the nonlinear diffusion term, and also in the fact that unlike the m = 1 case, the

stationary solution with m > 1 has a compact support.

The numerical method is an arbitrary Lagrangian Eulerian method with adaptive mesh

refinement. The advantage of our method is that we can compute to very high spatial reso-

lution. Using around 1000 spatial points, we can compute the solution until the maximum

density reaches 1080 and the characteristic spatial scale of the solution reaches 10−27. We

point out that our method preserves the L1 norm of the solution, which is an important

property especially for critical m, since the behavior of the solution depends on its mass.

Finally we note that it would be interesting to try to apply the numerical method to other

problems that also have a non-local term with power-law interaction. Although the local

well-posedness result in [BRB] is only established for kernels K that are less singular than (or

equal to) the Newtonian kernel, preliminary numerical results suggests that our algorithm

also works when K is more singular than Newtonian kernel. Thus we might be able to apply

our numerical method to the fractional porous medium equation introduced in [CV], which

is an aggregation equation with a repulsive kernel K = −|x|−γ, where 2 − d < γ < d.
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CHAPTER 3

An Aggregation Equation with Diffusion in the

Periodic Domain

3.1 Introduction

In this chapter we study weak solutions of the following equation in the periodic domain:

ρt = ∆(ρm) + θLd(2−m)∇ · (ρ∇(V ∗ ρ)) in T
d
L × [0,∞), (3.1.1)

where ∗ stands for convolution, and the space domain is the d-dimension torus with scale L,

defined as T
d
L :=

[

− L

2
,
L

2

]d

with periodic boundary condition. We assume that V smooth

and integrable (for precise conditions, see (V1)-(V2) in Section 3.3), and that θ is a positive

constant. The primary focus of this work concerns the cases m ∈ (1, 2] – especially m = 2.

In addition, we remark that a goal of interest (not always achieved) is to acquire results

uniform in L for L≫ 1.

This chapter is a joint work with Lincoln Chayes and Inwon Kim [CKY]. Before stating

the results we obtained, we first briefly mention the similarity and differences between (3.1.1)

and the equations (1.1.1) and (2.1.1) studied in Chapter 1 and 2. It is evident that all of

these three equations are of aggregation-diffusion type, and indeed they all share the same

degenerate diffusion term ∆ρm with m > 1. Their differences lies in the kernel and spatial

domain: instead of a singular interaction kernel in Chapter 1 and 2, we focus on smooth

interaction kernels V in this chapter, and therefore one should expect all solutions to exist

globally in time, which is indeed true and proved in [BS]. Although finite time blow-up is

never an issue for (3.1.1), many questions remain to be answered regarding the qualitative

and asymptotic behavior of its solutions. Given the global existence of solutions, it is natural
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to ask whether there is some regularity result that holds uniform in time, which motivates

our study in Section 3.2. Moreover, due to the periodic nature of this problem, one can

easily see that any constant solution is a stationary solution. This fact leads to the following

questions: (a) Are the constant solutions the only stationary solutions? (b) If so, will all

the solutions converge to some constant solution? If so, at what rate? We will try to answer

these questions in Section 3.4 and Section 3.5. Below we summarize the known results on

(3.1.1) and discuss the results we obtained.

Firstly let us point out that formally (and in actuality) the mass of the solution to (3.1.1)

is preserved over time. Without loss of generality, we can thus assume
∫
ρ(x, 0)dx = 1

throughout this chapter, and results for other normalizations can be obtained by scaling.

When V satisfies V (x) = V (−x), (3.1.1) is a gradient flow of the following energy with

respect to the Wasserstein metric:

Fθ(ρ) :=

∫

T
d
L

1

m− 1
(ρm − ρ) +

1

2
θLd(2−m)ρ(V ∗ ρ)dx. (3.1.2)

Note that as m→ 1, the first term in the integrand of Fθ converges to ρ log ρ which we refer

to as the m = 1 case. Using above energy structure, the existence and uniqueness properties

of (3.1.1), in some appropriate Sobolev space, has been obtained in [BS] (also see [S1] and

[BRB] for relevant results).

Compared to the well-posedness theory based on energy methods, few results has been

known for pointwise behaviors of solutions, due to the lack of regularity estimates: the

difficulty for regularity analysis lie mainly in the fact that the solutions are not necessarily

positive (i.e., strictly positive) due to the degenerate diffusion. This is what we address in

the first part of this chapter. In addition, in the non-compact setting, the plausible limiting

solutions tend to be trivial; here, since mass is conserved, even in the “worst” of cases, there

is always the uniform stationary state. Most of the rest of this work is concerned with the

approach to the asymptotic state.

• Regularity properties Due to the degenerate diffusion, one cannot expect smooth solu-

tions of (3.1.1): even for (PME), Hölder regularity is optimal, as verified by the self-similar

(Barenblatt) solutions (see [V]). On the other hand, the solution of (PME) is indeed Hölder
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continuous (again, see [V]), which motivates the question of Hölder regularity of the solution

of our problem (3.1.1).

Note that, if we choose V as a mollifier approximating the Dirac delta function, formally

the nonlocal term approximates

∇ · [θLd(m−2)∇V ∗ ρ] = θLd(m−2)∇ · [ρ∇ρ] = θLd(m−2)∆(ρ2).

Therefore it is plausible that, at least when ρ is bounded from above, diffusion dominates

when m < 2 and the aggregation dominates when m > 2. Indeed we will show that, when

m < 2, the effect of the aggregation term is weak enough that it is possible to locally

approximate solutions of (3.1.1) with those of (PME). As a result, Hölder regularity of

solutions of (3.1.1) for m < 2 follows. Let us mention that the Hölder regularity result

obtained here is, to the best of the authors’ knowledge, one of the first such result addressing

Hölder regularity of solutions for degenerate parabolic equation with (either local or nonlocal)

drift. Note that the classical result of DiBenedetto [D2] does not apply to our equation, since

the assumptions which are crucial for [D2] fail here. As for m ≥ 2, we show that solutions

are continuous “uniformly in time”, based on the result of Dibenedetto ([D]). For all m > 1,

we also show that the L∞ norm of solution is uniformly bounded from above depending on

the L1 and L∞ norm of the initial data (see Theorem 3.2.1) which is of independent interest.

• Asymptotic behavior Our next result, partly an application of the first result, is on the

asymptotic behavior of solutions of (3.1.1) in the periodic domain Td
L. We work in a periodic

domain because, primarily, we are interested in finite volume problems and Td
L provides the

most convenient boundary conditions. Even though asymptotic behavior for m < 2 has

been studied before in various references (e.g., [S1], and [HV] for a more singular interaction

kernel) this is one of the first such result for these type of domains to the best of the authors’

knowledge. One difficulty specific to the periodic setting is that the radial symmetry is

not preserved over time, and thus exact (non-constant) solutions – always useful in these

contexts – are not readily available. We also point out that in the case m ≥ 2, there exist

solutions which assumes zero value, possibly with compact support. Asymptotic behavior of

such solutions are, in general, an interesting and difficult question, even for radial solutions
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in Rd (see [KY]).

Intuitively, one expects that when the diffusion term is “dominant” in (3.1.1), the solu-

tions would converge to the constant solution as time goes to infinity. We show that this is

indeed the case when 1 < m < 2 and θ is sufficiently small. However, with most interactions

(specifically, V being not of positive type) there is a linear instability that sets in at some

θ♯ = θ♯(m) < ∞ which is determined by the minimal coefficient in the Fourier series of V

(see Section 4). It is not hard to show that for all m, when θ > θ♯, the functional in (3.1.2)

has non–constant minimizers (and the constant solution is not a minimizer – in fact, not

even a local minimizer). However as has been shown explicitly for m = 1 under reasonable

conditions – pertinently d ≥ 2 – this “transition” occurs at some θt < θ♯ [CP]. Presumably,

this argument holds in great generality. It is therefore somewhat surprising that for m = 2

the transition occurs exactly at θ = θ♯.

More precisely, for m = 2, we show that for θ < θ♯ (the subcritical case), the constant

solution is the only minimizer and is stable. Indeed we can actually show that for all

bounded initial data ρ(x, 0), the dynamical solution ρ(·, t) will converge to the constant

solution ρ0 exponentially fast in L2-norm. See Section 4 for detailed discussion on critical

and supercritical case. When 1 < m < 2, the energy is no longer in the form of an L2–

norm, and our Fourier-transform based approach does not generate a transitional value for

θ. However, when θ is sufficiently small, similar approach used by one of the authors in

[CP] yields that the constant solution is the global minimizer. Moreover, we show when

θ is sufficiently small, the solution uniformly and exponentially converges to the constant

solution.

3.2 Hölder continuity of the solution of PME with a drift

In this section, we study the regularity of the porous medium equation with a drift, where

the drift potential may depend on time:

ρt = ∆(ρm) + ∇ · (ρ∇Φ) in Ω, (3.2.1)
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with Neumann boundary condition on ∂Ω. Here we may assume Ω is a bounded open set

in Rd, where d ≥ 1, but all the results in this section certainly hold for periodic domain

Td
L as well. We assume 1 < m < 2, the initial data ρ(x, 0) ∈ L∞(Ω) ∩ L1(Ω), the potential

Φ(x, t) ∈ C(Ω × R
+), and that Φ(·, t) ∈ C2(Ω) for all t ≥ 0.

Before even stating the main result, we will first prove that ρ ∈ L∞(Ω × R+). When

Φ does not depend on t, Bertch and Hilhorst in [BH] proved a uniform L∞ bound of ρ

by comparing ρ with an explicit supersolution which does not depend on t. When Φ is a

function of both x and t, using arguments similar to those in [KL], we aquire an L∞ bound

for ρ which doesn’t depend on t:

Theorem 3.2.1. Suppose m > 1. Let ρ be the unique weak solution of (3.2.1) with Neumann

boundary condition, with initial data ρ(x, 0) ∈ L∞(Ω)∩L1(Ω). We assume that the potential

Φ(x, t) satisfies Φ(x, t) ∈ C(Ω × R+), and Φ(·, t) ∈ C2(Ω) for all t with uniformly bounded

norm. Then there exists M > 0, such that ‖ρ(·, t)‖L∞(Ω) ≤ M for all t, where M depends

on ‖ρ(x, 0)‖L∞(Ω), ‖ρ(x, 0)‖L1(Ω), supt∈[0,∞) ‖Φ(·, t)‖C2(Ω), and m.

