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Abstract

Verbal elaboration of a worked example has been shown to be
helpful to learners before attempting to solve similar
problems. This has been termed as the self-explanation effect.
(Chi, Bassok, Lewis, Reimann & Glaser, 1989). This study
examined how self-explanation changes before and after
sequential problem solving rounds. We found that changes in
self-explanation within an individual may affect individual
performance across a series of problem solving episodes.
Also, some participants appear to use the worked-out example
as a self-generated feedback (SGF) mechanism to help with
their problem solving rounds, while other participants do not.
Locations or points in a worked-out example where self-
explanation (elaboration) is most likely to occur for students
with higher performance scores versus those with lower
performance scores, is discussed. The implications of these
differences for the design of a computational cognitive model
are also addressed.

Introduction

Learning from examples has been shown to be an important
aid in the learning process (VanLehn, 1986, 1996). Using
examples to provide a basis for learning has also been
shown to be the preferred way of learning by novices
(Anderson, Farell, & Sauers, 1984; Pirolli & Anderson,
1985; Recker & Pirolli, 1995). However, most research has
been conducted on worked-out examples which were
presented before problem solving episodes (Chi, Bassok,
Lewis, Reimann & Glaser, 1989). Chi et. al.’s (1989)
original study was limited since the worked examples were
only presented prior to problem solving rounds, which did
not allow for an examination of the changes in self
explanation as learning progressed. In this study, we will
look at how learning might proceed if worked-out examples
are presented following problem solving episodes instead of
prior to problem solving.

In the seminal work on learning from examples (Chi,
Bassok, Lewis, Reimann & Glaser, 1989), a self-explanation
effect was found in effective learners who could, among
other things, use a worked-out example to elaborate upon
broader principles which they had previously acquired while
studying text. The authors also found that effective learners
monitored their own performance and knowledge base
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better than ineffective learners; which has been confirmed
by some researchers (Ferguson-Hessler & Delong, 1990),
but questioned by others (Renkl, 1997).

We were interested in how self explanations might
change as subjects examined worked examples after
problem solving rounds. One hypothesis might be that
subjects will have a strategy of using the worked-out
example which follows the problem solving differently than
they used earlier worked examples. Given that subjects have
had the experience of attempting to solve earlier problems,
they may choose to use the latter worked examples as a
feedback mechanism to the previous problem solving
rounds. We characterized this as self generated feedback
(SGF). This feedback mechanism would allow subjects to
usc a strategy of analyzing their previous problem solving
rounds (from memory) in order to improve subsequent
problem solving. However, other subjects may decide not to
use the latter worked examples as a feedback mechanism,
instead they may concentrate all of their learning efforts on
the first worked example. In which case, these subjects
would not show any signs of SGF.

QOur research agenda addresses: 1) How do self-
explanations change as performance improves? 2) Do
subjects use self-explanation strategically and can these
strategies be detected? 3) Where in the worked example is a
subject most likely to engage in self-explanation behavior;
are these locations stable across different worked examples?

We wanted to examine the possibility that subjects might
have an identifiable strategic use for the different worked
examples. One strategic use could be that subjects would
use the later worked examples as a feedback mechanism to
their earlier problem solving episodes. If this were
occurring, this would change the nature of the latter self-
explanation statements. Subjects would begin to make
statements which referenced earlier gaps in their knowledge.
For example, a subject might say, “Oh, now I see how to
use that equation, that is not what I was doing before.”

We hypothesized that if participants were using the
second or latter worked examples as a SGF mechanism,
then they would show fewer self-explanation statements
than learners who relied heavily on the first worked-out
example. Also, they would utter fewer words on the first
worked example and instead concentrate their efforts on the
latter worked examples. However, if a subject were relying
heavily on the first worked example to establish a
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foundation for subsequent problem solving, and not relying
on latter worked-examples to provide SGF to their problem
solving episodes; then the change in explanation statements
should be significant. Also, the number of utterances while
studying the first worked example would be relatively high.
We also hypothesized that if a subject were using a delayed
SGF strategy, then their performance would be worse than a
subject who was not using the strategy.

Finally, we wanted to identify specific points in the
worked example which were likely to trigger a self-
explanation episode. This was particularly critical for
building any models of the self-explanation process over
time. As our model proceeded through the worked example,
the model’s actions should correlate with what the average
subject does at each line of the example. If certain lines in
the worked example are more likely to trigger explanation
events by the participants, then the model should also
respond with explanation events in the same places of the
worked example. Furthermore, it was necessary to see if the
worked examples differed in the places where explanation
statements were likely to occur, as the subjects progressed
through the experiment.

Method

Participants

Participants were seven high school juniors and three
college students. The high school students were recruited
from the same physics class which, a few months earlier,
had covered vector arithmetic concepts simpler than those
covered in the present experiment. The college students
(freshman and two seniors) had no prior physics training
beyond a high school course. All were paid for their
participation.

Materials and Design

Participants completed four self-explanation  tasks
conducted at regular intervals throughout the experiment.
Each task consisted of the participant talking aloud while
studying one of four worked-out examples. All participants
were given the same tasks to perform in the same order.

Problem solving tasks.

Participants completed four rounds of problem solving,
three sets of 10 problems and a final round of 8 problems.
All the problems were similar to the worked examples in
that they described two or more vectors (in the context of
the story) and asked the participants to find the magnitude
and direction of the resultant. Unlike the worked examples,
the problem statement was included no diagram.

Procedure

Students participated in individual sessions lasting 2.5 3
hours. To complete the experiment, students generally
attended 5 sessions, although some students needed fewer
sessions. In the first session, students studied a textbook
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chapter on vector arithmetic and completed the first self-
explanation task. For the self-explanation task, students
were asked to, “Study this example as if you were studying
for a test. Try to understand why each solution step was
taken and why the solution correctly answers the question.”
Students had access to a calculator while performing all
tasks. During the study, students were asked to “talk aloud”
(Ericsson & Simon, 1993), providing concurrent verbal
protocols.

The remaining sessions included both self-explanation
tasks and problem solving. In the second session, students
completed 10 vector arithmetic problems (referred to as
round 1 or R1), without any feedback on the correctness of
their responses. The work done by the students during the
problem solving episodes was not analyzed in great detail
for this paper. We were primarily concerned with the work
done by the students while they where studying the
examples. Information about the problem solving rounds is
presented here for clarity and completeness.

In the third and fourth sessions, students completed a self-
explanation task (SE2 and SE3) followed by solving of
another set of 10 vector arithmetic problems. In the final
sessions, students completed a set of 8 vector arithmetic
problems, some of which were easier and some of which
were more difficult than problems completed during the
previous sessions. After this fourth round of problem
solving (R4), students completed the final self-explanation
task (SE4). Students were then debriefed.

Results

Background

This study proceeded in two major phases and
consequently the results will be presented in two major
sections: replication and changes in self-explanation. The
replication section addresses the major findings of the Chi et
al. (1989) study. The “changes in self-explanation” section
includes discussions on the observed changes in self-
explanation over time. There are also subsections which
include the strategies participants exhibited while using the
worked examples and the computational cognitive model
which was based on expert performance while studying one
worked example.

Replication
Replication of the Chi et al (1989) study was conducted to
determine the validity and generalizability of our data and to
determine if there were any inconsistencies with the original
work of Chi et al. (1989). However, a few problems were
encountered. Most of the data which Chi et al. (1989)
analyze was split into good versus poor performers, of
which they seemed to have a clear delineation. We
conducted a similar split (a median split) however, we had
only one subject performing above 50 percent.