Proof. We begin with implementing the following scaling: Let

ρ̃(x, t) = a
1

m−1ρ(x, at),

where 0 < a < 1. Let us choose a sufficiently small such that

a < min
{

(
1

‖ρ(x, 0)‖L∞(Ω)

)m−1, (
c0

‖ρ(x, 0)‖L1(Ω)

)m−1,
1

‖Φ‖C2(Ω)

}

, (3.2.2)

where c0 is a sufficiently small constant – certainly less than 1 – depending only on m and d

and whose precise value will be determined later. By choosing a in this way, we have both

‖ρ̃(x, 0)‖L1(Ω) ≤ c0 < 1 and ‖ρ̃(x, 0)‖L∞(Ω) ≤ 1 and, moreover, that ρ̃ is a viscosity solution

to the following PDE:

ρ̃t = ∆ρ̃m + ∇ · (ρ̃∇Φ̃), (3.2.3)

where Φ̃ := aΦ. From the definition of a we know ‖Φ̃(·, t)‖C2(Ω) ≤ 1 for all t.

Our preliminary goal is to show ‖ρ̃(x, 1)‖L∞(Ω) ≤ 1; then we can take ρ̃(x, 1) as the new

initial data and iterate the argument to get a uniform bound for all time.
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We will introduce another variable v, which is bigger than ρ̃ and is of order unity in

Ω × [0, 1]. Let v be the viscosity solution to the following equation

vt = ∇ · (mvm−1∇v + v∇Φ̃), (3.2.4)

with initial data v(x, 0) = ρ̃(x, 0) + 1
2
e−1. Since v solves the same equation as ρ̃ with bigger

initial data, we can apply the comparison principle for the porous medium equation with

drift, which was established in Theorem 2.21 of [KL]. This comparison principle immediately

implies v(x, t) ≥ ρ̃(x, t) for all (x, t), hence it suffices to show ‖v(·, 1)‖L∞(Ω) ≤ 1.

One can check easily that ṽ(x, t) := [‖v(·, 0)‖L∞(Ω)]e
Kt – where K := sup

t∈[0,∞)

‖Φ̃(·, t)‖C2(Ω)

– is a classical supersolution to (3.2.4) and hence also a viscosity supersolution. Noting that

the initial data of v satisfies, for all x, 1
2
e−1 ≤ v(x, 0) ≤ 1 + 1

2
e−1, the comparison principle

gives the following upper bound for v:

‖v(·, t)‖L∞(Ω) ≤ [‖v(·, 0)‖L∞(Ω)]e
Kt ≤ (1 +

1

2
e−1)et.

Similarly we can find a classical subsolution which gives the lower bound

‖v(·, t)‖L∞(Ω) ≥ [‖v(·, 0)‖L∞(Ω)]e
−Kt ≥ 1

2
e−1e−t.

Combining the two inequalities above, we have

v(x, t) ∈ [
1

2
e−2, e+

1

2
] for all x ∈ Ω, t ∈ [0, 1].

We would like to refine the estimate above and get a better estimate at t = 1. By treating

the diffusion coefficients mvm−1 in (3.2.4) as an a priori function, – which we denote by b(x, t)

– then we may say that v solves a linear equation of divergence form, where the diffusion

coefficient is of (the order of) size unity:

vt = ∇ · (b(x, t)∇v + v∇Φ̃), (3.2.5)

where b(x, t) := mvm−1(x, t) ∈ [m(1
2
e−2)m−1, m(e+ 1

2
)m−1] for all x ∈ Ω, t ∈ [0, 1].

In particular, since (3.2.5) is linear, we can decompose v as v1 + v2, such that v1

solves (3.2.5) with initial data v1(x, 0) = ρ̃(x, 0), and v2 solves (3.2.5) with initial data

v2(x, 0) = 1
2
e−1. We claim that v1(x, 1) and v2(x, 1) are both bounded by 1

2
, for all x ∈ Ω.
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For v1, first note that due to the divergence form of (3.2.5), the L1 norm of v1 is conserved,

i.e. ‖v1(·, 1)‖L1(Ω) = c0. Since b is bounded above and below away from zero, then by [LSU]

(see Theorem 10.1, pp. 204), v1(·, 1) is Hölder continuous, where the Hölder exponent and

coefficient do not depend on c0, as long as c0 < 1. So if we choose c0 to be sufficiently small,

we have v1(x, 1) < 1
2

for all x ∈ Ω.

For v2, we can directly evaluate the necessary L∞ bounds:

sup
x
v2(x, 1) ≤ e‖∆Φ̃‖∞ sup

x
v2(x, 0) ≤ e

1

2
e−1 =

1

2

(where again, on the basis of continuity, we may now talk about the supremum).

Combining the two estimates together, we have supx v(x, 1) ≤ 1, which implies

supx ρ̃(x, 1) ≤ 1 from our discussion above. Also, for 0 < t < 1 we have

ρ(x, t) ≤ v(x, t) ≤ e + 1/2. Then by treating ρ̃(x, 1) as initial data and iterating the same

argument, we get supx ρ̃(x, t) ≤ e+ 1/2 for all t, i.e.,

ρ(x, t) ≤ (e+
1

2
)a−

1
m−1 for all x ∈ Ω, t ≥ 0.

Now plugging in the definition of a in the above and the bound becomes

ρ(x, t) ≤ (e+
1

2
) max

{

‖ρ(x, 0)‖L∞(Ω),
‖ρ(x, 0)‖L1(Ω)

c0
, ‖Φ‖

1
m−1

C2(Ω)

}

in Ω × [0,∞).

Remark 3.2.2. In the statement of Theorem 3.2.1, we assumed that Ω is a bounded open

set, with Neumann boundary conditions. The same proof also applies to Dirichlet boundary

condition. Indeed, the L∞ bound we obtained is independent with the size of Ω, and the

same proof works as well when Ω = Rd. However, ostensibly, the L∞ norm of ρ should be

of the order L−d and, even if true in the initial data, we cannot establish that this order is

preserved at later times.

Since ρ(x, t) is uniformly bounded for all (x, t), DiBenedetto has shown in [D] that ρ(·, t)
is continuous uniformly in t:
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Theorem 3.2.3 ([D]). For any m > 1, let ρ be the weak solution to (3.2.1) with initial data

ρ(x, 0) ∈ L∞(Ω)∩L1(Ω). Let the potential Φ(x, t) satisfy Φ(x, t) ∈ C(Ω×R), Φ(·, t) ∈ C2(Ω)

for all t, moreover supt ‖Φ(·, t)‖C2(Ω)] < ∞. Then for all τ > 0, ρ(x, t) is uniformly contin-

uous in Ω × [τ,∞), and the continuity is uniform in x and t.

Now we want to show when 1 < m < 2, for all τ > 0, ρ(x, t) is uniformly Hölder

continuous in space and time in Ω × [τ,∞). Our main theorem of this section is stated as

following:

Theorem 3.2.4. Let 1 < m < 2. Let ρ be a viscosity solution of (3.2.1), with initial data

ρ(x, 0). We make the following assumptions on ρ(·, 0) and Φ:

1. ‖ρ(·, 0)‖∞ ≤M1 and
∫

Ω
ρ(x, 0)dx ≤M1.

2. Φ(x, t) ∈ C(Ω × R), and ‖Φ(·, t)‖C2(Ω) ≤M2 for some M2 > 0 for all t ≥ 0.

Then for any 0 < τ < ∞, u is Hölder continuous in Ω × [τ,∞), where the Hölder exponent

and coefficient depends on τ,m, d,M1 and M2.

Proof. To prove the Hölder continuity of ρ, our goal is to show that for any

(x0, t0) ∈ Ω × [τ,∞),

oscB(x0,a2)×[t0,t0+a4]ρ ≤ Caγ (3.2.6)

for some C, γ > 0 not depending on a, for a satisfying 0 < a < min{
2 −m

2c
,
√
τ} (where c is

a constant to be determined soon).

Bearing in mind that we want to zoom in on the profile and look at the oscillation in a

small neighborhood, it makes sense to start with a parabolic scaling with scaling factor a.

Let

ρ̃(x, t) := ρ(ax, a2t+ (t0 − a2))), (3.2.7)

and our goal (3.2.6) would transform into

oscB(
x0
a

,a)×[1,1+a2]ρ̃ ≤ Caγ. (3.2.8)
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Here ρ̃(x, t) is defined in the domain Ω̃ × [0,∞), where Ω̃ := {x ∈ Rd : ax ∈ Ω}. and, it is

noted, the early portion of the time domain had been omitted. We readily see that ρ̃ is the

viscosity solution to

ρ̃t = ∆ρ̃m + ∇ · (ρ̃∇Φ̃) in Ω̃ × [0,∞). (3.2.9)

Here, the initial data reads ρ̃(x, 0) = ρ(ax, t0 − a2), which has an a priori L∞

bound depending on m, d,M1,M2 due to Theorem 3.2.1. Moreover, in the above

Φ̃(x, t) := Φ(ax, a2t + (t0 − a2))) and hence |∇Φ̃| is bounded by aM2. We wish to com-

pare ρ̃ with w, where w is the viscosity solution to the porous medium equation

wt = ∆wm in Ω̃ × [0,∞), (3.2.10)

with initial data w(·, 0) ≡ ρ̃(·, 0). Since (3.2.9) and (3.2.10) only differ by the term ∇·(ρ̃∇Φ̃),

we would expect

|ρ̃− w| ≤ Caβ in Ω̃ × [1, 2], (3.2.11)

for some C > 0, 0 < β < 1 depending on m, d,M1,M2.

The main part of this proof will be devoted to proving (3.2.11) is indeed true.

Without loss of generality, we can assume that ρ̃(x, t) is a classical solution. First,

if the initial data ρ̃(x, 0) is uniformly positive, then ρ̃(x, t) will be a classical solution

for all time. This is because ρ̃ will stay positive for any time period [0, T ] (since

inf
Ω̃×[0,T ]

ρ̃(x, t) ≥ exp(−t sup
t∈[0,T ]

‖∆Φ̃‖∞) inf
x∈Ω̃

ρ̃(x, 0)), which implies that (3.2.9) is uniformly

parabolic for t ∈ [0, T ] and hence the weak solution ρ̃ is classical.

For general initial data ρ̃(x, 0), we can use approximation as follows. Let ρ̃n and wn solve

(3.2.9) and (3.2.11) respectively with initial data ρ̃(x, 0) + 2−n; n sufficiently large. As dis-

cussed above, ρ̃n would be a sequence of classical solutions. If we can obtain |ρ̃n−wn| < Caβ

for all n, (where C, β doesn’t depend on n), then (3.2.11) would hold for ρ̃ and w as well,

since as n → ∞, comparison principle yields ρ̃n(x, t) ց ρ̃ and wn(x, t) ց w uniformly in

x, t.

Note that one cannot directly compare ρ with w, due to the fact that the term ∇· (ρ̃∇Φ̃)

contains ∇ρ̃ ·∇Φ̃ and hence does not have any a priori bound. In order to bound this term,
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it will help to change from the density variable ρ̃ to the pressure variable ũ. Let

ũ =
m

m− 1
ρ̃m−1,

then (3.2.9) becomes

ũt = (m− 1)ũ∆ũ+ |∇ũ|2 + ∇ũ · ∇Φ̃ + (m− 1)ũ∆Φ̃, (3.2.12)

which will enable us to use |∇ũ|2 plus a constant to control the term ∇ũ · ∇Φ̃: Recall that

|∇Φ̃| < aM2, which gives us the following bound

|∇ũ · ∇Φ̃| ≤ aM2|∇ũ| ≤ a
[
|∇ũ|2 +

1

4
(M2)

2
]
.

Also, due to the fact that (m − 1)ũ(x, t) ≤ C1 in Ω̃ × [0, 2], (where C1, which depends on

m, d,M1 and M2, is related to the L∞ bounds on ρ) we obtain

|(m− 1)ũ∆Φ̃| ≤ a2C1M2 ≤ aC1M2.

Putting the above two bounds together, and by choosing c such that c > C1M2+(M2/2)2,

ũ will satisfy the following inequality

ũt ≥ (m− 1)ũ∆ũ+ (1 − ca)|∇ũ|2 − ca for all x ∈ Ω̃, t ∈ [0, 2]. (3.2.13)

Note that we assumed a < (2−m)/(2c) in the beginning of the proof, we have ca < (2−m)/2.

In order to make (3.2.13) look similar to the porous medium equation in the pressure

form, we apply the rescaling u1 = (1 − ca)ũ. Then u1 satisfies

(u1)t ≥ (m− − 1)u1∆u1 + |∇u1|2 − ca(1 − ca) for all x ∈ Ω̃, t ∈ [0, 2], (3.2.14)

where

m− :=
m− 1

1 − ca
+ 1. (hence ca < (2 −m)/2 implies that 1 < m− < 2) (3.2.15)

Now (3.2.14) has the same form as the porous medium equation in the pressure form, minus

an extra constant term ca(1− ca). To take advantage of the existence and regularity results
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for equations with divergence form, we change the pressure variable back to the density

variable (however here the power is m− instead of m), i.e., we define ρ1 such that

(1 − ca)ũ = u1 =
m−

m− − 1
ρm−−1

1 , (3.2.16)

or in other words,

ρ1 =
( m

m−
)m−

ρ̃1−ca =
( 1 + ca

1 + ca/m

)m−

ρ̃1−ca. (3.2.17)

Due to the positivity of ũ, we know ρ1 is positive as well. Hence when we plug (3.2.16) into

(3.2.14), after canceling a positive power of ρ1 on both sides, we obtain

(ρ1)t > ∆ρm−

1 − ca(1 − ca)ρ2−m−

1 in Ω̃ × [0, 2], (3.2.18)

Note that the term ca(1 − ca)ρ2−m−

1 has an a priori upper bound: since 2 −m− > 0 and

ρ1 is given by (3.2.17), we have c(1 − ca)ρ2−m−

1 < M , for some constant M depending on

m, d,M1,M2.

Let us denote by ρ− the weak solution of

(ρ−)t = ∆(ρ−|ρ−|m−−1) −Ma, (3.2.19)

with initial data the same as ρ1(x, 0), which is

ρ−(x, 0) =
( m

m−
)m−

ρ̃(x, 0)1−ca (3.2.20)

Since Ω̃ is a bounded domain, we have Ma ∈ Lp(Ω̃) for all p ≥ 1, and the existence of

weak solution of (3.2.19) is guaranteed by Theorem 5.7 in [V]. That theorem also gives us

a comparison result that, a.e., ρ1 ≥ ρ−.

Moreover, note that the “a.e.” above can in fact be removed, since both ρ̃ and ρ− are

continuous in Ω̃× [0, 2]: the continuity of ρ̃ is given by Theorem 3.2.3, and the continuity of

ρ− is given by Theorem 11.2 of [DGV]. Therefore we have the following comparison between

ρ− and ρ̃:

ρ− ≤
( m

m−
)m−

ρ̃1−ca in Ω̃ × [0, 2] (3.2.21)

Since m/m− = 1 + O(a), and ρ̃ is bounded in Ω̃ × [0, 2], (3.2.21) implies that

ρ̃− ρ− ≥ −C1a, where C1 depend on m, d,M1,M2.
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Analogous to the definition to ρ−, we define ρ+ to be the weak solution of

(ρ+)t = ∆((ρ+)m+

) +Ma, (3.2.22)

with initial data

ρ+(x, 0) =
( m

m+

)m+

ρ̃(x, 0)1+ca, (3.2.23)

where

m+ :=
m− 1

1 + ca
+ 1. (hence 1 < m+ < 2) (3.2.24)

Then analogous argument would lead to ρ̃− ρ+ ≤ C1a. Summarizing, we have obtained

ρ− − C1a ≤ ρ̃ ≤ ρ+ + C1a in Ω̃ ∈ [0, 2], (3.2.25)

where C1 depends on m, d,M1,M2.

To prove (3.2.11), it suffices to show |ρ± − w| ≤ O(aβ) for some β > 0, which is proved

in the following lemma.

Lemma 3.2.5. Let 1 < m < 2. Let w be the viscosity solution of the porous medium equation

wt = ∆wm in Ω̃ × [0,∞) (3.2.26)

where the initial data w(x, 0) satisfies w(x, 0) = ρ̃(x, 0).

Let ρ− and ρ+ be the weak solutions to (3.2.19) and (3.2.22) respectively, where

0 < a < (2 − m)/(2c) is a small constant, and the initial data is given by (3.2.20) and

(3.2.23). Then

|ρ± − w| ≤ Caβ in Ω̃ × [1, 2], (3.2.27)

where C and β depends on d,m,M1,M2.

The proof of Lemma 3.2.5 is the content of the appendix in Section A.2. Putting Lemma

3.2.5 and (3.2.25) together, we obtain (3.2.11), and we will use this to (immediately) prove

(3.2.8).

Since w solves the porous medium equation, Theorem 7.17 in [V] gives us the Hölder

continuity of w:

oscB(x,a)×[1,1+a2]w ≤ Caα, for all x ∈ Ω̃, (3.2.28)
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where C and α depends on ‖w(·, 0)‖∞ (and hence depends on m, d,M1,M2).

By putting (3.2.28) and (3.2.11) together, we obtain

oscB(x,a)×[1,1+a2]ρ̃ ≤ Caγ, for all x ∈ Ω̃, (3.2.29)

where C depends on m, d,M1,M2, and γ = min{α, β} (hence also depends on m, d,M1,M2).

Hence (3.2.8) is proved.

Remark 3.2.6. For m ≥ 2, Hölder continuity of the solution to (3.2.1) is still open. Indeed,

concerning the present approach – which closely parallels that of [KL], [K] – when m > 2

we have that m− = 1 + (m− 1)/(1− ca) > 2. Hence the “inhomogeneous” term in (3.2.18),

which is proportional to ρ(2−m−), would actually be divergent in places where ρ → 0. This

indicates that another approach will be required.

3.3 Application to aggregation equation with degenerate diffusion

In the following two sections, we study (3.1.1) in the domain Td
L, the d-dimension torus of

scale L. Here θ is a non-negative constant, and, of course, ∗ denotes convolution in Td
L. We

make the following assumptions on V (x):

(V1) V (x) = V (−x) for all x ∈ Td
L.

(V2) V (x) ∈ C2(Td
L), with ‖V (x)‖C2(Td

L) = C for some constant C <∞.

Moreover, we have in mind V : Rd → R compactly supported with the diameter of the

support smaller than L. In particular we do not envision “wrapping” effects and
∫

Td
L
|V |dx

may be regarded as independent of L.

Our goal in this section is to show the Hölder continuity of the weak solution to (3.1.1)

for 1 < m < 2, and uniform continuity of the weak solution when m = 2. First, we state

the definition of weak solution to (3.1.1) and a existence theorem from [BS].
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Definition 3.3.1 (Weak Solution). Let m > 1, and let us assume that ρ(x, 0) is non-negative,

with ρ(x, 0) ∈ L∞(Td
L) and consider a potential V that satisfies the assumptions (V1) and

(V2). A function ρ : Td
L×[0, T ] → [0,∞) is a weak solution to (3.1.1) if ρ ∈ L∞(Td

L×[0, T ]),

ρm ∈ L2(0, T,H1(Td
L)) (i.e., ‖ρ(·, t)‖H1(Td

L
∈ L2(0, T )) and ρt ∈ L2(0, T,H−1(Td

L)) and for

all test function φ ∈ H1(Td
L), for almost all t ∈ [0, T ],

< ρt(t), φ > +

∫

T
d
L

∇(ρm(t)) · ∇φ+ θLd(2−m)ρ(t)(∇V ∗ ρ(t)) · ∇φdx = 0. (3.3.1)

In [BS], existence and uniqueness of weak solution are proved:

Theorem 3.3.2 (Bertozzi-Slepčev). Let m > 1 and consider V that satisfies the assumptions

(V1) and (V2). Let ρ(x, 0) be a nonnegative function in L∞(Td
L). Then the problem (3.1.1)

has a unique weak solution on Td
L× [0, T ] for all T > 0, and furthermore ρ ∈ C(0, T, Lp(Td

L))

for all p ∈ [1,∞).

By treating θLd(2−m)ρ ∗V as an a priori potential, we can apply our results in Section 2,

and obtain L∞ bound of ρ which does not depend on T , together with uniform continuity

of ρ, and Hölder continuity of ρ for 1 < m < 2.

Theorem 3.3.3. Let m > 1 and consider V that satisfies the assumptions (V1) and (V2).

Let ρ(x, t) be the unique weak solution to (3.1.1) given by Theorem 3.3.2, with nonnegative

initial data ρ(x, 0) ∈ C(Td
L), which satisfies

∫

T
d
L
ρ(x, 0)dx = 1. Then ‖ρ(x, t)‖L∞(Td

L×[0,∞)) is

bounded, where the bound only depend on supx ρ(x, 0), θ, ‖V ‖C2 and L.

Proof. To begin with, note that Theorem 3.3.2 guarantees the existence and uniqueness of

the weak solution to (3.1.1), which we denote by by ρ. Now we treat Φ := θLd(2−m)ρ ∗ V as

an a priori potential, and we obtain the following estimate of Φ assumption (V2):

‖Φ(·, t)‖C2(Td
L) ≤ θLd(2−m)‖ρ(·, t)‖L1(Td

L)‖V ‖C2(Td
L)

≤ θLd(2−m)‖V ‖C2(Td
L)

= θLd(2−m)C for all t ≥ 0.

We denote by ρ1 the unique weak solution to the equation

(ρ1)t = ∆ρm
1 + ∇ · (ρ1∇Φ) (3.3.2)
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with initial data ρ1(·, 0) ≡ ρ(·, 0), where the existence and uniqueness is proved in [BH].

Theorem 3.2.1 implies supx ‖ρ1(·, t)‖ is bounded uniformly in t. Moreover, note that ρ also

satisfies the weak equation for (3.3.2), hence ρ must coincide with ρ1, which yields a uniform

bound of ρ which doesn’t depend on time.