Chi et al. (1989) first analyze their data determining a
count of the number of phrases made by good and poor
students during the problem solving episodes. Instead of



using a line count, we used word count by each subject
while they were studying the example. Because some of the
verbal protocol lines were long, whereas other lines were
single words or phrases, we feel a word count might be
more accurate than a line count. They find the line count to
be significant “(142 lines versus 21 lines, 1(6) = 1.97, p <
.05)." We found that on average the good students uttered
more words than the poor performing subjects (1119.33
versus 586.75, t(5) = 1.96, p > .05) performance on the first
set of ten problems for 7 subjects in the experiment. A fairly
high Pearson's correlation coefficient of (r(6) = .42, p > .05)
was obtained but, due to the small sample size, this was not
significant.

Next, Chi et al. (1989), found that good students
produced significantly more explanations that related to the
content of the problem than did the poor students (15.3
versus 2.8). Our data support this result (22.6 versus 12.5).
Chi et al. (1989) go on to analyze the number of times the
good and poor students refer to the worked-out examples
during problem solving rounds. They found the good
students referred to the example less often than did the poor
students. We looked at the two best performing subjects
(with performance scores i.e. questions answered correctly
of 80 and 50) in comparison with the two worst performing
subjects (with performance scores of 20 and 30) and found
that the best performing students refer to the example fewer
times than did the worst performing subjects. Furthermore,
we found that the amount of explanations while studying an
example was correlated to the subsequent performance of
the subject during the following problem solving rounds
(r(6) = .65).

Our data was consistent with the results presented by Chi
et al. (1989), with the exception of one area - the amount of
negative versus positive monitoring statements uttered by
participants. Positive monitoring statements included
statements such as: "OK, I understand this", while negative
monitoring statements consisted of statements such as,
"What does this mean? I don’t understand." Chi et al.
(1989) found significant results on the negative monitoring
variable. Poor performers averaged 1.1 negative monitoring
statements while good performers averaged 9.3 negative
monitoring statements. This is where our data is inconsistent
with Chi et al.’s (1989) original findings. We found, if
anything, that negative monitoring and subsequent
performance seemed to be slightly inversely related,
however the result was non-significant (r(6) = -.39, p > .05).
Good students had an average of 3.3 negative monitoring
statements while poor subjects had an average of 4.0
negative monitoring statements. Renkl (1997) also found no
relation between the amount of negative monitoring
statements during the study of a worked-out example
subsequent problem solving performance.

Changes in self-explanation

As an extension to the Chi et al. (1989) data, we were
interested in three major points. 1) How do self-
explanations change as performance improves during
problem solving? 2) Do subjects have a specific strategy of

using the latter worked examples as a feedback mechanism
to the earlier problem solving rounds and does this affect
their subsequent performance on the problem solving
rounds? 3) Where in the worked examples is a subject most
likely to engage in self-explanation behavior, and how does
this likelihood to explain change across problem solving
rounds?

Nine out of ten subjects showed an decrease in the
amount of explanation statements for the second worked-out
example. The total amount of explanation statements for 10
participants for the first worked-out example (SEI) was
163, or an average of 16.3 per subject. For SE2 and SE4 the
explanation statements dropped to 96 (9.6 per subject)
statements for SE2 and 76 (7.6 per subject) explanation
statements for SE4. This change in explanation statements
yielded a significant sign test of (X2(1) = 6.4, p < .025). A
Wilcoxon matched-pairs  signed-ranks test showed a
significant difference between SEI1 and SE2 on explanation
(1(10) = 10, p < .05) as well as between SE1 and SE4 on
explanation (t(10) = 0, p < .005). A significant difference
was also found for overall word count. The Wilcoxon
matched-pairs signed-ranks test yielded a significant effect
for number of words for SE1 compared with SE2 (t(7) = 0,
p <.001).

In general, while the overall trend in explanation
statements decreases across the different worked-out
examples as problem solving continues, learning is still
continuing as evidenced by the improved performance of
each subject across the rounds. Out of ten participants, the
average improvement in score from the first problem
solving round to the last problem solving round was 77
percent. The most improved subject (JEO8) went from a
score of 20 on the first round to a score of 100 by the last
round of problem solving.