Applying Theorem 3.2.3 to (3.3.2), we have the continuity of ρ uniformly in t for m > 1

– in particular (in light of Theorem 3.3.5 below) for the case m = 2.

Theorem 3.3.4. Let m > 1 and consider V that satisfies the assumptions (V1) and (V2).

Let ρ(x, t) be the unique weak solution to (3.1.1) given by Theorem 3.3.2, with nonnegative

initial data ρ(·, 0) satisfying ‖ρ(·, 0)‖L∞(Td
L) < ∞, and ‖ρ(·, 0)‖L1(Td

L) = 1. Then for any

τ > 0, ρ is continuous in Td
L × [τ,∞), where the continuity is uniform in both x and t.

Proof. Follows immediately from the above reasoning, Theorem 3.3.3 and Theorem 3.2.3

Applying Theorem 3.2.4 to (3.3.2), with Φ = θLd(2−m)ρ∗V we have the Hölder continuity

of ρ for 1 < m < 2.

Theorem 3.3.5. Let 1 < m < 2 and consider V that satisfies the assumptions (V1)

and (V2). Let ρ(x, t) be the unique weak solution to (3.1.1) given by Theorem 3.3.2, with

nonnegative initial data ρ(x, 0) satisfying ‖ρ(·, 0)‖L∞(Td
L) <∞, and ‖ρ(·, 0)‖L1(Td

L) = 1. Then

for any τ > 0, u is Hölder continuous in Td
L × (τ,∞), where the Hölder exponent and

coefficient depend on τ,m, d, θ, L and C and the L∞ norm of the initial condition.

Proof. Follows immediately from the preceding reasoning, Theorem 3.3.3 and Theorem 3.2.4.

3.4 The case m = 2: analysis via normal modes

In this section, we will use Fourier Transform to study the PDE in (3.1.1), and this

method works best when m = 2. We continue to assume, without loss of generality that
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‖ρ(x, 0)‖L1(Td
L) = 1, however from the perspective of functional analysis, the homogeneity of

the special case m = 2 makes even this stipulation redundant.

The dynamics in (3.1.1) is governed by gradient flow for the “free energy” functional

Fθ(ρ) =

∫

T
d
L

ρ2 +
1

2
θρ(ρ ∗ V )dx. (3.4.1)

For the analysis of the functional Fθ, since we are assuming ρ(x, 0) integrates to 1, we shall

denote by P the class of probability densities on T
d
L which also belong to L2(Td

L), i.e.

P := {f ∈ L1(Td
L) ∩ L2(Td

L) : ‖f‖L1(Td
L) = 1}. (3.4.2)

Special to the case m = 2 is that the functional Fθ(·) can be expressed in a simpler form if

we express ρ in terms of its Fourier modes. We write

ρ̂(k) =

∫

T
d
L

ρ(x)e−ik·xdx

where k is of the form k = 2π
L
~n with ~n ∈ Zd. With these conventions we have

ρ(x) =
1

Ld

∑

k

ρ̂(k)eik·x

and, in terms of these variables, (3.4.1) becomes

Fθ(ρ) =
1

Ld

∑

k

|ρ̂(k)|2(1 +
1

2
θV̂ (k)). (3.4.3)

On the basis of (3.4.3), a salient value of θ emerges: We denote this value by θ♯, which

is defined via

[θ♯]−1 :=
1

2
max
k 6=0

{|V̂ (k)|; V̂ (k) < 0}. (3.4.4)

Formally θ♯ may be designated as +∞ in case V̂ (k) ≥ 0 for all k 6= 0 – i.e. if V is

(essentially) of positive type. For the purposes of the present discussion, we shall assume

otherwise. Different values of θ separate our problem into 3 cases:

1. (subcritical) When θ < θ♯, we have 1 + 1
2
θV̂ (k) > 0 for all k ∈ Zd, then under the

restriction ρ̂(0) = 1, it is manifest that global minimizer for Fθ(ρ) in P is the constant

solution

ρ0(x) :=
1

Ld

∫

T
d
L

ρ(x, 0)dx ≡ 1

Ld
. (3.4.5)
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2. (critical) When θ = θ♯, we have still have 1 + 1
2
θV̂ (k) ≥ 0 for all k ∈ Zd however now

there is a set K♯ (containing at least two elements) defined by the condition that for

k ∈ K♯, 1 + 1
2
θ♯V̂ (k) = 0. In this case the global minimizers for Fθ(ρ) in P take the

form

ρ(x) = ρ0 +
∑

k∈K♯

cke
ik·x, (3.4.6)

where c−k = ck and, of course, subject to the restriction that the resultant quantity is

non–negative.

3. (supercritical) When θ > θ♯, we have 1 + 1
2
θV̂ (k) < 0 for some k ∈ Zd. In this case

the constant solution ρ0 is not even a local minimizer of Fθ in P, let alone global

minimizer.

Remark 3.4.1. The above – which is manifest for m = 2 – is in sharp contrast to the cases

m 6= 2. In particular, for general m there is an analogous quantity θ♯ given by

[θ♯]−1 :=
1

m
max
k 6=0

{|V̂ (k)|; V̂ (k) < 0}

where items (1) – (3) are suggested. However, the following was shown for m = 1 and,

presumably holds for all m 6= 2: While for θ < θ♯, the constant solution has “some stability”

(c.f. [CP] Theorem 2.11 for the case m = 1) there is a θT < θ♯ where global considerations

come into play. In particular, at θ = θT, there is a non–uniform minimizer for FθT
(·) which

is degenerate with the uniform solution. Moreover, for θ > θT (which implies, in particular,

at θ = θ♯) the uniform solution is no longer a minimizer.

3.4.1 The subcritical case, when m=2

In the subcritical case, the constant solution ρ0 is the only global minimizer of Fθ in P. Our

goal in this section is to show for every non–negative initial data ρ(x, 0) ∈ L∞(Td
L) which

integrates to 1, the weak solution ρ(x, t) converges to ρ0 exponentially in L2(T d
L) as t→ ∞,

where ρ0 is as given in (3.4.5).

By formally taking the time derivative of the free energy functional, a simple calculation
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indicates that e.g., at least for classical solutions to (3.1.1), the free energy is always non–

increasing:
d

dt
Fθ(ρ) = −

∫

T
d
L

ρ
∣
∣∇(

m

m− 1
ρm−1 + θLd(2−m)ρ ∗ V )

∣
∣
2
dx. (3.4.7)

In [BS], it is proved that (3.4.7) is indeed true in the integral sense:

Lemma 3.4.2 (Bertozzi–Slepčev). Consider V that satisfies the assumptions (V1) and

(V2). Let ρ(x, t) be a weak solution of (3.1.1) in T
d
L× [0, T ]. Then for almost all τ ∈ [0, T ],

Fθ(ρ(·, 0)) − Fθ(ρ(·, τ)) ≥
∫ τ

0

∫

T
d
L

ρ|∇(
m

m− 1
ρm−1 + θLd(2−m)ρ ∗ V )|2dxdt (3.4.8)

Remark 3.4.3. Theorem 3.3.4 implies that ρ(·, t) is a continuous function of t, hence

Fθ(ρ(·, t)) is continuous in t as well. Therefore (3.4.8) indeed holds for all τ ∈ [0, T ] and,

moreover, (3.4.7) may be regarded as a differential inequality.

In the following lemma, we show when θ < θ♯, the free energy will decay to the free

energy of the global minimizer as t→ ∞.

Lemma 3.4.4. Suppose m = 2 and consider V that satisfies the assumptions (V1) and

(V2). Further suppose that θ < θ♯, where θ♯ is as given in (3.4.4) – including θ♯ = ∞ if V

is of positive type. Let ρ(x, t) be the weak solution to (3.1.1) on [0,∞)×Td
L, with non-negative

initial data ρ(x, 0) ∈ L∞(Td
L) which integrates to 1. Then Fθ(ρ) → Fθ(ρ0) as t→ ∞, where

ρ0 is the uniform solution (as given in (3.4.5)).

Proof. By Lemma 3.4.2, we know Fθ(ρ(t)) is a continuous and decreasing function of t,

whose limit is bounded below by Fθ(ρ0), since ρ0 is the global minimizer of Fθ in P when

θ < θ♯. Hence we can send τ to infinity in (3.4.8), which gives

∫ ∞

0

∫

T
d
L

ρ|∇(2ρ+ θρ ∗ V )|2dxdt <∞. (3.4.9)

Then there exists an increasing sequence of time (tn)∞n=1, where limn→∞ tn = ∞, such

that

lim
n→∞

∫

Td
L

ρ(x, tn)|∇(2ρ(x, tn) + θρ(x, tn) ∗ V )|2dx = 0. (3.4.10)
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To avoid clutter, in what follows, we shall abbreviate ρ(·, tn) by ρn. Recall that Theorem 3.2.1

gives us a uniform bound of ‖ρn‖L∞(Rd). In addition, by [D], (ρn) is uniformly equicontinuous,

hence Arzelà-Ascoli Theorem enables us to find a subsequence of ρn (which we again denote

by ρn for notational simplicity), and a continuous function ρ∞, such that

lim
n→∞

‖ρn − ρ∞‖L∞(Td
L) = 0, (3.4.11)

We next claim that ‖∇ρ3/2
n ‖L2(Td

L) is bounded uniformly in n. To prove the claim, we first

note that

∫

T
d
L

∣
∣
4

3
∇ρ3/2

n + ρ1/2
n ∇(θρn ∗ V )

∣
∣
2
dx =

∫

T
d
L

ρn

∣
∣2∇ρn + ∇(θρn ∗ V )

∣
∣
2
dx→ 0. (3.4.12)

To obtain the uniform L2 bound for ∇ρ3/2
n , due to the triangle inequality, it suffices to prove

a uniform L2 bound for ρ
1/2
n ∇(θρn ∗V ), which is true since ρn is uniformly bounded in n and

‖V ‖C2(Td
L) <∞ due to (V2), hence the claim is proved.

As a consequence of the claim, we obtain weak convergence of ∇ρ3/2
n in L2 (along another

subsequence) And, it is clear, the limit is just ∇ρ3/2
∞ due to the uniform convergence of the

(ρn). (Moreover, this places ∇ρ3/2
∞ ∈ L2(Td

L : Rd)). Thus:

∇ρ3/2
n ⇀ ∇ρ3/2

∞ as n→ ∞ weakly in L2(Td
L : R

d). (3.4.13)

Let

Bn :=
4

3
∇ρ3/2

n + ρ1/2
n ∇(θρn ∗ V ).

Then (3.4.11) and (3.4.13) and an additional uniform convergence argument identifying the

weak limit of ρ
1/2
n ∇(θρn ∗ V ), implies that Bn weakly converges to B∞ in L2, where

B∞ :=
4

3
∇ρ3/2

∞ + ρ1/2
∞ ∇(θρ∞ ∗ V ).

On the other hand, recall that (3.4.12) gives us that Bn → 0 strongly in L2, thus we have

B∞ is indeed 0 i.e.,

∫

T
d
L

∣
∣
4

3
∇ρ3/2

∞ + ρ1/2
∞ ∇(θρ∞ ∗ V )

∣
∣2dx =

∫

T
d
L

ρ∞
∣
∣2∇ρ∞ + ∇(θρ∞ ∗ V )

∣
∣2dx = 0. (3.4.14)
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In particular, then, ∇(ρ∞+ 1
2
θρ∞∗V ) is zero a.e. on the support of ρ∞. Now ρ∞ certainly

admits a weak derivative which, clearly, is non–zero only on the support of ρ∞. Thus, from

the preceding, we can write

∫

T
d
L

∇ρ∞ · ∇(ρ∞ +
1

2
θρ∞ ∗ V )dx = 0. (3.4.15)

Now, we wish to express the above as a Fourier sum which requires some additional

justification. To this end we claim that ρ∞ is Lipschitz continuous – i.e., in W 1,∞(Td
L) –

which places both entities in L2(Td
L) and vindicates the use of explicit formulas.

The equation ∇ρ∞ = −1
2
θ∇(V ∗ ρ∞) valid on the support of ρ shows that in the various

components where ρ∞ is positive, it is at least C2. Indeed, in general, Hypothesis (V2)

immediately implies ‖ρ∞(x) ∗ V ‖C2(Td
L) ≤ ‖ρ∞‖L1‖V ‖C2(Td

L) so whenever ρ∞ satisfies this

(m = 2 version of the Kirkwood–Monroe) equation, we have Lipschitz continuity with uni-

form constant. We shall denote this constant by κ. Now suppose that x, y ∈ Td
L have ρ∞(x)

and ρ∞(y) positive. Let us assume, ostensibly, that x and y belong to different components.

On the (shortest) line joining x and y, let zx denote the first point, starting from x that is

encountered on the boundary of the component of x and similarly for zy. Then

|ρ∞(x) − ρ∞(y)| = |ρ∞(x) − ρ∞(zx) + ρ∞(zy) − ρ∞(y)|

≤ |ρ∞(x) − ρ∞(zx)| + |ρ∞(zy) − ρ∞(y)|

≤ κ[|x− zx| + |y − zy|] ≤ κ|x− y|; (3.4.16)

the first inequality due to ρ∞(zx) = ρ∞(zy) = 0 and the last inequality because all four points

lie in order on the same line. A similar argument can be used if, e.g., ρ∞(x) is positive and

ρ∞(y) is zero.

All of this establishes enough regularity to unabashedly express (3.4.15) in Fourier modes:

0 =
∑

k

|k|2
Ld

|ρ̂∞(k)|2(1 +
1

2
θV̂ (k)). (3.4.17)

By the defining property of θ♯ we have 1 + 1
2
θV̂ (k) > 0 for all k 6= 0, thus (3.4.17) implies

ρ̂∞(k) = 0 for all k 6= 0, i.e. ρ∞ ≡ ρ0.
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Now, we may use the monotonicity in time of Fθ(ρ(t)) and we finally have

lim
t→∞

Fθ(ρ(t)) = lim
n→∞

Fθ(ρn) = Fθ(ρ∞) = Fθ(ρ0)

which is the stated claim.

By combining the above result with the uniform continuity in time, we can show the

solution will become uniformly positive after a sufficiently large time.

Corollary 3.4.5. Under the assumption of Lemma 3.4.4, we have

lim
t→∞

‖ρ(·, t) − ρ0‖L∞(Td
L) = 0,

hence there exists T > 0 depending on θ, ‖V ‖C2(Td
L) and ρ(·, 0), such that ρ(x, t) > ρ0/2 for

all x ∈ Td
L, t > T .

Proof. We prove the statement in the display. Supposing that this is not the case. Then

there is a sequence of times, (τn) and points (yn) – yn ∈ Td
L – and a δ > 0 such that

|ρ(yn, τn) − ρ0| > δ.

Now, going to a further subsequence, we have yn → y∞ (with y∞ ∈ T
d
L by compactness).

But, along yet a further subsequence, not relabeled, we have, according to the arguments of

Lemma 3.4.4 that ρ(·, τn) is converging uniformly and the limit must be ρ0. Thus

lim
n→∞

ρn(yn, τn) = lim
n→∞

[ρn(yn, τn) − ρn(y∞, τn)] + lim
n→∞

ρn(y∞, τn) = ρ0

in contradiction with the preceding display.

Theorem 3.4.6. Suppose m = 2 and θ < θ♯, where θ♯ is as given in (3.4.4). Consider V

that satisfies the assumptions (V1) and (V2). Let ρ(x, t) be the weak solution to (3.1.1)

on [0,∞) × Td
L, with non–negative initial data ρ(x, 0) ∈ L∞(Td

L) which integrates to 1.

Then Fθ(ρ(t)) decays exponentially to Fθ(ρ0), where the rate depend on ρ(x, 0). Moreover,

‖ρ(·, t) − ρ0‖L2(Td
L) → 0 exponentially, i.e.

0 ≤ Fθ(ρ(t)) −Fθ(ρ0) ≤ C1 exp(−ρ0c
′

L2
t),
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and

‖ρ(t) − ρ0‖L2(Td
L) ≤ C2 exp(−ρ0c

′

L2
t),

where c′ and C1 and C2 depend on θ, V and ρ(·, 0).

Proof. By Lemma 3.4.5, there exist some T > 0 depending on θ, V and ρ(·, 0), such that

ρ(x, t) > ρ0/2 for all x ∈ Td
L, t > T . Then for all t2 > t1 > T , (3.4.8) becomes

Fθ(ρ(·, t1)) − Fθ(ρ(·, t2)) ≥
∫ t2

t1

∫

T
d
L

ρ0

2
|∇(2ρ+ θρ ∗ V )|2dxdt

= 2ρ0

∫ t2

t1

1

Ld

∑

k

|k|2|ρ̂(k)|2(1 +
1

2
θV̂ (k))2dt

≥ ρ0c
′
∫ t2

t1

1

Ld

∑

k 6=0

|ρ̂(k)|2(1 +
1

2
θV̂ (k))dt

= ρ0c
′
∫ t2

t1

(Fθ(ρ(·, t)) −Fθ(ρ0))dt, (3.4.18)

where c′ = 2 mink 6=0 |k2|(1 + 1
2
θV̂ (k)), which is positive when θ < θ♯.

In the spirit of Remark 3.4.3 we may regard the above as a differential inequality for

g(t) := Fθ(ρ(·, t)) − Fθ(ρ0); the inequality reads

−dg
dt

≥ ρ0c
′g(t).

This immediately integrates to yield g(t) ≤ g(T )exp{−ρ0c
′(t− T )} for t ≥ T . I.e.,

F(ρ(·, t)) −F(ρ0) ≤ Ce−ρ0c′t.

Since Fθ(ρ(·, t)) − Fθ(ρ0) is comparable to ‖ρ(t) − ρ0‖L2 , we have ‖ρ(t) − ρ0‖L2 → 0 expo-

nentially with the same rate.

Remark 3.4.7. It is remarked that, via comparison to linearized theory, the above is

essentially optimal. (The results differ by a factor of two which comes from the definition

of T =: T1/2. Using Tǫ = sup{t > 0 | ||ρ(·, t) − ρ0||L∞(Td
L) > ǫρ0}, the long time asymptotic

rates are actually in complete agreement.) Moreover, while for L of order unity, the result

stands: c′ – with or without an additional factor of two – might well be optimized at a wave

number of order unity. However, as L→ ∞, it is clear that

min
k 6=0

|k|2(1 +
1

2
V̂ (k)) → (

2π

L
)2(1 +

1

2
V̂ (0)).
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So, in particular, for large L the rate scales as L−(d+2) – a result which may be an artifact

of our normalization.

3.4.2 Some remarks on the supercritical case, when m = 2

When θ > θ♯, we have 1 + 1
2
θV̂ (k0) < 0 for some k0 = 2π

L
~n0, where ~n0 ∈ Zd. In other words,

at least one of the coefficients of the free energy (3.4.3) is negative. In the next proposition

we show that in this case the constant solution ρ0 is not linearly stable.

Proposition 3.4.8. Suppose m = 2 and θ < θ♯, where θ♯ is as given in (3.4.4). Consider

an interaction V that satisfies the assumptions (V1) and (V2). Then the constant solution

ρ0 is not a local minimizer of the free energy (3.4.3) in P.

Proof. We choose k0 = 2π
L
~n0 such that 1 + 1

2
θV̂ (k0) < 0, where ~n0 ∈ Zd. We add a small

pertubation ǫη to the constant solution ρ0, where

η := cos(
2πn0 · x

L
).

Then

Fθ(ρ0 + ǫη) = Fθ(ρ0) + Ldǫ2(1 +
1

2
θV̂ (k0)),

which is strictly less than Fθ(ρ0) by the defining property of k0.

Remark 3.4.9. In fact, using the same perturbation term in the proof, we would know

that when θ > θ♯, any strictly positive function is not a local minimizer of the free energy

(3.4.3).

In the supercritical case, while (3.4.3) immediately implies that ρ0 is not a local minimizer

of Fθ in P, it gives us little information about what is the global minimizer. The difficulty

comes from the restriction ρ(x) ≥ 0 for all x, which evidently plays an important role in

the supercritical case, since any minimizer should touch zero somewhere due to Remark

3.4.9. After Fourier transform, the non-negativity of ρ actually gives us infinite numbers of

restrictions, which causes the difficulty.
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3.5 Exponential decay for 1 < m < 2 and weak interaction

In this section, we continue our study of (3.1.1) with m ∈ (1, 2) and here we will assume that

θ is “small”. Unfortunately, θ will not be uniformly small in volume. In particular, we shall

require θLd(2−m) to be a small number of order unity and, under these conditions we shall

acquire all the results of the previous section. We claim that without additional (physics

based) assumptions – in particular H–stability of the interaction – the above condition is

essentially optimal. Specifically, our cornerstone result of a unique stationary state does

not hold for non–H–stable interactions when θLd(2−m) is a sufficiently large number of order

unity. However, from an æsthetic perspective, this uniqueness result is the sole instance

where θLd(2−m) must be considered small. In the aftermath of Proposition 3.5.1 and its

corollary, we will only require θ itself to be a small quantity.

We start with a priliminary result (which is, actually, just a quantitative version of the

argument used in Lemma 3.4.4 in the vicinity of (3.4.16)).