Across all the participants, the percentage of explanation
statements, in relation to their total number of statements
(which would include the extra categories of “read”,
“monitor” and “other”) did not change across the self-
explanation rounds. The percentage of all statements which
were explanation statements, for 10 subjects, for SE1, SE2
and SE4 was 27%, 26%, and 27% respectively. However,
there were some small and relatively consistent differences
when comparing good versus poor participants. On SEI,
good performing subjects had 30 percent explanation
statements while poor performing subjects had 26 percent.
By SE2, the gap widened slightly with the good students
having 30 percent explanation statements while the poor
students had 24 percent explanation statements. Finally, on
SEA4, this difference was still fairly consistent with the good
students having 30 percent explanation statements and the
poor subjects having 25 percent explanation statements.

Self-explanation strategies

In general, some participants appeared to use the first
worked example (SE1) to provide a solid foundation for
their subsequent problem solving rounds, which we termed
the upfront strategy. This was evidenced by an apparent
decrease in word count from SEI to SE2. These learners
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appeared to expend less effort while examining the second
worked example, as compared to the first, and consequently
had a reduction in word count. However, other participants
used SE2 as more of a SFG mechanism, relying on it to [ill
in any gaps they may have had in their knowledge which
they may have still had after the first round of problem
solving. We termed this the catch-up strategy. Again, this
was evidenced by the increase in word count from SE! to
SE2. We hypothesized that if participants were using SE2 as
a SGF mechanism, then they would show less of a reduction
in word count than a subject who relied heavily on SEI.
However, if someone is relying heavily on the first worked
example to establish a foundation for subsequent problem
solving, and not relying on SE2 to provide SGF to their
problem solving episodes; then the change in word count
from SEl to SE2 should be large. More importantly, the
number of explanation statements should show the same
change in direction as was hypothesized for the word
counts.

We found that changes in word count from the first
worked-out example (SE1) to the second worked-out
example (SE2) were correlated with performance in the
hypothesized direction (r(6) = .65, p > .05). However, the
more sensitive count of explanation statements, and using
more participants, produced a small negative correlation in
the opposite direction (r(9) = .13). Those subjects we had
categorized as using the upfront strategy, based on their
change in explanation statements, had a total combined
score 47.5 questions answered correctly. Those subjects
which were categorized as using the catch-up strategy,
based on their change in explanation statements, had a total
combined score of 51.3 questions answered correctly, So
one would have to conclude that even though the changes in
word counts were occurring in the hypothesized direction,
changes in explanation statements, which must be
considered a better indicator, were not occurring in the
hypothesized direction.

The subjects which had the smallest absolute changes in
word counts from SE1 to SE2 were subjects KB07, JEOS,
MT16 and MTI11 respectively. These protocols were
searched for examples of possible SGF examples, and
examples were found for subjects KBO7, JEO8 and subject
MT]11. These appeared to be instances where the participant
was referring back to the previous problem solving rounds
while studying a later worked-out example. For this
analysis, we concentrated specifically on the latter worked
examples after the problem solving episodes (SE2 and SE4)
and looked for any statements which made references to
earlier problem solving episodes.

While examining the fourth worked example, on lines 30
to 32, subject KB-07 makes these statements:

30) Okay, add ‘em up, you get Rx and get Ry
31) Woa, Woa, Woa, Oh.. so that’s where you put in
32) but it's still positive 1.8 fi.

This subject is examining where certain positive and
negative values came from and appears to realize at what
part in the process of solving the equation that the values are
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actually necessary.
While examining the second worked example, on lines
77-84, subject KB-07 realizes:

77) X squared

78) Rx, Ry squared

79) So we're looking

80) Oh!!

81) So we're looking for this too

82) So this would be equal to 6.25, wait.