Proposition 3.5.1. Consider an interaction V that satisfies the assumptions (V1) and

(V2). Let

ε0 := θLd(2−m)

be a sufficiently small number of order unity. Let ρ denote any solution to the Kirkwood–

Monroe equations which here read, whenever ρ > 0,

∇ρm−1 = −ε0
m− 1

m
ρ ∗ ∇V

and let

R := ‖ρ‖L∞(Td
L).

Then if ε0 is a small number of order unity then R is also a small number of order unity (if

L is large). In particular,

R ≤ κ4 max{[ε0]
d

d(m−1)+1 , L−d}

with κ4 a constant of order unity.
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Proof. From the mean–field equations,

|∇ρm−1| ≤ m− 1

m
ε0

∫

T
d
L

|∇V (x− y)|ρ(y)dy ≤ m− 1

m
‖V ‖C1ε0 =: κ1ε0.

Let x0 mark the spot where ρ achieves R. Then, for all x,

ρm−1(x) ≥ Rm−1 − κ1ε0|x− x0|.

Thus, if r is the length scale of the region about x0 where ρm−1 exceeds, a.e., 1
2
Rm−1 we have

r ≥ Rm−1

2κ1ε0

provided the right hand side does not exceed L. Otherwise, obviously, r = L. Since ρ

integrates to unity we have, assuming r < L,

1 =

∫

Td
L

ρdx ≥ κ2r
dR ≥ κ2

Rd(m−1)+1

(2κ1ε0)d
=:

1

κd
3

1

εd
0

Rd(m−1)+1

(with κ2 a geometric constant of order unity) and otherwise we acquire the mundane bound.

After a small step, the stated bound is obtained with an appropriate definition of κ4.

With the above in hand, we can establish that ρ0 is the unique stationary solution. We

start with

Corollary 3.5.2. Under the conditions stated in Proposition 3.5.1, if ε0 is sufficiently small

– but of order unity independent of L – the unique solution to the mean–field equations is

ρ = ρ0.

Proof. From the mean–field equation, we may write

0 =

∫

T
d
L

∇ρ · ∇(ρm−1 + ε0
m− 1

m
ρ ∗ V )dx.

By recapitulating the Lipchitz continuity that was featured in the vicinity of (3.4.16) we

have full justification to manipulate classically under the integral. Letting Rε0 denote the

upper bound on the L∞ norm of ρ that was featured in Proposition 3.5.1. Then, pointwise

a.e. on the support of ρ,

∇ρ · ∇ρm−1 =
m− 1

ρ2−m
|∇ρ|2 ≥ m− 1

R2−m
ε0

|∇ρ|2
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since, we remind the reader, 2 −m > 0. In other words,

0 ≥
∫

T
d
L

1

R2−m
ε0

|∇ρ|2 +
ε0

m
∇ρ · ∇(ρ ∗ V )dx.

We can again go to Fourier modes and the above reads

0 ≥
∑

k 6=0

k2|ρ̂(k)|2[ 1

R2−m
ε0

+
ε0

m
V̂ (k)].

For ε0 sufficiently small (but of order unity independent of L) the coefficient of |ρ̂(k)|2 is

positive for all terms so the later must vanish identically. The desired result is proved.

Based on the fact that ρ0 is the unique stationary solution, in the next lemma we prove

that ρ(·, t) will converge to ρ0 uniformly, (but not with a quantitative estimate on the rate.)

Lemma 3.5.3. Suppose the conclusions in Corollary 3.5.2 are satisfied. Let ρ(x, t) be the

weak solution to (3.1.1) on [0,∞) × Td
L, with non-negative initial data ρ(x, 0) ∈ L∞(Td

L)

which integrates to 1. Then supx |ρ(·, t) − ρ0| → 0 as t→ ∞.

Proof. This is more or less identical to the proof of Corollary 3.4.5 based on Lemma 3.4.4 so

we shall be succinct. Assuming the result false, we could find a sequence of times tn → ∞
and points xn → x∞ ∈ Td

L such that ρ(·, tn) converges uniformly and yet |ρ(xn, τn)−ρ0| > δ.

So, denoting by ρ∞(·) the uniform limit, we would have |ρ∞(x∞) − ρ0| > δ.

Hence, since ρ∞ is continuous, it is definitively not equal to ρ0. However, any subsequen-

tial limit must satisfy the mean–field equation and by Corollary 3.5.2 this is uniquely ρ0 in

contradiction with the preceding. This completes the proof.

In the next lemma, we show that once ρ and ρ0 becomes comparable, Fθ(ρ)−Fθ(ρ0) also

becomes comparable with Ld(2−m)‖ρ − ρ0‖L2(Td
L). Indeed, as alluded to earlier, this will be

proved under the weaker assumption that θ – not θLd(m−2) – is small. We start with:

Lemma 3.5.4. Suppose that θ > 0 is sufficiently small (but of order unity independent of

L). Let ρ be such that ‖ρ− ρ0‖T
d
L
< 1

2
ρ0. Then we have

αLd(2−m)‖ρ− ρ0‖2
L2(Td

L) ≤ Fθ(ρ) − Fθ(ρ0) ≤ βLd(2−m)‖ρ− ρ0‖2
L2(Td

L) (3.5.1)

for some α, β > 0 of order unity.
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Proof. First, by any number of methods we have
∫

T
d
L×T

d
L

ρ(x)ρ(y)V (x− y)dxdy ≥ −KV ‖ρ− ρ0‖2
L2(Td

L);

e.g., we may take, using the Fourier decomposition, KV = [θ♯]−1. Similarly for a correspond-

ing upper bound with a positive constant. Let us turn to the entropic–like terms.

Writing ρ = ρ0(1+ η), our assumption implies that |η| ≤ 1
2
. From this it is easy to verify

that, pointwise,

(1 + η)m ≥ 1 +mη +
m(m− 1)

2
(
2

3
)2−mη2 := 1 +mη + aη2,

and for the other direction we have

(1 + η)m ≤ 1 +mη +
m(m− 1)

2
(3)2−mη2 := 1 +mη + bη2.

Thence ρm − ρm
0 = ρm

0 [(1 + η)m − 1] = ρm
0 [(1 + η)m − 1 −mη +mη] ≥ ρm

0 [mη + aη2]. So
∫

Td
L

(ρm − ρm
0 )dx ≥ aρm

0 ‖η‖2
L2(Td

L) = aLd(2−m)‖ρ− ρ0‖2
L2(Td

L),

and similarly we have
∫

T
d
L

(ρm − ρm
0 )dx ≤ bLd(2−m)‖ρ− ρ0‖2

L2(Td
L).

Combining this with the bounds on the energy term, the stated claim has been established.

Finally, in the next theorem, we prove that the free energy decays exponentially to its

minimum value.

Theorem 3.5.5. Suppose the conclusions acquired in Corollary 3.5.2 are satisfied and sup-

pose that θ is a sufficiently small number which is of the order of unity. Let ρ(x, t) be the

weak solution to (1.1.1) on [0,∞) × Td
L, with non-negative initial data ρ(x, 0) ∈ L∞(Td

L)

which integrates to 1. Then Fθ(ρ(t)) decays exponentially to Fθ(ρ0). More precisely,

F(ρ(·, t)) − F(ρ0) ≤ C1e
−ρm−1

0 c′t (3.5.2)

for various constants c′ and C1. Similarly for the L2–norm of (ρ − ρ0) with a different

prefactor.
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Proof. According to Lemma 3.5.3, there exist some T > 0 depending on θ, L, V and ρ(·, 0),

such that |ρ(x, t) − ρ0| < 1
2
ρ0 for all x ∈ Td

L, t > T . Then for all t2 > t1 > T , we manipulate

the integrand on the right hand side of (3.4.8) – the lower bound on Fθ(ρ(·, t1))−Fθ(ρ(·, t2)):
∫

T
d
L

ρ|∇ m

m− 1
ρm−1 + θLd(2−m)∇ρ ∗ V |2dx ≥

∫

T
d
L

ρ

[
1

2
|∇ m

m− 1
ρm−1|2 − |θLd(2−m)∇ρ ∗ V |2

]

dx

=

∫

T
d
L

[
1

2
m2ρ2m−3|∇ρ|2 − ρθ2L2d(2−m)|∇(ρ ∗ V )|2

]

dx

≥
∫

T
d
L

[

gρ2m−3
0 |∇ρ|2 − 3

2
ρ0θ

2L2d(2−m)|∇(ρ ∗ V )|2
]

dx (3.5.3)

where the value of g – which is always of order unity – depends on whether 2m−3 is positive

or not. Note that all terms are proportional to ρ2m−3
0 = ρm−1

0 Ld(2−m).

Going to Fourier modes, the final (spatial) integral in the above string becomes

ρm−1
0 Ld(2−m) · 1

Ld

∑

k

k2|ρ̂(k)|2[g − 3

2
θ2|V̂ (k)|2]

where, for sufficiently small θ, we may assert that the summand is positive.

We thus have

Fθ(ρ(·, t1)) − Fθ(ρ(·, t2)) ≥

ρm−1
0 βc′

∫ t2

t1

∫

T
d
L

Ld(2−m)(ρ− ρ0)
2dxdt ≥ ρm−1

0 c′
∫ t2

t1

[Fθ(ρ(·, t)) −Fθ(ρ0)]dt

(3.5.4)

where in the above, β is the constant from Lemma 3.5.4 which has been conveniently absorbed

into the definition of c′:

c′β := min
k 6=0

[k2(g − 3

2
θ2|V̂ (k)|2)]

and in the final step we have used Lemma 3.5.4.

Note that (3.5.4) has the same form as (3.4.18) therefore we can again treat it as a

differential inequality as in the proof of Theorem 3.4.6. We obtain that

F(ρ(·, t)) − F(ρ0) ≤ C1e
−ρm−1

0 c′t.
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A further application of Lemma 3.5.4 implies a similar result for the L2–norm of (ρ − ρ0)

and the proof is finished.

Remark 3.5.6. Here as in the case m = 2, when L is large, c′ ∝ L−2 and we have the

large L scaling of the rate proportional to L−(2+d(m−1)) in agreement with a perturbative

analysis. However in this case, our arguments do not provide agreement with the constant of

proportionality. We also note that by Theorem 3.2.4 we have that ρ(·, t) is uniformly Hölder

continuous in space and time for all t ≥ T , where the Hölder coefficient and exponent depends

on θ, L and V . Thus we can bound, the L∞–norm of ρ− ρ0 by some power of its L2–norm.

Hence the exponential convergence of ‖ρ− ρ0‖L2(Td
L) implies the exponential convergence of

‖ρ − ρ0‖L∞(Td
L). However a bound along these lines is “even more” non–optimal since the

two norms should, presumably, differ by a factor of Ld.
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APPENDIX A

Additional Computations

A.1 Additional computations for Chapter 1

A.1.1 Proof of existence for ρ as given in Proposition 1.2.1

Here we will show the existence of a global minimizer for the free energy functional given

in (3.1.2). First note that the kernels V given in (A) and (B) belong to M
d

d−2 , where Mp

denotes the weak Lp space.

Our proof is based on a theorem of Lions in [L]:

Theorem A.1.1 ([L]). Suppose f ∈Mp(Rd), f ≥ 0 and consider the problem

Iλ = inf
u∈Kλ

{∫

Rd

1

m− 1
umdx− 1

2

∫

Rd

u(u ∗ f)dx
}

,

where

Kλ =
{

u ∈ Lq(Rd) ∩ L1(Rd), u ≥ 0 a.e.,

∫

Rd

udx = λ
}

with q =
p+ 1

p
.

Then there exists a minimizer of problem (Iλ) if and only if the following holds:

Iλ < Iα + Iλ−α, ∀α ∈ (0, λ). (A.1.1)

Proposition A.1.2 ([L]). Suppose there exists some α ∈ (0, d) such that f(tx) ≥ t−αf(x)

for all t ≥ 1. Then (A.1.1) holds if and only if

Iλ < 0, for all λ > 0. (A.1.2)

For the rest of this subsection, we will verify that Proposition A.1.2 applies to our kernels.
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Proposition A.1.3. Let f = V given by either (1.1.3) or (1.1.4). Then f(tx) ≥ t−αf(x)

with t ≥ 1 and α = d− 2.

Proof. When V is given by (A) the proof is straightforward, so suppose V is given by (B).

Then f = −N ∗ h. Since h can be approximated by a sum of indicator functions, it suffices

to prove the proposition for f = −N ∗χB(0,r), where χ is the indicator function. In this case

we have

f(x) =







1

2(d− 2)
r2 −

1

2d
|x|2 for |x| ≤ r,

1

d(d− 2)
rd|x|−d+2 for |x| > r,

(A.1.3)

which finishes the proof.

Proposition A.1.4. Let f be as in Lemma A.1.3. Suppose m > 2 − 2
d

and let us define

u =
λχB(0,R)

cdRd

where cd is the volume of the unit ball in Rd and R is a constant to be chosen later. If R is

sufficiently large, we have

E(u) :=

∫

Rd

1

m− 1
umdx− 1

2

∫

Rd

u(u ∗ f)dx < 0,

and thus Iλ ≤ E(u) < 0.

Proof. First note that we have

∫

Rd

1

m− 1
umdx =

∫

Rd

1

m− 1

(λχB(0,R)

cRd

)m

dx ≃ λmR−d(m−1).

On the other hand,
∫

B(0,R/2)
(−V )dx ≃ R2 if R is sufficiently large: this implies

∫

Rd u(u ∗ (−V ))dx & λ2R−d+2. Since m > 2 − 2
d

we have

E(u) =

∫

Rd

1

m− 1
umdx−

∫

Rd

u(u ∗ (−V ))dx < 0.
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A.1.2 Proof of Lemma 1.4.1

Observe that ∆V is nonnegative and radially decreasing, and thus it can be approximated

in L1(Rd) ∩ L∞(Rd) by the sum of bump functions of the form cχB(0,r), where c > 0. By

linearity of convolution, it suffices to prove that for each bump function χB(0,r), where r is

any positive real number, we have

(u ∗ χB(0,r))(b1) − (u ∗ χB(0,r))(a1) ≤ ‖χB(0,r)‖1(u(b1) − u(a1)). (A.1.4)

Observe that

(u ∗ χB(0,r))(b1) − (u ∗ χB(0,r))(a1) =

∫

B(b1,r)

u(x)dx−
∫

B(a1,r)

u(x)dx (A.1.5)

=

∫

ΩB

u(x)dx−
∫

ΩA

u(x)dx. (A.1.6)

Here ΩA := B(a1, r)\B(b1, r) and ΩB := B(b1, r)\B(a1, r) (see Figure A.1).

x1 =α+β
2

ΩA ΩB

a10 b1

x f(x)

Figure A.1: The domains ΩA and ΩB

Note that ΩA and ΩB are symmetric about the hyperplane H = {x : x1 = α+β
2
}. For any

x ∈ ΩA, use f(x) to denote the reflection point of x with respect to H . Then we have
∫

ΩB

u(x)dx−
∫

ΩA

u(x)dx =

∫

ΩA

(u(f(x)) − u(x))dx.

Since |x| < |f(x)| for x ∈ ΩA, we can use the assumption (1.4.1) to obtain
∫

ΩA

(u(f(x)) − u(x))dx ≤
∫

ΩA

(u(b) − u(a))dx ≤ |B(0, r)|(u(b) − u(a)),

which completes the proof.
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A.1.3 Proof of Proposition 1.6.2

The proof of Proposition 1.6.2 is an application of the Crandall-Liggett Theorem ([CL], also

see Theorem 10.16 in [V]). Let us consider the following domain:

D :=
{

ρ ∈ L1(Rd) : ρm ∈W 1,1
loc (Rd),∆ρm ∈ L1(Rd), |∇ρm| ∈Md/(d−1)(Rd)

}

. (A.1.7)

Here the Marcinkiewicz space Mp(Rd), 1 < p < ∞, is defined as the set of f ∈ L1
loc(R

d)

such that
∫

K

|f(x)|dx ≤ C|K|
p−1
p ,

for all subsets K of finite measure. The minimal C in the above inequality gives a norm in

this space, i.e.

‖f‖Mp(Rd) = sup
{

meas(K)
−p−1

p

∫

K

|f |dx : K ⊂ R
d,meas(K) > 0

}

.

A parallel argument as in Theorem 2.1 of [BBC] yields the existence of solutions for the

discretized equation.

Lemma A.1.5 (Existence). Let d ≥ 3 and let ρ0 ∈ L1(Rd),Φ ∈ C2(Rd). Then there exists

a unique weak solution ρ ∈ D of the following equation:

ρ− ρ0

h
= ∆ρm + ∇ · (ρ∇Φ). (A.1.8)

The proof of the next lemma is parallel to that of Prop 3.5 in [V] for (1.1.2).

Lemma A.1.6 (L1 contraction). Let Φ ∈ C2(Rd), ρ0i ∈ L1(Rd) and let ρ1, ρ2 ∈ D be the

weak solutions to the degenerate elliptic equation

ρi − ρ0i

h
= ∆(ρi)

m + ∇ · (ρi∇Φ), i = 1, 2. (A.1.9)

Then ρ1 and ρ2 satisfy

‖ρ1 − ρ2‖L1(Rd) ≤ ‖ρ01 − ρ02‖L1(Rd). (A.1.10)

Proof of Proposition 1.6.2
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Proof. Let D be defined above, and define the nonlinear operator A : D → L1(Rd) by

A(ρ) = −∆ρm −∇(ρ∇Φ),

Then Lemma A.1.5 and Lemma A.1.6 yield that for any h > 0, there is a unique solution ρ

in D solving

hA(ρ) + ρ = f.

Moreover the map f 7→ ρ is a contraction in L1(Rd). Now arguing as in [V], the Crandall-

Liggett Theorem yields the conclusion.

A.1.4 Proof of Proposition 1.6.4

The proof of Proposition 1.6.4 is parallel to that of Theorem 11.7 in [V] for (1.1.2). First we

state a lemma which deals with the extra convolution term.

Lemma A.1.7. Let V be given by (B). Let f ∈ L1(Rd) and φ ∈ W 1,∞
0 (Rd) be non-negative

functions. Then for any non-negative number a, b, we have
∫

{a<φ<b}
∇(f ∗ (−V )) · ∇φ ≤

∫

{φ∗>a}
(f ∗ ∗ ∆V )(max{φ∗, b} − a), (A.1.11)

where the equality is achieved if f, φ are both radially decreasing.

Proof. Let us define η : R
d → R by

η(x) :=







b if φ(x) ≥ b,

φ(x) − a if a < φ(x) < b,

0 if φ(x) ≤ a.

Then η(x) ∈ W 1,∞
0 (Rd), ∇φ = ∇η in {a < φ(x) < b}, and ∇η = 0 in Rd\{a < φ(x) < b}.

Therefore

LHS of (A.1.11) =

∫

Rd

∇(f ∗ (−V )) · ∇η

≤
∫

Rd

(f ∗ ∗ ∆V )η∗ =

∫

{φ∗>a}
(f ∗ ∗ ∆V )(max{φ∗, b} − a),

where the inequality comes from Riesz’s rearrangement inequality. Note that we obtain an

equality if f = f ∗ and η = η∗. Hence the lemma is proved.
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The following lemma corresponds to Theorem 17.5 in [V].

Lemma A.1.8. Let V be given by (B). Let f, f̄ and g be non-negative radially decreasing

functions in L1(Rd), where f ≺ f̄ . Let h > 0, and let v1, v2 ∈ D be two non-negative radial

decreasing functions. Assume v1 and v2 satisfies

−h∆(v1)
m − h∇ · (v1∇(f ∗ V )) + v1 ≺ g, (A.1.12)

−h∆(v2)
m − h∇ · (v2∇(f̄ ∗ V )) + v2 = g. (A.1.13)

Then we have v1 ≺ v2.

Proof. Let ui := vm
i and define u := u1 − u2, v := v1 − v2, A(r) :=

∫

B(0,r)
v(x)dx. Our goal

is to show A(r) ≤ 0 for all r ≥ 0.

Subtracting (A.1.12) from (A.1.13), and integrating the quantity in B(0, r) yields that

∫

B(0,r)

−h∆udx− h
(

v1(r)

∫

B(0,r)

f ∗ ∆V dx− v2(r)

∫

B(0,r)

f̄ ∗ ∆V dx
)

+ A(r) ≤ 0, (A.1.14)

which can be written as

−hcdrd−1u′(r)−hv(r)
∫

B(0,r)

f ∗∆V dx−hv2(r)

∫

B(0,r)

(
f − f̄)∗∆V dx+A(r) ≤ 0. (A.1.15)

(Here u′(r) exists due to the fact that vi ∈ D for i = 1, 2, which implies that ∆u is in L1.)

Since we assume f ≺ f̄ , it follows that
∫

B(0,r)
((f − f̄) ∗ ∆V )dx ≤ 0 for all r ≥ 0. Therefore

−hcdrd−1u′(r) − hv(r)

∫

B(0,r)

f ∗ ∆V + A(r) ≤ 0 for all r ≥ 0. (A.1.16)

Note that since ui and vi both vanish at infinity, from (A.1.16) it follows that

limr→∞A(r) ≤ 0. Hence if A(r) is positive somewhere, it achieves its positive maximum

at some point r0 > 0. At r = r0 we have v(r0) = A′(r0) = 0, and (A.1.16) becomes

u′(r0) ≥
A(r0)

hcdrd−1
> 0,

which means u2 −u1 is strictly increasing at r0: hence v2 − v1 will also be strictly positive in

(r0, r0+ǫ) for some small ǫ, which implies A(r0+ǫ) > A(r0). This contradicts our assumption

that A(r) achieves its maximum at r0. Therefore A(r) ≤ 0 for all r, which means v2 ≺ v1.
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Proof of Proposition 1.6.4: The proof is parallel to that of Theorem 11.7 as in [V].