Participant KB-07 has realized that part of the process she
had previously used did not include a necessary step. Hence
the exclamation, “oh, so we are looking for this too”.

Participant JEOS, on lines 54 to 56 makes the statement:

54) The direction of R may be found using an inverse
trigonometric function such as arctan
55) Now here is where I get lost.

Subject JEO8 knows from previous problem solving
rounds that there is a gap in her declarative knowledge
which still has not be resolved, even by the time she gets to
the second worked example.

While examining the second worked example, on lines 49
to 53, subject MT-11 makes these statements:

49) Ok, they find out where this was
50) So,..... and use this right angle

51) arc tan

52) adjacent over

53) hypotenuse ... Ah, it doesn’t matter

The subject has realized that the example provides an
alternative way to approach the problem from what the
subject had previously been doing. The subject realizes,
from studying the example, that a step the subject had
previously taken while solving the problem ‘“doesn’t
matter”, and the example shows how the step can be
eliminated.

So while the explanation statements did not decrease in
the anticipated direction to show evidence of possible SGF
for those subjects who we categorized as using the catch-up
strategy, there was some indication within the protocols that
SGF was taking place.

Model data

Results from our analysis will be used to build a cognitive

model of self-explanation behavior. An expert level model
of a subject solving vector arithmetic tasks has already been
developed. The model solves a vector arithmetic problem by
using the first worked-out example (SE1) as a guide. The
model assumes expert performance in that the model knows
what each next step is, and the model knows in what order
to do each step. The model has four basic decision points as
it precedes through the worked-out example. The model
uses logical evaluations at each of the four steps to
determine the information needed by the model to find any
unknown variables, then it proceeds to the next step. The



progression is linear, through the worked-out example,
toward a solution.

To further analyze the data, and to further help us develop
our cognitive model, we were interested in where in the
worked-example participants were elaborating or doing self-
explanation. Most participants proceeded in a linear fashion
through the worked example. As a subject reached each line
of the example, the number of explanation statements that
occurred at that line were totaled. The highest points of
explanation occur at lines 6, 7, 12, 14, 17 and 21. The four
major decision points of the previously described expert
model occur at lines 6, 7, (one decision) 11, 12, (one
decision) 17 and 21. So the model seems to be making
critical decisions at the appropriate points in the worked-out
example. These points appear to be occurring primarily at
mathematical areas of the worked example (formulas) and
not textual (written) sections.

The total number of explanation statements for seven
subjects were also totaled for each example (not just SE1 on
which the model was based upon) and the totals were
then compared. As with SEIl, subjects appear to be
concentrating on the formulas of the worked examples
much more than the textual components of the worked
examples. Also, the subjects studying SE2 and SE4 tended
to do a great deal of explaining near the end of the round.
For SE2, which had 10 lines, the largest amount of
explanation statements occurred at lines 10, 7 and 6
receptively. For SE4, which had 21 lines, the largest
number of explanation statements occurred at lines 11, 14,
and 15 (which were tied) and lines 21, 10 and 2 (which were
also tied). A direct comparison of SE1 with SE4 was
possible since these worked examples were highly similar to
each other. Generally, in percentage terms, the amount of
explanation statements decreases from SE1 to SE4. But
also, there was a tendency for explanation statements to
occur later in the worked example for SE4 as opposed to
SEl.

While the current version of the model can account for
the areas where a participant is most likely to self-explain, it
does not account for the tendency of subjects to do most of
their explaining near the end of the worked example. While
the model does show and increase in explanation statements
near the end of the example, it is not proportional to the
amount shown by the subjects.

Further development of the model needs to take place in
two specific areas. First, in order to account for our
empirical data, the model needs to show explanation
statements at the very end of the worked example.
Secondly, model does not simulate what we have called
self-generated feedback, and does not account for the
utterances we identified in our protocols as SGF. SGF is an
important change in self-explanation behavior that does not
occur during the first SE round but rather it is more likely to
occur in the latter rounds. This change in self-explanation
behavior must be addressed by our model of the self-
explanation effect.