For any test function φ ∈W 1,∞
0 (Rd), we have

h

∫

Rd

∇um · ∇φ+ h

∫

Rd

u∇(f ∗ V ) · ∇φ+

∫

Rd

uφ =

∫

Rd

gφ, (A.1.17)

where φ ∈W 1,∞
0 (Rd) is any test function. Now let us take φ(x) := (um(x)− t)+ where t > 0,

and differentiate the equation with respect to t. Then we have:

−h(
d

dt

∫

{um>t}
|∇um|2)

︸ ︷︷ ︸

I1

−h(
d

dt

∫

{um>t}

m

m+ 1
∇(f ∗ V ) · ∇(um+1))

︸ ︷︷ ︸

I2

+

∫

{um>t}
u

︸ ︷︷ ︸

I3

=

∫

{um>t}
g

︸ ︷︷ ︸

I4

.

(A.1.18)

Following the proof of Theorem 17.7 in [V], one can check that

I1 ≤
∫

{(u∗)m>t}
h∆((u∗)m) (with equality if u ≡ u∗),

I3 =

∫

{(u∗)m>t}
u∗,

I4 ≤ sup
|Ω|=|{um>t}|

∫

Ω

g∗ =

∫

{(u∗)m>t}
g∗.

It remains to examine I2. Using Lemma A.1.7, it follows that

I2 = h lim
ǫ→0

1

ǫ

∫

{t<um<t+ǫ}

m

m+ 1
∇(f ∗ (−V )) · ∇(um+1)

≤ h lim inf
ǫ→0

1

ǫ

∫

{t<(u∗)m<t+ǫ}

m

m+ 1
(f ∗ ∗ ∆V )(max{um+1, (t+ ǫ)1+ 1

m} − t1+
1
m )+

= ht
1
m

∫

{(u∗)m>t}
f ∗ ∗ ∆V.

Plugging in the four inequalities into (A.1.18), the following inequality holds for all t ≥ 0:

−
∫

{(u∗)m>t}
h∆((u∗)m) − ht

1
m

∫

{(u∗)m>t}
f ∗ ∗ ∆V +

∫

{(u∗)m>t}
u∗ ≤

∫

{(u∗)m>t}
g∗. (A.1.19)

Since t ≥ 0 is arbitrary, the above inequality implies

−h∆((u∗)m) − h∇ · (u∗∇(f ∗ ∗ V )) + u∗ ≺ g∗. (A.1.20)

On the other hand, by assumption, ū solves

−h∆(ūm) − h∇ · (ū∇(f̄ ∗ V )) + ū = ḡ, (A.1.21)

where f̄ ≻ f ∗ and ḡ ≻ g∗. Note that u ∈ D implies u∗ ∈ D. So we can apply Lemma A.1.8

and get u∗ ≺ ū. 2
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A.1.5 Proof of Lemma 1.7.9

Proof. When 0 < k < 1, the right hand side of (1.7.24) is bounded above by (C1 + C2)k.

Hence if the initial data satisfies 0 < k(0) < 1, the inequality k(t) ≤ k(0)e(C1+C2)t will

hold until k reaches 1. In other words, k(t) is guaranteed to be smaller than 1 until time

t1 := − ln k(0)
C1+C2

.

Now if we choose k(0) to be sufficiently small such that 0 < k(0) < δ, where

δ := (αC1C
−1
2 2−d−2)

C1+C2
β ,

then t1 would be sufficiently large such that

C22
d+1e−βt1 ≤ C1α

2
.

We claim g(t) := 1 + e−ǫ(t−t1) is a supersolution of (1.7.24) for t ≥ t1, where

ǫ := min{β, 1
2
C1α}. It is obvious that g(t1) > 1 ≥ k(t1), so it suffices to show

g′(t) ≥ C1g(1 − gα) + C2g
d+1e−βt for t ≥ t1. (A.1.22)

By definition of g, we have

RHS of (A.1.22) ≤ −C1αe
−ǫ(t−t1) + C22

d+1e−βt1e−β(t−t1) (A.1.23)

≤ −1

2
C1αe

−ǫ(t−t1) (A.1.24)

≤ −ǫe−ǫ(t−t1) = LHS of (A.1.22). (A.1.25)

Therefore k(t) ≤ 1 + e−ǫ(t−t1) for all t ≥ t1.

To obtain the corresponding lower bound for k(t), note that the last term of (1.7.24)

is non-negative. Therefore if g solves g′(t) = C1g(1 − gα) and g(0) = k(0), then

|g(t) − 1| . e−C1αt. Comparison between these two ODEs yields k(t) ≥ g(t) for all t ≥ 0,

which implies k(t) ≥ 1 − Ce−C1αt. Now we can conclude that there exists C depending on

C1, C2, α, β and k(0) such that

|k(t) − 1| ≤ Ce−ǫt.
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A.2 Additional Computations for Chapter 4

Proof of Lemma 3.2.5. We will do the comparison between ρ− and w first; the comparison

between ρ+ and w can be done in the same way.

First note that w also satisfies (3.2.9) with Φ ≡ 0, therefore the inequality (3.2.25) also

hold for w, namely

w − ρ− ≥ −C1a, (A.2.1)

where C1 depends on m, d,M1,M2.

We define f := w − ρ−, and our goal is to obtain an upper bound for f . More precisely,

we want to show there exists some constant C and β depending on m, d,M1,M2, such that

f(x, t) ≤ Caβ in Ω̃ × [1, 2].

Our strategy is as following. First, we claim that

g(T ) := sup
y∈Ω̃

∫

B(y,1)∩Ω̃

f(x, T )dx < C0a for all T ∈ [0, 2], (A.2.2)

where C0 depends on m, d,M1,M2. We will prove this claim momentarily. Once we have

the claim, we know the space integral of f(x, t) in any unit ball is of order a, for 0 < t < 2.

To get f(x, t) ≤ O(aβ) for t ∈ [1, 2], it suffices to show f is Hölder continuous in space with

exponent and constant that are uniform in time for all t ∈ [1, 2], which is indeed true, since

Theorem 11.2 of [DGV] guarantees this uniform Hölder continuity of ρ− and w for t ∈ [1, 2].

Now it suffices to prove our claim. It is proved by writing both equations in weak form,

choosing an appropriate test function and applying the Gronwall inequality. By writing both

(3.2.19) and (3.2.26) in weak form and subtracting the two equations, we arrive at

∫

Ω̃

f(x, T )ϕ(x)dx

︸ ︷︷ ︸

I1

=

∫

Ω̃

f(x, 0)ϕ(x)dx

︸ ︷︷ ︸

I2

+

∫ T

0

∫

Ω̃

(
wm − ρ−|ρ−|m−−1

)
∆ϕ(x) +Maϕ(x) dx

︸ ︷︷ ︸

I3

dt,

(A.2.3)

where ϕ ∈ C∞
0 (Ω̃) is a test function chosen as follows. For a fixed T > 0, there exists z ∈ Ω̃,

such that the maximum of
∫

B(y,1)∩Ω̃
f(x, T )dx is achieved at z. We then define

ϕ(x) := µ ∗ hz(x),
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where µ is a standard mollifier supported in B(0, 1
10

), and

hz(x) :=







1 − |x− z|2/2 for |x− z| ≤ 1

(|x− z| − 2)2/2 for 1 < |x− z| ≤ 2

0 for |x− z| > 2

(A.2.4)

For such ϕ, we have 0 < ϕ < 1, inside the ball B(z, 1) and
∫

Ω̃
ϕdx < |B(z, 3)| < 6d.

To estimate I1, note that ϕ(x) ≥ 1/3 in B(z, 1), and f(x, T ) + C1a ≥ 0 in Ω̃, which

implies

I1 =

∫

Ω̃

(f(x, T ) + C1a)ϕ(x)dx−
∫

Ω̃

C1aϕ(x)dx

≥ 1

3

∫

B(z,1)∩Ω̃

(f(x, T ) + C1a)dx− 6dC1a

≥ g(T )

3
− 6dC1a.

For I2, since f(x, 0) = ( m
m−

)m−

ρ̃(x, 0)1−ca− ρ̃(x, 0), we would obtain f(x, 0) < C2a, where

C2 depends on m, ‖ρ̃(·, 0)‖∞ and c, (hence depends on m, d,M1,M2), which yields

I2 ≤ C2a

∫

Ω̃

ϕ(x)dx ≤ 6dC2a.

Now we start to estimate I3. Due to the definition of m− in (3.2.15), we have

m− −m ≤ 2(m− 1)ca. Also, we can derive some a priori bound of ρ−(x, t) and w(x, t) for

t ∈ [1, 2], which depend on m, d,M1,M2. Then we have

∣
∣
∣wm − ρ−|ρ−|m−−1

∣
∣
∣ ≤ C3|w − ρ−| + C4a in Ω̃ × [0, 2],

where C3, C4 depends on m, d,M1,M2. Together with the fact that |∆ϕ| is bounded, in

particular by d, in B(z, 3) and vanishes outside of B(z, 3), we obtain the following bound

for I3:

I3 ≤
∫

Ω̃

(C3|f | + C4a)|∆ϕ| +Maϕdx

≤ dC3

∫

B(z,3)∩Ω̃

|f(x, t)|dx+ 6d(dC4 +M)a

≤ dC3

cd∑

i=1

∫

B(z+xi,1)∩Ω̃

|f(x, t)|dx+ 6d(dC4 +M)a, (A.2.5)

129



where in the last inequality we denote by cd the number such that B(0, 3) can be covered by

cd numbers of balls of radius 1, centered at x1, . . . xcd
respectively. Note that cd is a constant

only depending on d.

Finally, we wish to control
∫

B(z+xi,1)∩Ω̃
|f |dx. Note that f ≥ −C1a implies |f | ≤ f+2C1a,

which yields

∫

B(z+xi,1)∩Ω̃

|f(x, t)|dx ≤
∫

B(z+xi,1)∩Ω̃

fdx+ 2d2C1a

≤ g(t) + 2d+1C1a

Plugging it into (A.2.5), we obtain

I3 ≤ dC3cdg(t) + (dC3cd2
d+1C1 + 6ddC4 + 6dM)a

By putting estimates of I1, I2, I3 together, we have

g(T ) ≤ C5

∫ T

0

g(t)dt+ C6a for T ∈ [0, 2]

where C5, C6 only depend on m, d,M1,M2. And for initial data, we have

g(0) ≤ |B(0, 1)| supx f(x, 0) ≤ 2dC2a. By Gronwall inequality, we have g(T ) ≤ C0a for

all T ∈ [0, 2], where C0 only depends on m, d,M1,M2, hence our claim (A.2.2) is proved.
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