Discussion

It is clear that the self-explanation effect is a powerful
phenomena in the study of examples. Replication of the
self-explanation effect has been conducted by other
researchers (Renkl, 1997). The majority of our data shows a
clear indication of the self-explanation effect as it was first
defined by Chi et al. (1987). However, we did find
differences from the Chi et al. (1987) study in the amount of
negative monitoring statements and performance during
problem solving rounds. Our data is consistent with that of
the later Renkl (1997) study, therefore it would be difficult
for us to conclude that increased negative monitoring is one
of the underlying features of the self-explanation effect.

Beyond replication, we were interested in examining how
self-explanations change as performance improves during
problem solving. We found that self-explanation decreases
as problem-solving performance increases. This would be
expected if self-explanation was occurring in order to fill in
gaps in their declarative knowledge. If subjects were using
self-explanations to fill in gaps in their declarative
knowledge base, then as their performance improved, then
there should be less need to do any self-explanation.

Next, we addressed the question of whether subjects have
a specific strategy of using the latter worked examples as a
feedback mechanism to the earlier problem solving rounds
and does this affect their subsequent performance on the
problem solving rounds. What we found were examples in
the protocols of subjects using the latter worked examples as
a feedback mechanism to their earlier problem solving
episodes. This occurred in subjects who had the smallest
change in word count from SE1 to SE2. However, we could
not find any reliable changes in performance from the
subjects using this strategy.

Finally, we examined areas in the worked example where
a subject was most likely to engage in self-explanation
behavior, and how does this likelihood to explain change
across problem solving rounds. We also found that subjects
tended to do a great deal of explaining at the end of the
worked-examples, especially for latter worked examples
(SE2 and SE4). This was also supported by an analysis of
the best performing subject (AM19), who seemed to do
most of her explaining at the end of the example, while the
worst performing subject (JEOB) did not. We construed that
participants will frequently reflect at the end of a problem
solving episode, even when no gap in their declarative
knowledge has been identified. Apparently a significant
amount of learning could occur during these reflective, non-
impasse periods, and this assumption is supported by the
data of our best performing subject (AM 19), as well as our
aggregate data. The fact that the best performing subject
uses this strategy might reflect differences in good versus
poor performance of participants. Perhaps good students
tend to be more reflective after problem solving, while poor
performing students do most of their problem solving only
when they encounter a gap in their knowledge. However,
the important assumption here is that gaps are not present
when the learner has reached the end of the worked
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example. Obviously, a counter argument could be made that
this has not been proven to be the case, and more research
needs to be done to clarify this issue. However, if one
accepts the assumption that a gap in knowledge is not likely
to be identified after an example has been completed, then
this is consistent with VanLehn (1992) findings that not all
learning occurs at impasses.

Other models imply that there are strategy differences
within participants who self-explain. The Cascade model
(VanLehn, 1992) uses strategy differences to distinguish
between good and poor learners by forcing the simulation of
good learners to rederive an example’s solution, while the
simulation of poor learners never attempts any new
derivations. Their model also found that this strategy caused
the good learner model to acquire more knowledge while
solving problems than the poor learner model. Our data
indicates that participants continue to learn even while self-
explanation behavior decreases, and it would seem that the
Cascade model can account for this aspect of our data.

Our computational cognitive model simulated subjects’
performance during the first worked-example. We found
that our model of SE1 was consistent with our empirical
data. The model engaged in self-explanation behavior in the
same areas where participants were most likely to engage in
self explanation behavior. However, our model does not
account for the large number of self-explanation statements
that occur at the end of the problem solving episodes. The
model also needs to incorporate specific instances of SGF,
which we had identified in the latter protocols of subjects
(SE2 and SE4). These are two important aspects of the
change in self-explanation behavior, which will be
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addressed in future versions of the model.
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